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中文摘要 

 在許多的通訊與雷達系統裡常常需要用到有著良好自相關性

(Autocorrelation)跟良好的交互相關性(Crosscorrelation)之序列。在有

延遲的情況下，非零的自相關性會導致符元間干擾(Intersymbol 

Interference)，而在許多使用者的情況下，非零的交互相關性會導致多

重路徑干擾(Multiple-access Interference)。在一個多重路徑衰弱

(Multi-path Fading)的環境下，如果已知延遲的邊界，那序列必須在延

遲的時間裡面，滿足良好的相關性。這一有良好關係的延遲範圍稱做

零相關區域(Zero-Correlation Zone)。 

 在本論文中，我們提出四種有系統的架構法，去架構出零相關區

域序列。這些方法更有彈性的去選擇序列的長度和零相關區域的長

度，也可以產生出有限訊號群集點(Finite Constellation Points)之序列。 

我們舉了許多用數值表示的零相關區域序列並且展示了一些應用例

子去證實我們的方法是有效的。 
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Abstract

Sequences with desired autocorrelation (AC) and cross-correlation (CC) properties

are often needed in many communication and radar systems applications. Nonzero AC

values at nonzero lags result in intersymbol or self interference (ISI) while nonzero CC

values give rise to multiuser or multiple-access interference (MAI). For use in a multi-

path fading enviroment with known a delay spread bound, a family of sequences needs to

meet these desired correlation requirements for only those correlation lags that lie within

a range called zero-correlation zone (ZCZ) or interference free window (IFW). This the-

sis presents four systematic methods for constructing families of ZCZ sequences. The

proposed methods unify various existing ZCZ sequence-generating algorithms. They

provides more flexibility in choosing the sequence length, the ZCZ size, and the sig-

nal constellation. We give various numerical sequences and show several application

examples to demonstrate the usefulness of our approaches.
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Chapter 1

Introduction

Many communication and radar applications necessitate the use of sets of sequences

with good correlation properties. For use either as the training signal in the preamble or

as the signature codes of a spread spectrum multiple access network, one would prefer to

have a family of sequences whose autocorrelation (AC) function has a single peak at the

zero delay (τ = 0) and whose cross-correlation (CC) values are identically zero. Such

sequences can be used to avoid or minimize (i) the interference from other users or other

antennas if multiple transmit antennas were in place and (ii) self-interference (e.g., inter-

symbol interference, ISI) due to multiple propagation paths. Practical considerations

also require that the sequence length be arbitrary and the family size be as large as

possible while maintaining the desired AC and CC properties. Similar requirements are

called for in designing pulse compressed radar signal or two-dimensional array wave that

has a time-frequency ambiguity function which achieves the minimum resolution.

For periodic sequences correlation peaks at τ equals multiple of a period are in-

evitable. Besides these periodic peaks, it is impossible to have zero periodic CC and

AC at all other lags. In fact the bounds on CC and AC of sequences derived in [1]

and [2] indicate that there is a tradeoff between AC and CC when designing sequences.

In a multipath fading environment, however, the ideal correlation properties are not

required to suppress the interference belongs to categories (i) and (ii). In fact, if the

channel’s maximum delay spread Tm and the maximum co-channel users’ (distance)
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separation Dm are known, then one only needs to require that the correlation is low

enough within a period of Tm +Dm/c seconds, where c is the speed of light, to minimize

the interference. The period is called zero-correlation zone (ZCZ), interference-free win-

dow (IFW) or low-correlation zone (LCZ) [3] [4], depending on if the zero-correlation

or low-correlation requirement is imposed. Sequences that meet these requirements are

referred to as ZCZ or LCZ sequences. For these sequences, correlation values outside

the ZCZ (LCZ) are of no concern because they have little or no impact on the system

performance. In this thesis, we focus on the design of ZCZ sequences. Note that the

zero-correlation requirement imposes a severe design constraint, hence a ZCZ sequence

set usually do not have a family size as large as that of a LCZ family with the same

sequence length and signal constellation.

Several ZCZ families have been proposed. The PS sequences [8] have zero AC values

at some τ 6= 0 and zero CC for all τ . Binary, ternary, [9], quadriphase, and polyphase

sequence sets [10] have been constructed. In [11] a family of polyphase sequences was

generated based on generalized Chirp-like sequences. Unfortunately, all these sequences

are generated in an heuristic manner and there is no theorizing as to why they were so

constructed. An exception is the transform domain approach suggested in [13] where

a systematic method to generate families of sequences that have zero CC and periodic

impulse-like AC was presented.

In this thesis, we present four systematic approaches for generating families of se-

quences whose periodic AC and CC functions satisfy a variety of ZCZ requirements.

Our approach for constructing ZCZ sequences is elementary and simple. Based upon

a basic binary sequence that satisfies the ZCZ requirement for AC, the first approach

generates a ZCZ family via some unitary matrices. The second approach involves the

notion of complementary sets [14],[15]. It uses a basic binary sequence which satisfies

the ZCZ requirement for AC and a class of mutually orthogonal complementary sets to

generate ZCZ families. We use the fact that a basic binary sequence can also be decom-
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posed into a set of binary ZCZ sequences. The third approach is a combination of both

the first and second methods. The ZCZ property is invariant under modulation if the

modulating sequence is one with perfect AC. One can easily deduce the ZCZ properties

and determine the family size. The last approach is a transform domain method.

The rest of this thesis is organized as follows. In Chapter 2, we give basic definitions

of perfect AC sequences and complementary sequences, summarize transform domain

characterization of AC and CC, and describe some existing ZCZ sets. Chapter 4 contains

our main results, presenting four systematic procedures for constructing families of ZCZ

sequences. The following chapter provides several numerical examples, showing that

most existing ZCZ sequences can be produced by our approaches. More importantly we

show that many new ZCZ families with better properties can be generated by judicious

choices of the design parameters.
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Chapter 2

Definitions and Some Basic
Properties

2.1 The Welch-Sarwate bound

Sets of periodic sequences with good correlation properties are desired in many

communication applications. Oftentimes we hope to have a set of sequences whose AC

function has a single peak at the zero delay and whose CC values are identically zero.

Such sequences can be used to avoid or minimize the interference from other antennas

(or other users) and eliminate the ISI due to a multi-path channel. However, it is

observed that a set of sequences having good AC properties, e.g., PN sequences and

Gold sequences, does not have good CC properties. On the other hand, the ideal AC

requirement can not be met if the set has good CC properties. Walsh-Hadamard code

is a typical example. For convenience of reference we begin our discourse with

Definition 1 Let X denote a set of K complex-valued sequences of period N , i.e., for

every sequence u ∈ X, u ∈ X, |i|N = i (mod N), for all i ∈ Z, Z being the set of

integers. The periodic CC function θuv(·) for sequences u, v ∈ X is defined by

θuv(τ) =
N−1∑
i=0

u(i)v(|i− τ |N)∗, τ ∈ Z, (2.1)

where and a∗ denotes the complex conjugate of a. The periodic AC function θu(τ) for

the sequence u is simply θuu(τ).

4



We assume that θuu(0) = N for all u ∈ X then it is obvious that |θu(τ)| ≤ N and

|θuv(τ)| ≤ N for all u, v ∈ X.

For a set of sequences X, the maximum periodic CC magnitude θ̃c, and the maximum

out-of-phase periodic AC magnitude θ̃a defined by

θ̃c = max{|θuv(τ)| : u, v ∈ X, u 6= v, 0 ≤ l ≤ N − 1}

θ̃a = max{|θu(τ)| : u ∈ X, 0 < l ≤ N − 1}

must satisfy an inequality known as the Welch-Sarwate bound [1], i.e.,

Theorem 1 For any set X of K sequences of period N satisfying θu(0) = N for all

u ∈ X,

(
θ̃c

2

N

)
+

N − 1

N(K − 1)

(
θ̃a

2

N

)
≥ 1. (2.2)

The above theorem implies that θ̃a ≥ N
√

K−1
N−1

and for the special case K = 2, we have

θ̃a ≥ N√
N−1

≥ √
N . Thus even for a set of only two sequences of length N with perfect

CC properties, i.e., θc(l) = 0 for all l, it is impossible for them to yield the ideal AC

function θa(n) = 0. Since one can not have both ideal AC and CC properties, the next

best thing one can expect is to have the ideal properties within a limited range.

Definition 2 A set of K sequences C = {C0, C1, · · · , CK−1} of period N is called a

ZCZ family (or sequence set) if the periodic AC and CC functions of all its member

sequences satisfy the requirements of an ideal set for |τ | < T, T < N . In other words,

θcicj
(τ) = 0, θcici

(τ) = θci
(0)δ(τ), for ci 6= cj, |τ | ≤ T .

Because of the AC and CC properties, ZCZ sequences can be used as the signature

sequences for a cellular CDMA system that operates in an environment whose delay

spread is less than the period of the sequences. Without the bandlimiting effect, such

a system is free from ISI and multiple access interference (MAI) that limit the system

capacity.
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Figure 2.1: The correlation properties of a ZCZ family.

ZCZ sequences can also be used as training sequences for a MIMO-OFDM receiver

to estalish a link within the preamble period. The link setup process includes at least

package detection, frame and frequency/carrier synchronization and channel estimation.

Such a synchronization procedure involves the detection and estimation of some sig-

nal and channel parameters in a multiple antenna scenario. Conventional maximum

likelihood (ML) paradigm solves this data-aided estimation and detection problem by

an estimator-correlator type receiver structure and necessitates the ideal AC and CC

properties on the part of the training sequences. Invoking Theorem 1, we assign properly-

selected sequences with period N(N ≥ 2) to different transmit antennas. For a MIMO

receive it is necessary to separate signals emitting from different transmitting antennas

so as to resolve and estimate the impulse response of each sub-channels between any

pair of transmit-receive antennas. One way to achieve near-optimal channel estimation

is to use pilot sequences that have perfect CC properties, i.e., θ̃c = 0. If there are K

transmit antennas, we need at least K different preamble sequences.
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Although there are many proposals for generating ZCZ sequences, there still lacks a

systematic theory behind the existing construction methods. Our intention is to present

a simple and systematic theory in constructing families of ZCZ sequences. It will be

shown that the new derivations contain as special cases many if not all of the existing

constructions.

2.2 Perfect AC sequences

In this section, we present some perfect AC sequences that have a Dirac-like periodic

AC functions whose values are zeros for all non-zero lags. Notations and definitions are

given first and then the so-called FZC sequences is introduce. Last we introduce a way

In [8] and [13] of generating perfect AC sequences, which have lengths of square integers

and polyphase components in both time and frequency domain.

2.2.1 Notations and definitions

Definition 3 Let us define the N ×N DFT matrix with index m as

F (N,m)(k, l) = [W−klm
N ] = (Wm

N )−kl, (2.3)

where m is an integer, k, l = 0, 1, . . . , N − 1, WN = ej2π/N and j =
√−1.

Definition 4 The diagonalized matrix D({xl}) associated with the sequence {xl} is de-

fined as

D({xl}) = diag({xl}). (2.4)

Lemma 1 The periodic autocorrelation function of x(n), θxx(n), is equivalent to the

circular convolution function between x(n) and x∗(−n).

Proof :

The periodic autocorrelation function of a sequence of length N , {x(n)}, is defined as

7



θxx(n) ,
N−1∑
τ=0

x(τ)x∗(τ − n). The circular convolution function, which is denoted as ⊗,

between x(n) and x∗(−n) is

x(n)⊗ x∗(−n) =
N−1∑
τ=0

x(τ)x∗(τ − n)

= θxx(n) (2.5)

Using the same argument, we conclude that the cross-correlation function θxy(n) is

equivalent to x(n)⊗ y∗(−n).

Lemma 2 The DFT of the periodic CC function θxy(τ) of two period-N sequences,

{x(n)} and {y(n)}, is equal to X(k)Y ∗(k), where X(k) and Y (k) are the DFTs of {x(n)}
and {y(n)}, respectively.

Corollary 1 The AC function θx,x(n) is equivalent to x(n) ⊗ x∗(−n) and Θxx(k) =

DFT [θxx(n)] = |X(k)|2, where ⊗ denotes circular convolution. Hence a sequence {x(n)}
has an impulse-like AC, i.e., θxx(n) = Ncδ(n), iff |X(k)|2 is a constant for all k.

Corollary 2 Up-sampling of {x(n)} is equivalent to a repetition of X(k). Hence a

perfect AC sequence can be generated by up-sampling a shorter perfect AC sequence.

2.2.2 Frank-Zadoff-Chu (FZC) sequences

The well-known complex sequences, Frank-Zadoff-Chu (FZC) sequences [7], [6] ren-

der a Dirac-like periodic AC functions whose values are zeros for all non-zero lags. More

specifically,

Definition 5 A FZC sequence {ak} of length N has entries of unity-modulus complex

numbers, i.e., ak = ejαk , k = 0, . . . , N − 1. When N is even, they are given by

ak = exp

(
j
Mπk2

N

)
, (2.6)

where M is an integer prime to N , while if N is odd,

ak = exp

(
j
Mπk(k + 1)

N

)
, (2.7)

8



where M is also an integer prime to N .

It is proved that θa(n) = Nδ(n), for n = 0, 1, . . . , N − 1. The single maximum of

magnitude N occurs at n = 0.

2.2.3 PS sequences: square-length perfect AC sequences

Several definitions are needed for specifying a class of perfect AC sequences.

Definition 6 A set of constant module numbers, B = {bi : ||bi|| = d > 0, i = 0, . . . , Nb−
1}, where bi are not necessarily distinct, is called a set of basic symbols.

Definition 7 The quotient and residual functions Q and R corresponding to the devisee

and divisor (α, β) are defined as

Q(α, β) = q, R(α, β) = r, (2.8)

where α and q are integers, β is a natural number, and α = qβ+r with r = 0, 1, . . . , β−1.

Definition 8 A basic orthogonal sequence matrix G of size Nb×Nb associated with the

set of basic symbols B = {bi = W i
Nb
} and 1 ≤ m ≤ Nb − 1 are the matrix

G = F (Nb,−m)D({bi}) = [gi,j]. (2.9)

Definition 9 The sequence {gp} of length N2
b obtained by selecting elements from the

matrix G through [5]

gp = gQ(p,Nb),R(p,Nb) (2.10)

is called a basic orthogonal sequence. Regarding the periodic sequence {g(p)} as a vector,

a basic orthogonal sequence can also be obtained by

~g = [g(0), g(1), . . . , g(N2
b − 1)]T = vec(GT ), (2.11)

where vec(·) denotes the stacking operator,

It can be proved a basic orthogonal sequence has a perfect AC function.

9



2.3 Complementary sequences

Definition 10 The aperiodic CC function of two length-ρ sequences u ≡ {u(n)}, v ≡
{v(n)}, 0 ≤ n < ρ is defined as

ψuv(τ) =

ρ−τ∑
n=0

u(n)v∗(n− τ) (2.12)

The aperiodic AC function for the sequence u(n) is simply ψuu(τ).

Definition 11 A set of Q sequences E = {E0, E1, . . . , EQ−1} forms a complementary

set if and only if

Q∑
i=0

ψEiEi
(τ) = 0, ∀ τ 6= 0 (2.13)

For the special case of binary sequences, a set is said to be complementary if the total

number of pairs of like elements with a given separation is equal to the total number of

pairs of unlike elements with the same separation in these sequences.

Definition 12 A set of sequences F = {F0, F1, . . . , FQ−1} is said to be a mate of the

set of sequences E = {E0, E1, . . . , EQ−1} if

1. the length of Ei is equal to the length of Fi, for 0 ≤ i < Q,

2. the set F is a complementary set,

3.
∑Q−1

i=0 ψEiFi
(τ) = 0, ∀ τ.

Definition 13 A collection of complementary sets of sequences {E0,E1, . . . ,En}, where

each set contains Q sequences, is said to be mutually orthogonal if every two com-

plementary sets in the collection are mates of each other.

It has been shown in [16] that the number of mutually orthogonal sets cannot exceed

the number of sequences in the set.

10



2.4 Some Known ZCZ sequences

2.4.1 Upper bounds

In this section, we give the definition of ZCZ sequences and show a set of ZCZ

sequences can be maintained ZCZ correlations via some special modulation.

Definition 14 An (N, K, T ) ZCZ family is a set of K length-(period-)N ZCZ sequences

C whose zero-correlation zone has a width of T .

Lemma 3 The AC and CC functions of a set of sequences are invariant up to a scale

factor under the modulating operation by a perfect AC sequence A. The modulating

operation, denoted by ª, is defined by

Ũ(τ) = U ª A = θUA(τ) =
N−1∑
i=0

U(i)A(|i− τ |N)∗, τ = 0, 1, . . . , N − 1, (2.14)

where U is one sequence of a set of sequences.

Proof :

Given two sequences U , V and a prefect AC sequence A, all having the same period N .

Denote by

A = (a0, a1, · · · , aN−1)

U = (u0, u1, · · · , uN−1)

V = (v0, v1, · · · , vN−1)

the DFTs of A, U , and V , respectively, and by ΘUV the DFT of θUV . Consider the

modulated sequences

Ũ = U ª A, Ṽ = V ª A

Corollary 1 and the normalization {|ak|2 = 1, k = 0, 1, · · · , N − 1} implies that

ΘUV = ΘŨ Ṽ since the kth entry ΘŨ Ṽ (k) is equal to the kth entry ΘUV (k) :

ΘŨ Ṽ (k) = uka
∗
kv
∗
kak = |ak|2ukv

∗
k = ukvk = ΘUV (k) (2.15)

In [4], the bounds on the correlation of the ZCZ sequences are established as follow

11



Corollary 3 For a set of K ZCZ sequences of period N , the length T of zero-correlation

zone is upper-bounded by

K(T + 1) ≤ N (2.16)

2.4.2 PS ZCZ sequences

Using the basic orthogonal sequence {gp} generated in Section 2.2.3, we form the

Ns ×K matrix H

H = [hi,k] (2.17)

where Ns = KN2
b , K is a natural number,

hi,k =

N2
b−1∑

p=0

gpδ(i− k − pK) (2.18)

and δ(n) =

{
1, n = 0
0, n 6= 0

.

The PS sequence matrix C of size Ns ×K (or KN2
b ×K) is defined as

C = [cl,k] =
1

Nb

F (Ns,−1)H. (2.19)

Each column vector of C, {cl,k, l = 0, 1, · · · , Ns − 1}, is a period of a sequence called a

PS sequence.

2.4.2.1 Properties of the PS sequences

(PS.1) Autocorrelation function:

The AC function of the PS sequence is given by

θ(c)(τ) =
Ns−τ−1∑

l=0

cl+τ,kc
∗
l,k +

Ns−1∑

l=Ns−τ

cl+τ−Ns,kc
∗
l,k

= NsW
τk
Ns

δ(R(τ,N2
b )). (2.20)

12



The AC function has a nonzero value only when R(τ, N2
b ) = 0; i.e., τ = IN2

b ,

where I is an integer. We can control the interval or period by properly choosing

the value of N2
b . On the contrary, the PN sequence has nonzero values of the AC

function at all intervals. The PS sequence has better CC properties than the PN

sequence. Fig. 2.2 is a typical plot for the AC function of the PS sequences.

(PS.2) Cross-correlation function:

Let us denote two PS sequences as {cl,kI} and {cl,kII}. The CC function of the

two sequences is 0 if kI 6= kII .

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70
Auto−Correlation |θ(c)(τ)|

τ

Figure 2.2: The autocorrelation function of the PS sequence.(K = 4, N2
b = 16, and

Ns = KN2
b = 64)

2.4.3 Ternary ZCZ sequences

The method of constructing ternary ZCZ sequences described in [9] starts with M

ternary subsets of sequences. Each subset is created from a different binary seed set,

where M is the number of seed sets. The seed sets are of size L0 × L0 and although

sequences within each seed are orthogonal, no orthogonality between subsets is required.

Equal length zero padding vectors are inserted between elements of each sequence of

13



every seed set, assuming the length of zero padding is Z0. Each seed set is transformed

into a subset of sequences of length N = L0(Z0 + 1) with T = Z0. The ZCZ properties

between subsets are provided by chip shifting each subset a different number of chips,

τm for m = 1, 2, . . . ,M . Each sequence created from the same seed set is shifted the

same number of chips. sl
m represents the l-th sequence, where l = 1, 2, . . . , L0, created

from zero padding the m-th seed set of ML0 sequences is given by PM and their overall

ZCZ is given in

pM =




S1(τ1)
S2(τ2)

...
SM(τM)


 . (2.21)

T = ZM (2.22)

where ZM is the minimum number of zeros between elements of all sequences.

When a specific ZCZ is required, ZM can be used to calculate the chip-shit applied

to each set, τm = (ZM + 1)(m − 1) and to ensure the complete set of sequences have

ZCZ properties. An example is illustrated in Fig. 2.3 for M = 2,L0 = 4, Z0 = 3, τ1 = 0

and τ2 = 1

Figure 2.3: Example of Ternary ZCZ sequences for for M = 2,L0 = 4, Z0 = 3,τ1 = 0
and τ2 = 1
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2.4.4 ZCZ Sets Derived From Perfect Sequences and Unitary
Matrices

In [10], two algorithms are proposed to derive polyphase ZCZ sets from perfect

sequences and unitary matrices.

(Poly.1) Let A0 = (a0
0, a

0
1, . . . , a

0
N ′) be a perfect AC sequence of period N ′. Select two

integers N ′′ and Nr that are related by

N ′ = N ′′ ·Nr, 1 ≤ N ′′ < N ′, 1 < Nr ≤ N ′ (2.23)

Using these integers, we obtain Nr perfect sequences Ai(0 ≤ i ≤ Nr − 1) via

Ai = (ai
0, a

i
1, . . . , a

i
N ′−1)

= (a0
iN ′′ , a0

iN ′′+1, . . . , a
0
N ′−1, a

0
0, . . . , a

0
iN ′−1) (2.24)

That is, Ai is a perfect AC sequence derived from shifting A0 cyclically to the left

by i ·N ′′ positions.

Let Hn
Nr

be an Nr ×Nr unitary matrix defined by

Hn
Nr

=
1√
Nr




hn
0,0 hn

0,1 . . . hn
0,Nr−1

hn
1,0 hn

1,1 . . . hn
1,Nr−1

...
...

. . .
...

hn
Nr−1,0 hn

Nr−1,Nr−1 . . . hn
Nr−1,Nr−1


 (2.25)

Let C0 be a set of Nr perfect sequences of period N ′ given by

C0 = {C0
0 , C

0
1 , . . . , C

0
Nr−1} = {A0, A1, . . . , ANr−1}

C0
i = (c0,i

0 , c0,i
1 , . . . , c0,i

N ′−1) = (ai
0, a

i
1, . . . , a

i
N ′−1), 0 ≤ i ≤ Nr − 1 (2.26)

By using Hn and C0, we obtain the sequence set

Cn = {Cn
i , 0 ≤ i ≤ Nr − 1} (2.27)

where

Cn
i =

(
cn,i
0 , cn,i

1 , . . . , cn,i
j , . . . , cn,i

N ′Ṅn
r −1

)
, 0 ≤ j ≤ N ′Nn

r − 1 (2.28)
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and cn,i
j is derived from the following recursive procedure:

cn,i
j = hn

i,|j|Nr
· cn−1,|j|Nr

dj/Nre (2.29)

with dj/Nre def
= the largest integer ≤ j/Nr, and |x|N def

= x (mod N).

Theorem 2 The sequence set Cn derived from (2.23)− (2.29) is a ZCZ sequence

set with (N, K, T ) = (N ′Nn
r , Nr, (N

′ − 2)Nn−1
r )

(Poly.2) Let N ′′ = 1, Nr = N ′ and define N ′
r and N ′′′ via

N ′
r = N ′′′ ·N ′, N ′′′ > N ′ (2.30)

Let Dn be an N ′
r ×N ′

r unitary matrix whose (i, j)th entry is dn
i,j/

√
N ′

r and E0 be

a sequence set composed of N ′
r perfect sequences of period N ′ defined by

E0 = {E0
0 , E

0
1 , . . . , E

0
i , . . . , E

0
N ′

r−1}

= {A0, A1, . . . , A|i|N′ , . . . , AN ′−1}, 0 ≤ i ≤ N ′
r − 1

C0
i = (e0,i

0 , e0,i
1 , . . . , e0,i

j , . . . , e0,i
N ′−1)

= (a
|i|N′
0 , a

|i|N′
1 , . . . , a

|i|N′
j , . . . , a

|i|N′
N ′−1), 0 ≤ j ≤ N ′ − 1 (2.31)

Based on Dn and E0, we construct the sequence set En as follows.

En = {En
0 , En

1 , . . . , En
i , . . . En

N ′
r−1}

En
i = (en,i

0 , en,i
1 , . . . , en,i

j , . . . , en,i

N ′Ṅ ′
r

n−1
) (2.32)

where

en,i
j = dn

i,|j|N′r
· cn−1,|j|N′r

[j/N ′
r] , 0 ≤ i ≤ N ′

r − 1, 0 ≤ j ≤ N ′Ṅ ′
r

n − 1 (2.33)

Theorem 3 The sequence set En defined by (2.23), (2.24) and (2.30)− (2.33) is a

ZCZ sequence set with (N, K, T ) = (N ′N ′
r
n, N ′

r, (N
′ − 2)N ′

r
n−1)
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2.4.5 LA codes

Large Area (LA) codes belong to a family of ternary codes having the elements of

±1 or 0. Their maximum correlation magnitude is unity and they also exhibit an

zero-correlation zone. Denote the family of the K number of orthogonal ternary codes

employing K number of ±1 pulses by LA(N,K, T ), which exhibit a minimum spacing

of T -chip duration between non-zero pulses, while having a code length of N . All the

codes in an LA code family share the same legitimate pulse positions.

Example 1 The construction of LA(847, 16, 38) code was described in [17] and [18],

where the 16 pulse positions, pk, k = 0, 1, . . . , 15, at

{pk} = {0, 38, 78, 120, 164, 210, 258, 308, 360, 414, 470, 530, 660, 732, 808} (2.34)

The autocorrelation function of LA(847, 16, 38) is plotted in Fig. 2.4

In [17], the author proposed a scheme for determining the LA positions. Define the pulse

spacing dk, which is related to the difference of the pulse positions, by

dk
4
=

{
pk+1 − pk for 0 ≤ k < K − 1
N − pK−1 for k = K − 1

(2.35)

The constraints imposed on the pulse spacing dk of the LA code are [17]

(LA.1) dk should be even except for dK−1

(LA.2) dk 6= dk′ for 0 ≤ k 6= k′ < K

(LA.3)
∑

k∈S 6=
∑

k′∈S′ for any S, S′ ⊂ {k|0 ≤ k < K}

These three constraints form a sufficient condition, guaranteeing that the number of

pulses satisfying pk + n = pk′ is at most one for 0 < n < N and 0 ≤ k, k′ < K. It then

follows that the maximum correlation magnitude is simply one.

The proposal suggested in [20] imposes the same constraints except that dk needs not

have to be even. This modification helps reducing the required sequence length under

the same family size and same ZCZ width constraints as those of [17].
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Figure 2.4: The autocorrelation function of LA(847, 16, 38)

2.4.6 LS codes

Although the correlations of the LS codes are aperiodic as defined in Definition 10,

we can consider aperiodic correlations as periodic correlations in a window of length W0

for padding a string of W0 zeros in the end of codes. In this subsection, we construct the

LS codes in the way of aperiodic correlations, and show the LS codes have a aperiodic

zero-correlation zone. If padding enough zeros in the end of the LS codes, the periodic

correlations of the the LS codes are the same as aperiodic correlations in the window of

zero-correlation zone.

Assume there is a complementary set which consists of two complementary se-

quences of length ρ, we express the two complementary sequences in z-transform form,

which are denoted as C0(z) and S0(z). This complementary’s mate is consists of two

complementary sequences, C1(z) and S1(z), which are given by

C1(z) = zρ−1S0(z
−1), S1(z) = −zρ−1C0(z

−1) (2.36)
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We use the sequences C0(z), C1(z), S0(z), and S1(z) described above, each of length ρ,

to obtain a set of K = 2n sequences of length N = Kρ+ d, where n is a natural number

and d = rho− 1. We need an arbitrary ptimesp Hadamard matrix H, where p = K/2.

We use the vector π = [π1, π2, . . . , πp], πk ∈ {0, 1} to denote a binary expansion of an

arbitrary integer, 0 ≤ n < 2p so that n =
∑

i π
p
i=12

i.

Theorem 4 Suppose that H = [hi,j] is a p × p Hadamard matrix, and (C1(z), S1(z) is

a mate of (C0(z), S0(z), where the sequences have the length ρ. We define the sequence

Gk(z), 1 ≤ k ≤ p of length N = Kρ + d as

Gk(z) =

p∑
i=1

hk,i[Cπi
(z) + zpρ+dSπi

(z)]z(i−1)ρ (2.37)

where K = 2p and d = ρ − 1. Further, the sequences Gp+1, Gp+2, . . . , GK are obtained

when the binary expansion vector π in the formula above is replaced by its complementary

π∗ = [π∗1, . . . , π
∗
p] with π∗k = |πk + 1|2 for each 1 ≤ k ≤ p. Then,

ψgk,gl
(τ) = 0, ∀|τ |≤d (2.38)

for every 1 ≤ k, l ≤ K and τ 6= 0 if k = l

The sequence set G = {G1(z), G2(z), . . . , G2p−1(z)} is called the LS codes. It has an

aperiodic zero-correlation zone with length d, which is proved in [22]. If we pad d zeros

in the end of each sequence of the sequence set G, the zero-padding set has a periodic

zero-correlation zone with length d and is a (N, 2p, d) ZCZ set. Note that d ≤ ρ− 1. If

d > ρ− 1, the length of ZCZ is still ρ− 1.

2.4.7 LAS spreading codes

LAS spreading codes are based on LA codes and LS codes. Each LS code is pulse

position modulated (ppm) by an LA code (Fig. 2.5). The set of LA codes can be

regarded as an (N1, K1, T1) ZCZ family and that of LS codes forms an (N2, K2, T2) ZCZ

family. For N2 < T1, LAS spreading codes constitute an (N1, K1K2, T2) ZCZ family.

19



+1


-1


One LA code


One LS code C1


ppm


C1


-C1


One LAS spreading code


-1


+1


Figure 2.5: One LS code is pulse position modulated by one LA code(ppm)
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Chapter 3

Methods of Generating ZCZ
Families

3.1 Definitions and Fundamental Results

Definition 15 A binary sequence of period N satisfies the ZCZ width constraint T on

AC is called a basic (N, T ) ZCZ sequence.

A basic sequence can be obtained by the simple rule given in

Lemma 4 A binary sequence B = (b0, b1, · · · , bN−1), bi ∈ {0, 1} is a basic (N, T ) ZCZ

sequence if the minimum runlength of 0’s between two consecutive 1’s is T , where a run

refers to a string of the same symbols. T is also called the minimum spacing of the

sequence B.

We start with a simple decomposition of a basic ZCZ sequence.

Corollary 4 If a basic (N, T ) ZCZ sequence B, regarding as a real vector of dimension

N , can be expressed as the sum of K orthogonal N-dimensional binary vectors Bi, K ≤
wH(B),

∑
i wH(Bi) = wH(B), then the set {Bi} is a binary (N,K, T ) ZCZ family. The

decomposition of the binary vector B into the sum of Bi is called an orthogonal tone

decomposition.

Definition 16 Let V = [vn3n2n1 ] be a N3 × N2 × N1 array with Hamming weight

wH(V) = k and Hk = [hm,n] be an arbitrary k × k matrix. vec(V) is the row vec-
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Figure 3.1: The operating concept of Definition 16

tor obtained by stacking up elements of V, along each dimension as follow

vec(V)
def
=

[
v000, v001, · · · , v00(n1−1), v010, v011, · · · , v01(n1−1),

· · · v(n3−1)00, v(n3−1)01, · · · , v(n3−1)0(n1−1), · · ·

v(n3−1)(n2−1)0, v(n3−1)(n2−1)1, · · · , v(n3−1)(n2−1)(n1−1)

]
(3.1)

Define the k×N3N2N1 “product matrix” P via the operation P = Hk¯V = [pij] where

pm,v(n) =

{
hmn, v(n) = the coordinate of the nth nonzero entry of vec(V)
0, otherwise

(3.2)

Lemma 5 Rows of the product matrix P = H ¯ V form a (N, wH(V ), T ) ZCZ family

if V is a basic (N, T ) ZCZ sequence and H is a k × k unitary matrix.

Proof (i) Let H = [hT
1 ,hT

2 , · · · ,hT
k ] and define |hi| as the column vector whose coor-

dinates are the absolute values of those of hi then the N -dimensional column vector
∑k

i=1 |hi| has a minimum spacing of T . (ii) The CC at τ = 0 is zero because H is an

unitary matrix. It follows that both AC and CC functions have the same ZCZ width T .

We immediately have
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Corollary 5 Let B be a basic (N, T ) sequence and {Bi, i = 0, 1, · · · ,M − 1} be an

orthogonal tone decomposition of B. Then the set of all rows of the M matrices {Pi =

Hi
mi
¯Bi, 0 ≤ i < M} = {P i

n, 0 ≤ n < wH(Bi)−1, 0 ≤ i < M} forms an (N, wH(B), T )

ZCZ family, where mi = wH(Bi) and Hi
mi

are (not necessarily distinct) the mi × mi

unitary matrix for Bi.

3.2 Direct Methods

The above theorem suggests that an (N, K, T ) ZCZ family can be generated by the

following three steps.

(A.1) Let B be a basic (N, T ) sequence with wH(B) = K and B
def
= {Bi = (bi

0, b
i
1, · · · , bi

N−1),

0 ≤ i < M ≤ K} be an orthogonal tone decomposition of B.

(A.2) Compute the M product matrices Pi = Hi
mi
¯ Bi, where mi = wH(Bi) and Hi

mi

are unitary matrices (not necessarily distinct).

(A.3) Let A = (a0, a1, . . . , aN−1) be a perfect sequence with period N . Modulating each

row of Pi, where 0 ≤ i < M , with A through modulating operation, we obtain a

set of modulated sequences C = {C0, C1, . . . , CK−1}

Theorem 5 The sequence sets obtained at step (A.1) are (N, M, T ) ZCZ families, and

those obtained at step (A.2) and (A.3) are (N,K, T ) ZCZ families.

The set obtained in (A.1) is obviously an (N,M, T ) ZCZ family. A larger ZCZ family

with size K > M is derived from this (N,M, T ) family in (A.2). A perfect AC sequence

A is used to modulate the ZCZ sequences into sequences of finite constellation signals

in (A.3). The above procedure can be generalized by replacing the mi×mi matrix Hi
mi

in (A.2) by a ZCZ matrix defined by

Definition 17 An (k, n, t) ZCZ matrix is a matrix whose rows are members of an

(n, k, t) ZCZ family.
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Corollary 6 If one replaces the matrix Hi
mi

in (A.2) by an (K ′, K, T ′) ZCZ matrix then

one obtains an (N, K ′, T + T ′) ZCZ family.

We can also use complementary sets to construct ZCZ sequences.

3.3 Complementary Methods

Definition 18 Let U be a 1 × N vector with Hamming weight WH(U) = k. A collec-

tion E of complementary sets of sequences {E0,E1, . . . ,En−1}, where each set Ei =

{Ei
0, E

i
1, . . . , E

i
k−1} contains k sequences with Ei

j = (eij
0 , eij

1 , . . . , eij
ρ−1), 0 ≤ i < n,

0 ≤ j < k, n ≤ k. The n × (N + k(ρ − 1)) concatenated-product matrix ∆ is

obtained by ∆ = E ® V = [∆p,q] where

∆i,j(ρ−1)+v(j)+m =





eij
m, v(j) = the coordinate of the jth nonzero entry of V

0 ≤ m < ρ− 1, 0 ≤ i < n, and 0 ≤ j < k
0, otherwise

(3.3)

Figure 3.2: The operating concept of Definition 18

Assume a collection E of K complementary sets of sequences {E0,E1, . . . ,EK−1} is

mutually orthogonal. Ej = {Ej
0, E

j
1, . . . , E

j
Q−1} and the length of Ej

i is ρ, where 0 ≤
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j < K and 0 ≤ i < Q. An (N + Q(ρ − 1), K, T ) ZCZ family can be generated by the

following three steps.

(B.1) Let B be a basic (N, T ) sequence with wH(B) = Q.

(B.2) Compute the matrix ∆ = E ®B.

(B.3) Let A = (a0, a1, . . . , aN+Q(ρ−1)−1) be a perfect sequence with period N + Q(ρ− 1).

Modulating each row of ∆ by A through the “modulating” operation. Denote rows

of ∆ by the set of modulated sequences C = {C0, C1, . . . , CK−1}.

In other words,

Theorem 6 The sequence sets obtained in (B.2) and (B.3) are (N + Q(ρ − 1), K, T )

ZCZ families.

Because the correlation properties of complementary sets, we can consider each com-

plementary sequence on one complementary ZCZ sequence as an element. The length

of ZCZ is just the minimum run-length of zeros between two nonzero elements in a se-

quence. In (B.2), an (N + Q(ρ − 1), K, T ) ZCZ family is derived from a basic (N, T )

sequence. A perfect sequence A is used to modulate the complementary ZCZ sequences

into sequences of finite constellation signals in (B.3). The cardinality of a complemen-

tary ZCZ family depends on the size of the mutually orthogonal complementary set we

use.

3.4 Hybrid Methods

One can also combine ingredients of the direct methods and the complementary methods

to generate other families of ZCZ sequences.

(C.1) By using (A.2) of the Direct Methods, we can obtain an (N,K, T ) ZCZ family.
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(C.2) Assume a collection E of K ′ complementary sets of sequences {E0,E1, . . . ,EK′−1}
are mutually orthogonal. Ej = {Ej

0, E
j
1, . . . , E

j
Q−1} and the length of Ej

i is ρ, where

0 ≤ j < K and 0 ≤ i < Q. Let B′ be a basic (N ′, T ′) sequences with wH(B′) = Q.

By applying the complementary methods, we obtain a set of (N ′+Q(ρ−1), K ′, T ′)

ZCZ sequences.

(C.3) Let N ′ + Q(ρ − 1) ≤ T , and (N ′ + Q(ρ − 1), K ′, T ′) ZCZ sequences are pulse

position modulated (ppm) by each sequence of the (N, K, T ) ZCZ family to get a

(N,KK ′, T ′) ZCZ family. Through the modulating operation, elements of each se-

quences in the (N, KK ′, T ′) ZCZ family can be modulated into non-zero elements.

We now present an alternate transform domain approach for generating ZCZ se-

quences.

3.5 Transform Domain Methods

Definition 19 The matrices

H2 =

[
1 1
1 −1

]
(3.4)

and

H2n =

[
H2n−1 H2n−1

H2n−1 −H2n−1

]
, n = 2, 3 · · · (3.5)

are called standard Hadamard matrices.

Theorem 7 Let H = [h0,h1, · · · ,hN−1] be a standard Hadamard matrix of order N =

2n, where hi is the ith column of H. Partition H into N/K = m,m = 2p, N ×K sub-

matrices, A0,A1, · · · ,Am−1, where each submatrix is formed by K consecutive columns

of H, i.e., Ai = [hiK , · · · ,h(i+1)K−1]
def
= [C

T

i0, C
T

i1, · · · , C
T

i(K−1)]
1. Denote the N-point

IDFT of Cij by Cij. Then the set C
def
= {Ci0, · · · , Ci(K−1)} of K period-N sequences is

an (2n, K, m− 1) ZCZ family.

1For convenience, such a partition is referred to as a regular partition of order p or the regular
pth-order partition.
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Proof

We first note that the AC of any sequence is obviously perfect because the compo-

nents of the vectors Cij all have unit magnitudes. Let Ci and Cj (i 6= j) be any two rows

in a submatrix and denote the IDFTs of these two vectors by Ci and Cj. Taking IDFT

on the Hadamard product ΘCiCj
= Ci ¯ Cj of Ci and Cj, we obtain the CC function

θCiCj
(τ) between Ci and Cj. Because rows in a Hadamard matrix are orthogonal, the

numbers of +1 and -1 are the same, θCiCj
(0) = 0.

Let ΘCiCj
= [ΘCiCj

(0), ΘCiCj
(1), · · · , ΘCiCj

(N − 1)]. The structure of the standard

Hadamard matrices and our partition imply that the sequence {ΘCiCj
(λ)} is periodic

with period K, i.e., it consists of m consecutive identical K-tuples.

(
ΘCiCj

(0), ΘCiCj
(1), · · · , ΘCiCj

(K − 1)
)

=
(
ΘCiCj

(K), ΘCiCj
(K + 1), · · · , ΘCiCj

(2K − 1)
)

= · · · =
(
ΘCiCj

((m− 1)K), ΘCiCj
((m− 1)K + 1), · · · , ΘCiCj

(N − 1)
)

Taking IDFT, we obtain

θCiCj
(τ) =

N−1∑

λ=0

ΘCiCj
(λ)e

j2πτλ
N

=
K−1∑

λ=0

ΘCiCj
(λ)e

j2πτλ
N +

2K−1∑

λ=K

ΘCiCj
(λ)e

j2πτλ
N + · · ·+

N−1∑

λ=(m−1)K−1

ΘCiCj
(λ)e

j2πτλ
N

Let q be an odd number, (2p−1)q = β and define x (mod N)
def
= |x|N . Since 2n−p =

N/m = K, we have

θCiCj
(|β|N) =

N−1∑

λ=0

ΘCiCj
(λ)e

j2πτλ
N

=
K−1∑

λ=0

ΘCiCj
(λ)e

j2πβλ
2n +

2K−1∑

λ=K

ΘCiCj
(λ)e

j2πβλ
2n + · · ·+

N−1∑

λ=(m−1)K−1

ΘCiCj
(λ)e

j2πβλ
2n

=
K−1∑

λ=0

ΘCiCj
(λ)e

j2πqλ
2K +

2K−1∑

λ=K

ΘCiCj
(λ)e

j2πqλ
2K + · · ·+

N−1∑

λ=(m−1)∗K−1

ΘCiCj
(λ)e

j2πqλ
2K

= 0 (3.6)
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Note that a 2p-period sequence {ΘCiCj
(λ)} can also be regarded as a 2t-period sequence

for 0 ≤ t < p. Therefore θCiCj
(τ) = 0, for τ ∈ {|2tq|N , 0 ≤ t < p, q ∈ Io} def

= Z0, where

Io denotes the set of odd integers. Obviously, the set {±1,±3,±5, · · · ,±2p − 1} ⊂ Z0.

Even integers between −(2p−1) and 2p−1 are of the form ±2tq, t = 1, 2, · · · , p−1. But

±2p /∈ Z0 for otherwise we have q2t = ±2p (mod N) for some 1 ≤ t < 2p and q ∈ Io,

which implies ±2t(2p−t∓q) = 0 (mod N), a contradiction. Hence Z0 contains the subset

{±1,±2, · · · ,±2p − 1 = ±(m− 1)}. ¥

A generalization is given by

Theorem 8 Let U2 be any 2×2 complex unitary matrix and U2n be recursively generated

by the standard procedure (3.5). ZCZ families can be obtained by applying the regular

mth-order partition described in Theorem 2 on the matrix U2n.

Proof

Consider the complex unitary matrix

U2 =

[
a b
c d

]
(3.7)

and its generalization

U2n =

[
U2n−1 U2n−1

U2n−1 −U2n−1

]
= [u0,u1, · · · ,u2n−1]

(3.8)

Define the corresponding signed matrices Ũ2l , l = 1, 2, · · · , as the hard-limited versions

of U2l , i.e., Ũ2l = [sgn(uij) · 1]= [ũ0, ũ1, · · · , ũ2n−1], where uij is the entry of U2n in the

ith row and the jth column, and the sgn function is defined by sgn(x) = 1, if x > 0,

and sgn(x) = −1 if x < 0.

We first note that the period T of a given Hadamard product vector Θuiuj
= ui¯ u∗j

is the least common multiple of the period of the Hadamard product of the associated

signed vectors Θũiũj
= ũi¯ ũj and that of

∣∣Θuiuj

∣∣. But the way the Hadamard-like ma-

trices (3.8) are constructed implies that the Hadamard products of any pairs of column

vectors from their signed counterparts Ũ2n must have a period of 2l, for some l ≥ 1.
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We also find that the magnitude of the Hadamard product of any two rows of U2n

yields one of the four row vectors, i.e.,

∣∣Θuiuj

∣∣ =
∣∣ui ¯ u∗j

∣∣

=




|a|2
|c|2
|a|2
|c|2
...
|a|2
|c|2




or




ab∗

cd∗

ab∗

cd∗
...

ab∗

cd∗




or




|b|2
|d|2
|b|2
|d|2
...
|b|2
|d|2




or




ba∗

dc∗

ba∗

dc∗
...

ba∗

dc∗




(3.9)

The components of each of the four vectors form a periodic sequence of length 2n and

period 2, i.e., each vector consists of 2n−1 consecutive identical 2-tuples.

From the above two observations we conclude that T is identical to the period of

Θũiũj
. The corollary will then be proved if we can show that the Hadamard product of

any two column vectors of the submatrices resulted from a regular pth-order partition

of Ũ2n , 0 ≤ p < n, gives a periodic sequence of length 2n and period 2n−p. We prove

this claim by induction.

1. For the signed matrix

Ũ2 =

[
+1 +1
+1 +1

]
(3.10)

The 0th order regular partition results in only 20 = 1 submatrix and all the

Hadamard product vectors Θũiũj
have 20 = 1 identical tuple only.

2. Suppose the claim is true for p = m and n = k− 1. That is, the mth-order regular

partition of Ũ2k−1 gives 2m submatrices, Ŭl
2k−1 , where 0 ≤ m < k− 1, 0 ≤ l < 2m,

such that the Hadamard product Θuiuj
of any two rows within a submatrix yields

a vector of period 2k−1−m. For n = k, we perform the m′-order partition on the

signed matrix Ũ2k to get two submatrices

Ŭl
2k =

[
Ŭl

2k

Ŭl
2k

]
Ŭl+2n−1

2k =

[
Ŭl

2k

−Ŭl
2k

]
(3.11)
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ΘuT
i uT

j
of each of the two submatrices has 2m′

identical tuples, where m′ = m + 1.

When m′ = 0, for uT
i ∈ Ŭk

2n and uT
j ∈ Ŭk+2n−1

2n , ΘuT
i uT

j
clearly has 20 identical

tuple. ¥
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Chapter 4

Applications: Generating ZCZ
Sequences

4.1 PS-like sequences

A set of PS-like sequences with size 3 can be generated by one of the Direct Methods

presented in Section III. More specifically, we let M = 1, B0 = (100010001000) and use

the unitary matrix

H0
3 =




W 0
3 W 0

3 W 0
3

W 0
3 W 1

3 W 2
3

W 0
3 W 2

3 W 1
3




along with the perfect AC sequence A = (100100100− 100) to obtain

P 0
0 = (W 0

3 000W 0
3 000W 0

3 000)

P 0
1 = (W 0

3 000W 1
3 000W 2

3 000)

P 0
2 = (W 0

4 000W 2
3 000W 1

3 000) (4.1)

and then the family of PS-like sequences

C0 = P 0
0 ª A = (W 0

6 W 0
6 W 0

6 W 3
6 W 0

6 W 0
6 W 0

6 W 3
6 W 0

6 W 0
6 W 0

6 W 3
6 )

C1 = P 0
1 ª A = (W 0

6 W 2
6 W 4

6 W 3
6 W 2

6 W 4
6 W 0

6 W 5
6 W 4

6 W 0
6 W 2

6 W 1
6 )

C2 = P 0
2 ª A = (W 0

6 W 4
6 W 2

6 W 3
6 W 4

6 W 2
6 W 0

6 W 1
6 W 2

6 W 0
6 W 4

6 W 5
6 ) (4.2)

It is easily verifiable that

θCi,Cj
(τ) = 0, 0 ≤ τ < 12 (i 6= j), θCi

(τ) = 12δ(|τ |4) (4.3)

31



and C = (C0, C1, C2) is a (12, 3, 3) ZCZ family. The member sequences of C are called

PS-like sequences. Note that the PS-like family has the same correlation properties as

those of PS sequences but only use a constellation whose size is only half of that required

by the original PS sequences. The autocorrelation function of C1 is shown in Fig. 4.1

while the cross-correlation function of C0 and C1 is shown in Fig. 4.2.
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Figure 4.1: The autocorrelation function of C1 in section 4.1
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Figure 4.2: The crosscorrelation function of C0 and C1 in section 4.1

32



4.2 Ternary ZCZ sequences

Let M = 2 and use the two basic sequences B0 = (0001000100010001), B1 = (0100010001000100)

and

H0
4 =




1 1 1 −1
1 1 −1 1
1 −1 1 1
1 −1 −1 −1




H1
4 =




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




A = (1000000000000000) (4.4)

we obtain the ternary sequences shown in Fig. 2.3.

C0 = P 0
0 = (000 + 000 + 000 + 000−)

C1 = P 0
1 = (000 + 000 + 000− 000+)

C2 = P 0
2 = (000 + 000− 000 + 000+)

C3 = P 0
3 = (000 + 000− 000− 000−)

C4 = P 1
0 = (0 + 000 + 000 + 000 + 00)

C5 = P 1
1 = (0 + 000− 000 + 000− 00)

C6 = P 1
2 = (0 + 000 + 000− 000− 00)

C7 = P 1
3 = (0 + 000− 000− 000 + 00) (4.5)

where ” + ” and ” − ” denote +1 and −1, respectively. It can be shown that the set

C = {C1, C2, · · · , C7} is a (16, 8, 1) ZCZ family.

4.3 Binary ZCZ sequences

Most of the basic sequences have equally spaced nonzero entries. But one can also build

ZCZ sequences based on non-uniformly spaced basic sequence. For example, if we let
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M = 1, B0 = (1000000100100100), invoke the unitary matrix

H0
4 =




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




and the perfect AC sequence A = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0), we obtain

P 0
0 = (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0)

P 0
1 = (1, 0, 0, 0, 0, 0, 0,−1, 0, 0, 1, 0, 0,−1, 0, 0)

P 0
2 = (1, 0, 0, 0, 0, 0, 0, 1, 0, 0,−1, 0, 0,−1, 0, 0)

P 0
3 = (1, 0, 0, 0, 0, 0, 0,−1, 0, 0,−1, 0, 0, 1, 0, 0)

The resulting binary (16,4,2) ZCZ family consists of

C0 = (1,−1, 1, 1,−1, 1, 1, 1, 1, 1, 1,−1, 1, 1,−1, 1)

C1 = (1, 1, 1,−1,−1,−1, 1,−1, 1,−1, 1, 1, 1,−1,−1,−1)

C2 = (1, 1,−1, 1,−1,−1,−1, 1, 1,−1,−1,−1, 1,−1, 1, 1)

C3 = (1,−1,−1,−1,−1, 1,−1,−1, 1, 1,−1, 1, 1, 1, 1,−1) (4.6)

This is one ZCZ polyphase set in theorem 2, given the pefrect AC sequence A, the

unitary matrix H0
4 , N ′′ = 1, Nr = N ′ = 4, and n = 0. The autocorrelation function of

C0 is shown in Fig. 4.3 and the crosscorrelation function of C0 and C1 is shown in Fig.

4.4.
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Figure 4.3: The autocorrelation function of C0 in section 4.3
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Figure 4.4: The crosscorrelation function of C0 and C1 in section 4.3
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4.4 Hadamard ZCZ sequences

Let M = 4, B0 = (10000000), B1 = (00001000), B2 = (01000010). Using two trivial

unitary matrices H0
1 = H1

1 = 8,

H2
2 =

[
4− 4i 4 + 4i
4 + 4i 4− 4i

]
(4.7)

and A = (10000000), we obtain

C0 = (8, 0, 0, 0, 0, 0, 0, 0)

C1 = (0, 0, 0, 0, 8, 0, 0, 0)

C2 = (0, 4− 4i, 0, 0, 0, 0, 4 + 4i, 0)

C3 = (0, 4 + 4i, 0, 0, 0, 0, 4− 4i, 0) (4.8)

which is a (8, 4, 1) ZCZ family consisting of four perfect AC sequences. Taking DFT on

these sequences, we obtain the first four rows of an 8× 8 Hadamard matrix

C1 = (+1, +1, +1, +1, +1, +1, +1, +1)

C2 = (+1,−1, +1,−1, +1,−1, +1,−1)

C3 = (+1, +1,−1,−1, +1, +1,−1,−1)

C4 = (+1,−1,−1, +1, +1,−1,−1, +1) (4.9)

Because of this special property, we refer to this family as a Hadamard ZCZ family. It is

clear that this the Hadamard ZCZ sequences can be generated by the method described

in Theorem 2. Although these Hadamard ZCZ sequences consist of a lot zeros, we can

use another perfect AC sequence instead of A = (10000000), which are also binary in

frequency domain (i.e. A = (1,−1, 1, 1,−1, 1, 1,−1)), to modulate them into non-zero

ZCZ sequences via modulating operation. The new ZCZ sequences are also binary in

frequency domain.
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4.5 New Polyphase ZCZ Sequences

Based on Theorem 1, we can generate new polyphase sequences given specific basic

sequences, unitary matrices, and a specific perfect AC sequence. Assume the lengths of

basic sequences are N , the length of a perfect polyphase AC sequence A′ is N ′, which

N = N ′Nr, and A′ consists of elements which are signals of W l
NA′

, 0 ≤ l < NA′ ,

2 ≤ NA′ ≤ N ′. A up-samples A′ by inserting Nr − 1 zeros between each entry of A′,

so the length of A is N . Corollary 2 implies that A is also a perfect AC sequence. For

convenience, assume that there is only one basic binary sequence B with wH(B) = Nr

and length N and define the unitary matrix H0
Nr

by

H0
Nr

=




W 0
Nr

W 0
Nr

. . . W 0
Nr

W 0
Nr

W 1
Nr

. . . WNr−1
Nr

...
...

. . .
...

W 0
Nr

WNr−1
Nr

. . . W
(Nr−1)2

Nr


 (4.10)

Let ζ = lcm(Nr, N
′), where lcm(k, l) denotes the least common multiple of k and l.

(D.1) When N
ζ

> 1, let B = (b0, b1, . . . , bN−1) be permuted by

bi =





1, i = αN ′, . . . , γζ + (N
ζ
− γ) + αN ′

α = 0, . . . , ζ
N ′ − 1, γ = 1, . . . , N

ζ
− 1

0, otherwise

(4.11)

Using the perfect sequence A and unitary matrix H0
Nr

mentioned above, we obtain

(N,Nr, N
′−2) polyphase ZCZ families whose sequences consist of elements drawn

from the constellation W l
lcm(NA′ ,Nr), 0 ≤ l ≤ lcm(NA′ , Nr). Section 4.3 is a special

case of this condition.

(D.2) When N
ζ

= 1, then ζ
N ′ = Nr. Let B = (b0, b1, . . . , bN−1) be permuted by

bi =

{
1, i = αN ′, α = 0, 1, . . . , Nr − 1
0, otherwise

(4.12)

By using the perfect sequence A and unitary matrix H0
Nr

mentioned above, we

obtain (N,Nr, N
′ − 1) polyphase ZCZ families with sequence elements belong to
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the constellation {W l
lcm(NA′ ,Nr)}, where 0 ≤ l ≤ lcm(NA′ , Nr). Section 4.1 is a

special case of this condition and the corresponding polyphase ZCZ sequences are

PS-like sequences which keep the correlation property of PS sequences but use

a smaller signal constellation {W l
lcm(NA′ ,Nr)} (PS sequences use the constellation

{W l
N})

The basic sequence B with length N = N ′Nr can be arranged into an N ′ × Nr basic

array. The modulating operation is achieved by another way of multiplying the cyclic-

shifted perfect sequence A′ by the basic array. If there is only one nonzero element in

each column of the basic array, the modulated sequence is polyphase for that A′ and

the nonzero elements in the basic array are polyphase. Fig.4.5 illustrates the procedure.

Fig.4.6 shows how we arrange the basic sequence in (D.1) and (D.2) to make each

column of the basic array coming from the basic sequence has only one nonzero element.

If Nr is a power of 2, we can use a Nr ×Nr Hadamard matrix instead of H0
Nr

to reduce

lcm(NA′ , Nr) to W l
lcm(NA′ ,2), but the ZCZ polyphase sequences produced in (D.2) are not

PS-like sequences. The polyphase ZCZ sequences generated in (D.1) are generalizations

of some ZCZ sequences in section 2.4.4. In section 2.4.4, The familiy size must be a

multiple of a factor of N ′. However, we can generate a polyphase ZCZ family by (D.1)

with length N = NrN
′, where N ′ is the length of a perfect AC sequence and Nr is a

natural number.

[12] suggests a method to generate sequences similar to those of (D.2) under the

constraint that N ′ + 1 is a multiple of Nr. In (D.2), the constraint on lcm(N ′, Nr) = N

is more flexible. From (3), under fixed N and K, the ZCZ length of the sequences

generated from (D.2) achieve the bound and those generated from (D.1) achieve the

bound less that 1. We can also generate a lot of polyphase ZCZ sequences with ZCZ

length less than those from (D.1) and (D.2) under fixed N and K by arranging the basic

sequence B in another way. Some of these sequences are introduced in [12].
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Figure 4.5: The modulating operation is achieved by another way of multiplying the
cyclic-shifted perfect sequence A′ by the basic array.
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Figure 4.6: The basic array coming from the basic sequence in (4.11) and (4.12) has
only one nonzero element. In the example of (D, 1), l.c.m(N ′, Nr) = ζ = 8 < N = 32.
In the example of (D, 2), l.c.m(N ′, Nr) = ζ = N = 12.
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4.6 New Polyphase ZCZ Sequences based on Mutu-

ally Orthogonal Complementary Sets

Theorem 2 says that one can derive polyphase ZCZ sequence families from mutually

orthogonal complementary sets by using a perfect AC sequence and a basic sequence.

Let Zρ be the 1 × ρ all-zero vector and B be a basic sequence B of length N with

wH(B) = Q. Denote by A′ a perfect polyphase AC sequence of length N ′, N ′|N , whose

elements are drawn from the set {W l
NA′

, 0 ≤ l < NA′ , 2 ≤ NA′ ≤ N ′}. Up-sampling A′

by ρNr-fold, we obtain a length−NrN
′ρ sequence A with perfect AC (see Corollary 2).

Theorem 9 Let E be a mutually orthogonal collection of K polyphase complementary

sets of sequences E = {E0,E1, . . . ,EK−1}, where Ej = {Ej
0, E

j
1, . . . , E

j
Nr−1}, Ej

i is a

length-ρ polyphase sequence with elements from the constellation {W l
Nc
}, Nc < ρ, 0 ≤

l < Nc, K < Nr, 0 ≤ j < K and 0 ≤ i < Nr.

(E.1) Let ζ = lcm(Nr, N
′). If N

ζ
> 1, permute B according to (4.11), and if N

ζ
= 1,

permute B by (4.12).

(E.2) Compute ∆ = E ®B.

(E.3) Extend the K × (N + (ρ− 1)Nr) matrix ∆ into a K × ρN matrix ∆′ by replacing

each zero in ∆ with the zero vector Zρ.

(E.4) Modulate each row of ∆′ by A and denote the set of rows by C = {C0, C1, . . . , CK−1}.

Then

(i) C is a (ρN, K, ρ(N ′ − 2)) polyphase ZCZ family if N
ζ

> 1.

(ii) C is a (ρN, K, ρ(N ′ − 1)) polyphase ZCZ family if N
ζ

= 1.

Fig. 4.7 shows how the extended sequences through (E.1) − (E.3) are arranged

to form an extended array so that each column of the extended basic array has only
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one nonzero element. The polyphase ZCZ sequences based on mutually orthogonal

complementary sets consists of the polyphase elements of the form W l
lcm(NA′ ,Nc)

. This is

a generalization of some ZCZ sequences given in Section 2.4.4. Sequences presented in

Section 2.4.4 require that the family size be a multiple of a factor of N ′ but there is no

such constraint in our approach. Although using a proper E can increase the duration

of ZCZ, our method guarantees the minimum ZCZ length for all E .
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Figure 4.7: The extended sequence in (E.1)-(E.3) is arranged to form an extended array
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Example 2 Let N = 16, N ′ = 4, Nr = 4, A′ = (W 0
4 W 1

4 W 2
4 W 1

4 ) and use the per-

muted basic sequence B = (1000000100100100). The mutually orthogonal collection E

of complementary sets of sequences are given by [14]

E0 =




1 1 1 1
−1 −1 1 1
−1 1 −1 1
1 −1 −1 1




E1 =




1 1 −1 −1
−1 −1 −1 −1
−1 1 1 −1
1 −1 1 −1




E2 =




−1 1 −1 1
1 −1 −1 1
1 1 1 1
−1 −1 1 1




E3 =




−1 1 1 −1
1 −1 1 −1
1 1 −1 −1
−1 −1 −1 −1


 (4.13)

Using Steps (E.2)-(E.4) mentioned above, we obtain a set of (64, 4, 8) quadriphase ZCZ

sequences. Because the length of the sequences is very long, we only give C0 and C1

below.

C0 = (W 0
4 W 0

4 W 0
4 W 0

4 W 3
4 W 1

4 W 1
4 W 3

4 W 0
4 W 2

4 W 0
4 W 2

4 W 1
4 W 1

4 W 3
4 W 3

4 W 3
4 W 3

4 W 3
4 W 3

4

W 2
4 W 0

4 W 0
4 W 2

4 W 1
4 W 3

4 W 1
4 W 3

4 W 2
4 W 2
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The AC of C0 is given by

|θC0C0(τ)| = (64, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 4, 0, 4, 8, 4, 0, 0, 0, 0, 0, 8,

0, 8, 0, 4, 8, 12, 0, 4, 8, 4, 0, 4, 8, 4, 0, 12, 8, 4, 0, 8,

0, 8, 0, 0, 0, 0, 0, 4, 8, 4, 0, 4, 8, 4, 0, 0, 0, 0, 0, 0, 0, 0) (4.15)

The CC between C0 and C1 is

|θC0C1(τ)| = (0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 4, 16, 4, 8, 4, 0, 0, 0, 0, 0, 8, 0, 8,

0, 12, 8, 12, 16, 4, 8, 4, 0, 4, 8, 12, 16, 4, 8, 12, 0, 8, 0,

8, 0, 0, 0, 0, 0, 4, 8, 12, 16, 12, 8, 4, 0, 0, 0, 0, 0, 0, 0, 0) (4.16)

The autocorrelation function of C0 is shown in Fig. 4.8 and the crosscorrelation function

of C0 and C1 is shown in Fig. 4.9.
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Figure 4.8: The autocorrelation function of C0 in section 4.6
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Figure 4.9: The crosscorrelation function of C0 and C1 in section 4.6
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4.7 LAS-like ZCZ sequences

Large Area (LA) codes [20] [21] are ternary (±1, 0)codes with a ZCZ and unity

maximum correlation magnitude. Let us use the code which has the element 1 and 0

in a family of LA codes as the basic sequence (N, T ) B with wH(B) = K. Choosing

suitable complementary sets, we can obtain a set of LAS-like ZCZ sequences and the

length of ZCZ depends on the minimum size of zero strings in B′ of the Hybrid Method.

The construction of a LAS spreading code is similar to the class of Hybrid Methods

except that it uses Loosely Synchronous (LS) codes [19] instead of the collection E of

complementary sets in step (C.2) of the Hybrid Methods. LS codes are constructed from

two mates of complementary sets. The basic idea of the LS codes is the insertion of zeros

between the complementary sequences in the same set to avoid overlaps between them.

The LS codes can have a large family size by using one of the methods suggested in

[19] with the constraint that the ZCZ length is fixed for given mates of complementary

sets while increasing the sequence length. The advantage of LS codes is that it can

be extended to have large family size without increasing the number of zeros, which

can improve the duty ratio. The purpose of using LS codes in LAS codes is to achieve

the highest possible duty ratio. However the ZCZ length of a LAS spreading code is

constrained by the length of complementary sequences, which are used to construct LS

codes.

In step (C.2) of the class of hybrid methods, the ZCZ length of LAS-like ZCZ se-

quences can be extended by increasing the minimum run-length of zero strings in B′

using the same length complementary sequences of LS codes. The duty ratio reduction

of LAS-like ZCZ sequences because of longer run-lengths can be compensated for by

applying the modulating operation.
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4.8 Summary and Comparisons

Table 4.1 compares the properties between some existing ZCZ sequences and new

sequences generated by our methods. We also indicate in the table that if these ZCZ

sequence sets achieve the bound of Corollary 3. The mark
√

is used to indicate which of

the four methods can be used to generate the corresponding ZCZ sequence sets. Whether

a family achieves the theoretical bound is indicated by either ◦ (no) or • (yes).
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Table 4.1: Comparison of ZCZ sequence sets
PS ZCZ sequences
in subsection 2.4.2

Ternary ZCZ sequences
in subsection 2.4.3

Direct Methods
√ √

Complementary Methods
Hybrid Methods

Transform Domain Methods
The bound in Corollary 3 • •

ZCZ sets
in subsection 2.4.4

Hadamard ZCZ
sequences in section 4.4

Direct Methods
√ √

Complementary Methods
√

Hybrid Methods
Transform Domain Methods

√
The bound in Corollary 3 ◦ •

New polyphase sequences
in (D.1) in section 4.5

New polyphase sequences
in (D.2) in section 4.5

Direct Methods
√ √

Complementary Methods
Hybrid Methods

Transform Domain Methods
The bound in Corollary 3 ◦ •

New polyphase sequences

based on mutually
orthogonal complementary

set in (E.4-i) in section 4.6

New polyphase sequences
based on mutually

orthogonal complementary
set in (E.4-ii) in section 4.6

Direct Methods
Complementary Methods

√ √
Hybrid Methods

Transform Domain Methods
The bound in Corollary 3 ◦ •

LAS-like
ZCZ sequences in section 4.7

Direct Methods
Complementary Methods

Hybrid Methods
√

Transform Domain Methods
The bound in Corollary 3 ◦
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Chapter 5

Multi-Dimensional Arrays

Like the one-dimensional (1D) case, two-dimensional (2D) arrays that possess some

desired AC or CC properties are useful in some applications. In this section, we extend

the class of Direct Methods to two and higher-dimension arrays. (It can be decomposed

into a binary set as described in Direct Methods).

5.1 Preliminary

Definition 20 Let a 2D array sequence C = {ci,j} be denoted by

C =




c0,0 c0,1 . . . c0,N1−1

c1,0 c1,1 . . . c1,N1−1

c2,0 c2,1 . . . c2,N1−1

. . . . . . . . . . . .
cN2−1,0 cN2−1,1 . . . cN2−1,N1−1




. (5.1)

The 2D periodic AC function between two array sequences C and D having the same

dimensions is defined by

θC,D(φ, ω) = C ª2D D =

N2−1∑
p=0

N1−1∑
q=0

cp,qd
∗
|p+φ|N2

,|q+ω|N1
(5.2)

where ª2D is called 2D modulating operation

Definition 21 An array is called a perfect array if its periodic AC function satisfies

θC,C(φ, ω) = θC(φ, ω) =

{
E, (φ, ω) = 0
0, (φ, ω) 6= 0

(5.3)
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where E =
∑N2−1

p=0

∑N1−1
q=0 |cp,q|2

Definition 22 A set of K arrays C = {C0, C1, . . . , CK−1} of period N2×N1 is called a

ZCZ family (or array set) if the periodic AC and CC functions of all its member arrays

satisfy the requirement of an ideal set for |τ2| ≤ T2, |τ1| ≤ T1, and T2 < N2, T1 < N1.

In other words, θCi,Cj
(τ2, τ1) = 0, θCi,Ci

(τ2, τ1) = θCi
(0, 0)δ(τ2, τ1) for Ci 6= Cj, τ2 ≤ T2,

and τ1 ≤ T1.

As a ZCZ array set C is characterized by the parameters (N2, N1, K, T2, T1), where N2

is a vertical period of the arrays, N1 is a horizontal period of the arrays, K is the fam-

ily size(i.e., the number of arrays), T2 is the length of vertical zero-correlation zone,

and T1 is the length of horizontal zero-correlation zone, we call such a array set a

(N2, N1, K, T2, T1) 2D ZCZ family.

5.2 Generating of 2-D ZCZ Arrays

The procedure for generating a family of 2D arrays consists of four steps.

(F.1) Let B be a basic (N2, N1, T2, T1) array with wH(B) = K and B
def
= {Br =

{bi,j}r , 0 ≤ r < M < K} be an orthogonal tone decomposition of B.

(F.2) Compute the M product matrices Pr = Hr
mr
¯ Br where mr = wH(Br) and Hr

mr

are unitary matrices(not necessarily distinct).

(F.3) With the definition of vectorization in Definition 16 , permute each row of Pr into

a N2 ×N1 array, and denote these arrays as a array set Gr

(F.4) Let A = {ai,j} be a perfect array with period N2 ×N1. Modulating each N2 ×N1

array of Gr, with A through 2D modulating operation, where 0 ≤ r < M , we get

a set of modulated array set C = {C0, C1, . . . , CK−1}.

Theorem 10 The array sets obtained in (F.3) and (F.4) are (N2, N1, K, T2, T1) 2D

ZCZ families. In (F.1), an (N2, N1,M, T2, T1) 2D ZCZ family is obtained. A larger
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family with size K ≥ M is derived from this (N2, N1, M, T2, T1) family in (F.2) and

(F.3). A perfect 2D AC array A is used to modulate the ZCZ arrays into arrays of

finite constellation signals in (F.4).

5.3 3-D and Multidimensional ZCZ Arrays

Definition 23 A ZCZ set of K 3-dimensional (3D) arrays C={C0, C1, . . . , CK−1} of

period N1×N2×N3 is characterized by the parameters (N1, N2, N3, K, T1, T2, T3), where

Ti is the length of zCZ on Ni-axis (i = 1, 2, 3).

Recall that one of the key steps in generating the ZCZ families presented in the

previous subsection is to find a 2D perfect array to modulate ZCZ array sequences into

ones with elements from a desired constellation. Similarly, to construct a family of 3D

or multi-dimensional ZCZ arrays, one needs to have a perfect 3D or multi-dimensional

array (i.e., one whose 3D or multi-dimensional AC function is nonzero only at the origin)

to begin with. Some works on the syntheses of perfect multidimensional arrays can be

found in [13]. For 3D ZCZ arrays, one can prove

Corollary 7 A family of 3D ZCZ arrays can be constructed by the following procedure.

(G.1) Let B be a basic (N1, N2, N3, T1, T2, T3) 3D array with wH(B) = K and B
def
=

{Br = b{i, j, q}r, 0 ≤ r < M < K} be an orthogonal tone decomposition of B.

(G.2) Compute the M product matrices Pr = Hr
mr
¯ Br where mr = wH(Br) and Hr

mr

are unitary matrices (not necessarily distinct).

(G.3) Permute each row of Pr into a N3×N2×N1 3D array, and denote these 3D arrays

as Gr

(G.4) Let A = {ai,j,q} be a perfect 3D array with period N3 ×N2 ×N1. Modulating each

N3 × N2 × N1 3D array of Gr, with A through 2D modulating operation, where

0 ≤ r < M , we get a set of modulated 3-D array set C = {C0, C1, . . . , CK−1}.
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Generalization of the above procedure for constructing higher dimensional ZCZ arrays

is straightforward and shall be omitted in our discourse.
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Chapter 6

Conclusion

In this thesis, we present several systematic approaches for constructing ZCZ se-

quences. The fact that the AC and CC functions are closely related to the DFTs of

the desired sequences enable us to render a simple interpretation. Our approaches yield

simple and straightforward generations of many existing ZCZ sequences and are capa-

ble of producing new ones with the desired parameters (N,K, T ). We show how the

parameter values in the classes of direct methods and complementary methods should be

selected to generate polyphase ZCZ families. They are generalizations of [10] but render

more flexible choices of parameter values for generating the desired ZCZ families. A new

ZCZ family, called Hadamard ZCZ sequences, is particularly worth mentioning, for each

of the member sequences has the perfect AC property in addition to the required CC

property. We also address the issue of generating multi-dimensional arrays that possess

similar desired correlation properties and present a systematic construction method.
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