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Abstract

It is well known that transmit divetsity is a popular technique in modern wireless
communication. In this thesis,"we focus on one of quasi-orthogonal space-time block
codes with full rate (the so-called ABBAIcode). By exploiting a distinctive channel
matrix structure induced by the ABBA code, we derive an explicit formula of the
associated QR-decomposition. We propose a minimal BER power allocation scheme
for the ABBA code over i.1.d. Rayleigh fading channels under the QR-based successive
detection framework. Under a fixed channel realization, we propose optimal power
allocation schemes depending on whether or not inter-layer error propagation is taken
into account first. Instead of relying on BER under a fixed channel realization, the
design criterion adopted by us is the overall mean BER averaged with respect to the
channel distribution. Without inter-layer error propagation, we derive an upper bound
of the average BER. The closed-form formula is obtained by averaging the upper
bound of mean BER with respect to the channel distribution. We then minimize the
closed-form formula and an optimal power allocation scheme is obtained. Numerical
simulation shows that the resultant performance is almost identical to that of the joint

maximum-likelihood decoding in the medium-high SNR region.
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Chapter 1

Introduction

Orthogonal space-time block codes (OSTBC) with full-rate and full-diversity for
complex-valued constellations is well-known to exist only when the number of the
transmit antennas is two [1]. Manysalternative generalizations capable of boosting date
rate at the expense of signal orthogonality have since been proposed, see [2], [3] for
detailed literature survey. Among these the quasizorthogonal space-time block code
(Q-OSTBC) family [4], [5], originally tailored for the case with four transmit antennas,
is one simple yet effective solution. With the Alamouti’s codeword matrix [6] as the
building block, Q-OSTBC shows great code construction flexibility for antenna arrays
with more than four elements [4]. There have been many different forms for Q-OSTBC
[4], [5]; all of them share a group-decoupled low-complexity decoding facility, and
will result in comparable error rate performances [7].

This paper addresses the signal detection problem of a particular Q-OSTBC
transmission introduced by [5], which is also termed as the ABBA scheme, over i.i.d.
Rayleigh fading channels. In order to realize a bit-error-rate (BER) performance
balance between linear equalization and joint maximum likelihood (ML) decoding, we
propose to adopt QR-based successive detection with appropriate symbol power

allocation. There have been many plausible performance measures for successive

-1-



signal recovery [8]-[11], depending on whether or not inter-layer error propagation is
taken into account. The average BER with errorless front-layer decision feedback,
although being merely a lower bound of the true mean error rate, remains simple to
characterize and, moreover, is closely related to an upper bound of the block error
probability when error-propagation occurs [10]: it thus serves as an efficient and
meaningful performance metric accounting for the actual error rate outcome.

Motivated by this fact and to also guarantee a performance improvement regardless of

the instantaneous channel conditions, we propose to determine the power loading

weights toward minimizing the overall such mean BER, averaged with respect to the
channel distribution. Specific contributions of this paper include:

1. By exploiting a distinctive channel matrix structure induced by the ABBA code,
we derive an explicit formula of the assoeiated QR-decomposition.

2. With the established analytic QR 'solution'and further leveraging the channel
matrix structure, we then derive.a.closed-form upper bound for the considered
BER metric.

3. By minimizing this upper bound the proposed optimal power allocation scheme is
obtained through numerical search.

We note that performance enhancement of QR-based receiver via symbol power
loading has been addressed in many previous works [8]-[13], almost all of them which
are based on error rate criteria under a given channel realization known to the
transmitter. Our solution strategy, on the other hand, is grounded on BER averaged
over the channel distribution; it is thus universal (independent of the instantaneous
channel state information) and does not call for any feedback message from the
receiver. A similar design paradigm is also considered in [9] for general MIMO
flat-fading channels; the criterion therein is instead via minimal average block error

probability.



This thesis is organized as follows. In Chapter 2, the overview of space-time
block coded system is introduced and the system model of the ABBA code is built.
Moreover, the conventional decoding methods are also introduced here. In Chapter 3,
under a fixed channel realization known to the transmitter, we design the transmit
power allocation algorithms for minimum BER in a quasi-orthogonal dpace-time block
code for the error propagation free and error propagation cases. In Chapter 4, the
problem statement is formulated. The main result are presented and the numerical
performance of the proposed scheme is illustrated. Finally, we conclude this thesis and

propose some potential future works in Chapter 5.



Chapter 2

System Model of Quasi-Orthogonal
Space-Time Block Codes

This chapter presents the overview of space-time block coded systems and
quasi-orthogonal space-tome block codes (Q-OSTBC) will be introduced. Q-OSTBC
can provide full rate but sacrifice.their diversity. We focus on the ABBA code that is
one of Q-OSTBC and discuss its ¢onventional decoding methods and then extend the
ABBA code to Alamouti scheme based multi-group systems. Afterwards, we will
review the QR decomposition and introduce the QR decomposition of Alamouti
scheme based on multi-group systems. The result of QR decomposition for Alamouti
scheme based multi-group systems has a special structure. The received symbols are
detected by exploiting this special structure and its performances are compared with
conventional decoding methods. In addition, we find that diagonal entries of the upper
triangular matrix under QR decomposition are associated with the entries of the
Alamouti scheme based multi-group channel matrix. They can be written in terms of
determinants of Alamouti scheme based multi-group channel matrix and its partitioned
matrices. They are helpful for us to analyze the Alamouti scheme based multi-group

systems.



2.1 Review of Space-Time Block Codes

In modern wireless communications, transmit diversity has been popular
technique over fading channels especially when the power constraint and bandwidth
efficiency are the major concerns. Sometimes, multiple antennas at the receiver may be
often impractical. Therefore, this leads us to the use of multiple transmit antennas.
Here, we only concentrate on one attractive approach to transmit diversity which is
space-time coding (STC). Space-time coding introduces temporal and spatial
correlations into signals transmitted from different antennas, so as to provide diversity
at the receiver or coding gain without sacrificing the bandwidth. The concept of
space-time coding was proposed by Tarokh, Seshadri and Calderbank first. This code is
called space-time trellis codes. It can ,provide diversity gain but its decoding
complexity grows with the number of'antennas, In the issue of decoding complexity,
the concept of space-time block codes was proposed by Tarokh, Jafarkhani and
Calderbank [1]. The space-time block code-matrices are orthogonal matrices and can
provide full diversity gain. It is noted ‘that full diversity gain is equal to the number of
transmit antennas. It is convenient for us that a simple maximum-likelihood decoding
algorithm is used at the receiver. A simple and famous space-time block codes is called
Alamouti code [6] that can provide full rate and full diversity gain with two transmit
antennas. In this section, we first review Alamouti scheme and Q-OSTBC, including

their encoding and decoding methods.

2.1.1 Alamouti Space-Time Code

In the Alamouti space-time encoder, we assume that an M-ary modulation scheme

is used and each group of m information bits is first modulated, where m =log, M .

The input symbols to the space-time encoder are divided into groups of two symbols in

-5-



each encoding operation. At a given symbol period, the two symbols in each group

{xl ,xz} are transmitted simultaneously from the two antennas. The signal transmitted

from antenna 1 is x, and the signal transmitter from antenna 2 is x,. In the next

symbol period, the signal x, is transmitted from antenna 1 and the signal —x, is
. T * H .
transmitted from antenna 2. Denote by (.), () , and (.) , respectively the

transpose, complex conjugate, and Hermitian operations. Two modulated symbols x;
and x, are encoded and mapped to the transmit antennas according to a code matrix

given by

X{xl xi}. 2.1
Xy =X
The code matrix X is transmitted via the’two transmit antennas and the transmit
power must be normalized. Note that the rate of the Alamouti code is equal to one.

Let us denote the transmit sequences from antennas 1 and 2 by x' and x?,
and they are given by x' :[xl xﬂ and x> =[x2 —xik ], respectively. The key
feature of the Alamouti scheme is that the transmit sequences from the two transmit

1

antennas are orthogonal, since the inner product of the sequences x and x° s zero,

1e.
H * %
Xl (Xz) = XXy —Xp X = 0. (22)
The code matrix has the following property (orthogonal matrix)

_|n "+ |l 0

XX = (0 +]af 1 (2.3)

2 2|
0 | +[xs |
where I, isa 2x2 identity matrix.
Let A (¢) and h,(¢) be the fading channel coefficients from the first and second

transmit antennas to the receiver antenna respectively and they are constant over two



consecutive symbol periods. The real part and imaginary part of channel coefficients
have the same variance 0.5. Assuming that there is only one receive antenna used at
the receiver, we denote the received data over two consecutive symbol periods as y,

and y,. The received signals are expressed as

{yl}{xl xz*}{hl}{nl}, 2.4)
Y2 X —x | )

where the noise samples n; and n, are independent complex Gaussian random
variables with zero mean. They represent additive Gaussian samples at time ¢ and
t+T, respectively. The real part and imaginary part of noise have the same variance
ny /(2SNR) . The average energy of the symbols transmitted from each transmit
antenna is normalized to be one. It is clear that the average power of the received

signal at each receive antenna is. sy . Then, we arrange the received signals and have

h h n
ﬁ}:{ b i}{ﬂ{ i}—)y=Hx+n. 2.5)
»2 =hy % )

The block diagram that includes meodulator, serial to parallel structure and
Alamouti encoder is shown in Figure 2.1. The data stream is demultiplexed into two

substreams which are converted from serial to parallel and mapped to Alamouti

encoder.
A7 hl
Alamouti ! | y(k)
x(k) x (k)
[ 2] A 4
Modulator — S/P | ! h, Receiver x(k)

— l:xl —x;] Y
2
* Y
X X

Figure 2.1: A block diagram of the Alamouti space-time coded system

for two transmit antennas and single receive antenna



2.1.2 OSTBC for Real and Complex Signal

Constellations

It is well known that the key feature of the Alamouti scheme is orthogonal
between the sequences generated by the two transmit antennas. This scheme was
generalized to more than two transmit antennas by applying the theory of orthogonal
designs. The generalized schemes are referred to as space-time block codes (STBC) [1].
To design space-time block codes that provide the properties of the Alamouti code for
more than two transmit antennas, let us assume that the signal constellations consists of
2™ points. A block of km information bits are mapped into the signal constellation
to select k& modulated signals x;, x,,..., x;, where each group of m bits selects a
constellation signal. The space-time block eéncoder encodes the & modulated signals
to generate ny parallel signal sequences: of length p according to the transmission
matrix X. These sequences are transmitted through 7, antennas in p transmission
symbol periods. The /th row of X "is regarded-as a space-time symbol transmitted at
time / and the nth column of X is regarded as a space-time symbol transmitted
from n th transmit antenna. In other words, there are p space-time symbols
transmitted from each antennas for each block of & input symbols.

The rate of a space-time block code is defined as the ratio between the number of
modulated symbols and the number of space-time coded symbols transmitted from

each antenna. It is expressed as
R=—. (2.6)
P
The spectral efficiency of the space-time block code is given by

R km
p=1 =510 I bz, (2.7)
B T p

where 7, and 7, are the bit and symbol rate, respectively, and B is the bandwidth.



In order to achieve the full transmit diversity of ny, the transmission matrix X 1is

constructed such that
XX = (0 ol et )1, (2.8)

Due to the code orthogonality, the decoding preserves linear processing structure
introduced later. The space-time block codes can be divided into space-time block
codes with real signals and complex signals based on the type of the signal
constellations. It is well-known that Tarokh’s orthogonal designs are based on
Radon-Hurwitz Theorem. Tarokh showed that the full rate OSTBC exist for some
restricted antenna/modulation configurations. For any arbitrary real signal constellation,
such as M-ASK, space-time block codes exist for any number of transmit antennas.
These codes are full rate (R =1) and offer the full transmit diversity of ny. It is
obvious that the number of symbols ithe encoder takes as its input is equal to the
number of transmission symbol periods required to-transmit these symbols. Therefore,
these schemes don’t require bandwidth expansion. For R =1, OSTBC for complex
constellations exists only for two transmit”antennas. This is famous scheme that is
called “Alamouti scheme”. In other words, the Alamouti scheme is unique in the sense
that it is the only space-time block code that provides the full diversity without loss of
transmission rate for complex signal constellations. It has been proved that a complex
orthogonal design and the corresponding space-time block code which provides the
full diversity and full transmission rate is not possible for more than two antennas.

For any complex signal constellation, there are space-time block codes that can
achieve arate of 1/2 for any given number of transmit antennas. We show Figure 2.2
as the block diagram of the OSTBC transmitter for four transmit antennas and one
receive antenna. The data stream is demultiplexed into four substreams which are

converted from serial to parallel and mapped in the OSTBC encoder.



Space-Time Encoder hl

. osTBC v x! (k)
x(k) 0] |k
— 2% x* (k) Y
Modulator —» S/P . v hy Receiver X(k)
— L |7 S y(k)
L J 4
(2.9) < (k)

Figure 2.2: A block diagram of the orthogonal space-time block coded system

for four transmit antennas and single receive antenna

For four transmit antennas, there are four symbols transmitted and the OSTBC

matrix is given by

C * # * *
Xy = 2.9
4 xl x2 x3 X4 D ( )
* * * *
—X X —X X
2 1 4 3
* * * *
—X X X —X
3 4 1 2
* * * *
—X —X X X
4 3 2 1

where it is obvious that the inner product of any two columns of these matrices is zero.
At the receiver, we obtain received signals and write them in terms of matrix. The

system model is given by
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- - X1 %) X3 X4 -
b m
—XQ .xl —X4 X3
3 %) )
—X3 X4 xl —XQ h
3 1 n3
—X4 —.X3 .XQ xl h
y4 * * * * 2 I’l4
=] X, X, XX + . (2.10)
Vs hy ns
* * * *
Yo X T Xy ng
* * * *
V7 —X X X -X n;
3 4 1 2
Vs * * * * ng
T —X —X X X -
L T4 3 2 1

N o by hy m
Y2 hy b by —h m
Y3 hy —hy —h  hy x| 3
Y4 hy —hy o —hy X N4
y; = hl* h; h; hz N + n; —>y=Hx+n. (2.11)

Yo hy =Wy hy =l (| X ng

* * * * * *
7 by <hy =l h n7
Vs hy hy  Shy=h g

Now, we have the system:model and channel matrix of OSTBC. The channel
matrix of OSTBC preserves the property that the inner product of any two columns of
channel matrix is zero. Then, this characteristic is exploited to discuss their decoding
algorithms in the next section. We can see the advantage of the orthogonality of

OSTBC and simplify the decoding process.

2.1.3 Decoding of OSTBC

The decoding algorithm of space-time block codes is introduced now. Assuming

that the channel coefficients 7, ,,(¢) are constant over p symbol time slots and the

maximum likelihood decoding is used at the receiver. For simplicity, the decoding

algorithm of Alamouti scheme is considered first. If the channel fading coefficients can

-11 -



be perfectly known to the receiver, the decoder will use them as the channel state
information (CSI). Assuming that all the signals in the modulation constellation are
equiprobable, a maximum likelihood decoding chooses possible values from the signal

modulation constellation to maximize

2
nR

393

m=1t=1

nr
YVeom — Z hn,m (t)xt,n (212)

n=l

where ny and np represent the number of transmit antenna and receive antenna,

respectively. After some manipulations, a simple form for the Alamouti scheme can be

obtained. The maximum likelihood decoding chooses a pair of ()7:1,)?2) signal from

the signal modulation constellation to minimize the distance metric
2 - - 2 ¥ ~*
d” (v, X + hXp) +d°(vy, X — X))
(2.13)
‘- ~ |2 % %
= |y1 - hlxl - th2| gt ‘yz 3 h1x2 + hle
Due to the orthogonality-from each of the antennas, we can exploit this important

property to translate the maxirum ikelihood decoding into maximum ratio combining

directly. The new decision statistics areconstructed and can be given by
§7=HHy=HH(Hx+n):(|h1|2+|h2|2)x+ﬁ. (2.14)
It is clear that a two-dimensional minimization problem can be decoupled into

two one-dimensional problems

2 2
P —(|h1 2 +|n, |2))z1 (2.15)

- . - s 2 2\ -

X| = argmin , X, =argmin|y, —(|h1| +|h2| )x2
X] X

It is also obvious that each symbol is decoded separately using only linear processing.

We apply the decoding process of the Alamouti scheme to the decoding process of

space-time block codes. The case for four transmit antennas and one receive antenna is

considered. The structure of maximum likelihood decoding is studied and the new

decision statistics is constructed. The new decision statistics can be given by
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§ =0Ty =17 Wxen) = (| ol i 4 )xei @16
A four-dimensional minimization problem can be decoupled into four

one-dimensional problems as well
P
X, = arg m1n ,

,_

[+ i+ | [ + |y

X2

| s
~ . 2 2
% =argmin| (" + il +linf )]
3 s

%, =argmin| 7y [+ ||+ i+ ) 55|
3
2
&y = argmin| 9, — (|1 + o + [+ )] 2.17)
4

It is emphasized that the space-time block codes provide two important properties
»  Simple decoding : Each symbol is decoded separately by using linear processing.
» Diversity gain : The codes satisfy the rank criterion and provide the maximum

possible diversity.

However, we know that *full rate” orthogonal designs with complex modulated
symbols in its transmission matrix are impossible for more than two transmit antennas
as discussed in Section 2.1.2. Sometimes, the transmission rate (spectral efficiency) is
expected to be raised. Therefore, the concept of Q-OSTBC introduced in the next

section resulted.

2.2 Quasi-Orthogonal Space-Time Block Codes

The main properties of an orthogonal design are simple separate decoding and full
diversity. In order to design full-rate codes, the simple separate decoding property is
relaxed. In Q-OSTBC, the transmission matrix columns are divided into groups. When
columns in each group are not orthogonal to each other, different groups are orthogonal
to each other. The application of a structure is to design codes which have higher

transmission rates while sacrificing the full diversity. We will focus on the rate one
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code which is quasi-orthogonal and provides partial diversity. In particular, Q-OSTBC
for four transmit antennas and single receive antenna are introduced and its decoding
algorithms are compared with the maximum likelihood decoding. The simplest form of
this code can be expressed in terms of four copies of the Alamouti scheme. Here, we

focus on the ABBA code proposed by Tirkkonen.

2.2.1 The ABBA Code

It is well-known that Tirkkonen proposed a full rate space-time block code for
four transmit antennas that had partial diversity [5]. In order to measure the
non-orthogonality, Tirkkonen defined the ratio of the squared magnitude of the
off-diagonal entries to the squared magnitude of the diagonal entries in the Hermitian
square of the code matrix.."The exXpectation’. value is taken over all symbol

constellations of the ratio of the ‘'squared Frobenius.norms of the off-diagonal N and
the diagonal value Z?:1|xi|2 . Fhe ratio is given by

” ” 2
1 N
~no = 2

b (2.18)
4 Z?:l|x,- |2

Tirkkonen tried to minimize the ratio by choosing the appropriate code. The minimal

value of g, for a four by four block code of the form is 0.25. In the simplest form
of the minimal non-orthogonality code, we consider a wireless link, with four transmit
antennas and single receive antenna, which adopts the Q-OSTBC transmission [5].

Four transmitted symbols from the four transmit antennas are given by

_xl Xy X3 X4 1
Xy —X] X4 —X3 (2 1 9)

X3 Xy X Xy
* *

X;; _x; X9 —X]
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It is obvious that it has two copies of the 2x2 Alamouti block code with symbols x;,

x, on the block diagonal, and two copies of the Alamouti code with symbols x;, x4

on the block anti-diagonal. The scheme is called “ABBA” and can be expressed as

A B 2.20
B Al (2.20)

Multiplying the Hermitian of the ABBA code matrix with the ABBA code matrix, the

result is given by

— _H_ —_

xl x2 X3 X4 xl x2 X3 X4
* * * * * * % %
Xy =X X4 —.X3 Xy =X X4 —X3
X3 Xyg X1 Xy X3 X4 X1 Xy
* * * * * * * *
_)C4 —X3 Xy X A _X4_ —X3 Xy —X] ] (221)
0 01 O
2 2 2 2 * «10 0 0 1
:(|h1| +|h2| +|h3| +|h4| )14 +2Re[xl.X3 +XZX4] .
1 0 0 O
01 0O

It is emphasized that the non-orthogonality of the ABBA code is shown as follows
0 0

N = 2 Re[Xjay+aaxy | (2.22)

1 0

0 0 1
1 00 Of

01 00
From the above equation, it is obvious that the interferences exist between symbols x;,
x; and x,, x4; the encoding of the ABBA code is very similar to the encoding of

OSTBC. Therefore, we show Figure 2.3 as the block diagram of the ABBA code and

introduce its decoding in the next section.
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x(k)

Modulator —»

S/P

Space-Time Encoder hl

» Q-OSTBC v x' (k)
[xl Xy X3 Xy h2

| 2

— [ [xl —x;} X (k;l
n x| ¥ 3

—|_> 2 1* X3 (k}’
ek

SO (k)

A 4
Receiver x(k)

y(k)

Figure 2.3: A block diagram of the quasi-orthogonal space-time block coded system

for four transmit antennas and single receive antenna

2.2.2 Least Minimal Mean Square Estimate (LMMSE)

The decoding of the ABBA code is introduced and compared with the maximum

likelihood decoding. Under flat fading channel assumption, the temporal received

signal vector is given by

N
2
Y3
V4

MU A X ey
* * * *
Xy i Xy Xq . TX3 hz
X3 X4 xl x2 h3
* * * * h
_X4 —X3 X2 —xl ] 4
h

(2.23)

where y;, and n; are, respectively, the ith received signal and the corresponding

noise component, and /; is the channel gain between the ith transmit antenna and the

receive antenna. The signal model (2.23) can be further rearranged into

where the channel matrix is

N o o b hy [y m
l_|m W ks b |x | |
il |k ks b k|| 3
val L= bk w3 |

expressed as

-16 -
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[ h] hz /13 /74
H=| 2 0 B (2.25)
]13 h4 hl h2

[~hy by~ b

The following assumptions are made in the sequel:
1. The channel h isi.i.d. zero-mean complex white Gaussian with covariance I

2. Thenoise n is i.i.d. zero-mean complex white Gaussian with covariance Nyl

Now, we process the channel with the Hermitian conjugate of the channel matrix

and obtain
_yl ] xl
* 4 . x
H |’ |- (z|h,. P+ Nj * |+noise, (2.26)
V3 i=1 X3
v ] X4

where the non-vanishing correlation matrix ‘N that is similar to (2.22) is given by

0.0 1 0
N =2Re[hih, +hyhy ] s ool (2.27)
1 000
01 00

In the non-vanishing correlation matrix N, the non-diagonal entries show the

non-orthogonality and the corresponding decorrelating matrix is shown as:

1 0 —-a O
1 0 1 0 -a
D- , (2.28)
1—-g?|-a 0 1 0
0 —-a O 1

‘" Wby +hyhy + hihs + hyhy +b
where we select different values of b for different estimates of the symbols.
Compared the least minimal mean squares estimate with the maximum likelihood
decoding, the decision metric is in the form (2.12) if perfect channel state information

is available. The maximum likelihood decision metric can be calculated as the sum of
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two terms  fi3(x,x3) + fo4(xp,x4), where fi3(x;,x3) 1s independent of x, and x,
and f54(x,,x4) is independent of x; and x;. Minimizing fi3(x,x3) + fo4(x5,X4)
is equivalent to minimizing fi3(x;,x3) and f54(x,,x4), respectively. After some

manipulations, fj3(x;,x3) and f54(x,,x,) are given by

4
Ji3(x,x3) = (Z|hi|2](|xl |2 +|x3|2)
i=1
+2 Re{(—hlyf ~hyyy = hsys = hyya )3+ (<hsyy — vy — s = By, )X3} (2.30)

+4Re (I A+l |Re (x5 ).

4
_Zi|hi|2J(|x2|2 +|x4|2)

1=

J2a(x1,3) =[
F2Re{(<y i + B vy = hyys + v )3+ (ke + vy —hoyi v )xg) (231)
+4 Re(hlh;k + hzhz )Re(x2xz )

From (2.30) and (2.31), it is obvious that the decoding of f;5(x;,x3) and f54(xy,x4)
is more complicated than the: maximum-likelihood decoding of OSTBC because we
must have decoding pairs for the ABBA-code. If Re(xlx; )=0 and Re(xzxz) =0, the
decoding equations can be simplified, the symbols x;, x,, x;, x, can be detected
separately. For instance, when x; and x, are real numbers while x; and x, are
imaginary numbers, it is possible for Re(xlx_i:) = Re(xzxj;) =0. It is well known that

iterative methods may be used to improve the performance in multiuse interference
cancellation but it brings to higher complexity. We avoid adopting these methods here.
There are some examples of Q-OSTBC which have similar properties with the

ABBA code. A common example proposed by Jafarkhani is

A B 2.32
ol (2:32)

where () denotes the complex conjugate of the matrix. Other examples with similar
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behaviors are shown as

A B A B A B
. x| , and : (2.33)
B -A -B A B -A
It is easily seen that the main idea of any similar structures for Q-OSTBC can be
factorized as four Alamouti schemes. In Section 2.5, the performances of the ABBA
code and Jafarkhani code are obtained and they are almost the same. Further, these
examples for a rate one code with four transmit antennas are extended into other

structures different rates and different number of transmit antennas. For example, a rate

3/4 code with eight transmit antennas is given by

X X X3 0 x4 x5 X 0
—x; xik 0 -x3 x5 —xZ 0 x
x; 0 —x; —X, —x; 0 xZ X5

0 —x; x; =l e A xz —x;k X4

(2.34)
—X4 X5 BXe 05 x Sxy x5 0
—xz xz @ S —x; xl* 0 x3
xz 0 —xz X x; 0 —xf Xy
| 0 xZ —x; =x4 0 x; —x; X |

Then C; is defined as the ith column. The inner products with these columns are

given by
(C,C;)=0,i#5 (C,,C;)=0,i#6
(C3,C;)=0,i#7 (C4,C;)=0,i#8 ) 35
(C5,C;)=0,i%1 (C4,C;)=0,i%2 (23
(C;,C;)=0,i#3 (Cg,C;)=0,i#4

The decorrelating matrix for non-vanishing correlation entries is designed similar
to (2.28). Compared it with the maximum likelihood decoding, the ML decision metric
can be calculated as the sum of fi4(x1,X4) + f55(X5,Xx5) + f36(X3,X¢) . It is known that
to increase the rate is to sacrifice the orthogonality. This is a conflict, but we can select

a proper rate for given transmit antennas to obtain the required performance.
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2.2.3 Alamouti Scheme Based Multi-Group Systems

In this section, the general form for Q-OSTBC with four transmit antennas is

found. Without loss of generality, we can write these structures as

A B 2.36
C D/ (2.36)

where A, B, C,and D are Alamouti schemes individually. This structure is called
“Alamouti scheme based on multi-group systems” by us. From Equation (2.23)-(2.25),
the similar channel matrix can be obtained as follows

hl 1 hl 2 hl 3 hl 4
_hl 2 hl 1 _h14 hl 3
h3l h32 h33 h34

__h32 h31 _h34 h33_

, (2.37)

where £, represents the fading channel coefficient for the nth transmit antenna and
mth transmission symbol slot- [f. A and B are not related to C and D, it is seen
that the rate is two because the meaningful ‘eight symbols transmitted at four
transmission symbol slots and this structure is modeled as the framework with four
transmit antennas and two receive antennas. In the concept of multiusers, this structure
can be imagined that two users have single receive antenna respectively and the base
station have four transmit antennas. The different Alamouti schemes are transmitted at
the first two symbol time slots and the last two symbol time slots. It is why this
structure is called “Alamouti scheme based on multi-group systems”. If C and D
are dependent on B and A, the rate is one because there are only the meaningful
four symbols transmitted at four transmission symbol slots. For example, the form with
C=-B" and D=A" which is proposed by Jafarkhani is one of Q-OSTBC. In the
next section, the QR decomposition is exploited to the channel matrix of Alamouti

scheme based on multi-group systems.

-20 -



2.3 QR Decomposition of Channel Matrix

First of all, the QR decomposition of Alamouti scheme based on multi-group
systems is introduced. The result of QR decomposition for Alamouti scheme based
multi-group systems has a special structure. The special structure is exploited to detect
the received symbols and the performance is compared with the methods introduced in
Section 2.2.2. In addition, the diagonal entries of the upper triangular matrix under QR
decomposition are found that they are associated with the entries of the Alamouti
scheme based multi-group channels and can be written in terms of determinants of

Alamouti scheme based multi-group channels and its partitioned matrices.

2.3.1 Review of QR Decompeosition

QR decomposition is one’of the well-known decompositions. It is noted that it can
be derived from the Gram-Schmidt jalgorithm straightforwardly. It is well known that
the formulation of Gram-Schmidt procedure isto find an orthonormal basis for the
space spanned by the original linearly independent basis. The Gram-Schmidt process
frequently appears in the matrix form. It is equivalent to QR decomposition. Let us
show the lemma of QR decomposition and apply it to Alamouti scheme based
multi-group systems.

Lemma 2.1: Every matrix H,,, with linearly independent columns can be uniquely

n

factored as H=QR in which the columns of Q are an orthogonal basis for

mxn

R(H) and R,,, isan upper-triangular matrix with positive diagonal entries.

Based on Lemma 2.1, the QR decomposition is applied to the Alamouti scheme based

multi-group channel matrices. The process is presented in the next section.
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2.3.2 Channel Matrix Under QR Decomposition

The properties of Alamouti scheme is introduced first. It is important for us to
derive the QR composition of Alamouti scheme based multi-group systems. Therefore,
the fundamental properties are listed as follows
»  The sum of two Alamouti matrices is another Alamouti matrix.

»  The product of two Alamouti matrices is another Alamouti matrix.

»  The inverse of an Alamouti matrix is another Alamouti matrix.

It is easy to derive the above results and the proofs of them are ignored. From above
properties, it is obvious that the Alamouti structure for block matrices is preserved if
the matrix operation is used. We arrange them and show Lemma 2.2 and Lemma 2.3.
[14].

Lemma 2.2: For a square matrix H it *is constructed by 2x2 Alamouti

nxn 2

sub-blocks. The inverse of H,,, 1s also-Constructed by 2x2 Alamouti sub-blocks.

n

That is, it is a block matrix with . 2x 2 Alamouti sub-blocks.

We give the following example in order to explain the above lemma. Consider a matrix

H,,, (2.37) with four sub-blocks and it is given by

H H
H=| ! 2, (2.38)
H; H,

where H;, H,, H;,and H, areall 2x2 Alamouti schemes, e.g.,

h h h h
Hl :( 1>1k 1*2],31'1(1 H2 :( li 1*4J9
_h12 hll _h14 h13

hy  h hy  h
H3=( ! 3*2],and H4=( > ff‘J. (2.39)

Under some manipulations, all the sub-blocks in H! are also 2x2 Alamouti

and
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schemes by using the fundamental properties of the Alamouti matrix. Therefore, we
can see that the inverse of the Alamouti scheme based multi-group channel matrix has

the same structure.

Lemma 2.3: For a square matrix H it is constructed by 2x2 Alamouti

nxn *

sub-blocks. It is noted that R(H) =n. Assume H, , 1is factored as H =QR, where

n

the columns of Q,,, are an orthogonal basis and Q,,, is a square unitary matrix.

R is an upper-triangular matrix with positive diagonal entries. Then, Q is also

nxn nxn

constructed by 2x2 Alamouti sub-blocks. R,,, has a special structure that is a
block matrix with multiples of I, along its diagonal and with 2x2 Alamouti

sub-blocks in its upper triangular part. For instance,

hll hlZ h13 hl4
S et~y B

H= 12 11 14 13 (2.40)
h31 h32 h33 h34

Iy, Ay “hyy b

The result under QR decomposition is expressed as

a4 @3 G| Ry 0 R3 Ry
Q- 2 o T4 D 4 R- 0 Ry -Ry Ry (2.41)
931 4932 933 934 0 0 R; O
=932 931 —93s 933 0 0 0 Ry

where all 2x2 sub-blocks are Alamouti. It is important for us to emphasize that
Ry =Ry and R3y =Ryy.

In [14], we follow the proof and revise the error.
Proof:

First, let us define the Hermitian of the channel matrix as follows:

H =

HY HY def([H. H
o2 :{ > 6] (2.42)

H? u” H; Hy
3 4
The following two observations are introduced. They are useful to complete this Proof.
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A unitary matrix Q; with 2x2 Alamouti sub-blocks is shown by

1 Hy' —Hg
Q =F—= ;
lon, +ay, Hg H6_1H5H6

and it satisfies that

HY -H
[HS H6] 1 { 5 6

A unitary matrix Q, with 2x2 Alamouti sub-blocks is shown by

I 0
@= HY' / Jay, |

and it satisfies that

} =[y1, 0]. (2.43)

I, 0

[H, Hg]lo 0] aH}—[m @12] (2.44)

where aHS :|h11|2 +|h12|2 5 OlH6 :|hl3|2 +|hl4|2 , aH7 :|h31|2 +|h32|2 , and

ay, = |h33|2 + |h34|2. It is'noted that they ate the determinants of Hs, Hg, H-,
and Hyg, respectively. That is,

ag, =det(Hs), ay =det(Hy), ag, =det(H;), and oy =det(Hg).(2.45)

The error in observation 1 [14, e.q. (9)-(10)] must be revised from

B -
[B C]; ¢ =[‘/aB +acl, 0] to (2.43). We must revise
Jag +ac B

cH
the second diagonal matrix B to C'BC. It is wrong because the product of

matrices is not interchangeable such as BC = CB.

It is assumed that there is a matrix with Alamouti sub-blocks, e.g.,

u | Hs Hg . .
H" = T With observation 1, we select
7 8
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H
Q= M (2.46)
and the first step is given by
{HS Hﬂ | HY —H,
H; Hg| Jay +oy |H{ H'HsHg
(2.47)

7L, 0

1 H AN -1 ;
;(H7H5 +HgH{ ) ;(—H7H6 +HgHg H;H )
where y is a positive constant defined by y = /aHS +ay, - After that, let us define

the matrix Hg =—H;Hg + HgHg'HsH, . The result from the first step is reduced to

rl 0
H, |. 2.48
%(H7H§1 wHHY ) 79 (2.48)

I 0

With observation 2, we select Qy = [ 01 5’/ an.

] and the second step is given

by
7L 0 1, 0 g 0
H =1 H HY |,
l(H7H§1 +HH{) =2 [0 oY/ fay } —(muf +HH{ ) =2
9
y y y 7\jom,
(2.49)

where HoH," = (aH9 )12 = (det(Hy))I,. The result from the second step is reduced

to

(2.50)

The above two processes are arranged as follows
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Hs Hg 1 H? -, ||k 0

{H7 HJM{H? H61H5HJ[0 HY / aﬂj

| b 0 1, 0

%(H7H§1 +H8Hg1) %(—H7H6+H8H81H5H6) [0 Hé{/@}(z.sn

4%’ 0 I, 0
=1 H p\ HoHJ |= \H :
—(H7H5 +HgHg ) (H7H§1 +H8Hg1) 2,
_7 7\[%H, v
, 1 HY —H, I, 0
Let us combine Q=QQ, =—F— . I
Jou, +an, |[H{ H'HsHg || 0 Ho / jam,
7L, 0
and define the lower triangular matrix L = e . The
l(H7H§1’ +HgHY ) Y,
v v

result (2.51) can translated +‘nto H Q=L . We rewirte H’ Q=L as

(HHQ)H—QHH—LH—R d obtai = i
= = = and obtain the final result H =QR equivalently,

where

Q_ 1 H? _H6 12 0 (2 52)
Jdet(Hy) +det(Hy) | HY  H,'HH, || 0 HY /oy, | 7

and
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1
71, o 1" |y, ;(H7H§I +HgH{' )
R= |a =
l(H7H§’ +H8H§) My, ) Jou, |
e e y 2
] .
| (HHY + R )
det(Hs ) + det(H I
_ > 72 [det(Hy) + det(Hy)
JJdet(Hy)
0 2
] Jdet(Hs) +det(Hg) =
- o
| (HmY -+ BgHE )
det(Hs ) + det(H I
_ > 72 Jdet(Hy) + det(Hy)
0 JJdet(Hy)
] Jdet(H) + det(Hg) | (2.53)

The proof is completed and it is easy to check that the matrix Q preserves the
structure of 2x2 Alamouti sub=blocks and the right upper part of the matrix R is
another Alamouti scheme.

It is obvious that the diagonal ‘entries-of-matrix R are related to the determinants
of the partitioned matrices. Because Q is.a unitary matrix, the determinant of Q 1is
equal to one. It is easy to see that the determinant of H is equal to the determinant of
R . Because R is an upper triangular matrix, the determinant of R is equal to the

products of the diagonal entries. Then, we calculate the determinant of R, and have

the following relationship between R and Hy:

2
ag

det(H) = det(R) = (7)* | Y—= | =ay, = det(H,). (2.54)
y
From the definition of (2.42), the relations are obtained as follows:
det(Hs) = det(H{") = det(H, ), det(H) = det(H%' ) = det(H,),
det(H,) = det(H4 ) = det(H;), det(Hg) =det(HY ) =det(H,).  (2.55)

Therefore, the determinants of H;, H,, and H are substituted for the determinant of
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Hs, Hg,and H,, respectively. We rewrite R as

({1, + 1Y H, )
Jdet(H;) + det(H,)

0 JJdet(H)

Jdet(H,) + det(H,) |

Jdet(H,) + det(H,)I,
(2.56)

It is noted that the diagonal entries of matrix R are positive and written in terms of
the determinants of the partitioned matrices. Finally, the above derivation for the
channel matrix of Alamouti scheme based multi-group systems is arranged and some
important properties are listed as follows:

»  The channel matrix of Alamouti scheme based multi-group systems is given by

H= (2.57)
by hyplelny Iy
=3y gy <l has
It can be factorized as
@2 a3 diw|[Ry, O Ry Ry
H=OQR - 12 91 ~%4 G3|| 0 R, —-Ry Rj ‘ (2.58)
G193 B3 B4l 0 0 Ry
_—qu ‘I;I —q§4 q;_ 0 0 0 Rs3
»  The diagonal entries of matrix R is described as
Ry = Ry, = \Jdet(H,) + det(H,) (2.59)
det(H
Ryy = Ryy = () ) (2.60)
det(H,) + det(H,)

where H;, H,, Hj,and H, are 2x2 Alamouti schemes in the form (2.39),

and the determinants of them are given by

2

det(H,) = |hn|2 +|hyy ? det(H,) = |h13|2 +|hy

b

det(Hy) =|hy, [* +|hso|*, det(Hy) = |3 + s (2.61)
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2.4 System Model of the ABBA Code with QR

Based Successive Detection

From the above discussions, considering the simple case such as the ABBA code,

the channel matrix of the ABBA code is given by

where

q1
-4
93

| ~494

| H;y H,
- H, H,
h
i and H,
Iy
D93 Q4_
g1 1=94 43
94 491 49
[0 Lo —

|

Rll

0

0
0

Ry
0
Rs3
0

(2.62)

(2.63)
0
R13

. (2.64)
R33

It is noted that the right upper part of .R __ismot an Alamouti scheme but a multiples of
I, along its diagonal. The diagonal entries of matrix R are described in the same
way. There are only six nonzero entries in the upper triangular matrix R and they are
real number.

Since R is upper triangular, successive symbol detection through canceling the
contributions of the previously detected components can be performed, as in [10], [15].

From Equations (2.24) and (2.64), the received signals are multiplied by unitary matrix

QH and we obtain
) TR, 0 Ry 01 [x] [7]
) 0 R 0 R X n
2 1 B2 2 S5y =Re+i (2.65)
V3 0 0 Ry 0 |lx3| |m
_5}4_ 0 0 0 R33 X4 _ﬁ4_
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where y = QHy and n = QHn. Assuming that the n is also complex Gaussian

distributed with the same variance as n, Equation (2.65) is equally expressed as
h = Iy 1y + Ry3Ts,
Yo = Ry1Ty + R34,
Y3 = Ry33,
Yy = R334 (2.66)

Then, the modified received signals ¢, is created as follows

4 4
j=1+1 j=1+1

Since R is upper triangular, successive symbol detection through canceling the
contributions of previously detected, components can be preformed. That is, the

modified received signals y, are detected from the third and fourth rows and the hard
decisions are made. Then, we substitute.the estimated symbol back into the first and
second row so as to remove the interference tetm and make the hard decisions. The

above procedure is described by the following formulas:

X4 = Quant {;}—4} , X3 =Quant {y_3} ,

33 33

o _p oz - _p oz
X, = Quant {u} and % = Quant [M} (2.68)
Ry Ry

where the function ¢ = Quant[q] sets ¢ to the element of signal constellations that is

closest to ¢ . Assuming that these decisions are correct (z; = Z; ), Equation (2.66) is
simplified into ¢; = R;;z; + 7 ; that is, the detection procedure turn out to be
% =Quant[y;/R;]. It is convenient for us to detect the received signals. The

simulations are provided and compared with the LMMSE decoding and ML decoding.
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2.5 Computer Simulations

In this section, four transmit antennas and single antenna are used in the
transmitter and receiver, respectively. For the transmission rate 2 bits/s/Hz, it is
assumed that the rate one Q-OSTBC with QPSK modulation is used and the channel
fading is flat over four consecutive transmission symbol slots in Q-OSTBC. The fading
channel is i.i.d. complex Gaussian variables with zero mean and half variance per
dimension. Noise is i.i.d. complex Gaussian variables while the real part and imaginary
part of noise are the same variance ny /(2SNR). In Figure 2.4, the simulations for the
ABBA code and the code proposed by Jafarkhani are presented. It is found that their

average BER performances are almost the same.
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Figure 2.4: Average BER performances of the ABBA code and the code proposed by

Jafarkhani
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The simulation for the ABBA code with LMMSE and ML decoding are presented
and compared with the result for OSTBC. For the transmission rate 2 bits/s/Hz, it is
assumed that the rate 1/2 full diversity OSTBC with 16 -QAM modulation is used
and the channel fading is flat over eight consecutive transmission symbol slots in
OSTBC. In Figure 2.5, it is easy to see that the full diversity OSTBC has better
performance than the full rate Q-OSTBC in the high SNR region. On the contrary, the
full rate Q-OSTBC has better performance than the full diversity OSTBC in the low
SNR region. Because the influence on slope of the BER-SNR curve in the high SNR
region is the degree of diversity, it is why the full diversity OSTBC has lower bit error
rate in the high SNR region. The full rate Q-OSTBC uses a lower modulation order, so

the better performance is obtained in the low SNR region.

Cee=0

—— — QOSTBC with ML decoding
———— QOSTBC with LMMSE receiver
———— OSTBC with MRC receiver

Average BER

|
6 ;

SNR

Figure 2.5: Average BER performances of OSTBC and Q-OSTBC
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From the point of view in complexity, it is noted that the decoding complexity of
Q-OSTBC is higher than OSTBC but the encoding complexity of two codes is similar.
Figure 2.6 shows the average BER performance of the ABBA code with
QR-based successive detection compared with the conventional decoding methods.
The performance with QR-based successive detection is almost identical to that with
the LMMSE receiver and the analysis of the average BER in Figure 2.6 is similar to
that in Figure 2.5. It is obvious that we can provide the similar average BER

performance with QR-based successive detection compared with the LMMSE receiver.

OSTBC with MRC receiver
——— QOSTBC with QR receiver
——— QOSTBC with LMMSE receiver
— — QOSTBC with ML decoding

Average BER

'
[}

SNR

Figure 2.6: Average BER performances of OSTBC and Q-OSTBC with different
receivers
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After that, one example for channel matrix of Q-OSTBC is given and its QR
decomposition results are shown in Table 2.1-2.4. The results are used to detect the
received signals and this method is similar to BLAST based on QR decomposition. It
is famous that a vertical Bell Laboratories Layered space-time (V-BLAST) system has
an optimal ordered detection algorithm. In the ABBA code system, we don’t consider
the ordered successive cancellation detection because the permutation behavior at the
transmitter is able to destroy the special structure of the unitary matrix Q and upper
triangular matrix R under QR decomposition. In a special case, from Table 2.5-2.7,
we obtain the same upper triangular matrix R' as R by exchanging the first two
columns and last two columns. In other conditions, the triangular matrix that permutes

its columns will destroy its special structure in (2.65).

Table 2.1: Channel state information

h Iy hy 3 hy

0.4763 + 0.75641

0.1507°= 0.8355i

-0.3749 + 1.3065i1

0.0776 - 1.7238i

Table 2.2: Channel matrix

H of the ABBA code

0.4763 + 0.75641

0.1507 - 0.83551

-0.3749 + 1.30651

0.0776 - 1.72381

-0.1507 - 0.83551

0.4763 - 0.75641

-0.0776 - 1.72381

-0.3749 - 1.30651

-0.3749 + 1.30651

0.0776 - 1.7238i1

0.4763 + 0.75641

0.1507 - 0.83551

-0.0776 - 1.72381

-0.3749 - 1.30651

-0.1507 - 0.83551

0.4763 - 0.75641

Table 2.3: Unitary matrix Q

under QR decomposition

0.1891 + 0.3003i

0.0598 - 0.33171

-0.1488 +0.51871

0.0308 - 0.68431

-0.0598 - 0.33171

0.1891 - 0.30031

-0.0308- 0.68431

-0.1488 - 0.51871

-0.1488 +0.51871

0.0308- 0.68431

0.1891 + 0.3003i

0.0598 - 0.33171

-0.0308- 0.6843i

-0.1488 - 0.51871

-0.0598 - 0.33171

0.1891 - 0.30031
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Table 2.4: Upper triangular matrix R under QR decomposition

R
2.5189 0 1.7958 0
0 2.5189 0 1.7958
0 0 1.7664 0
0 0 0 1.7664
Table 2.5: Channel matrix H' of the ABBA code
HY
-0.3749 + 1.30651 | 0.0776 - 1.72381 | 0.4763 +0.75641 | 0.1507 - 0.83551
-0.0776 - 1.72381 | -0.3749 - 1.30651 | -0.1507 - 0.83551 | 0.4763 - 0.75641
0.4763 +0.75641 | 0.1507 - 0.83551 | -0.3749 +1.30651 | 0.0776 - 1.72381
-0.1507 - 0.83551 | 0.4763 -0.75641 | -0.0776 - 1.72381 | -0.3749 - 1.30651
Table 2.6: Unitary matrix Q' “under QR decomposition
Ql
-0.1488 +0.51871 0:0308=0:684317y 0:1891 +0.3003i | 0.0598 - 0.33171
-0.0308- 0.68431 | -0.1488-0.51871 [+ -0.0598 - 0.3317i | 0.1891 - 0.3003i
0.1891 +0.30031 | 0.0598 - 0.33171 | -0.1488 +0.5187i | 0.0308 - 0.6843i
-0.0598 - 0.33171 | 0.1891 -0.30031 | -0.0308- 0.6843i | -0.1488 - 0.5187i
Table 2.7: Upper triangular matrix R' under QR decomposition
Rl
2.5189 0 1.7958 0
0 2.5189 0 1.7958
0 0 1.7664 0
0 0 0 1.7664
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2.6 Smmary

In wireless communication systems, diversity techniques are widely used to
reduce the effects of multipath fading and improve the reliability of transmission
without increasing the transmitted power or sacrificing the bandwidth. It is well-known
that diversity techniques are classified into time, frequency, and space diversity.
Without increasing the bandwidth and decreasing the transmission rate, it is popular to
make use of space diversity which can be classified into two categories, transmit
diversity and receive diversity. In this chapter, we focus on transmit diversity such as
OSTBC and Q-OSTBC. They can improve the performance by exploiting the structure
of the codes and provide the simple linear decoding methods compared with the
maximum likelihood decoding. It is mentioned that diversity order determines the
slope of BER-SNR curve in the high SNR-tegion. Therefore, the better performance
for OSTBC can be obtained-in"the high- SNR region because OSTBC has the full
diversity gain. With introductionof nen<erthogonality, the better performance is
obtained in the lower SNR region because ‘a lower modulation order is used in the low
SNR region.

Then, the QR decomposition of the ABBA code is introduced in Section 2.3.
Under the result of QR decomposition, the special structure of the upper triangular
matrix is shown in Equation (2.64). It is useful for us to detect the received signals and
provide better performance. Further, the diagonal entries of the upper triangular matrix
are derived and expressed in terms of the determinants of the channel matrix and its
partitioned matrices. Compared the QR-based successive cancellation detector with the
LMMSE and ML receivers, the performance with QR-based successive cancellation
detection is slightly better than that with LMMSE but worse than that with the ML

decoding. This simulation is helpful to confirm our derivation in this chapter. In the
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next chapter, the precoding matrix is exploited to allocate the transmit power and the
average bit error rate is expected to reduce. That is, we focus on the power allocation

scheme by using the special structure with QR-based successive interference

cancellation detection.
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Chapter 3

Transmit Power Allocation for
Minimum BER in a
Quasi-Orthogonal Space-Time Block
Code

In this chapter, we will discuss-the power ‘allocation scheme with QR-based
successive detection for the ABBA code over flat fading channels. Our consideration is
confined to uncoded quadriphase-shift keying signals and the channels are independent
and identically distributed Rayleigh fading. Given that the channel state information
(CSI) is perfectly available at the receiver and transmitter, we design a precoding
matrix to allocate transmit power under a fixed channel realization at the transmitter.
Furthermore, at the receiver, the signals are detected with a QR-based successive
cancellation detection mentioned in the previous chapter. For simplicity, the precoding
matrix is restricted to be a power loading diagonal matrix so as to reduce the
computational complexity. We minimize the average bit error rate (BER) of the
received signals but the error propagation is not considered first. From the theory in
[10], the design of the precoding matrix is based on the minimization of the lower

bound of average BER. It can be proved that minimizing the lower bound of the
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average BER leads to minimizing the upper bound of the block error rate. For the error
propagation free case (no error propagation), some closed-form solutions of power
allocation schemes are provided in [16]. Then, we consider the error propagation effect,
which is modeled into the error probability. Finally, we exploit the modified error
probability to determine power allocation factors. The performances of the error

propagation free and error propagation cases will be discussed in Sections 3.2 and 3.3.

3.1 Bound for BER of QR Based Successive

Detection

Power loading schemes allocate the transmit power across symbols under the

constraint of constant power per bleck.-At the transmitter per block of four symbols x;,

1<i<4, we denote the transmitted power allocated to the :th symbol as p% and

define the power loading matrix as below:

p, 070 0
0 p, 0 0

P=, _— 3.1)
0 0 0 p,

where p;, > 0 is power loading factor and it is mentioned that the block power

constraint must be normalized as

4
trace{P?} = 3 p? = 4. (3.2)
i=1

Under flat-fading channel assumption, the power loading matrix is inserted into the
system model (2.65). If the receiver replies the channel state information (CSI) to the
transmitter, the transmitter can determine the power loading factors by CSI. The block

diagram with transmit power allocation scheme is shown in Figure 3.1.
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Space-Time Encoder hl

Q-OSTBC v x! (k)

X; Xy X3 X,
x(k) _,—'[ 1 2l 3 4] v ; h2 v
2 k
Modulator —»| ,FOWer |, g /pf—> |5 % x( ;z . .
Allocation I v 3 QR Receiver x(k)
y(k)

5 L, ) x° (k},
LY

Channel State Information

Figure 3.1: A block diagram of the quasi-orthogonal space-time block coded system

with transmit power allocation scheme

The received signals are multiplied from the left by unitary matrix QH and

shown as below:

R
1
=

Yl [Ry 0 Ry 0 fpr070.0
; 0 R, 0 R0 0 0 i
V2|2 1 13 P2 21 ™| Sy =RPx+i. (33)
Y3 0 0 Ry Ooff 0, 505 ps 00 x5 | |7

)74 | 0 0 0 R33 0 0 0 p4 i

=

=

s
=
N
| —

where y = Q y and n = Qn. The ith element of modified received signals is

detected as follows:

4 4
b =0 = X Rypid; = Rapwi+ 30 Rypy (o= &)+ A (G4
j=i+1 J=i+1

Assuming there is no error determined in the previous symbols. Then, we obtain
y; = Ry;p;x; +n;. It is obvious that the ith modified signal is affected by the ith
transmitted symbol and channel noise. As long as the symbol in each stage is correctly
detected and, hence, there is no layer-wise error propagation, the space-time model
decouples into four independent links. The power loading factor pZ-Z represents the

transmit power allocated to the ¢th subchannel and R;; is the ith subchannel gain.
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The average energy of the symbols transmitted from each antenna is normalized to be
one. Therefore, total symbol energy E, is equal to npy, so that the average power of
received signal at each receive antenna is also 7 . The real part and imaginary part of

noise have the same variance n; /(2SNR). The signal to noise ratio (SNR) is denoted

def Es

b —
y P = N,

, where the total symbol energy and noise variance are defined as

Elxx"|= B, =nl, =41, and Blm”|= NI, = NI, respectively. The

S

decision point SNR of the ith symbol is given by p | p;R;|” . Then, we compute the bit

1z|

error rate of the ith subchannel and the instantaneous BER is given by

Q (Vo |piBsl), (3.5)

def 1 2 . .
where @ (2) = F f;o eV / 2dy andithe QPSK modulation is adopted. Therefore,
T

the average instantaneous BER for the symbels block given a channel realization is

given by

4 A
P = 23 QPR (6
s, i—1

plklr—\

It is noted that Equation (3.6) is discussed in the error propagation free case, that is,
error propagation is not considered, so Equation (3.6) merely is a lower bound of
average BER. The average instantaneous BER (lower bound of average BER) is

rewritten as

4 4
e = i Z eli — Z Q(\/ﬁ|szzz >9 (37)
1=1 i=1

»-blr—t

where the subscript L indicates the lower bound of the BER. This is a lower bound

with QR-based successive interference cancellation detection due to neglecting of error
propagation, which is also an accurate approximate at the moderate to high SNR region.
The approximation is reasonable since error propagation is minimal. If the error

propagation is considered, the detection error of previous symbols will affect the
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detection of present symbol. This will increase the BER and the average BER is
slightly higher than the average BER in the error propagation free case. The lower
bound of average BER has been presented; we then introduce the upper bound of

average BER. First, let us define the detection error in the ith symbols z; when there

may be errors in the detection of previous symbols. We denote by

- T T .
X, =|%4q---»%4| and X, =|7;,y...,74[ represent the signal vector detected

before z; and the transmitted signal vector, respectively. For the detection of the ith

symbol z;, from the Bayes’ theorem, we obtain

P(z; = 7;) = P(z; = I |Xai =X, )P(xy; = Xy;) (3.8)
+ P(z; = %, |xai = X, ) P(Xg = Xy)

Here, P(z; = 7; |Xm' = X,;) is equivalent to Equation (3.5) for the error propagation
free case. Equation (3.8) can be rewriften as

i X = Ko A P(T; 2= 7 |Xai = X0 )P(X4 = Xy;)

! (3.9)
<P+ P(xy X

In the above formula, the last inequality i the fact that P(z; = &; [x,; = %,;) <1 and
P(x, =X,) =1 forhigh SNR. Furthermore,
P(Xai i iai) =1- P<Xai = iai)

=1—Play =3y)P(ag = T3ty = 34) - P21 = i1 [Keiy1 = Xgi41)(3.10)

4 4
=1- ]I (1—PeLj)§ >~ Ly
j=itl j=i+1

Because P(z; .1 = Z;,4 |xm+1 = X,11) is written as 1— P(z; = & [x,; = X,;)

—1-P

vrj» the last equality is established. The last inequality is easily derived by

some manipulations.

-4) -



Combining (3.9) and (3.10), the result is shown as

4 4
P(z; = 3;) < By + P(xq; = X)) < Py + > Py = 2. Py = Py (3.11)
j=itl -

where the subscript U indicates the upper bound of the BER. Equation (3.11)

represents the upper bound of the BER based on the consideration that there may be
detection errors in the previous symbols. The upper bound of the average BER of four
symbols is given by

4 4
Z elUi — Z elj

4
oy
) (3.12)
“1

;-l>|>—* ,.l;|r—\

<\/ﬁ |P7Rn|>

The last equality is because the detection order follows the upper triangular structure of

the matrix. In view of the block etror rate, let ‘4= 0 in (3.11), we have

4
J=1

It is obvious that the block error.rate. P(x.# X) is upper bounded by four times the
lower bound of the average BER P, . This is an important result for us to determine
the power allocation factors. If a power allocation matrix is designed to minimize the
lower bound of the average BER, it simultaneously minimizes the upper bound of the
block error rate as well. From the above derivations, the minimization of lower bound
for average BER is reasonable because the upper bound of the block error rate is
minimized at the same time. It implies that the decision performance can be potentially
improved even in the presence of inter-layer error propagation. In the next section, the
lower bound of the average BER is exploited to design the power loading matrix and

some different closed-form expressions for different criteria are presented.
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3.2 Power Allocation Algorithms with QR-Based
Successive Detection: Error Propagation Free

Case

An proper power allocation matrix is chosen to minimize the lower bound of the
average BER for different criteria. Combining the transmit power constraint (3.2) and
the lower bound of average instantaneous BER Equation (3.7), the optimization
problem results. The lower bound of average instantaneous BER Equation (3.7) is
called “cost function” or “objective function” here. Subject to “power constraint”, the

average instantaneous BER with power allocation can be written as

1 4

1 4
b = ZﬂLiZZ;Q(\/mPiRnD

4=
5 (3.14)

4
subjest to SppF =4
=51k

Then, three common strategies are shown as below [16]-[18]:

1.  Optimal Minimum BER Power Allocation:

2. Approximate Minimum BER Power Allocation.

3. Equal Gain (Equal SNR) Power Allocation.

Furthermore, their closed-form solutionss are introduced in the later section. We
assume that the channel state information is perfectly available with no error, although

it is not realistic.

3.2.1 Optimal Minimum BER Power Allocation

A direct method is to minimize the problem (3.14). Then, the optimum minimum

BER power allocation strategy is expressed as
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. 13
minkF,; = n > Q (\/mszuD
i=1
4
subject to S pf =4
i=1

. (3.15)

Because the average instantaneous BER P,; is a convex function, minimizing the

problem (3.14) is difficult. It is a convex programming problem which consists of

many computational complexities. Its closed-form solution can’t be derived but the
global minimum solution is unique and satisfies [19]

2

P|Ru'|

1
*50‘37:7:‘2 »
€
2
2p;

= 4. (3.16)

The parameter p is chosen numerically such that the transmit power constraint is
fulfilled. Minimizing the convex problem requires an iterative procedure to obtain the
optimum solution and we must:solve nonlinear €quations numerically. It is clear that
the slow convergence and high computational complexity in this strategy are obtained.
In order to reduce the computational. complexity, -approximate minimum BER will be

proposed in the next section.

3.2.2 Approximate Minimum BER Power Allocation

In order to avoid computing numerically, the approach is adopted in [16]. The cost
function is approximated to an exponential form. The approximate BER can be written

as
1

P, =Q(2cp) = = exp(—cp), (3.17)

where ¢ is a constellation-specific constant, For BPSK and QPSK modulations,

c=1 and ¢=1/2, respectively. Therefore, the optimal minimum BER power

allocation is reformulated as the approximate minimum BER power allocation as

follows:
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. R 1 2 9
minF,;, =—) eXP(——P|R¢z‘| i)
201 : (3.18)

4
subject to > p? =4
i=1
It is mentioned that when we minimize (3.15) under transmit power constraint, no
closed-form solution exists. However, the corresponding closed-form solution in (3.18)

can be obtained by using Lagrange method. The closed-form solution of the

approximate minimum BER power allocation is obtained as

In|R.[* +
P = —?' d 5 : (3.19)
5,01T1|Rz’i|
+

where (), = max{0,z} and the parameter p is chosen such that the transmit

power constraint is satisfied, as be shown as below:

1 1t A-1nlR, [
5’7__Z:§: | zd
def =1 |Rll|
S 4 (3.20)
— 23
4[:1 |Rll|2

It is noted that x is unique and can be obtained rapidly. Therefore, the total transmit

power in four transmit antennas is given by

(3.21)

+

which is a piecewise-linear function in p. Compared with the optimum minimum
BER power allocation, the approximate minimum BER power allocation doesn’t
require numerical solution of nonlinear equations. It is effective to reduce the
computational complexity. It is found that the performance of approximate minimum

BER strategy is very close to that of optimum minimum BER strategy. If
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1n|R”- |2 + 1 <0 (—1n|R”- |2 > 1), the case implies that the symbol with weaker

channel gain is dropped. The concept of the above solution (3.19) is similar to that of
the waterfilling solution but there is a different viewpoint. The characteristics of the
transmit power allocation strategy derived above differ from those of the waterfilling
scheme that maximizes the capacity. In view of power allocation strategy, symbols
with high channel gain can share power with other symbols to improve the average
BER. The waterfilling scheme is that symbols with high channel gain can acquire more

power in order to achieve maximum system capacity.

3.2.3 Equal Gain (Equal SNR) Power Allocation

It is well-known that the BERis often dominated by certain terms with smallest
channel gain because the () () function decreases as its argument increases. In order
to avoid this condition, we pre-equalize the transmitted symbols so that all gain of
received signals is equal. The equal gain powerallocation strategy is given by

RZQL p? = constant, V¢

4 . (3.22)
subject to > p? =4
i=1
Under some manipulations, the closed-form solution is easily derived and given by
1

4 1 :
Ri[" Y

1
4 =1 |Rll|2

ng.‘i - (3.23)

It is obvious that the equal gain power allocation scheme requires the less
computational complexity compared with the optimum and approximate minimum

BER power allocation and the performance is indeed improved. The equal gain power

allocation strategy allocates transmit power pggvi inversely proportional to the

channel state information |R“- ?, and more transmit power is allocated to the more
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attenuated subchannel. From the above discussions, three strategies are provided and
some closed-form solutions are presented. In the next section, the error propagation is

considered and the corresponding analysis is presented.

3.3 Power Allocation Algorithms with QR-Based

Successive Detection: Error Propagation Case

It is well-known that the detection with decision feedback suffers form error
propagation. It implies that the cancellation of an erroneously detected symbol will
cause significant performance degradation. In the previous discussions, no error
propagation is considered. Here, based on the assumption that there is error
propagation, it is clear that the detéction erfor of previous symbols will increase the
BER. Take into account the effects of error propagation, the exact expressions for the
error probability is difficult. A simple approach to estimate the probabilities is
presented. It is shown that theif:performances are very close to the simulation results.

Writing (3.4) in terms of the vector and matrix, we have

][Rl To o Ryps 0
§= V| |2 |00 0 Rypy|| %
73 3 0 0 0 0 X3
Gl s loo 0o 0 g
Ryp, O 0 0 x] 00 Rsps 0 |x-%] [7]
| 0 Rypp O O x|, |00 0 Rypy|lx=%) ﬁz.
0 0 Rapy 0 |x] 00 0 0 ||xm-%| |74
0 0 0 Ryzpy||x4] [0 O O 0 X4 — Xy iy

Divide the modified received signal y into two groups as below:

y R 0 X n
% =[ 3303 } e, (3.25)
V4 0 R33P4 || x4 ny
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n| [R 0 =] [R 0 |[x-%] |7
A1 :{ 11P1 } 1 J{ 1373 M 3 ~3}r ~1 . (3.26)
32 0 Ri1py || x, 0 Rispy || x4 — %4 i

It is clear that the third and fourth symbols in (3.25) are detected directly without error
propagation, but the first and second symbols in (3.26) are detected with error
propagation. In [20], the error on the previous symbol can be regarded as an additional

disturbance. We rewrite (3.26) as

V2 =Ry pyxy + Ri3py (x4 — Xy ) + 1y
Ney
(3.27)
P =Rypx +Rispy(x3 — %)+ 7

neq

where X; and X, are the erroneous decision regarding x; and x,. To estimate this

error propagation effect, the term 7,44 1s approximated as a Gaussian random variable.
The mean and variance of 7., are given by

El:neq:l =0 and E{neqneq] B |R13pi|2 E {|x2 - fl |2} + NQ, 1= 3,4 . (328)

Without loss of generality, most of the errors x; ( i=3,4) are considered as one of

the neighboring symbol x; in the high SNR region, that is ,

|2, — & [F = 4sin® (v / M) = d3pgx (3.29)
Therefore, we have

E[neyney| = |Rispf (45in® (7 / M) + Ny = |Riypif dipsie + Ny (3.30)
In other words, the error propagation effect is modeled as
E[neqneq] :‘ngpif dJQWPSK + Ny, which differs from the original noise power
Enn]l= Ny. For QPSK modulation, the square minimum distance is given by
déPSK = 2. Denote by 0123 and 054, respectively that the noise power of the first

symbol with considering error propagation of the third symbol and the noise power of
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the second symbol with considering error propagation of the fourth symbol shown as

below:
2 2 2 2 2 2
o1y = [Risps|” dypsx + Ny, and o3y = [Rispy|” dypsg +No. (3.31)
Therefore, the average BER [21] for the error propagation effect is expressed as

Pe :i{P<1‘1 ¢i’1>+P(ZL‘2 ijQ)-i-P(l'g ¢53)+P(1’4 ¢f4)}, (332)

where
5 FE
Plzy =3)=Q N—s|p4R33| , (3.33)
0
5 FE
0

Play = &) = P(zy = & |vy =@ P2y =&y) + P2y = &y |vy = 3y) P (24 = 3y)

1- [,/ |p4 Ry ,/ |PzRu| N |p4R33|]
[E [E /E
N—Z|p4R33| Q z|p2R11| _Q[ N_Z|p2Rll| )

E
=Q N—Z|p2R11| +Q

E
=Q N—Z|P2311| +Q

(3.35)

and

Pz = &)= P(n ¢x1|m3 = i3) P (x3 —ZE3>+P(:L‘1 = @y oy = &3 ) P (23 = &)

E

= Q| [ |pRyl||1- |P3R33| +Q |p1R11| |P3R33|
NO 13
E FE

=@ N_z [P Ry ||+ Q ,/N_z |p3Rss3|| @ |101R11| [1/ IpLR|||-

(3.36)
Inserting (3.33)-(3.36) into (3.32), the average BER with considering error propagation

is expressed as
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Pez—{P 1) = &)+ Py = %)+ P23 = 33) + P(zy ¢x4

{ N, —|p Ry ||+ @Q ,/ |P2R11| +Q |P3R33| +Q |P4R33|]
FE FE FE
4 Zs |ooR Es e dl—ol 21, R
Q Ny |P3 33| Q 0123 |P1 11| Q[ N, |p1 11|
FE E FE
i Zs |y R s Ino R — 5 oo R ,
Q N, [p4Rs3|||Q 2, o Ry | Q[’/No [P 11|]]
(3.37)

The last two terms are regarded as the addition error probabilities due to the error
propagation effect. From the concept of Section 3.2, the power allocation matrix is
designed to minimize the average instantaneous BER (3.37) with considering error

propagation. The average BER performance is shown in the next section.

3.4 Computer Simulations

In this section, we use the “fmincen” function of Matlab [22] which employs
sequential quadratic programming” to find the optimal power loading factors that
minimize the average instantaneous BER. It is proved that the approximate minimum
BER solution is very close to that of the minimum BER solution in [16]. Therefore, we
ignore the simulation of approximate minimum BER scheme and present the equal
gain scheme and minimum BER scheme compared with the conventional QR receiver
without power allocation scheme in the error propagation free case in Figures 3.2 and
3.3. It is noted that the transmit power is allocated for each channel realization, that is,
the channel state information is perfectly known to the transmitter and receiver. From
the simulation results, we can see that the power loading factors p; and p, are
almost equal to each other, and the same condition holds for the power loading factors

ps and p, because Rj; = Ry, and Rs3 = Ryy.
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Figure 3.3: Average BER performances of Q-OSTBC with different power loading
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In Figure 3.2, we observe that the average BER performance improvement with
the optimal power loading scheme is at least 2dB better than that without power
loading scheme in the medium-to-high SNR region. Figure 3.3 illustrates the average
BER performances with different power loading schemes; the average BER
performance with equal gain power loading scheme is about 1dB better than that
without power loading scheme but is still 1dB worse than that with optimal power
loading scheme (numerical method). In Figures 3.4 and 3.5, we present simulation
results in the error propagation free and error propagation cases. Compared with the
simulated performance and analytic performance, it is shown that the simulated
performance degrades due to the erroneous assumption in the error propagation free
case. Therefore, the error propagation effect is considered in Figure 3.5, in which the
analytic performance degrades..However, the performance improvement up to about

2 dB is achieved in both cases:

Error Propagation Free Case

[T ———— simulation w/o power loading

.~ 7| —+— simulation with power loading
i —=© — formula w/o power loading
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Figure 3.4: Average BER performances without error propagation
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Error Propagation Case

—+ — simulation w/o power loading
——*— simulation with power loading
——© — formula w/o power loading
z| —©— formula with power loading

Average BER

|
6 ;

SNR

Figure 3.5: Average BER petformances with error propagation

In Figure 3.6, we show diffetent performances such as OSTBC, Q-OSTBC
(4x1), and Alamouti scheme based multi-group (4 x2). Given a fixed channel
realization, the average BER performance of Q-OSTBC (4 x 1) is almost identical to
that of Alamouti scheme based multi-group (4 x 2) in the high SNR region because
the diversity and spectral efficiency are the same whether the power loading schemes
are considered or not. The analysis of BER performances in Figure 3.6 is similar to that
in Figure 3.2. In the low SNR region, the performance of Alamouti scheme based
multi-group (4 x 2) is better than others because a lower modulation order (BPSK
modulation) is used. We assume that BPSK modulation is used with the same average
symbol power as QPSK and 16-QAM. In the high SNR region, the diversity affects
the BER-SNR curve and the performance of OSTBC is better than other codes in
Figure 3.6.
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Figure 3.6: Comparison of average BER performances for OSTBC and Q-OSTBC

In [10], it is proved that minimizing the lower bound of the average BER leads to
minimizing the upper bound of the block error rate. In Figure 3.8 and 3.9, the above
description is confirmed. The power loading factors are determined by minimizing the
average BER performance and the block error rate can be minimized by using the same
power loading factors. It is thus a reasonable approach to determine the power loading
factors by minimizing the lower bound of the average BER. We observe that at error

probability of about 107 in Figure 3.7, we obtain up to 2dB improvement in SNR

compared with the original equal power scheme.
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Figure 3.8: Block error rate performances of Q-OSTBC with power loading
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Finally, Figure 3.10 illustrates that the ABBA code has performance close to the
code proposed by Jafarkhani because the code proposed by Jafarkhani has a structure

of the triangular matrix R similar to the ABBA code. Therefore, the power allocation

schemes can be extended directly.

10 = e T
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-+ 4+

1 0-5 | | —— simulation w/o power loading (ABBA)

F=1 —<— simulation with power loading (ABBA)

F- & simulation w/o power loading (Jafarkhani) -

- -1 —©&— simulation with power loading (Jafarkhani) |-+ -~ - -~ - - - -~
10° 1 1 1

5 10 15 20 25

SNR

Figure 3.9: Comparison of average BER performances for ABBA code and the code
proposed by Jafarkhani with and without power loading

3.5 Summary

In this chapter, we introduce transmit power allocation for minimum average BER
with QR-based successive detection. For simplicity, we discuss the error propagation
free case first and minimize the lower bound of average BER. It can be proved that
minimizing the lower bound of the average BER leads to minimizing the upper bound
of the block error rate. For the error propagation free case, we exploit some

closed-form expressions of power allocation algorithms provided in [16] to allocate
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transmit power. By means of power allocation, we can improve the performance in the
high SNR region. Then, we model the error propagation effect as an additional
disturbance approximated as a Gaussian random variable. Under such modeling, we
determine power allocation factors to minimize the average BER. It can be seen that
the better performance is obtained. In the above, we focus on the power allocation
schemes under a fixed channel realization known to the transmitter. It is sometimes
difficult for us to allocate transmit power if the accurate channel realization is not
known at the transmitter. In order to extend our power allocation schemes, we will
consider the channel probability density function (pdf) in the error probability formula

in the next chapter.
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Chapter 4

Robust Transmit Power Allocation
for Minimum BER in a
Quasi-Orthogonal Space-Time Block
Code

In general, the average BER performance will' degrade if the channel statistics is
not taken into account. In this chapter, we will consider the channel probability density
function (pdf) in deriving the error probability. In this case, the instantaneous average
BER is no longer considered. Motivated by this fact and to deliver a performance merit
over different channel realizations, we evaluate the average BER for the channel
estimation. Combining Chapter 3, we propose to determine power loading factors by
minimizing the error probability averaged with respect to the channel distribution. It is
known that channel estimation can be classified into two categories, perfect channel
estimation and imperfect channel estimation. We will discuss perfect channel
estimation first and derive an upper bound of average BER for the error propagation

free case. Taking into account that the channel pdf is Gaussian with zero mean and

covariance matrix Y = F [hhH } , we evaluate the average BER for the error

propagation free case and exploit the corresponding closed-form expression provided
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in [23] into the upper bound of average BER formula. Therefore, we change our design
rule to minimize the upper bound of average BER for the error propagation free case.
The transmit power is allocated in order to minimize the closed-form expression for
the upper bound of average BER in the error propagation free case. In this closed-form
expression, the channel state information is unnecessary but SNR is necessary. In other
words, we only require SNR instead of the channel realization mentioned known to the
transmitter in Chapter 3. Furthermore, we introduce the upper bound of the average
BER when the channel state information is not perfectly known. Finally, both

categories are compared and their performances discussed.

4.1 Evaluation of Overall Average BER

First, the common methods used toranalyze the evaluation of overall average BER

are introduced. Here, two methods are shown as follows. One [10] is that for a

R

1%

(|Rii |2 )nTi e_‘R“"Q

(np —1i)!

complex circular Gaussian distribution channel, |2 is X2 -distributed such that

p(|R:l) =

The overall average BER is evaluated by averaging the distribution of |R”| as

(4.1)

follows:
1 4
e:ZZ :_ZIQ JP |R;i|) p (| Rii || R (4.2)
where P, represent that the ith symbol is erroneous. Hence, we obtain
2\ R
== — y 4.
=g LB = R WP IR T IRl @)

The closed-form expression can be derived. However, it is a pity that the assumption is

not held in the channel matrix of the ABBA code because the channel matrix has a
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special structure and |R”| is not x” -distributed. The above method can’t be

exploited to evaluate overall average BER. The other is that the channel pdf f(h)

assumed to be Gaussian with zero mean and variance >, = F [hhH } as below

_ 1 L H -1
f(h —-gzaaiiiexp( h? hy (4.4)

where h is the column vector representing the four channel coefficients. The overall
mean BER is evaluated by averaging the channel pdf f(h) as follows:
L p =L [ O(IR ) e exp (-0 S Ry @)

It is obvious that |R”| can be expressed in terms of h and the integral can be

2
computed. Here, the alternative expression differs from Q(a;) \/_ f e v/ 2dy

for the Q () function is given by, [24]

=) £E2
(D =— exp|— do . 4.6
< 7rf0 p[ 2:sin” 9] (49

Hence, P, can be rewritten as
1 4
—-> P,
4 Z:zzl el
2 4.7)
R.
L) do—2 exp(~h" 7" hjh.

iifif””exp -
4.7 w0 2sin” 0 ot det(>)

In general, when the output SNR is in quadratic form (|Ru' |2 =h¥h, where

H
h = [hl hy hg h4} ),and P, can be computed as follows:

i dit(Z) exp (—hH >t h)dh,

oh'h

liP —liflfﬂﬂex — ao
fo=7 2 ta 4= 7Jo Pl 2sin% 0

1=1

(4.8)

and it provides the close-form expression [25]. It is useful for us to evaluate the overall

average BER. Furthermore, the BER is not a function of the channel realization, i.e
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we don’t require the channel realization in each iteration computation in order to

determine power allocation factors. Instead of the channel realization known to the

transmitter, it is necessary to know SNR here. Then, the derivation of the closed-form

expression is shown as below:

1
k= th<\/ﬁ|Rii|)ﬁ

exp(—hH ! h) d0dh

et(Y)
2
- fh%foﬂ/QeXp - 5 lii;'e YT aar) (- " n) b
- h%f x| - 2ps];l;h9 - dit(Z) oxp (- 2 b)dbin
:%foﬂﬂfh ~ dit(Z) exp|—h” 2;? +I4]Z_1 h]dhd@
(Z)% oﬂ/Q{d ' 251?9 i }lde N %foﬂ/Q{nlill[Siig 0 H]}_lde
BT e N
K

= S i

®)i=1n=1 k=0

(4.9)

where (a) is obtained by performing integration with respect to h [23], [25], and (b)

follows from [25, e.q.(38)]. These parameters are defined as that \, (:=1,2,..., K)is

the eigenvalues of % , K is the number of distinct eigenvalues, N,

;18 the

eigenvalue’s multiplicity, 4, is the ith residue associated with nth power in the

partial-fraction expansion, and the function G(\) is given by

G\

Ll P
2 1+ A

. (4.10)

If four eigenvalues are equal to A, partial expansion is not necessary, and Equation

(4.9) can be obtained as
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(4.11)

Combining Equations (4.8) and (4.11), the mean BER averaged with respect to the

channel distribution is obtained as

-G e (4.12)

where ), 1is the duplicate eigenvalue of Q for P, (:=1, 2,..., 4). However, in

the ABBA code channel, |F35 |2 is not x”-distributed and can’t be written as a

quadratic form, that is, we can’t consider our condition to the above closed-form
expression in (4.12) directly. In place of this condition, the relationship between

quadratic form of the channel vector-h and diagonal entry (|R33|) is found. It is

possible to exploit the relationship to use the above closed-form expression in (4.12).

4.2 Bound of the Channel Determinant

From Section 4.1, the diagonal entries are important for us to evaluate the overall
average BER. In order to understand the diagonal entries of the upper triangular matrix
R, it is interesting for us to calculate the determinant of the channel matrix for the
ABBA code. For the channel matrix of the ABBA code, some simple derivations are

given as follows:
H, H I, 1 H H I, -I
detH)=det|| ' " *||=det|| > *||det|| ' T ||det]| >
H, H, 0 I, H, H, 0o 1,
', L|[H H]I -l H,+H, H,+H,|[I, -I,
= det = det
0 L||H, H |0 I, H, H, 0 I,

'H, +H, 0
= det = det(Hl + H2 ) X det(Hl — H2 )
H, H; -H,

(4.13)
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It is important for us that det(H) =det(H; + H, ) xdet(H; — H, ), the diagonal entries

of matrix R in (2.59) and (2.60) can be rewritten as

Ry = Ryy = \Jdet(H,) + det(H,) (4.14)
det(H, + H,) x det(H, — H
Ry = Ry = (H; + Hy)xdet(H; —H,) ’ (4.15)
where
2 2 2 2
det(Hy) +det(Hy) = || +|hy|” +|is|” +|hyl, (4.16)
det(H, + Hy) = |y + Is|” + |y + ], (4.17)
2 2
det(H, —Hy) = |y — hs|” +|hy — Iy (4.18)

In Equations (4.14) and (4.15), the relationship between channel coefficients and the
diagonal entries of R is obtaihed; thé'diagonal entries can be written in terms of the
determinants of the partitioned matrices. Then, the bound of the channel determinant is
derived from the above relationship.

Now, we attempt to find the ‘bound of the channel determinant because some
diagonal entries of the upper triangular matrix are deeply affected by determinants of
channel matrix. The purpose of the bounds is to simply the expression in (4.15). The
simple expressions are exploited to determine power loading factors in order to achieve
better performance. Under some manipulations, we have

det(H, + Hy) = |y + hs|” +|hy + Iy

= | [ + | [?

il + gl +2Re (B by + yhy (4.19)

= det(H, ) + det(H, ) + 2Re( Iy + Iy ),
2 2
det(H; —Hy) = |y = hs|” +|hy — hy|

= | [* + | [?

] + g~ 2Re (B By + yhy (4.20)
= det(H,) + det(H,) - 2Re( /' Iy + sy ).
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It is obvious that the term Re(hl* hy +h;h4) will affect the value of determinants in
(4.19) and (4.20). With a careful observation, we generalize a conclusion as follows:
If Re(h hy +hyhy) >0, we have

det(H; —H,) < det(H,) + det(H,) < det(H; + H,). (4.21)

Combining Equations (4.15) and (4.21), the result is given by
det(H; + H,)det(H, — H,)

det(H; —H,) < <det(H; + H,). 4.22
(H, —H,) det(H )+ det(H, ) (H, +H,) (4.22)

On the contrary, if Re(hl* hy + h; hy) <0, we have
det(H; + H,) < det(H;) + det(H,) < det(H; —H,). (4.23)

Combining Equations (4.15) and (4.23), the result is given by

det(H, + H, ) det(H, - H,)

det(H; + H,) <
det(Hl ) = det(Hz )

< det(H, - H,). (4.24)

As aresult, |R;3 |2 must satisfy either (4.22) or '(4.24), depending on whether A >0

or A<0,where A= Re(hl* hy + h;h4). For simplicity, Equations (4.22) and (4.24) are
translated into
det(H; — H,) < |Ry;|* < det(H, + H,)
and
det(H; + H,) <R3 |2 < det(H, —H,), respectively. (4.25)
From the above equation, it is the fact the larger term of det(H; -H,) and

det(H; + H,) 1is the upper bound of |R33|2 while the smaller term of det(H; —H,)
and det(H; + H,) is the lower bound of |R33|2 . In terms of the channel coefficients

(h=[h hy hy by ]T ), the diagonal entries can be expressed as follows:

IRy[* = det(H,) + det(H,) = ', (4.26)

- 65 -



IRy | = det(H) > det(H; —H,)=h""A_h, (4.27)
det(H, ) + det(H,)
and
IRy = det) 5 det(H, + Hy)=h"A,h, (4.28)
det(H,) + det(H,)
where
1010
01 0 1
det(H1+H2)=|hl+h3|2+|h2+h4|2=hH1 0 1 ofn=hiAR, (429)
01 0 1
and
1 0 -1 0
0 1 0 -1
det(H; —H,) = |l —|* +|hy — hy|" =n" Lo . h=h"A_h.(4.30)
0 -1 0 1

It is well-known that the signal‘to noise ratio"(SNR) at the receiver (decision-point

2 R33|2 and so on. The

SNR) is often a function of the channel gamn such as |R11

3

instantaneous bit error rate is determined-by the decision-point SNR, so the diagonal
entries play an important role in the mstantaneous bit error rate. Combining Sections
4.1 and 4.2, a power allocation scheme for Q-OSTBC is proposed by exploiting the
bound of diagonal entries and the corresponding closed-form expression is introduced

in Section 4.1.

4.3 Evaluation of Overall Average BER for

Upper Bound and its Closed-Form Expression

The channel estimation can be classified into two categories, perfect channel
estimation and imperfect channel estimation. The perfect channel estimation is
discussed in Section 4.3.1 and an upper bound of average BER for the error

propagation free case is derived. Then, the imperfect channel estimation is extended in
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Section 4.3.2. The average BER for the error propagation free case is evaluated and the
corresponding closed-form expression is exploited into the upper bound of average

BER formula.

4.3.1 Perfect Channel Estimation Case

To facilitate the derivation of diagonal entries R and based on design procedure
of Section 4.1, an upper bound of average BER for the error propagation free case is

derived in closed-form. As R;; =R,, and R;3 =Ry, it is more convenient to

decompose P, in (4.7) into

1 1
F, =— Z F; =— fQ(\/5|Pszz|)p<|Rn|>d|Ru|
4,5 4,5
1 & o1 /2 prR,[* | 1 Pt
= Zizzlfh;fo €XP ——2 Zsinzme W—4€Xp (—h h) d6dh
1| & 1 pafe priRu [ 1 "
== - ETErE N —hn (4.31)
4 mzlfh ™ fo 2sin?@ | 7’ exp( )d@dh
=R
pp? |Rys[ | 1
exp|——————

Sy W—4€Xp(—hH h) dOdn!.

=P,

In what follows we will derive an analytic expression for F and an upper bound for
P,, this in turn yields a closed-form upper bound of P, .
1. An analytic Form of B : Inserting (4.26) into P, in Equation (4.31), the same

derivation in Section 4.1 is exploited and P, can be obtained as follows:

2 1 pr/2 prhHh 1 H
P = - exp| -1 | — exp(—h"h)dOdh
! Z»:E:lfhﬂfo P 2sin? 0 | =t p( )
201 pr/2 0 1 u| ppiLy
-y = — exp|—h® | 2224 1 |h|dhdd
izszo fhw‘* P 2sin20
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-1
2 2
:Zl 2] et %_}_14 0
(a);—1 T 0 2sin” 0
—4
2.1 /2 ppf
= — +1| db 4.32
i_z:lﬂfo 2 sin® 0 (432)
2 3 (3+k 2 2 14
=>. . 1-G(=H)| |G(=H)
®)is1i=o| * 2 2

An Analytic Upper Bound of B : It is noted that the closed-form expression of

P, in (4.32) hinges entirely on (4.26), in which |R11|2 is seen to been essentially
quadratic in the channel gain vector (h = [hl hy I h4]T ). Such a property,

however, no longer holds for |Rs; |2. As a result, there does not seem to exist an

exact expression for P, analogue to (4.32). We shall then instead seek for a
tractable upped bound for F. From Section 4.1, it is known that |R33|2 must
satisfy either (4.22) or i4.24), depending on’ whether A >0 or A <0, where
A= Re(hl* hy + h;h4). This results can be exploited for deriving a tractable upper
bound of P,. Indeed, we first note by definition that P, /2 is the average BER
of the 3™ and 4™ component channels (see (4.31)). Let us denote by P2‘ A>0 /2

the associated conditional probability given that the event {A > 0} is true, and

likewise by Py /2 for the complement event {A < 0}. Then with (4.31)

and (4.27), we have

2
pp; det(H; —Hy)| 1 H
— —exp(—h"h|dbdh;
2sin’ 0 7t P ( )

4 ™
Psa /2553 f) e

(4.33)

also (4.31) and (4.28) together imply
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2
71'/2 Ppl det(Hl + H2) 1 H
Paco (255 Zf f T 7T—4€Xp(—h h) dfdh.
(4.34)
Since
By /2= (Pysso /2)Pr(A > 0)+ (B /2)Pr(A<0); (439

and assuming that the two outcomes {A >0} and {A<O0} are
equally-probable, namely, Pr(A >0)=Pr(A<0)=1/2, relations (4.33)-

(4.35) then leads to the following key inequality

1] 1 /2 pp? det(H; —H,)| 1 H
<= = exp|—— —exp(—h"h)dfdh
2 {123 fh ™ fo P 2sin? 0 rt xp( )
401 pn/2 pp? det(H; +H,)| 1 "
+ — exp|—— —exp|—h"h|dfdht.
g:?) fh 7T fo P 2sin” 0 7T4 p( >

(4.36)
The significance of (4.36) lies in‘that the exponents in both summands are now
quadratic in channel coefticients. Indeed, from (4.29) and (4.30), inequality (4.36)

can be equivalently rewritten as

. p?hf’A h
{Zf i e e b )
+Z4:f L exp M —exp( h''h)dfdh
3 b0 2sin’0 |7

4
%‘z fhifoﬂﬂexp —nf "’pZA +1, |h d6dh
1=3

S AL [ ppi A
+§%)fh;f0 exp|—h L—* 41, |hd6dh
1=
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—1
4 .
_1 Zlf””{da pPis +I4} do
(4.37)

—1
4 2
/2 ppi AL
+ — det +1 do;.
Z fo ( 2sin? 6 4}

where the last equality follows again from [23], [25]. Now, the eigenvalus of both

A, and A_ are calculated as follows {0,0,2,2}, and (4.37) becomes

B <
/ / -
T/2 T/2 pp
d0+ 5—+1| do
HELE (] e 2]
1 pn/2| pp3 /2( ppi -
T 3 T 4
S +1 d0+ +1| db
w0 sin® 6 7Tf0 sin® 0
1 (1+k s 1 (1+k i )
=21 . 11— Glom3)] |Glamid], + > I 1= Glpp)| [G(op?)]
k=0 k=0
4 1 (1+k 9
=> 3| . |t Glewd] {Glepd]
i=3 k=0

(4.38)

where (c) follows again by using [25, ¢.q. (38)].
Combining (4.31), (4.32) and (4.38), the overall mean BER by averaging the

channel distribution in (4.7) can thus be upper bounded by

1| & & ([3TF pr? || ort ||
Pei‘%% N e
i (4.39)
4 1 (1I+
LDID I 1G(pp?)mG(pp?)}2]-
=3 k=0

where G (-) is defined in (4.10).

An upper bound of mean BER averaged with respect to the channel distribution is

derived in the error propagation free case. By exploiting this upper bound, the power
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loading factors are determined by minimizing this upper bound. In the next section, the

analysis is extended into imperfect channel estimation case.

4.3.2 Imperfect Channel Estimation Case
When the channel state information is not perfectly known at the transmitter, the
above method can’t be used. Therefore, it is assumed that the channel statistics are

known and the similar method is derived. Assuming that channel estimate h and

channel estimation error e, we have that h=h+e. The estimation error e has

Gaussian distribution with zero mean and covariance matrix Cg, =2 -2, Where

2; and X are the covariance matrices of the channel estimate and channel state

information, respectively. From.J23], the estimation error can be modeled into noise
covariance matrix. That is, the-estimation error will-enhance the noise as follows:

E=Ce Lo+ Noly, (4.40)
where E is the symbol energy and. Nyl ~is‘1.1.d. Gaussian covariance matrix. Then,
the derivations in Section 4.3.1 are revised and the mean BER averaged with respect to

the channel distribution is given. From [23], the average BER can be obtained as
[ g 2 e He-10 ) o (R
R= 3R =, X [OVPEATER | p(h)ah. (4.41)
i=1 i=1

By exploiting (4.6), Equation (4.41) becomes

4 ’Eh"E"h - o)
P, :lzjhl (;T/Qexp _B — d0—; ! exp(—hH Z_lh)dh
453" m 2sin” @ 7z det(X)

4 5 2E E! .|
Y P ——, MHL‘ >~'h |dhd0
4 det(X) 2sin” 0
-1
4 g R
=lzl.[(;”2 det M?Lh do
4.7 2sin” @ |
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-1
4 N( A p?
RS Y] | EACLY R
47 =1l sin”~ @

——Z I’”z f%ﬂm[ f"’@ﬂ] do (4.42)

k=1n=1

LSS, Zl( i ][l ~G(r?) | [Glrd)]
J

S o
These parameters are defined as that )\, (k = 1, 2,..., K) are the eigenvalues of

EE'Y

5 , K is the number of distinct eigenvalues, N, is the eigenvalue’s

multiplicity, i, , 1s the ith residue associated with nth power in the partial-fraction

expansion, and G () is defined in (4.10). We can see that Equation (4.42) is
equivalent to Equation (4.9), except_ that.the eigenvalues are not equal to each other.
Therefore, the upper bound of:averagé' BER.in Section 4.3.1 is only slightly revised.
From (4.31) and (4.35), we have

o E
7[/2 p,EhE h 1 I R
= l——exp|(-h" 27 h|d8dh
{th ( 2sin% @ i ( )

p?EhA Eh) 1
2sin’ @

+Pr(A>0) ZJ‘h mzexp(—
=3

20 LH 1%
Eh” A E 'h ~ ~ A
+Pr(A <0) Zj ﬁ/zexp Pi Lexp(—hH Z_lh)dﬁdh .
h 7 2sin’ 6 !

(4.43)

It is noted that the channel covariance matrix > will affect the probabilities
Pr(A >0) and Pr(A <0), where A =Re(hh +hyhy). After some observations
of simulations, it is found that when the correlation between these channels is stronger,
the probability Pr(A >0) is larger and Pr(A <0) is smaller. Therefore, it is
assumed that the two outcomes {A >0} and {A <0} are equally-probable. In this

condition, an upper bound of average BER which is a function of probabilities
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Pr(A>0) and Pr(A <0) will be derived. For simplicity, it is assumed that
channel pdf is i.i.d. Gaussian distribution (X =1 and the two outcomes {A >0} and
{A <0} are equally-probable (Pr(A>0)=Pr(A<0)=1/2). Equation (4.43)

can be obtained as

r H 1
{th w2 L PPERTE h}iexp(_hH )dedh

2sin? @ i

2 v H -1h
"Eh"A.E 'h NH "
L1 Z.[h 72'/2 _Pi By 2+ %exp(—hHh)dedh . (444)
2sin” @ V4
4 EhHA E'h FH h
+12Jﬁl (;r/zexp i L4e"p(_hﬂh)d%h
250 2sin” @ 4

From Equations (4.31)-(4.39), the same derivation procedure can be obtained as

follows:
1 1 cz/2 pPEE™! ~
P, <— L;r Jh 2 expl-—h'h| == h (dhd6
4|\ a7 det(X) 2sin 6
4 ~E E A, E™! ~
WLy L e ; ChY | +1, |h |dhdo
2inx7 det(Z) 2sin’ 0
2 1
EA_E N
cly L - ! Q| 2 +1, |h |dhd6
i3 det(Z) 2sin” 0
1121 EE" B
=g 2l e Sy | do
4lian 2sin” 0
121 on| [pEAET ]
+=3 — [y qdet| =———11, |+ dO
2.3 | 2sin“ @ |
-1
4 EAE!
s> L2 et E I, |t do
2. 37 i 2sin’ 6 |
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Kle -
/2 zkpl
Z I ZZﬂkn[. 0“} do
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i=1k=1 n=1 j=0
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i=3 k=1 n=1 j=0

These parameters are defined in the.same-manner previously. Summarizing Sections
4.3.1 and 4.3.2, the proposed power allocation scheme by minimizing this upper bound

is then given in the next section.

4.4 Optimal Power Allocation for Minimum

Upper Bound of BER

From the above section, we propose a method of determining power loading
factors by minimizing the average BER upper bound in (4.39), subject to the power
normalization constraint. Instead of considering channel realization at our design, the
average BER for the channel distribution is evaluated. Determining power loading
factors by minimizing the upper bound of the error probability averaged with respect to
the channel distribution is proposed. As the cost function is highly nonlinear in p;’s
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there do not seem to exist closed-form optimal solutions. Instead, the problem is solved
via numerical search (e.g. by using fmincon function in Matlab Optimization

Toolbox).

4.5 Computer Simulations
First, Figure 4.1 shows the upper bound of average BER compared with the
average BER. It is obvious that the upper bound of average BER is indeed larger than

the average BER and the upper bound is tighter for low SNR than high SNR.

2
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Figure 4.1: Upper bound of average BER performances

To illustrate the numerical performance of the proposed scheme, we compare the
simulated average BER of the following receivers: linear MMSE equalizer, QR-based

detectors with and without power loading, and the joint ML decoding; the results are
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shown in Figure 4.2 (QPSK modulation is used) and the solutions at various SNR are
listed in Table 4.1. As we can see, the QR-based solution without power allocation only
slightly outperforms the linear MMSE equalizer. When combined with the proposed
optimal power loading scheme, performance improvement up to about 2 dB is
achieved in the medium-to-high SNR region; in particular, the BER is almost identical
to that attained by the optimal ML decoding for SNR above 22.5 dB. From Table 4.1,
we can see the relationship of power loading factors as follows: p; = py, p3 = py,

and D3 > yul because Rll = RQQ, R33 = R44, and Rll 2 R33.

10"

—+H=— LMMSE receiver
——— QR receiver without power loading
10° boNo______| —S— QR receiver with optimal power loading

- —— — ML decoding

- =+
- -+

H
H

+
+

- H
- H

H——

Average BER

Figure 4.2: Average BER performances of Q-OSTBC with different receivers
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Table 4.1: Computed optimal power loading factors in Figure 4.2

Power loading
factors by ) b3 Dy
SNR (dB)
5 0.9982 0.9982 1.0018 1.0018
7.5 0.9807 0.9807 1.0189 1.0189
10 0.9529 0.9529 1.0449 1.0449
12.5 0.9197 0.9197 1.0743 1.0743
15 0.7769 0.7769 1.1817 1.1817
17.5 0.7259 0.7259 1.2137 1.2137
20 0.6724 0.6724 1.2441 1.2441
22.5 0.6180 0.6180 1.2720 1.2720
25 0.5641 0.5641 1.2968 1.2968
27.5 0.5123 0.5123 1.3182 1.3182
30 0.4633 0.4632 1.3362 1.3362
32.5 0.4177 0.4177 1.3511 1.3511
35 0.3755 0.3755 1.3635 1.3635

In Figure 4.3, we show that when there is channel estimation error, our method
can be still used. Considering that the channel estimation error covariance matrix is
equal to 0.01I, the average BER performance is presented and it is found that the
BER performance is dominated by the channel estimation error instead of SNR in the
high SNR region. When the diagonal entries of the channel estimation error covariance
matrix is much larger than the noise power, the BER performance exhibits slight

saturation in the high SNR region.
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PNt —+—— QR receiver without power loading
—©— QR receiver with upper power loading

1

m

TTTONOC T T T TT

R NV S

Average BER

T

TTTTr

-

|
6 ;

SNR

Figure 4.3: Average BER performances of Q=OSTBC with power loading in the
channel estimation error case

4.6 Summary

In Section 4.1, we introduce the closed-form formula toward the upper bound of
mean BER averaged with respect to the channel distribution. Because the diagonal
entries of the upper triangular matrix are related to the channel determinant, we find
the bound of the channel determinant in Section 4.2. Then, we exploit the bound of the
channel determinant to derive the upper bound of average BER. The upper bound is
written as a quadratic form, so we can evaluate the upper bound of the mean BER with
respect to the channel distribution and obtain the corresponding closed-form formula.
Considering perfect channel estimation, we determine our power loading factors by
minimizing the corresponding closed-form formula. Furthermore, we consider

imperfect channel estimation and derive the upper bound of the mean BER averaged
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with respect to the channel distribution in closed-form. By minimizing this upper
bound, we obtain the power loading factors. We compare the simulated average BER
of the following receivers: linear MMSE equalizer, QR-based detectors with and
without power loading, and the joint ML decoding. In Figure 4.2, we can see that when
the QR-based solution is combined with the proposed optimal power loading scheme,
performance improvement up to about 2dB is achieved in the medium-to-high SNR
region, in particular, and the BER is almost identical to that attained by the optimal ML

decoding for SNR above 22.5dB.
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Chapter 5

Conclusion

In this thesis, we consider the transmission of the ABBA code over i.i.d. Rayleigh
fading channels, and propose a symbol power allocation scheme for minimizing the
average BER performance. In ordér to achieve a bit-error-rate (BER) performance
compromise between linear equalization and joint maximum likelihood (ML) decoding,
we propose to adopt QR-based suceessive detection with proper symbol power
allocation. In Chapter 2, we ihtroduce OSTBC-and Q-OSTBC; their corresponding
decoding methods are introduced. The QR decomposition of the channel matrix for the
ABBA code is derived in Section 2.3.2. By exploiting a distinctive channel matrix
structure induced by the ABBA code, we derive an explicit formula of the associated
QR-decomposition. Then, we detect the received signals with QR-based successive
detection. In Chapter 3, it is shown that the average BER with errorless front-layer
decision feedback, although being merely a lower bound of the true mean error rate,
remains simple to characterize and, moreover, is closely related to an upper bound of
the block error probability when error-propagation occurs [10]. Motivated by this fact
and to guarantee a performance improvement, the optimal power allocation schemes
are introduced under a fixed channel realization without considering error propagation.

Then, considering the case that when error propagation occurs, the corresponding
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method is presented. The simulations show that the performance is improved by
allocating transmit power via the minimum BER criterion.

In Chapter 4, the overall mean BER averaged with respect to the channel
distribution is introduced first and the bound is derived for the channel determinant in
Section 4.2. The exploitation of a symmetric channel matrix structure unique to the
ABBA code leads to a closed-form upper bound of the overall mean BER (averaged
over the channel distribution). The optimal power allocation factors obtained by
minimizing this bound thus guarantee a universal performance regardless of the
instantaneous channel characteristics. That is, we propose to determine the power
loading weights toward minimizing the overall mean BER, averaged with respect to
the channel distribution. Simulation results confirm the effectiveness of the proposed
solution: the achievable BER result is almost identical to that of joint ML detection
when SNR is high.

The study presented in the thesis-has-discussed a power allocation scheme by
minimizing the average BER in the etror propagation free case. In particular, we derive
the upper bound of the mean BER averaged with respect to the channel distribution in
closed-form. Instead of considering the channel realization, we only require to know
SNR, the channel covariance matrix, and the estimation error covariance matrix. No
error propagation is considered in the above discussions. We then take error
propagation into account and derive the corresponding mean BER formula averaged
with respect to the channel distribution. Considering error propagation, the
multiplication of two Q-functions problem occurs. However, it is not easy for us to
deal with the multiplication of two Q-functions problem averaged with respect to the
channel distribution. The derivation of the corresponding upper bound is thus a

problem worthy of investigation in the future.
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