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在半正交空時區塊碼系統下之最小錯誤率 

功率分配法 
 

學生：范盛博      指導教授：李大嵩 博士 

 

國立交通大學電信工程學系碩士班 

 

摘要 

 

在新一代無線通訊中，傳送多樣（Transmit Diversity）為一廣受矚目的技術，

其中空時區塊碼尤其常被廣泛使用與討論。有別於常見的正交空時區塊碼 

(Orthogonal Space-Time Block Code, OSTBC)，在本論文中，吾人集中於探討一種

特殊的半正交空時區塊碼 (Quasi-Orthogonal Space-Time Block Code, QOSTBC)，

俗稱 ABBA 碼。半正交空時區塊碼的概念是藉由犧牲部分空時碼之間的正交性以

換取較高的資料傳輸率。利用 ABBA 碼特有的通道代數架構，吾人在接收端利用

QR 分解來偵測訊號；而在傳送端，則提出一種最小錯誤率的功率分配法來改善

平均的傳送錯誤率。一般而言，如果通道可事先得知，即可針對通道做功率分配；

有別於此，吾人設計的方法是針對整體通道的平均錯誤率做功率的分配。在不考

慮錯誤傳遞的情況下，吾人可推導出一個平均錯誤率的上界；此上界在針對通道

特性做平均後，得到一個上界的平均錯誤率公式，進而對此上界的公式做最小錯

誤率的功率分配。由模擬結果可以看出，吾人的方法在中高訊號與雜訊比的條件

下，可以提供接近於聯合最大可能解碼的表現。 
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Abstract 

It is well known that transmit diversity is a popular technique in modern wireless 

communication. In this thesis, we focus on one of quasi-orthogonal space-time block 

codes with full rate (the so-called ABBA code). By exploiting a distinctive channel 

matrix structure induced by the ABBA code, we derive an explicit formula of the 

associated QR-decomposition. We propose a minimal BER power allocation scheme 

for the ABBA code over i.i.d. Rayleigh fading channels under the QR-based successive 

detection framework. Under a fixed channel realization, we propose optimal power 

allocation schemes depending on whether or not inter-layer error propagation is taken 

into account first. Instead of relying on BER under a fixed channel realization, the 

design criterion adopted by us is the overall mean BER averaged with respect to the 

channel distribution. Without inter-layer error propagation, we derive an upper bound 

of the average BER. The closed-form formula is obtained by averaging the upper 

bound of mean BER with respect to the channel distribution. We then minimize the 

closed-form formula and an optimal power allocation scheme is obtained. Numerical 

simulation shows that the resultant performance is almost identical to that of the joint 

maximum-likelihood decoding in the medium-high SNR region. 
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Chapter 1  
 
Introduction 

 
Orthogonal space-time block codes (OSTBC) with full-rate and full-diversity for 

complex-valued constellations is well-known to exist only when the number of the 

transmit antennas is two [1]. Many alternative generalizations capable of boosting date 

rate at the expense of signal orthogonality have since been proposed, see [2], [3] for 

detailed literature survey. Among these the quasi-orthogonal space-time block code 

(Q-OSTBC) family [4], [5], originally tailored for the case with four transmit antennas, 

is one simple yet effective solution. With the Alamouti’s codeword matrix [6] as the 

building block, Q-OSTBC shows great code construction flexibility for antenna arrays 

with more than four elements [4]. There have been many different forms for Q-OSTBC 

[4], [5]; all of them share a group-decoupled low-complexity decoding facility, and 

will result in comparable error rate performances [7]. 

This paper addresses the signal detection problem of a particular Q-OSTBC 

transmission introduced by [5], which is also termed as the ABBA scheme, over i.i.d. 

Rayleigh fading channels. In order to realize a bit-error-rate (BER) performance 

balance between linear equalization and joint maximum likelihood (ML) decoding, we 

propose to adopt QR-based successive detection with appropriate symbol power 

allocation. There have been many plausible performance measures for successive 
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signal recovery [8]-[11], depending on whether or not inter-layer error propagation is 

taken into account. The average BER with errorless front-layer decision feedback, 

although being merely a lower bound of the true mean error rate, remains simple to 

characterize and, moreover, is closely related to an upper bound of the block error 

probability when error-propagation occurs [10]: it thus serves as an efficient and 

meaningful performance metric accounting for the actual error rate outcome. 

Motivated by this fact and to also guarantee a performance improvement regardless of 

the instantaneous channel conditions, we propose to determine the power loading 

weights toward minimizing the overall such mean BER, averaged with respect to the 

channel distribution. Specific contributions of this paper include: 

1. By exploiting a distinctive channel matrix structure induced by the ABBA code, 

we derive an explicit formula of the associated QR-decomposition. 

2. With the established analytic QR solution and further leveraging the channel 

matrix structure, we then derive a closed-form upper bound for the considered 

BER metric. 

3. By minimizing this upper bound the proposed optimal power allocation scheme is 

obtained through numerical search. 

 We note that performance enhancement of QR-based receiver via symbol power 

loading has been addressed in many previous works [8]-[13], almost all of them which 

are based on error rate criteria under a given channel realization known to the 

transmitter. Our solution strategy, on the other hand, is grounded on BER averaged 

over the channel distribution; it is thus universal (independent of the instantaneous 

channel state information) and does not call for any feedback message from the 

receiver. A similar design paradigm is also considered in [9] for general MIMO 

flat-fading channels; the criterion therein is instead via minimal average block error 

probability. 
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 This thesis is organized as follows. In Chapter 2, the overview of space-time 

block coded system is introduced and the system model of the ABBA code is built. 

Moreover, the conventional decoding methods are also introduced here. In Chapter 3, 

under a fixed channel realization known to the transmitter, we design the transmit 

power allocation algorithms for minimum BER in a quasi-orthogonal dpace-time block 

code for the error propagation free and error propagation cases. In Chapter 4, the 

problem statement is formulated. The main result are presented and the numerical 

performance of the proposed scheme is illustrated. Finally, we conclude this thesis and 

propose some potential future works in Chapter 5. 
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Chapter 2  
 
System Model of Quasi-Orthogonal 
Space-Time Block Codes 

 
 This chapter presents the overview of space-time block coded systems and 

quasi-orthogonal space-tome block codes (Q-OSTBC) will be introduced. Q-OSTBC 

can provide full rate but sacrifice their diversity. We focus on the ABBA code that is 

one of Q-OSTBC and discuss its conventional decoding methods and then extend the 

ABBA code to Alamouti scheme based multi-group systems. Afterwards, we will 

review the QR decomposition and introduce the QR decomposition of Alamouti 

scheme based on multi-group systems. The result of QR decomposition for Alamouti 

scheme based multi-group systems has a special structure. The received symbols are 

detected by exploiting this special structure and its performances are compared with 

conventional decoding methods. In addition, we find that diagonal entries of the upper 

triangular matrix under QR decomposition are associated with the entries of the 

Alamouti scheme based multi-group channel matrix. They can be written in terms of 

determinants of Alamouti scheme based multi-group channel matrix and its partitioned 

matrices. They are helpful for us to analyze the Alamouti scheme based multi-group 

systems. 
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2.1 Review of Space-Time Block Codes 
 In modern wireless communications, transmit diversity has been popular 

technique over fading channels especially when the power constraint and bandwidth 

efficiency are the major concerns. Sometimes, multiple antennas at the receiver may be 

often impractical. Therefore, this leads us to the use of multiple transmit antennas. 

Here, we only concentrate on one attractive approach to transmit diversity which is 

space-time coding (STC). Space-time coding introduces temporal and spatial 

correlations into signals transmitted from different antennas, so as to provide diversity 

at the receiver or coding gain without sacrificing the bandwidth. The concept of 

space-time coding was proposed by Tarokh, Seshadri and Calderbank first. This code is 

called space-time trellis codes. It can provide diversity gain but its decoding 

complexity grows with the number of antennas. In the issue of decoding complexity, 

the concept of space-time block codes was proposed by Tarokh, Jafarkhani and 

Calderbank [1]. The space-time block code matrices are orthogonal matrices and can 

provide full diversity gain. It is noted that full diversity gain is equal to the number of 

transmit antennas. It is convenient for us that a simple maximum-likelihood decoding 

algorithm is used at the receiver. A simple and famous space-time block codes is called 

Alamouti code [6] that can provide full rate and full diversity gain with two transmit 

antennas. In this section, we first review Alamouti scheme and Q-OSTBC, including 

their encoding and decoding methods. 

 

2.1.1 Alamouti Space-Time Code 
In the Alamouti space-time encoder, we assume that an M-ary modulation scheme 

is used and each group of m  information bits is first modulated, where 2logm M= . 

The input symbols to the space-time encoder are divided into groups of two symbols in 
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each encoding operation. At a given symbol period, the two symbols in each group 

{ }1 2,x x  are transmitted simultaneously from the two antennas. The signal transmitted 

from antenna 1 is 1x  and the signal transmitter from antenna 2  is 2x . In the next 

symbol period, the signal *
2x  is transmitted from antenna 1 and the signal *

1x−  is 

transmitted from antenna 2 . Denote by ( ). T , ( )*. , and ( ). H , respectively the 

transpose, complex conjugate, and Hermitian operations. Two modulated symbols 1x  

and 2x  are encoded and mapped to the transmit antennas according to a code matrix 

given by 

 1 2
* *
2 1

x x

x x

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
X . (2.1) 

The code matrix X  is transmitted via the two transmit antennas and the transmit 

power must be normalized. Note that the rate of the Alamouti code is equal to one.  

 Let us denote the transmit sequences from antennas 1 and 2  by 1x  and 2x , 

and they are given by 1 *
1 2x x⎡ ⎤= ⎣ ⎦x  and 2 *

2 1x x⎡ ⎤= −⎣ ⎦x , respectively. The key 

feature of the Alamouti scheme is that the transmit sequences from the two transmit 

antennas are orthogonal, since the inner product of the sequences 1x  and 2x  is zero, 

i.e. 

 ( )1 2 * *
1 2 2 1 0

H
x x x x= − =x x .  (2.2) 

The code matrix has the following property (orthogonal matrix) 

 ( )
2 2

2 21 2
1 2 22 2

1 2

0

0
H x x

x x
x x

⎡ ⎤+
⎢ ⎥⋅ = = +
⎢ ⎥+⎣ ⎦

X X I , (2.3) 

where 2I  is a 2 2×  identity matrix. 

 Let 1( )h t  and 2 ( )h t  be the fading channel coefficients from the first and second 

transmit antennas to the receiver antenna respectively and they are constant over two 
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consecutive symbol periods. The real part and imaginary part of channel coefficients 

have the same variance 0.5 . Assuming that there is only one receive antenna used at 

the receiver, we denote the received data over two consecutive symbol periods as 1y  

and 2y . The received signals are expressed as 

 1 21 1 1
* *

2 2 22 1

x xy h n
y h nx x

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

, (2.4) 

where the noise samples 1n  and 2n  are independent complex Gaussian random 

variables with zero mean. They represent additive Gaussian samples at time t  and 

t T+ , respectively. The real part and imaginary part of noise have the same variance 

/(2SNR)Tn . The average energy of the symbols transmitted from each transmit 

antenna is normalized to be one. It is clear that the average power of the received 

signal at each receive antenna is Tn . Then, we arrange the received signals and have 

 1 1 2 11
* * * *

22 2 1 2

y h h nx
xy h h n

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= + → = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

y Hx n . (2.5) 

 The block diagram that includes modulator, serial to parallel structure and 

Alamouti encoder is shown in Figure 2.1. The data stream is demultiplexed into two 

substreams which are converted from serial to parallel and mapped to Alamouti 

encoder. 

ModulatorModulator

[ ]1 2x x

1 2

2 1

x x

x x

∗

∗

⎡ ⎤−
⎢ ⎥
⎢ ⎥⎣ ⎦

AlamoutiAlamouti
1h

2hS/PS/PS/P ReceiverReceiver ( )kx

( )ky1( )kx

2 ( )kx

( )kx

ModulatorModulator

[ ]1 2x x

1 2

2 1

x x

x x

∗

∗

⎡ ⎤−
⎢ ⎥
⎢ ⎥⎣ ⎦

AlamoutiAlamouti
1h

2hS/PS/PS/P ReceiverReceiver ( )kx

( )ky1( )kx

2 ( )kx

( )kx

 

Figure 2.1: A block diagram of the Alamouti space-time coded system 
for two transmit antennas and single receive antenna 
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2.1.2 OSTBC for Real and Complex Signal 

Constellations 

 It is well known that the key feature of the Alamouti scheme is orthogonal 

between the sequences generated by the two transmit antennas. This scheme was 

generalized to more than two transmit antennas by applying the theory of orthogonal 

designs. The generalized schemes are referred to as space-time block codes (STBC) [1]. 

To design space-time block codes that provide the properties of the Alamouti code for 

more than two transmit antennas, let us assume that the signal constellations consists of 

2m  points. A block of km  information bits are mapped into the signal constellation 

to select k  modulated signals 1x , 2x ,…, kx , where each group of m bits selects a 

constellation signal. The space-time block encoder encodes the k  modulated signals 

to generate Tn  parallel signal sequences of length p  according to the transmission 

matrix X . These sequences are transmitted through Tn  antennas in p  transmission 

symbol periods. The l th row of X  is regarded as a space-time symbol transmitted at 

time l  and the n th column of X  is regarded as a space-time symbol transmitted 

from n th transmit antenna. In other words, there are p  space-time symbols 

transmitted from each antennas for each block of k  input symbols. 

 The rate of a space-time block code is defined as the ratio between the number of 

modulated symbols and the number of space-time coded symbols transmitted from 

each antenna. It is expressed as  

 kR
p

= . (2.6) 

The spectral efficiency of the space-time block code is given by 

 bits/s/Hzb s

s

r r mR km
B r p

η = = = , (2.7) 

where br  and sr  are the bit and symbol rate, respectively, and B  is the bandwidth. 
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In order to achieve the full transmit diversity of Tn , the transmission matrix X  is 

constructed such that  

 ( )2 2 2
1 2 2

H
kx x x⋅ = + + +X X I . (2.8) 

Due to the code orthogonality, the decoding preserves linear processing structure 

introduced later. The space-time block codes can be divided into space-time block 

codes with real signals and complex signals based on the type of the signal 

constellations. It is well-known that Tarokh’s orthogonal designs are based on 

Radon-Hurwitz Theorem. Tarokh showed that the full rate OSTBC exist for some 

restricted antenna/modulation configurations. For any arbitrary real signal constellation, 

such as M-ASK, space-time block codes exist for any number of transmit antennas. 

These codes are full rate ( 1R = ) and offer the full transmit diversity of Tn . It is 

obvious that the number of symbols the encoder takes as its input is equal to the 

number of transmission symbol periods required to transmit these symbols. Therefore, 

these schemes don’t require bandwidth expansion. For 1R = , OSTBC for complex 

constellations exists only for two transmit antennas. This is famous scheme that is 

called “Alamouti scheme”. In other words, the Alamouti scheme is unique in the sense 

that it is the only space-time block code that provides the full diversity without loss of 

transmission rate for complex signal constellations. It has been proved that a complex 

orthogonal design and the corresponding space-time block code which provides the 

full diversity and full transmission rate is not possible for more than two antennas. 

 For any complex signal constellation, there are space-time block codes that can 

achieve a rate of 1/ 2  for any given number of transmit antennas. We show Figure 2.2 

as the block diagram of the OSTBC transmitter for four transmit antennas and one 

receive antenna. The data stream is demultiplexed into four substreams which are 

converted from serial to parallel and mapped in the OSTBC encoder. 
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ModulatorModulator ReceiverReceiver

4 ( )kx

1( )kx

( )ky

SpaceSpace--Time EncoderTime Encoder

3( )kx

2 ( )kx
S/PS/PS/P

1

2

3

4

x
x
x
x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

OSTBCOSTBC

( )kx

( )kx

1h

2h

3h

4h
(2.9)(2.9)

ModulatorModulator ReceiverReceiver

4 ( )kx

1( )kx

( )ky

SpaceSpace--Time EncoderTime Encoder

3( )kx

2 ( )kx
S/PS/PS/P

1

2

3

4

x
x
x
x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

OSTBCOSTBC

( )kx

( )kx

1h

2h

3h

4h
(2.9)(2.9)

 

Figure 2.2: A block diagram of the orthogonal space-time block coded system 
  for four transmit antennas and single receive antenna 

 

 For four transmit antennas, there are four symbols transmitted and the OSTBC 

matrix is given by 

 
1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1
* * * *

4

* * * *

* * * *

* * * *

C

x x x x
x x x x
x x x x
x x x x

x x x x

x x x x

x x x x

x x x x

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥− −⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

X , (2.9) 

where it is obvious that the inner product of any two columns of these matrices is zero. 

At the receiver, we obtain received signals and write them in terms of matrix. The 

system model is given by 
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1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

1 2 3 4
1 1

2 1 4 3
2 2

3 4 1 2
3 31

4 3 2 1
4 42* * * *

5 53
* * * *

6 64
* * * *7 7

8 * * * *

x x x x
y nx x x x
y nx x x x
y nhx x x x
y nh

x x x x
y nh

x x x xy nh
y nx x x x
y

x x x x

⎡ ⎤
⎡ ⎤ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ − −⎢ ⎥⎣ ⎦

8n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (2.10) 

We arrange the received signals and obtain 

 

1 1 2 3 4 1

2 2 1 1 3 2

3 3 4 1 2 3
1

4 4 3 2 1 4
2

* * * * *
5 1 2 3 4 53
* * * * *
6 2 1 4 3 4
* * * * *
7 3 4 1 2
* * * * *
8 4 3 2 1

y h h h h n
y h h h h n
y h h h h nx
y h h h h nx
y h h h h nx
y h h h h x

y h h h h

y h h h h

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − ⎡ ⎤⎢ ⎥ ⎢ ⎥− − ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

*

*
6
*
7
*
8

n

n

n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

→ = +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

y Hx n . (2.11) 

 Now, we have the system model and channel matrix of OSTBC. The channel 

matrix of OSTBC preserves the property that the inner product of any two columns of 

channel matrix is zero. Then, this characteristic is exploited to discuss their decoding 

algorithms in the next section. We can see the advantage of the orthogonality of 

OSTBC and simplify the decoding process. 

 

2.1.3 Decoding of OSTBC 
 The decoding algorithm of space-time block codes is introduced now. Assuming 

that the channel coefficients , ( )n mh t  are constant over p  symbol time slots and the 

maximum likelihood decoding is used at the receiver. For simplicity, the decoding 

algorithm of Alamouti scheme is considered first. If the channel fading coefficients can 
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be perfectly known to the receiver, the decoder will use them as the channel state 

information (CSI). Assuming that all the signals in the modulation constellation are 

equiprobable, a maximum likelihood decoding chooses possible values from the signal 

modulation constellation to maximize  

 
2

, , ,
1 1 1

( )
R Tn np

t m n m t n
m t n

y h t x
= = =

−∑ ∑ ∑ . (2.12) 

where Tn  and Rn  represent the number of transmit antenna and receive antenna, 

respectively. After some manipulations, a simple form for the Alamouti scheme can be 

obtained. The maximum likelihood decoding chooses a pair of ( )1 2,x x  signal from 

the signal modulation constellation to minimize the distance metric 

 
2 1

2 1

2 2 * *
1 1 1 2 2 2 1 2

22 * *
1 1 1 2 2 2 1 2

( , ) ( , )

.

d y h x h x d y h x h x

y h x h x y h x h x

+ + −

= − − + − +
 (2.13) 

 Due to the orthogonality from each of the antennas, we can exploit this important 

property to translate the maximum likelihood decoding into maximum ratio combining 

directly. The new decision statistics are constructed and can be given by 

 ( )2 2
1 2 ˆˆ ( )H H h h= = + = + +y H y H Hx n x n . (2.14) 

 It is clear that a two-dimensional minimization problem can be decoupled into 

two one-dimensional problems 

 ( )
1

22 2
1 1 1 2 1ˆarg min

x
x y h h x= − + , ( )

2

22 2
2 2 1 2 2ˆarg min

x
x y h h x= − +  .(2.15) 

It is also obvious that each symbol is decoded separately using only linear processing. 

We apply the decoding process of the Alamouti scheme to the decoding process of 

space-time block codes. The case for four transmit antennas and one receive antenna is 

considered. The structure of maximum likelihood decoding is studied and the new 

decision statistics is constructed. The new decision statistics can be given by 
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 ( )2 2 2 2
1 2 3 4 ˆˆ ( )H H h h h h= = + = + + + +y H y H Hx n x n . (2.16) 

 A four-dimensional minimization problem can be decoupled into four 

one-dimensional problems as well 

 ( )
1

222 2 2
1 1 1 2 3 4 1ˆarg min

x
x y h h h h x= − + + + ,  

 ( )
2

22 2 2 2
2 2 1 2 3 4 2ˆarg min

x
x y h h h h x= − + + + ,  

 ( )
3

22 2 2 2
3 3 1 2 3 4 3ˆarg min

x
x y h h h h x= − + + + ,  

 ( )
4

22 2 2 2
4 4 1 2 3 4 4ˆarg min

x
x y h h h h x= − + + + . (2.17) 

 It is emphasized that the space-time block codes provide two important properties 

 Simple decoding：Each symbol is decoded separately by using linear processing. 

 Diversity gain：The codes satisfy the rank criterion and provide the maximum 

possible diversity. 

 However, we know that “full rate” orthogonal designs with complex modulated 

symbols in its transmission matrix are impossible for more than two transmit antennas 

as discussed in Section 2.1.2. Sometimes, the transmission rate (spectral efficiency) is 

expected to be raised. Therefore, the concept of Q-OSTBC introduced in the next 

section resulted. 

 

2.2 Quasi-Orthogonal Space-Time Block Codes 
 The main properties of an orthogonal design are simple separate decoding and full 

diversity. In order to design full-rate codes, the simple separate decoding property is 

relaxed. In Q-OSTBC, the transmission matrix columns are divided into groups. When 

columns in each group are not orthogonal to each other, different groups are orthogonal 

to each other. The application of a structure is to design codes which have higher 

transmission rates while sacrificing the full diversity. We will focus on the rate one 
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code which is quasi-orthogonal and provides partial diversity. In particular, Q-OSTBC 

for four transmit antennas and single receive antenna are introduced and its decoding 

algorithms are compared with the maximum likelihood decoding. The simplest form of 

this code can be expressed in terms of four copies of the Alamouti scheme. Here, we 

focus on the ABBA code proposed by Tirkkonen. 

 

2.2.1 The ABBA Code  
 It is well-known that Tirkkonen proposed a full rate space-time block code for 

four transmit antennas that had partial diversity [5]. In order to measure the 

non-orthogonality, Tirkkonen defined the ratio of the squared magnitude of the 

off-diagonal entries to the squared magnitude of the diagonal entries in the Hermitian 

square of the code matrix. The expectation value is taken over all symbol 

constellations of the ratio of the squared Frobenius norms of the off-diagonal N  and 

the diagonal value 24
1 ii x=∑ . The ratio is given by 

 

2

2
24

1

1
4no

ii

E
x

µ
=

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠∑

N
. (2.18) 

Tirkkonen tried to minimize the ratio by choosing the appropriate code. The minimal 

value of noµ  for a four by four block code of the form is 0.25 . In the simplest form 

of the minimal non-orthogonality code, we consider a wireless link, with four transmit 

antennas and single receive antenna, which adopts the Q-OSTBC transmission [5].  

Four transmitted symbols from the four transmit antennas are given by 

 

1 2
* *
2 1

1 2
*

3 4
* *
4 3

3 4
* *
4 3

*
2 1

x x

x x
x x

x x

x x
x

x

x

x xx

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎦−⎣

−

⎥

. (2.19) 
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It is obvious that it has two copies of the 2 2×  Alamouti block code with symbols 1x , 

2x  on the block diagonal, and two copies of the Alamouti code with symbols 3x , 4x  

on the block anti-diagonal. The scheme is called “ABBA” and can be expressed as  

 ⎡ ⎤
⎢ ⎥
⎣ ⎦

A B
B A

. (2.20) 

Multiplying the Hermitian of the ABBA code matrix with the ABBA code matrix, the 

result is given by 

 

( )

1 2 3 4 1 2 3 4
* * * * * * * *
2 1 4 3 2 1 4 3

3 4 1 2 3 4 1 2
* * * * * * * *
4 3 2 1 4 3 2 1

22 2 2 * *
1 2 3 4 4 1 3 2 4

0 0 1 0
0 0 0 1

2Re[ ] .
1 0 0 0
0 1 0 0

Hx x x x x x x x

x x x x x x x x
x x x x x x x x

x x x x x x x x

h h h h x x x x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

− − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥= + + + + +
⎢ ⎥
⎢ ⎥
⎣ ⎦

I

 (2.21) 

It is emphasized that the non-orthogonality of the ABBA code is shown as follows 

 * *
1 3 2 4

0 0 1 0
0 0 0 1

2Re[ ]
1 0 0 0
0 1 0 0

x x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥= +
⎢ ⎥
⎢ ⎥
⎣ ⎦

N . (2.22) 

From the above equation, it is obvious that the interferences exist between symbols 1x , 

3x  and 2x , 4x ; the encoding of the ABBA code is very similar to the encoding of 

OSTBC. Therefore, we show Figure 2.3 as the block diagram of the ABBA code and 

introduce its decoding in the next section. 
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ModulatorModulator ReceiverReceiver

4 ( )kx

1( )kx

( )ky

SpaceSpace--Time EncoderTime Encoder

3 ( )kx

2 ( )kx
S/PS/PS/P

[ ]1 2 3 4  x x x x

1 2

2 1

x x

x x

∗

∗

⎡ ⎤−
⎢ ⎥
⎢ ⎥⎣ ⎦

QQ--OSTBCOSTBC

3 4

4 3

x x

x x

∗

∗

⎡ ⎤−
⎢ ⎥
⎢ ⎥⎣ ⎦

( )kx

( )kx

1h

2h

3h

4h

ModulatorModulator ReceiverReceiver

4 ( )kx

1( )kx

( )ky

SpaceSpace--Time EncoderTime Encoder

3 ( )kx

2 ( )kx
S/PS/PS/P

[ ]1 2 3 4  x x x x

1 2

2 1

x x

x x

∗

∗

⎡ ⎤−
⎢ ⎥
⎢ ⎥⎣ ⎦

QQ--OSTBCOSTBC

3 4

4 3

x x

x x

∗

∗

⎡ ⎤−
⎢ ⎥
⎢ ⎥⎣ ⎦

( )kx

( )kx

1h

2h

3h

4h

 

Figure 2.3: A block diagram of the quasi-orthogonal space-time block coded system 
 for four transmit antennas and single receive antenna 

 

2.2.2 Least Minimal Mean Square Estimate (LMMSE)  
 The decoding of the ABBA code is introduced and compared with the maximum 

likelihood decoding. Under flat fading channel assumption, the temporal received 

signal vector is given by 

 

1 2 3 41 1 1
* * * *
2 1 4 32 2 2

3 4 1 23 3 3
* * * *4 4 44 3 2 1

x x x xy h n
x x x xy h n
x x x xy h n

y h nx x x x

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

h

. (2.23) 

where iy  and in  are, respectively, the ith received signal and the corresponding 

noise component, and ih  is the channel gain between the ith transmit antenna and the 

receive antenna. The signal model (2.23) can be further rearranged into 

 

1 2 3 41 11
* * * ** *
2 1 4 32 2 2

3 4 1 23 3 3
* * * ** *44 3 2 14 4

h h h hy nx
h h h hy x n

h h h hy x n
xh h h hy n

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= + → = +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

y Hx n , (2.24) 

where the channel matrix is expressed as 
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1 2
* *
2 1

3 4
* *
4 3

3 4
* *
4 3

1 2
* *
2 1

h h

h h
h h

h h

h h
h h

h h h h

⎡ ⎤
⎢ ⎥
⎢ ⎥=
−

−

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−

−

H . (2.25) 

 The following assumptions are made in the sequel: 

1. The channel h  is i.i.d. zero-mean complex white Gaussian with covariance I  

2. The noise n  is i.i.d. zero-mean complex white Gaussian with covariance 0N I  

 Now, we process the channel with the Hermitian conjugate of the channel matrix 

and obtain 

 

1 1
* 4 22 2

3 31
* 44

noiseH
i

i

y x
y x

h
y x

xy
=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎛ ⎞⎢ ⎥ ⎢ ⎥= + +⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

∑H I N , (2.26) 

where the non-vanishing correlation matrix N  that is similar to (2.22) is given by 

 * *
1 3 2 4

0 0 1 0
0 0 0 1

2Re[ ]
1 0 0 0
0 1 0 0

h h h h

⎡ ⎤
⎢ ⎥
⎢ ⎥= +
⎢ ⎥
⎢ ⎥
⎣ ⎦

N . (2.27) 

In the non-vanishing correlation matrix N , the non-diagonal entries show the 

non-orthogonality and the corresponding decorrelating matrix is shown as: 

 2

1 0 0
0 1 01

0 1 01
0 0 1

a
a

aa
a

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−−
⎢ ⎥−⎣ ⎦

D , (2.28) 

 
* *

1 3 2 4
* * * *

1 1 2 2 3 3 4 4

2Re[ ]h h h h
a

h h h h h h h h b
+

=
+ + + +

. (2.29) 

where we select different values of b  for different estimates of the symbols. 

Compared the least minimal mean squares estimate with the maximum likelihood 

decoding, the decision metric is in the form (2.12) if perfect channel state information 

is available. The maximum likelihood decision metric can be calculated as the sum of 
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two terms 13 1 3 24 2 4( , ) ( , )f x x f x x+ , where 13 1 3( , )f x x  is independent of 2x  and 4x  

and 24 2 4( , )f x x  is independent of 1x  and 3x . Minimizing 13 1 3 24 2 4( , ) ( , )f x x f x x+  

is equivalent to minimizing 13 1 3( , )f x x  and 24 2 4( , )f x x , respectively. After some 

manipulations, 13 1 3( , )f x x  and 24 2 4( , )f x x  are given by 

( )
( ) ( ){ }
( ) ( )

4 2 2 2
13 1 3 1 3

1

* * * * * * * *
1 1 2 2 3 3 4 4 1 3 1 4 2 1 3 2 4 3

* * *
1 3 2 4 1 3

( , )

2 Re

4 Re Re ,

i
i

f x x h x x

h y h y h y h y x h y h y h y h y x

h h h h x x

=

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

+ − − − − + − − − −

+ +

∑

 (2.30) 

( )
( ) ( ){ }
( ) ( )

4 2 2 2
24 1 3 2 4

1

* * * * * * * *
2 1 1 2 4 3 3 4 2 4 1 3 2 2 3 1 4 4

* * *
1 3 2 4 2 4

( , )

2 Re

4 Re Re .

i
i

f x x h x x

h y h y h y h y x h y h y h y h y x

h h h h x x

=

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

+ − + − + + − + − +

+ +

∑

 (2.31) 

From (2.30) and (2.31), it is obvious that the decoding of 13 1 3( , )f x x  and 24 2 4( , )f x x  

is more complicated than the maximum likelihood decoding of OSTBC because we 

must have decoding pairs for the ABBA code. If *
1 3Re( ) 0x x =  and *

2 4Re( ) 0x x = , the 

decoding equations can be simplified, the symbols 1x , 2x , 3x , 4x  can be detected 

separately. For instance, when 1x  and 2x  are real numbers while 3x  and 4x  are 

imaginary numbers, it is possible for * *
1 3 2 4Re( ) Re( ) 0x x x x= = . It is well known that 

iterative methods may be used to improve the performance in multiuse interference 

cancellation but it brings to higher complexity. We avoid adopting these methods here. 

 There are some examples of Q-OSTBC which have similar properties with the 

ABBA code. A common example proposed by Jafarkhani is 

 * *
⎡ ⎤
⎢ ⎥
−⎣ ⎦

A B

B A
, (2.32) 

where ( )*.  denotes the complex conjugate of the matrix. Other examples with similar 
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behaviors are shown as 

 * * , ,  and 
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −− ⎣ ⎦ ⎣ ⎦⎣ ⎦

A B A B A B
B A B AB A

. (2.33) 

It is easily seen that the main idea of any similar structures for Q-OSTBC can be 

factorized as four Alamouti schemes. In Section 2.5, the performances of the ABBA 

code and Jafarkhani code are obtained and they are almost the same. Further, these 

examples for a rate one code with four transmit antennas are extended into other 

structures different rates and different number of transmit antennas. For example, a rate 

3 / 4  code with eight transmit antennas is given by 

 

1 2 3 4 5 6
* * *
2 1 3 5 4 6

* * * *
3 1 2 6 4 5

* * * *
3 2 1 6 5 4

4 5 6 1 2 3
* * * *
5 4 6 2 1 3

* * * *
6 4 5 3 1 2

* * * *
6 5 4 3 2 1

0 0

0 0

0 0

0 0
0 0

0 0

0 0

0 0

x x x x x x

x x x x x x

x x x x x x

x x x x x x
x x x x x x

x x x x x x

x x x x x x

x x x x x x

⎡ ⎤
⎢ ⎥
− − −⎢ ⎥
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− − −⎢ ⎥
− − −⎢ ⎥
⎢ ⎥
− −⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥− − − −⎢ ⎥⎣ ⎦

. (2.34) 

Then iC  is defined as the ith column. The inner products with these columns are 

given by 

 

1 2

3 4

5 6

7 8

, 0, 5 , 0, 6

, 0, 7 , 0, 8

, 0, 1 , 0, 2

, 0, 3 , 0, 4.

     

     

     

     

i i

i i

i i

i i

i i

i i

i i

i i

= ≠ = ≠

= ≠ = ≠

= ≠ = ≠

= ≠ = ≠

C C C C

C C C C

C C C C

C C C C

 (2.35) 

 The decorrelating matrix for non-vanishing correlation entries is designed similar 

to (2.28). Compared it with the maximum likelihood decoding, the ML decision metric 

can be calculated as the sum of 14 1 4 25 2 5 36 3 6( , ) ( , ) ( , )f x x f x x f x x+ + . It is known that 

to increase the rate is to sacrifice the orthogonality. This is a conflict, but we can select 

a proper rate for given transmit antennas to obtain the required performance. 
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2.2.3 Alamouti Scheme Based Multi-Group Systems 
 In this section, the general form for Q-OSTBC with four transmit antennas is 

found. Without loss of generality, we can write these structures as 

 ⎡ ⎤
⎢ ⎥
⎣ ⎦

A B
C D

, (2.36) 

where A , B , C , and D  are Alamouti schemes individually. This structure is called 

“Alamouti scheme based on multi-group systems” by us. From Equation (2.23)-(2.25), 

the similar channel matrix can be obtained as follows 

 

11 12 13 14
* * * *
12 11 14 13

31 32 33 34
* * * *
32 31 34 33

h h h h

h h h h
h h h h

h h h h

⎡ ⎤
⎢ ⎥
− −⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

H , (2.37) 

where mnh  represents the fading channel coefficient for the nth transmit antenna and 

mth transmission symbol slot. If A  and B  are not related to C  and D , it is seen 

that the rate is two because the meaningful eight symbols transmitted at four 

transmission symbol slots and this structure is modeled as the framework with four 

transmit antennas and two receive antennas. In the concept of multiusers, this structure 

can be imagined that two users have single receive antenna respectively and the base 

station have four transmit antennas. The different Alamouti schemes are transmitted at 

the first two symbol time slots and the last two symbol time slots. It is why this 

structure is called “Alamouti scheme based on multi-group systems”. If C  and D  

are dependent on B  and A , the rate is one because there are only the meaningful 

four symbols transmitted at four transmission symbol slots. For example, the form with 

*= −C B  and *=D A  which is proposed by Jafarkhani is one of Q-OSTBC. In the 

next section, the QR decomposition is exploited to the channel matrix of Alamouti 

scheme based on multi-group systems. 
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2.3 QR Decomposition of Channel Matrix 

 First of all, the QR decomposition of Alamouti scheme based on multi-group 

systems is introduced. The result of QR decomposition for Alamouti scheme based 

multi-group systems has a special structure. The special structure is exploited to detect 

the received symbols and the performance is compared with the methods introduced in 

Section 2.2.2. In addition, the diagonal entries of the upper triangular matrix under QR 

decomposition are found that they are associated with the entries of the Alamouti 

scheme based multi-group channels and can be written in terms of determinants of 

Alamouti scheme based multi-group channels and its partitioned matrices. 

 

2.3.1 Review of QR Decomposition 
 QR decomposition is one of the well-known decompositions. It is noted that it can 

be derived from the Gram-Schmidt algorithm straightforwardly. It is well known that 

the formulation of Gram-Schmidt procedure is to find an orthonormal basis for the 

space spanned by the original linearly independent basis. The Gram-Schmidt process 

frequently appears in the matrix form. It is equivalent to QR decomposition. Let us 

show the lemma of QR decomposition and apply it to Alamouti scheme based 

multi-group systems. 

Lemma 2.1: Every matrix m n×H  with linearly independent columns can be uniquely 

factored as =H QR  in which the columns of m n×Q  are an orthogonal basis for 

( )R H  and n n×R  is an upper-triangular matrix with positive diagonal entries. 

Based on Lemma 2.1, the QR decomposition is applied to the Alamouti scheme based 

multi-group channel matrices. The process is presented in the next section. 
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2.3.2 Channel Matrix Under QR Decomposition 

 The properties of Alamouti scheme is introduced first. It is important for us to 

derive the QR composition of Alamouti scheme based multi-group systems. Therefore, 

the fundamental properties are listed as follows 

 The sum of two Alamouti matrices is another Alamouti matrix. 

 The product of two Alamouti matrices is another Alamouti matrix. 

 The inverse of an Alamouti matrix is another Alamouti matrix. 

It is easy to derive the above results and the proofs of them are ignored. From above 

properties, it is obvious that the Alamouti structure for block matrices is preserved if 

the matrix operation is used. We arrange them and show Lemma 2.2 and Lemma 2.3. 

[14]. 

Lemma 2.2: For a square matrix n n×H , it is constructed by 2 2×  Alamouti 

sub-blocks. The inverse of n n×H  is also constructed by 2 2×  Alamouti sub-blocks. 

That is, it is a block matrix with 2 2×  Alamouti sub-blocks. 

We give the following example in order to explain the above lemma. Consider a matrix 

4 4×H  (2.37) with four sub-blocks and it is given by  

 1 2

3 4

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

H H
H

H H
,  (2.38) 

where 1H , 2H , 3H , and 4H  are all 2 2×  Alamouti schemes, e.g., 

 11 12
1 * *

12 11

h h

h h

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

H , and 13 14
2 * *

14 13

h h

h h

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

H ,   

and 

 31 32
3 * *

32 31

h h

h h

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

H , and 33 34
4 * *

34 33

h h

h h

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

H . (2.39) 

Under some manipulations, all the sub-blocks in 1−H  are also 2 2×  Alamouti 
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schemes by using the fundamental properties of the Alamouti matrix. Therefore, we 

can see that the inverse of the Alamouti scheme based multi-group channel matrix has 

the same structure. 

Lemma 2.3: For a square matrix n n×H , it is constructed by 2 2×  Alamouti 

sub-blocks. It is noted that ( )R n=H . Assume n n×H  is factored as =H QR , where 

the columns of n n×Q  are an orthogonal basis and n n×Q  is a square unitary matrix. 

n n×R  is an upper-triangular matrix with positive diagonal entries. Then, n n×Q  is also 

constructed by 2 2×  Alamouti sub-blocks. n n×R  has a special structure that is a 

block matrix with multiples of 2I  along its diagonal and with 2 2×  Alamouti 

sub-blocks in its upper triangular part. For instance, 

 

11 12 13 14
* * * *
12 11 14 13

31 32 33 34
* * * *
32 31 34 33

h h h h

h h h h
h h h h

h h h h

⎛ ⎞
⎜ ⎟
− −⎜ ⎟= ⎜ ⎟

⎜ ⎟
⎜ ⎟− −⎝ ⎠

H  (2.40) 

The result under QR decomposition is expressed as 

 

11 12 13 14
* * * *
12 11 14 13

31 32 33 34
* * * *
32 31 34 33

q q q q

q q q q
q q q q

q q q q

⎡ ⎤
⎢ ⎥
− −⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

Q and 

11 13 14
* *

22 14 13

33

44

0

0
0 0 0
0 0 0

R R R

R R R
R

R

⎡ ⎤
⎢ ⎥

−⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R . (2.41) 

where all 2 2×  sub-blocks are Alamouti. It is important for us to emphasize that 

11 22R R=  and 33 44R R= . 

 In [14], we follow the proof and revise the error.  

Proof: 

 First, let us define the Hermitian of the channel matrix as follows: 

 1 2

3 4

5 6

7 8

defH H
H

H H

⎡ ⎤ ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

H H H H
H

H HH H
. (2.42) 

The following two observations are introduced. They are useful to complete this Proof. 
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1. A unitary matrix 1Q  with 2 2×  Alamouti sub-blocks is shown by 

5 6

5 6
1 1

6 6 5 6

1 H

Hα α −

⎡ ⎤−
= ⎢ ⎥

+ ⎢ ⎥⎣ ⎦H H

H H
Q

H H H H
, 

 and it satisfies that 

  [ ] [ ]
5 6

5 6
5 6 21

6 6 5 6

1 H

H
γ

α α −

⎡ ⎤−
=⎢ ⎥

+ ⎢ ⎥⎣ ⎦H H

H H
H H I 0

H H H H
. (2.43) 

2. A unitary matrix 2Q  with 2 2×  Alamouti sub-blocks is shown by 

8

2
2

8 /H α

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦H

I 0
Q

0 H
, 

 and it satisfies that 

  [ ] 8
8

2
7 8 7 2

8 /H α
α

⎡ ⎤
⎡ ⎤=⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

H
H

I 0
H H H I

0 H
. (2.44) 

where 
5

2 2
11 12h hα = +H , 

6

2 2
13 14h hα = +H , 

7

2 2
31 32h hα = +H , and 

8

2 2
33 34h hα = +H . It is noted that they are the determinants of 5H , 6H , 7H , 

and 8H , respectively. That is,  

 
5 5det( )α =H H , 

6 6det( )α =H H , 
7 7det( )α =H H , and 

8 8det( )α =H H . (2.45) 

The error in observation 1 [14, e.q. (9)-(10)] must be revised from 

[ ] 2
1 H

H
α α

α α

⎡ ⎤− ⎡ ⎤= +⎢ ⎥ ⎣ ⎦+ ⎢ ⎥⎣ ⎦
B C

B C

B C
B C I 0

C B
 to (2.43). We must revise 

the second diagonal matrix B  to 1−C BC . It is wrong because the product of 

matrices is not interchangeable such as ≠BC CB . 

 It is assumed that there is a matrix with Alamouti sub-blocks, e.g., 

5 6

7 8

H ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

H H
H

H H
. With observation 1, we select 
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5 6

5 6
1 1

6 6 5 6

1 H

Hα α −

⎡ ⎤−
= ⎢ ⎥

+ ⎢ ⎥⎣ ⎦H H

H H
Q

H H H H
, (2.46) 

and the first step is given by  

 

( ) ( )

5 6

5 6 5 6
17 8 6 6 5 6

2

1
7 5 8 6 7 6 8 6 5 6

1

,1 1

H

H

H H

α α

γ

γ γ

−

−

⎡ ⎤−⎡ ⎤
⎢ ⎥⎢ ⎥ + ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥+ − +
⎢ ⎥⎣ ⎦

H H

H H H H
H H H H H H

I 0

H H H H H H H H H H

 (2.47) 

where γ  is a positive constant defined by 
5 6

γ α α= +H H . After that, let us define 

the matrix 1
9 7 6 8 6 5 6

−= − +H H H H H H H . The result from the first step is reduced to 

 ( )
2

9
7 5 8 6

1 H H

γ

γ γ

⎡ ⎤
⎢ ⎥
⎢ ⎥+
⎢ ⎥⎣ ⎦

I 0
H

H H H H
. (2.48) 

With observation 2, we select 
9

2
2

9 /H α

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦H

I 0
Q

0 H
 and the second step is given 

by 

 ( ) ( )9
9

22 2
9 99

7 5 8 67 5 8 6 9
11 /

H
H HH H H

γγ

α
γγ γ γ α

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ++ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦
H

H

I 0I 0 I 0
H HH H H H HH H H H 0 H

, 

  (2.49) 

where ( ) ( )99 9 2 9 2det( )H α= =HH H I H I . The result from the second step is reduced 

to 

 
( ) 9

2

7 5 8 6 2
1 H H

γ

α

γ γ

⎡ ⎤
⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎣ ⎦

H

I 0

H H H H I
. (2.50) 

The above two processes are arranged as follows 
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 ( ) ( )

( ) ( )

95 6

9

9

9

25 6 5 6
1 97 8 6 6 5 6

2 2
1

7 5 8 6 7 6 8 6 5 6 9

2 2

9 9
7 5 8 6 7 5 8 6 2

1
/

1 1
/

1 1

H

HH

H H H

H
H H H H

αα α

γ

α
γ γ

γ γ

α
γ γ α γ γ

−

−

⎡ ⎤⎡ ⎤−⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥ + ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥+ − + ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢+ +⎢ ⎥ ⎢
⎣ ⎦⎣ ⎦

HH H

H

H

H

I 0H H H H
0 HH H H H H H

I 0 I 0

H H H H H H H H H H 0 H

I 0 I 0

H H
H H H H H H H H I

.⎥
⎥

(2.51) 

Let us combine 
95 6

25 6
1 2 1 96 6 5 6

1
/

H

HH αα α −

⎡ ⎤⎡ ⎤−
= = ⎢ ⎥⎢ ⎥

+ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦HH H

I 0H H
Q Q Q

0 HH H H H
 

and define the lower triangular matrix 
( ) 9

2

7 5 8 6 2
1 H H

γ

α

γ γ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
+⎢ ⎥

⎣ ⎦

H

I 0

L
H H H H I

. The 

result (2.51) can translated into H =H Q L . We rewirte H =H Q L  as 

( )HH H H= = =H Q Q H L R  and obtain the final result =H QR  equivalently, 

where 

  
9

25 6
1 95 6 6 6 5 6

1
/det( ) det( )

H

HH α−

⎡ ⎤⎡ ⎤−
= ⎢ ⎥⎢ ⎥

+ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦H

I 0H H
Q

0 HH H H H H H
, (2.52) 

and 
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( )
( )

( )

( )

9
9

2 7 5 8 62

7 5 8 6 2
2

7 5 8 6
5 6 2

5 6

9
2

5 6

7 5 8 6
5 6 2

1

1

det( ) det( )
det( ) det( )

det( )

det( ) det( )

det( ) det( )
det(

HH H H

H H

HH H

HH H

γγ
γ

α
α

γ γ
γ

⎡ ⎤+⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤+⎢ ⎥+⎢ ⎥+⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

+
+

=

H
H

I H H H HI 0

R
H H H H I

0 I

H H H H
H H I

H H

H
0 I

H H

H H H H
H H I

H

  

  5 6

9
2

5 6

) det( ) .
det( )

det( ) det( )

⎡ ⎤
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

H

H
0 I

H H

                         

(2.53) 

The proof is completed and it is easy to check that the matrix Q  preserves the 

structure of 2 2×  Alamouti sub-blocks and the right upper part of the matrix R  is 

another Alamouti scheme. 

 It is obvious that the diagonal entries of matrix R  are related to the determinants 

of the partitioned matrices. Because Q  is a unitary matrix, the determinant of Q  is 

equal to one. It is easy to see that the determinant of H  is equal to the determinant of 

R . Because R  is an upper triangular matrix, the determinant of R  is equal to the 

products of the diagonal entries. Then, we calculate the determinant of R , and have 

the following relationship between R  and 9H : 

  ( ) 9
9

2
2

9det( ) det( ) det( )
α

γ α
γ

⎛ ⎞
⎜ ⎟= = = =
⎜ ⎟
⎝ ⎠

H
HH R H . (2.54) 

From the definition of (2.42), the relations are obtained as follows: 

 5 1 1det( ) det( ) det( )H= =H H H , 6 2 2det( ) det( ) det( )H= =H H H , 

 7 3 3det( ) det( ) det( )H= =H H H , 8 4 4det( ) det( ) det( )H= =H H H . (2.55) 

Therefore, the determinants of 1H , 2H , and H are substituted for the determinant of 
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5H , 6H , and 9H , respectively. We rewrite R  as  

 

( )1 3 2 4
1 2 2

1 2

2
1 2

det( ) det( )
det( ) det( )

det( )
det( ) det( )

H H⎡ ⎤+
⎢ ⎥+
⎢ ⎥+

= ⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥⎣ ⎦

H H H H
H H I

H HR
H

0 I
H H

. (2.56) 

It is noted that the diagonal entries of matrix R  are positive and written in terms of 

the determinants of the partitioned matrices. Finally, the above derivation for the 

channel matrix of Alamouti scheme based multi-group systems is arranged and some 

important properties are listed as follows:  

 The channel matrix of Alamouti scheme based multi-group systems is given by  

 

11 12 13 14
* * * *
12 11 14 13

31 32 33 34
* * * *
32 31 34 33

h h h h

h h h h
h h h h

h h h h

⎛ ⎞
⎜ ⎟
− −⎜ ⎟= ⎜ ⎟

⎜ ⎟
⎜ ⎟− −⎝ ⎠

H . (2.57) 

 It can be factorized as  

 

11 12 13 14 11 13 14
* * * * * *
12 11 14 13 11 14 13

31 32 33 34 33
* * * *

3332 31 34 33

0

0
0 0 0
0 0 0

q q q q R R R
q q q q R R R

q q q q R
Rq q q q

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥= = ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦

H QR . (2.58) 

 The diagonal entries of matrix R  is described as 

 11 22 1 2det( ) det( )R R= = +H H , (2.59) 

 33 44
1 2

det( )
det( ) det( )

R R= =
+

H
H H

, (2.60) 

where 1H , 2H , 3H , and 4H  are 2 2×  Alamouti schemes in the form (2.39), 

and the determinants of them are given by 

 2 2
1 11 12det( ) h h= +H , 2 2

2 13 14det( ) h h= +H , 

  2 2
3 31 32det( ) h h= +H , 2 2

4 33 34det( ) h h= +H .  (2.61) 
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2.4 System Model of the ABBA Code with QR 

Based Successive Detection 
 From the above discussions, considering the simple case such as the ABBA code, 

the channel matrix of the ABBA code is given by 

 1 2

2 1

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

H H
H

H H
. (2.62) 

where 

 1 2
1 * *

2 1

h h

h h

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
H  and 3 4

2 * *
4 3

h h

h h

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
H . (2.63) 

It can be also factorized as  

 

1 2 3 4 11 13
* * * *
2 1 4 3 11 13

3 4 1 2 33
* * * * 334 3 2 1

0 0
0 0
0 0 0
0 0 0

q q q q R R
q q q q R R

q q q q R
Rq q q q

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= = ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥− − ⎣ ⎦⎣ ⎦

H QR . (2.64) 

It is noted that the right upper part of R  is not an Alamouti scheme but a multiples of 

2I  along its diagonal. The diagonal entries of matrix R  are described in the same 

way. There are only six nonzero entries in the upper triangular matrix R  and they are 

real number.  

Since R  is upper triangular, successive symbol detection through canceling the 

contributions of the previously detected components can be performed, as in [10], [15]. 

From Equations (2.24) and (2.64), the received signals are multiplied by unitary matrix 

HQ  and we obtain 

 

1 111 13 1

11 132 2 2

333 3 3

33 44 4

0 0
0 0
0 0 0
0 0 0

y nR R x
R Ry x n

Ry x n
R xy n

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + → = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦

y Rx n . (2.65) 
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where H=y Q y�  and H=n Q n� . Assuming that the n�  is also complex Gaussian 

distributed with the same variance as n , Equation (2.65) is equally expressed as 

 1 11 1 13 3y R x R x= +� � � , 

 2 11 2 13 4y R x R x= +� � � ,  

 3 33 3y R x=� � , 

 4 33 4y R x=� � . (2.66) 

Then, the modified received signals îy  is created as follows 

 ( )
4 4

1 1
î i ij j ii i ij j j i

j i j i
y y R x R x R x x n

= + = +
= − = + − +∑ ∑� � � � . (2.67) 

Since R  is upper triangular, successive symbol detection through canceling the 

contributions of previously detected components can be preformed. That is, the 

modified received signals îy  are detected from the third and fourth rows and the hard 

decisions are made. Then, we substitute the estimated symbol back into the first and 

second row so as to remove the interference term and make the hard decisions. The 

above procedure is described by the following formulas: 

 4
4

33
Quant

y
x

R
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 3
3

33
Quant

y
x

R
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

 2 13 4
2

11
Quant

y R x
x

R
⎡ ⎤−

= ⎢ ⎥
⎣ ⎦

, and 1 13 3
1

11
Quant

y R x
x

R
⎡ ⎤−

= ⎢ ⎥
⎣ ⎦

. (2.68) 

where the function [ ]Quantt q=  sets t  to the element of signal constellations that is 

closest to q . Assuming that these decisions are correct ( j jx x= � ), Equation (2.66) is 

simplified into î ii iy R x n= + � ; that is, the detection procedure turn out to be 

[ ]ˆQuant /i i iix y R= . It is convenient for us to detect the received signals. The 

simulations are provided and compared with the LMMSE decoding and ML decoding. 
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2.5 Computer Simulations 
 In this section, four transmit antennas and single antenna are used in the 

transmitter and receiver, respectively. For the transmission rate 2  bits/s/Hz, it is 

assumed that the rate one Q-OSTBC with QPSK modulation is used and the channel 

fading is flat over four consecutive transmission symbol slots in Q-OSTBC. The fading 

channel is i.i.d. complex Gaussian variables with zero mean and half variance per 

dimension. Noise is i.i.d. complex Gaussian variables while the real part and imaginary 

part of noise are the same variance /(2SNR)Tn . In Figure 2.4, the simulations for the 

ABBA code and the code proposed by Jafarkhani are presented. It is found that their 

average BER performances are almost the same. 
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Figure 2.4: Average BER performances of the ABBA code and the code proposed by 

Jafarkhani 
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The simulation for the ABBA code with LMMSE and ML decoding are presented 

and compared with the result for OSTBC. For the transmission rate 2  bits/s/Hz, it is 

assumed that the rate 1/2  full diversity OSTBC with 16 -QAM modulation is used 

and the channel fading is flat over eight consecutive transmission symbol slots in 

OSTBC. In Figure 2.5, it is easy to see that the full diversity OSTBC has better 

performance than the full rate Q-OSTBC in the high SNR region. On the contrary, the 

full rate Q-OSTBC has better performance than the full diversity OSTBC in the low 

SNR region. Because the influence on slope of the BER-SNR curve in the high SNR 

region is the degree of diversity, it is why the full diversity OSTBC has lower bit error 

rate in the high SNR region. The full rate Q-OSTBC uses a lower modulation order, so 

the better performance is obtained in the low SNR region. 
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Figure 2.5: Average BER performances of OSTBC and Q-OSTBC 
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From the point of view in complexity, it is noted that the decoding complexity of 

Q-OSTBC is higher than OSTBC but the encoding complexity of two codes is similar. 

 Figure 2.6 shows the average BER performance of the ABBA code with 

QR-based successive detection compared with the conventional decoding methods. 

The performance with QR-based successive detection is almost identical to that with 

the LMMSE receiver and the analysis of the average BER in Figure 2.6 is similar to 

that in Figure 2.5. It is obvious that we can provide the similar average BER 

performance with QR-based successive detection compared with the LMMSE receiver. 
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Figure 2.6: Average BER performances of OSTBC and Q-OSTBC with different 

 receivers 
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After that, one example for channel matrix of Q-OSTBC is given and its QR 

decomposition results are shown in Table 2.1-2.4. The results are used to detect the 

received signals and this method is similar to BLAST based on QR decomposition. It 

is famous that a vertical Bell Laboratories Layered space-time (V-BLAST) system has 

an optimal ordered detection algorithm. In the ABBA code system, we don’t consider 

the ordered successive cancellation detection because the permutation behavior at the 

transmitter is able to destroy the special structure of the unitary matrix Q  and upper 

triangular matrix R  under QR decomposition. In a special case, from Table 2.5-2.7, 

we obtain the same upper triangular matrix 'R  as R  by exchanging the first two 

columns and last two columns. In other conditions, the triangular matrix that permutes 

its columns will destroy its special structure in (2.65). 

 

Table 2.1: Channel state information 

 
h 1h  2h  3h  4h  

 0.4763 + 0.7564i 0.1507 - 0.8355i -0.3749 + 1.3065i 0.0776 - 1.7238i
 

Table 2.2: Channel matrix H  of the ABBA code 
 
H     
 0.4763 + 0.7564i 0.1507 - 0.8355i -0.3749 + 1.3065i 0.0776 - 1.7238i
 -0.1507 - 0.8355i 0.4763 - 0.7564i -0.0776 - 1.7238i -0.3749 - 1.3065i
 -0.3749 + 1.3065i 0.0776 - 1.7238i 0.4763 + 0.7564i 0.1507 - 0.8355i
 -0.0776 - 1.7238i -0.3749 - 1.3065i -0.1507 - 0.8355i 0.4763 - 0.7564i
 

Table 2.3: Unitary matrix Q  under QR decomposition 
 
Q      
 0.1891 + 0.3003i 0.0598 - 0.3317i -0.1488 +0.5187i 0.0308 - 0.6843i
 -0.0598 - 0.3317i 0.1891 - 0.3003i -0.0308- 0.6843i -0.1488 - 0.5187i
 -0.1488 +0.5187i 0.0308- 0.6843i 0.1891 + 0.3003i 0.0598 - 0.3317i
 -0.0308- 0.6843i -0.1488 - 0.5187i -0.0598 - 0.3317i 0.1891 - 0.3003i
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Table 2.4: Upper triangular matrix R  under QR decomposition 
 
R      
 2.5189 0 1.7958 0
 0 2.5189 0 1.7958
 0 0 1.7664 0
 0 0 0 1.7664

 
Table 2.5: Channel matrix 'H  of the ABBA code 

 
'H     

 -0.3749 + 1.3065i 0.0776 - 1.7238i 0.4763 + 0.7564i 0.1507 - 0.8355i
 -0.0776 - 1.7238i -0.3749 - 1.3065i -0.1507 - 0.8355i 0.4763 - 0.7564i
 0.4763 + 0.7564i 0.1507 - 0.8355i -0.3749 + 1.3065i 0.0776 - 1.7238i
 -0.1507 - 0.8355i 0.4763 - 0.7564i -0.0776 - 1.7238i -0.3749 - 1.3065i
 

Table 2.6: Unitary matrix 'Q  under QR decomposition 
 

'Q      
 -0.1488 +0.5187i 0.0308- 0.6843i 0.1891 + 0.3003i 0.0598 - 0.3317i
 -0.0308- 0.6843i -0.1488 - 0.5187i -0.0598 - 0.3317i 0.1891 - 0.3003i
 0.1891 + 0.3003i 0.0598 - 0.3317i -0.1488 +0.5187i 0.0308 - 0.6843i
 -0.0598 - 0.3317i 0.1891 - 0.3003i -0.0308- 0.6843i -0.1488 - 0.5187i
 

Table 2.7: Upper triangular matrix 'R  under QR decomposition 
 

'R      
 2.5189 0 1.7958 0
 0 2.5189 0 1.7958
 0 0 1.7664 0
 0 0 0 1.7664
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2.6 Smmary 
 In wireless communication systems, diversity techniques are widely used to 

reduce the effects of multipath fading and improve the reliability of transmission 

without increasing the transmitted power or sacrificing the bandwidth. It is well-known 

that diversity techniques are classified into time, frequency, and space diversity. 

Without increasing the bandwidth and decreasing the transmission rate, it is popular to 

make use of space diversity which can be classified into two categories, transmit 

diversity and receive diversity. In this chapter, we focus on transmit diversity such as 

OSTBC and Q-OSTBC. They can improve the performance by exploiting the structure 

of the codes and provide the simple linear decoding methods compared with the 

maximum likelihood decoding. It is mentioned that diversity order determines the 

slope of BER-SNR curve in the high SNR region. Therefore, the better performance 

for OSTBC can be obtained in the high SNR region because OSTBC has the full 

diversity gain. With introduction of non-orthogonality, the better performance is 

obtained in the lower SNR region because a lower modulation order is used in the low 

SNR region. 

 Then, the QR decomposition of the ABBA code is introduced in Section 2.3. 

Under the result of QR decomposition, the special structure of the upper triangular 

matrix is shown in Equation (2.64). It is useful for us to detect the received signals and 

provide better performance. Further, the diagonal entries of the upper triangular matrix 

are derived and expressed in terms of the determinants of the channel matrix and its 

partitioned matrices. Compared the QR-based successive cancellation detector with the 

LMMSE and ML receivers, the performance with QR-based successive cancellation 

detection is slightly better than that with LMMSE but worse than that with the ML 

decoding. This simulation is helpful to confirm our derivation in this chapter. In the 
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next chapter, the precoding matrix is exploited to allocate the transmit power and the 

average bit error rate is expected to reduce. That is, we focus on the power allocation 

scheme by using the special structure with QR-based successive interference 

cancellation detection.
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Chapter 3  
 
Transmit Power Allocation for 
Minimum BER in a 
Quasi-Orthogonal Space-Time Block 
Code 

 
In this chapter, we will discuss the power allocation scheme with QR-based 

successive detection for the ABBA code over flat fading channels. Our consideration is 

confined to uncoded quadriphase-shift keying signals and the channels are independent 

and identically distributed Rayleigh fading. Given that the channel state information 

(CSI) is perfectly available at the receiver and transmitter, we design a precoding 

matrix to allocate transmit power under a fixed channel realization at the transmitter. 

Furthermore, at the receiver, the signals are detected with a QR-based successive 

cancellation detection mentioned in the previous chapter. For simplicity, the precoding 

matrix is restricted to be a power loading diagonal matrix so as to reduce the 

computational complexity. We minimize the average bit error rate (BER) of the 

received signals but the error propagation is not considered first. From the theory in 

[10], the design of the precoding matrix is based on the minimization of the lower 

bound of average BER. It can be proved that minimizing the lower bound of the 
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average BER leads to minimizing the upper bound of the block error rate. For the error 

propagation free case (no error propagation), some closed-form solutions of power 

allocation schemes are provided in [16]. Then, we consider the error propagation effect, 

which is modeled into the error probability. Finally, we exploit the modified error 

probability to determine power allocation factors. The performances of the error 

propagation free and error propagation cases will be discussed in Sections 3.2 and 3.3. 

 

3.1 Bound for BER of QR Based Successive 

Detection 
Power loading schemes allocate the transmit power across symbols under the 

constraint of constant power per block. At the transmitter per block of four symbols ix , 

1 4i≤ ≤ , we denote the transmitted power allocated to the i th symbol as 2
ip  and 

define the power loading matrix as below: 

 

1

2

3

4

0 0 0

0 0 0

0 0 0

0 0 0

p

p

p

p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P . (3.1) 

where 0ip >  is power loading factor and it is mentioned that the block power 

constraint must be normalized as 

 
4

2 2

1
trace{ } 4i

i
p

=
= =∑P . (3.2) 

Under flat-fading channel assumption, the power loading matrix is inserted into the 

system model (2.65). If the receiver replies the channel state information (CSI) to the 

transmitter, the transmitter can determine the power loading factors by CSI. The block 

diagram with transmit power allocation scheme is shown in Figure 3.1.  
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Figure 3.1: A block diagram of the quasi-orthogonal space-time block coded system 

 with transmit power allocation scheme 

 

 The received signals are multiplied from the left by unitary matrix HQ  and 

shown as below: 

1 111 13 1 1

11 132 2 2 2

333 3 3 3

33 4 44 4

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

y nR R p x
R Ry p x n

Ry p x n
R p xy n

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + → = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦

y RPx n . (3.3) 

where H=y Q y�  and H=n Q n� . The ith element of modified received signals is 

detected as follows: 

 ( )
4 4

1 1
î i ij j j ii i i ij j j j i

j i j i
y y R p x R p x R p x x n

= + = +
= − = + − +∑ ∑� � � � . (3.4) 

Assuming there is no error determined in the previous symbols. Then, we obtain 

î ii i i iy R p x n= + � . It is obvious that the ith modified signal is affected by the ith 

transmitted symbol and channel noise. As long as the symbol in each stage is correctly 

detected and, hence, there is no layer-wise error propagation, the space-time model 

decouples into four independent links. The power loading factor 2
ip  represents the 

transmit power allocated to the i th subchannel and iiR  is the ith subchannel gain. 
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The average energy of the symbols transmitted from each antenna is normalized to be 

one. Therefore, total symbol energy sE  is equal to Tn , so that the average power of 

received signal at each receive antenna is also Tn . The real part and imaginary part of 

noise have the same variance /(2SNR)Tn . The signal to noise ratio (SNR) is denoted 

by 
def

0

sE
N

ρ = , where the total symbol energy and noise variance are defined as 

44
T T

H
s n T nE E n⎡ ⎤ = = =⎢ ⎥⎣ ⎦xx I I I  and 0 0 4

H
pE N N⎡ ⎤ = =⎢ ⎥⎣ ⎦nn I I , respectively. The 

decision point SNR of the ith symbol is given by 2
i iip Rρ . Then, we compute the bit 

error rate of the ith subchannel and the instantaneous BER is given by 

 ( )ei i iiP Q p Rρ= , (3.5) 

where ( )
2def /21

2
y

x
Q x e dy

π
∞ −= ∫  and the QPSK modulation is adopted. Therefore, 

the average instantaneous BER for the symbols block given a channel realization is 

given by 

 ( )
4 4

1 1

1 1
4 4e ei i ii

i i
P P Q p Rρ

= =
= =∑ ∑ . (3.6) 

It is noted that Equation (3.6) is discussed in the error propagation free case, that is, 

error propagation is not considered, so Equation (3.6) merely is a lower bound of 

average BER. The average instantaneous BER (lower bound of average BER) is 

rewritten as 

 ( )
4 4

1 1

1 1
4 4eL eLi i ii

i i
P P Q p Rρ

= =
= =∑ ∑ , (3.7) 

where the subscript L indicates the lower bound of the BER. This is a lower bound 

with QR-based successive interference cancellation detection due to neglecting of error 

propagation, which is also an accurate approximate at the moderate to high SNR region. 

The approximation is reasonable since error propagation is minimal. If the error 

propagation is considered, the detection error of previous symbols will affect the 
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detection of present symbol. This will increase the BER and the average BER is 

slightly higher than the average BER in the error propagation free case. The lower 

bound of average BER has been presented; we then introduce the upper bound of 

average BER. First, let us define the detection error in the ith symbols ix  when there 

may be errors in the detection of previous symbols. We denote by 

1 4, T
ai ix x+⎡ ⎤= ⎣ ⎦x� � �…  and 1 4, T

ai ix x+⎡ ⎤= ⎣ ⎦x …  represent the signal vector detected 

before ix  and the transmitted signal vector, respectively. For the detection of the ith 

symbol ix , from the Bayes’ theorem, we obtain 

 
( ) ( ) ( )

             ( ) ( )
i i i i ai ai ai ai

i i ai ai ai ai

P x x P x x P

P x x P

≠ = ≠ = =

+ ≠ ≠ ≠

x x x x

x x x x

� � � �

� � �
. (3.8) 

Here, ( )i i ai aiP x x≠ =x x� �  is equivalent to Equation (3.5) for the error propagation 

free case. Equation (3.8) can be rewritten as 

 
( ) ( ) ( ) ( )

              ( ).
i i eLi ai ai i i ai ai ai ai

eLi ai ai

P x x P P P x x P

P P

≠ = = + ≠ ≠ ≠

≤ + ≠

x x x x x x

x x

� � � � �

�
 (3.9) 

In the above formula, the last inequality is the fact that ( ) 1i i ai aiP x x≠ ≠ ≤x x� �  and 

( ) 1ai aiP = ≅x x�  for high SNR. Furthermore,  

 

( )
4 4 3 3 4 4 1 1 1 1

44

1 1

( ) 1 ( )

1 ( ) ( ) ( )

1 1 .

ai ai ai ai

i i ai ai

eLj eLj
j i j i

P P

P x x P x x x x P x x

P P

+ + + +

= + = +

≠ = − =

= − = = = = =

= − − ≤ ∑∏

x x x x

x x

� �

� � � � �" (3.10) 

Because 1 1 1 1( )i i ai aiP x x+ + + += =x x� �  is written as 1 ( )i i ai aiP x x− ≠ =x x� �  

1 eLjP= − , the last equality is established. The last inequality is easily derived by 

some manipulations.  
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Combining (3.9) and (3.10), the result is shown as 

4 4

1
( ) ( ) .i i eLi ai ai eLi eLj eLj eUi

j i j i
P x x P P P P P P

= + =
≠ ≤ + ≠ ≤ + = =∑ ∑x x� �  (3.11) 

where the subscript U indicates the upper bound of the BER. Equation (3.11) 

represents the upper bound of the BER based on the consideration that there may be 

detection errors in the previous symbols. The upper bound of the average BER of four 

symbols is given by 

 
( )

4 4 4

1 1
4 4

1 1

1 1
4 4

1 1    .
4 4

eU eUi eLj
i i j i

eLi i ii
i i

P P P

iP iQ p Rρ

= = =

= =

= =

= =

∑ ∑ ∑

∑ ∑
 (3.12) 

The last equality is because the detection order follows the upper triangular structure of 

the matrix. In view of the block error rate, let 0i =  in (3.11), we have 

 
4

0 0
1

( ) ( ) 4a a eLj eL
j

P P P P
=

≠ = ≠ ≤ =∑x x x x� � . (3.13) 

It is obvious that the block error rate ( )P ≠x x�  is upper bounded by four times the 

lower bound of the average BER eLP . This is an important result for us to determine 

the power allocation factors. If a power allocation matrix is designed to minimize the 

lower bound of the average BER, it simultaneously minimizes the upper bound of the 

block error rate as well. From the above derivations, the minimization of lower bound 

for average BER is reasonable because the upper bound of the block error rate is 

minimized at the same time. It implies that the decision performance can be potentially 

improved even in the presence of inter-layer error propagation. In the next section, the 

lower bound of the average BER is exploited to design the power loading matrix and 

some different closed-form expressions for different criteria are presented. 
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3.2 Power Allocation Algorithms with QR-Based 

Successive Detection: Error Propagation Free 

Case 
An proper power allocation matrix is chosen to minimize the lower bound of the 

average BER for different criteria. Combining the transmit power constraint (3.2) and 

the lower bound of average instantaneous BER Equation (3.7), the optimization 

problem results. The lower bound of average instantaneous BER Equation (3.7) is 

called “cost function” or “objective function” here. Subject to “power constraint”, the 

average instantaneous BER with power allocation can be written as  

 
( )

4 4

1 1
4

2

1

1 1
4 4

subject to 4

eL eLi i ii
i i

i
i

P P Q p R

p

ρ
= =

=

= =

=

∑ ∑

∑
. (3.14) 

Then, three common strategies are shown as below [16]-[18]: 

1. Optimal Minimum BER Power Allocation. 

2. Approximate Minimum BER Power Allocation. 

3. Equal Gain (Equal SNR) Power Allocation. 

Furthermore, their closed-form solutionss are introduced in the later section. We 

assume that the channel state information is perfectly available with no error, although 

it is not realistic. 

 

3.2.1 Optimal Minimum BER Power Allocation 
 A direct method is to minimize the problem (3.14). Then, the optimum minimum 

BER power allocation strategy is expressed as  
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1
4

2

1

1min
4

subject to 4         

eL i ii
i

i
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P Q p R

p

ρ
=

=
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∑

∑
. (3.15) 

Because the average instantaneous BER eLP  is a convex function, minimizing the 

problem (3.14) is difficult. It is a convex programming problem which consists of 

many computational complexities. Its closed-form solution can’t be derived but the 

global minimum solution is unique and satisfies [19] 

 
2 212

2
22

ii iR pii

i

R
e

p

ρρ
µ

−
= . (3.16) 

The parameter µ  is chosen numerically such that the transmit power constraint is 

fulfilled. Minimizing the convex problem requires an iterative procedure to obtain the 

optimum solution and we must solve nonlinear equations numerically. It is clear that 

the slow convergence and high computational complexity in this strategy are obtained. 

In order to reduce the computational complexity, approximate minimum BER will be 

proposed in the next section. 
 

3.2.2 Approximate Minimum BER Power Allocation 
 In order to avoid computing numerically, the approach is adopted in [16]. The cost 

function is approximated to an exponential form. The approximate BER can be written 

as  

 ( ) 12 exp( )
5eP Q c cρ ρ= = − , (3.17) 

where c  is a constellation-specific constant, For BPSK and QPSK modulations, 

1c =  and 1/2c = , respectively. Therefore, the optimal minimum BER power 

allocation is reformulated as the approximate minimum BER power allocation as 

follows: 
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∑
. (3.18) 

It is mentioned that when we minimize (3.15) under transmit power constraint, no 

closed-form solution exists. However, the corresponding closed-form solution in (3.18) 

can be obtained by using Lagrange method. The closed-form solution of the 

approximate minimum BER power allocation is obtained as 
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, (3.19) 

where ( ) max{0, }x x+ =  and the parameter µ  is chosen such that the transmit 

power constraint is satisfied, as be shown as below: 
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. (3.20) 

It is noted that µ  is unique and can be obtained rapidly. Therefore, the total transmit 

power in four transmit antennas is given by 
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∑ ∑ , (3.21) 

which is a piecewise-linear function in µ . Compared with the optimum minimum 

BER power allocation, the approximate minimum BER power allocation doesn’t 

require numerical solution of nonlinear equations. It is effective to reduce the 

computational complexity. It is found that the performance of approximate minimum 

BER strategy is very close to that of optimum minimum BER strategy. If 
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2ln 0iiR µ+ ≤  ( 2ln iiR µ− ≥ ), the case implies that the symbol with weaker 

channel gain is dropped. The concept of the above solution (3.19) is similar to that of 

the waterfilling solution but there is a different viewpoint. The characteristics of the 

transmit power allocation strategy derived above differ from those of the waterfilling 

scheme that maximizes the capacity. In view of power allocation strategy, symbols 

with high channel gain can share power with other symbols to improve the average 

BER. The waterfilling scheme is that symbols with high channel gain can acquire more 

power in order to achieve maximum system capacity. 

 

3.2.3 Equal Gain (Equal SNR) Power Allocation 
 It is well-known that the BER is often dominated by certain terms with smallest 

channel gain because the ( )Q ⋅  function decreases as its argument increases. In order 

to avoid this condition, we pre-equalize the transmitted symbols so that all gain of 

received signals is equal. The equal gain power allocation strategy is given by 
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constant, 

subject to 4
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R p i

p
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. (3.22) 

Under some manipulations, the closed-form solution is easily derived and given by 
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eg i

ii
l ll
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R
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=
∑

. (3.23) 

It is obvious that the equal gain power allocation scheme requires the less 

computational complexity compared with the optimum and approximate minimum 

BER power allocation and the performance is indeed improved. The equal gain power 

allocation strategy allocates transmit power 2
,eg ip  inversely proportional to the 

channel state information 2
iiR , and more transmit power is allocated to the more 
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attenuated subchannel. From the above discussions, three strategies are provided and 

some closed-form solutions are presented. In the next section, the error propagation is 

considered and the corresponding analysis is presented. 

 

3.3 Power Allocation Algorithms with QR-Based 

Successive Detection: Error Propagation Case  
It is well-known that the detection with decision feedback suffers form error 

propagation. It implies that the cancellation of an erroneously detected symbol will 

cause significant performance degradation. In the previous discussions, no error 

propagation is considered. Here, based on the assumption that there is error 

propagation, it is clear that the detection error of previous symbols will increase the 

BER. Take into account the effects of error propagation, the exact expressions for the 

error probability is difficult. A simple approach to estimate the probabilities is 

presented. It is shown that their performances are very close to the simulation results. 

Writing (3.4) in terms of the vector and matrix, we have 
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  (3.24) 

Divide the modified received signal ŷ  into two groups as below:  

 3 3 333 3

33 44 4 4

ˆ 0
0ˆ

y x nR p
R py x n

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
, (3.25) 
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ˆ 00
00ˆ

y x nR pR p x x
R pR p x xy x n

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎡ ⎤⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (3.26) 

It is clear that the third and fourth symbols in (3.25) are detected directly without error 

propagation, but the first and second symbols in (3.26) are detected with error 

propagation. In [20], the error on the previous symbol can be regarded as an additional 

disturbance. We rewrite (3.26) as 

 

( )

( )

2 11 2 2 13 4 4 4 2

1 11 1 1 13 3 3 3 1

ˆ

ˆ .

eq

eq

n

n

y R p x R p x x n

y R p x R p x x n

= + − +

= + − +
 (3.27) 

where 3x  and 4x  are the erroneous decision regarding 3x  and 4x . To estimate this 

error propagation effect, the term eqn  is approximated as a Gaussian random variable. 

The mean and variance of eqn  are given by 

 0eqE n⎡ ⎤ =⎣ ⎦  and { }2 2
13 0,  3, 4eq eq i i iE n n R p E x x N i⎡ ⎤ = − + =⎢ ⎥⎣ ⎦ � . (3.28) 

Without loss of generality, most of the errors ix  ( 3,4i = ) are considered as one of 

the neighboring symbol ix  in the high SNR region, that is , 

 ( )2 2 24 sin /i i MPSKx x M dπ− = =� . (3.29) 

Therefore, we have 

 ( )( )2 22 2
13 0 13 04 sin /eq eq i i MPSKE n n R p M N R p d Nπ⎡ ⎤ = + = +⎢ ⎥⎣ ⎦ . (3.30) 

 In other words, the error propagation effect is modeled as 

2 2
13 0eq eq MPSKE n n R p d Ni⎡ ⎤ = +⎢ ⎥⎣ ⎦ , which differs from the original noise power 

[ ] 0E nn N= . For QPSK modulation, the square minimum distance is given by 

2 2QPSKd = . Denote by 2
13σ  and 2

24σ , respectively that the noise power of the first 

symbol with considering error propagation of the third symbol and the noise power of 
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the second symbol with considering error propagation of the fourth symbol shown as 

below: 

 22 2
13 13 3 0MPSKR p d Nσ = + , and 22 2

24 13 4 0MPSKR p d Nσ = + . (3.31) 

Therefore, the average BER [21] for the error propagation effect is expressed as 

 ( ) ( ) ( ) ( ){ }1 1 2 2 3 3 4 4
1
4eP P x x P x x P x x P x x= ≠ + ≠ + ≠ + ≠� � � � , (3.32) 

where 

 ( )4 4 4 33
0

sE
P x x Q p R

N

⎛ ⎞⎟⎜ ⎟≠ = ⎜ ⎟⎜ ⎟⎜⎝ ⎠
� , (3.33) 

 ( )3 3 3 33
0

sE
P x x Q p R

N

⎛ ⎞⎟⎜ ⎟≠ = ⎜ ⎟⎜ ⎟⎜⎝ ⎠
� , (3.34) 
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⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟⎟⎜ ⎟ ⎟⎜⎜ ⎜ ⎜⎟ ⎟⎟ ⎟ ⎟⎜ ⎜= − +⎜ ⎜ ⎜⎟ ⎟⎟ ⎟ ⎟⎜ ⎜⎜ ⎜ ⎜⎟ ⎟⎟ ⎟ ⎟⎜ ⎜ ⎜⎜ ⎜ ⎟⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
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� � � � � � �

2 11 2 112
024

,s sE E
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  (3.35) 

and 

( ) ( ) ( ) ( ) ( )1 1 1 1 3 3 3 3 1 1 3 3 3 3

1 11 3 33 1 11 3 332
0 0 013

1 11 3 33
0 0

1s s s s

s s

P x x P x x x x P x x P x x x x P x x

E E E E
Q p R Q p R Q p R Q p R

N N N

E E
Q p R Q p R

N N

σ

≠ = ≠ = = + ≠ ≠ ≠

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟⎟⎜ ⎟ ⎟⎜⎜ ⎜ ⎜⎟ ⎟⎟ ⎟ ⎟⎜ ⎜= − +⎜ ⎜ ⎜⎟ ⎟⎟ ⎟ ⎟⎜ ⎜⎜ ⎜ ⎜⎟ ⎟⎟ ⎟ ⎟⎜ ⎜ ⎜⎜ ⎜ ⎟⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
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� � � � � � �
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.s sE E
Q p R Q p R
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⎛ ⎞⎛ ⎞ ⎛ ⎞⎟⎜ ⎟ ⎟⎜ ⎜ ⎟⎟⎜⎟ ⎟⎜ − ⎜ ⎟⎟⎟ ⎟⎜ ⎜ ⎜ ⎟⎟⎟ ⎟⎜ ⎜⎜ ⎟ ⎟⎜ ⎝ ⎠⎝ ⎠⎝ ⎠

  

  (3.36) 

Inserting (3.33)-(3.36) into (3.32), the average BER with considering error propagation 

is expressed as 
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  (3.37) 

The last two terms are regarded as the addition error probabilities due to the error 

propagation effect. From the concept of Section 3.2, the power allocation matrix is 

designed to minimize the average instantaneous BER (3.37) with considering error 

propagation. The average BER performance is shown in the next section. 

 

3.4 Computer Simulations 
In this section, we use the “fmincon” function of Matlab [22] which employs 

sequential quadratic programming to find the optimal power loading factors that 

minimize the average instantaneous BER. It is proved that the approximate minimum 

BER solution is very close to that of the minimum BER solution in [16]. Therefore, we 

ignore the simulation of approximate minimum BER scheme and present the equal 

gain scheme and minimum BER scheme compared with the conventional QR receiver 

without power allocation scheme in the error propagation free case in Figures 3.2 and 

3.3. It is noted that the transmit power is allocated for each channel realization, that is, 

the channel state information is perfectly known to the transmitter and receiver. From 

the simulation results, we can see that the power loading factors 1p  and 2p  are 

almost equal to each other, and the same condition holds for the power loading factors 

3p  and 4p  because 11 22R R=  and 33 44R R= . 
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Figure 3.2: Average BER performances of OSTBC and Q-OSTBC with power loading  
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Figure 3.3: Average BER performances of Q-OSTBC with different power loading 
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In Figure 3.2, we observe that the average BER performance improvement with 

the optimal power loading scheme is at least 2dB better than that without power 

loading scheme in the medium-to-high SNR region. Figure 3.3 illustrates the average 

BER performances with different power loading schemes; the average BER 

performance with equal gain power loading scheme is about 1dB better than that 

without power loading scheme but is still 1dB worse than that with optimal power 

loading scheme (numerical method). In Figures 3.4 and 3.5, we present simulation 

results in the error propagation free and error propagation cases. Compared with the 

simulated performance and analytic performance, it is shown that the simulated 

performance degrades due to the erroneous assumption in the error propagation free 

case. Therefore, the error propagation effect is considered in Figure 3.5, in which the 

analytic performance degrades. However, the performance improvement up to about 

2dB is achieved in both cases. 
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Figure 3.4: Average BER performances without error propagation 
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Figure 3.5: Average BER performances with error propagation 

 

 In Figure 3.6, we show different performances such as OSTBC, Q-OSTBC 

( 4 1× ), and Alamouti scheme based multi-group (4 2× ). Given a fixed channel 

realization, the average BER performance of Q-OSTBC (4 1× ) is almost identical to 

that of Alamouti scheme based multi-group (4 2× ) in the high SNR region because 

the diversity and spectral efficiency are the same whether the power loading schemes 

are considered or not. The analysis of BER performances in Figure 3.6 is similar to that 

in Figure 3.2. In the low SNR region, the performance of Alamouti scheme based 

multi-group (4 2× ) is better than others because a lower modulation order (BPSK 

modulation) is used. We assume that BPSK modulation is used with the same average 

symbol power as QPSK and 16 -QAM. In the high SNR region, the diversity affects 

the BER-SNR curve and the performance of OSTBC is better than other codes in 

Figure 3.6. 
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Figure 3.6: Comparison of average BER performances for OSTBC and Q-OSTBC 

 

In [10], it is proved that minimizing the lower bound of the average BER leads to 

minimizing the upper bound of the block error rate. In Figure 3.8 and 3.9, the above 

description is confirmed. The power loading factors are determined by minimizing the 

average BER performance and the block error rate can be minimized by using the same 

power loading factors. It is thus a reasonable approach to determine the power loading 

factors by minimizing the lower bound of the average BER. We observe that at error 

probability of about 410−  in Figure 3.7, we obtain up to 2dB improvement in SNR 

compared with the original equal power scheme.  
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Figure 3.7: Average BER performances of Q-OSTBC with power loading 
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Figure 3.8: Block error rate performances of Q-OSTBC with power loading 
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 Finally, Figure 3.10 illustrates that the ABBA code has performance close to the 

code proposed by Jafarkhani because the code proposed by Jafarkhani has a structure 

of the triangular matrix R  similar to the ABBA code. Therefore, the power allocation 

schemes can be extended directly. 
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Figure 3.9: Comparison of average BER performances for ABBA code and the code 

 proposed by Jafarkhani with and without power loading 

 

3.5 Summary 
In this chapter, we introduce transmit power allocation for minimum average BER 

with QR-based successive detection. For simplicity, we discuss the error propagation 

free case first and minimize the lower bound of average BER. It can be proved that 

minimizing the lower bound of the average BER leads to minimizing the upper bound 

of the block error rate. For the error propagation free case, we exploit some 

closed-form expressions of power allocation algorithms provided in [16] to allocate 
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transmit power. By means of power allocation, we can improve the performance in the 

high SNR region. Then, we model the error propagation effect as an additional 

disturbance approximated as a Gaussian random variable. Under such modeling, we 

determine power allocation factors to minimize the average BER. It can be seen that 

the better performance is obtained. In the above, we focus on the power allocation 

schemes under a fixed channel realization known to the transmitter. It is sometimes 

difficult for us to allocate transmit power if the accurate channel realization is not 

known at the transmitter. In order to extend our power allocation schemes, we will 

consider the channel probability density function (pdf) in the error probability formula 

in the next chapter. 
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Chapter 4  
 
Robust Transmit Power Allocation 
for Minimum BER in a 
Quasi-Orthogonal Space-Time Block 
Code 

 
In general, the average BER performance will degrade if the channel statistics is 

not taken into account. In this chapter, we will consider the channel probability density 

function (pdf) in deriving the error probability. In this case, the instantaneous average 

BER is no longer considered. Motivated by this fact and to deliver a performance merit 

over different channel realizations, we evaluate the average BER for the channel 

estimation. Combining Chapter 3, we propose to determine power loading factors by 

minimizing the error probability averaged with respect to the channel distribution. It is 

known that channel estimation can be classified into two categories, perfect channel 

estimation and imperfect channel estimation. We will discuss perfect channel 

estimation first and derive an upper bound of average BER for the error propagation 

free case. Taking into account that the channel pdf is Gaussian with zero mean and 

covariance matrix HE ⎡ ⎤∑ = ⎢ ⎥⎣ ⎦hh , we evaluate the average BER for the error 

propagation free case and exploit the corresponding closed-form expression provided 
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in [23] into the upper bound of average BER formula. Therefore, we change our design 

rule to minimize the upper bound of average BER for the error propagation free case. 

The transmit power is allocated in order to minimize the closed-form expression for 

the upper bound of average BER in the error propagation free case. In this closed-form 

expression, the channel state information is unnecessary but SNR is necessary. In other 

words, we only require SNR instead of the channel realization mentioned known to the 

transmitter in Chapter 3. Furthermore, we introduce the upper bound of the average 

BER when the channel state information is not perfectly known. Finally, both 

categories are compared and their performances discussed. 

 

4.1 Evaluation of Overall Average BER 
 First, the common methods used to analyze the evaluation of overall average BER 

are introduced. Here, two methods are shown as follows. One [10] is that for a 

complex circular Gaussian distribution channel, 2
iiR  is 2χ -distributed such that 

 ( )
( )
( )

22

!

T ii
n i R

ii
ii

T

R e
p R

n i

− −

=
−

. (4.1) 

The overall average BER is evaluated by averaging the distribution of iiR  as 

follows: 

 ( ) ( )
4 4

1 1

1 1
4 4e ei ii ii ii

i i
P P Q R p R d Rρ

= =
= =∑ ∑ ∫ , (4.2) 

where eiP  represent that the ith symbol is erroneous. Hence, we obtain 

 ( )
( )
( )

22
4 4

1 1

1 1
4 4 !

T ii
n i R

ii
e ei ii ii

Ti i

R e
P P Q R d R

n i
ρ

− −

= =
= =

−∑ ∑ ∫ . (4.3) 

The closed-form expression can be derived. However, it is a pity that the assumption is 

not held in the channel matrix of the ABBA code because the channel matrix has a 
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special structure and 2
iiR  is not 2χ -distributed. The above method can’t be 

exploited to evaluate overall average BER. The other is that the channel pdf ( )f h  is 

assumed to be Gaussian with zero mean and variance HE ⎡ ⎤∑ = ⎢ ⎥⎣ ⎦hh  as below: 

 ( ) ( )1
4

1 exp
det( )

Hf
π

−= − ∑
∑

h h h , (4.4) 

where h  is the column vector representing the four channel coefficients. The overall 

mean BER is evaluated by averaging the channel pdf ( )f h  as follows: 

 ( ) ( )
4 4

1
4

1 1

1 1 1 exp
4 4 det( )

H
e ei ii

i i
P P Q R dρ

π
−

= =
= = − ∑

∑
∑ ∑ ∫ h h h . (4.5) 

It is obvious that iiR  can be expressed in terms of h  and the integral can be 

computed. Here, the alternative expression differs from ( )
2def /21

2
y

x
Q x e dy

π
∞ −= ∫  

for the ( )Q ⋅  function is given by [24] 
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π θ

π θ
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Hence, eP  can be rewritten as  
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 (4.7) 

In general, when the output SNR is in quadratic form ( 2 H
iiR = h h , where 

1 2 3 4
H

h h h h⎡ ⎤= ⎢ ⎥⎣ ⎦h ), and eP  can be computed as follows: 

( )
4 4 /2 1
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1 1 1 1exp exp ,
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  (4.8) 

and it provides the close-form expression [25]. It is useful for us to evaluate the overall 

average BER. Furthermore, the BER is not a function of the channel realization, i.e., 
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we don’t require the channel realization in each iteration computation in order to 

determine power allocation factors. Instead of the channel realization known to the 

transmitter, it is necessary to know SNR here. Then, the derivation of the closed-form 

expression is shown as below: 
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where (a) is obtained by performing integration with respect to h  [23], [25], and (b) 

follows from [25, e.q.(38)]. These parameters are defined as that iλ  (i = 1, 2,…, K) is 

the eigenvalues of 
2

ρ∑ , K is the number of distinct eigenvalues, Ni  is the 

eigenvalue’s multiplicity, ,i nµ  is the ith residue associated with nth power in the 

partial-fraction expansion, and the function ( )G λ  is given by 

 1( ) 1
2 1

G λλ
λ

⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ +⎝ ⎠
.  (4.10) 

If four eigenvalues are equal to λ , partial expansion is not necessary, and Equation 

(4.9) can be obtained as 
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Combining Equations (4.8) and (4.11), the mean BER averaged with respect to the 

channel distribution is obtained as 
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∑ ∑ ∑  (4.12) 

where iλ  is the duplicate eigenvalue of 
2

ρ∑  for eiP  (i = 1, 2,…, 4). However, in 

the ABBA code channel, 2
33R  is not 2χ -distributed and can’t be written as a 

quadratic form, that is, we can’t consider our condition to the above closed-form 

expression in (4.12) directly. In place of this condition, the relationship between 

quadratic form of the channel vector h  and diagonal entry ( 33R ) is found. It is 

possible to exploit the relationship to use the above closed-form expression in (4.12). 

 

4.2 Bound of the Channel Determinant 
 From Section 4.1, the diagonal entries are important for us to evaluate the overall 

average BER. In order to understand the diagonal entries of the upper triangular matrix 

R , it is interesting for us to calculate the determinant of the channel matrix for the 

ABBA code. For the channel matrix of the ABBA code, some simple derivations are 

given as follows: 
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  (4.13) 
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It is important for us that 1 2 1 2det( ) det( ) det( )= + × −H H H H H , the diagonal entries 

of matrix R  in (2.59) and (2.60) can be rewritten as 

 11 22 1 2det( ) det( )R R= = +H H , (4.14) 

 1 2 1 2
33 44

1 2

det( ) det( )
det( ) det( )

R R
+ × −

= =
+

H H H H
H H

, (4.15) 

where 

 2 2 2 2
1 2 1 2 3 4det( ) det( ) h h h h+ = + + +H H , (4.16) 

 2 2
1 2 1 3 2 4det( ) h h h h+ = + + +H H , (4.17) 

 2 2
1 2 1 3 2 4det( ) h h h h− = − + −H H . (4.18) 

In Equations (4.14) and (4.15), the relationship between channel coefficients and the 

diagonal entries of R  is obtained; the diagonal entries can be written in terms of the 

determinants of the partitioned matrices. Then, the bound of the channel determinant is 

derived from the above relationship. 

 Now, we attempt to find the bound of the channel determinant because some 

diagonal entries of the upper triangular matrix are deeply affected by determinants of 

channel matrix. The purpose of the bounds is to simply the expression in (4.15). The 

simple expressions are exploited to determine power loading factors in order to achieve 

better performance. Under some manipulations, we have 
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 (4.19) 
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It is obvious that the term * *
1 3 2 4Re( )h h h h+  will affect the value of determinants in 

(4.19) and (4.20). With a careful observation, we generalize a conclusion as follows: 

If * *
1 3 2 4Re( ) 0h h h h+ ≥ , we have 

 1 2 1 2 1 2det( ) det( ) det( ) det( )− ≤ + ≤ +H H H H H H . (4.21) 

Combining Equations (4.15) and (4.21), the result is given by 

 1 2 1 2
1 2 1 2

1 2

det( )det( )
det( ) det( )

det( ) det( )
+ −

− ≤ ≤ +
+

H H H H
H H H H

H H
. (4.22) 

On the contrary, if * *
1 3 2 4Re( ) 0h h h h+ < , we have 

 1 2 1 2 1 2det( ) det( ) det( ) det( )+ ≤ + ≤ −H H H H H H . (4.23) 

Combining Equations (4.15) and (4.23), the result is given by 

 1 2 1 2
1 2 1 2

1 2

det( )det( )
det( ) det( )

det( ) det( )
+ −

+ ≤ ≤ −
+

H H H H
H H H H

H H
. (4.24) 

As a result, 2
33R  must satisfy either (4.22) or (4.24), depending on whether 0Λ ≥  

or 0Λ < , where * *
1 3 2 4Re( )h h h hΛ = + . For simplicity, Equations (4.22) and (4.24) are 

translated into  

 2
1 2 33 1 2det( ) det( )R− ≤ ≤ +H H H H  

and 

 2
1 2 33 1 2det( ) det( )R+ ≤ ≤ −H H H H , respectively. (4.25) 

From the above equation, it is the fact the larger term of 1 2det( )−H H  and 

1 2det( )+H H  is the upper bound of 2
33R  while the smaller term of 1 2det( )−H H  

and 1 2det( )+H H  is the lower bound of 2
33R . In terms of the channel coefficients 

( [ ]1 2 3 4
Th h h h=h ), the diagonal entries can be expressed as follows:  

 2
11 1 2det( ) det( ) HR = + =H H h h , (4.26) 
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,  (4.27) 

and 

 2
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H H H h h
H H

, (4.28) 

where 
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and 
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−⎡ ⎤
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It is well-known that the signal to noise ratio (SNR) at the receiver (decision-point 

SNR) is often a function of the channel gain such as 2
11R , 2

33R  and so on. The 

instantaneous bit error rate is determined by the decision-point SNR, so the diagonal 

entries play an important role in the instantaneous bit error rate. Combining Sections 

4.1 and 4.2, a power allocation scheme for Q-OSTBC is proposed by exploiting the 

bound of diagonal entries and the corresponding closed-form expression is introduced 

in Section 4.1. 

 

4.3 Evaluation of Overall Average BER for 

Upper Bound and its Closed-Form Expression 
The channel estimation can be classified into two categories, perfect channel 

estimation and imperfect channel estimation. The perfect channel estimation is 

discussed in Section 4.3.1 and an upper bound of average BER for the error 

propagation free case is derived. Then, the imperfect channel estimation is extended in 
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Section 4.3.2. The average BER for the error propagation free case is evaluated and the 

corresponding closed-form expression is exploited into the upper bound of average 

BER formula. 

 

4.3.1 Perfect Channel Estimation Case 
To facilitate the derivation of diagonal entries R  and based on design procedure 

of Section 4.1, an upper bound of average BER for the error propagation free case is 

derived in closed-form. As 11 22R R=  and 33 44R R= , it is more convenient to 

decompose eP  in (4.7) into 
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 (4.31) 

In what follows we will derive an analytic expression for 1P  and an upper bound for 

2P , this in turn yields a closed-form upper bound of eP . 

1. An analytic Form of 1P : Inserting (4.26) into 1P  in Equation (4.31), the same 

derivation in Section 4.1 is exploited and 1P  can be obtained as follows: 
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 (4.32) 

2. An Analytic Upper Bound of 2P : It is noted that the closed-form expression of 

1P  in (4.32) hinges entirely on (4.26), in which 2
11R  is seen to been essentially 

quadratic in the channel gain vector ( [ ]1 2 3 4
Th h h h=h ). Such a property, 

however, no longer holds for 2
33R . As a result, there does not seem to exist an 

exact expression for 2P  analogue to (4.32). We shall then instead seek for a 

tractable upped bound for 2P . From Section 4.1, it is known that 2
33R  must 

satisfy either (4.22) or (4.24), depending on whether 0Λ ≥  or 0Λ < , where 

* *
1 3 2 4Re( )h h h hΛ = + . This results can be exploited for deriving a tractable upper 

bound of 2P . Indeed, we first note by definition that 2 /2P  is the average BER 

of the 3rd and 4th component channels (see (4.31)). Let us denote by 2 0 / 2P Λ≥  

the associated conditional probability given that the event { }0Λ ≥  is true, and 

likewise by 2 0 / 2P Λ<  for the complement event { }0Λ < . Then with (4.31) 

and (4.27), we have  
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  (4.33)
 

also (4.31) and (4.28) together imply 
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  (4.34)   

Since 

 ( ) ( ) ( ) ( )2 2 0 2 0/2 /2 Pr 0 /2 Pr 0P P PΛ≥ Λ<= Λ ≥ + Λ < ; (4.35) 

and assuming that the two outcomes { }0Λ ≥  and { }0Λ <  are 

equally-probable, namely, ( ) ( )Pr 0 Pr 0 1/2Λ ≥ = Λ < = , relations (4.33)- 

(4.35) then leads to the following key inequality 
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  (4.36) 

The significance of (4.36) lies in that the exponents in both summands are now 

quadratic in channel coefficients. Indeed, from (4.29) and (4.30), inequality (4.36) 

can be equivalently rewritten as 
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where the last equality follows again from [23], [25]. Now, the eigenvalus of both 

+∆  and −∆  are calculated as follows { }0, 0,2, 2 , and (4.37) becomes 
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  (4.38) 

where (c) follows again by using [25, e.q. (38)].  

Combining (4.31), (4.32) and (4.38), the overall mean BER by averaging the 

channel distribution in (4.7) can thus be upper bounded by 
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 (4.39) 

where ( )G ⋅  is defined in (4.10). 

An upper bound of mean BER averaged with respect to the channel distribution is 

derived in the error propagation free case. By exploiting this upper bound, the power 
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loading factors are determined by minimizing this upper bound. In the next section, the 

analysis is extended into imperfect channel estimation case. 

 

4.3.2 Imperfect Channel Estimation Case 
When the channel state information is not perfectly known at the transmitter, the 

above method can’t be used. Therefore, it is assumed that the channel statistics are 

known and the similar method is derived. Assuming that channel estimate ĥ  and 

channel estimation error e , we have that ĥ = h + e . The estimation error e  has 

Gaussian distribution with zero mean and covariance matrix ˆ= ∑ −∑ee hhC , where 

ˆ∑h  and ∑h  are the covariance matrices of the channel estimate and channel state 

information, respectively. From [23], the estimation error can be modeled into noise 

covariance matrix. That is, the estimation error will enhance the noise as follows: 

 0s NE N= +eeΕ C I , (4.40) 

where sE  is the symbol energy and 0 NN I  is i.i.d. Gaussian covariance matrix. Then, 

the derivations in Section 4.3.1 are revised and the mean BER averaged with respect to 

the channel distribution is given. From [23], the average BER can be obtained as 
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By exploiting (4.6), Equation (4.41) becomes 
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These parameters are defined as that kλ  (k = 1, 2,…, K) are the eigenvalues of 

1

2
sE − ∑Ε

, K is the number of distinct eigenvalues, Ni  is the eigenvalue’s 

multiplicity, ,i nµ  is the ith residue associated with nth power in the partial-fraction 

expansion, and ( )G ⋅  is defined in (4.10). We can see that Equation (4.42) is 

equivalent to Equation (4.9), except that the eigenvalues are not equal to each other. 

Therefore, the upper bound of average BER in Section 4.3.1 is only slightly revised. 

From (4.31) and (4.35), we have 
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  (4.43) 

It is noted that the channel covariance matrix ∑  will affect the probabilities 

( )Pr 0Λ ≥  and ( )Pr 0Λ < , where * *
1 3 2 4Re( )h h h hΛ = + . After some observations 

of simulations, it is found that when the correlation between these channels is stronger, 

the probability ( )Pr 0Λ ≥  is larger and ( )Pr 0Λ <  is smaller. Therefore, it is 

assumed that the two outcomes { }0Λ ≥  and { }0Λ <  are equally-probable. In this 

condition, an upper bound of average BER which is a function of probabilities 
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( )Pr 0Λ ≥  and ( )Pr 0Λ <  will be derived. For simplicity, it is assumed that 

channel pdf is i.i.d. Gaussian distribution (∑ = I ) and the two outcomes { }0Λ ≥  and 

{ }0Λ <  are equally-probable ( ( ) ( )Pr 0 Pr 0 1/2Λ ≥ = Λ < = ). Equation (4.43) 

can be obtained as 
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From Equations (4.31)-(4.39), the same derivation procedure can be obtained as 

follows: 
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(4.45) 

These parameters are defined in the same manner previously. Summarizing Sections 

4.3.1 and 4.3.2, the proposed power allocation scheme by minimizing this upper bound 

is then given in the next section. 

 

4.4 Optimal Power Allocation for Minimum 

Upper Bound of BER 
From the above section, we propose a method of determining power loading 

factors by minimizing the average BER upper bound in (4.39), subject to the power 

normalization constraint. Instead of considering channel realization at our design,  the 

average BER for the channel distribution is evaluated. Determining power loading 

factors by minimizing the upper bound of the error probability averaged with respect to 

the channel distribution is proposed. As the cost function is highly nonlinear in ip ’s, 
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there do not seem to exist closed-form optimal solutions. Instead, the problem is solved 

via numerical search (e.g. by using fmincon function in Matlab Optimization 

Toolbox). 

 

4.5 Computer Simulations 
First, Figure 4.1 shows the upper bound of average BER compared with the 

average BER. It is obvious that the upper bound of average BER is indeed larger than 

the average BER and the upper bound is tighter for low SNR than high SNR.  
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Figure 4.1: Upper bound of average BER performances 

 

To illustrate the numerical performance of the proposed scheme, we compare the 

simulated average BER of the following receivers: linear MMSE equalizer, QR-based 

detectors with and without power loading, and the joint ML decoding; the results are 
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shown in Figure 4.2 (QPSK modulation is used) and the solutions at various SNR are 

listed in Table 4.1. As we can see, the QR-based solution without power allocation only 

slightly outperforms the linear MMSE equalizer. When combined with the proposed 

optimal power loading scheme, performance improvement up to about 2 dB is 

achieved in the medium-to-high SNR region; in particular, the BER is almost identical 

to that attained by the optimal ML decoding for SNR above 22.5 dB. From Table 4.1, 

we can see the relationship of power loading factors as follows: 1 2p p= , 3 4p p= , 

and 3 1p p>  because 11 22R R= , 33 44R R= , and 11 33R R≥ . 
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Figure 4.2: Average BER performances of Q-OSTBC with different receivers 
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Table 4.1: Computed optimal power loading factors in Figure 4.2 

 

   Power loading 
         factors 
SNR (dB) 

 

1p  
 

2p  
 

3p  
 

4p  

5 0.9982 0.9982 1.0018 1.0018 

7.5 0.9807 0.9807 1.0189 1.0189 

10 0.9529 0.9529 1.0449 1.0449 

12.5 0.9197 0.9197 1.0743 1.0743 

15 0.7769 0.7769 1.1817 1.1817 

17.5 0.7259 0.7259 1.2137 1.2137 

20 0.6724 0.6724 1.2441 1.2441 

22.5 0.6180 0.6180 1.2720 1.2720 

25 0.5641 0.5641 1.2968 1.2968 

27.5 0.5123 0.5123 1.3182 1.3182 

30 0.4633 0.4632 1.3362 1.3362 

32.5 0.4177 0.4177 1.3511 1.3511 

35 0.3755 0.3755 1.3635 1.3635 

 

 In Figure 4.3, we show that when there is channel estimation error, our method 

can be still used. Considering that the channel estimation error covariance matrix is 

equal to 0.01I, the average BER performance is presented and it is found that the 

BER performance is dominated by the channel estimation error instead of SNR in the 

high SNR region. When the diagonal entries of the channel estimation error covariance 

matrix is much larger than the noise power, the BER performance exhibits slight 

saturation in the high SNR region. 
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Figure 4.3: Average BER performances of Q-OSTBC with power loading in the 

channel estimation error case 

 

4.6 Summary 
In Section 4.1, we introduce the closed-form formula toward the upper bound of 

mean BER averaged with respect to the channel distribution. Because the diagonal 

entries of the upper triangular matrix are related to the channel determinant, we find 

the bound of the channel determinant in Section 4.2. Then, we exploit the bound of the 

channel determinant to derive the upper bound of average BER. The upper bound is 

written as a quadratic form, so we can evaluate the upper bound of the mean BER with 

respect to the channel distribution and obtain the corresponding closed-form formula. 

Considering perfect channel estimation, we determine our power loading factors by 

minimizing the corresponding closed-form formula. Furthermore, we consider 

imperfect channel estimation and derive the upper bound of the mean BER averaged 



 

 - 79 - 

with respect to the channel distribution in closed-form. By minimizing this upper 

bound, we obtain the power loading factors. We compare the simulated average BER 

of the following receivers: linear MMSE equalizer, QR-based detectors with and 

without power loading, and the joint ML decoding. In Figure 4.2, we can see that when 

the QR-based solution is combined with the proposed optimal power loading scheme, 

performance improvement up to about 2dB is achieved in the medium-to-high SNR 

region, in particular, and the BER is almost identical to that attained by the optimal ML 

decoding for SNR above 22.5 dB. 
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Chapter 5  
 
Conclusion 

 
 In this thesis, we consider the transmission of the ABBA code over i.i.d. Rayleigh 

fading channels, and propose a symbol power allocation scheme for minimizing the 

average BER performance. In order to achieve a bit-error-rate (BER) performance 

compromise between linear equalization and joint maximum likelihood (ML) decoding, 

we propose to adopt QR-based successive detection with proper symbol power 

allocation. In Chapter 2, we introduce OSTBC and Q-OSTBC; their corresponding 

decoding methods are introduced. The QR decomposition of the channel matrix for the 

ABBA code is derived in Section 2.3.2. By exploiting a distinctive channel matrix 

structure induced by the ABBA code, we derive an explicit formula of the associated 

QR-decomposition. Then, we detect the received signals with QR-based successive 

detection. In Chapter 3, it is shown that the average BER with errorless front-layer 

decision feedback, although being merely a lower bound of the true mean error rate, 

remains simple to characterize and, moreover, is closely related to an upper bound of 

the block error probability when error-propagation occurs [10]. Motivated by this fact 

and to guarantee a performance improvement, the optimal power allocation schemes 

are introduced under a fixed channel realization without considering error propagation. 

Then, considering the case that when error propagation occurs, the corresponding 
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method is presented. The simulations show that the performance is improved by 

allocating transmit power via the minimum BER criterion. 

In Chapter 4, the overall mean BER averaged with respect to the channel 

distribution is introduced first and the bound is derived for the channel determinant in 

Section 4.2. The exploitation of a symmetric channel matrix structure unique to the 

ABBA code leads to a closed-form upper bound of the overall mean BER (averaged 

over the channel distribution). The optimal power allocation factors obtained by 

minimizing this bound thus guarantee a universal performance regardless of the 

instantaneous channel characteristics. That is, we propose to determine the power 

loading weights toward minimizing the overall mean BER, averaged with respect to 

the channel distribution. Simulation results confirm the effectiveness of the proposed 

solution: the achievable BER result is almost identical to that of joint ML detection 

when SNR is high. 

 The study presented in the thesis has discussed a power allocation scheme by 

minimizing the average BER in the error propagation free case. In particular, we derive 

the upper bound of the mean BER averaged with respect to the channel distribution in 

closed-form. Instead of considering the channel realization, we only require to know 

SNR, the channel covariance matrix, and the estimation error covariance matrix. No 

error propagation is considered in the above discussions. We then take error 

propagation into account and derive the corresponding mean BER formula averaged 

with respect to the channel distribution. Considering error propagation, the 

multiplication of two Q-functions problem occurs. However, it is not easy for us to 

deal with the multiplication of two Q-functions problem averaged with respect to the 

channel distribution. The derivation of the corresponding upper bound is thus a 

problem worthy of investigation in the future. 
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