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Student: Tsung-Han Tsai Advisor: Dr. Ta-Sung Lee

Institute of Communication Engineering

National Chiao Tung University

Abstract

Orthogonal Frequency Division Multiplexing (OFDM) is a popular technique in
modern wireless communications. There are many systems adopting the OFDM
technique, such as IEEE 802.11 a/g/n, IEEE*802.16, IEEE 802.20, Digital Video
Broadcasting, Digital Audio Broadeasting, etc.-On-the other hand, mobile transmission
is a trend in future wireless-communications. For example, IEEE 802.16e supports
vehicle speed up to 120 km/hoeur, and IEEE-802.20 supports vehicle speed up to 250
km/hour. OFDM systems can be used efficiently in time invariant environments with
one-tap equalizers. However, subcarriers are no longer orthogonal to each other in
time-varying channels, and this causes the intercarrier interference (ICI) and degrades
the system performance. Although the minimum mean square error (MMSE) equalizer
can be employed to solve this problem, it requires a high complexity and is impractical
for an OFDM receiver to be implemented. To alleviate this problem, we propose a
conjugate gradient based method with optimal precondition by employing the property
of the mobile channel, which can reduce the complexity of the matrix inversion
problem in the MMSE equalizer. Finally, we evaluate the performance of the proposed

system and confirm that it achieves good BER performance in mobile environments.
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Chapter 1

Introduction

Orthogonal Frequency Division Multiplexing (OFDM) is a popular technique in
modern wireless communication systems. There are many systems adopting this
technique, such as IEEE 802.11 a/g/n, IEEE 802.16, IEEE802.20, Digital Video
Broadcasting, Digital Audio Broadcasting, etc. In an OFDM system, the bandwidth is
divided into several orthogonal subchannels_for transmission. A cyclic prefix (CP) is
inserted before each symbol. Therefore, if the delay spread of the channel is shorter
than the length of the cyclic-prefix, the-intercarrier symbol interference (I1SI) can be
eliminated due to the cyclic™prefix. On-the other hand, subcarriers in OFDM are
orthogonal to each other over time-invariant channels, so the conventional OFDM
system only requires one-tap equalizers to compensate the channel response. This
characteristic simplifies the design of the OFDM receiver, for this reason, the OFDM

technique is widely used in wireless communication systems.

The mobile transmission is a trend in future wireless communications. Many
systems support the mobile transmission, such as IEEE 802.16e, IEEE 802.20, DVB-H.
and these systems also adopt the OFDM technique. However, while OFDM system is
applied in mobile environments, the variation of channels destroys the orthogonality
among subcarriers and therefore the intercarrier interference (ICI) arises. The

conventional one-tap equalizer is insufficient for the mobile OFDM system because



the ICI degrades the system performance; the ICI cancellation technique plays an

important role in mobile OFDM systems.

Many methods for ICI cancellation have been proposed. By mapping the data into
groups of subcarriers, intercarrier interference self-cancellation scheme [1], [2] has
been proposed. This scheme can reduce the computation complexity while sacrificing
the transmission bandwidth efficiency. An error bound of the mobile OFDM system
and an MMSE-SIC (minimum mean square error-successive interference cancellation)
equalizer for canceling ICI are proposed [3]. Alternatively, an MMSE-PIC (parallel
interference cancellation) equalizer is proposed in [4]. However, the computation
complexity of these schemes is proportional to the square of the FFT size. On the other
hand, some low complexity equalizers whose computation complexity increases
linearly with the FFT size have'been proposed-in [5], [6], [7]. Those equalizers are
based on approximations of the mobile channels. The ICI cancellation scheme in [5]
can only be used in slow time=varying channel because of the rough approximation. An
MMSE equalizer with a modified.channel approximation and time-domain windowing
technique for enhancing this approximation are introduced [6]. Another simple MMSE
equalizer with the same channel approximation in [6] has been proposed [7] based on

the LDL" factorization.

This paper proposes a low-complexity MMSE equalizer based on the band
channel approximation in [6] and a conjugate gradient based method with optimal
preconditioning by employing the property of the mobile channel, which can reduce
the complexity of the matrix inversion problem in the MMSE equalizer. The
preconditioned conjugate gradient (PCG) algorithm is one of the best known Krylov
subspace method for solving spare, positive definite systems of equations which is

equivalent to the matrix inversion problem in the MMSE equalizer. Many kinds of



Krylov subspace methods are introduced in [8], [9], [10]. The iterative programs for

simulations in this thesis are based on the template book [11].

This thesis is organized as follows. In Chapter 2, the general idea of the OFDM
system and the challenges it is faced with mobile environments are described. In
Chapter 3, the basic idea of the Krylov subspace methods and the conjugate gradient
(CG) methods are introduced. In Chapter 4, the proposed interference cancellation
scheme is presented and analyzed. We evaluate the performance of the proposed
system and confirm that it achieves good BER performance in mobile environments. In

Chapter 5, we conclude this thesis and propose some potential future works.



Chapter 2

Overview of Orthogonal Frequency
Division Multiplexing (OFDM)
Systems

In this chapter, an overview of OFDM systems will be given in Section 2.1.
OFDM s an efficient technique_for high data rate-transmission such as IEEE 802.11
a/g/n, IEEE 802.16. We will show the’advantage of OFDM system and why traditional
OFDM system can be efficient in frequency-selective environments. Furthermore, the
challenge of OFDM system in mobile environments is presented in Section 2.2 and

some existing techniques for mobile OFDM system is introduced in Section 2.3

2.1 Orthogonal Frequency Division Modulation

Systems

OFDM is a special case of multicarrier transmission, where a single data stream is
transmitted over a number of low data rate subcarriers. OFDM can be thought of as a
hybrid of multicarrier modulation (MCM) and frequency shift keying (FSK)
modulation scheme. The principle of MCM s to transmit data by dividing the data

stream into several parallel data streams and modulate each of these data streams onto



individual subcarriers. FSK modulation is a technique whereby data is transmitted on
one subcarrier from a set of orthogonal subcarriers in symbol duration. Orthogonality
between these subcarriers is achieved by separating these subcarriers by an integer
multiples of the inverse of symbol duration of the parallel data streams. With the
OFDM technique used, all orthogonal subcarriers are transmitted simultaneously. In
other words, the entire allocated channel is occupied through the aggregated sum of the

narrow orthogonal subbands.

The main reason to use OFDM systems is to increase the robustness against
frequency-selective fading or narrowband interference. In a single carrier system, a
single fade or interference can cause the entire link fail, but in a multicarrier system,
only a small amount of subcarriers will be affected. Then the error correction coding
techniques can be used to correct errors. The equivalent complex baseband OFDM

signal can be expressed as

N
PN Ny
XV = kEchkM) " Vi 22N didh (1) |ur (O (2.1)
2 K=——C¢

0 Otherwise 2

where N is the number of subcarriers, T is the symbol duration, di is the transmitted
subsymbol (M-PSK or M-QAM), 4, (t) =e?" /T s the kth subcarrier with the
frequency f, =k/T , and ur(t) is the time windowing function. Using the

correlator-based OFDM demodulator, the output of the jth branch can be presented as
T * 1
= [ x(t)g; (H)dt ==

yJ _[0 ()¢J() T T klo (2.2)



By sampling x(t) with the sampling period T4=T/N,, the discrete time signal x, can be

expressed as

NC
1 7_1 jZﬁN—n
— > dee ¢, 0<n<N, -1
xn:x(t)|t:an =1JN;, Th, = IFFT{d,} 23)
5 :
0 , Otherwise

Note that x,, is the Inverse Fast Fourier Transform (IFFT) output of the N input data
subsymbols. Similarly, the output of the j-th branch can also be presented in the digital

form

. N,
1 Net —jz;zNin T3 _
—— 2. %@ Sl ZN xSk — jl1=d; (2.4)

2

yj =FFT{x,}=

In theory, the orthogonality of'.subcarriers in-OFDM systems can be maintained
and individual subcarriers can be.completely separated by the Fast Fourier Transform
(FFT) at the receiver when there are no intersymbol interference (I1SI) and intercarrier
interference (ICI) introduced by transmission channel distortions. However, it is
impossible to obtain these conditions in practice. In order to eliminate ISI completely,
a guard interval is imposed into each OFDM symbol. The guard interval is chosen
larger than the expected delay spread, such that the multipath from one symbol cannot
interfere with the next symbol. The guard interval can consist of no signals at all.
However, the effect of ICI would arise in that case due to the loss of orthogonality
between subcarriers. To eliminate ICI, the OFDM symbol is cyclically extended in the
guard interval to introduce cyclic prefix (CP) as shown in Figures 2.1 and 2.2. This
ensures that delayed replicas of the OFDM symbol always have an integer number of

cycles within the FFT interval, as long as the delay is smaller than the guard interval.



XN-Ncp Xna| Xo | %Xy Xn-1
§ Cyclic Prefix —«— Useful Part —
| Nep N i
s Complete OFDM Signal >

N+Ncp
Figure 2.1: ORDM signal'with cyclic prefix extension.
dy, " >
du X Parallel
2 L > o R OFDM
Input data Serial serial > DA signal
Symbols to IDET : converter
parallel Xy >
converter |d .. :
df% I XN -1 »

Figure2.2: A digital implementation of appending cyclic prefix into the OFDM signal
in the transmitter.



As a result, the delayed multipath signals which are smaller than the guard

interval will not cause ICI. The complete OFDM signal with CP is given by

1 2t izrg (N
= 2 dee ¢ 0<n<Ng+Ng -1
Xn = NC N
k=7 (2.5)
0 Otherwise

where N is the number of samples in CP. Due to CP, the transmitted OFDM symbol
becomes periodic, and the linear convolution process of the transmitted OFDM
symbols with the channel impulse responses will become a circular convolution one.
Assuming the value of N, is larger than the channel length, the received signal vector

can be expressed as

y=Hx+n
hy 0 =0 Wi 4
hoohy O |l N
: -0
Yo hl . X Mo
b= 0 X‘Ol o (2.6)
YN-1 0 thp Poh : TN
—_— . 0 . . N
y 0 0 ML) n
i Nep |73
H
Applying SVD on the channel response, we have
H=UzV" 2.7)

where U and V are unitary matrices, and X is a diagonal matrix. Substituting
Equation (2.7) and the equalities of x=VX and Y=U"y into Equation (2.6), the

received signal vector can be written as



Y=U"y=U"(Hx+n)=U"HVX+ N =ZX+N (2.8)

UHn
This means that the output Y can be expressed in terms of the product of £ and X
plus noise. When x_;j =xy_; for i=1,..,Ng,, a more compact matrix form of the

guard interval can be written as

he 0 0 hy, hy
h hy 0 :
Yo "y hNCP X0 o
=, ¢+ - b o - 0 S S (2.9)
YN 0 hNCp oo hy o+ 0 || XNt | [N
0
i 0 0 Ngp N1 ho |

where H becomes a circulant matrix (H=FHAF) and Q is a discrete Fourier

transform (DFT) matrix with the'lth entry.as

o
1 —j2r—
F=—/——e o

e (2.10)

As in Equation (2.8), the received signal y can be transformed into Y

Y=F'y=F" (Hx+n) =F"HF" X+F"y
x N (211)
=XX+N
According to Equation (2.11), by adding CP to the OFDM symbol, the modulation in
OFDM is equivalent to multiplying the frequency domain signals of the OFDM

symbol with the channel’s frequency response X .

The block diagrams of the OFDM transceiver is shown in Figure 2.3, where the
upper path is the transmitter chain and lower path corresponds to the receiver chain. In

the center, IFFT modulates a block of input values onto a number of subcarriers. In the



receiver, the subcarriers are demodulated by the FFT, which performs the reverse
operation of the IFFT. In fact, the IFFT can be made using the FFT by conjugating
input and output of the FFT and dividing the output by the FFT size. This makes it
possible to use the same hardware for both transmitter and receiver. This complexity
saving is only possible when the transceiver doesn’t have to transmit and receive
simultaneously. The functions before the IFFT can be discussed as follows. Binary
input data is first encoded by a forward error correction code. The encoded data is then
interleaved and mapped onto QAM values. In the receiver path, after passing the radio
frequency (RF) part and the analog-to-digital conversion (ADC), the digital signal
processing starts with a training sequence to determine symbol timing and frequency
offset. The FFT is used to demodulate all subcarriers. The FFT outputs are mapped
onto binary values and decoded to produce binary output data. In order to successfully
map the QAM values onto binary values; the.reference phases and amplitudes of all

subcarriers have to be acquired first.

l P P Add Cyclic Extension
RETX = DAC = and Windowing
Binary Input Paggfilto
Data
. _ . | QAM .| Pilot .| Serialto
—*| Coding > Interleaving Mapping | Insertion " Parallel _L
IFFT (TX)
FFT (RX) -
ol De- P QAM | Channel | Parallel to
Decoding < interleaving | Mapping | | Correction | Serial
Binary Output Serial to
Data Parallel

A

L RFRX

Timing and Frequency Remove Cyclic

Synchronization Extension
A

ADC »

Y

Figure2.3: Black diagrams of the OFDM transceiver.
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In conclusion, OFDM is a powerful modulation technique that simplifies the
removal of distortion due to the multipath channel and increases bandwidth efficiency.

The key advantages of OFDM transmission scheme can be summarized as follows:

1. OFDM is an efficient way to deal with multipath. For a given delay spread,
the implementation complexity is significantly lower than that of a single

carrier system with an equalizer.

2. In relative slow time-varying channels, it is possible to significantly enhance
the capacity by adapting the data rate per subcarrier according to the

signal-to-noise ratio (SNR) of that particular subcarrier.

3.  OFDM is robust against narrowband interference because such interference

affects only a small amgunt of subcarriers.

4. OFDM makes single-frequency. networks possible, which is especially

attractive for broadcasting applications.

2.2 Challenges to Orthogonal Frequency Division
Modulation Systems in Mobile Environments

The most important issue of the OFDM technique in time varying channels is that
the ICI degrades the system performance. In this section, we will first introduce the

mobile OFDM system model, and then discuss why the ICI is produced.

11



22.1 OFDM System Model over Time-Varying
Channels

The OFDM system model over time-varying channels is considered here.
Assuming that s® =[s;,...s\,]" is the i-th “frequency-domain” symbols, the OFDM

symbol can be converted to “time-domain” symbols by N-point IDFT operation as

() (=L Nz‘l () 3 N N (2.12)
xV(nN)=—= > sy ’e , -N.<n< :
IN S “ ¢
where x(n) is serially transmitted over noisy time-varying multipath channels,
incorporates a cyclic prefix of length N... The channel is modeled by the time-varying

discrete impulse response, h(n,l), which is defined as the response of time n to an

impulse response applied at time p-I.

The received sample sequence which-is the convolution between the transmitted

symbol and the time-varying channels-can-be-written as

. v-1 . . >
rOn) =S hOmnxO  +70T0<n< N (2.13)
1=0

where Vv is the maximum delay spread of the channel, N, is the length of CP, and
z,, are the samples of additive white Gaussian noise (AWGN), with variance o?.
For the ISI free case, the delay spread of the channel should be shorter than the length

of CP, as followsv < N..

Then the receiver computes an N-point DFT operation to obtain the

frequency-domain signal

27

N-1 . j=—mn
L re’ N N <n<N (2.14)

W)y = L
y (m) NZ

n=0

12



Let F(I,k) :ﬁe‘j(z”“\')”‘ ,0<1,k <N-1 be the standard N-dimensional DFT

matrix, Equation (2.12) can be written in matrix form

h®(0,0) o - hoL-n . 0@
h® @) h@o - 0 :
i) : ey - 0 hOw-2,L-n| x| | 5
Pol= hO -1, L-1) : 0 : 0 Dol
i 0 hOL,L-1) . hO(N+L-10) 0 : e 70
: g g : 0
I 0 0 o hO(N-1,L-2) h®(N-12,0) |
(2.15)

h(i)(n, I) represents the channel response of the | th tap at the time instance n, we can

rewrite the above equation in matrix form as

r =gOxO 4 n(i), 0<n<N (2.16)
where r(® =[r0(i),...,r,§i)_1]T, n(i) :[n(()i),...,ry,(\})_l]T, and x® :[x(()i),...,x(,\i,)_l]T, H is
the time-varying channel matrix. Equation (2.16)-Can be rewritten as

r® — g0 4 @

OpH® L 1D (2.17)
=H"F''s*/ +1n

We defineA®? = FHOFM as the frequency domain channel matrix and Equation (2.14)

can be rewritten in vector form as

vy Z pr® Z pOK® 4 @

. ) _ N _ (2.18)
—FHOFH D +F11(') — AWM 4,0
where A has the form
A(0,0) A(O,N -1)
AD = : g : (2.19)

A(N ;1,0) . A(N —i, N -1)

13



which is called “equivalent frequency domain channel”, and the non-diagonal terms of

A produce the ICI.

2.2.2 Intercarrier Interference in OFDM System due

to Time-Varying Channels

In time-invariant channels, the A matrix in Equation (2.19) will be a diagonal
matrix, so the conventional OFDM systems can compensate the fading channel with
one-tap equalizers. In time-varying channel, the A matrix is no longer a diagonal
matrix, so it will have a poor performance if one-tap equalizers are used. It can be

indicated that the non-diagonal terms in the A matrix are the ICI terms.

We analyze the ICI power'based on. the theorem in [5], [6]. Assuming a typical

wide-sense stationary uncorrelated scattering (WSSUS) channel model [12] as below
E{h(n,Hh" (n—q, ! -m)} =k (@)o 5(m)

where r(q) is the normalized tap autocorrelation, and 0,2 is the variance of the Ith

tap.

Since the non-diagonal terms in the A matrix are the intercarrier interference
terms, we will compute the power of these non-diagonal terms. Let A(n,l) be the n-th
row, I-th column term of A, and u(n) denotes the N-point rectangular window.

Finally, we obtain

E{|h(c,d)|2}:énll%,pu(n)u(m)E{h(n,l)h*(m, p)}x exp(j;—”(pk—lmmd—nd)}
:ééﬁ G'Zné_w“(m)u(”)ﬁ(n—m) exp(jz% (md —nd))
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- T of 33 umumr@exp( 12 (2.20)

|=—0 p=—00 N=—00

where h(£n,:) denotes the nth supper or upper-diagonal. Assuming Rayleigh fading

as in [10], we obtain
i () = Jo (27 f4T50)

1
S(@)=1 (27 4T,)? - ¢

0 , otherwise

=, |¢ <27 14Ty
(2.21)

where J, denotes the first kind zeroth-order Bessel function, and fyT; is the

maximum Doppler shift normalized to OFDM symbol rate.

-100 T
—e— fdTs=0.05
—— fdTs=0.01
g) -10° + B
_102 L ! ! ! ! ! 1
-150 -100 -50 0 50 100 150

Figure2.4: ICI variance versus c (c is the index of super- or sub- diagonal)
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By Equations (2.20) and (2.21), we can simulate the power of the non-diagonal
terms, which is the terms caused the ICI. Figure.2.4 shows the computer simulations
according to Equations (2.20) and (2.21). We can observe that the coefficients of the
frequency domain channel matrix have most power on the central band and the edges
of the channel matrix. One kind of channel approximation based on this property is
described in Chapter 4. This channel approximation is the base of the low-complexity

algorithm which will be described later.

2.3 Existing Techniques for OFDM Systems over

Time-Varying Channels

OFDM is a strong candidate for high-data=rate systems over wireless channels.
High data rates give rise to frequency-selective channels, while mobility and frequency
errors introduce time-selective channel-+Due-to the analysis in Section 2.2, we show
that the traditional OFDM system:.is..sensitive to time-varying channels. Some
techniques have been proposed to mitigate the ICI. We will first introduce ICI
self-cancellation scheme [1], [2], which is originally used in compensating frequency
errors and also valid over time-varying channels. Then we will show the frequency

domain equalizer technique for compensating the ICI.

2.3.1 Intercarrier Interference Self-Cancellation
Scheme

This method is proposed in [1], [2]. The ICI self-cancellation scheme is a simple
way for suppressing ICI in OFDM system. It is to modulate one data symbol onto
adjacent pairs of subcarriers rather than onto single subcarriers. By this way, the ICI
generated by these adjacent subcarriers can be “self-cancelled” by each orther. This

16



scheme is also called polynomial cancellation (PCC). We will first analyze the ICI
with single frequency as in [1],[2], and then show why the ICI self-cancellation works.
The received signal on each subcarrier can be seen as a linear combination of signals
received via different paths with different Doppler shifts. So that this scheme can also

be used in the practical mobile environments that have significant Doppler spread.

The system architecture of the ICI self-cancellation scheme is shown in Figures
2.5-2.6. The only difference between the OFDM system with the I1CI self-cancellation
conventional scheme and the conventional OFDM system is the ICI self-canceling

modulation/demodulation. We will show how this block works.

DATA+ Randomizer |p| FEC [ 4l Iinterleavr_*(»Modulation.i, ICI Canceling
Modulation

IFFT Add DAC | | Filter | | RF Y
1 1 b
CP

\ 4

Figure2.5: Transmitter architecture of ICI self-cancellation scheme
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RF ) Filter N DAC_ Remove FFT ICI Canceling_

CP demodulation

‘_ demodulation 1+— Bit > decoding

interleaver

derandomizer DATA

A
v

Figure2.6: Receiver architecture of ICI self-cancellation

. N-1 j—”mn
Let the n-th OFDM transmission data be x(n)=ﬁe’2”fct > spe N L In the
m=0
receiver, we ignore the noise ‘terms.and-assume that the signal is mixed with a local

oscillator which has frequency mismatch “ Af™ with the transmitter oscillator. Then the

demodulated signal in the receiver before FFT can be written as
2
. N-1 j=—mn
r(n)=-Lel@™M0) 5 s "N | and assuming this signal is sampled at the
m=0

optimum timing. After the sampling, the signal can be rewritten as

_ - 27NAFT N-1  j2%mn
r(n):%ewxej( A')x 3 se N (2.22)
m=0

The sampled signal after DFT are given by

N_1 _i27nd

y(d)= 2 e i (2.23)
n=0
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By Equations (2.22) and (2.23), we have the received signals after sampling and DFT

L 27nAfT/\N-INA (P (2N
y(d):iewxej( /)Z 3 sqe N "' N
N n=0 m=0
o N-1N-1 ,@(m —d+AfT)
0« DD Spe (2.24)

n=0 m=0

The analysis of ICI terms can be done by defining N complex weighting, cy---Cn_1,

which is the contribution of each input signal sy ---Sy_4

. N-1
y(d)=e"3 cp_qSm (2.25)

m=0
Compared Equations (2.24) with (2.25), we have the complex weighting written as

1 J@(m d+AfT)

Cm_d _Leio, z

_ 1sinz(m-d +AfT)ej7z(N"1)(m;|d++Arr) o
sinzt(————)

By the aforementioned equation, we show the complex weighting value in Figure 2.7.
The figure shows a smooth curve, this will be the key point why ICI self-cancellation

works.

Zhao and Haggman have proposed a method to mitigate ICI called ICI
self-cancellation scheme. This scheme maps the data tone onto adjacent subcarriers
with different signs, such as sy=-S;,Sp =—S3,...,Sy_» =—Sn_1 - The difference
between the adjacent coefficients is small, and the adjacent subcarriers map to the
same data with different signs. The ICI produced by adjacent subcarriers will be

self-canceled by each other. The received signal after FFT can be written as
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N-2 0
y(d)= Z SmeJ (Cm-d —Cms1-d)

m=0
meeven

N-2 i
yd+)= 3 spel?(Cnis—Cnod) (2.27)

m=0
meeven

In order to maximize the output SNR, the values y(d), y(d+1)should be subtracted

in pairs as shown below
y(d)=y(d)-y(d+1)

N-2

jo
= Z smeJ (Cm—d —Cm1-d )[Zcm—d ~Cmy1-d _Cm—k—l] (2-28)
m=0
meeven

where y(d) is the symbol that will be"demaodulated to obtain the information bits. By
this way, the overall system SNR increases by a factor 2, due to the coherent addition.
0.8 T T T

+ Real
0.7+ *  Imaginary |

0.5 .
0.4} .
0.3} .

0.2r -

+ +
0.1r o * |

+
i ST

+, H ﬁﬂﬂ#
ol ﬂ%k - ﬁ%k* - i
w@ﬁ%ﬁe@m;@%% %%WMﬁﬁ% 1

*
_0_ 2 1 1 1 1 1 1 \+
-40 -30 -20 -10 0 10 20 30 40

Figure2.7: ICI cofficients of different subcarriers
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A disadvantage of this system is that its bandwidth efficiency is only half of the
conventional OFDM system. There are some new researches to improve the bandwidth
efficiency, such as in [13]. We only show that ICI self-cancellation scheme can self
cancel the ICI produced by a frequency error due to mismatch between the transmitter
and receiver oscillators in the above description. In real mobile environments, the
received signal on each subcarrier can be seen as a linear combination of signals
received via different paths with different Doppler shifts. So this scheme can also be

used in the practical mobile environments that have significant Doppler spread.

2.3.2 Frequency Domain Equalizer Scheme

Frequency domain equalizer,4is @ ,method which is used frequently in
compensating the ICl of OFDM  systems in mobile environments. The transmitter
architecture is the same as conventional OFDM system. Besides, a frequency domain
equalizer after FFT is added as shown in-Figure 2.8. The signals of OFDM systems in
the receiver before FFT are usually ‘called the “Time Domain Signals”, and those after
FFT are called the “Frequency Domain Signal”. By this definition, the frequency
domain equalizer equalizes the received signal after FFT. There are many equalizers
technique can be used here with different performance and complexity, such as block
minimum mean square equalizer (MMSE) or block Zero-forcing (ZF), FIR equalizer,

etc. The block of MMSE and ZF equalizer is shown below.

2

O- —

Wiwse = (H™H +=L 1) H" (2.29)
Os

W =(HPH)H"™ (2.30)
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where W is the equalizer weighting, H is the channel matrix in time domain, a,? is

the noise power, and af is the signal power. Some low-complexity equalizers have

already been proposed, as in [3], [4], [5], [6], [7]. This paper also proposed a

low-complexity technique based on the block MMSE equalizer and will be shown in

Chapter 4.
] Frequency
RF — Fllter__> DAC__» Remove 1, FFT Domain »| Demodulation
CP
Equalizer

Bit interleaver { Decoding_‘.‘, Derandomizer DATA

Figure2.8: OFDM receiver architecture with frequency domain equalizer

2.4 Summary

In this chapter, we first introduce the traditional OFDM system, and show the
challenges to the OFDM system over time-varying channels. In particular, the ICI is
the major subject of interest. We also introduce some existing techniques for solving
this problem, such as the ICI self-cancellation schemes and the frequency domain
equalizer schemes. Finally, modified OFDM systems for time-varying channel are

presented.
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Chapter 3

Introduction to Conjugate Gradient
(CG) Algorithm

We will first show the basic concept of projection and then introduce the Krylov
subspace and some krylov subspace methods, that are the predecessor of conjugate
gradient methods. The evolution from| basic. Krylov method to conjugate gradient
method is shown in Section 3.4. The Krylov subspace method is currently to be the
most important iterative technique®for solving- large linear systems, and the CG

algorithm is a mature algorithm in this topic.

3.1 Projection Methods

We will first show the general projection theory [9], [10] and then show the
projection can minimize error between the real solution and the approximate solution

obtained by the projection methods.
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3.1.1 General Projection

Most of the existing practical iterative techniques for solving linear systems
utilize a projection method. A projection method can be seen as a scheme of extracting
an approximate solution of a linear system from a subspace. We call this subspace the
search subspace or the candidate approximants denote by K. Assume that it has the
dimension n. In general, there should have n constraints be imposed to be exacting the
approximate solution. A typical way of these constraints is | independent conditions.
We define a subspace L, which is called the subspace of constraints or left subspace.
There are two kinds of projection methods, orthogonal and oblique. An orthogonal
projection means that the subspace L is the same as K. The oblique projection means
that the subspace L is different fromKj-and they can have some relationships or be

totally uncorrelated.

We show the mathematically approach of projection the technique. A projection

technique onto the subspace can.gbtain approximated solution X by

SearchXeK and b—AX LL (3.1)

or with initial guess xg

SearchXex;+K and b—AX LL (3.2)

Defining the initial residual vector ry as ry=b-Axy, then Equation (4.2) can be

written as

X=Xy +o0,0eK

(h-Ac,q)=0,Vqgel (3.3)

Let P=[py,...p,] be a basis of K, and Q=[q,...q,] be a basis of L. Then the

approximate solution in Equation (4.3) can be written as
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)2=X0+Py (34)
By b—Ax=Db—-Axy—AVy andQT(b—Ax):O,We have

y=@Q"AP) Q" (3.5)

By Equations (4.4) and (4.5), we have the projection method based on Equation (4.2)

in the matrix form, which is

R=x,+P(Q"AP)1Q"r, (3.6)

3.1.2 Property of the Projection Method

We will show that orthogonal projection selution can minimize the error between
the desired solution and the approximate solution-as in [9]. Let P is the orthogonal
projector onto a subspace K, "X isithe’desired vector, and y is the arbitrary vector in

subspace K. Because of the orthogonality between x and Px , we have

[x=yl; =lx=Px+ Px=yl =[x Pxl; +[Px -yl yeK (3.7)

Therefore, vy e K, [x—y|,, > |x—Px],, we know that the orthogonal projection can
minimize 2-norm error between x and y. Let y' is the orthogonal projection from
X onto subspace K, and then we have

y' eK

3.8
x—y LK (3:8)

If A is a symmetric and positive definite matrix, we can derive the similar result that
orthogonal projection can minimize A-norm error between x and y. By Equation

(4.6), we have
(A(x-y),9)=0,vqeK (3.9)
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By Ax =b, Equation (4.7) can be rewritten as
(b—Ay,q)=0,VgeK (3.10)
This is called the Galerkin condition which defines an orthogonal projection [9].

Let A is an arbitrary matrix, and L = AK . The oblique projection onto K and
orthogonal to L will minimize the 2-norm of the residual vector r =b— AX. The

derivation is similar as the orthogonal projection. Then we have

(b—Ay',v)=0,Vve AK (3.11)

This is called the Petrov-Galerkin condition which defines an oblique projection [9].

3.2. Overview of Krylov Subspace

The Krylov subspace is a subspace of the form:[8],[9],[10]
K™ (A, ry) = span{ry,Ary A%ty i, A" Lo 3 (3.12)

By this definition, we know that K™ is the subspace of all vectors in R"™ that can be

written as x = polynomial (A)*r, and the degree of polynomial do not exceed r.

We will show the iterative methods are located in the Krylov subspace. Solving
Az =b, we may solve the simplified system Tz, =05 first. Then =z, is an
approximate solution forz. We may correct the approximation z, withé, so 6

should satisfy

Alzg +6) = b (3.13)

This can be seen as a new linear system

AS =b— Az, (3.14)
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We may solve Equation (3.13) by a simplified approximate system

TS = b — Az, (3.15)

Then the new approximate solution will be z; = z; + 2,. We may again correct

the approximate solution with the same process respect to z; . Therefore, we have

Tiyg =2 +0

(3.16)
=uz; + T_l(b — Az;)
By setting7' = I, the Equation (3.13) can be written as
Multiplying Equation (3.16) by —A and adding b, we have
b—Ax; 1 =b— Az; — An; (3.18)
that is the same as
riy = — A = I — ATy = pi(Dry (3.19)

By [[ris1]| < IIZ — 4|, this result shows that we have guaranteed the convergence
for any initial 7, if |I —A||<1 Assuming that A has n eigenvectors a; with

corresponding eigenvectors A;, we write the initial residual r, as

Ty = i &a; (3.20)
i=1

By Equation (3.16), we have

n=pi(A)n = igipiO‘i)ai (3.21)
i—1

Equation (3.18) shows that the residual of the system depends on how well the

polynomial p, damps the initial error.
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By Equation (3.14), the i-th approximate solution z; can be expressed as

T, =Ty +1+n+... 74

i1
=5+ Y (I - Ay
k=0
e span{zy, 1y, Ary... A" i} = K' (A, np) (3.22)

The aforementioned discussion shows that iterative methods are located in the
Krylov subspace. By different definitions of K and L (see Section 3.1), different
projection methods can be obtained, such as orthogonal or oblique projection, and
different kinds of iterative techniques have been derived. They have different
convergence rates. One should choose the best iterative method on a case by case basis.
Usually, the characteristic of A+«plays an impertant role in choosing the appropriate
iterative method. Choosing an appropriate method. can have significant improvement

on the convergence rate and the complexity.

3.3 Krylov Subspace Methods

There are many kinds of Krylov subspace methods, and we focus on the
predecessor of CG methods, and the CG method. We will show the evolution from the
basic projection, the Arnoldi’s method, and then derive other simplified methods: the

symmetric Lanczos algorithm and the CG algorithm.

3.3.1 Arnoldi’s Algorithm

Arnoldi’s algorithm is a basic orthogonal projection method. This scheme was

first introduced in 1951 by Arnoldi. This is a method that builds an orthogonal basis of
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the Krylov subspace and finds an approximate solution on the Krylov subspace by

orthogonal projection. The basic Arnoldi’s algorithm can be found in [9]

Algorithm 3.1 Arnoldi’s Algorithm

Choose a vector p;, ||pyf|=1

forj=1~m

fori=1~|j
i
hij = (Apj, pi), bj=Ap; -2 hyp;
i1
2
i =

If hj+1,j 20, StOp Else pj+1:Wj/hj+1,j

The above process builds an orthogonal basis by a Gram-Schmidt process. The

above algorithm can be rewritten.in-the matrix form as

j j it
Apj =2 My pi by =2 by i Ny P = Dy (3.23)
i1 i1 i=1

Assuming B, is the nxm matrix containing the m vectors that forms an

orthogonal basis of the Krylov subspace. We can rewrite Equation (3.22) in the matrix

form as
ARy = Pm+1Hm (3.24)
PTAP. =H, (3.25)

where H_ has the form
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_hll h12 h13 hlm 1

h21 h22 h23 h2m
G0 g hy e (3.26)
m : 0 hyy . :

: : o . Pmm

L 0 0 : 0 hm+1,m J(m+1)xm

H,, isa Hessenberg matrix obtained by deleting the last row in H,,.

The above process produces an orthogonal basis of the Krylov subspace. By

Equations (3.4) and (3.5), orthogonal projection means that the subspace L is the same

as K. We have
Xm = Xo + PY (3.27)
y=(PTAP) P 1y =H (o], &) (3.28)

Combining Equations (3.26) and (3:27),- we have the equation for orthogonal

projection onto Krylov subspace as

X = Xo + PuHu (o], &) (3.29)

3.3.2 Krylov Subspace Methods Based on Arnoldi’s

Algorithm

A method is called the full orthogonalization method (FOM) that searches the
orthogonal basis of the Krylov subspace by Arnoldi’s theorem and finds the
approximate solution by Equation (3.28). There are some modified methods that have
lower complexity than the FOM method. Restarted FOM is to restart the Arnoldi’s

algorithm periodically. Incomplete orthognoalization process (IOM) is to truncate
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the bases generated by the original Arnoldi’s algorithm. We find the new basis only

orthogonal to several bases that have already been found.

Algorithm 3.2 IOM Algorithm

Choose a vector p;, ||pyf|=1

forj=1~m

fori=1~max(l, j-t+1)
i
hij = (Apj, pi) . bj = Apj — 2 hy by
i1
2
i =

If hj+1,j 20, StOp Else pj+1:Wj/hj+1,j

X=Xy + Perﬁl(”ro”z e)

Direct incomplete orthogonalization method (DIOM) derived from IOM is a
progressive method in solving the approximate solution. Based on the above algorithm,
the Hessenberg matrix H,, in Equation (3.24) will be a band matrix with upper

bandwidth equal to t—1 and lower bandwidth equal to 1, which can be shown as

follows
by oy 0 0 ]
h21 h22 h2t 0
0 hyp hgg oo - 0
H =| . - 3.30
m : 0 hy ... . h(m—t+1),m ( :
S0 Ry :
L 0 0 0 hm,(m—l) hmm Jdmxm
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Take the LU factorization of this matrix. Because H,, is a Hessenberg band
matrix with bandwidth equal to t+1, its LU factorization will have the form that the
lower triangle matrix is a unit band lower triangle matrix, and the upper triangle matrix

has upper bandwidth equal to t—1. These two matrices are shown below.

1 0 « .. 0
ly, 1 0 ... 0
L=l 1y = 0
0
(0 5 0 g 1)

Uiq cee Ui 0 0
O U22 Y h2t 0
: 0 wu e 0
u,=| . . = ;- (3.31)
: : 0o ... = Ugm—t1),m
0 0 0 0.0 Unitn |
Then Equation (3.28) can be written as
-1 -1;-1
Xm =X + PnHm (10, &) = %o + PnUpm L (1o, €1) (3.32)

We define G, =P,U', ¢y =Ly (1], &) - then Equation (3.31) can be rewritten as

Xm = X0 + G (3.33)

By the definition of G,, and G U, =P,, let & ~ 0y, be the columns of G, and
we have
t-1

Z Ukm9k +Uym9m = Pm (3.34)
k=m—-t+1

The above equation can be rewritten as
t-1

Om :%mm (Pm — Z Uym 9k ) (3.35)

k=m-t+1
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By the definition of c,,, we have

Cyy = {Cm‘l} (3.36)
—m

where 77, =l m17m1
By Equation (3.32), we have the iterative equation as

Xm = X0 +GmCm

=Xo +Gm_1Cm-1+7m9m (3.37)

= Xm-1+7m9m

In FOM and IOM algorithm, we require an orthogonal basis to solve the
approximate solution. By Equation (3.36), we have a progressive method to solve x,,
which can solve the projection problem iteratively. Finally we have the DIOM

algorithm which is mathematically identical.to the IOM algorithm, but a progressive

version.

Algorithm 3.3 DIOM Algorithm
Choose a vector p;
forj=1~m

fori=1~max(l, j-t+1)
i

hij = (Apj, pi) . bj = Ap; =X hy p;
i=1

2
hj‘*‘lyj:HWjH’ Ifhj+l,j:O’ StOp E|Sepj+1:Wj/hj+1’j

-1

Om :%mm (pm - Z l'Ikmgk)

k=m-t+1

T = “ pl”v M = lnmama Xm = Xm + TmOm
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3.3.3 Symmetric Lanczos Algorithm

The symmetric Lanczos algorithm is a simplified Arnoldi’s method in which the
matrix is symmetric. When solving Ax=Db in the assumption that A is symmetric
matrix, the Hessenberg matrix H,, in Equation (3.24) is also a symmetric matrix,
hence it is a tridiagonal matrix. We can reduce the computational complexity by this
characteristic. A three-term recurrence equation can be found based on the Arnoldi’s

algorithm.
The Hessenberg matrix H,, in Equation (3.24) should have the structure as

follows

H, = (3.38)

Then the Arnoldi’s theorem can be simplified to the Lanczos Algorithm as in [8]

Algorithm 3.4 Lanczos method

Choose a vector p;, ||pyf|=1
for j=1~m

tj=Apj-bjpjy, aj=(Apj pj)
=t =a3py. by =[]

] ]

Ifb;,, =0, Stop else pj,; =w;bj,;

34



Then we can find the orthogonal basis of the Krylov subspace by Lanczos’s
theorem, and find the approximate solution by Equation (3.28), if A is symmetric.

This process will require fewer computations than the Arnoldi’s method.

3.3.4 Conjugate Gradient Method

Like the FOM algorithm in the assumption that A is symmetric, we can build an
orthogonal basis based on the Lanczos algorithm. Then we can use Equation (3.28) to

find orthogonal projection onto the Krylov subspace which is the desired approximate

solution.

An algorithm similar to the DIOM ralgorithm can be derived. It is called the
D-Lanczos algorithm. Because:thejHessenberg matrix H,, is a tridiagonal matrix, the

LU factorization in Equation (3.30) can be written as

L =
™10
0, 1mxm
hh o O
O h2 . 0
U, =|. . 3.39
m 0 . oo, (3.39)
0o : 0 hm i

By Equation (3.38), Equation (3.32) can be simplified to

hmgm +0nIm-1= Pm (3.40)

Equation (3.39) can be rewritten as
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Om = %mm (pm _Omgm) (3-41)

Then we have the D-Lanczos algorithm by replacing the equation of computing
0, in DIOM algorithm (algorithm 3.3) with Equation (3.40). Because the

approximate solution is iteratively found by

Xm = Xm-1+2m9m (3.42)

where g,, is called the searching direction vector. The CG method can be derived
from the D-Lanczos algorithm by two properties. The first is that the residual vectors
are orthogonal to each other and the second is that the search direction vectors g,
are A-conjugate thatis (Ag;,g;) =0, Vi j.

The residual vector can be written as

m = AXp —b= A(Xn_1 + Zm-10 =)= b

(3.43)
= In-1 ~ Tm1AGm-1
And the search direction vector . p,, canbefound by
Om =Tm +Sma9ma (3.44)

The coefficients &, and 7, can be found by the aforementioned two properties.
Finally, we have the CG algorithm, which is one of the best known iterative techniques

in solving the symmetric positive definite (S.P.D) system.
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Algorithm 3.5 Conjugate gradient method

for j=0~convergence
@j = (1, 1)(A9;.9;) =1{1; /9] Ag),

Xjs1 =Xj +aj0j T =T —ajAg;

T T
Bi = (rjsg F) (rj. 1) = rj+1rj+1/rj i Qj1 =T+ p59;

3.5 Summary

In this chapter, we first antroduce: the concept of projection and derive the CG
algorithm from basic projection theory. CG ‘algorithm is one of the best known
iterative techniques for solvinga symmetric positive definite (S.P.D) system. We will
use the PCG algorithm for solving the matrix inverse problem in the MMSE equalizer

in the next chapter.
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Chapter 4

Proposed Low-Complexity
Frequency Domain Equalizer

The frequency domain equalizer schemes are introduced briefly in Chapter 2. In
this chapter, the band channel approximation:based on the previous analysis is shown
in the first place. By this approximation, some techniques have been proposed to
reduce the complexity of different equalizers as introduced in Section 4.2. In addition,
an MMSE equalizer based on the CG method with optimal preconditioning is proposed.
And then we compare the complexity of this scheme with some other methods. Finally,

performance simulations are shown in Section 4.5

4.1 Band Channel Approximation

The magnitude of the frequency domain channel matrix is shown in Figure 4.1.
The channel model is the Jakes model and the normalized Doppler spread equals 0.1. It
is shown that the most significant coefficients are those on the central band and the
edges of the matrix, which is similar to the analysis of the channel in Chapter 2. In
order to reduce the computation complexity, the smaller coefficients are ignored and

only the significant coefficients are dealt with. Although there are some losses in the
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BER performance, the computation complexity of mobile OFDM systems can be

reduced greatly.

The frequency domain channel can be approximated as in Figure 4.2, [5], [6]. We
can only take account of the coefficients in the shaded region and ignore other
coefficients. Then a frequency domain channel matrix with bandwidth Q as shown in
Figure 4.2 is processed. A time-domain technique discussed in [6] can enhance this

approximation.

Magnitude

Subcarrier 0 o0 Subcarrier

Figure 4.1: Amplitude of frequency domain channel matrix in Jakes model
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Figure 4.2: Structure of approximate frequency domain channel

4.2 Existing Low-¢ ¥ Frequency Domain

Equalizers

...:.I'.-. ) ] ) ]
frequency domain equalizers will be introduced,

Two important Iow-complexi
which are proposed in [4], [6]. The main ideas behind them are also the band channel
approximation. We adopt the mobile OFDM signal model introduced in Chapter 2,
Equation (2.17), and ignore the superscript (i) giving

y=Fr=FHx+Fnq

4.1
=FHF"s+Fn=As+z “.1)

A linear minimum mean square equalizer (LMMSE) can be used to equalize the

received signal. The weight computations are based on

Wimse =arg mvzln E{HWHy—sHZ} (4.2)

It can be easily derived that the optimum weights in the above equation are
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H, 1 1
Winmse = (AA +SN—RRZZ) A (4.3)

where A =FHF" is the equivalent channel in the frequency domain as shown in
Equation (4.1), and R,, is the autocorrelation matrix of the noise. The equalized
signal can be written as d = W, .y, and then the receiver make decision based on
this equalized signal. In Equation (4.3), an N xN matrix inversion is required. It
requires O(N3) computations which is too expensive to be realized for a large V.

One should apply a low complexity algorithm to solve this problem.

By the idea that the ICI only comes from the neighborhood subcarriers, Xiaodong
Cai and Georgios B. Giannakis proposed a low-complexity LMMSE equalizer in [4],
Assuming that s; is the desired signal to be solved, it can only take the 2Q+1 rows
of the A matrix for computing_ the LMMSE: weight vector. It means we are only
concerned with the 1CI coming from-the -2Q neighborhood subcarriers, and ignore the
ICI produced by the subcarriers out|of the 2Q neighborhood, as shown in Figure 4.3.
Because the significant parts of.the ICI come.from the neighborhood subcarriers, this

assumption is meaningful.

The 2Q+1 rowsof A matrix for calculating the LMMSE weight vector for s;
IS A =A((-Q+1+1])),),1=1...20+1 , let y;=y(-Q+1+]), j=1...2Q0+1 ,

z; =z(i-Q+1+j), j=1...2Q +1, Equation (4.1) can be rewritten as

yi = Aisi +Z; (44)

Therefore the equation for computing the LMMSE weights from Equations (4.3) and

(4.4) can be written as

vl
Winmsei = (AjA; *SNR

R,) A (4.5)

where
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AiI-Q1 - A@[-Qi) -~ A(I-QN)

A= (4.6)

AG+QD - AG+Qi) - A+QN) |0

Is a part of the original channel matrix, R,;is a part of the autocorrelation function.
This technique can be seen as partitioning a large system into several small systems,
which can be easily solved. Note that the last 2Q rows of the matrix

(AiAiH +Sl\+RRZi) in Equation (4.5) is the same as first 2Q rows of the matrix

(Ai +1AH1+S,+RRZ(i +1)). The inverse can be calculated recursively as in [4]. Because

the step of computing AiAiH requires at least O(N2) computations, this algorithm

also requires O(NZ) computations to solve the LMMSE problem.

AN-Q+1,N)

N Ay Ang Ann-gay - Anany LN

Figure 4.3: MMSE equalizer (proposed by Xiaodong Cai and Georgios B. Giannakis)

Another similar approach is proposed by Philip Schniter in [6]. We call this
scheme the Partial MMSE equalizer for simplicity. This method applies the band
channel approximation as described in Section 4.1. Assume that we want to retrieve

the signal s;. We define
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Ai-Q,i-2Q) - Al-Q,i) 0

Al = 0 (4.7)

AG+Qui) -+ AG+Qi+2Q) ] 0.1 a0uy

Then the size of the matrix to deal with can be reduced to (2Q +1)x(4Q+1) rather
(2Q+1) x(N) in the first method. The system can be rewritten as in Equation (4.4)
with A; replaced by A; in Equation (4.6), and the LMMSE equalizer can also be

applied. The computation of LMMSE weights is similar to Equation (4.5) as follows

1

' 14 'H 1 4
Wmmse,iz(AiAi +SNRRZi) Aj 4.8)

Because it only requires O(N) computations to compute A;A;H, this algorithm

requires O(N) computations to solve the LMMSE problem.

Aua Aan-gsy 0 Aan

Ay AQ.N)
A(N —Q+L1) - A(N —Q+L,N)

- Ay - AN Ann-g:y - Al

Figure 4.4: Partial MMSE eqaulizer (proposed by Philip Schniter)
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4.3 Proposed Preconditioned Conjugate
Gradient (PCG) MMSE Equalizer

In this section, a low-complexity LMMSE equalizer by using preconditioned
conjugate gradient algorithm for solving the matrix inversion problem is proposed. It
will be shown that the complexity of this method is O(N) and have similar

performance but further computations than Partial MMSE equalizer.

4.3.1 Preconditioned Conjugate Gradient (PCG)

Algorithm

One of the serious defects+0f iterative methods is the lack of robustness. CG
works regularly if the system is well conditioned. Because CG is a project technique to
the Krylov subspace K™ which is the'subspace of R", it will converge in at most n
iteration. The convergence rate ‘0f CG is related to the condition number x which is

defined as follows

:@ 4.9
/1min ( )

K

where A, and Ay, are the maximum and minimum eigenvalue of the A matrix. If
the condition number is large, the CG algorithm will converge slowly. This
characteristic limits the application of CG algorithm. However, if some statistical
characteristic of A is known, it can be utilized to achieve faster convergence rate and
then the system will be more robust. This is the idea of preconditioning which is a

technique to better the condition number of the system.

Assuming M is the precondition matrix. Then the basic precondition method is

to solve the system M tAx=M'b instead of Ax=b. Therefore, the system
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convergence rate depends on the condition number of the preconditioned system
M™A. If M is chosen appropriately, the condition number of M A can be
smaller than the original matrix A . For this reason, solving the system

M~tAax=M"1b will converge quickly.

There are some criteria for choosing the precondition matrix M , which is

introduced in [8], [9], and [10].
1. M is a good approximation to A in some sense
2. The cost of the construction of M is not prohibitive

3. The system M “x =b is much easier to solve than the original system
We may choose appropriate precondition matrix M according to the criteria above.
However, it is not necessary to-solve_the problem MAx=M"b; it only requires
modifying the original CG algorithm into a-preconditioned version. We will derive the
PCG algorithm based on the €G Algorithm-introduced in Section 3.3. Some parts of

this derivation can be found in [14].

Assuming M is a symmetric positive-definite matrix, the Cholesky factorization
of M is S. That is M =SST. The matrix M *A will have the same eigenvalues
asS~IAS. The system Ax=b can be transformed to StASTR=5", x=5"x.
Then the matrix S AS™" s also a symmetric positive-definite matrix, so we can

apply the CG method to solve the above question, as follows
E=5"b-STAST X, gy =1y
for j=0~convergence
aj= rj’TrJf/g’jT sAs g,
Xju1 =Xj+ajg]
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Ma=rj—a;S asT 9]

1T

- rj+lrj+l/r
’ ! 1
gj+1:rj+l+13jgj

Then we define rj = sy, g = ST g;, above algorithm can be rewritten as

for j=0~convergence
"ML /ol Ag.
aj=rM rJ/gJ Agj
Xjvn = Xj T 0]

My =T —ajAg;

T T
Bi=laria/ri v
gj+1:rj+l+13jgj

End

Then we define z; =M _1rj , and substitute above algorithm. We can derive the PCG

algorithm [9], [15].
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Algorithm 4.1 Preconditioned Conjugate Gradient Method

for j=0~convergence
z;=M ‘1rj
a;=r{z;/9] Ag,
Xjs1=Xj+ajg;

M =T} —ajAg;

T T
Bi :rj+1zj+1/rj Zj, 9ju1=Zju1+f;9j

4.3.2 PCG LMMSE Equalizer

The LMMSE equalizer for mobile OFDM system has introduced in Section 4.2,

the weights is calculate by Equation (4.3). The equalized signal can be written as

1
d=wWH y=aA"(AAM + R,)? 4.10
mmseY ( SNR 2) Y ( )

This equation above can be rewritten as

(AAM +

R, )e= 4.11
SNR z)e=Yy ( )

d=A"e (4.12)

By defining T=(AA" +<nz Rz)» Equation (4.9) is equivalent to solve a Td=y
problem. Observing the equation above, an N xN matrix inversion is required. By

the band channel approximation as described in Section 4.1, this matrix is a spare
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symmetric positive definite matrix. The CG algorithm introduced in Chapter 3 is one
of the best known iterative techniques for solving symmetric positive definite problem,
but it may suffer the problem of low convergence rate. The PCG algorithm can be used

to avoid this problem.

By observing the amplitude of the matrix A which is shown in Figure 4.1, it can
be found that the most significant coefficients are those on the central band and the
edges of the matrix. Then the matrix (AA" +S1\+RRZZ) which is the matrix required
to inverted still have similar characteristic to the matrix A . It means that it is also a
diagonal dominant system. By applying the three criteria described in the previous
section, we can choose some diagonals of the central band of the matrix
(AAH +s1\+RRzz) as the precondition matrix, M which is shown in Figure 4.5. The
three preconditioning criteria described in the-previous section should be checked
before preconditioning. First,-because the matrix has the most significant values on its
diagonals, this choice of the“precendition-matrix s similar to the original matrix A.
Second, we can obtain the precondition matrix- directly from the matrix A, so there is
no extra cost in constructing the precondition matrix. Third, the system M “Ix=b can
be easily solved by the band LDL" factorization [7], [15] and the forward and

backward substitutions which have lower complexity than the inversion of a general

matrix.

With the precondition matrix chosen above, Equation (4.9) can be solved
iteratively by the PCG method described in Section 4.2. The condition number of the
original system and the preconditioned system are shown in Figures 4.5-4.6. It can be
shown that the preconditioned system has much smaller condition number than the
original system, so the preconditioned system will converge faster than the original
system. The convergence rate and complexity analysis of this method are shown in

Section 4.4 and Section 4.5. By these analyses, it is presented that this approach has
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lower complexity than the method introduced in Section 4.2 but still have similar BER

performance to that method.
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. Figure'4.5: Structure of precondition matrix
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Figure 4.6: Condition number of original system
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Figure 4.7: Condition number of preconditioned system

4.3.3 Optimum Precondition-Matrix

The central band of the matrix (AAH +ﬁRZZ) is chosen as the precondition
matrix in the previous section. Because we must solve the problemM‘1x=bper
iteration in Algorithm 4.1, it leads to some overhead problems. Because the complexity
of the inversing a band system increases exponentially with the bandwidth of the
matrix, it is a trade-off problem that how many bandwidth we should choose. Choosing
a larger bandwidth of precondition matrix will let the system converge faster but it
requires more computations per iteration, so the subset of the central band matrix may
be chosen as the precondition matrix. By computer simulations and complexity

analysis, we can obtain the optimum bandwidth of the precondition matrix that

achieving the lowest complexity. We will discuss this in following section.
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4.4 Complexity Analysis

The LMMSE proposed by Xiaodong Cai and Georgios B. Giannakis requires
O(NZ) flops, and the LMMSE method proposed by Philip Schniter which is called
the Partial LMMSE method requiresO(N) flops. The PCG LMMSE method proposed
by this paper also requires computations linearly with N. The complexity of the two
methods, Partial LMMSE and PCG LMMSE will be analyzed here, and their

complexity increases linearly with N.

A flop here is defined as a complex multiplication, and N is the FFT size, P is the
bandwidth of the precondition matrix. Table 4.1 shows the complexity of PCG MMSE

equalizer, and Table 4.2 shows the complexity of Partial MMSE equalizer

Note that the bandwidths of the precondition matrix not only affects the
complexity per iteration but also-the convergence rate. It is a trade-off that how many
bandwidth of the original matrix -required: to -choose for achieving the lowest
complexity. The optimum bandwidth-of-the precondition matrix can be obtained by
simulations. We will discuss the actual computation required by these two methods,

Partial MMSE and PCG MMSE, in the next section.
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Table 4.1: Complexity analysis of PCG MMSE equalizer

Operation Complexity
(AA") (2Q2 +Q+1) N flops
INV(AA'+0C,, ) *r p2
(4Q +6+ > + 4PJ x (number of iteration ) N flops

H"™*inv(AA'+5C,,)*r (2Q+1)N flops

2
Total {(4Q+6+P7+4P}x(number of iteration)+2Q2+4Q+2}N flops

Q: The bandwidth of the approximation channel
P : The bandwidth of the precondition matrix

N : FFT size
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Table 4.2: Complexity analysis of Partial MMSE equalizer

Operation Complexity
R, =(AA;) (2Q7 +3Q +1)N flops
3
iNV(AA '+ 5C,, ) *r [@+ (20 +1)2] N flops
h*inv(HH'+5C,, ) *r (2Q+1)N flops

4Q° o2
Total T+8Q +10Q+3 [N flops

Q: The bandwidth of the approximation-channel

N : FFT size

4.5 Computer Simulations

In this section, computer simulations are conducted to evaluate the performance
of the OFDM system using PCG LMMSE equalizer. Through out the simulations, we
only deal with discrete time signal processing in the baseband, hence pulse-shaping
and matched-filtering are removed from consideration for simplicity. Also, channel
estimation and timing synchronization are assumed to be perfect. In the simulations,

the relationship between SNR and E, /N, is defined as

& K
B, _ bitpower _ T, _TM _g\p. 1 (4.13)
No noise power NgB NgB M
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where E is the symbol energy, Tis the symbol duration, B is the system
bandwidth, and M is the modulation order. The system transmit bit power is
normalized to one, the noise power given by o’ corresponding to a specific

Ey, /N, can be generated by
ot=— 4.14)
Table 4.3 lists all parameters used in our simulations. The configuration we
consider here is an OFDM system with a bandwidth of 1.5 MHz and 64 subcarriers.

The set of QAM constellation used in the simulations is QPSK. The channel model is

the Jakes model [12], [17], [18] and the normalized Doppler spread equals 0.1.

Table 4.3:.Parameters of.Computer Simulations

Transmit/Receive antennas SISO
Carrier frequency 5.2 GHz
Bandwidth 1 MHz
Number of carriers, FFT size 64
OFDM symbol duration 42 us
Guard interval 525us
Modulation order QPSK
Velocity 250 km/hour
Maximum Doppler frequency 1.2 KHz
Normalized Doppler frequency 0.05
Channel model Jakes Model [17], [18]
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Figure 4.8:-Jakes model simulator

The BER performances of the ‘CG MMSE equalizer with different numbers of
iterations are shown in Figure 4.10. It can be shown that the conventional CG
algorithm suffers from slow convergence rate problem, and this problem can be solved
by the PCG algorithm. The convergence rate of the proposed equalizer with different
precondition matrix bandwidths is shown in Figures 4.11-4.14. It is shown that the
convergence rate is proportional to the bandwidth of the precondition matrix, but a
lager bandwidth of precondition matrix results in more computations per iteration. It is
thus a trade-off in choosing the bandwidth of the precondition matrix. We define the
complexity to be the number of multiplications per iteration multiplied by the number
of iterations. In Table 4.2, we show the complexity of different bandwidths of the
precondition matrix and the number of iterations required for the convergence. By the
simulations result, we can determine the optimum bandwidth of the precondition
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matrix. The optimum bandwidth of the precondition matrix here equals three. By the
complexity analysis above, the PCG MMSE only requires 30% the computations of the

Partial MMSE.
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Figure 4.9: BER performance obtained by using CG based MMSE equalizer.
The performance of different numbers of iterations is shown. It can
be seen that it requires about 30 iterations to converge.
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Figure 4.10: BER performance obtained by using PCG based MMSE equalizer,

(BW of precondition matrix in PCG MMSE is zero). The

performance of different numbers of iterations is shown. It can be

seen that it requires about 4 iterations to converge.
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Figure 4.11: BER performance obtained by using PCG based MMSE equalizer,

(BW of precondition matrix in PCG MMSE is one). The

performance of different numbers of iterations is shown. It can be

seen that it requires about 3 iterations to converge.
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Figure 4.12: BER performance obtained by-using PCG based MMSE equalizer,

(BW of precondition’matrix in PCG MMSE is two). The

performance of different numbers of iterations is shown. It can be

seen that it requires about 2 iterations to converge.
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Table 4.4: Convergence rate for different precondition bandwidths

Precondition Matrix |[Complexity Number of

Bandwidth (4Q+6+1/2P2+4P)N literations
P=0 (4Q+6)N 4
P=1 (4Q+10)N 3
pP=2 (4Q+16)N 2
P=3 (4Q+22)N 2

Figure 4.13 shows the BER performance of different schemes. The conventional
one-tap equalizer scheme has:poor performance du€ to the influence of ICI. The Partial
MMSE and PCG MMSE have. similar'performance. A BER bound of the MMSE
equalizer is also shown in this figure. The gap between the MMSE BER bound and the
PCG MMSE is due to the channel approximation errors. This gap can be reduced by
applying a more complicated method such as MMSE-SIC, MMSE-PIC [3], [4]. It
shows that with the channel approximation the MMSE-PIC equalizer has better
performance than the MMSE equalizer. The MMSE-PIC equalizer can even have

better BER performance than the MMSE equalizer BER bound in low SNR region.
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Figure 4.13:'BER performance-of different schemes

Figure 4.14 shows the BER performances under different vehicle speeds. The

BER performance of the OFDM system degrades with an increasing vehicle speed

because the ICI is more significant in the high mobility environments. It will thus

require more bandwidth of the approximated channel or a complicated method to

mitigate the ICI.

Figure 4.15 shows the BER performance with channel estimation errors. The

channel estimation errors are defined as a AWGN noise with variance o7 to disturb

the estimated channel taps, by the definition in [26]

flt=ht+e

(4.

where ﬁt:[ﬁ(t,O),ﬁ(t,l),---ﬁ(t,L-l)] is the estimated channel impulse response, and
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e=[e;,e,---e 4| represents the error vector. It is assumed that e is independent of h
and is modeled as independent zeros means complex-valued Gaussian noise. It can be
shown in Figure 4.18 that the PCG MMSE has similar performance to the Partial
MMSE equalizer even if the channel estimation errors are considered. Because the
Partial MMSE equalizer only takes parts of the equations, it may be more sensitive to

the disturbance of channel.
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Figure 4.14: BER performance under different vehicle speeds.
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Figure 4.15: BER performance with channel estimation errors
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4.7 Summary

In this chapter, we first introduce the channel approximation of mobile channel.
This approximation is based on the concept that we are only concerned with the
significant channel coefficients and ignore the trivial parts. With this approximation,
the number of coefficients to be processed is reduced, so the computations for the
equalizers can also be reduced. Although this approximation is useful, there is still an
error floor due to the approximation errors. Furthermore, we introduce and compare
several different low-complexity equalizers in Section 4.2, which are important
techniques in this subject. By complexity analysis, it is shown that our scheme can
achieve lower computation complexity while still have similar BER performance to the

Partial MMSE equalizer.
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Chapter 5

Conclusion

In this thesis, we propose a PCG hased MMSE equalizer for the OFDM system
over time-varying channels. Compared; with ‘conventional one-tap equalizers, this
scheme can achieve better perfermance-in mobilé environments. In Chapter 2, the
concept of OFDM system is introduced and-the reason why OFDM system can be used
efficiency in time-invariant channel‘is‘given. Besides, the challenges to OFDM system
in mobile environments are introduced and mathematically analyzed. The most
important issue is that the channel variations with time destroy the orthogonality
between subcarriers and produce the intercarrier interference (ICI). Then the
characteristics of the ICI are analyzed and the mobile channel matrix is approximated
to a band matrix based on this ICI analysis. Furthermore, some basic techniques to
cancel the ICI are introduced in this chapter, such as ICI self-cancellation schemes and
the frequency domain equalizer schemes, the latter being adopted in this thesis In
Chapter 3, we first introduce the idea of orthogonal projection and then derive the
conjugate gradient (CG) algorithm. In Chapter 4, several schemes based on the

frequency domain equalizer techniques are introduced, which have already been
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proposed to cancel the ICI with moderate complexity. The CG method in Chapter 3 is
modified into a preconditioned version and a PCG based low-complexity MMSE
equalizer for canceling the ICI is proposed. Furthermore, the effect of the precondition
matrix on the proposed method with different bandwidths is discussed. Then we

analyze the complexity of this scheme and compare this scheme with other schemes.

The conventional system adopting the preamble to estimate the channel will have
poor performance because of the channel variation with time. Actually, in a mobile
OFDM system, it is necessary to insert sufficient pilot symbols for channel estimation.
We can estimate the channel at some time instance and use linear or non-linear
interpolation to obtain the entire time-varying channel estimate. There are still some
problems in the estimation of time-varying channels because of the inaccuratcy of the
interpolation. Besides, the condition number of the system decreases as the number of
receiver antennas increases. -This suggests that the proposed scheme can be better

applide to the mobile MIMO-OFDM system:
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