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摘要 

 

正交分頻多工系統為新一代無線通訊系統最常使用的技術，如 IEEE 

802.11a/g/n、 IEEE 802.16、IEEE 802.20、數位電視、數位廣播等許多系統均採

用此技術。傳統的正交分頻多工系統並不適用在高速移動的環境中，然而移動傳

輸是未來無線通訊系統的趨勢之一，如 IEEE 802.16e 可支援到車速 120 km/hour，

而 IEEE 802.20 更可支援到車速 250 km/hour。傳統的正交分頻多工系統可以有效

率地使用在非時變通道中，且僅需簡單的等化器，即可修正通道效應，但在移動

的環境中，通道隨著時間改變，使得接收端的子載波失去正交性，因而導致子載

波之間的相互干擾，使得解調變後的效能降低。雖然最小均方差等化器可以改善

此種干擾問題，然而其複雜度過高，不利於正交分頻多工系統採用。在本論文中，

吾人利用移動傳輸通道的特性對共軛梯度法做最佳事先處理，來降低最小均方差

等化器所需反矩陣運算的複雜度，使得接收端得以有效消去子載波間的干擾，而

能在移動的環境下運作。吾人藉由電腦模擬驗證此一新等化器在移動的環境中，

可有效改善位元錯誤率。 
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Abstract 

    Orthogonal Frequency Division Multiplexing (OFDM) is a popular technique in 

modern wireless communications. There are many systems adopting the OFDM 

technique, such as IEEE 802.11 a/g/n, IEEE 802.16, IEEE 802.20, Digital Video 

Broadcasting, Digital Audio Broadcasting, etc. On the other hand, mobile transmission 

is a trend in future wireless communications. For example, IEEE 802.16e supports 

vehicle speed up to 120 km/hour, and IEEE 802.20 supports vehicle speed up to 250 

km/hour. OFDM systems can be used efficiently in time invariant environments with 

one-tap equalizers. However, subcarriers are no longer orthogonal to each other in 

time-varying channels, and this causes the intercarrier interference (ICI) and degrades 

the system performance. Although the minimum mean square error (MMSE) equalizer 

can be employed to solve this problem, it requires a high complexity and is impractical 

for an OFDM receiver to be implemented. To alleviate this problem, we propose a 

conjugate gradient based method with optimal precondition by employing the property 

of the mobile channel, which can reduce the complexity of the matrix inversion 

problem in the MMSE equalizer. Finally, we evaluate the performance of the proposed 

system and confirm that it achieves good BER performance in mobile environments. 
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Chapter 1  
 
Introduction 

 

Orthogonal Frequency Division Multiplexing (OFDM) is a popular technique in 

modern wireless communication systems. There are many systems adopting this 

technique, such as IEEE 802.11 a/g/n, IEEE 802.16, IEEE802.20, Digital Video 

Broadcasting, Digital Audio Broadcasting, etc. In an OFDM system, the bandwidth is 

divided into several orthogonal subchannels for transmission. A cyclic prefix (CP) is 

inserted before each symbol. Therefore, if the delay spread of the channel is shorter 

than the length of the cyclic prefix, the intercarrier symbol interference (ISI) can be 

eliminated due to the cyclic prefix. On the other hand, subcarriers in OFDM are 

orthogonal to each other over time-invariant channels, so the conventional OFDM 

system only requires one-tap equalizers to compensate the channel response. This 

characteristic simplifies the design of the OFDM receiver, for this reason, the OFDM 

technique is widely used in wireless communication systems. 

The mobile transmission is a trend in future wireless communications. Many 

systems support the mobile transmission, such as IEEE 802.16e, IEEE 802.20, DVB-H. 

and these systems also adopt the OFDM technique. However, while OFDM system is 

applied in mobile environments, the variation of channels destroys the orthogonality 

among subcarriers and therefore the intercarrier interference (ICI) arises. The 

conventional one-tap equalizer is insufficient for the mobile OFDM system because 
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the ICI degrades the system performance; the ICI cancellation technique plays an 

important role in mobile OFDM systems. 

Many methods for ICI cancellation have been proposed. By mapping the data into 

groups of subcarriers, intercarrier interference self-cancellation scheme [1], [2] has 

been proposed. This scheme can reduce the computation complexity while sacrificing 

the transmission bandwidth efficiency. An error bound of the mobile OFDM system 

and an MMSE-SIC (minimum mean square error-successive interference cancellation) 

equalizer for canceling ICI are proposed [3]. Alternatively, an MMSE-PIC (parallel 

interference cancellation) equalizer is proposed in [4]. However, the computation 

complexity of these schemes is proportional to the square of the FFT size. On the other 

hand, some low complexity equalizers whose computation complexity increases 

linearly with the FFT size have been proposed in [5], [6], [7]. Those equalizers are 

based on approximations of the mobile channels. The ICI cancellation scheme in [5] 

can only be used in slow time-varying channel because of the rough approximation. An 

MMSE equalizer with a modified channel approximation and time-domain windowing 

technique for enhancing this approximation are introduced [6]. Another simple MMSE 

equalizer with the same channel approximation in [6] has been proposed [7] based on 

the LDLH factorization.  

This paper proposes a low-complexity MMSE equalizer based on the band 

channel approximation in [6] and a conjugate gradient based method with optimal 

preconditioning by employing the property of the mobile channel, which can reduce 

the complexity of the matrix inversion problem in the MMSE equalizer. The 

preconditioned conjugate gradient (PCG) algorithm is one of the best known Krylov 

subspace method for solving spare, positive definite systems of equations which is 

equivalent to the matrix inversion problem in the MMSE equalizer. Many kinds of 
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Krylov subspace methods are introduced in [8], [9], [10]. The iterative programs for 

simulations in this thesis are based on the template book [11]. 

This thesis is organized as follows. In Chapter 2, the general idea of the OFDM 

system and the challenges it is faced with mobile environments are described. In 

Chapter 3, the basic idea of the Krylov subspace methods and the conjugate gradient 

(CG) methods are introduced. In Chapter 4, the proposed interference cancellation 

scheme is presented and analyzed. We evaluate the performance of the proposed 

system and confirm that it achieves good BER performance in mobile environments. In 

Chapter 5, we conclude this thesis and propose some potential future works. 
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Chapter 2  
 
Overview of Orthogonal Frequency 
Division Multiplexing (OFDM) 
Systems  

 

In this chapter, an overview of OFDM systems will be given in Section 2.1. 

OFDM is an efficient technique for high data rate transmission such as IEEE 802.11 

a/g/n, IEEE 802.16. We will show the advantage of OFDM system and why traditional 

OFDM system can be efficient in frequency-selective environments. Furthermore, the 

challenge of OFDM system in mobile environments is presented in Section 2.2 and 

some existing techniques for mobile OFDM system is introduced in Section 2.3 

 

2.1 Orthogonal Frequency Division Modulation 

Systems  

OFDM is a special case of multicarrier transmission, where a single data stream is 

transmitted over a number of low data rate subcarriers. OFDM can be thought of as a 

hybrid of multicarrier modulation (MCM) and frequency shift keying (FSK) 

modulation scheme. The principle of MCM is to transmit data by dividing the data 

stream into several parallel data streams and modulate each of these data streams onto 
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individual subcarriers. FSK modulation is a technique whereby data is transmitted on 

one subcarrier from a set of orthogonal subcarriers in symbol duration. Orthogonality 

between these subcarriers is achieved by separating these subcarriers by an integer 

multiples of the inverse of symbol duration of the parallel data streams. With the 

OFDM technique used, all orthogonal subcarriers are transmitted simultaneously. In 

other words, the entire allocated channel is occupied through the aggregated sum of the 

narrow orthogonal subbands.  

The main reason to use OFDM systems is to increase the robustness against 

frequency-selective fading or narrowband interference. In a single carrier system, a 

single fade or interference can cause the entire link fail, but in a multicarrier system, 

only a small amount of subcarriers will be affected. Then the error correction coding 

techniques can be used to correct errors. The equivalent complex baseband OFDM 

signal can be expressed as 

 

1
2 1

2

2
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( ) ( ) ( )

0 Otherwise
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where Nc is the number of subcarriers, T is the symbol duration, dk is the transmitted 

subsymbol (M-PSK or M-QAM), 2( ) /kj f t
k t e Tπφ =  is the kth subcarrier with the 

frequency /kf k T= , and uT(t) is the time windowing function. Using the 

correlator-based OFDM demodulator, the output of the jth branch can be presented as 
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By sampling x(t) with the sampling period Td=T/Nc, the discrete time signal xn can be 

expressed as  

 

1 22

2

1  , 0 1
( ) IFFT{ }

0  ,   Otherwise

c
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cd

N kj n
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 (2.3)  

Note that nx  is the Inverse Fast Fourier Transform (IFFT) output of the N input data 

subsymbols. Similarly, the output of the j-th branch can also be presented in the digital 

form 
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In theory, the orthogonality of subcarriers in OFDM systems can be maintained 

and individual subcarriers can be completely separated by the Fast Fourier Transform 

(FFT) at the receiver when there are no intersymbol interference (ISI) and intercarrier 

interference (ICI) introduced by transmission channel distortions. However, it is 

impossible to obtain these conditions in practice. In order to eliminate ISI completely, 

a guard interval is imposed into each OFDM symbol. The guard interval is chosen 

larger than the expected delay spread, such that the multipath from one symbol cannot 

interfere with the next symbol. The guard interval can consist of no signals at all. 

However, the effect of ICI would arise in that case due to the loss of orthogonality 

between subcarriers. To eliminate ICI, the OFDM symbol is cyclically extended in the 

guard interval to introduce cyclic prefix (CP) as shown in Figures 2.1 and 2.2. This 

ensures that delayed replicas of the OFDM symbol always have an integer number of 

cycles within the FFT interval, as long as the delay is smaller than the guard interval.  
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Figure 2.1: OFDM signal with cyclic prefix extension. 
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Figure2.2: A digital implementation of appending cyclic prefix into the OFDM signal 
in the transmitter. 
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As a result, the delayed multipath signals which are smaller than the guard 

interval will not cause ICI. The complete OFDM signal with CP is given by 

 

1 2 ( )2
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where Ncp is the number of samples in CP. Due to CP, the transmitted OFDM symbol 

becomes periodic, and the linear convolution process of the transmitted OFDM 

symbols with the channel impulse responses will become a circular convolution one. 

Assuming the value of Ncp is larger than the channel length, the received signal vector 

can be expressed as 

   = +y Hx η
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Applying SVD on the channel response, we have 

  (2.7)  H=H UΣV

where U and V are unitary matrices, and  is a diagonal matrix. Substituting 

Equation (2.7) and the equalities of 

Σ

V  and UH= =x X Y y  into Equation (2.6), the 

received signal vector can be written as 
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guard interval can be written as  
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where H becomes a circulant matrix ( H=H F ΛF ) and Q is a discrete Fourier 

transform (DFT) matrix with the lth entry as 

 
21 c

lj
N

l
c

e
N

π−
=F  (2.10)  

As in Equation (2.8), the received signal y can be transformed into Y 

  (2.11)  N( )
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= +
Σ N

Y F y F Hx η F HF X F η

ΣX N
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According to Equation (2.11), by adding CP to the OFDM symbol, the modulation in 

OFDM is equivalent to multiplying the frequency domain signals of the OFDM 

symbol with the channel’s frequency response . Σ

The block diagrams of the OFDM transceiver is shown in Figure 2.3, where the 

upper path is the transmitter chain and lower path corresponds to the receiver chain. In 

the center, IFFT modulates a block of input values onto a number of subcarriers. In the 
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receiver, the subcarriers are demodulated by the FFT, which performs the reverse 

operation of the IFFT. In fact, the IFFT can be made using the FFT by conjugating 

input and output of the FFT and dividing the output by the FFT size. This makes it 

possible to use the same hardware for both transmitter and receiver. This complexity 

saving is only possible when the transceiver doesn’t have to transmit and receive 

simultaneously. The functions before the IFFT can be discussed as follows. Binary 

input data is first encoded by a forward error correction code. The encoded data is then 

interleaved and mapped onto QAM values. In the receiver path, after passing the radio 

frequency (RF) part and the analog-to-digital conversion (ADC), the digital signal 

processing starts with a training sequence to determine symbol timing and frequency 

offset. The FFT is used to demodulate all subcarriers. The FFT outputs are mapped 

onto binary values and decoded to produce binary output data. In order to successfully 

map the QAM values onto binary values, the reference phases and amplitudes of all 

subcarriers have to be acquired first.  
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Binary Output
Data

Coding Interleaving
QAM
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Insertion
Serial to
Parallel

Decoding
De-
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QAM
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Channel

Correction
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Parallel to
Serial

Serial to
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Add Cyclic Extension
and Windowing

DACRF TX

Remove Cyclic
Extension

Timing and Frequency
Synchronization

ADCRF RX

 

 

 

 

 

Figure2.3: Black diagrams of the OFDM transceiver. 
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In conclusion, OFDM is a powerful modulation technique that simplifies the 

removal of distortion due to the multipath channel and increases bandwidth efficiency. 

The key advantages of OFDM transmission scheme can be summarized as follows:  

1. OFDM is an efficient way to deal with multipath. For a given delay spread, 

the implementation complexity is significantly lower than that of a single 

carrier system with an equalizer.  

2. In relative slow time-varying channels, it is possible to significantly enhance 

the capacity by adapting the data rate per subcarrier according to the 

signal-to-noise ratio (SNR) of that particular subcarrier.  

3. OFDM is robust against narrowband interference because such interference 

affects only a small amount of subcarriers.  

4. OFDM makes single-frequency networks possible, which is especially 

attractive for broadcasting applications.  

 

2.2 Challenges to Orthogonal Frequency Division 
Modulation Systems in Mobile Environments  
 

The most important issue of the OFDM technique in time varying channels is that 

the ICI degrades the system performance. In this section, we will first introduce the 

mobile OFDM system model, and then discuss why the ICI is produced. 
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2.2.1 OFDM System Model over Time-Varying 
Channels  

The OFDM system model over time-varying channels is considered here. 

Assuming that  is the i-th “frequency-domain” symbols, the OFDM 

symbol can be converted to “time-domain” symbols by N-point IDFT operation as  

( ) ( )
0[ , ]i i i

Ns s −=s … 1
T

  
21

( )( )

0

1( ) ,   -
N j knii N

ck
k

x n s e N n
N

π−

=
= ∑ N≤ <

≤ <

where is the maximum delay spread of the channel, is the length of CP, and 

W

 (2.12) 

where x(n) is serially transmitted over noisy time-varying multipath channels, 

incorporates a cyclic prefix of length . The channel is modeled by the time-varying 

discrete impulse response, , which is defined as the response of time n to an 

impulse response applied at time n-l. 

cN

( , )h n l

The received sample sequence which is the convolution between the transmitted 

symbol and the time-varying channels can be written as 

  (2.13) 
1

( ) ( ) ( ) ( )

0
( ) ( , ) ,   0  

v
i i i i

n l n
l

r n h n l x n Nη
−

−
=

= +∑

v  cN  

nz  are the samples of additive white Gaussian noise (A GN), with variance 2σ . 

r the ISI free case, the delay spread of the channel should be shorter than the length 

of CP, as follows v N≤ . 

Fo

Then the receiver computes an N-point DFT operation to obtain the 

frequ

 

c

ency-domain signal 

21
( ) ( )

0

1( ) ,   -
N j mni i N

n c
n

y m r e N n N
N

π−

=
= ≤∑ <   (2.14) 
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Let (2 / )1( , )  , 0 , -1j N lk
N

l k e l k Nπ−= ≤F ≤

⎤
⎥
⎥
⎥
⎥⎦

1 1

i

+

⎥
⎥

−

 be the standard N-dimensional DFT 

matrix, Equation (2.12) can be written in matrix form 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )
0

( )

( ) ( ) ( )
1

( ) ( )

(0,0) 0 (0, 1) (0,1)

(1,1) (1,0) 0

(2,1) 0 ( 2, 1)

( 1, 1) 0 0

0 ( , 1) ( 1,0) 0
0

0 0 ( 1, 2) ( 1,0)

i i i

i i

i i i

i

i i i
N

i i

h h L h

h h

r h h L L

h L L
r h L L h N L

h N L h N

−

⎡ ⎤−
⎢ ⎥
⎢
⎢⎡ ⎤ − −⎢⎢ ⎥ ⎢=⎢ ⎥ − −⎢⎢ ⎥ ⎢⎢ ⎥ − + −⎣ ⎦ ⎢
⎢
⎢

− − −⎢⎣ ⎦

" "

% % #

# % %
# # % #

% #
# % % #

"

( ) ( )
0 0

( ) ( )
1 1

i i

i i
N N

x

x

η

η− −

⎥
⎥ ⎡ ⎤ ⎡⎥ ⎢ ⎥ ⎢⎥ +⎢ ⎥ ⎢⎥ ⎢ ⎥ ⎢⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣⎥
⎥
⎥
⎥

# #

  (2.15) 

( ) ( , )ih n l  represents the channel response of the l th tap at the time instance n, we can 

rewrite the above equation in matrix form as   

    (2.16) ( ) (i) ( ) ( ) ,   0  i i i n N= + ≤ <r H x η

where , , and , H is 

the time-varying channel matrix. Equation (2.16) can be rewritten as 

( ) ( )( )
0 1[ , , ]i ii T

Nr r −=r … ( ) ( )( )
0[ , , ]i ii T

Nη η −=η … ( ) ( )( )
0[ , , ]i ii T

Nx x −=x …

  (2.17) 
( ) ( ) ( ) ( )

( ) ( ) ( )

i i i

i H i i

= +

= +

r H x η

H F s η

We define  as the frequency domain channel matrix and Equation (2.14) 

can be rewritten in vector form as 

( )i H=(i)A FH F

  (2.18) 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

i i i i i

i H i i i i i

= = +

= + =

y Fr FH x Fη

FH F s Fη A s z

where  has the form (i)A

  (2.19) ( )
(0,0) (0, 1)

( 1,0) ( 1, 1)

i
A A N

A N A N N

−⎡ ⎤
⎢= ⎢
⎢ ⎥− −⎣ ⎦

A
"

# % #
"
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which is called “equivalent frequency domain channel”, and the non-diagonal terms of 

 produce the ICI. A

 

2.2.2 Intercarrier Interference in OFDM System due 

to Time-Varying Channels 

In time-invariant channels, the A matrix in Equation (2.19) will be a diagonal 

matrix, so the conventional OFDM systems can compensate the fading channel with 

one-tap equalizers. In time-varying channel, the A matrix is no longer a diagonal 

matrix, so it will have a poor performance if one-tap equalizers are used. It can be 

indicated that the non-diagonal terms in the A matrix are the ICI terms. 

We analyze the ICI power based on the theorem in [5], [6]. Assuming a typical 

wide-sense stationary uncorrelated scattering (WSSUS) channel model [12] as below 

   *{ ( , ) ( , )} ( ) ( )t lE h n l h n q l m r q mσ δ− − = 2

where  is the normalized tap autocorrelation, and ( )tr q 2
lσ  is the variance of the lth 

tap. 

Since the non-diagonal terms in the A matrix are the intercarrier interference 

terms, we will compute the power of these non-diagonal terms. Let ( , )A n l  be the n-th 

row, l-th column term of A, and  denotes the N-point rectangular window. 

Finally, we obtain 

( )u n

{ } { } ( )2 *
2

, , ,

1 2( , ) ( ) ( ) ( , ) ( , ) exp
n l m p

jE h c d u n u m E h n l h m p pk lk md nd
NN
π⎛ ⎞= × ⎜ ⎟

⎝ ⎠
∑ − + −

 2
2

,

1 2( ) ( ) ( ) exp( ( ))l t
l n m

ju m u n r n m md ndNN
πσ

∞ ∞

=−∞ =−∞
= −∑ ∑ −  
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 2
2

1 2( ) ( ) ( )exp( )l t
l p n

j pcu m u n r q NN
πσ

∞ ∞ ∞

=−∞ =−∞ =−∞

−= ∑ ∑ ∑  (2.20) 

where  denotes the nth supper or upper-diagonal. Assuming Rayleigh fading 

as in [10], we obtain  

( ,:h n± )

s 0( ) (2 )t dr q J f T qπ=  

 2 2

1  , 2
( ) (2 )

0                          ,    otherwise

d s
d s

f T
S f T

φ π
φ π φ

⎧ ≤⎪
= −⎨
⎪
⎩

 (2.21) 

where  denotes the first kind zeroth-order Bessel function, and 0J d sf T  is the 

maximum Doppler shift normalized to OFDM symbol rate. 
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Figure2.4: ICI variance versus c (c is the index of super- or sub- diagonal) 
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By Equations (2.20) and (2.21), we can simulate the power of the non-diagonal 

rms, which is the terms caused the ICI. Figure.2.4 shows the computer simulations 

ccording to Equations (2.20) and (2.21). We can observe that the coefficients of the 

equency domain channel matrix have most power on the central band and the edges 

f the channel matrix. One kind of channel approximation based on this property is 

escribed in Chapter 4. This channel approximation is the base of the low-complexity 

lgorithm which will be described later. 

 

2.3 Existing Techniques for OFDM Systems over 

ime-Varying Channels  

OFDM is a strong candidate for high-data-rate systems over wireless channels. 

High data rates give rise to frequency-selective channels, while mobility and frequency 

error

2.3.1 Intercarrier Interference Self-Cancellation 

ICI self-cancellation scheme is a simple 

way for suppressing ICI in OFDM system. It is to modulate one data symbol onto 

adjac

te

a

fr

o

d

a

T

s introduce time-selective channel. Due to the analysis in Section 2.2, we show 

that the traditional OFDM system is sensitive to time-varying channels. Some 

techniques have been proposed to mitigate the ICI. We will first introduce ICI 

self-cancellation scheme [1], [2], which is originally used in compensating frequency 

errors and also valid over time-varying channels. Then we will show the frequency 

domain equalizer technique for compensating the ICI. 

 

Scheme  

This method is proposed in [1], [2]. The 

ent pairs of subcarriers rather than onto single subcarriers. By this way, the ICI 

generated by these adjacent subcarriers can be “self-cancelled” by each orther. This 
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scheme is also called polynomial cancellation (PCC). We will first analyze the ICI 

with single frequency as in [1],[2], and then show why the ICI self-cancellation works. 

The received signal on each subcarrier can be seen as a linear combination of signals 

received via different paths with different Doppler shifts. So that this scheme can also 

be used in the practical mobile environments that have significant Doppler spread. 

The system architecture of the ICI self-cancellation scheme is shown in Figures 

2.5-2.6. The only difference between the OFDM system with the ICI self-cancellation 

e will show how this block works. 

 

tion scheme 

conventional scheme and the conventional OFDM system is the ICI self-canceling 

modulation/demodulation. W

 

 

 

Randomizer FEC Iinterleavr Modulation ICI Canceling  

Modulation 

IFFT Add DAC Filter RF 

DATA 

CP 

Figure2.5: Transmitter architecture of ICI self-cancella
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Figure2.6: Receiver architecture of ICI self-cancellation 

 

Let the n-th OFDM transmission data be
2121

0
( ) c

N j mnj f t N
mN

m
x n e s e

π
π

−

=
= ∑

e that the signal is mixed with a loca

. In the 

receiver, we ignore the noise terms and assum l 

oscillator which has frequency mismatch fΔ  with the transmitter oscillator. Then the 

demodulated signal in the receiver before FFT can be written as 
21

(2 )1

0
( )

N j mnj ft N
mN

m
r n e s eπ θ

−
Δ +

=
= × ∑

optimum timing. After the samp

π

, and assuming this signal is sampled at the 

ling, the signal can be rewritten as 

 
22 1( )

0

1( )
n fT N j mnjj N N

k
m

r n e e s e
N

ππ
θ

Δ −

=
= × × ∑  (2.22) 

The sampled signal after DFT are given by  

 
21

0
( )

ndN j
N

n
n

y d r e
π− −

=
= ∑  (2.23) 
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interleaver
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By E ved signals after sampling anquations (2.22) and (2.23), we have the recei d DFT  

 
2 22 1 1

0 0
( )

ndn fT N N
j ( )1 j mn jj N N N

m
n m

y d e e s e
N

π ππ
θ

Δ − −

= =
= × ∑ ∑  e

 
21 1 ( )

0 0

1
nN N j m dj N

me s e
N

π
θ

− − −
= × ∑ ∑

The analysis of ICI terms can be done by defining  complex weighting, 

fT

n m

+Δ

= =
 (2.24) 

N 0 1Nc c −" , 

which is the contribution of each input signal 0 1Ns s −" . 

N
 

0
( ) j

m d m
m

1
y d e c sθ

−
=

= ∑  
−

(2.25) 

Compared Equations (2.24

 

) with (2.25), we have the complex weighting written as  

21 ( )

0

1
nN j m d fTj N

m d
n

c e e
N

π
θ

− − +Δ
−

=
= × ∑   

 ( ) ( 1)( )sin1

sin ( )

N m d fTjm d fT ππ − − ++Δ− + Δ Nem d fTN
N

π
=

− + Δ
 (2.26) 

By the aforementioned equation, we show the complex weighting value in Figure 2.7. 

The figure shows a smooth curve, this w

works. 

th alled IC

the data ne onto adjacent subcarriers 

w h different 

ill be the key point why ICI self-cancellation 

Zhao and Haggman��  have proposed a me od to mitigate ICI c I 

self-cancellation scheme. This scheme maps to

it h as 0 1 2 3 2 1, , , N Ns s s s s s− −= − = − = −… . The difference signs, suc

between the adjacent coefficients is small, and the adjacent subcarriers map to the 

be 

self-canceled by each other. The received signal after FFT can be written as 

same data with different signs. The ICI produced by adjacent subcarriers will 
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2

1
0

( ) ( )
N

j
m m d m d

m
m even

y d s e c cθ
−

− + −
=
∈

= −∑

2
1

0
( 1) (

N
j

m m k m d
m
m even

y d s e c cθ
−

− − −
=
∈

+ = −∑ )  (2.27)  

In order to maximize the output SNR, the values ( )y d , ( 1)y d + should be subtracted 

in pairs as shown below  

 (y� ) ( ) ( 1)d y d y d= − +  

 ]j
2

1 1 1
0

N
m m d m d m d m d m k

m
( )[2

m

s e c c c c cθ= − − −∑  (2.28) 

even

−

− + − − + − − −
=
∈

where ( )y d  is the symbol that will be demodulated to obtain the information bits. By 

this way, the overall system SNR increases by a factor 2, due to the coherent addition. 

 

�

 

 

 

 

 

 

 

 

 

Figure2.7: ICI cofficients of different subcarriers 
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A disadvantage of this system is that its bandwidth efficiency is only half of the 

conventional OFDM system. There are some new researches to improve the bandwidth 

ancel the ICI produced by a frequency error due to mismatch between the transmitter 

nd receiver oscillators in the above description. In real mobile environments, the 

ceived signal on each subcarrier can be seen as a linear combination of signals 

ceived via different paths with different Doppler shifts. So this scheme can also be 

sed in the practical mobile environments that have significant Doppler spread. 

 

.3.2 Frequency Domain Equalizer Scheme  

Frequency domain equalizer is a method which is used frequently in 

ompensating the ICI of OFDM systems in mobile environments. The transmitter 

rchitecture is the same as conventional OFDM system. Besides, a frequency domain 

equalizer after FFT FDM systems in 

the receiver before FFT are usually called the “Time Domain Signals”, and those after 

FFT are called the “Frequency Domain Signal”. By this definition, the frequency 

domain equalizer equalizes the received signal after FFT. There are many equalizers 

technique can be used here with different performance and complexity, such as block 

minimum mean square equalizer (MMSE) or block Zero-forcing (ZF), FIR equalizer, 

etc. The block of MMSE and ZF equalizer is shown below. 

efficiency, such as in [13]. We only show that ICI self-cancellation scheme can self 

c

a

re

re

u

2

c

a

 is added as shown in Figure 2.8. The signals of O

 
2

1( )H H
MMSE N2

s
W H H I Hησ

σ
−= +  (2.29) 

1( )H H
ZFW H H H−=  (2.30)  
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where W is the equalizer weighting, H is the channel matrix in time domain, 2
ησ  is 

the noise power, and 2
sσ  is the signal power. Some low-complexity equalizers have 

already been proposed, as in [3], [4], [5], [6], [7]. This paper also proposed a 

low-complexity technique based on the block MMSE equalizer and will be shown in 

Chapter 4.  

 

Figure2.8: OFDM receiver architecture with frequency domain equalizer 

 

 the OFDM system over time-varying channels. In particular, the ICI is 

e major subject of interest. We also introduce some existing techniques for solving 

this problem, such as the ICI self-cancellation schemes and the frequency domain 

equalizer schemes. Finally, modified OFDM systems for time-varying channel are 

presented. 

 
2.4 Summary 

In this chapter, we first introduce the traditional OFDM system, and show the 

challenges to

th
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Chapter 3  
 
Introduction to Conjugate Gradient 
(CG) Algorithm 

asic concept of projection and then introduce the Krylov 

subs

3.1 Projection Methods 

We will first show the general projection theory [9], [10] and then show the 

projection can minimize error between the real solution and the approximate solution 

obtained by the projection methods. 

 

 

 

 
We will first show the b

pace and some krylov subspace methods that are the predecessor of conjugate 

gradient methods. The evolution from basic Krylov method to conjugate gradient 

method is shown in Section 3.4. The Krylov subspace method is currently to be the 

most important iterative technique for solving large linear systems, and the CG 

algorithm is a mature algorithm in this topic.   
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3.1.1 General Projection 

 practical iterative techniques for solving linear systems 

. A projection method can be seen as a scheme of extracting 

 approximate solution of a linear system from a subspace. We call this subspace the 

arch subspace or the candidate approximants denote by K. Assume that it has the 

he 

of these constraints is l independent conditions. 

e define a subspace L, which is called the subspace of constraints or left subspace. 

ere are two kinds of projection methods, orthogonal and oblique. An orthogonal 

proje

Most of the existing

utilize a projection method

an

se

dimension n. In general, there should have n constraints be imposed to be exacting t

approximate solution. A typical way 

W

Th

ction means that the subspace L is the same as K. The oblique projection means 

that the subspace L is different from K, and they can have some relationships or be 

totally uncorrelated.  

We show the mathematically approach of projection the technique. A projection 

technique onto the subspace can obtain approximated solution x̂  by 

 ˆSearch x K∈  and ˆb Ax L− ⊥  (3.1) 

or with initial guess 0x  

 0ˆSearch x x K∈ +  and ˆb Ax L− ⊥  (3.2) 

Defining the initial residual vector  as 0 0 0r -r b Ax= , then Equation (4.2) can be 

written as  

 0ˆ ,x x Kσ σ= + ∈   

0( - , ) 0,  r A q q Lσ = ∀ ∈  (3.3) 

Let be a basis of K, and 1[ , ]nP p p= …  1[ , ]nQ q q= …  be a basis of L. Then the 

approximate solution in Equation (4.3) can be written as  
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 0ˆ  x x Py= +  (3.4) 

By 0  and ( ) 0b Ax b Ax AVy− = − − TQ b Ax− = , we have  

 1
0( )T Ty Q AP Q r−=   (3.5) 

By Equations (4.4) and (4.5), we have the projection method based on Equation (4.2) 

in the matrix form, which is 

 1
0 0ˆ ( )T Tx x P Q AP Q r−= +  (3.6) 

 

3.1.2 Property of the Projection Method 

We will show that orthogonal projection solution can minimize the error between 

the desired solution and the approximate solution as in [9]. Let P is the orthogonal 

projector onto a subspace K, x  is the desired vector, and y  is the arbitrary vector in 

subspace K. Because of the orthogonality between x and Px , we have 

2 2 2 2 ,   x 2 2 2 2y x Px y− = − − =

Therefore,

Px x Px Px y y K+ − + − ∈  (3.7)  

2 2,y K x y x Px∀ ∈ − ≥ − , we know that the orthogonal projection can 

m nimize 2-norm error between y . Let 'y  is the orthogonal projection from x  and i

x  onto subspace K, and then we have

 
y K

 

′∈
x y K′− ⊥

 (3.8) 

If A is a symmetric and positive definite matrix, we can derive the similar result that 

orthogonal projection can minimize A-norm error between x  and y . By Equation 

(4.6)

 ( ( ), ) 0 ,  

, we have 

A x y q q K′− = ∀ ∈  (3.9) 
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Ax b= ,By  Equatio

′− = ∀ ∈ (3.10) 

T s is called the Galerki

n (4.7) can be rewritten as 

 K  ( , ) 0 ,  b Ay q q

hi n condition which defines an orthogonal projection [9].  

Let A is an arbitrary matrix, and L AK= . The oblique projection onto K  and 

orthogonal to L  will minimize the 2-norm  the residual vector . The 

derivation is similar as the orthogonal projection. Then we have  

  (3.11) 

his is called the Petrov-Galerkin condition which defines an oblique projection [9]. 

3.2

The Krylov subspace is a subspace of the form [8],[9],[10] 

(3.12) 

By this definition, we know that is the subspace of all vectors in 

 of ˆr b Ax= −

( , ) 0 ,  b Ay v v AK′− = ∀ ∈

T

 

. Overview of Krylov Subspace   

 2 -1
0 0 0 0 0( , ) span{ , , , }…m mK A r r Ar A r A r=  

mK  n that can be \  

xwritten as 0( )*polynomial A r=  and

fied system first. Then  is an 

approximate so

should satisfy 

n as a new linear system 

  

 the degree of polynomial do not exceed 0r . 

We will show the iterative methods are located in the Krylov subspace. Solving 

x b= , we may solve the simpliA 0Tx b= 0x

lution forx . We may correct the approximation 0x  with δ , so δ  

 0( )A x bδ+ =  (3.13) 

This can be see

 (3.14)0A b Axδ = −
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We olve Equation (3.13) by a simplified may s  approximate system  

 (3.15) 

rrect 

the approx

By settingT I  the Equation 

) 

Multiplying Equation (3.16) by  and adding , we have 

(3.18) 

that 

1( ) ( )ii i ir I A r I A r p+
+ += − = − =

 0T b Axδ = −

Then the new approximate solution will be 1 0 0x x z= + . We may again co

imate solution with the same process respect to 1x . Therefore, we have 

 
1

1( )

i i

i i

x x

x T b Ax

δ+

−

= +

= + −
 (3.16) 

= , (3.13) can be written as 

 1 ( ) ( )i i i i i ix x b Ax b I A x x r+ = + − = + − = +  (3.17

A− b

 1i i ib Ax b Ax Ar+− = − −  

is the same as  

 0( )A r  (3.19) 1
1 0

By 1i ir I A r+ ≤ − , this result shows that we have guaranteed the convergence 

for any in 1  Assuming that A  has n eigenvectors  witial  if 0r I A− ≤ ith 

corresponding eigenvectors 

ia

jλ , we write the initial residual 0r  as 

i iaξ= ∑  (3.20) 

By Equation (3

 
i

r
=

.16), we have 

n

i ir p A r= =

al of the system depends on how well the 

polynomial ip  dam

0
1

n

 ( )i i i i
i

p aξ λ
=
∑  (3.21) 0
1

( )

Equation (3.18) shows that the residu

ps the initial error. 
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By Equation (3.14), the i-th approximate solution ix  can be expressed as 

ix x r= + +

 
k=

  (3.22) 

The aforementioned discussion shows that iterative methods are located in the 

space (see Section 3.1), different 

projection methods can be obtained, such as orthogonal or oblique projection, and 

different kinds of iterative techniques have been derived. They have different 

 on a case by case basis. 

Usually, the characteristic of 

iterative method. Choosing an appropriate method can have significant improvement 

ate and the complexity. 

 

3.3 Krylov Subspace Methods 

m kinds of K e

 an ow volution from the 

basic projection, the Arnoldi’s m

symmetric Lanczos algorithm and the CG algorithm. 

3 .1 Arnoldi’s Algori

 is a method that builds an orthogonal basis of 

 1 1ir r −+ +…  0 0

1

0 0( )
i

kx I A r
−

= + −∑  
0

1
0 0 0 0 0{ , , } ( , )i ispan x r Ar A r K A r−∈ ≡…

Krylov sub . By different definitions of K  and L  

convergence rates. One should choose the best iterative method

A  plays an important role in choosing the appropriate 

on the convergence r

There are any rylov subspace m thods, and we focus on the 

predecessor of CG methods, d the CG method. We will sh  the e

ethod, and then derive other simplified methods: the 

 

.3 thm 

Arnoldi’s algorithm is a basic orthogonal projection method. This scheme was 

first introduced in 1951 by Arnoldi. This
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th bspace by 

orthogonal projection. The basic Arnoldi’s algorithm can be found in [9]  

e Krylov subspace and finds an approximate solution on the Krylov su

Algorithm 3.1 Arnoldi’s Algorithm 

 1 1Choose a vector ,  1p p =  

 for 1 ~j m=  

 for 1 ~i j=  

 h ( , )ij j iAp p= , 
1

j

j j ij i
i

b Ap h p
=

= −∑  

 
2

1,j j jh w+ =  

 1,If 0, Stopj jh + =  1 / 1,Else j j j jp w h+ +=  

The above process builds an orthogonal basis by a Gram-Schmidt process. The 

above algorithm can be rewritten in the matrix form as   

j j j
 1, 1

1 1 1

1

j ij i j ij i j j j ij
i i i

Ap h p b h p h p h p+ + i

+

= =
 (3.23) 

Assu

(3.24) 

(3.25) 

where  has the form 

=
= + = + =∑ ∑ ∑

ming mP  is the n m×  matrix containing the m  vectors that forms an 

orthogonal basis of the Krylov subspace. We can rewrite Equation (3.22) in the matrix 

form as 

 1m m mAP P H+= �  

 m m mP AP H=  T

mH�
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mh h h h
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1, ( 1)

0

0 0 0

m

m

m m m m

h h h h

h

h +

0 mmh

+ ×

⎢ ⎥

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥

"

" #�  

⎢ ⎥
⎢
⎢ ⎥⎣ ⎦

"

# % #

#

(3.26) 

is a Hessenberg matrix obtained by deleting the last row in  

The above process produces an orthogonal basis of the Krylov subspace. By 

Equations (3.4) and (3.5), orthogonal projection means that the subspace L is the same 

as . We have  

⎥
# # %

mH  mH� .

 K

 0  mx x Py= +  (3.27)

1 1 0 0 12( ) ( )T T
my P AP P r H r e− −= =  (3.28) 

Combining Equations (3.26) and (3.27), we have the equation for orthogonal 

projection onto Krylov subspace as 

1
0 0 2 ( )m m m 1  x x P H r e−= +  (3.29) 

 

Algorithm 

A method is called the full orthogonalization method (FOM) that searches the 

o ogonal basis 

approximate solution by Equation (3.28). There are some modified methods that have 

om  FOM method. Restarted FOM is to restart the Arnoldi’s 

algorithm periodically. Incomplete orthognoalization process (IOM) is to truncate 

3.3.2 Krylov Subspace Methods Based on Arnoldi’s 

rth of the Krylov subspace by Arnoldi’s theorem and finds the 

lower c plexity than the
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the bases generated by the original Arnoldi’s algorithm. We find the new basis only 

orthogonal to several bases that have already been found.  

Algorithm 3.2 IOM Algorithm 

 1 1Choose a vector ,  1p p =  

 for 1 ~j m=  

 for 1 ~ max(1, - 1)i j t= +  

 ijh ( , )j iAp=
j

p ,
1

j j ij i
i

b Ap h p
=

= −∑  

2
1,j j jh w+ =   

1,If 0, Stopj jh + =  1 / 1Else ,j j j jp w h+ +=   

1
0 0 12m mˆ ( ) x x P H r e= +  

Direct incomplete orthogo

progressive method in solving the approximate solution. Based on the above algorithm, 

the Hessenberg matrix  in Equation (3.24) will be a band matrix with upper 

 as 

follows 

,( 1)

0 0
0

t

m m mm

h h h

−

−

nalization method (DIOM) derived from IOM is a 

mH

bandwidth equal to 1t −  and lower bandwidth equal to 1, which can be shown

h h11 1⎡ ⎤

 

21 22 2

32 33

43 ( 1),

0 0
0

0
0 0 0

t

m
m t m

m m

h h
H h h

h h

− +

⎢ ⎥
⎢ ⎥

×

⎢

⎢ ⎥

⎣ ⎦

… …
… #

⎥
⎢ ⎥=
⎢ ⎥

⎢ ⎥
⎢ ⎥

%…
# … %

# # % % #
#

 (3.30) 
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Take the LU factorization of this matrix. Because mH  is a Hessenberg band 

matrix with bandwidth equal to 1t + , its LU factorization will have the form that the 

lowe wer triangle matrix, and the upper triangle matrix 

has upper bandwidth equal to 

r triangle matrix is a unit band lo

1t − . These two matrices are shown below. 

 
0 0

0
0 0

0 0 1

m

m m m m

l
lL

l −

21

22

, 1

1 0 0
1

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
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…

# % #
# % %

#

 

0 0
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− +
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×
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 (3.31) 

Then Equation (3.28) can be written as 

 1 1 1
0 0 1 0 0 12 2 ( ) ( )m m m m m mx x P H r e x P U L r e− − −= + = +  (3.32) 

We define m mG P U= 1
m
− , 1

0 12( )m mc L r e= , then Equation (3.31) can be rewritten as 

  m

−

m mx 0x G c= +  (3.33) 

By the definition of  and mG m m mG U P= , let be the columns of  and 

we have 

  (3.34) 

The above equation can be rewritten as 

 

1 ~ mg g  mG

1

1

t
km k mm m m

k m t
u g u g p

−

= − +
+ =∑

1

1

1 ( )
t

m m k
mm k m t

g p uu
−

= − +
= − ∑ m kg  (3.35) 
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By the definition of mc , we have 

 m
m

c
c 1m

η
−    

where 

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

                                                  (3.36)  

, 1 1m m m mlη η− −=  

By Equation (3.32), we have the iterative equation as 

 
0

0 1 1

1

 m m m

m m m m

m m m

x x G c
x G c g
x g

η
η
− −

−

= +

= + +

= +

 (3.37) 

In FOM and IOM algorithm, we require an orthogonal basis to solve the 

approximate solution. By Equation (3.36), we have a progressive method to solve mx , 

which can solve the projection problem iterativel

algorithm which is mathematically identical to the IOM algorithm, but a progressive 

version.                   

y. Finally we have the DIOM 

 Algorithm 3.3 DIOM Algorithm 

 1Choose a vector p  

for 1 ~j m=  

 for -i t= +1)j  1 ~ max(1,

 ijh ( , )j iAp p= ,
1

j

j j ij iAp h p= −∑  
i

b
=

2
 1,j j j+  ,h w= , = se 1,If 0, Stopj jh + 1 / 1El j j jhjp w+ +=  

1

1

1 ( )
t

m m km
mm k m t

g p uu
−

= − +
= − ∑ kg   

 0 1 , 1 1,   m m m mp lη η η− −= = m m m  mx 1x gη−= +  

 33



 

3.3.3 Symmetric Lanczos Algorithm 

The symmetric Lanczos algorithm is a simplified Arnoldi’s method in which the 

mmetric. When solving in the assumption that AAx b=  matrix is sy  is symmetric 

 a symmetric matrix, 

hence it is a tridiagonal matrix. We can reduce the computational complexity by this 

characteristic. A three-term r

algorithm. 

m m m m

a b

b a

matrix, the Hessenberg matrix mH  in Equation (3.24) is also

ecurrence equation can be found based on the Arnoldi’s 

The Hessenberg matrix mH  in Equation (3.24) should have the structure as 

follows 

 

1 2

m
m

b a
H

b
2 2

×

⎡ ⎤

⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Then the Arnoldi’s theorem can be simplified to the Lanczos Algorithm as in [8] 

⎢ ⎥

%
 (3.38) 

Algorithm 3.4 Lanczos method 

 1 1Choose a vector ,  1p p =  

 for j=1~m  

 1j j j jpt Ap b −= − , )( ,j j ia Ap p=  

j j jt t a p= − , j
2

1j jb w+ =   

11If 0, Stopjb + = 1 /else j j jp w b+ +=    
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Then we can find the orthogonal basis of the Krylov subspace by Lanczos’s 

theorem, and find the approximate solution by Equation (3.28), if A  is symmetric. 

This process will require fewer computations than the Arnoldi’s method.  

basis based on the Lanczos algorithm. Then we can use Equation (3.28) to 

find 

 

An algorithm similar to the DIOM algorithm can be derived. It is called the 

D-Lanczos algorithm. Because the H

LU factorization in Equation (3.30) can be written as  

0 0m

⎡ ⎤

⎢ ⎥

"

% %

 

3.3.4 Conjugate Gradient Method 

Like the FOM algorithm in the assumption that A  is symmetric, we can build an 

orthogonal 

orthogonal projection onto the Krylov subspace which is the desired approximate 

solution.

essenberg matrix mH  is a tridiagonal matrix, the 

 1 1r
L

⎢ ⎥
⎢ ⎥=

% #
 

1 0 0

0 1m m mr ×
⎢ ⎥
⎣ ⎦#

1 1

2

0
0 0

0
0 0

m
n

m m m

h o
h

U
o
h ×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
%

# %
#

  (3.39) 

By Equation (3.38), Equation (3.32) can be simplified to 

  (3.40) 

quation (3.39) can be rewritten as 

1m m m m mh g o g p−+ =

E
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1 ( )m m m m
mm

g p o gh= −  (3.41) 

Then we have the D-Lanczos algorithm by replacing the equation o

 

f computing 

 in DIOM algorithm (algorithm 3.3) with Equation (3.40). Because the 

approximate solution is iteratively found by 

gm

 1 m m m mx x gα−= +  (3.42) 

wher

gate that is 

e mg  is called the searching direction vector. The CG method can be derived 

from the D-Lanczos algorithm by two properties. The first is that the residual vectors 

are orthogonal to each other and the second is that the search direction vectors mg  

are A-conju ( , ) 0,  i jAg g i j= ∀ ≠ . 

The residu

m m m

al vector can be written as  

 1 1 1m m m m mr Ax b A x g b
r Ag1 1 1

  ( )η
η

− − −= − = + −

= −
 (3.43) 

− − −

And the search direction vector mp  can be found by 

 1 1m m m mg r gξ − −= +  (3.44) 

The coefficients  and mη  1mξ − can be found by the aforementioned two properties. 

Finally, we have the CG algorithm, which is one of the best known iterative techniques 

in solving the symmetric positive definite (S.P.D) system. 
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Algorithm 3.5 Conjugate gradient method 

0 0 0,  r b Ax g r= − =  

for j=0~convergence  

 ( , ) /( , ) T T
j j j j j j j j jr r Ag g r r g Agα = = , 

1 j j j jx x g 1j j j jr r Agα+ = −   α+ = +  

1, 1 1 1
T T( ) /( , )j j j j j j j j j+ + + + 1 1r r r r r r r rβ = =  j j j jg r gβ+ += +   

In this chapter, we first introduce the 

algorithm from basic projection theory. CG algorithm is one of the best known 

iterative techniques for solving a symmetric positive definite (S.P.D) system. We will 

use the PCG algorithm fo

r. 

 
 
3.5 Summary  

concept of projection and derive the CG 

r solving the matrix inverse problem in the MMSE equalizer 

in the next chapte



 

 
 

Chapter 4  
 
Proposed Low-Complexity 
Frequency Domain Equalizer 

a es are introduced briefly in Chapter 2. In 

ximation based on the previous analysis is shown 

in th

ions are shown in Section 4.5 

 

4.1 Band Channel Approximation  

The magnitude of the frequency domain channel matrix is shown in Figure 4.1. 

The channel model is the Jakes model and the normalized Doppler spread equals 0.1. It 

is shown that the most significant coefficients are those on the central band and the 

edges of the matrix, which is similar to the analysis of the channel in Chapter 2. In 

order to reduce the computation complexity, the smaller coefficients are ignored and 

only the significant coefficients are dealt with. Although there are some losses in the 

 

The frequency dom in equalizer schem

this chapter, the band channel appro

e first place. By this approximation, some techniques have been proposed to 

reduce the complexity of different equalizers as introduced in Section 4.2. In addition, 

an MMSE equalizer based on the CG method with optimal preconditioning is proposed. 

And then we compare the complexity of this scheme with some other methods. Finally, 

performance simulat
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BER performance, the computation complexity of mobile OFDM systems can be 

duced greatly. 

n channel can be approximated as in Figure 4.2, [5], [6]. We 

n only take account of the coefficients in the shaded region and ignore other 

efficients. Then a frequency domain channel matrix with bandwidth Q as shown in 

n [6] can enhance this 

 

re

The frequency domai

ca

co

Figure 4.2 is processed. A time-domain technique discussed i

approximation. 
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Figure 4.1: Amplitude of frequency domain channel matrix in Jakes model  
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Figure 4.2: Structure of approximate frequency domain channel  

 

4.2 Existing Low-Complexity Frequency Domain 

Equalizers 　  

Two important low-complexity frequency domain equalizers will be introduced, 

which are proposed in [4], [6]. The main ideas behind them are also the band channel 

approximation. We adopt the mobile OFDM signal model introduced in Chapter 2, 

Equation (2.17), and ignore the superscript  giving  

 
+

Q+1 Q 

( )i

H

= = +

= + =

y Fr FHx Fη

FHF s Fη As z
  (4.1) 

A l e 

received signal. The weight computations are based on 

 

inear minimum mean square equalizer (LMMSE) can be used to equalize th

2Harg  min  E{ W }mmse = −
W

W y s  (4.2) 

It can be easily derived that the optimum weights in the above equation are  

Q 

Q 
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11( )H
mmse zz

−= +W AA R
SNR

 A  (4.3) 

where  is the equivalent channel in the frequency domain as shown in 

is the autocorrelation matrix of the noise. The equalized 

signal can be written as

H=A FHF

Equation (4.1), and zzR  

 H
mmse=d W y , and then the receiver make decision based on 

this equalized signal. In Equation (4.3), an N N×  matrix inversion is required. It 

requires computations which is too expensive to be realized for a large N. 

One should apply a low complexity algorithm to solve this problem.  

By the idea that the ICI only comes from the neighborhood subcarriers, Xiaodong 

Cai and Georgios B. Giannakis proposed a low-complexity LMMSE equalizer in [4], 

Assuming that is the desired signal to be solved, it can only take the  rows 

of the matrix for computing the LMMSE weight vector. It means we are only 

riers out of th neighborhood, as shown in Figure 4.3. 

Because the significant parts of the ICI come from the neighborhood subcarriers, this 

assum

3( )O N  

is  2 1Q +

A  

concerned with the ICI coming from the 2Q neighborhood subcarriers, and ignore the 

ICI produced by the subcar e 2Q

ption is meaningful.  

The 2 1Q +  rows of A  matrix for calculating the LMMSE weight vector for s  

is (( - 1 ),:),  1, 2 1i Q j j Q= + + = … +A A , let ( - 1 ),  1, 2 1i Q j j Q

i

i i = + + = … +y y , 

( - 1 ),  1, 2 1i Q j j Q= + + = … +z z , Equation .1) can be r (4 ewritten as 

i

i

i i i= +y A s z  (4.4) 

Therefore the equation for computing the LMMSE weights from Equations (4.3) and 

(4.4) can be written as 

1
,

1( H
mmse i i i zi i

−= +w A A R
SNR

) A  (4.5)  

where  
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( , )A i Q N−( ,1) ( , )

(2 1) ( )( , ) ( , ) Q NA i Q i A i Q N + ×" "

is a part of the origina atrix, is a part of the autocorrelation function. 

This technique can be seen as ge system into several small systems, 

which can be easily solved. Note that the last 2Q  rows of the matrix 

( ,1)
i

A i Q A i Q i

A i Q

− −⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

A
" "

# % # % #  (4.6) 

l channel m

 partitioning a lar

ziR

( )H
SNR+A A  in Equation (4.5) is the same as first 2Q  rows of the matrix 1

i i ziR

( )( )1H +A A R . The inverse can be calculated recursively as in1 1 1i i z iSNR+ + +  [4]. Because 

the s

 
 

 

Figure 4.3: MMSE

pproach is proposed by Philip Schniter in [6].  We call this 

scheme the Partial MMSE equalizer for 

channel approximation as described in Section 4.1. Assume that we want to retrieve 

l . We define 

( ,1) ( , ) ( , 1) ( , )N NN N Q N N Q N N

A A A

A

sA A A A− +

⎡ ⎤

tep of computing H
i iA A  requires at least 2( )O N  computations, this algorithm 

also requires 2( )O N  computations to solve the LMMSE problem. 
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 equalizer (proposed by Xiaodong Cai and Georgios B. Giannakis) 

 

Another similar a

simplicity. This method applies the band 

isthe signa
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(2 1) (4 1)

( , 2 ) ( , ) 0
0

( , ) ( , 2 )
i

Q Q

A i Q i Q A i Q i

A i Q i A i Q i Q + × +

− − −⎡ ⎤
⎢ ⎥′ = ⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

A
" "
% # %

# "
  (4.7) 

Then the size of the matrix to deal with can be reduced to (2 1) (4 1)Q Q+ × +  rather 

(2 1) ( )Q N+ ×  in the first method. The system can be rewritten as in Equation (4.4) 

with iA  replaced by i′A  in Equation (4.6), and the LMMSE equalizer can also be 

utation of LMMSE weights is similar to Equation (4.5) as follows  applied. The comp

 11 − ′R A  (4.8) 

Because it only requires ( )O N  computations to compute i i

, ( )H
mmse i i i zi i′ ′ ′= +w A A

SNR

H′ ′A A , this algorithm 

quires computations to solve the LMMSE problem. 

 

 

 

 

 

 

Figure 4.4: Partial MMSE eqaulizer (proposed by Philip Schniter) 
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4.3 Proposed Preconditioned Conjugate 

Gradient (PCG) MMSE Equalizer 

by using precond

conjugate gra

 

4.3.1 Preconditioned Conjugate Gradient (PCG) 

ne of the serious defects of iterative methods is the lack of robustness. CG 

In this section, a low-complexity LMMSE equalizer itioned 

dient algorithm for solving the matrix inversion problem is proposed. It 

will be shown that the complexity of this method is ( )O N  and have similar 

performance but further computations than Partial MMSE equalizer. 

Algorithm  

O

works regularly if the system is well conditioned. Because CG is a project technique to 

the Krylov subspace mK  which is the subspace of n\ , it will converge in at most n 

iteration. The convergence rate of CG is related to the condition numberκ  which is 

defined as follows 

    max

min

λκ
λ

=  (4.9) 

where maxλ  and minλ  are the maximum and minimum eigenvalue of the A matrix. If 

the condition number is large, the CG algorithm will converge slowly. This 

charac tistical 

haracteristic of 

teristic limits the application of CG algorithm. However, if some sta

A  c is known, it can be utilized to achieve faster convergence rate and 

en the system will be more robust. This is the idea of preconditioning which is a 

technique to better the condition number of the system.  

Assuming 

th

M is the precondition matrix. Then the basic precondition method is 

to solve th  e system 1 1M Ax M b− −=  instead of Ax b= . Therefore, the system 
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convergence rate depends on the condition number of the precond

1

itioned system 

M A . If 1M A−− M  is chosen appropriately, the condition number of  can be 

 solving the system smaller than the original matrix A . For this reason,

1 1M Ax M b−=  will converge quickly. 

There are some criteria for choosing the precondition matrix 

−

M , which is 

introduced in [8], [9], and [10].  

1. M is a good approximation to  some sense  A in

2. The cost of the construction of M is not prohibitive 

3. The system 1M x− b=  is much easier to solve than the original system 

We may choose appropriate precondition matrix M  according to the criteria above. 

However, it is not necessary to solve the problem 1 1M Ax M b− −= ; it only requires 

modifying the original CG algorithm into a preconditioned version. We will derive the 

PCG algorithm based on the CG Algorithm introduced in Section 3.3. Some parts of 

this derivation can be found in [14].  

Assum M is a symmetric positive-definite matrix, the Cholesky factorization 

o s S. Tha

ing 

f M i t is TM SS= . The matrix 1M A−  will have the same eigenvalues 

as . The syst  1S AS− em Ax b= can be transformed to 1 1ˆTS AS x S b− − −= , Tx S x′ = . 

Then the matrix S A−  is also a symmetric positive-definite matrix, so we can 

apply the CG method to solve the above question, as follows 

1 T−

  1 1
0 0 0 0,  Tr S b AS x g r− − −′ ′

S

S= −

 

=  

for j=0~convergence  

1T T T
j j j j jr r g S AS gα − −′ ′ ′ ′= , 

 1 j j j jx x gα+′ ′ ′= +  
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 1
1 T

j j j jr r S AS gα − −
+′ ′ ′= −  

 1 1
T T

j j j j jr r r rβ + +′ ′

 

′ ′=  

1 1j j jg r jgβ+ +′ ′ ′= +   

TThen we define 1 jr S r−′ = , j jg , above algorithm can be rewritten as  

 

 

g S′ =

0 0 0 0,  r b Ax g r= − =  

for j=0~convergence  

1T T
j j j j jr M r g Agα −=  

  1j j j jx x gα+ = +  

 1 j j j jr r Agα+ = −  

 1 1
T T

j j j j jr r r rβ + +=  

1 1j j j jg r gβ+ + = +

End 

  

Then we define  z 1Mj jr−=

 

 

 

 

 

 

, and substitute above algorithm. We can derive the PCG 

algorithm [9], [15]. 
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Algorithm 4.1 Preconditioned Conjugate Gradient Method 

 0 0 0 0,  r b Ax g r= − =  

 efor j=0~convergenc  

1 z j jM r−=   

T T
j j jr zα =   j jg Ag

 1 j j j jx x gα+ = +  

1 j j jr r Ag jα+ = −   

1 1
T T

j j j jr z r jβ + += , z 1 1j j jg z jgβ+ += +  

  

4.3.2 PCG LMMSE Equalizer 

The LMMSE equalizer for mobile OFDM system has introduced in Section 4.2, 

the weights is calculate 

 

by Equation (4.3). The equalized signal can be written as 

11( )H H H
mmse zz

−=d W y = +A AA R y
SNR

 (4.10) 

This equation above can be rewritten as   

 1( )H
zz+ =AA R e y

SNR
 (4.11) 

  (4.12) 

y defining 

H=d A e

1
SNR( )H

zz= +T AA R , Equation (4.9) is equivalent to solve a =Td y  B

N N×  problem. Observing the equation above, an matrix inversion is required. By 

e band channel approximation as described in Section 4.1, this matrix is a spare th
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symm d in Chapter 3 is one 

of the best known iterative techniques for solving symmetric positive definite problem, 

but it may suffer the problem of low convergence rate. The PCG algorithm can be used 

to avoid this problem. 

By observing the amplitude of the matrix which is shown in Figure 4.1, it can 

be found that the most significant coefficients are those on the central band and the 

edges of the matrix. Then the matrix 

etric positive definite matrix. The CG algorithm introduce

A  

1( )H
zz+ SNRAA R  

istic to the matrix

which is the matrix required 

to inverted still have similar character . It means that it is also a 

diagonal dominant system. By applying the th d in the previous 

section, we can choose some diagonals of the central band of the matrix 

A

ree criteria describe

1( )H
zz+ SNRAA R  as the precondition matrix, M  

trix

which is shown in Figure 4.5. The 

three preconditioning criteria described in the previous section should be checked 

before preconditioning. First, because the ma  has the most significant values on its 

 is similar to the original matrix A. 

Second, we can obtain the precondition matrix directly from the matrix A, so there is 

no extra cost in constructing the precondition matrix. Third, the system 

diagonals, this choice of the precondition matrix

1M x b− =  can 

be easily solved by the band LDL factorization [7], [15] and the forward and 

backward substitutions which have lower com

matrix.  

With the precondition matrix chosen above, Equation (4.9) can be solved 

iteratively by the PCG metho

original system

shown that the preconditioned system has much smaller condition number than the 

m, so the preconditio

y anal

H 

plexity than the inversion of a general 

d described in Section 4.2. The condition number of the 

 and the preconditioned system are shown in Figures 4.5-4.6. It can be 

original syste ned system will converge faster than the original 

system. The convergence rate and complexit ysis of this method are shown in 

Section 4.4 and Section 4.5. By these analyses, it is presented that this approach has 
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lower complexity than the method introduced in Section 4.2 but still have similar BER 

performance to that method. 

 

            

. Figure 4.5: Structure of precondition matrix 
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Figure 4.7: Condition number of preconditioned system 

4.3.3 Optimum Precondition Matrix 

The central band of the matrix 1( )H
zzSNR+AA R  

ecause we must solve the p

is chosen as the precondition 

matrix in the previous section. B roblem 1M x b− = per 

iteration in Algorithm 4.1, it leads to some overhead problems. Because the complexity 

of the inversing a band system increases exponentially with the bandwidth of the 

matrix, it is a trade-off problem that how many bandwidth we should choose. Choosing 

a larger bandwidth of precondition matrix will let the system converge faster but it 

requires more computations per iteration, so the subset of the central band matrix may 

be chosen as the precondition matrix. By computer simulations and complexity 

analysis, we can obtain the optimum bandwidth of the precondition matrix that 

achieving the lowest complexity. We will discuss this in following section. 
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4.4 Complexity Analysis  

The LMMSE proposed by Xiaodong Cai and Georgios B. Giannakis requires 

flops, and the LMMSE method proposed by Philip Schniter which is called 

MMSE method requires flops. The PCG LMMSE method proposed 

by this paper also requires computations linearly with N. The complexity of the two 

methods, Partial LMMSE and PCG LMMSE will be analyzed here, and their 

complexity increases linearly with N. 

A flop here is defined as a complex multiplication, and N is the FFT size, P is the 

bandwidth of the precondition matrix. Table 4.1 shows the complexity of PCG MMSE 

equalizer, and Table 4.2 shows the complexity of Partial MMSE equalizer 

Note that the bandwidth of the precondition matrix not only affects the 

complexity per hat how many 

for achieving the lowest 

complexity. The optimum bandwidth of the precondition matrix can be obtained by 

simu mputation requir

 

 

2( )O N  

the Partial L ( )O N

 iteration but also the convergence rate. It is a trade-off t

bandwidth of the original matrix required to choose 

lations. We will discuss the actual co ed by these two methods, 

Partial MMSE and PCG MMSE, in the next section. 
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Table 4.1: Complexity analysis of PCG MMSE equalizer  

Operation Complexity 

( )'AA  ( )22 1Q Q N+ + flops 

inv( ' )*xxδ+AA C r  
( )

2
4 6 4 number of iteration

2
Q P N

⎛ ⎞P
+ + + ×⎜ ⎟⎜ ⎟

⎝ ⎠
flops

'* ( ' )*xxinv δ+H AA C r  ( )2 1Q N+ flops 

Total ( )
2

24 6 4 number of iteration 2 4 2PQ P Q Q N
⎧ ⎫⎛ ⎞⎪ ⎪+ + + × + + +⎜ ⎟⎨ ⎬2⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 flops 

: FFT size 

Q : The bandwidth of the approximation channel 

P : The bandwidth of the precondition matrix 

N
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Table 4.2: Complexity analysis of Partial MMSE equalizer 

Operation Complexity 

( ')Ai i i=R A A  ( )22 3 1Q Q+ + N flops 

3
2(2 1) (2 1)

6
Q Q

⎛ ⎞+
+ +⎜⎜

⎝ ⎠
finv( ' )*xx+δAA C r  N⎟⎟ lops 

'*inv( ' )*xxδ+h HH C  r ( )2 1Q N+ flops 

3
24 8 10 3

3
Q Q Q

⎛ ⎞
+ + +⎜ ⎟⎜ ⎟

⎝ ⎠
Total N  flops 

: The bandwidth of the approximation channel 

: FFT size 

Q

N

 
.5 Computer Simulations 

In this section, computer simulations are conducted to evaluate the performance 

f the OFDM system using PCG LMMSE equalizer. Through out the simulations, we 

only deal with discrete time signal processing in the baseband, hence pulse-shaping 

and matched-filtering are removed from consideration for simplicity. Also, channel 

estimation and timing synchronization are assumed to be perfect. In the simulations, 

the relationship between SNR and 

4

o

0bE N  is defined as 

 

b

0 0 0

bit power 1= = = SNR
noise power

s

b s s

E E
E T T M
N N B N B

= ⋅
M

 (4.13) 
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sEwhere  is the symbol energy, sT is the symbol duration, B  is the system 

bandwidth, and M is the modulation order. The system transmit bit power is 

normalized to one, the noise power given by 2 corresponding to a specific σ

0bE N can be generated by 

 2 0=
b

N
E

σ  (4.14) 

Table 4.3 lists all parameters used in our simulations. The configuration we 

consider here is an OFDM system with a bandwidth of 1.5 MHz and 64 subcarriers. 

The set of QAM constellation used in the simulations is QPSK. The channel model is 

the Jakes model [12], [17], [18] and the normalized Doppler spread equals 0.1. 

 

Table 4.3: Parameters of Computer Simulations 

 

Transmit/Receive antennas SISO 

Carrier frequency 5.2 GHz 

Bandwidth 1 MHz 

Number of carriers, FFT size 64 

μOFDM symbol duration 42 s 

Guard interval 5.25μ s 

Modulation order QPSK 

Velocity 250 km/hour 

Maximum Doppler frequency 1.2 KHz 

Normalized Doppler frequency 0.05 

Channel model Jakes Model [17], [18] 
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: Jakes model simulator 

The BE  the CG MMSE equalizer with different numbers of 

iterations are shown in Figure 4.10. It can be shown that the conventional CG 

algorithm suffers from slow convergence rate problem, and this problem can be solved 

by the PCG algorithm

precondition  is shown in Figures 4.11-4.14. It is shown that the 

convergence rate is proportional to the bandwidth of the precondition matrix, but a 

lager b x results in more comp er iteration. It is 

thus a trade-off in choosing the bandwidth of the preconditio ix. We define the 

complexity to be the num  multiplications per ite ber 

of iterations. In Table 4.2, we show the complexity of different bandwidths of the 

precondition matrix and the number of iterations required for the convergence. By the 

simulations result, we can determine the optimum bandwidth of the precondition 

 

 

 

 

Figure 4.8

R performances of

. The convergence rate of the proposed equalizer with different 

matrix bandwidths

andwidth of precondition matri utations p

n matr

ber of ration multiplied by the num

12sin β

1cos tω

12cosβ

cos M tω
#

2sin

1
2 mcos tω

Mβ 2cos Mβ

2sinα 2cosα

+ +
… …

g ( )Q t ( )Ig t

( ) ( ) ( )I Qg t g t jg t= +
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matrix. The optimum bandwidth of the precondition matrix here equals three. By the 

comp is above, the PCG MMSE only requires 30% the computations of the 

Partial MMSE.  
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Figure 4.9:  BER performance obtained by using CG based MMSE equalizer. 

The performance of different numbers of iterations is shown. It can 
be seen that it requires about 30 iterations to converge. 
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Figure 4.10: BER performance obtained by using PCG based MMSE equalizer, 
(BW of precondition matrix in PCG MMSE is zero). The 
performance of different numbers of iterations is shown. It can be 
seen that it requires about 4 iterations to converge. 
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Figure 4.11: 

shown. It can be 
seen that it requires about 3 iterations to converge. 
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BER performance obtained by using PCG based MMSE equalizer, 
(BW of precondition matrix in PCG MMSE is one). The 
performance of different numbers of iterations is 
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igure 4.12: BER performance obtained by using PCG based MMSE equalizer, 

 

 

 
 
F

(BW of precondition matrix in PCG MMSE is two). The 
performance of different numbers of iterations is shown. It can be 
seen that it requires about 2 iterations to converge. 
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Table 4.4: Convergence rate for different precondition bandwidths 

Precondition Matrix 
Bandwidth 

Complexity 
(4Q+6+1/2P2+4P)N 

Number of 
iterations 

P=0 (4Q+6)N 4 

P=1 (4Q+10)N 3 

P=2 (4Q+16)N 2 

P=3 (4Q+22)N 2 

 

Figure 4.13 shows the BER performance of different schemes. The conventional 

one-tap equalizer scheme has poor performance due to the influence of ICI. The Partial 

MM

equalizer is also sh

PCG MMSE is du

applying a more complicated method such as MMSE-SIC, MMSE-PIC [3], [4]. It 

shows that with the channel approximation the MMSE-PIC equalizer has better 

performance than the MMSE equalizer. The MMSE-PIC equalizer can even have 

better BER performance than the MMSE equalizer BER bound in low SNR region. 

 

 

 

SE and PCG MMSE have similar performance. A BER bound of the MMSE 

own in this figure. The gap between the MMSE BER bound and the 

e to the channel approximation errors. This gap can be reduced by 
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Figure 4.14 shows the BER performances under different vehicle speeds. The 

BER performance of the OFDM system degrades with an increasing vehicle speed 

because the ICI is more significant in the high mobility environments. It will thus 

require more bandwidth of the approximated channel or a complicated method to 

mitigate the ICI. 

Figure 4.15 shows the BER performance with channel estimation errors. The 

channel estimation errors are defined as a AWGN noise with variance 

 

Figure 4.13: BER performance of different schemes 

 

2
eσ  to disturb 

the e ated channel taps, by the definition in [26] 

   (4.) 

where is the estimated channel impulse response, and  

stim

t t
ˆ = +h h e

t
ˆ ˆ ˆˆ =[h(t,0),h(t,1), h(t,L-1)]h "  
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[ ]1 2 -1= , Le e ee "  represents the error vector. It is assumed that is independent of 

and is modeled as independent zeros means complex-valued Gaussian noise. It can be 

shown in Figure 4.18 that the PCG MMSE has similar performance to the Partial 

MMSE equalizer even if the channel estimation errors are considered. Because the 

Partial MMSE equalizer only takes parts of the equations, it may be more sensitive to 

the disturbance of channel. 
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Figure 4.14: BER performance under different vehicle speeds. 
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Figure 4.15: BER performance with channel estimation errors 
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4.7 Summary  
In this chapter, we first introduce the channel approximation of mobile channel. 

This approximation is based on the concept that we are only concerned with the 

significant channel coefficients and ignore the trivial parts. With this approximation, 

the number of coefficients to be processed is reduced, so the computations for the 

equalizers can also be reduced. Although this approximation is useful, there is still an 

error floor due to the approximation errors. Furthermore, we introduce and compare 

several different low-complexity equalizers in Section 4.2, which are important 

techniques in this subject. By complexity analysis, it is shown that our scheme can 

achieve lower computation complexity while still have similar BER performance to the 

Partial MMSE equalizer.  

.  
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ose a PCG based MMSE equalizer for the OFDM system 

over time-varying channels. Compared with conventional one-tap equalizers, this 

eme can achieve better performance in mobile environments. In Chapter 2, the 

oncept of OFDM system is introduced and the reason why OFDM system can be used 

fficiency in time-invariant channel is given. Besides, the challenges to OFDM system 

 mobile environments are introduced and mathematically analyzed. The most 

portant issue is that the channel variations with time destroy the orthogonality 

etween subcarriers and produce the intercarrier interference (ICI). Then the 

characteristics of the ICI are analyzed and the mobile channel matrix is approximated 

to a band matrix based on this ICI analysis. Furthermore, some basic techniques to 

cancel the ICI are introduced in this chapter, such as ICI self-cancellation schemes and 

the frequency domain equalizer schemes, the latter being adopted in this thesis In 

Chapter 3, we first introduce the idea of orthogonal projection and then derive the 

conjugate gradient (CG) algorithm. In Chapter 4, several schemes based on the 

frequency domain equalizer techniques are introduced, which have already been 

Chapter 5 

 

Conclusion  

In this thesis, we prop

sch

c

e

in

im

b
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proposed to cancel the ICI with moderate complexity. The CG method in Chapter 3 is 

odified into a preconditioned version and a PCG based low-complexity MMSE 

ualizer for canceling the ICI is proposed. Furthermore, the effect of the precondition 

 method with different bandwidths is discussed. Then we 

f this scheme and compare this scheme with other schemes.   

The conventional system adopting the preamble to estimate the channel will have 

poor performance because of the channel variation with time. Actually, in a mobile 

o insert sufficient pilot symbols for channel estimation. 

e can estimate the channel at some time instance and use linear or non-linear 

terpolation to obtain the entire time-varying channel estimate. There are still some 

prob

 

 

m

eq

matrix on the proposed

analyze the complexity o

OFDM system, it is necessary t

W

in

lems in the estimation of time-varying channels because of the inaccuratcy of the 

interpolation. Besides, the condition number of the system decreases as the number of 

receiver antennas increases. This suggests that the proposed scheme can be better 

applide to the mobile MIMO-OFDM system. 
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