
Chapter 6 

Trellis-pruned and Punctured convolutional codes 

 

6.1    Trellis-pruned convolutional codes 

 

Trellis-pruned convolutional codes (determinate state convolutional codes) [8] 

have been used to achieve unequal error protection (UEP) in many practical 

applications. But it was not used in the iterative decoding systems. How it performs in 

the BICM-ID system is very interesting. Through the trellis pruning, the minimum 

free distance of the code will be enhanced. In this chapter, we design the 

trellis-pruned convolutional codes with EXIT chart. Besides, we found that if the bit 

mapping changes along with the trellis-pruning convolutional codes, the performance 

of them will be enhanced very much compared to the original convolutional codes. 

 

6.1.1    Encoding of the trellis-pruned convolutional codes 

 

b ′b c

 

Fig. 6-1: Trellis-pruned convolutional encoder 
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 To construct a trellis-pruned convolutional codes, we add some determinate bits 

(in the following we will call them pilot bits) into source data. If we add one bit for 

every K  information bits and pass the pilot-inserted bits to a convolutional encoder, 

we will have the coded bits as follows. 
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where  

 0 1 1, , , Kb b b −L : the K  information bits 

 : the inserted pilot bit  p

 0 0 0
0 1 1, , Kc c c −L  and 1 1 1

0 1 1, , Kc c c −L : the coded bits of  0 1 1, , , Kb b b −L

 : the coded bits of the corresponding pilot bit 0v ,v1

 

The actual code rate after adding pilot bits is ( )/R K K 1⋅ +  and we have 

 code rate loss. Generally, we can add arbitrary number of bits for every (/R K + )1

K  information bits. This can be simulated by EXIT chart. 

 

6.1.2    Decoding of the trellis-pruned convolutional codes 

 

The inserted pilot bits can be zeros or ones, and we use all zero pilot bits in this 
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chapter. Fig.6-2 shows the decoding trellises of the original code and the 

trellis-pruned code respectively. Here we use a constraint length 3 convolutional code 

as example. Obviously, the trellis after trellis pruning is changed.  

 

(a) 

 

(b) 

Fig. 6-2: Decoding trellis (a) the original convolutional codes (b) the trellis-pruned convolutional code 

 When decoding for a zero determinate pilot bit, the decoding paths will be 

reduced to four paths as Fig.6-2 (b) shows. This bit will affect the following two 

stages of decoding processing. By pruning away the “wrong” codeword path, the 

pruned-code may perform better compared to the original code. 
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6.1.3    Decoder transfer characteristics with trellis pruning 

 

The decoder transfer characteristics with path-pruned is depicted in Fig.6-3. 

 

 

Fig. 6-3: Transfer characteristics of the decoder with K=3,4,6,30 and the original code, the generator 

polynomial is ( ) ( )0 1 8 8, 133 ,171g g = . 

 In Fig.6-3, we can see that when K  is decreased from 30 to 3, the decoder 

transfer characteristics will be lower and sharper. Especially, when K  decreases 

from 6 to 4, the curves at low EI  , about 0 to 0.2, have big changes. Another 

observation is that it is almost the same value of input AI  when EI  is near one for 

all curves, see Fig. 6-4. So I think that if we choose K =4, we will have a lot of 

improvement in the performance. 
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 In the BICM-ID systems, the soft information exchanges between the detector 

and the decoder. Different detectors will result in different performances. Here, we fix 

the detector as APP detector but change the bit mappings, e.g. Natural, Gray, 

Anti-Gray and Type A, B, C. 

 

Fig. 6-4: The zoom in vision of Fig.6-3. 

In Fig. 6-5, we can see that the detector with Type B mapping in 16QAM has the 

smallest SNR about 2 dB and others are larger than 2 dB. Therefore, the most suitable 

mapping for the trellis-pruned  convolutional codes with K=4 is Type B 

mapping in 16QAM. 

( 8 8133 ,171 )
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Fig. 6-5: EXIT chart for different bit-mappings in 16QAM BICM-ID systems at . 0b

)

/ 2E N dB=

 

6.1.4    Performance  

 

In Fig.6-6, we show the performance of BICM-ID with K=4 trellis-pruned 

 convolutional code under 20 iterations. As our prediction, the most 

suitable labeling between the above six labelings is Type B labeling. If we have not 

labeling designs, the most suitable labeling for the 

( 8 8133 ,171

( )8 8133 ,171  convolutional code 

in BICM-ID systems is Anti-Gray (3.7 dB) and the improvement on performance after 

labeling designing is about 3.7-1.9=1.8 dB. 
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Fig. 6-6: BER of BICM-ID with six mappings with the K=4 trellis-pruned ( )8 8133 ,171 convolutional 

code, 16QAM , 20 iterations. 

 

Fig. 6-7: BER of the BICM-ID systems with trellis-pruned and original convolutional codes, 16QAM, 

20 iterations, both are Type B labeling. 
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 Fig. 6-7 shows the performances of the BICM-ID systems with trellis-pruned and 

original (1338,1718) convolutional codes. The labelings used are both Type B labeling. 

The performance improvement after trellis pruning is about 1.7 dB. 

 

6.2    Punctured convolutional codes 

 

Convolutional codes with Viterbi decoding are the most attractive means to 

achieve significant coding gains on discrete noise channels. The 

convolutional code with generator polynomials1/ 2R = ( ) ( )0 1 8 8, 133 ,171g g = and 

constraint length 7 is the industry-standard code. In order to achieve higher 

transmission rate and have good error performance, one way is to use powerful 

high-rate /R k n=  convolutional codes. For high-rate /R k n=  codes, the number 

of operations and the amount of memory path histories to be stored increase rapidly 

and the implementation of the Viterbi decoder becomes impractical. Punctured 

convolutional codes [20] are used to simply the Viterbi decoding. New good 

punctured convolutional codes are discovered [21], [10]. In this section, first we will 

describe the methods to choose the puncturing patterns in [10], [20], [21], then we 

will utilize EXIT chart to design the puncturing patterns. 
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6.2.1    Minimum free distance 

 

High-rate /R k n=  convolutional codes can be obtained by a mother code with 

code rate 1/R n= . Here we use the mother codes with 1/ 2R = . By “steal” the 

coded bits at the output of the encoder, variable rate convolutional codes are produced. 

It has been shown that the upper bound on the error event and bit error probabilities of 

any rate  codes with Viterbi decoding on discrete memoryless channels [22]-[24] 

are given by  
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where 

fd : the minimum free distance of the code 

da : the number of incorrect paths of Hamming weight  for d fd d≥  that 

diverge from the correct path and re-emerge with it at some later stage 

dc : the total number of error bits produced by the incorrect paths (error 

coefficient) 

dP : the probability of picking an incorrect path in the Viterbi decoding process 
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The criterion of a good punctured code is to choose a puncturing pattern 

with maximum free distance fd  and minimum total number of bit errors . dc

A punctured code is generated from a rate-1/2 mother code using puncturing 

matrix  of period as follows, P p
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  In the following, the code rate-2/3 and 3/4 puncturing designs will be described. 

 

6.2.1.1    Puncturing design on rate 2/3 codes 

 

In this section, we show the puncturing pattern design of ( and 

 convolutional codes both being punctured to rate-2/3. The puncturing 

matrix we use is of period 2. 

8 85 ,7

( 8 8133 ,171

                                             (6.4) 11 12

21 22

  
  

g g
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P

It is equivalent when we just shift the columns of the puncturing matrix. 

Therefore we have two different puncturing matrices. 

                                      (6.5) 1

1  0
1  1
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= ⎜
⎝ ⎠
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1  1
1  0
⎛

= ⎜
⎝ ⎠

P

where 0 implies that the corresponding bit is punctured. Table 6-1 and 6-2 show the 

 and  of the two codes  and da dc ( 8 85 ,7 ( )8 8133 ,171 . 
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Code polynomial       R     puncturing matrix     , =1,2,……….. da d

5    7          2/3                     0, 0, 1, 4, 14, 40, ... 1P

                                        0, 0, 1, 10, 18, 38, ... 2P

 

133    171        2/3                     0, 0, 0, 0, 1, 2, 17, 32, … 1P

                                         0, 0, 0, 0, 0, 1, 15, 33, … 2P

TABLE 6-1:  The number of the incorrect paths for the rate-2/3 punctured  

( )8 85 ,7  and ( )8 8133 ,171  codes  

 

Code polynomial       R     puncturing matrix     c , =1,2,……….. d d

5    7          2/3                     0, 0, 2, 18, 86, 308, ... 1P

                           P              0, 0, 2, 58, 132, 334, ... 2

 

133    171        2/3                     0, 0, 0, 0, 6, 7, 69, 154, … 1P

                            P              0, 0, 0, 0, 0, 5, 73, 163, … 2

TABLE 6-2:  The total number of the error bits produced by the incorrect paths for the rate-2/3  

punctured ( )8 85 ,7  and ( )8 8133 ,171  codes  
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 The minimum free distance of rate-2/3 punctured ( )8 85 ,7  convolutional code is 

2. For  and ,  are both 2 but  are 18 and 58 respectively. Therefore, the 

puncturing matrix we choose for 

1P 2P 3c 4c

( )8 85 ,7  code is . Choosing puncturing matrix 

for  convolutional code is easier than 

1P

( 8 8133 ,171 ) ( )8 85 ,7  because the minimum 

free distances are 5 and 6 for  and . So we have  as the puncturing matrix 

for  convolutional codes. 

1P 2P 2P
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6.2.1.2    Puncturing design on rate 3/4 codes 

 

The puncturing matrix of a rate-3/4 code punctured by a rate-1/2 code is as 
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 In Table 6-3 and 6-4, we have the idea to choose the puncturing matrices for 

rate-3/4 puncturing convolutional codes. The minimum free distance of the punctured 

 convolutional code is three, and the code with puncturing matrix  has the ( 8 85 ,7 1P
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minimum . Hence  is the puncturing matrix of the rate-3/4 ( )  

convolutional cods. The same analysis can be applied to 

3c 1P 8 85 ,7

( )8 8133 ,171  codes and we 

choose  as the puncturing matrix. 1P

 

Code polynomial     R     puncturing matrix     , =1,2,……….. da d

5    7        3/4                      0, 0, 6, 23, 78, 214, ... 1P

                                       0, 1, 6, 21, 70, 191, ... 2P

                                       0, 0, 6, 23, 78, 214, … 3P

                                       0, 2, 8, 23, 72, 187, … 4P

                                       0, 0, 6, 42, 74, 182, … 5P

 

133    171      3/4                      0, 0, 0, 0, 7, 20, 56, 118, … 1P

                                        0, 0, 0, 3, 0, 39, 0, 253, … 2P

                                        0, 0, 0, 1, 10, 19, 60, 112, …  3P

                                        0, 0, 0, 4, 11, 21, 71, 116, … 4P

                                        0, 0, 0, 1, 9, 21, 53, 125, … 5P

TABLE 6-3:  The number of the incorrect paths for the rate-3/4 punctured  

( )8 85 ,7  and ( )8 8133 ,171  codes. 
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Code polynomial    R     puncturing matrix     , =1,2,……….. dc d

5    7       3/4                    0, 0, 29, 163, 662, 1949, ... 1P

                                     0, 4, 25, 152, 597, 1984, ... 2P

                                     0, 0, 30, 175, 706, 2028, … 3P

                                     0, 10, 44, 179, 625, 1751, … 4P

                                     0, 0, 32, 321, 701, 1871, … 5P

 

133    171     3/4                    0, 0, 0, 0, 38, 90, 294, 669, … 1P

                                     0, 0, 0, 20, 0, 193, 0, 1420, … 2P

                                     0, 0, 0, 3, 57, 77, 325, 621, …  3P

                                        0, 0, 0, 15, 57, 101, 397, 629, … 4P

                                     0, 0, 0, 6, 38, 105, 290, 664, … 5P

TABLE 6-4:  The total number of the error bits produced by the incorrect paths for the rate-3/4  

punctured ( )8 85 ,7  and ( )8 8133 ,171  codes  

 

6.2.2    Puncturing patterns design with EXIT chart 

 

The codes with punctured by different puncturing matrices will produce codes 

with different structures and then the corresponding EXIT charts will be different. 
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Based on this observation, we can design puncturing matrices with EXIT chart. 

 

6.2.2.1    Rate 2/3 codes 

 

 There are still two puncturing matrices  and for the rate-2/3 punctured 

codes as equation (6.5). The EXIT chart analyses are depicted as follows. 

1P 2P

 

6.2.2.1.1    ( )8 85 ,7  convolutional codes 

 

 In Fig.6-8, it shows that punctured convolutional codes with different puncturing 

matrices have different transfer characteristics. The code with matrix  has the 

intersection with the detector at the point A where the mutual information of the 

decoder output is about 0.7 bits. But the code with matrix  intersects the detector 

transfer curve at the point B where the mutual information of the decoder output is 

almost 1 . Theoretically, the larger the output mutual information of the decoder is, the 

better the performance will be. Hence, we choose the puncturing matrix  when we 

want to puncture the  convolutional code. 

2P

1P

1P

( 8 85 ,7 )
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A B

Fig. 6-8: EXIT chart of the punctured codes with puncturing matrices and at with 

16QAM AntiGray mapping and generator polynomial 

1P 2P 0/ 7bE N dB=

( ) ( )0 1 8 8, 5 ,7g g = . 

 

6.2.2.1.2    ( )8 8133 ,171  convolutional codes 

 

 Fig.6-9 shows that output mutual information EI of the decoder with puncturing 

matrix  when interest with the transfer curve of the detector is smaller than that of 

the decoder with puncturing matrix . So we choose  when we puncture the 

 convolutional code to rate-2/3. 

2P

1P 2P

( 8 8133 ,171 )
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Fig. 6-9: EXIT chart of the punctured codes with puncturing matrices and at with 

16QAM AntiGray mapping and generator polynomial 

1P 2P 0/ 5bE N dB=

( ) ( )0 1 8 8, 133 ,171g g =  

 

6.2.2.2    Rate 3/4 codes 

 

6.2.2.2.1    ( )8 85 ,7  convolutional codes 

 

 Similar design criteria will be applied here. In Fig.6-10, we show the transfer 

characteristics of the decoder with puncturing matrices from  to  and that of 

the detector at  using 16QAM and Natural mapping. In Fig.6-11 we 

can observe visibly that the intersection point of the decoder using puncturing 

matrix  with the detector has the largest output decoder extrinsic mutual 

1P 5P

0/ 8bE N dB=

1P

 54



information. So we choose  as the puncturing matrix when we want to puncture a 

 convolutional code to rate-3/4. 

1P

( ) (0 1 8 8, 5 ,7g g = )

 

 

Fig. 6-10: EXIT chart of the punctured codes with puncturing matrices  to at 

with 16QAM Natural mapping and generator polynomial 

1P 5P

0b / 8E N dB= ( ) ( )0 1 8 8, 5 ,7g g = . 
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Fig. 6-11: The same chart as Fig.5-3, but the range is from about 0.9 to 1. 

 

6.2.2.2.2    ( )8 8133 ,171  convolutional codes 

 

 In Fig.6-12 and 6-13, we also can have the same observations as in section 

6.2.2.2.1.  is still the best choice for rate-3/4 punctured ( )  

convolutional codes.  

1P 8 8133 ,171
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Fig. 6-12: EXIT chart of the punctured codes with puncturing matrices  to at 

with 16QAM Natural mapping and generator polynomial 

1P 5P

0b / 7E N dB= ( ) ( )0 1 8 8, 133 ,171g g = . 

 

Fig. 6-13: The same chart as Fig.5-5, but the range is from about 0.9 to 1. 
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6.2.3    Summary on the puncturing design 

 

It is a coincidence that the examples in section 6.2.2 all have the same choices. 

Other codes in [12] , like  and ( )8 823 , 25 ( )8 853 ,57  , choose the puncturing 

matrices  and  respectively. From the simulations of section 6.2.1 and 6.2.2 , 

the puncturing patterns design will have the same results whether we use the criteria 

of minimum free distance or the EXIT chart simulations. Once we have decided the 

code polynomial and the puncturing rate, we can just run the EXIT chart simulations 

and get the choice of the puncturing matrix. 

4P 5P

 

 Besides the simple of the EXIT chart , the convergence behavior can also be seen 

from it. These advantages will be very useful for us to design a system. 
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