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多重描述量化碼書的索引指定設計 

研究生：林宜德     指導教授：張文輝 博士 
 

國立交通大學電信工程學系 

 

摘 要 

本論文探討多重描述量化碼書之索引指定最佳化問題，進一步應用在無線隨意網路環境

之分散式語音辨識系統。在系統的傳送端，多重描述量化器將語音參數量化，並根據事

先定義的碼書索引指定產生兩個或多個描述，這些描述再通過多個互相獨立且無記憶性

的通道傳送，在接收端則以一個符合最小期望擾動的解碼器將語音參數還原。傳統解決

碼書索引指定最佳化的問題，是利用多重描述二進位置換演算法，它的做法是不斷地置

換一對碼字的位置直到期望擾動收斂為止。為了要降低其運算複雜度，我們將索引指定

設計轉換成符合線性規劃的雙方相配問題，並且提出多重描述亨格利演算法，藉此快速

的建立最佳化的碼書索引指定。系統模擬是在不同的網路封包漏失環境中，利用國語數

字串的分散式語音辨識進行碼書索引指定的性能評估。實驗結果顯示在隨機漏失和吉伯

爾模型漏失的環境下，所提出的多重描述傳輸機制比其它單一描述傳輸方法具有更強健

的性能表現，同時也利用無線隨意網路模擬平台評估分散式語音辨識的性能。 
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ABSTRACT

This study addresses the index assignment optimization for multiple description quan-

tizers and its application to distributed speech recognition over Mobile Ad Hoc Net-

works (MANET). In the encoder, the speech parameters are quantized and mapped

to two or more descriptions according to a predefined index assignment. After being

transmitted over multiple independent channels, the decoder uses the received descrip-

tions to reproduce the speech parameters. The optimization criterion and a practical

approach based on the multiple description binary switching algorithm (MD-BSA) are

first presented for the index assignment optimization. The basic idea of the MD-BSA is

to switch a pair of codevectors recursively until the expected channel distortion can not

be further reduced. In order to reduce its computational complexity, we formulated the

index assignment problem on the basis of a linear programming framework and then

proposed a fast local search algorithm based on the multiple description Hungarian

algorithm (MD-HA). Experiments on the Mandarin digit string recognition task show

that the proposed multiple description scheme outperforms single description methods

in the presence of random and Gilbert-model packet losses. The ns-2 based MANET

simulation was also conducted to examine the performances of the proposed multiple

description transmission scheme.
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Chapter 1

Introduction

Mobile ad hoc networks (MANET) is a new networking technology that provides infor-

mation exchange in a group of wireless mobile hosts. The main feature of the MANET

is to exploit the routing protocol based hop-by-hop transmission methodology to estab-

lish a communication link when individual host has its own moving speed and direction.

This scenario is practical in new applications such as the intelligent transportation sys-

tem (ITS) or the advanced traveller information system (ATIS). For example, a driver

on the highway may use the ATIS to acquire his favorite restaurant information at

the next rest area. The distributed speech recognition (DSR) front-end in the car ex-

tracts speech parameters which are then transmitted over the MANET to the back-end

recognition server. After recognizing the speech signal, the server sends the restaurant

information, which may be a short vedio introducing the menu, back to the driver.

The driver may again use this system to order his meal in advance. Obviously, the

whole information access procedure is dominated by real time multimedia communica-

tions. Thus, in order to provide high quality multimedia service to consumers, robust

transmission schemes and information processing must be adopted to ensure that the

overall system performance meets the quality of service (QoS) requirements.

For transmitting multimedia over packet-based networks such as the MANET, it is
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essential to deal with packet loss, end-to-end delay, and delay variation (jitter) to meet

QoS requirements. Packet loss problem is usually alleviated by packet-level foward er-

ror correction (FEC) based on parity codes and Reed Solomon codes [1][2]. Packet-level

FEC generates and sends some redundant information by exploiting previously trans-

mitted multiple packets. However, for interactive audio applications such as VoIP and

audio conferencing, which require high constraints on end-to-end delay, this technique

is not applicable because of the additional delay caused by waiting for the redundant

information at the decoder. Besides, bursty packet loss significantly degrades the per-

formance of the FEC.

Recently, there has been much attention focused on using a novel coding scheme,

multiple description (MD) quantization, to combat the packet loss problem. The basic

idea of this scheme is to exploit the largely uncorrelated loss and delay behavior of mul-

tiple independent transmission paths. For example, a two-description encoder encodes

the information source into two descriptions and transmits them over two independent

channels. In the decoder, even if only one description is received, the information source

can still be reconstructed but with a reduced quality. A higher quality reconstruction

can be achieved if both descriptions are received.The research aspects of multiple de-

scription quantization can be categorized into two parts: 1) the optimal encoder and

decoder design, 2) the optimization of the index assignment. The work in [3] discussed

the optimization criterion for the encoder and decoder, the rate distortion bound, and

the index assignment methodology for multiple description scalar quantizers (MDSQ).

Particularly, a generalization of Lloyd’s algorithm is developed to find out the optimal

encoder and decoder. By minimizing the index spread parameter, two diagonal index

assignments, called the nested index assignment and the linear index assignment, are

proposed. Channel optimized quantizer design was addressed in [4] and [5]. A discrete

memoryless channel model that considers both erasures and symbol errors is proposed

to optimize the encoder and decoder in [4]. Also proposed is Gilbert’s two-state channel

model [5], where time-division multiplexing or packet interleaving is used to character-
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ize channel erasure errors. In [6], a simulated annealing based method is adopted to

optimize the index assignment. Other contributions from [7], [8], and [9] address the

index assignment problem based on lattice vector quantizers.

In some practical applications such as VoIP or distributed speech recognition, quan-

tizer codebooks have been standardized and therefore most works will focus on the

index assignment and the decoder design. For a given quantizer codebook with a sin-

gle description [10], a locally optimum index assignment algorithm, called the Binary

Switching Algorithm (BSA), was proposed to minimize the average distortion caused

by bit errors. For packet-erasure channels, the multiple description BSA (MD-BSA)

[11] was proposed to optimize the index assignment for multiple description vector

quantizers (MDVQ). The main disadvantage of the MD-BSA is its computational in-

efficiency due to the exhaustive switching operation of the quantizer codebook. This

problem becomes serious especially when the quantizer codebook size is large. In order

to reduce its computational complexity, we formulated the index assignment problem

based on a linear programming framework and then proposed a new local search algo-

rithm, called the multiple description Hungarian algorithm (MD-HA), to quickly find

the optimal index assignment.

This thesis is organized as follows. Chapter 2 describes how to use the ns2 to

simulate the packet loss characteristics of the MANET. Chapter 3 presents the MDVQ

transmission scheme and the corresponding formulation of the optimal decoder design.

The Hungarian algorithm for the bipartite matching problem and the proposed MD-HA

are introduced in Chapter 4. In Chapter 5, experiments are conducted to investigate

the performances of various index assignment algorithms and transmission schemes.
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Chapter 2

NS-2 Based MANET Simulation

The concept of the MANET was originally proposed by the Packet Radio Network

(PRNET) project conducted in the U.S. Defense Advance Research Projects Agency

(DARPA). It was initially applied to provide robust battlefield communications. Re-

cently, due to its flexibility, mobility, and convenient usage, this technology is adopted

in more applications such as scientific data collections, disaster recovery, and crises

emergency rescue where the wired communication is not available. The MANET is

an autonomous system because there exists no centralized infrastructure such as fixed

base stations. Every host equipped with the wireless interface (i.e. IEEE 802.11) can

exchange information directly with each other if the receiver is located in the trans-

mission range of the sender. If the destination is out of range, routing protocols will

discover one optimal hop-by-hop transmission path between the communication pair.

Thus, every host can also act as a router to forward packets to another destination.

Due to the dynamic random movement of every host, the routing protocol must be de-

signed to quickly respond to the changing topologies. For example, if any intermediate

node of one stable path moves out of the transmission range or the link is broken due

to work overload, routing protocols must react immediately to find another available

link to replace the broken one. Consequently, routing protocols significantly affect the

performance especially when the topologies change rapidly.
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The popular routing protocols can be categorized into two different classes ac-

cording to their operation methodologies. One class is proactive routing protocols

(i.e. DSDV) and the other is reactive ones (i.e. AODV). Another protocol called the

TORA combined these two properties. The performances of various routing protocols

have been studied in [12], [13], [14], [15], and [16]. From the simulation results in terms

of the packet delivery ratio, the AODV yields a better performance than the DSDV

and the TORA. Therefore, we will adopt the AODV routing protocol in the following

simulations.

2.1 Routing Protocols for the MANET

2.1.1 Destination-Sequenced Distance Vector (DSDV)

The DSDV [17] is typically a table-driven routing protocol. Every node establishes a

routing table which records the number of hops required to reach all available nodes

in the topology. A sequence number originated by the destination is tagged to each

table entry. This number determines the freshness of a path. When selecting one path

among two, the path which has a greater sequence number is preferable. If the two

sequence numbers are equal, the path with a lower metric will be selected. Every node

periodically exchanges and updates the routing table information with each other. But,

when the topology changes fast, the newest routing information can not be catched

and updated immediately. As a result, according to the old routing table, the data will

probably be forwarded to the destination through a broken route. This condition will

cause large packet loss in the presence of high mobility.
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2.1.2 Ad-hoc On-Demand Distance Vector (AODV)

The AODV [18] routing protocol discovers a transmission path based on the “on-

demand” fashion. Specifically, the nodes that do not act as routers or intermediate

stations along a established link have no obligation to perform any path searching or

maintenance operation defined in the routing protocol. The path discovery procedure

will only be initiated when two nodes need to communicate. We now briefly describe

the routing mechanism. As the path discovery is started, a packet called route request

(RREQ) is broadcasted by the source node to its neighbors. This kind of packet will

be transmitted hop-by-hop until reaching a node which has a route to the destination.

Note that an intermediate node may receive multiple duplicates of the same RREQ.

If this happens, the node will drop this RREQ instead of broadcasting it again. A

reverse path will be automatically established when the RREQ passes through the

intermediate nodes. When the RREQ arrives at a node having an available link to the

destination, this node will send a packet called route reply (RREP) back to the source

node along the pre-constructed reverse path. A forward pointer giving the direction

where the RREP comes from will be set up when the RREP goes through every node

along the reverse path. Once the source node receives the RREP, the data transmission

will be started. On the other hand, if any node along the transmitting path fails to

communicate, a special RREP will be broadcasted to notify every active source node.

The source node can then initiate another path discovery procedure if it still need to

communicate to the destination.

2.2 NS2 Simulation Platform

2.2.1 Wireless Multihop Simulation Environments

The Monarch projects, conducted at Carnegie-Mellon University, proposed a wireless

multihop simulation platform which integrated the models of physical, data link, and
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medium access control (MAC) layers. The simulation environments are briefly de-

scribed as follows. The signal transmitted in the wireless channel is simulated by two

radio propagation models, including free space propagation model and two-ray ground

reflection model. Lucent WaveLAN [19, 20] which has a transmission range of 250 m

and a bit rate of 2 Mb/s is adopted to model the wireless interface. The IEEE 802.11

Distributed Coordination Function (DCF) which exploits physical carrier-sensing and

virtual carrier-sensing implements the MAC layer protocol. Before transmitting the

data, the Request-to-Send/Clear-to-Send (RTS/CTS) exchange is performed to re-

serve wireless channel to prevent collisions caused by hidden terminals. After receiving

a packet successfully, an Acknowledge (ACK) is transmitted back to the sender.

2.2.2 Simulation Methodology

To proceed with the NS2-based MANET simulation, it is prerequisite to create a

wireless scenario script which defines all the simulation settings, such as the radio-

propagation model, the length of the interface buffer, the area of the simulation field,

the ad-hoc routing protocol, the number of mobile nodes, etc. Another two important

issues are the generation of node movements file and traffic flows file.

The node movements file records the initial positions of every mobile nodes and

the information of every node’s moving path. This file can be made by the following

command.

./setdest [-n number of nodes] [-p pause time] [-s maximum speed] [-t simulation time]

[-x maximum x] [-y maximum y] > [output file]

This program script is located under ns/indep-utils/cmu-scen-gen/setdest directory.

We now consider an example of the simulation scenario created by the following com-

mand:
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./setdest -n 50 -p 30.0 -s 20.0 -t 900 -x 1500 -y 300 > scene-50-test

There are 50 mobile nodes moving in the 1500 m x 300 m simulation area. The

immobility period of a node after it arrives at a predefined position is 30.0 seconds.

The speed of every node is randomly selected between 0 m/s and 20.0 m/s. The to-

tal simulation time is 900 seconds. The output will be directed to the output file

“scene-50-test” after the execution of the program script. Note that the pause time

determines the changing frequency of the topology. If this parameter is large, it means

that mobile nodes remain stationary for a large portion of the simulation time. This

represents that a few topology changes will happen during the simulation. Conversely,

the topology changes more frequently if the pause time is small. A typical row of the

output is presented as follows:

$ns at 3.000000000000 “$node (0) setdest 86.459628716598 36.120954036579

2.469127930945”

With this instruction, node (0) begins to move toward the location (86.46, 36.12) with

a speed of 2.47 m/s at time 3.0 seconds.

The traffic flow file records the data stream information of every communication

pair. This file can be done by the following command:

ns cbrgen.tcl [-type cbr or tcp] [-nn number of nodes] [-seed seed] [-mc number of con-

nections] [-rate packet sending rate] > [output file]

This program script is located under ns/indep-utils/cmu-scen-gen directory. For ex-

ample, suppose that we want to create a traffic flow scenario that uses a seed of 1.0 to

randomly select 20 CBR connections from 50 nodes and each connection has a packet

8



sending rate of 4.0. The following command should be used.

ns cbrgen.tcl -type cbr -nn 50 -seed 1.0 -mc 20 -rate 4.0 > cbr-50-test

The file “cbr-50-test” will record the results. The following shows a traffic pattern

recorded in the output file.

set cbr (0) [new Application/Traffic/CBR]

$cbr (0) set packetSize 512

$cbr (0) set interval 0.25

$cbr (0) set random 1

$cbr (0) set maxpkts 10000

$cbr (0) attach-agent $udp (0)

$ns connect $udp (0) $null (0)

$ns at 57.154239418576259 “$cbr (0) start”

This traffic pattern makes udp (0) at time 57.15 seconds start to send 512-byte pack-

ets to null (0) every 0.25 seconds. Note that the starting time is randomly selected

between 0 seconds and 180 seconds.

2.2.3 Trace File Analysis

After setting the main simulation script and creating the node movement scenario and

the traffic flow patterns, ns2 integrates these three components to produce the trace

file. The trace file records the detailed information of the packet sending, receiving,

and transferring occurred at every mobile nodes. A typical example is shown below.

s 0.572581837 48 AGT — 7 cbr 102 [0 0 0 0] ——- [48:0 49:1 32 0] [3] 0 3

r 1.357495411 49 AGT — 14 cbr 122 [13a 31 11 800] ——- [47:0 49:0 98 49] [7] 3 3

9



These two lines can be roughly interpreted as follows. The node with ID of 48 sends a

102-byte packet at the time of 0.57 seconds. UID of this transmitted packet is 7. The

node with ID of 49 and mac-ID of 31 receives a 122-byte packet at the time of 1.36

seconds. UID of this received packet is 14. The node which sends the packet with UID

of 14 has mac-ID of 11.

The final goal of network simulations is to obtain the performance metrics, includ-

ing packet loss rate, end-to-end delay, delay jitter, etc. This can be easily done by

using the language, AWK, to analyze the data recorded in the trace file. AWK, which

is similar to C language, can be directly executed without being compiled in advance.

The main feature of AWK is that it can easily process the file which records the data

in a field-by-field type. The following shows a simple AWK program which processes

the trace file to obtain the packet loss rate.

BEGIN{
count1 = 0;

count2 = 0;

}
{

action = $1;

node = $3;

if(action == “s” && node == “ 48 ”)

{
count1++;

}
if(action == “r” && node == “ 49 ”)

{
count2++;

10



}
}
END{

packet loss rate = (count1 - count2) / count1;

printf(“%f”, packet loss rate);

}

The middle part of the program is executed recursively to process every row. $1 and $3

represent the first and the third field of one row data respectively. In this example, if

a row data has the first field of s and the third field of 48 , count1 will be incremented

by one. This counts the number of transmitted packets. Correspondingly, the number

of received packets can be obtained by counting count2 which represents the number

of row data that has the first field of r and the third field of 49 .

2.3 A Simulation Example

We simulate the transmission of multiframe packets of the distributed speech recog-

nition (DSR) system over the MANET. According to the standard ETSI ES 202 212

(v.1.1.1) [21], one multiframe packet has a fixed length of 144 bytes consisting of 2

bytes of the synchronization sequence, 4 bytes of the header field, and 138 bytes of

the frame packet stream. The frame packet stream contains 24 frames and each frame

records the data generated by processing 10 ms of speech. Thus, one multiframe packet

with 144 bytes represents 240 ms of speech, resulting in a data rate of 4.8 kbps.

The simulation environment is described as follows. There are 50 wireless mobile

nodes moving with the maximum speed of 20 m/s in a simulation area whose boundary

is defined as 1500 m x 300 m. One pair of nodes is selected to perform the transmission

of the DSR packet. The transmitter sends the packet with 144 bytes every 0.24 seconds.

In order to simulate the network congestion conditions, we select other 10, 20, and 30
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CBR traffic patterns which have the packet size of 512 bytes and the sending rate of

4 packets/s to compete the transmission bandwidth with the DSR connection. The

starting time of each CBR traffic pattern is randomly chosen between 0 and 180 seconds.

The pause times in our simulation are 0, 30, 60, 120, 300, 600, and 900 seconds. For

each pause time, the random waypoint movement model is used to generate 10 different

mobility scenarios. Thus, each data point of the simulation result is an average of 10

runs with different mobility scenarios, but with identical traffic models. The simulation

time equals 900 seconds. We list the simulation parameters in Table 2.1.

Table 2.1: Simulation parameters for evaluating the performances of the split VQ

(SVQ) with a single description.

Number of wireless mobile node 50

Maximum moving speed of each node 20 m/s

Simulation area 1500 m x 300 m

DSR packet size 144 bytes

DSR sending interval 0.24 seconds

Number of CBR traffic pattern 10, 20, 30

CBR packet size 512 bytes

CBR sending rate 4 packets/s

Starting time of Randomly chosen

each CBR traffic pattern between 0 and 180 seconds

Pause time 0, 30, 60, 120, 300, 600, 900 seconds

Simulation time 900 seconds

Figure 2.1 shows the performances of the DSR transmission pair competed with

various numbers of CBR sources. The simulation results revealed that the network

congestion condition significantly affects the packet delivery fraction. For higher traffic

loads, more packets will be discarded by the router buffer, resulting in lower packet

delivery fractions. For higher pause times, the mobile nodes are more stationary,
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Figure 2.1: Packet delivery fractions of the DSR transmission pair competed with

various numbers of CBR sources.

resulting in fewer packet losses due to the link broken caused by the topology changing.

Thus, for a fixed number of CBR sources, the DSR transmission pair has slightly higher

packet delivery fractions in the range of high pause times.
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Chapter 3

MDVQ Transmission Scheme

The MDVQ encoder uses the fixed codebook to quantize the information source and

maps the quantizer output index into two or more descriptions according to a predefined

index assignments matrix. These descriptions are transmitted over multiple mutually

independent and memoryless packet-erasure channels. In the decoder, given a fixed

codebook and a fixed index assignment, an optimal quantizer reproduction vector is

designed to minimize the expected distortion.

3.1 System Model

Figure 3.1 shows the block diagram of the MDVQ transmission scheme having two

descriptions. The input source vector x is quantized and represented by the index

of the nearest codevector yI from the codebook Y = {y1,y2, . . . ,yM} of the VQ

encoder. Let the set of quantizer output indices be denoted as S = {1, 2, . . . , M}. The

index assignments, δ1 and δ2, further translate the quantizer output index I into two

descriptions, I1 and I2, whose realizations i1, i2 ∈ {1, 2, . . . , N}. These two descriptions

are then transmitted over two mutually independent and memoryless channels which

have packet erasure rates ε1 and ε2, respectively. In the MDVQ decoder, an optimal

14



VQ
Encoder

Channel 1

Channel 2

MDVQ
Decoder

x I

Index
Assignment

MDVQ Encoder

1
I

2
I

1
Î
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Figure 3.1: MDVQ transmission scheme.

reproduction vector x̂ is decoded based on the two received descriptions, Î1 and Î2,

whose realization î1 and î2 take values from the set S1 = {i1, ∅} and S2 = {i2, ∅},
respectively. Note that the empty set “∅” indicates the case of packet erasure.

3.2 Optimal MDVQ Decoder

The optimal quantizer reproduction vector is designed to minimize the expected dis-

tortion between the codevector yI and the reproduction vector x̂ for a given received

pair of descriptions {̂i1, î2} and a fixed codebook and a fixed index assignment. This

can be described by the following optimization problem:

x̂(̂i1, î2) = arg min
x̂

{
E

{
d(yI , x̂)|Î1 = î1, Î2 = î2

}}
. (3.1)

The distortion d(yI , x̂) will be evaluated in terms of the Euclidean distance ‖yI −
x̂‖2. The minimization (3.1) leads to the optimal quantizer reproduction vector in the

following form

x̂(̂i1, î2) =
M∑

k=1

ykP [I = k|Î1 = î1, Î2 = î2]. (3.2)
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The next step is to calculate the a posterior probability P [I = k|Î1 = î1, Î2 = î2]. By

taking the advantage of the mutually independent property of erasure channels,

P [Î1 = î1, Î2 = î2|I = k]

= P [Î1 = î1, Î2 = î2|I1 = δ1(k), I2 = δ2(k)]

= P [Î1 = î1|I1 = δ1(k)] · P [Î2 = î2|I2 = δ2(k)]. (3.3)

By applying the Bayes rule, we obtain

P [I = k|Î1 = î1, Î2 = î2]

=
P [Î1 = î1|I1 = δ1(k)] · P [Î2 = î2|I2 = δ2(k)] · P [I = k]

P [Î1 = î1, Î2 = î2]
, (3.4)

where

P [Îl = îl|Il = δl(k)] =

⎧⎨
⎩ εl, if îl = ∅

1 − εl, if îl = δl(k)
(3.5)

with l = 1, 2. Note that the sum of the left-hand side of (3.4) over all possible k =

1, 2, . . . , M equals to one. This results in

P [Î1 = î1, Î2 = î2]

=
M∑

ζ=1

P [Î1 = î1|I1 = δ1(ζ)] · P [Î2 = î2|I2 = δ2(ζ)] · P [I = ζ]. (3.6)

For example, let the quantizer output index I = i be transmitted over a channel

condition where only the first description is received, that is î1 = i1 = δ1(i) and î2 = ∅.
From (3.4), (3.5), and (3.6), we have

P [I = k|Î1 = i1, Î2 = ∅]

=
P [Î1 = i1|I1 = δ1(k)] · ε2 · P [I = k]

P [Î1 = î1, Î2 = î2]
(3.7)
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with

P [Î1 = î1, Î2 = î2]

=
M∑

ζ=1

P [Î1 = i1|I1 = δ1(ζ)] · ε2 · P [I = ζ]

= (1 − ε1) · ε2

∑
∀ζ∈S:δ1(ζ)=i1

P [I = ζ]. (3.8)

Therefore, the a posterior probability for the case where only the first description is

received can be formulated as follows

P [I = k|Î1 = i1, Î2 = ∅] =

⎧⎨
⎩

P [I=k]∑
∀ζ∈S:δ1(ζ)=i1

P [I=ζ]
, if δ1(k) = i1

0, if δ1(k) �= i1
. (3.9)

Similarly, when only the second description is received, (3.10) becomes

P [I = k|Î1 = ∅, Î2 = i2] =

⎧⎨
⎩

P [I=k]∑
∀ζ∈S:δ2(ζ)=i2

P [I=ζ]
, if δ2(k) = i2

0, if δ2(k) �= i2
. (3.10)

The physical meaning of (3.9) and (3.10) is illustrated in Figure 3.2. When Î1 = 1 and

1
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Figure 3.2: The decoding process of the side decoder.

Î2 = ∅, the decoding process takes the codevectors y3, y4, and y5 into account. On the

other hand, when Î1 = ∅ and Î2 = 1, the codevectors y2 and y4 are considered.
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For the situation that both descriptions are received, the a posterior probability

equals

P [I = k|Î1 = δ1(i), Î2 = δ2(i)] =

{
1, if k = i

0, else.
(3.11)

Contrarily, when both of them are erased, we obtain P [I = k|Î1 = ∅, Î2 = ∅] = P [I =

k].

By substituting the a posterior probabilities of all four possible channel conditions

into (3.2), the optimal quantizer reproduction vector can be presented as follows

x̂(̂i1, î2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi, if î1 = i1, î2 = i2∑
k∈Ri1

ykP [k]∑
ζ∈Ri1

P [ζ]
, if î1 = i1, î2 = ∅∑

k∈Ci2

ykP [k]∑
ζ∈Ci2

P [ζ]
, if î1 = ∅, î2 = i2

ȳ =
∑M

k=1 ykP [k], if î1 = ∅, î2 = ∅

(3.12)

where Ri1 = {λ|δ1(λ) = i1} and Ci2 = {λ|δ2(λ) = i2} represent the sets of quantizer

output indices in row i1 and column i2 of the index matrix, respectively.
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Chapter 4

Index Assignment Algorithms

The goal of the index assignment is to place the M quantizer output indices into

the N × N index matrix in such a way that the expected distortion is minimized.

A straightforward way to accomplish this is to compute the distortions of all possible

index assignments and select the one which has the lowest distortion. Since M locations

must be selected from N×N possible elements and there are M ! possible combinations

of the codevector indices for each selected matrix location, there exists

⎛
⎜⎝ M

N

⎞
⎟⎠ · N ! =

M !

(M − N)!
(4.1)

possible index assignments. This brute-force approach is infeasible due to the large

amount of computation. For example, consider the case that a five-bit quantizer is

used and the quantizer output index is mapped to two four-bit descriptions. This

means that there are 25 codevector indices assigned in an 16 × 16 index matrix. The

distortion of totally 15.33 × 1075 different index assignments must be computed.

The MD-BSA, which modifies the single-description BSA slightly, has been pro-

posed to alleviate the complexity problem mentioned above. The basic idea of the

MD-BSA is to switch a pair of codevectors recursively until the expected channel dis-

tortion can not be further reduced. However, this recursive switching operation is still
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time-consuming especially when the codebook size is large. In order to further simplify

the computation, we attempt to formulate the index assignment problem on the basis

of a linear programming framework [22][23]. After that, we can apply the Hungar-

ian algorithm (HA) to propose a new index assignment algorithm, referred to as the

MD-HA.

4.1 Quality Criterion

Given a fixed codebook and an optimal MDVQ decoder, the expected distortion to be

minimized for the index assignment design can be described as follows

D
.
= E

{
d

(
yI , x̂(̂i1, î2)

)}
, (4.2)

where the optimal quantizer reproduction vector x̂(̂i1, î2) can be computed by (3.12).

We may expand (4.2) as follows

D =
M∑

k=1

P [I = k]
∑

∀î1∈S1

∑
∀î2∈S2

d
(
yk, x̂(̂i1, î2)

)
· P [Î1 = î1, Î2 = î2|I = k], (4.3)

where S1 = {i1, ∅} and S2 = {i2, ∅}. By considering the mutually independent property

of erasure channels as in (3.3), the expected distortion can be expressed as

D =
M∑

k=1

C(yk), (4.4)

where the cost function

C(yk)
.
= P [I = k]

∑
∀î1∈S1

∑
∀î2∈S2

d
(
yk, x̂(̂i1, î2)

)

·P [Î1 = î1|I1 = δ1(k)] · P [Î2 = î2|I2 = δ2(k)]. (4.5)

By replacing the conditional probabilities of (4.5) with (3.5), we further expand the

cost function as follows

C(yk) = P [I = k] · {d (yk, x̂(i1, ∅)) · (1 − ε1) · ε2
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+d (yk, x̂(∅, i2)) · ε1 · (1 − ε2)

+d (yk, x̂(∅, ∅)) · ε1 · ε2}. (4.6)

Note that the last term d (yk, x̂(∅, ∅)) is a positive constant independent of the selected

index assignment. Thus, suppose that the two packet erasure probabilities are equal,

i.e., ε1 = ε = ε2, (4.4) may be spilt into two parts and rewritten as follows

D = (1 − ε) · ε ·
M∑

k=1

∆C(yk)︸ ︷︷ ︸
.= ∆D

+ε2
M∑

k=1

P [I = k] · d (yk, x̂(∅, ∅))
︸ ︷︷ ︸

positive constant

(4.7)

with

∆C(yk) = P [I = k]{d (yk, x̂(i1, ∅)) + d (yk, x̂(∅, i2))}. (4.8)

Therefore, for the minimization of the expected distortion D, it suffices to minimize

∆D. From (4.7) and (4.8), we found that ∆D is independent of the packet erasure

probability ε. This means the resultant index assignment is fixed for all possible val-

ues of erasure probability. This is not true, however, when the two packet erasure

probabilities are different.

4.2 Multiple Description Binary Switching Algo-

rithm

The BSA was first proposed to optimize the single description index assignment prob-

lem with channels corrupted by bit errors. The basic idea of the BSA is to sort the

codevectors in decreasing order of their cost values and select the codevector having

the highest cost value to switch with a partner. The switch partner is chosen such

that the reduced amount of the distortion due to the index switch is the largest. If

there does not exist any such switch partner, the codevector with the second highest
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cost value will be picked up to switch next. This procedure repeats until a switch is

found to lower the distortion. Following an accepted switch, all the cost values of the

codevectors need to be recalculated and a new ordered list of codevectors is obtained

for the next step. The switching algorithm continues until there exists no switching

such that the distortion will be reduced further.

From Section 4.1, the distortion for the MDVQ system equals to the sum of the

cost values of the codevectors. This distortion formulation is the same as the one

of the single description system whose index assignment problem is solved by the

standard BSA. Therefore, we can easily extend the concept of the standard BSA to

the multiple description index assignment design. The distortion and the cost value of

each codevector can be computed by (4.4) and (4.5), respectively. Like the standard

BSA, the codevectors are sorted according to their cost values in decreasing order and

the codevector which has the highest cost value is selected to switch with a partner.

The major difference is that the switch partner can either be another codevector or

an empty location in the index matrix. This is illustrated in Figure 4.1. The switch

Figure 4.1: Two possible ways of switching codevectors.
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partner is selected in such a way that the decrease of the distortion due to the index

switch is the greatest. After an accepted switch, the distortion and the cost values

of all codevectors must be recomputed and a new list of codevectors is generated for

the next step. This process repeats until no possible switch can further reduce the

distortion.

4.3 Bipartite Matching Problem and Hungarian

Algorithm

The concept of the bipartite matching is to assign “tasks” to “individuals” subject to

the constraint that each task can only be assigned to one individual and each individual

is assigned to only one task. The objective is to find an assignment which leads to the

minimum value of total cost. We only consider the balanced condition for which there

are m individuals and m tasks. Figure 4.2 shows the structure of this problem. Each

individual is associated with m cost values and so as each task. Let xi,j be a decision

variable such that xi,j = 1 if the task j is assigned to the individual i. The bipartite

matching problem can be formulated as a linear programming problem written as

follows

minimize z =
m∑

i=1

m∑
j=1

ci,jxi,j (4.9)

subject to:
m∑

j=1

xi,j = 1, for i = 1, . . . , m (4.10)

m∑
i=1

xi,j = 1, for j = 1, . . . , m (4.11)

xi,j = 0, 1, for i = 1, . . . , m; j = 1, . . . , m (4.12)

Generally, this linear programming problem can be solved by the simplex method.

However, due to the additional property of the basic feasible solution, the efficiency of
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Figure 4.2: Network structure of the bipartite matching problem.

the simplex method is dramatically reduced. In order to overcome this problem, several

alternative algorithms have been proposed to solve the bipartite matching problem.

Among them, the Hungarian algorithm, which was developed by Kuhn in [24], finds

a good solution based on the linear programming framework. Note that the linear

programming problem is also referred as the primal problem.

According to the asymmetric form of duality, the dual problem of (4.9) is written

as follows

maximize
m∑

i=1

λi +
m∑

j=1

µj (4.13)

subject to:

λi + µj ≤ ci,j, for i = 1, . . . , m; j = 1, . . . , m (4.14)

λi, µj unrestricted (4.15)

where λi and µj are dual variables corresponding to constraints of xi,j in (4.10) and

24



(4.11), respectively. By applying the complementary slackness condition, we obtain

xi,j(ci,j − λi − µj) = 0, for i = 1, . . . , m; j = 1, . . . , m. (4.16)

From (4.14) and (4.16), we can formulate the feasible solution of the primal problem

(4.9) as follows

⎧⎨
⎩

xi,j = 0, if ci,j − λi − µj > 0

xi,j = 0 or 1, if ci,j − λi − µj = 0
(4.17)

We summarize the solution progress of the bipartite matching problem as follows

1. Find feasible solutions λi and µj of the dual problem (4.13).

2. Classify the indices (i, j) into two sets: P = {(i, j) : ci,j − λi − µj > 0} and

Q = {(i, j) : ci,j − λi − µj = 0}.

3. Set xi,j = 0, for all (i, j) ∈ P . According to the primal constraints (4.10) and

(4.11), try to find a feasible solution xi,j, for all (i, j) ∈ Q. If such a solution can

be found, the solution progress terminates. Otherwise, modify the dual problem

and return to Step 2.

We use the bipartite matching matrix shown in Figure 4.3 to describe the details

of the Hungarian algorithm. Consider the dual solution defined as follows

λi = min
j
{ci,j} (4.18)

µj = min
i
{ci,j − λi} (4.19)

From (4.18), the dual variable λi represents the smallest element in row i of the bi-

partite matching matrix. For each i, all the elements in row i are subtracted by λi.

This will generate at least one zero element in every row. We then select the dual

variable µj as the smallest element in column j. By subtracting µj from every el-

ement in column j, we obtain the reduced matrix, which has entries ci,j − λi − µj.
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Figure 4.3: Bipartite matching matrix.

Note that in the reduced matrix, there exists at least one zero in each row and

in each column and every entry is nonnegative. Thus, due to ci,j − λi − µj ≥ 0

for all (i, j), this process generates a feasible solution of the dual problem. An ex-

ample of determining the reduced matrix of the bipartite matching problem with

m = 4 is shown in Figure 4.4. From the reduced matrix, we separate the index (i, j)

into two sets: P = {(1, 2), (1, 4), (2, 1), (2, 3), (3, 1), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)} and

Q = {(1, 1), (1, 3), (2, 2), (2, 4), (3, 2), (4, 1)}. According to (4.17), we set xi,j = 0, for

all (i, j) ∈ P . The remaining problem is how to decide to set xi,j = 0 or xi,j = 1, for

(i, j) ∈ Q.

Recall from the definition of the bipartite matching: each task can only be assigned

to one individual and each individual is assigned to only one task. This implies that

only an assignment can be made in each row and column. Therefore, if there is only

one zero in a row or column of the reduced matrix, an assignment must be made in

that zero cell. We begin to find such an assignment in the reduced matrix of Figure

4.4(c). For example, as in Figure 4.5, the cell (2, 4) can be selected because it is the

only cell which contains the zero in column 4. We then set x2,4 = 1 and place a box

around the zero in the cell (2, 4). With this choice, no other assignment can be made

in row 2, and therefore we cross out all other zero cells in row 2. This process continues
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Figure 4.4: Determining the reduced matrix.

until all the zero cells are either selected or crossed out. Figure 4.5 shows a final result.

If exactly m assignments have been made, we obtain the optimal solution because the

primal feasibility, the dual feasibility, and the complementary slackness are all satisfied.

Figure 4.5 shows a typical example where exactly 4 assignments have been made. Thus,

the optimal solution of the bipartite matching problem of Figure 4.4(a) equals

x1,3 = 1

x2,4 = 1

x3,2 = 1

x4,1 = 1

However, if fewer than m assignments are made, it is impossible to find a primal

feasible solution corresponding to the chosen dual solution. Thus, we need to modify the
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Figure 4.5: An optimal bipartite matching.

dual solution to introduce at least one additional zero into the reduced matrix. Assume

that only k (k < m) assignments were made, after all the zeros are either selected or

crossed out. Figure 4.6 shows such an example with k = 2. Before modifying the dual

(a) Original matrix (b) Reduced matrix

5 7 10

4 9 6

8 6 7

0 2 4

0 5 1

2 0 0

Figure 4.6: Original and reduced matrix.

solution, we need to cover all the zeros in the reduced matrix with k horizontal and/or

vertical lines. This can be done by the following steps:

1. Count the number of uncovered zeros in each row and column.

2. Draw a line through the row or column with the most uncovered zeros.

3. Repeat Steps 1 and 2 until all zeros are crossed out.

Figure 4.7 shows a final result. Next, the dual solution is modified as follows:
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0 2 4

0 5 1

2 0 0

Figure 4.7: Covering all zeros with k = 2 lines.

1. Replace λi by λi + c0 for all uncovered rows.

2. Replace µj by µj − co for all covered columns.

where c0 is a positive constant. These two modifications have the following effects on

the entries in the reduced matrix:

1. The uncovered entries decrease by c0.

2. The entries which are covered by both a horizontal and vertical line increase by

c0.

3. The entries which are covered by a single horizontal or vertical line remain the

same.

We summarize these effects in Table 4.1. The next question is how to select c0 to

introduce at least one additional zero into the reduced matrix subject to the constraint

that the feasibility (i.e., ci,j − λi − µj ≥ 0) of the dual solution remains unchanged. It

can be seen from Table 4.1 that only the uncovered entries have the chance to become

zeros. Because all of uncovered entries decrease by c0, selecting c0 as the minimum

uncovered entry will not only result in at least one new zero into the reduced matrix,

but it still also maintain the dual feasibility. The reduced matrix in Figure 4.7 indicates

that c0 = 1. Following the modifications summarized in Table 4.1, we have the new
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Table 4.1: Effects on the entries in the reduced matrix.

Cell type Change in (ci,j − λi − µj)

Uncovered row ci,j − (λi + c0) − µj = (ci,j − λi − µj) − c0

Uncovered column Therefore, (ci,j − λi − µj) decreases by c0

Covered row ci,j − λi − µj = ci,j − λi − µj

Uncovered column Therefore, (ci,j − λi − µj) does not change

Uncovered row ci,j − (λi + c0) − (µj − c0) = ci,j − λi − µj

Covered column Therefore, (ci,j − λi − µj) does not change

Covered row ci,j − λi − (µj − c0) = (ci,j − λi − µj) + c0

Covered column Therefore, (ci,j − λi − µj) increases by c0

reduced matrix shown in Figure 4.8. Note that an additional zero was introduced in

0 1 3

0 4 0

3 0 0

Figure 4.8: Modified matrix and optimal bipartite matching.

the cell (2, 3) and thus an optimal assignment is available.

Finally, we summarize the Hungarian algorithm in the following steps:

1. Convert the original balanced cost matrix into the reduced one.

2. Apply the complementary slackness condition to make assignments in the re-

duced matrix. If exactly m assignments have been made, the optimal solution

is obtained and thus the algorithm terminates. However, if only k (k < m)

assignments were made, go to Step 3.
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3. Cover all the zeros in the reduced matrix with k horizontal and/or vertical lines.

4. Select c0 as the minimum uncovered entry. Add c0 to all the entries which are

covered by both a horizontal and vertical line. Subtract c0 from all uncovered

entries. Go to Step 2.

4.4 Multiple Description Hungarian Algorithm

From (4.4) and (4.5), the expected distortion can be expanded as follows

D = ε1ε2D0 + ε2(1 − ε1)D1(δ1) + ε1(1 − ε2)D2(δ2), (4.20)

where

Dl =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑M
λ=1 ‖yλ − ȳ‖2P [I = λ], l = 0;∑N
i1=1

∑
λ∈Ri1

‖yλ − x̂(i1, ∅)‖2P [I = λ], l = 1;∑N
i2=1

∑
λ∈Ci2

‖yλ − x̂(∅, i2)‖2P [I = λ], l = 2.

(4.21)

Note that the first term is a positive constant. Therefore, for the minimization of the

expected distortion D, it suffices to minimize the side distortion Dl(δl) with respect to

δl for each individual description l = 1, 2.

We begin by formulating the optimization problem for assigning the row index δ1.

The MD-HA is a local search algorithm based on iterative permutation of indices in the

index matrix H. This algorithm is performed on a column-by-column basis. Assume

that column n is selected, the goal is to find an optimal assignment of the row index

δ1(λ) to indices λ ∈ Cn. Let x1,n
ij be an indicator variable that takes the value 1 if the

index previously found in position (i, n) is moved to the new position (j, n), and takes

the value of 0 otherwise. There is a cost c1,n
ij associated with this permutation in the

form

c1,n
ij =

∑
λ∈R′

j

‖yλ −
∑

k∈R′
j

ykP [I = k]∑
ζ∈R′

j
P [I = ζ]

‖2P [I = λ], (4.22)
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where R′
j is the new set of indices found in row j. A similar approach for assigning the

column index δ2 is developed on a row-by-row basis. If row n is selected, the cost of

moving the index from position (n, i) to (n, j) is given by

c2,n
ij =

∑
λ∈C′

j

‖yλ −
∑

k∈C′
j

ykP [I = k]∑
ζ∈C′

j
P [I = ζ]

‖2P [I = λ], (4.23)

where C ′
j is the new set of indices found in the column j. Also, let x2,n

ij be an indicator

variable associated with this permutation.

Finding the best assignment for one column or one row is therefore a bipartite

matching problem that can be solved by the Hungarian algorithm described in Section

4.3. The goal is to determine how all the permutations should be made in order to

minimize the objective function

Dl,n =
N∑

i=1

N∑
j=1

cl,n
ij xl,n

ij l = 1, 2 (4.24)

subject to
∑N

j=1 xl,n
ij = 1 and

∑N
i=1 xl,n

ij = 1. We summarize the MD-HA as follows:

1. Set iteration index m = 0. Select an initial index matrix H(0). Set initial distor-

tion D(0) = ∞, and a threshold α = 0.001.

2. Perform pairwise swaps of the indices in column n and, for each swap, calculate

the cost c1,n
ij using (4.22). Apply the Hungarian algorithm to determine the

optimal set of indicator variables {x1,n
ij } that minimizes D1,n in (4.24).

3. Perform pairwise swaps of the indices in row n and, for each swap, calculate the

cost c2,n
ij using (4.23). Apply the Hungarian algorithm to determine the optimal

set of indicator variables {x2,n
ij } that minimizes D2,n in (4.24).

4. Repeat steps 2 and 3 for all values of n = 1, 2, . . . , N . The corresponding sets of

indicator variables are then used to update the index matrix H(m).
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5. Evaluate the distortion D(m) using (4.20). If |(D(m) − D(m−1))/D(m)| < α, stop;

otherwise, let m = m + 1 and go to step 2.
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Chapter 5

Experimental Results

In this study, we transformed the optimization of the index assignment to a bipartite

matching problem and proposed the multiple description Hungarian algorithm (MD-

HA) to quickly find the optimal solution. The next task is to investigate the effect of

various index assignment algorithms for use in conjunction with MDVQs. A prelimi-

nary experiment was conducted to compare the performances of three index assignment

algorithms: random initialization (MD-RA), the MD-BSA, and the proposed MD-HA.

The performances of the MD-BSA and the MD-HA under channel-mismatched condi-

tions were also examined.

For practical application, we conducted the Mandarin digital string recognition task

to compare the performances of three coding schemes: the proposed MDVQ transmis-

sion scheme, the split VQ (SVQ) with a single description, and the FEC-protected SVQ

(FEC-SVQ). In order to measure the effect of packet losses on the DSR performances,

we considered three different IP network scenarios: random losses, Gilbert-model losses,

and ns-2 based MANET simulation.
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5.1 ETSI DSR Framework

The standard ETSI ES 202 212 (v.1.1.1) [21] describes the speech processing, trans-

mission, and quality aspects of a distributed speech recognition (DSR) system. The

front-end defines the feature extraction and an encoding scheme for low-bit-rate trans-

mission to the remote speech recognition server. The feature extraction algorithm pro-

duces a 14-element vector consisting of a log-energy coefficient and 13 Mel-frequency

cepstrum coefficients ranging from c0 to c12. For the cepstral analysis speech signals

were sampled at 8 kHz and analyzed using a 25 ms Hamming window with 10 ms frame

shift. Besides the feature extraction, a compression scheme is part of the front-end to

transfer the speech parameters to a data stream with a rate of 4800 bits/s. The com-

pression is based on a split VQ where the set of 14 parameters is split into 7 subsets

with two coefficients in each. There are seven codebooks to map each feature pair to

an entry of the corresponding codebook. Mel-frequency cepstrum coefficients c1 to c10

are quantized with 6 bits each pair, c11 and c12 are quantized with 5 bits, and c0 and

the log-energy are quantized with 8 bits.

In this work, speaker independent Mandarin digit string recognition is considered

as the task without restricting the string length. A mandarin digit string database

recorded by 50 male and 50 female speakers was used in the experiments. Each speaker

pronounced 10 utterances and 1-9 digits in each utterance. The speech of 90 speakers

(45 male and 45 female) was used as the training data, and the speech of other 10 as

test data. The number of digits included in the training and test data were 6796 and

642, respectively. The reference recognizer is based on the HTK software package from

Entropic [25]. The digits were modelled as whole word Hidden Markov Models (HMMs)

with 8 states per word and 64 mixtures for each state. In addition, a 3-state HMM

was used to model pauses before and after the utterance and a one-state HMM was

used to model pauses between digits. For recognition the 12 Mel-frequency cepstrum

coefficients and log-energy plus the corresponding delta and acceleration coefficients

are considered.
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5.2 A Preliminary Experiment

The ETSI VQ codebook designed for the Mel-frequency cepstrum coefficients (c11, c12)

was used. The corresponding codevector index has 5 bits and is mapped to two de-

scriptions, each with 4 bits. This represents that 32 quantizer indices had to be placed

into an index matrix H with 16× 16 locations. The input source was based on a Man-

darin digit string database recorded by 50 male and 50 female speakers. We used the

SNR values measured on the decoder output as a performance metric to compare three

index assignment algorithms: random initialization (MD-RA), the MD-BSA, and the

proposed MD-HA. In implementing the MD-RA, 1000 different random index assign-

ments were generated and selected was the one with the lowest expected distortion. We

assumed that the descriptions were transmitted over two independent channels with

equal frame erasure rates. Figure 5.1 shows the results in the presence of frame erasure

with erasure rates ranging from 0.05 to 0.4. Both the MD-HA and the MD-BSA achieve

a significant performance gain over the MD-RA. However, the improvement tends to

decrease for higher erasure rates. A comparison of the MD-BSA and the MD-HA also

revealed that the MD-BSA performs slightly better than the MD-HA. However, the

better performance of the MD-BSA was achieved at the expense of higher computa-

tional complexity. To reach the same convergence threshold of α = 0.001, the CPU

time measured on a Pentium IV PC is 333.6 seconds for the MD-BSA, compared with

21.8 seconds for the MD-HA algorithm.

5.3 Channel-mismatch Problem

The next step in the present investigation concerned the performance degradation

that may result from using the index assignment algorithms under channel-mismatch

conditions. The channel-mismatch means that the packet erasure rates used for finding

the optimal index assignment differ from the true erasure rates of the channels. The
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Figure 5.1: SNR performances of MDVQ with various index assignment algorithms.

effect of this problem was investigated for seven test conditions summarized in Table

5.1. The packet loss rates p1 and p2 of each condition were used for finding the optimal

index assignment. For MDVQ transmission, we assume two channels have the true

packet erasure rate of 0.3. Thus, the channel-mismatch happens in condition 1, 2,

3, 5, 6, and 7. Figure 5.2 shows the performances of the MD-BSA and the MD-HA

for different test conditions. The results show that the performance of the MD-BSA

degrades under channel-mismatch conditions, and the degradation tends to increase for

more serious channel-mismatch conditions. On the other hand, the MD-HA achieves

the same SNR in all test conditions, and even outperforms the MD-BSA in condition

1.
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Table 5.1: Various test conditions.

condition 1 2 3 4 5 6 7

p1 0.15 0.2 0.25 0.3 0.3 0.3 0.3

p2 0.3 0.3 0.3 0.3 0.35 0.4 0.45

8.75

8.8

8.85

8.9

8.95

9

1 2 3 4 5 6 7

Condition

S
N
R
 
(
d
B
)

MD-HA

MD-BSA

Figure 5.2: SNR performances of MD-BSA and MD-HA for different test conditions.

5.4 DSR over Symmetric Channels with Random

Packet Losses

The digital recognition rate was used to compare the performances of three coding

schemes: the proposed MDVQ transmission scheme, the split VQ (SVQ) with a sin-

gle description, and the FEC-protected SVQ (FEC-SVQ). According to the standard

ETSI 202 212 (v.1.1.1) [21], the SVQ was implemented by mapping each feature pair

to a codevector index of the corresponding codebook and by packing these codevector

indices into one data frame. When using the MDVQ, each data frame is split into two

by mapping each codevector index to two descriptions. According to Table 5.2, the
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total number of bits allocated per frame is 43 and 58 for the SVQ and the MDVQ,

respectively. The redundancy imposed by the MDVQ is 58/43 = 1.3. For fair com-

Table 5.2: DSR feature pairs and associated bit allocation.

DSR feature pair number of bits

SVQ MDVQ

(c1, c2) 6 4 + 4

(c3, c4) 6 4 + 4

(c5, c6) 6 4 + 4

(c7, c8) 6 4 + 4

(c9, c10) 6 4 + 4

(c11, c12) 5 4 + 4

(c0, lnE) 8 5 + 5

parison, we also implemented the FEC-SVQ by exploiting the (12, 9) Reed-Solomon

code [26]. Figure 5.3 shows the performances of three transmission schemes in the

presence of random packet losses. According to the ETSI bit-streaming format, we

chose 24 frames per packet. The results in Figure 5.3 show that the proposed MDVQ

outperforms other single description transmission schemes and its performance gain

tends to increase for higher packet erasure rates. At the same packet erasure rate of

40%, the proposed MDVQ scheme yielded the highest recognition accuracy of 67.23 %,

compared with 51.71 % and 45.23 % for the FEC-SVQ and the SVQ, respectively.

5.5 DSR over Symmetric Gilbert Channels

Packet losses in the Internet usually appear in bursts and can be approximated by a

2-state Markov process known as a Gilbert model. Figure 5.4 shows this model with

its transition probabilities. The state 0 and 1 represent the packet is received and lost,

respectively. p is the probability that the next packet is lost given that the current one
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Figure 5.3: Recognition performances of various coding schemes in the presence of

random packet losses.

is received; q is the probability that the next packet is received given that the current

one is lost. The packet loss rate (PLR) which equals to the probability of being in the

state 1 can be computed as

PLR = p/(p + q). (5.1)

Table 5.3 summarizes five Gilbert-model network loss conditions as described in [27].

Figure 5.5 shows the performances of three transmission schemes in the presence of

Gilbert-model packet losses. The results revealed that the proposed MDVQ outper-

forms other single description transmission schemes and its performance gain tends
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Figure 5.4: Gilbert channel model.

Table 5.3: Gilbert-model loss conditions.

condition 1 2 3 4 5

p 0.05 0.1 0.15 0.2 0.25

q 0.8 0.7 0.6 0.5 0.4

PLR 0.059 0.125 0.2 0.286 0.385

to increase for higher packet erasure rates. At the same packet erasure rate of 38.5

%, the proposed MDVQ scheme yielded the highest recognition accuracy of 75.73 %,

compared with 60.19 % and 55.86 % for the FEC-SVQ and the SVQ, respectively.

5.6 DSR over Mobile Ad Hoc Networks

The MDVQ transmission scheme was applied to transmit the DSR packets over the

MANET. According to the standard ETSI ES 202 212 (v.1.1.1) [21], one multiframe

packet has a fixed length of 144 bytes consisting of 2 bytes of the synchronization

sequence, 4 bytes of the header field, and 138 bytes of the frame packet stream. The

frame packet stream contains 24 frames and 12 4-bit CRCs. Thus, according to the bit

allocation of Table 5.2, one frame packet stream with 138 bytes was split to two, each

with 96 bytes. The synchronization sequence with 2 bytes and the header field with 4

bytes were duplicated and added to each frame packet stream with 96 bytes, resulting

in 102 bytes per multiframe packet of the MDVQ.
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Figure 5.5: Recognition performances of various coding schemes in the presence of

Gilbert-model packet losses.

The simulation environment is described as follows. There are 50 wireless mobile

nodes moving with the maximum speed of 20 m/s in a simulation area whose boundary

is defined as 1500 m x 300 m. Three nodes are selected to form one pair of links with

the same destination to transmit the DSR packets produced by the MDVQ. Each

transmitter sends the packet with 102 bytes every 0.24 seconds. In order to simulate

the network congestion conditions, we select other 10, 20, and 30 CBR traffic patterns

which have the packet size of 512 bytes and the sending rate of 4 packets/s to compete

the transmission bandwidth with the pair of DSR connections. The starting time of

each CBR traffic pattern is randomly chosen between 0 and 180 seconds. The pause
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times in our simulation are 0, 30, 60, 120, 300, 600, and 900 seconds. For each pause

time, the random waypoint movement model is used to generate 10 different mobility

scenarios. Thus, each data point of the simulation result is an average of 10 runs with

different mobility scenarios, but with identical traffic models. The simulation time

equals 900 seconds. We list the simulation parameters in Table 5.4.

Table 5.4: Simulation parameters for evaluating the performances of the proposed

MDVQ.

Number of wireless mobile node 50

Maximum moving speed of each node 20 m/s

Simulation area 1500 m x 300 m

DSR packet size 102 bytes

DSR sending interval 0.24 seconds

Number of CBR traffic pattern 10, 20, 30

CBR packet size 512 bytes

CBR sending rate 4 packets/s

Starting time of Randomly chosen

each CBR traffic pattern between 0 and 180 seconds

Pause time 0, 30, 60, 120, 300, 600, 900 seconds

Simulation time 900 seconds

Figure 5.6 shows the performances of the proposed MDVQ using various numbers

of CBR sources. The simulation results show that the network congestion condition

significantly affects the digital recognition rate. For higher traffic loads, more packets

will be discarded by the router buffer, resulting in lower digital recognition rates.
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Figure 5.6: Recognition performances of the proposed MDVQ using various numbers

of CBR sources.
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Chapter 6

Conclusions and Future Work

In this work, we have studied the index assignment optimization for multiple description

quantization and its application to robust DSR over Mobile Ad Hoc Networks. The

MDVQ transmission scheme and the corresponding formulation of the optimal decoder

design were first presented. The optimization of the index assignment is to place the

quantizer output indices into an index matrix in such a way that the expected channel

distortion is minimized. The MD-BSA accomplishes this by recursively switching a

pair of codevectors until the expected channel distortion can not be further reduced.

However, this exhaustive switching operation is time-consuming especially when the

codebook size is large. In order to reduce its computational complexity, we formulated

the index assignment problem based on a linear programming framework and then

proposed a novel local search algorithm, MD-HA, to quickly find the optimal index

assignment. The performance comparison between the MD-BSA and the MD-HA

revealed that the slightly better performance of the MD-BSA was achieved at the

expense of higher computational complexity. The performances of the MD-BSA and

the MD-HA under channel-mismatched conditions were also examined.

For practical application, experiments were conducted on the Mandarin digital

string recognition task under different IP network scenarios, including random losses
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and Gilbert-model losses. In addition, the ns-2 was introduced to simulate the packet

loss characteristics of the MANET. Simulation results indicated that the proposed

MDVQ achieves high robustness against random and Gilbert-model packet losses. The

ns-2 based MANET simulation was also conducted to examine the DSR performances

of the proposed MDVQ under Internet traffic with various numbers of CBR sources.

Finally, we present the future research issue. While, the MD-HA finds the opti-

mal index assignment very quickly, it dose not take into consideration any channel

information. In contrast, the MD-BSA uses average packet erasure probabilities of the

channels to find the channel-matched index assignment. However, when a channel with

memory such as the Gilbert-model channel is applied, the MD-BSA does not consider

channel memory characteristics during its index assignment optimization. Thus, as a

future research work, it is desired to exploit the fast search property of the MD-HA

and channel memory characteristics to propose a channel-optimized index assignment

algorithm.
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