

 國 立 交 通 大 學

電信工程學系

碩 士 論 文

RS 編碼和迴旋碼: 串接碼的軟式決定解碼法

Soft-Decision Decoding of Concatenated

Reed-Solomon and Convolutional Codes

研 究 生：楊哲雄

指導教授：蘇育德 博士

西元 2006 年 8 月

RS 編碼和迴旋碼: 串接碼的軟式決定解碼法

Soft-Decision Decoding of Concatenated

Reed-Solomon and Convolutional Codes

研 究 生： 楊哲雄 Student: Che-Hsiung Yang

指導教授： 蘇育德 博士 Advisor: Dr. Yu T. Su

國立交通大學

電信工程學系碩士班

碩士論文

A Thesis Submitted to

Department of Communication Engineering

College of Electrical and Computer Engineering

National Chiao Tung University

In Partial Fulfillment of the

Requirments for the Degree of

Master of Science

In Communication Engineering

Hsinchu, Taiwan, Republic of China

August 2006

誌 謝

 首先感謝指導老師蘇育德教授兩年來的指導， 使得論文能更順

利完成。 在這兩年的時間裡面， 老師的諄諄教誨讓我在通訊領域上

有了更加深入的了解，也讓我了解到了一些做人處世的道理。 另外

也要感謝口試委員林茂昭教授，呂忠津教授， 楊谷章教授以及吳文

榕教授給予的寶貴意見，以彌補這份論文上的缺失跟不足之處。 也

要感謝實驗室的學長姐、同學及學弟妹的幫忙還有鼓勵，讓我不僅在

學習的過程中獲益匪淺，同時也為這兩年的生活增添了許多歡樂。

 最後，我也要感謝一直關心我、鼓勵我的家人，沒有他們的支持

我沒辦法這麼順利的完成論文，謹獻上此論文，代表我最深的謝意！

RS 編碼和迴旋碼: 串接碼的軟式決定解碼法

研究生: 楊哲雄 指導教授: 蘇育德 博士

國立交通大學電信工程學系碩士班

中文摘要

 Reed-Solomon (RS)-迴旋串接碼是一種非常有效的錯誤更碼。由於其強

大改錯能力，這種碼已經被應用在很多的通訊和儲存系統。眾所皆知，串

接碼的重複解法相對於傳統的串接碼在性能上有明顯的改善。但是，除了

Jiang 及 Narayanan（JN）兩氏在兩年前提出利用信心傳遞法推導出來的複

雜度頗高的方法之外由於缺乏有效的軟式輸出演算法，幾乎所有的 RS 碼

或 RS-迴旋串接碼之解碼器都用硬式解碼法。

 很多快速限定距離軟式 RS 解碼演算法在 1990 年代初期即被提出，但

其解碼能力與硬式解碼法比較改善有限。1997 年 Sudan 是第一位提出可以

對低編碼率 RS 碼超越其硬式解碼設計距離的有效軟式解碼法的人。兩年

之後他和他的學生 Guruswami 更進一步提出簡稱為 GS 演算法的改良版

本。這個新演算法由兩個部分所組成: 內插和因式分解。Kötter 與 Vardy

（KV）接著又提出另一軟式解碼演算法。他們藉由轉換通道可靠度到內差

點的點數，大大減低了 GS 演算法的解碼複雜度。由於 KV 演算法的複雜

度仍然高，Kötter 與其他的人再藉由轉換接收的值可以改善重複的次數，

使得改良後的 KV 演算法變得可行。

 本篇論文的目的在於探討 RS 碼軟式輸入和軟式輸出 (SISO)解碼的可

能性，希望讓 RS-迴旋串接碼的重複解變為實際可能。我們評估了不同軟

式 RS 解碼法的效能，檢視它們對單獨 RS 碼及串接碼所能提供的改善幅

度。我們也提出一種綜合改良式KV 演算法和 JN軟式演算法的遞迴式 SISO

RS-迴旋串接碼解碼法並透過電腦模擬估算其解碼能力。

Soft-Decision Decoding of Concatenated

Reed-Solomon and Convolutional Codes

Student : Che-Hsiung Yang Advisor : Yu T. Su

Department of Communications Engineering

National Chiao Tung University

Abstract

Serially concatenated Reed-Solomon (RS) and convolutional codes form a class of

powerful error-correcting codes that has been used in many applications. It is known

that iterative decoding of concatenated codes provides significant performance gain with

respect to conventional concatenated decoding. However, almost all RS decoders were

based on the hard-decision decoding (HDD) premise due to the lack of an efficient soft-

output decoding algorithm for RS codes.

Several fast bounded-distance SDD algorithms were proposed in the early 90’s.

The Guruswami and Sudan (GS) algorithm, which consists of two decoding phases–

interpolation and factorization, is the first efficient SDD algorithm for RS codes that

is capable of correcting beyond the designed (HD) distance. The Koetter-Vardy (KV)

soft-decision algorithm reduces the decoding complexity of the GS algorithm by con-

verting the probabilistic reliability information into a set of interpolation points along

with their multiplicities. As the complexity of KV algorithm is still relatively high, a

improvement that uses a transformation of the received word to reduce the number of

iterations was then presented, making the implementation of the KV algorithm feasible.

The purpose of this thesis is to investigate the feasibility of soft-input soft-output

(SISO) RS decoders so that iterative decoding of concatenated RS-convolutional codes

i

becomes possible. We present a SISO RS decoder that is based on the modified Koetter-

Vardy (KV) and Jiang-Narayanan soft-decision algorithms.

ii

Contents

English Abstract i

Contents iii

List of Figures v

1 Introduction 1

2 The Guruswami-Sudan Decoding Algorithm for RS Codes 4

2.1 A First Look at the GS Algorithm . 4

2.2 Polynomials in Two Variables I: Monomial Orders and Generalized Degree 10

2.3 Polynomials in Two Variables II: Zeros and Multiple Zeros 14

2.4 The Interpolation and Factorization Theorems 17

2.4.1 The Interpolation Theorem . 17

2.4.2 The Factorization Theorem . 19

2.5 A Second Look at the GS Algorithm . 20

2.5.1 Prerequisite Notations and Concepts 20

2.5.2 Detailed GS Decoding Algorithm 21

2.6 K0̈tter’s Solution to the Interpolation Problem 22

2.6.1 Linear Functionals on F [x, y] . 22

2.6.2 Problem Statement . 23

2.6.3 Kötter’s Algorithm . 24

2.7 The Roth-Ruckenstein Solution to the Factorization Problem 25

iii

3 Algebraic Soft-Decision Decoding of the GS Algorithm 28

3.1 Algebraic Soft-Decision Decoding . 28

3.2 From Posterior Probabilities to Interpolation Points 31

4 Reduced-Complexity Interpolation-Based Soft-Decision RS Decoders 36

4.1 Modified Interpolation . 36

4.1.1 Systematic Encoding . 37

4.1.2 Re-encoding . 38

4.1.3 Reducing the Memory Requirements 40

4.2 Reduced-Complexity Factorization . 42

5 Serially concatenated Convolutional and RS codes 45

5.1 Stochastic Shifting Based Iterative Decoding (SSID) of RS codes 45

5.2 Iterative Decoding Algorithm By Adaptive Parity Check Matrix 48

5.3 Iterative Decoding of Serial Concatenated RS- Convolutional Codes . . . 50

6 Numerical Results 52

7 Conclusion 57

Bibliography 57

iv

List of Figures

2.1 Error-correcting capacity plotted against the rate of the code 7

3.1 The K0̈tter-Vardy algorithm . 28

4.1 Transforming the decoding problem via reencoding 44

5.1 Soft-input soft-output iterative serial concatenated convolutional-RS codes . . 50

5.2 Iterative decoder structure for serial concatenated convolutional-RS codes . . 51

6.1 (31,23) RS code with BPSK modulation over AWGN channels; code rate=0.7419 . . 54

6.2 (31,25) RS code with BPSK modulation over AWGN channel, code rate=0.8065 . . . 54

6.3 (63,55) RS code with BPSK modulation over AWGN channels; code rate=0.8730 . . 55

6.4 (255,239) RS code with BPSK modulation over AWGN channels; code rate=0.9373 . 55

6.5 Serial concatenated (255,239) RS and (7,1/2) CC code with 16-QAM modulation over

AWGN channels; code rate=0.4668 . 56

6.6 Serial concatenated (31,25) RS and (7,1/2) CC code with 16-QAM modulation over

AWGN channel, code rate=0.4017 . 56

v

Chapter 1

Introduction

Reed-Solomon (RS) codes are maximum distance separable (MDS) codes which pro-

vide powerful error correction capability with minimum number of overhead symbols. A

classical hard-decision (HD) decoder for an (n, k) RS code can correct up to t = bdmin/2c

errors where dmin = (n−k+1) is the minimum distance of the code. Furthermore, as RS

codewords consist of non-binary symbols the correction of a single symbol results in the

correction of more than one of the constituent bits, they are well suited to the correction

of burst errors. This fact had motivated Forney to propose a serial concatenated coding

scheme with a RS outer code and a convolutional inner code [11]. For these reasons RS

codes have found wide applications in both digital communication and storage systems.

The ubiquitous nature of this class of codes continues to fuel research into the associated

decoding algorithm even almost fifty years after their introduction.

Most concatenated RS-convolutional coding system use HD decoding (HDD) algo-

rithm because soft-decision decoding (SDD) algorithms usually demand very high com-

putational effort. Traditional HD RS decoding algorithms are efficient because they are

algebraic; that is, they exploit the underlying algebraic structure of the code to generate

a system of equations that is solved using finite field arithmetic. However, it is known

that significant performance gain can be achieved by using a SD decoder for RS codes.

Unfortunately, an algebraic decoder based on finite field arithmetic does not appear to

be compatible with the real-valued, soft information available either from the channel

1

or from the convolutional decoder output. Therefore, it has been a research challenge

to develop an SD RS decoder.

An early example of SDD of block codes is given by Wagner decoding and its gener-

alizations. The reliability-based proposals of Forney [12] and Chase [13] have attracted

many followers. Using the binary image expansions of M -ary symbols, Vardy and Be’ery

[15] showed that RS codes can be decomposed into BCH subfield subcodes which are

glued together using glue vectors. Even though this decomposition significantly reduces

the trellis complexity of maximum likelihood (ML) decoding of RS codes, the complexity

still grows exponentially with the code length and dmin and it is thus infeasible for de-

coding long codes. Ponnampalam and Vucetic [16] suggest an SDD algorithm to reduces

the complexity to generate soft output efficiently. Similarly, one can also use reliabil-

ity based ordered statistics decoding (OSD) [17] and its variations [18] for soft decision

decoding of RS codes. Related works include the hybrid algorithm by Hu and Lin [19]

and the box and match algorithm (BMA) [20] by Fossorier and Valembois. OSD based

algorithms are quite efficient for practical RS codes even though they do not take the

structure of the RS codes into account.

In 1997 Madhu Sudan [1] presented a polynomial-time algorithm for decoding certain

low-rate RS codes beyond the classical d/2 error-correcting bound. Two years later, he

and his student, Guruswami discovered [2] a significantly improved version of Sudan’s

algorithm, which was capable of decoding virtually every RS code at least somewhat,

and often significantly, beyond the d/2 limit. Several subsequent investigations were

able to find low-complexity realizations for the key steps in the Guruswami-Sudan (GS)

algorithm, thus making GS a genuinely practical engineering alternative. In particular,

Köetter and Vardy (KV) [9] have proposed an algebraic SDD algorithm by extending

the list GS decoder to include a method for converting soft information into algebraic

conditions. The KV SDD procedure shows a lot of promise from the point of view of error

correcting performance. However, the algorithm is still quite computationally complex

2

and not straightforward to implement in VLSI. K0̈tter et al. [7, 8] later introduce

techniques that reduce the complexity of interpolation-based decoders to the point where

an efficient VLSI implementation is feasible. The purpose of this thesis is to evaluate the

SDD performance of concatenated RS-convolutional coding systems. We also suggest an

iterative decoder structure and show that the corresponding performance does improve

as the number of iterations increases.

The rest of this thesis is organized as follows. In Chapter 2, we will prove the GS

error correction capability beyond the classical error correction bound. In this chapter,

we also present the realizable interpolation and factorization algorithm that makes the

GS algorithm a genuinely practical engineering alternative in storage and transmission

systems. In Chapter 3, we show how the channel reliability can be translated into the

multiplicities that makes the HD GS algorithm into the SD KV algorithm. In Chapter

4, we describe a algorithm that reduces the complexity and memory requirements of

interpolation-based decoders. A modified factorization algorithm is presented in this

chapter as well. In Chapter 5, we present a soft-input soft-output (SISO) iterative de-

coding algorithm for serial concatenated convolutional and RS coding systems. Chapter

6 provides numerical examples associated with various SDD algorithms discussed in the

earlier chapters.

3

Chapter 2

The Guruswami-Sudan Decoding
Algorithm for RS Codes

A polynomial-time algorithm for decoding certain low-rate RS codes beyond the

classical d/2 error-correcting bound was invented by Sudan [1] who formulated the de-

coding problem as follows.

• Input: A field F ; n distinct pairs of elements {xi, yi}ni=1 from F ×F ; and integers

d and t.

• Output: A list of all functions f : F → F satisfying: f(x) is a polynomial in x of

degree at most d with |{i|f(xi) = yi}| ≥ t.

This problem is also known as the list decoding problem. A much improved version

of Sudan’s algorithm was discovered by Guruswami and Sudan (GS) [2].

2.1 A First Look at the GS Algorithm

This section provides an overview of the GS algorithm. We give a motivating exam-

ple, an informal description of the algorithm and several numerical examples.

Let (α1, · · · , αn) be a fixed list of n distinct elements of F =GF(q), called the support

set of the code. The encoding process of an (n, k) RS code is that of mapping a vector

(f0, f1, · · · , fk−1) of k information symbols into an n-symbol codeword (x1, · · · , xn) by

4

polynomial evaluation, i.e.,

(x1, · · · , xn) = (f(α1), · · · , f(αn)) (2.1)

where

f(x) = f0 + f1x+ · · ·+ fk−1x
k−1 (2.2)

The corresponding RS code consists of all n-vectors of the form in (2.1), where f(x) is

a polynomial of degree < k.

It is well-known that this code has minimum Hamming distance d = n− k + 1 and,

therefore, is capable of correcting up to

t0 =

⌊
n− k

2

⌋
(2.3)

errors. Conceptually, this may be accomplished as follows. The decoder searches the

Hamming sphere of radius t0 centered at the received word for codewords. If the sphere

contains a unique codeword, it is the decoder’s output. Otherwise, the decoder reports

a failure. (This strategy is called bounded distance decoding (BDD).) The decoding

sphere cannot contain more than one codeword, since the minimum distance of the code

is > 2t0. If we attempt to correct more than t0 errors by increasing the decoding radius,

it is possible for the decoding sphere to contain more than one codeword, in which case

the decoder will fail. For this reason, conventional wisdom asserts that the code is not

capable of correcting more than t0 errors. Nevertheless, if we examine the probability

that the decoding sphere will contain multiple codewords, rather than the possibility,

we may reach a different conclusion.

Example 1 Consider the (32, 8) RS code over GF (32), with d = 25 and t0 = 12. If the

decoding radius is taken to be t = 13, and the transmitted codeword suffers 13 errors, it

is possible for the decoding sphere to contain two codewords: the transmitted codeword

(which we will call the causal codeword) and one other, a noncausal codeword at distance

5

12 or 13 from the received word. However, it can be shown that the probability of this

unfavorable happening is 2.08437× 10−12! In short, the code is capable of correcting vir-

tually all patterns of 13 errors, despite having a conventional error-correcting capability

of only 12.

The above example suggests that it might be possible to design a decoding algorithm

for RS codes capable of correcting more than t0 errors. The GS list decoding algorithm

does just this. It is a polynomial-time (Conservatively, the time complexity is O(n2m4),

where n is the code length and m is the interpolation multiplicity). algorithm for cor-

recting up to tGS errors, where tGS is the largest integer strictly less than n−
√

(k − 1)n,

i.e.,

tGS = n− 1− b
√

(k − 1)nc (2.4)

It is easy to show that tGS ≥ t0, and often tGS is considerably greater than t0 (see the

examples below). Asymptotically, for RS codes of rate R, the conventional decoding

algorithms will correct a fraction τ0 = (1 − R)/2 of errors, while the GS algorithm

can correct up to τGS = 1 −
√
R. Figure 2.1 shows this fact. The GS decoder has an

adjustable integer parameter m ≥ 1 called the interpolation multiplicity. Associated

with the interpolation multiplicity m is positive integer t = tm, called the designed

decoding radius. Given a received word, the GS(m) decoder returns a list that includes

all codewords with Hamming distance tm or less from the received word, and perhaps a

few others. The exact formula for tm is a bit complicated, but for now it suffices to say

that

t0 ≤ t1 ≤ t2 ≤ · · ·

and there exists an integer m0 such that

tm0 = tm0+1 = · · · = tGS

Here is an overview of the GS(m) algorithm (a detailed description will be given in

Section 2.5). Suppose C = (f(α1), · · · , f(αn)) is the transmitted codeword, where f(x)

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

code rate

er
ro

r c
or

re
ct

 ra
te

conventional decoding algorithm
GS algorithm

Figure 2.1: Error-correcting capacity plotted against the rate of the code

is a polynomial of degree < k, and that C is received as R = (β1, · · · , βn). Let p(x) be

any polynomial of degree < k that maps to an RS codeword with Hamming distance

≤ tm from R, i.e.,

|{i : p(αi) 6= βi}| ≤ tm

The GS(m) decoder “finds” p(x) as follows.

1. The interpolation step. Given the received vector R = (β1, · · · , βn), the decoder

constructs a two-variable polynomial

Q(x, y) =
∑

i,j

ai,jx
iyj

with the property that Q has a zero of multiplicity m (exact definition is given in

Section 2.3) at each of the points (αi, βi), and for which the (1, k − 1) weighted

degree (exact definition is given in Section 2.2) of Q(x, y) is as small as possible.

2. The factorization step. The decoder then finds all factors of Q(x, y) of the form

7

y − p(x), where p(x) is a polynomial of degree k − 1 or less. Let

£ = {p1(x), · · · , pL(x)}

be the list of polynomials produced by this step. The polynomials (codewords)

p(x) ∈ £ are of three possible types:

(a) Type 1. The transmitted, or causal, codeword.

(b) Type 2. Codewords with Hamming distance ≤ tm from R, which we call

plausible codewords.

(c) Type 3. Codewords with distance > tm from R, which we call implausible

codewords.

In Section 2.5, we give a proof of the following theorem.

Theorem 1 If the GS(m) decoding algorithm is used, all plausible codewords will be

in £. In particular, the transmitted codeword will be in £ if the number of channel

errors is ≤ tm. The list may also contain implausible codewords, but the total number

of codewords in the list, plausible and implausible, will satisfy L ≤ Lm, where the ex-

act determination of Lm is given in (2.31) of Section 2.5, but which is conservatively

estimated by

Lm < (m+
1

2
)

√
n

k − 1
(2.5)

Example 2 Consider again the (32, 8) RS code over GF (32), with r = 24 and d =

25. Its conventional error-correcting capability is t0 = 12 errors, but by (2.4), the GS

algorithm can correct up to tGS = 17 errors! The value of the designed decoding radius

tm as a function of the interpolation multiplicity m is given in the table below, together

with the exact value of Lm as given in (2.31). The value

L(t) = q−r

t∑

s=0

(
n

s

)
(q − 1)s

8

which is the average number of codewords in a randomly chosen sphere of radius t, gives a

heuristic upper bound on the probability that the decoding sphere will contain a noncausal

codeword. Values of m that do not afford a larger value of tm than the previous value

are omitted. For example, in the present example, t2 = t3 = 15, and so m = 3 is omitted

from the table. Similarly, t5 = t6 = · · · = t119 = 16 : It is interesting to note the growth

m tm Lm L(tm)
classical 12 1 1.36305× 10−10

1 14 2 2.74982× 10−07

2 15 4 0.0000102619
4 16 8 0.000339205

m0 = 120 17 256 0.00993659

in the required value of m as t increases from 16 (m = 4) to 17 (m = 120), which

indicates that t = 16 is the practical limit for the GS algorithm in this case.

Example 3 Similarly, for the (16,4) RS code over GF(16) (t0 = 6 and tGS = 9), we

have Here we see that for t = tGS = 9 the interpolation multiplicity may be prohibitively

m tm Lm L(tm)
classical 6 1 0.000336183

1 7 2 0.00728043
2 8 4 0.124465

m0 = 28 9 120 1.68692

large, so that t = 8 is the practical limit.

Example 4 For the (6,4) RS code over GF(7), t0 = tGS = 1 and This is a rare example

m tm Lm L(tm)
classical 1 1 0.7551

where the GS algorithm provides no improvement over conventional decoding.

9

m tm Lm L(tm)
classical 16 1 2.609× 10−14

m0 = 112 17 120 9.35× 10−11

Example 5 For the (255,223) RS code over GF(256) (t0 = 16 and tGS = 17): Not

until m = 112 does the GS algorithm offer an improvement over conventional decoders,

and even then the improvement is only one extra error corrected. With the decoding

complexity O(m4), it seems pointless to try to correct the extra error.

Example 6 The (255,239) RS code over GF(256) (t0 = 8 and tGS = 8):

m tm Lm L(tm)
classical 8 1 2.0853× 10−05

2.2 Polynomials in Two Variables I: Monomial Or-

ders and Generalized Degree

In this section, we present a self-contained introduction to the algebraic fundamentals

of two-variable polynomials. These fundamentals include weighted monomial orderings,

generalized degree functions, and certain related combinatorial results. It is the basis to

prove the algorithm of GS(m) algorithm.

If F is a field, we denote by F [x, y] the ring of polynomials in x and y with coefficients

from F . A polynomial Q(x, y) ∈ F [x, y] is, by definition, a finite sum of monomials,

viz.,

Q(x, y) =
∑

i.j≥0

ai,jx
iyj (2.6)

where only a finite number of the coefficients ai,j are nonzero. The summation in Eq.

(2.6) is two-dimensional, but often it is desirable to have a one-dimensional representa-

tion instead. To do this, we need to have a linear ordering of the set of monomials

M[x, y] = {xiyj : i, j ≥ 0}

10

There are many possible monomial orderings, but for us the most important ones are

the weighted degree (WD) monomial orders. A WD monomial order is characterized by

a pair w = (u, v) of nonnegative integers, not both zero. For a fixed w, the w-degree of

the monomial xiyj is defined as

degw x
iyj = ui+ vj

Definition 1 The w-lex order is defined as follows:

xi
1y

j
1 < xi

2y
j
2

if either ui1 + vj1 < ui2 + vj2, or ui1 + vj1 = ui2 + vj2 and i1 < i2. w-revlex order

is similar, except that the rule for breaking ties is i1 > i2. (In the special case w =

(1, 1), these orderings are called graded-lex, or grlex, and reverse graded-lex, or grevlex,

respectively.)

The w-revlex order plays an important role in our discourse.

Example 7 For any monomial order, we have xy < x2y. Also, xy2 <grlex x2y, but

x2y <grevlex xy
2. Finally, if w = (1, 3), x6 <wrevlex x

3y <wrevlex y
2.

Let ”<” be a fixed monomial ordering:

1 = φ0(x, y) < φ1(x, y) < φ2(x, y) < · · ·

With respect to this ordering, every nonzero polynomial in F [x, y] can be expressed

uniquely in the form

Q(x, y) =
J∑

j=0

ajφj(x, y)

for suitable coefficients aj ∈ F , with aJ 6= 0. The integer J is called the rank of

Q(x, y), and the monomial φJ is called the leading monomial of Q(x, y). We indicate

this notationally by writing Rank(Q) = J and LM(Q) = φJ(x, y).

11

In the case of a WD order, the weighted degree of the leading monomial φj is also

called the weighted degree, or w-degree, of Q(x, y), denoted by degw Q. Thus,

degw Q(x, y) = max degw φ(x, y) : aj 6= 0}

If φ0(x, y) < φ1(x, y) < · · · is a fixed monomial ordering, and φ = xiyj is a particular

monomial, the index of φ, denoted by Ind(φ), is defined as the unique integer K such

that φK(x, y) = φ.

Example 8 Here is a listing of the first few monomials, in the ”natural” two-dimensional

array, but labelled according to (1,3)-revlex order:

i= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
j=0 0 1 2 3 5 7 9 12 15 18 22 26 30 35 40 45 · · ·
j=1 4 6 8 10 13 16 19 23 27 31 36 41 46
j=2 11 14 17 20 24 28 32 37 42 47
j=3 21 25 29 33 38 43 48
j=4 34 39 44

Thus, we have φ0= 1, φ1 = x, φ2 = x2, φ3 = x3, φ4 = y,· · · , φ48 = x6y3, · · · . Also,

Ind(xy) = 6, Ind(x2y2) = 17, Ind(x9y2) = 47, etc. For (1, v) revlex order, the numbers

Ind(xK) and Ind(yL) are especially important, so we introduce a special notation for

them.

A(K, v) , Ind(xK) (2.7)

B(L, v) , Ind(yL) (2.8)

It is understood that the underlying monomial order is (1, v)-revlex. In terms of the

two-dimensional array given above, the numbers A(K, v) appear in the j = 0 row and

the numbers B(L, v) appear in the i=0 column. Thus, with v = 3, we have

12

x 0 1 2 3 4 5 6 7 · · ·
A(x,3) 0 1 2 3 5 7 9 12 · · ·
B(x,3) 0 4 11 21 34 50 69 90 · · ·

We note that xK is the first monomial of (1, v)-degree K, and yL is the last monomial

of (1, v)-degree vL, so that

A(K, v) = |{(i, j) : i+ vj < K}| (2.9)

B(L, v) = |{(i, j) : i+ vj ≤ Lv}| − 1 (2.10)

We conclude this section with a consideration of two-variable polynomials of the form

Q(x, y) =
J∑

j=0

ajφj(x, y)

where φ0 < φ1 < · · · is (1,v)-revlex order, and {a0, a1, · · · , aJ} are arbitrary elements of

F . (N.B., We do not assume that aJ 6= 0.)

Two important questions that will arise are (1) what is the (1, v)-degree of Q(x, y)

and (2) what is the y-degree, i.e., the (0,1)-degree, of Q(x, y)? We know that

deg1,v Q(x, y) ≤ max deg1,v φj(x, y) : j = 0, · · · , J}

deg0,1Q(x, y) ≤ max deg0,1 φj(x, y) : j = 0, · · · , J}

Thus, if we define1

D(u, v; J) = max degu,v φj(x, y) : j = 0, · · · , J}

we have the upper bounds

deg1,v Q(x, y) ≤ D(1, v; J)

deg0,1Q(x, y) ≤ D(0, 1; J)

A new definition is needed. Let A = {0 = a0 < a1 < a2 < · · · } be an increasing

sequence of integers, and let x ≥ 0 be a nonnegative real number. The rank of apparition

1It is understood that the monomial order is (1, v)-revlex

13

of x with respect to A, denoted by rA(x), is the unique indexK such that aK ≤ x < aK+1.

Alternatively,

rA(x) = max{K : aK ≤ x} (2.11)

= min{L : x < aL+1} (2.12)

Theorem 2 Given a fixed v, define sequences {aK = A(K, v)} and {bL = B(L, v)}.

Then

D(1, v : J) = rA(J) (2.13)

D(0, 1 : J) = rB(J) (2.14)

Corollary 1 For v ≥ 1, K ≥ 0,

K2

2v
< A(K, v) ≤ (K + v/2)2

2v
(2.15)

Corollary 2 For v ≥ 1, J ≥ 0,

⌊√
2vJ − v

2

⌋
≤ rA(J) ≤

⌊√
2vJ

⌋
− 1 (2.16)

Corollary 3 For v ≥ 1, J ≥ 0,
⌊√

2J

v
− v + 2

2v

⌋
≤ rB(J) ≤

⌊√
2J

v

⌋
(2.17)

Detailed proofs of the above theorem and corollaries can be found in [3].

2.3 Polynomials in Two Variables II: Zeros and Mul-

tiple Zeros

In this section, we continue with our study of bivariate polynomials and focus on

the notion of a zero or a multiple zero of such polynomials.

If Q(x, y) ∈ F [x, y], and Q(α, β) = 0, we say that Q has a zero at (α, β) (Alterna-

tively, we say that the curve Q(x, y) = 0 passes through the point (α, β)). We shall be

interested in polynomials with multiple zeros.

14

Definition 2 We say that Q(x, y) =
∑

i,j ai,jx
iyj ∈ F [x, y] has a zero of multiplicity,

or order m at (0, 0), and write

ord(Q : 0, 0) = m

if Q(x, y) involves no term of total degree less than m, i.e., ai,j = 0 if i + j < m.

Similarly, we say that Q(x, y) has a zero of order m at (α, β) and write

ord(Q : α, β) = m

if Q(x+ α, y + β) has a zero of order m at (0, 0).

Example 9 Let Q(x, y) = x2y+xy3+x3y. Then Q has a zero of multiplicity 3 (a ”triple

zero”) at (0, 0). Similarly, P (x, y) = (x−α)2(y−β) + (x−α)(y−β)3 + (x−α)3(y−β)

has a triple zero at (α, β).

To calculate ord(Q : α, β), we need to be able to express Q(x+α, y+β) as a polynomial

in x and y. The following theorems, due to H. Hasse, tell us one way to do this. We

begin with the one-variable version of Hasse’s theorem, because it serves as a simplified

introduction to the two-variable case.

Theorem 3 If Q(x) =
∑

i aix
i ∈ F [x], then for any α ∈ F , we have

Q(x+ α) =
∑

r

Qr(α)xr (2.18)

where

Qr(x) =
∑

i

(
i

r

)
aix

i−r (2.19)

which is called the rth Hasse derivative of Q(x)2.

Note that

Qr(α) = CoeffxrQ(x+ α) =
∑

i

(
i

r

)
aiα

i−r (2.20)

2The alternative notation DrQ(x) instead of Qr(x) is sometimes used.

15

Furthermore, (2.16) is Taylor’s formula (without remainder) when F has characteristic

0, since in that case,

Qr(x) =
1

r!

dr

dxr
Q(x) (2.21)

We also have

Corollary 4

Q(x) =
∑

r≥0

Qr(α)(x− α)r

Theorem 4 Let Q(x, y) =
∑

i,j ai,jx
iyj ∈ F [x, y]. For any (α.β) ∈ F 2, we have

Q(x+ α, y + β) =
∑

r,s

Qr,s(α, β)xrys (2.22)

where

Qr,s(x, y) =
∑

i,j

(
i

r

)(
j

s

)
ai,jx

i−ryj−s (2.23)

which is called the (r, s)th Hasse (mixed partial) derivative of Q(x, y)3.

Note that (2.19) is Taylor’s formula (without remainder) when F has characteristic 0,

since in that case,

Qr,s(x, y) =
1

r!s!

∂r+s

∂xr∂ys
Q(x, y)

Note also the alternative, but equivalent, formula:

Qr,s(α, β) = Coeffxr,ysQ(x+ α, y + β) (2.24)

One can easily show

Corollary 5

Q(x, y) =
∑

r,s

Qr,s(α, β)(x− α)r(y − β)s

and

3Sometimes we use the alternative notation Dr,sQ(x, y) instead of Qr,s(x, y).

16

Corollary 6 The polynomial Q(x, y) has a zero of order m at (α, β) if and only if

Qr,s(α, β) = 0 for all r and s such that 0 ≤ r + s < m

which follows directly from Corollary 5.

Corollary 7 If Q̃(x, y) = xQ(x, y), then

Q̃r,s(x, y) = Qr−1,s(x, y) + xQr,s(x, y)

Similarly,if Q̃(x, y) = yQ(x, y), then

Q̃r,s(x, y) = Qr,s−1(x, y) + yQr,s(x, y)

For proofs of these corollaries see [3].

2.4 The Interpolation and Factorization Theorems

In this section, we will state and prove the two basic theorems that support the

GS algorithm. We call these theorems the Interpolation Theorem and the Factorization

Theorem.

2.4.1 The Interpolation Theorem

Suppose a nonnegative integer m(α) is assigned to each element α ∈ F , and we are asked

to construct a polynomial f(x) of least degree that has a zero of multiplicity m(α), at

x = α, for all α ∈ F . Clearly a minimum-degree solution to this one-dimensional

interpolation problems is

f(x) =
∏

α∈F

(x− α)m(α)

degf(x) =
∑

α∈F

m(α)

We are interested in the analogous two-dimensional interpolation problem: Given a

required multiplicity m(α, β) for each (α, β) ∈ F 2, construct a low-degree polynomial

17

Q(x, y) that has zeros of the required multiplicity. This is a much harder problem, in

general, but the following theorem gives a useful upper bound on the minimum required

degree.

Theorem 5 (The Interpolation Theorem) Let {m(α, β) : (α, β) ∈ F 2} be a multi-

plicity function as above and let φ0 < φ1 < · · · be an arbitrary monomial order. Then

there exists a nonzero polynomial Q(x, y) of the form

Q(x, y) =
C∑

i=0

aiφi(x, y) (2.25)

where

C =
∑

α,β

(
m(α, β) + 1

2

)

which has a zero of multiplicity m at (α, β), for all (α, β) ∈ F 2.

Proof. By Corollary 6, Q(x, y) has a zero of multiplicity m at (α, β) if and only if

Qr,s(α, β) = 0 for all (r, s) such that 0 ≤ r + s < m(α, β) (2.26)

There are
(

m(α,β)+1
2

)
choices for (r, s) in (2.24), and from (2.21), each such choice imposes

one homogeneous linear constraint on the coefficients ai. In total there are C such linear

constraints imposed on the C + 1 coefficients a0, a1, · · · , aC . It follows that there must

be at least one nonzero solution to this set of equations, which corresponds to a nonzero

polynomial Q(x, y) of the form in (2.23) with the required multiplicities. �

Corollary 8 For any (u, v), there is a nonzero polynomial Q(x, y) with required zero

multiplicities whose (u, v)-degree is strictly less than
√

2uvC.

Proof: Take {φj(x, y)} to be (u, v)-revlex order. Then by (2.23),

degu,vQ(x, y) ≤ max{degu,vφj(x, y) : j = 0, · · · , C} = degu,vφC(x, y) = rA(C)

where A = (aK) is the sequence Ind(xK), for (u, v)-revlex order. But rA(C) <
√

2uvC

by a straightforward generalization of Corollary 2. �

18

2.4.2 The Factorization Theorem

Lemma 1 If f(x) ∈ Fv[x], then degQ(x, f(x)) ≤ deg1,v Q(x, y).

Proof : For ai,j 6= 0, deg(xif(x)j) ≤ degQ(xixvj) = i + vj ≤ max{i + vj : ai,j 6= 0} =

deg1,v Q(x, y). �

Lemma 2 Q(x, f(x)) = 0 if and only if (y − f(x))|Q(x, y).

Lemma 3 If ord(Q : α, β) = K, and f(α) = β, then

(x− α)K |Q(x, f(x)).

Proof : Using Corollary 5 to express Q(x, y) as a polynomial in x− α and y − β:

Q(x, y) =
∑

i,j

bi,j(x− α)i(y − β)j

Then

Q(x, f(x)) =
∑

i,j

bi,j(x− α)i(f(x)− β)j (2.27)

since f(α) = β, f(x)−β is divisible by x−α, so that the term (x−α)i(f(x)−β)j in (2.25)

is divisible by (x−α)i+j. But ord (Q : α, β) = K implies that if bi,j 6= 0, then i+ j ≥ K.

Thus, every nonzero term in (2.25) is divisible by (x− α)K , i.e., (x− α)K |Q(x, f(x). �

Let Fv[x] be polynomials of degree ≤ v from F [x]. If Q(x, y) ∈ F [x, y], and f(x) ∈

F [x]. Define the Q-score of f as

SQ(f) =
∑

α∈F

ord(Q : α, f(α))

Theorem 6 Suppose f(x) ∈ Fv[x], Q(x, y) ∈ F [x, y], and

SQ(f) > deg1,vQ

then y − f(x) is a factor of Q(x, y)4

4Be careful the condition β = f(α)

19

Proof : By Lemma 3, we know that
∏

α∈F (x−α)ord(Q:α,f(α))|Q(x, f(x)). But by Lemma

1, the degree of Q(x, f(x)) is (at most) deg1,vQ(x, y), and the degree of
∏

α∈F (x −

α)ord(Q:α,f(α)) is SQ(f). Thus, if SQ(f) exceeds deg1,vQ, it follows that Q(x, f(x)) = 0,

and so by Lemma 2, y − f(x) divides Q(x, y). �

An alternative statement of this theorem is

Lemma 4 If f(x) is a polynomial of degree at most v such that βi = f(αi) for at least

t values of i ∈ [n] and mt > deg1,vQ, then y − f(x) divides Q.

2.5 A Second Look at the GS Algorithm

Armed with the preliminary material, we give a formal description and proof of the

correctness of the GS algorithm in this section.

2.5.1 Prerequisite Notations and Concepts

To begin with, we list some of the technical details needed for a full discussion of the

GS algorithm.

• K(f, β) = |{i : f(αi) = βi}|, D(f, β) = |{i : f(αi) 6= βi}|.

• C(n,m) = n
(

m+1
2

)
.

• (1, v)−revlex monomial order.

• The indices A(K, v) =Ind(xK) and B(L, v) =Ind(yL) (with respect to (1, v)-revlex

order), with the rank of apparition functions

rA(C) = max{K : A(K, v) ≤ C}

rB(C) = max{L : B(L, v) ≤ C}

20

• The numbers Km, tm, and Lm:

Km(n, k) , 1 + brA(C)/mc (2.28)

tm(n, k) , n−Km(n, k) = n− 1− brA(C)/mc (2.29)

Lm(n, k) , max{L : B(L, v) ≤ C(n,m)} = rB(C) (2.30)

Proof : By (2.11), deg1,vQ(x, y) ≤ max{deg1,vφi(x, y) : i = 0, · · · , C} = rA(C).

By Factorization Theorem, any polynomial f(x) of degree ≤ v such that

mK(f, β) > rA(C), will be a y−root ofQ(x, y). ⇒ K(f, β) ≥ 1+brA(C)/mc = Km

• Estimates of Km and Lm:
⌊√

vn
m+ 1

m
− v

2m

⌋
+ 1 ≤ Km ≤

⌊√
vn
m+ 1

m

⌋
(2.31)

n−
⌊√

vn
m+ 1

m

⌋
≤ tm ≤ n− 1−

⌊√
vn
m+ 1

m
− v

2m

⌋
(2.32)

Lm =


√
n

v
m(m+ 1) +

(
v + 2

2v

)2

− v + 2

2v

 <

(
m+

1

2

) √
n

v
(2.33)

2.5.2 Detailed GS Decoding Algorithm

Given an (n, k) RS code over the finite field F , with support set (α1, · · · , αn), and a

positive integer m. The input of the GS(m) decoder is a vector of the form

β = (β1, · · · βn) ∈ F n

The output of the GS(m) decoder is a list of polynomials

{f1, · · · , fL}

The GS(m) Decoder.

1. The GS(m) decoder constructs a nonzero two-variable polynomial of the form

Q(x, y) =

C(n,m)∑

j=0

ajφj(x, y)

21

where φ0 < φ1 < · · · is (1, v)-revlex monomial order, such that Q(x, y) has a zero

of order m at each of the n points (αi, βi), for i = 1, · · · , n 5.

2. The output of the algorithm is the list of y-roots of Q(x, y), i.e.,

L = {f(x) ∈ F [x] : (y − f(x))|Q(x, y)}

2.6 K0̈tter’s Solution to the Interpolation Problem

In general terms, the interpolation problem is to construct a bivariate polynomial

Q(x, y) with minimal (1, v)−degree that satisfies a number of constraints of the form

Dr,sQ(α, β) = 0

where (r, s) ∈ N2 and (α, β) ∈ F 2. It turns out that the mapping

Q(x, y) 7→ Dr,sQ(α, β)

is an example of what is called a linear functional on F [x, y]. It is no harder mathemati-

cally, and much easier notationally, to consider the more general problem of constructing

a bivariate polynomial Q(x, y) of minimal weighted-degree that satisfies a number of con-

straints of the form

DiQ(x, y) = 0, for i = 1, 2, · · ·

where each Di is a linear functional. The goal of this section is to describe an algorithm

for solving the more general problem.

2.6.1 Linear Functionals on F [x, y]

Definition 3 A mapping D : F [x, y] −→ F is called a linear functional if

D(αP + βQ) = αD(P) + βD(Q)

5The Interpolation Theorem guarantees that such a polynomial exists.

22

∀ P,Q ∈ F [x, y], α, β ∈ F . The kernel of a linear functional D is the set

K = kerD = {Q : D(Q) = 0}

If D is a linear functional with kernel K, the corresponding bi-linear mapping [P,Q]D is

defined as

[P,Q]D , D(Q)P −D(P)Q (2.34)

This simple mapping is a crucial part of the algorithms we present below; its key property

is given in the following lemma.

Lemma 5 For all P,Q in F [x, y], [P,Q]D ∈ kerD.

Proof :‘ Let α = D(Q) and β = D(P). Then D([P,Q]D) = D(αP − βQ) = αD(P) −

βD(Q) = αβ − βα = 0, which proves [P,Q]D ∈ kerD. �

2.6.2 Problem Statement

Let FL[x, y] denote the set of polynomials from F [x, y] whose y-degree is 6 L, i.e.,

those of the form

Q(x, y) =
L∑

k=0

qk(x)y
k

where each qk(x) ∈ F [x].

Let D1, · · · , DC be C linear functions defined on FL[x, y], and let K1, · · · , KC be the

corresponding kernels, i.e.,

Ki = {Q(x, y) ∈ FL[x, y] : Di(Q) = 0}

The cumulative kernels K0, · · · , KC are defined as follows: K0 = FL[x, y] and for

i = 1, · · · , C,

Ki = K i−1 ∩Ki

= K1 ∩ · · · ∩Ki

= {Q(x, y) ∈ FL[x, y] : D1(Q) = · · · = Di(Q) = 0}

23

The Generalized Interpolation Problem: Construct a minimal element from

KC = K1 ∩ · · · ∩KC

i.e., calculate

Q0(x, y) ∈ min{Q(x, y) : D1(Q) = · · · = DC(Q) = 0}

where “minimal” means minimal rank (weighted degree) with respect to the given

monomial order.

2.6.3 Kötter’s Algorithm

The set of monomials from FL[x, y](the polynomials from F [x, y] whose y-degree is

≤ L), viz.,

ML[x, y] = {xiyj : 0 ≤ i, 0 ≤ j ≤ L}

is partitioned according to the exponent of y: ML[x, y] =
⋃L

j=0 Mj, where

Mj = {xiyj : i ≥ 0}

The partition of ML includes a partition on FL[x, y]: FL[x, y] = S0 ∪ · · · ∪ SL, where

Sj = {Q ∈ FL[x, y] : LM(Q) ∈Mj}

K0̈tter’s algorithm generated a sequence of lists G0, G1, · · · , GC , with

Gi = (gi,0, · · · , gi,L)

where gi,j is a minimal element of K i ∩ Sj. The algorithm’s output is the polynomial

Q0(x, y) = min
0≤j≤L

gC,j(x, y)

which is a minimal element of KC .

K0̈tter’s algorithm is initialized as follows:

g0,j = yj, j = 0, · · · , L

24

Given Gi, i.e., {gi,j}Lj=0, Gi+1 is defined recursively:

J0 = {j : Di+1(gi,j) = 0}

J1 = {j : Di+1(gi,j) 6= 0}

If J1 is not empty,among the polynomials gi,j with j ∈ J1, let gi,j∗ be the one with

minimal rank, and temporarily denote gi,j∗ by f :

f = min
j∈J1

gi,j

j∗ = arg min
j∈J1

gi,j

Then using the notation of (2.32), gi+1,j is defined for j = 0, · · · , L:

gi+1,j =





gi,j if j ∈ J0

[gi,j , f]
Di+1

if j ∈ J1 but j 6= j∗

[xf, f]Di+1
if j = j∗

Theorem 7 [3] For i = 0, · · · , C, we have

gi,j = min{g : g ∈ K i ∩ Sj} for j = 0, · · · , L

Moreover, for GS decoding,

• Given L, (αi, βi)
n
i=1, (mi)

n
i=1 = m, (1, k − 1) weighted degree monomial order.

• Dr,sgj(αi, βi) = 0, for 0 ≤ r + s < m, 1 ≤ i ≤ n, 0 ≤ j ≤ L.

2.7 The Roth-Ruckenstein Solution to the Factor-

ization Problem

In this section, we present the most efficient algorithm currently known for solving

the factorization problem, due to Roth and Ruckenstein (RR) [4].

The factorization problem can be stated as follows. Given a polynomial Q(x, y) ∈

F [x, y], find all polynomials f(x) of degree ≤ v such that (y − f(x))|Q(x, y). Alterna-

tively, find all f(x) ∈ Fv[x] such that

Q(x, f(x)) ≡ 0 (2.35)

25

If (2.33) holds, we call f(x) a y-root of Q(x, y). In this section, we will describe the RR

algorithm for finding y−roots.

For a two-variable polynomial Q(x, y) such that xm|Q(x, y), but xm+1 - Q(x, y), we

define

〈Q(x, y)〉 =
Q(x, y)

xm
.

Although Q(0, y) might be identically zero, nevertheless 〈Q(0, y)〉 is a nonzero polyno-

mial in y (e.g., if Q(x, y) = xy, Q(x, y) = 0 but 〈Q(0, y)〉 = y).

Suppose

f(x) = a0 + a1x+ · · ·+ avx
v

is a y−root of Q(x, y). We will see that the coefficients a0, a1, · · · , av can be picked off

one at a time. As a start, the following lemma shows how to determine a0.

Lemma 6 If (y − f(x))|Q(x, y), then y = f(0) = a0 is a root of the equation

Q0(0, y) = 0

where Q0(x, y) = 〈Q(x, y)〉 and f(x) = a0 + a1x+ · · ·+ avx
v.

Proof : By definition, Q(x, y) = xmQ0(x, y) for some m ≥ 0. Thus, if (y−f(x))|Q(x, y),

then (y−f(x))|Q0(x, y) as well, so that Q0(x, y) = (y−f(x))T0(x, y) for some polynomial

T0(x, y). Thus, y = f(0) is a solution of the equation Q0(0, y) = 0.

We now proceed by induction, defining three sequences of polynomials, fj(x), Tj(x, y),

and Qj(x, y), for j = 0, 1, · · · , v, as follows.

Initialization: f0 := f(x), Q0(x, y) := 〈Q(x, y)〉.

For j ≥ 1, define

fj(x) := (fj−1(x)− fj−1(0))/x = aj + · · ·+ avx
v−j (2.36)

Tj(x, y) := Qj−1(x, xy + aj−1) (2.37)

Qj(x, y) := 〈Tj(x, y)〉 (2.38)

�

26

Theorem 8 Given f(x) = a0 + a1x + · · · + avx
v ∈ Fv[x], and Q(x, y) ∈ F [x, y].

For any j ≥ 1, (y − f(x))|Q(x, y) if and only if (y − fj(x))|Qj(x, y). If j ≥ 1, (y −

fj(x))|Qj(x, y)↔ (y − fj−1(x))|Qj−1(x, y)

For detailed proof see [3].

Here is the “picking off” theorem.

Corollary 9 If (y − f(x))|Q(x, y), then y = aj is a root of the equation

Qj(0, y) = 0, for j = 0, · · · , v

Proof : By Theorem 8, y − fj(x) divides Qj(x, y) for all j ≥ 0. Substituting x = 0

yields the stated result, since fj(0) = aj. �

Stopping Criterion:

Corollary 10 If y|Qv+1(x, y), i.e., if Qv+1(x, 0) = 0, then f(x) = a0 + · · · + avx
v is a

y-root of Q(x, y).

Proof : (2.34) implies that fj(x) = 0 for all j ≥ v+1, so that the hypothesis y|Qv+1(x, y)

says that (y−fv+1(x))|Qv+1(x, y). Invoking Theorem 8, we have j ≥ 1, (y−fj(x))|Qj(x, y)↔

(y − fj−1(x))|Qj−1(x, y)⇒ (y − f(x))|Q0(x, y). �

27

Chapter 3

Algebraic Soft-Decision Decoding of
the GS Algorithm

Fig. 2.1 has shown that for high rate RS codes, the error-correcting capability can not

be improved anymore. Therefore, we need to do soft-decision decoding to improve this

situation. In the following section we show how the soft-decision reliability information

provided by the channel should be translated into algebraic interpolation conditions. A

block diagram of soft-decision algorithm is given in Fig. 3.1.

c
a
l
c
u
l
a
t
e

m
u
l
t
i
p
l
i
c
i
t
i
e
s
 i
n
t
e
r
p
o
l
a
t
e
 f
i
n
d

r
o
o
t
s

s
e
l
e
c
t

o
u
t
p
u
t

s
o
f
t

i
n
f
o
r
m
a
t
i
o
n

f
r
o
m

c
h
a
n
n
e
l

K
o
e
t
t
e
r
-
V
a
r
d
y

s
o
f
t
-
d
e
c
i
s
i
o
n

f
r
o
n
t

e
n
d

d
e
c
o
d
e
d

c
o
d
e
w
o
r
d

m
o
d
i
f
i
e
d

G
u
r
u
s
w
a
m
i
-
S
u
d
a
n

a
l
g
o
r
i
t
h
m

Figure 3.1: The K0̈tter-Vardy algorithm

3.1 Algebraic Soft-Decision Decoding

For RS codes, let α1, α2, · · · , αq be q distinct element in GF (q). We think of channel

input and output as random variables X and Y , respectively. Given the received vector

y = (y1, y2, · · · , yn) observed at the channel output, we compute, for i = 1, 2, · · · , q and

28

j = 1, 2, · · · , n,

πi,j , Pr(X = αi|Y = yj). (3.1)

Let Π be the q × n matrix with entries πi,j defined in (3.1). We will refer to Π as

the reliability matrix and assume that Π is the input to a soft-decision decoding

algorithm. For notational convenience, we will sometimes write Π(α, j) to refer to the

entry found in the jth column of Π in the row indexed by α ∈ GF(q).

The first step in hard-decision decoding is the construction of the hard-decision vector

u = (u1, u2, · · · , un) ∈ F n
q , where

uj , arg max
α∈GF (q)

Π(α, j), for j = 1, 2, ..., n

This hard-decision vector is then taken as the channel output c+ e, thereby converting

the channel at hand into a hard-decision channel.

On the other hand, a soft-decision decoder works directly with the probabilities

compiled in the reliability matrix Π. If the decoder is algebraic, it must somehow convert

these probabilities into algebraic conditions. The algebraic soft-decision RS decoder

developed in this section converts the reliability matrix Π into a choice of interpolation

points and their multiplicities in the Guruswami-Sudan list-decoding algorithm.

A convenient way to keep track of the interpolation points and their multiplicities is

by means of a multiplicity matrix. A multiplicity matrix is a q × n matrix M with

nonnegative integer entries mi,j. Thus the first step of our decoding algorithm consists

of computing the multiplicity matrix M from the reliability matrix Π. This step is

discussed in detail in the next section. The second step consists of the following.

Soft interpolation step: Given the point set and the multiplicity matrix M =

[mi,j], compute a nontrivial bivariate polynomial QM(X,Y) of minimal (1,v)-revlex

weighted degree that has a zero of multiplicity at least mi,j at the point (xj, αi) for

every i, j such that mi, j 6= 0.

29

The third step of the algorithm is the factorization step, which is identical to the

factorization step(will be described later) of the Guruswami-Sudan algorithm.

In the following, we characterize the conditions under which the decoder will produce

the transmitted codeword, for a given choice of interpolation points and their multiplic-

ities (that is, for a given multiplicity matrix M).

Definition 4 Given a q × n matrix M with nonnegative integer entries mi,j, we define

the cost of M as follows:

C(M) ,
1

2

q∑

i=1

n∑

j=1

mi,j(mi,j + 1)

It is easy to see that the computation of QM(X,Y) is equivalent to solving a system

of linear equations of (2.21), like the GS algorithm interpolation. Since a given zero of

multiplicity m imposes m(m + 1)/2 linear constraints on the coefficients of QM(X,Y),

the cost C(M) is precisely the total number of linear equations. We can always find a

nonzero solution QM(X,Y) to the soft interpolation task if the degQ1,v is large enough.

That is

Nwx,wy
(δ) , |{X iY j : i, j > 0 and iwx + jwy 6 δ|

if

N1,k−1(δ) > C(M) (3.2)

so that the number of degrees of freedom is greater than the number of linear constraints.

Thus we define the function

4wX ,wY
(ν) , min{δ ∈ Z : NwX ,wY

(δ) > ν}. (3.3)

Next, given two q × n matrices A and B over the same field, we define the inner

product

〈A,B〉 , trace(ABT) =

q∑

i=1

n∑

j=1

ai,jbi,j

30

Finally, it will be convenient to think of the codewords of the RS code Cq(n, k) as q× n

matrices over the reals. Specifically, any vector v = (v1, v2, · · · , vn) over GF (q) can be

represented by the q× n real-valued matrix defined as follows: [v]i,j = 1 if vj = αi , and

[v]i,j = 0 otherwise. With this notation, we have the following definition.

Definition 5 The score of a vector v = (v1, v2, · · · , vn) over GF (q) with respect to a

given multiplicity matrix M is defined as the inner product SM(v) = 〈M, [v]〉.

The following theorem characterizes the set of codewords produced by our soft-

decision decoding algorithm for a given multiplicity matrix.

Theorem 9 Let C be the cost of a given multiplicity matrix M . Then the polynomial

QM(X,Y) has a factor Y − f(X), where f(X) evaluates to a codeword c with degree v

, if the score of c is large enough, namely, if

SM(c) > 41,k−1(C)

The proof is similar to the GS algorithm factorization theorem.(see theorem6.)

3.2 From Posterior Probabilities to Interpolation Points

This section develops an algorithm that converts posterior probabilities derived from

the channel output into a choice of interpolation points and their multiplicities. More

specifically, given a reliability matrix Π, as defined in (3.1), we compute the multiplicity

matrix M that serves as input to the soft interpolation step. Let Mq,n denote the set

of all q × n matrices with nonnegative integer entries mi,j, and let M(C) be the finite

set of all matrices inMq,n whose cost is equal to C. Thus

M(C) , {M ∈Mq,n :
1

2

q∑

i=1

n∑

j=1

mi,j(mi,j + 1) = C}

In view of Theorem 9, we would like to choose M ∈M(C) so as to maximize the score

of the transmitted codeword c ∈ Cq(n, k).

31

As far as the decoder is concerned, the transmitted codeword may be thought of as a

random vector χ = (χ1, χ2, · · · , χn). Thus SM(χ) is a random variable, and the question

is: what is the best choice of a multiplicity matrix M ∈ M(C) in this probabilistic

setting? We choose to compute the matrix M ∈ M(C) that directly maximizes the

expected value of SM(χ).

To proceed, let us define the expected score with respect to a probability distribu-

tion P (·) on the random vector χ = (χ1, χ2, · · · , χn) as follows:

EP{SM(χ)} ,
∑

x∈F n
q

SM(x)P (x) =
∑

x∈F n
q

n∑

j=1

M(xj, j)P (x), (3.4)

where M(xj, j) denotes the entry found in the jth column of M in the row indexed

by xj. It remains to specify P (·). For this purpose, we adopt the product distribution

determined by the channel output (y1, y2, · · · , yn), namely

P (x1, x2, · · · , xn) ,

n∏

j=1

Pr(Xj = xj|Yj = yj) =
n∏

j=1

Π(xj, j) (3.5)

where Π is the reliability matrix defined in Eq.(3.1). It is easy to see that this would be

the a posteriori distribution of χ given the channel observations.

Thus, we want to find M(Π, C) defined as follows:

M(Π, C) , argmaxM∈M(C)EP{SM(χ)}

where the expectation is taken with respect to the probability distribution P (·) in

Eq.(3.5). We start with the following lemma, which gives a useful expression for the

expected score.

Lemma 7 The expected score with respect to the probability distribution of (3.5) is equal

to the inner product of the multiplicity matrix and the reliability matrix, namely

EP{SM(χ)} = 〈M,Π〉

32

Input: Reliability matrix Π and a positive integer s,
indicating the total number of interpolation points.

Output:Multiplicity matrix M .
Initialization step: Set Π∗ := Π and M := all-zero matrix
Iteration step: Find the position (i, j) of the largest entry π∗

i,j in Π∗, and set
π∗

i,j :=
πi,j

mi,j+2

mi,j := mi,j + 1
s := s− 1

Control step: If s = 0, return M ; otherwise go to the iteration step.

Table 3.1: Algorithm A

Proof : It is easy to see that if χ is distributed according to (3.5), then Π is

precisely the componentwise expected value of [χ]. The lemma now follows by linearity

of expectation

EP{SM(χ)} = EP{〈M, [χ]〉} = 〈M,EP{[χ]}〉 = 〈M,Π〉

�

We will construct M(Π, C) iteratively, starting with the all-zero matrix and increas-

ing one of the entries in the matrix at each iteration. Referring to Lemma 5, we see that

increasing mi,j from 0 to 1 increases the expected score by πi,j while increasing the cost

by 1. If we require that QM(X,Y) passes through the same point again (that is, increase

mi,j from 1 to 2), then the expected score again grows by πi,j, but now we have to pay

two additional linear constraints. In general, increasing mi,j from a to a + 1 always in-

creases the expected score by πi,j while introducing a+ 1 additional constraints. These

observations lead to Algorithm A, which greedily maximizes the ratio of the increase

in the expected score to the increase in cost at each iteration.

Let M(Π, s) denote the multiplicity matrix produced by Algorithm A for a given

reliability matrix Π and a given number of interpolation points s. The following theorem

shows that this matrix is optimal.

Theorem 10 The matrix M(Π, s) maximizes the expected score among all matrices in

33

Mq,n with the same cost. That is, if C is the cost of M(Π, s), then

M(Π, s) = argmaxM∈M(C)〈M,Π〉

Proof : With each position (i, j) in the reliability matrix Π, we associate an infinite

sequence of rectangles Bi,j,1,Bi,j,2, · · · indexed by the positive integers. Let B denote the

set of all such rectangles. For each rectangle Bi,j,l ∈ B, we define its length(Bi,j,l) = l ,

height(Bi,j,l) = πi,j/l, and

area(Bi,j,l) = length(Bi,j,l) · height(Bi,j,l) = πi,j

For a multiplicity matrix M ∈Mq,n, we define the corresponding set of rectangles

ϑ(M) , {Bi,j,l : 1 6 i 6 q, 1 6 j 6 n, 1 6 l 6 mi,j}

Note that the number of rectangles in ϑ(M) is
∑q

i=1

∑n

j=1mi,j which is precisely the

total number of interpolation points imposed by the multiplicity matrix M . Furthermore

C(M) =

q,n∑

i=1,j=1

mi,j(mi,j + 1)

2
=

q,n∑

i=1,j=1

mi,j∑

l=1

l

=

q,n∑

i=1,j=1

mi,j∑

l=1

length(Bi,j,l) =
∑

B∈ϑ(M)

length(B)

〈M,Π〉 =

q,n∑

i=1,j=1

mi,j · πi,j =

q,n∑

i=1,j=1

mi,j∑

l=1

πi,j

=

q,n∑

i=1,j=1

mi,j∑

l=1

area(Bi,j,l) =
∑

B∈ϑ(M)

area(B).

Thus the cost of M is the total length of all the rectangles in ϑ(M) and the expected

score 〈M,Π〉 is the total area of all the rectangles in ϑ(M). It is intuitively clear that to

maximize the total area for a given total length, one has to choose the highest rectangles.

This is precisely what Algorithm A does: the algorithm constructs the matrixM(Π, s)

that corresponds to the set of s highest rectangles in B. Indeed, it is easy to see that the

ratios π∗
i,j with which Algorithm A operates are precisely the heights of the rectangles.

34

The algorithm removes from B and puts in ϑ(M) the highest rectangle available at each

iteration. It is now obvious that if the s highest rectangles in B have total length C,

then no collection of rectangles of total length at most C can have a larger total area.

�

35

Chapter 4

Reduced-Complexity
Interpolation-Based Soft-Decision
RS Decoders

The KV soft-decision decoding procedure results in very impressive error correcting

performance. Nevertheless, the algorithm is still quite computationally complex and not

straightforward to implement. This chapter introduces algorithmic techniques that re-

duce the complexity of interpolation-based decoders to the point where efficient software

or VLSI implementations are possible.

4.1 Modified Interpolation

The interpolation algorithm is the most time-consuming component of KV decoding

and it is essential to reduce its complexity if KV decoding is to be used in real-time

applications. From the discussion in section (2.4), if a multiplicity matrix has a maximum

entry m, then the maximum interpolation cost would be the cost of hard-decision GS

decoding with multiplicity m:

C = (
n

2
)m(m+ 1)

. For the remainder of this discussion, we will assume the worst-case where the cost of

interpolation is the maximum possible cost, C. The interpolation algorithm needs to

store (dy + 1) bivariate polynomials.(dy is the maximal y−degree) Since a homogeneous

36

linear system must have more unknowns than equations, the length (number of terms)

of the polynomials must be at least C. The memory requirements of interpolation are

≈ (dy + 1)C field elements. Therefore the complexity of interpolation in terms of the

number of Galois field operations is Nop,interp = O(dyC
2).

Example 10 Consider a decoder for a (255,239) RS code with maximum multiplicity

m = {1, 4, 16}. The interpolation cost, complexity and memory requirements are sum-

marized in Table (4.1).

m C Nop,interp memory

1 255 1× 105 512 bytes
4 2550 3× 107 12 Kbytes
16 34680 2× 1010 576 Kbytes

Table 4.1: The maximum cost, complexity (Nop,interp) and memory requirements for

the interpolation algorithm applied to a RS(255,239) code with maximum multiplicity
m. The data is from [5]

¿From Table(4.1) we see that the decoding complexity and memory requirements

grow very quickly as the multiplicity increases. If the maximum multiplicity is fixed to

deliver a desired error-rate, then to lower the cost and hence the complexity, the number

of interpolation points (nonzero entries in the multiplicity matrix) that we apply the

bivariate interpolation algorithm to must be reduced. We apply the trick of ”reencoding”

the received word to reduce the interpolation complexity.

4.1.1 Systematic Encoding

A systematic encoding is one where all the k input symbols to the encoder explicitly

appear in the encoded codeword. If they appear in k consecutive positions then the

encoding is called strictly systematic. Strictly systematic encoders, where the k message

symbols appear as the last k symbols in a codeword, are easily implemented with a

linear feedback shift register [6] and are commonly used.

37

Interpolation-based decoding algorithms rely on an evaluation map encoding, how-

ever it is more efficient to implement an encoder as a linear feedback shift register. We

would also like to apply the decoder to existing RS transmission systems that use a

systematic encoder. Therefore we would like to use a systematic encoding in place of

the evaluation map encoding.

We are also interested in generating systematic encodings where the information ap-

pears in arbitrary positions in an encoded codeword. If these positions can change for ev-

ery encoder use, then an efficient way of implementing this systematic encoder is with an

erasures-only RS decoder [6]. Since RS codes are minimum-distance-separable (MDS),

a codeword may be perfectly recovered from any k of its symbols. An erasures-only

decoder is much simpler than an error-and-erasures decoder since the erasure locations

are known a-priori. Therefore, the expensive iterative Berlekamp-Massey algorithm for

solving the key equation and the Chien search root-finding can be skipped .

4.1.2 Re-encoding

The idea of re-encoding is to transform the interpolation problem into one that

is easier to solve. The codeword c is transmitted through a noisy channel. The hard

decision vector, r = (r0, r1, · · · , rn−1), which can be extracted from the reliability matrix

Π, is r = c + e, where e is an error vector. The first step is to partition the received

symbols in r into two sets, U (”unreliable”) and R (”reliable”). The set R consists

of the k most reliable symbols, where the reliability information can be derived from

the reliability matrix Π. The set of positions of the symbols in R(labeled from 1 to n

corresponding to {α1, α2, · · · , αn}) is the set Rk. Now systematically encode the symbols

in R so that they appear in the reencoded codeword, ψ,in the same positions that they

appeared in r. As discussed in Section (4.1.1), this can be done efficiently for k arbitrary

38

positions with an erasures-only decoder. Taking the difference between r and ψ we get:

r′ = r − ψ (4.1)

= (c+ e)− ψ (4.2)

= (c− ψ) + e (4.3)

which is a codeword (by the linearity of the code) that is corrupted by the same error

pattern as r. However, r′ has a very interesting property; since the reencoding of r is

systematic, k symbols of r′ are zero. These zero symbols correspond to k interpolation

points with a zero y−component:

V = {(αi, 0)}, i ∈ Rk (4.4)

An interpolation polynomial for the k points in V is v(x)m where v(x) is found through

a simple univariate interpolation:

v(x) =
∏

i∈Rk

(x− αi) (4.5)

The advantage for high-rate codes is that we have found an interpolation polynomial for

most of the points without having to use the expensive bivariate interpolation algorithm.

The calculation of v(x) requires a single polynomial to be updated k times instead of

(dy + 1) polynomials being updated (k/2)(m2 + m) times. Now that we have v(x),

the bivariate interpolation algorithm is run at decode time starting from the initial

polynomial set:

G = {v(x)m, v(x)m−1y, ..., v(x)m−dyydy} (4.6)

and run for at most

C ′ = (
n− k

2
)(m)(m+ 1)

= (1− k

n
)C

iterations, where C is the maximum cost of the bivariate interpolation without reencod-

ing. The reduced cost, C ′, gets smaller as the code rate k/n increases.

39

4.1.3 Reducing the Memory Requirements

The memory requirements for interpolation can be very large since the maximum

length of the bivariate polynomials is at least C terms. The polynomials can be shortened

by factoring out the polynomial v(x). It is shown in [7],[8] that if reencoding is used

then the interpolation polynomial P (x, y) can be written as:

P (x, y) =

dy∑

j=0

wj(x)
∏

i∈Rk

(X − αi)mi−jTj(x)y
j (4.7)

where,

Tj(x) =
∏

i∈Rk

(x− αi)max(j−mi,0) (4.8)

This is the most general way to decompose P (x, y) and it allows any k symbols to

be chosen for R. However, it seems that the most logical choice for R is to choose the k

symbols with the largest reliability (largest multiplicities) to achieve the maximum com-

plexity reduction. To obtain the shortest possible polynomials, we make the assumption

that R consists of k points that have the maximum possible multiplicity m = dy. Then

Tj(x) = 1, j = 0, · · · , dy and Eq.(4.7) reduces to [10]:

P (x, y) =

dy∑

j=0

wj(x)v(x)
m−jyj (4.9)

which means that common factors of v(x) are being carried around needlessly, wasting

memory. It would be nice to factor out the powers of v(x) and only have to calculate

the wj(x) in real-time. The interpolation polynomial can be written as

P (x, y) =

dy∑

j=0

wj(x)v(x)
m−jyj (4.10)

= vm(x)

dy∑

j=0

wj(x)(
y

v(x)
)j (4.11)

The decoding algorithm takes the transformed word r′ as input and tries to estimate

the transformed codeword c′ = c−ψ. Therefore, if the decoding is successful, a message

40

polynomial f ′(x) corresponding to c′ will be a linear y−root of P (x, y), i.e.:

P (x, y) = (y − f ′(x))A(x, y) (4.12)

or,

P (x, f ′(x)) = 0 (4.13)

From Eq.(4.11),

vm(x)

dy∑

j=0

wj(x)(
f ′(x)

v(x)
)j = 0 (4.14)

dy∑

j=0

wj(x)(
f ′(x)

v(x)
)j = 0 (4.15)

Define the reduced interpolation polynomial :

P̃ (x, ỹ) =

dy∑

j=0

wj(x)ỹ
j (4.16)

where ỹ = y/v(x). Then if f ′(x) is a linear y−root of P (x, y) it follows that f ′(x)/v(x)

is a linear ỹ-root of the reduced interpolation polynomial P̃ (x, ỹ). A simplified interpo-

lation can be carried out to find P̃ (x, ỹ) which is much shorter than P (x, y) since the

degree k polynomial v(x) has been factored out in advance. To implement the simpli-

fied interpolation, consider the original set of polynomials, G = {1, y, · · · , ydy}. After

applying the reencoding technique, the starting polynomial set for decoding is:

G′ = {v(x)m, v(x)m−1y, · · · , v(x)m−dyydy} (4.17)

= v(x)m{1, y

v(x)
, (

y

v(x)
)2, · · · , (y

v(x)
)dy} (4.18)

After a change of variables ỹ = y/v(x), we have G̃ = {1, ỹ, · · · , ỹdy}. Note that the

weighted degree of the new variable ỹ is :

deg(1,k−1)(ỹ) = deg(1,k−1)(y)− deg(1,k−1)(v(x))

= (k − 1)− k

= −1.

41

The y-coordinates of the interpolation points need to be rescaled:

ỹi =
y′i

v(xi)
(4.19)

where the y′i are the y-coordinates of points after the translation in the reencoding

step. Starting from G̃ = {1, ỹ, · · · , ỹdy}, one applies the KV interpolation algorithm

to the O(n − k) rescaled points where the min function is taken with respect to the

(1,-1)-weighted degree of the polynomials in x and ỹ. A formal proof that simplified

interpolation produces a correct result is given in [7] where the factorization step is

slightly modified. This will be discussed in the following.

However, from (4.9), the simplified interpolation is not always realizable in all cases.

It must satisfy

Lemma 8 The maximum y-degree is equal to m.

4.2 Reduced-Complexity Factorization

The savings realized by simplified interpolation can be carried over into the factoriza-

tion procedure by applying the RR algorithm directly to the reduced polynomial P̃ (x, ỹ)

as proposed in [7],[8],[14]. If the message polynomial corresponding to c′ = (c− ψ) is a

linear y-root of P (x, y) then f ′(x)/v(x) is a linear ỹ-root of P̃ (x, ỹ), or

P̃ (x, ỹ) = (ỹ − f ′(x)

v(x)
)B(x, ỹ) (4.20)

Applying the RR algorithm to the reduced polynomial, we obtain a sequence s0, s1, · · · , sl−1

(as a rule of thumb, we use l = 2d(k/n)te) which are the coefficients of

s(x) =
f ′(x)

v(x)

The transformed received hard-decision word is r′ = c′ + e, which has zeroes in the k

re-encoded positions, Rk. Therefore, in the k re-encoded positions, c′i = −ei, i ∈ Rk, or

,

f ′(αi) = −ei, i ∈ Rk

42

If there is no error in position i ∈ Rk then ei = 0 and f ′(αi) = 0. Therefore (x− αi) is

a root of f ′(x), or f ′(x) = (x− αi)D(x). Considering all the error-free positions in Rk,

f ′(x) =
∏

i∈Rk s.t. ei=0

(x− αi)Ω(x) (4.21)

Therefore,

s(x) =
f ′(x)

v(x)
(4.22)

=

∏
i∈Rk s.t. ei=0(x− αi)Ω(x)∏

i∈Rk
(x− αi)

(4.23)

=
Ω(x)∏

i∈Rk s.t ei 6=0(x− αi)
(4.24)

The denominator is an error-locator polynomial for the k positions in Rk. Given the

syndrome polynomial s(x), we can use the Berlekamp-Massey algorithm to reconstruct

the rational function Ω(x)/Λ(x) where Λ(x) is an error-locating polynomial for the k

positions in Rk and Ω(x) is an error-evaluator polynomial for the k positions in Rk. The

roots of Λ(x) give the error locations in Rk . This technique only finds errors in the set

of k reliable positions and not in the (n− k) unreliable positions. To correct any errors

in the (n − k) unreliable positions, we can do a systematic reencoding in k arbitrary

positions using the erasures-only decoder that is already implemented for the reencoding

step.

We are only directly correcting errors in the k reliable positions. Fortunately, most

errors are likely in the (n − k) unreliable positions so we only need to correct a small

number of errors and hence only need a few coefficients in the syndrome sequence.

This greatly speeds up the Roth-Ruckenstein algorithm. As a rule of thumb we use

l = 2d(k/n)te coefficients where t = b(n−k)/2c is the classical error-correcting capability.

To compute the error values, we invoke (4.22) to have ei = −f ′(αi), i ∈ Rk and

f ′(x)
v(x)

=
Ωx

Λx
(4.25)

f ′(x) =
Ω(x)v(x)

Λ(x)
(4.26)

43

When evaluating f ′(x) at x-values corresponding to the error locations, v(αi) = 0 and

λ(αi) = 0 where i is an error position in Rk. Using the L’Hopital’s rule, we obtain the

error-evaluation formula

f ′(αi) =
Ω(αi)v(1)(αi)

Λ(1)(αi)
(4.27)

for the x-values αi corresponding to error positions in Rk, where v(1)(x) and Λ(1)(x) are

the formal derivatives of v(x) and Λ(x). Notice that we have directly found an estimate

of the error vector, ê, without having to subtract off r′. The estimated codeword can be

found by adding ê to the received word r and the message can be read off directly if a

systematic encoder was used. A block diagram of this scheme is shown in Fig. 4.1.

Figure 4.1: Transforming the decoding problem via reencoding

44

Chapter 5

Serially concatenated Convolutional
and RS codes

In this chapter, we discuss the serially concatenated convolutional and RS codes

with an emphasis on soft input and soft output algorithms. Although GS algorithm is

an SD decoding algorithm it cannot provide soft output value. We therefore introduce

the SSID algorithm [21] (stochastic shifting based iterative decoding) which does yield

soft output values.

5.1 Stochastic Shifting Based Iterative Decoding (SSID)

of RS codes

Consider a narrow sense (n, k) RS code over GF (qm), n = qm − 1, which has a

minimum distance δ = n− k + 1. The parity check matrix can be represented by

H =




1 β β2 · · · β(n−1)

1 β2 β4 · · · β2(n−1)

· · ·
1 β2 β4 · · · β2(n−1)


 . (5.1)

Here we consider RS codes over an extension field of GF(2). Let β be a primitive element

in GF(2m), all the 2m elements in GF(2m), 0, 1, β, β2, · · · , β2m−2, can be represented

using a binary vector expansion in GF (2). Let p(x) be a primitive polynomial in F2[x]

and C be its companion matrix. The companion matrix is an m × m binary matrix.

Since the mapping βi ←→ C i, {i = 0, 1, 2, · · · } induces a field isomorphism, a binary

45

parity-check matrix H is obtained by replacing every element β i in the parity check

matrix H by its corresponding matrix C i.

Example 11 For GF(32), the primitive polynomial p(x) is x5 + x2 + 1, then

1 = β0 ←→




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



.

β1 ←→




0 0 0 0 1
1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0



.

Given the channel output samples, the a posteriori log-likelihood ratio (LLR) and soft

symbol values can be derived by using the belief propagation (BP) algorithm. However,

standard BP does not work well for high density parity check codes (HDPC) codes due

to error propagation.

By taking advantage of the cyclic property of RS codes, a sum product algorithm

(SPA) with a stochastic shifting schedule is proposed [21, 22] to help alleviate the de-

terministic errors. Let L(j) denote the sum of the received LLRs and all extrinsic LLR

produced until the jth iteration. During the jth iteration, the SPA is used on the vector

L(j) to produce extrinsic information L
(j)
ext. The LLR L(j+1) is then updated according

to:

L(j+1) = L(j) + αL
(j)
ext (5.2)

where 0 < α ≤ 1 is a damping coefficient. The updated LLR L(j+1) is cyclically shifted

by θ symbols, where θ is a random integer uniformly distributed between (0, n − 1).

Since RS codes are cyclic, the cyclically shifted version of x is a valid codeword. Hence,

a shifted version of L(j+1) can be thought of as the received signal when a shifted version

of another valid codeword was transmitted. Therefore, another iteration of the SPA

46

is performed with the shifted version of the LLR L(j+1). Since the geometry of the

factor graph associated with the shifted version is different from that of the original one,

deterministic errors can be eliminated. We continue this procedure for a predetermined

Algorithm 1 SSID algorithm for RS codes
Step 1. Initialization: set q = 0,j = 0 and α0.
Step 2. Set the coded bits LLR as observed from the channel:

L(0)(xi) = 2
σ2yi

Step 3. SPA: Feed the LLRs into the decoder and generate
extrinsic LLRs for each bit using SPA:

L
(j)
ext = ψ(L(j)).

Step 4. Parameter Update: Update the LLR of each bit:

L(j+1)(xi) = L(j)(xi) + αL
(j)
ext(x

i)
where α is a gradually increasing damping coefficient
to control the updating step width.

Step 5. Random Shifting: Cyclicly shift the LLRs by θ
symbols and record the overall shift Θ:

L(j+1) ←− L
(j+1)
θ

Step 6. Hard decision: ĉi =

{
0, L(j+1)(xi) > 0
1, L(j+1)(xi) < 0

Step 7. Termination Criterion: If all the checks are satisfied,
stop iteration and go to Step 9, else if j = jmax, go
to Step 8, otherwise set j ← j + 1 and go to Step 3
for another SPA iteration.

Step 8. Outer Round: If q = qmax declare a decoding failure,
otherwise set q ← q + 1 and j = 0,update the damping
coefficient α = α0 + (q/(qmax − 1))(1− α0) and go to
Step 2 for another outer round.

Step 9. Extract Information Bits: Shift the decoded bits back
to their original position and get the information bits
from coded bits. ĉ = ĉ(−Θ)

Table 5.1: Algorithm B

number of times or until the parity check equations are satisfied. When the maximum

of jmax iterations is reached, another outer round, with a different realization of the

random shifts and an increased α, begins with the original LLR from the channel, which

prevents SPA decoding from getting stuck at pseudo-equilibrium points.

47

Define ψ(L) as an one iteration of the SPA algorithm function with the input LLR

L. Define Lθ as a cyclic shift of the vector by θ symbols (Note that received symbols

should be shifted at symbol level). A detailed description of the algorithm is then given

in Algorithm B.

However, there will has some problems as the codeword length becomes long. This

is mainly due to the fact that the parity check matrix has high density and correlated

unreliable information bits cause error propagation. Therefore, the above algorithm

should be modified.

5.2 Iterative Decoding Algorithm By Adaptive Par-

ity Check Matrix

Consider a narrow sense (N,K) RS code over GF(2m), which has a parity check

matrix Hs over GF(2m). Let n = N ×m and k = K ×m be the length of the codeword

and the number of information bits, respectively. Hs has an equivalent binary image

expansion Hb, where Hb is an (n− k)× n binary check matrix.

Let c = [c1, c2, · · · , cn] be the binary representation of an RS codeword. Jiang and

Narayanan (JN) [22] proposed an iterative BP-based soft-decision RS decoding algo-

rithm that is composed of two stages: the matrix updating stage and the bit-reliability

updating stage. In the matrix updating stage, the magnitude of the received LLR’s

|L(ci)| are first sorted so that i1, i2, · · · , iN−K , · · · , in denote the positions of the bits in

terms of ascending order of |L(ci)|, i.e., the bit ci1 is the least reliable and cin is the most

reliable. We begin with the original parity check matrix Hb and perform elementary

column operations to convert the i1th column of Hb into the form [1 0 · · · 0]T . Then,

we convert the i2th column of Hb into the form [0 1 0 · · · 0]T and so on. Finally, we

transform (n− k) columns among the n columns of Hb into the identity matrix. In the

second stage, a standard BP algorithm is invoked to update the bit reliabilities.

The JN algorithm can be summarized as follows.

48

The JN Algorithm :

Initialization: Given the vector Λin of initial LLRs, the BP algorithm outputs the

extrinsic LLR’s Λx and let Λp:=Λch

Do

1. Sort Λp in ascending order of magnitude and store the sorting index. The resulting

vector of sorted LLRs is

Λin = [Λin
1 ,Λ

in
2 , · · · ,Λin

n]

||Λin
k ||1 ≤ ||Λin

k+1||1 for k = 1, 2, · · · , n − 1 and Λin = PΛp, where P defines a

permutation matrix.

2. Rearrange the columns of the binary parity-check matrix Hb to form a new matrix

HP , where the rearrangement is defined by the permutation P .

3. Perform Gaussian elimination(GE) on the matrix HP from left to right. GE will

reduce the first independent (n− k) columns in HP to an identity submatrix. Let

this new matrix be ĤP .

4. Run log BP on the parity-check matrix ĤP with initial LLR’s Λin for a maximum

number of iterations ItH . The log BP algorithm outputs extrinsic LLR’s Λx.

5. Update the LLR’s via

Λq = Λin + α1Λ
x

and

Λp := P−1Λq

where 0 < α1 ≤ 1 is called the ABP damping factor and P−1 is the inverse of P .

6. Make bit hard-decision based on Λp and use the bit-level parity check matrix to

check if it is a valid codeword. If it passes the parity check then stop.

49

While the number of iterations < the maximum number of iterations N1

Jiang and Narayanan [22] proposed running N2 outer iterations, each with the JN

stopping criterion and a maximum of N1 inner iterations. Each one of these N2 iterations

starts with a different random permutation of the sorted channel LLRs in the first inner

iteration. We also run N2 outer iterations, each with the list-decoding stopping criterion,

to form a global list of at most N1N2 codewords. Finally, from the N1N2 codewords,

choose the most probable one.

El-Khamy and McEliece (EM) [23] modify the JN algorithm by sending Λp to a KV

decoder. They showed that the significant performance gain can be obtained by using

the additional KV decoder.

5.3 Iterative Decoding of Serial Concatenated RS-

Convolutional Codes

Based on the iterative SISO bit-level RS decoder of Section 5.1, we propose an archi-

tecture of serial concatenated RS and convolutional code with SISO iterative decoding.

A block diagram of the proposed decoding scheme is depicted in Fig. 5.1. The convolu-

tional code’s constrain length is 7 and the code rate is 1/2. The BCJR algorithm is used

for MAP decoding. A SOVA or soft-output BCJR decoder is used to obtain soft output

Figure 5.1: Soft-input soft-output iterative serial concatenated convolutional-RS codes

from the convolutional decoder. The soft output is passed to the SSID whose output is

used as the channel reliability for the KV decoder. The KV decoder’s HD codeword is

50

compared with the SSID soft output to see whether the two decoded bits are equal. If

the two bits coincided, we feedback the soft bit level information of log-likelihood ratio

p1/p0 from SSID to the convolutional decoder input as the a prior information. If the

two bits are not the same, we set the log-likelihood ratio p1/p0 = 0(p1 = p0). This is our

SISO serial concatenated decoding algorithm.

Based on the discussion presented in Section 5.2, we have the modified concatenated

code decoding algorithm given by the block diagram of Fig. 5.2 where the most probable

codeword is chosen and the most reliable LLRs are sent back to the CC decoder input.

c
o
n
v
o
l
u
t
i
o
n
a
l

c
o
d
e
 i
n
t
e
r
l
e
a
v
e
r
 m
o
d
i
f
i
e
d

J
N

K
V

a
l
g
o
r
i
t
h
m

d
e
i
n
t
e
r
l
e
a
v
e
r

c
o
m
p
a
r
e

w
h
e
t
h
e
r

t
w
o

b
i
t
s

e
q
u
a
l

?

s
o
f
t

i
n
f
o
r
m
a
t
i
o
n

f
r
o
m

c
h
a
n
n
e
l

o
u
t
p
u
t

c
o
d
e
w
o
r
d

Figure 5.2: Iterative decoder structure for serial concatenated convolutional-RS codes

51

Chapter 6

Numerical Results

In this chapter, we present numerical results obtained by computer simulations of

various decoding algorithms discussed so far.

Figs. 6.1 and 6.2, we can see that in the fixed codeword length n, as the k decrease

(the code-rate decrease), there will be more coding gain.

Consider the (31,25) RS code with BPSK modulation over AWGN channel. The

performance of several schedules are shown in Fig. 6.2. We note that the SSID with

BM algorithm with SPA=10, outer=5 and Ith=2 outperforms classical hard-decision

decoding by 0.2dB at an FER of 10−3. We can expect that the performance of SSID

with BM can be better, if the SPA and the outer rounds are larger. However, in this way

the complexity is quite high. It is a trade-off between complexity and error correcting

capability. For the KV algorithm, we simulate it based on the simplified reencoding KV

algorithm with mmax = 4. Therefore, the interpolation cost is at most 60 iterations.

It is a reasonable scheme. We can see that the KV algorithm outperforms the classical

hard-decision decoding by 0.7 dB at an FER of 10−4.

In Figs. 6.3 and 6.4, we show the most used case in different codeword length.

Fig. 6.4 shows the performance of the high rate (0.9373) (255,239) RS code with BPSK

modulation over an AWGN channel. Due to the high code rate, we can see that the

performance gain is not impressive. The KV algorithm with mmax = 4 outperforms the

classical hard-decision decoding by 0.2 dB at an FER of 10−4. The interpolation cost is

52

at most 160 iterations.

Fig. 6.5 presents the BER performance of serially-concatenated (255,239) RS-(7,1/2)

convolutional code using the KV algorithm with 16-QAM modulation over an AWGN

channel. The decoding algorithm for CC is the soft-input soft-output (SISO) BCJR

algorithm. The soft CC and KV RS decoder has significant gain about 3dB at an BER

of 10−4 over the classical all hard-decision RS-CC code.

In Fig. 6.6, we show the BER performance of the SISO iterative decoder for the serial

concatenated code. We use the decoder shown in Fig. 5.1. The SSID algorithm uses

SPA=10, outer rounds=5, Ith=2. The soft CC and SSID with KV(mmax)=4 with pass

1 outperforms the HD decoder by about 3.1 dB at BER = 10−5, with pass 2 by a margin

of 3.3 dB, and with pass 3 by about 3.4 dB. We also simulate the SISO algorithm shown

in Fig. 5.2. Due to the required extreme long simulation time, we simplify the case with

N1=5 (inner iterations), N2=2 (outer iterations), and Ith=2. We find a performance

gain of 5 dB while at the SNR = 6 dB, the coding gain is about 4 dB at BER = 10−5.

However the iterative decoding gain is not significant due to the small N1 and N2.

53

3
 4
 5
 6
 7

1E-5

1E-4

1E-3

0.01

0.1

FE
R

E

b

/N

0

 HD-BM

 KV_m

max

=4

Figure 6.1: (31,23) RS code with BPSK modulation over AWGN channels; code rate=0.7419

3
 4
 5
 6
 7
 8

1E-5

1E-4

1E-3

0.01

0.1

FE
R

E

b

/N

0

 HD-BM

 SSID&BM SPA=10 outer=5 It

H

=2

 KV_m

max

=2

 KV_m

max

=4

Figure 6.2: (31,25) RS code with BPSK modulation over AWGN channel, code rate=0.8065

54

3.5
 4.0
 4.5
 5.0
 5.5
 6.0
 6.5
 7.0
 7.5
 8.0

1E-5

1E-4

1E-3

0.01

0.1

FE
R

E

b

/N

0

 KV_m

max

=4

 HD-BM

Figure 6.3: (63,55) RS code with BPSK modulation over AWGN channels; code rate=0.8730

5.0
 5.5
 6.0
 6.5
 7.0
 7.5

1E-5

1E-4

1E-3

0.01

0.1

1

FE
R

E

b

/N

0

 HD-BM

 KV_m

max

=4

Figure 6.4: (255,239) RS code with BPSK modulation over AWGN channels; code rate=0.9373

55

1
 2
 3
 4
 5
 6
 7
 8
 9

1E-5

1E-4

1E-3

0.01

0.1

B
E

R

E

b

/N

0

 hard CC-hard RS

 soft CC-KV_m

max

=4

Figure 6.5: Serial concatenated (255,239) RS and (7,1/2) CC code with 16-QAM modulation over
AWGN channels; code rate=0.4668

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

1E-6

1E-5

1E-4

1E-3

0.01

0.1

FE
R

E

b

/N

0

 hard CC-hard RS

 soft CC-KV_m

max

=4

 soft CC-SSID and KV with pass 1

 soft CC-SSID and KV with pass 2

 soft CC-SSID and KV with pass 3

 soft CC-Mcliece and KV with pass 1

 soft CC-Mcliece and KV with pass 2

 soft CC-Mcliece and KV with pass 3

Figure 6.6: Serial concatenated (31,25) RS and (7,1/2) CC code with 16-QAM modulation over
AWGN channel, code rate=0.4017

56

Chapter 7

Conclusion

In this thesis we investigate the performance of several coding systems involved RS

codes. We first examine the performance of SD decoded RS codes and serial concatenated

RS-CC codes using modified KV algorithm, using a transformation of the received word

to reduce the iterative decoding complexity.

We then study the effectiveness of using the SSID algorithm in conjunction with the

KV algorithm for iterative decoding of serial concatenated codes. An alternate iterative

decoding structure replaces the SSID algorithm by the EM algorithm which eliminates

short cycles in long RS codes and gives improved SD decoding performance.

Performance gain of SD RS decoder and iterative serial concatenated decoder is

evaluated through simulations. But the complexity is still significant high using the

JN algorithm to derive a soft output associated with a RS code. A reliable and easily-

generated soft RS decoder output is highly desired for it will make iterative decoding

of serial concatenated RS-CC codes practically realizable and the applications of such a

practical decoder are too numerous.

57

Bibliography

[1] M. Sudan, “Decoding of Reed-Solomon Codes beyond the Error-Correction Bound,”

J. Complexity, vol. 13, pp. 180-193, 1997.

[2] V. Guruswami and M. Sudan, “Improved Decoding of Reed-Solomon Codes and

Algebraic Geometry Codes,” IEEE Trans. Inform. Theory, vol. 45, no. 6, pp. 1757-

1767, Sep. 1999.

[3] R. J. McEliece, “The Guruswami-Sudan decoding algorithm for Reed-Solomon

codes,” IPN Progress Report 42-153, May 15. 2003.

[4] R. Roth and G. Ruckenstein, “Efficient Decoding of Reed-Solomon Codes beyond

Half the Minimum Distance,” IEEE Trans. Inform. Theory, vol. 46, no. 1, pp.

246-257, Jan. 2000.

[5] W. J. Gross, F. R. Kschischang, R. K0̈tter, and P. G. Gulak, “Towards a VLSI Ar-

chitecture for Interpolation-Based Soft-Decision Reed-Solomon Decoders,” J. VLSI

Signal Proc., Jul. 2003

[6] S. Wicker, Error control systems for Digital communication and storage, Prentice

Hall, USA, 1995.

[7] R. K0̈tter, J. Ma, A. Vardy, and A. Ahmed, “Efficient interpolation and factoriza-

tion in algebraic soft-decision decoding of Reed-Solomon codes.” Submitted to ISIT

2003.

58

[8] R. K0̈tter and A. Vardy, “A complexity reducing transformation in algebraic list

decoding of Reed-Solomon codes,” in Proc. of ITW2003, Paris, France, March 31-

April 4 2003.

[9] R. K0̈tter, and A. Vardy, “Algebraic Soft-Decision Decoding of Reed-Solomon

Codes,” IEEE Trans. Inform. Theory, vol.49, Nov. 2003.

[10] W. J. Gross, F. R. Kschischang, R. K0̈tter, and P. Gulak, “A VLSI architecture for

interpolation in soft-decision list decoding of Reed-Solomon codes,” in Proc. 2002

IEEE Workshop Signal Process. Sys. (SIPS02), pp. 39-44, San Diego, CA, USA,

Oct. 16-18 2002.

[11] G. D. Forney, Jr., Concatenated codes, MIT Press, Cambridge, MA, USA, 1966.

[12] G. D. Forney, Jr., “Generalized minimum distance decoding,” IEEE Trans. Inform.

Theory, vol. IT-12, pp. 125-131, Apr. 1966.

[13] D. Chase, “A class of algorithms for decoding block codes with channel measurement

information,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 170-182, Jan. 1972.

[14] A. Ahmed, R. K0̈tter, and N. R. Shanbhag, “VLSI architectures for soft-decision de-

coding of Reed-Solomon codes,”Submitted to IEEE Transactions on VLSI Systems,

Feb. 2003.

[15] A. Vardy and Y. Be’ery, “Bit-level soft-decision decoding of Reed- Solomon codes,”

IEEE Trans. Commun., vol. 39, pp. 440-445, Mar. 1991.

[16] V. Ponnampalam and B. S. Vucetic, “Soft decision decoding of Reed-Solomon

codes,” in Proc. 13th Symp. Applied Algebra, Algebraic Algorithms, and Error-

Correcting Codes, Honolulu, HI, USA, Nov. 1999.

59

[17] M. P. C. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based

on ordered statistics,” IEEE Trans. Inform. Theory, vol. 41, pp. 1379-1396, Sep.

1995.

[18] Y. Wu, R. K0̈tter, and C. Hadjicostis, “Soft-decision decoding of linear block codes

using preprocessing,” in Proc. ISIT, Chicago, IL, USA, Jul. 2004.

[19] T. Hu and S. Lin, “An efficient hybrid decoding algorithm for Reed- Solomon codes

based on bit reliability,” IEEE Trans. Commun., vol. 51, pp. 1073-1081, Jul. 2003.

[20] M. P. C. Fossorier and A. Valembois, “Reliability-based decoding of Reed-Solomon

codes using their binary image,” IEEE Commun. Letr., vol. 7, pp. 452-454, Jul.

2004.

[21] J. Jiang, and K. R. Narayanan, “Iterative Soft Decoding of Reed-Solomon

Codes,”IEEE Commun. Lett.,vol.8 Apr. 2004

[22] J. Jiang and K. Narayanan, ”Iterative Soft Decision Decoding of Reed Solomon

Codes Based on Adaptive Parity-Check Matrices,” in Proc. Int. Symp. Inf. Theory,

p.261, Jul. 2004.

[23] M. El-Khamy, and R. J.Mcliece ”Iterative Algebraic Soft-Decision List Decoding

of Reed-Solomon Codes,” IEEE Journal on selected areas in com., vol.24 NO 3.,

March 2006

60

作 者 簡 歷

楊哲雄，高雄縣人，1981 年生

私立瀛海高級中學 1997.9 ~ 2000.6

國立交通大學電子工程學系 2000.9 ~ 2004.6

國立交通大學電信工程學系系統組 2004.9 ~ 2006.6

Graduate Course:

1. Coding Theory
2. Random Process
3. Special Topics in Digital Signal Processing
4. Detection and Estimation Theory
5. Special Topics in Communication Systems
6. Adaptive Signal Processing
7. Digital Signal Processing
8. Queuing Theory

