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Soft-Decision Decoding of Concatenated
Reed-Solomon and Convolutional Codes

Student : Che-Hsiung Yang Advisor : Yu T. Su

Department of Communications Engineering

National Chiao Tung University

Abstract

Serially concatenated Reed-Solomon (RS) and convolutional codes form a class of
powerful error-correcting codes that has been used in many applications. It is known
that iterative decoding of concatenated codes provides significant performance gain with
respect to conventional concatenated decoding.” However, almost all RS decoders were
based on the hard-decision decoding' (HDD) premise die to the lack of an efficient soft-
output decoding algorithm for RS eodes:

Several fast bounded-distance SDD ralgerithms were proposed in the early 90’s.
The Guruswami and Sudan (GS) algorithm, which consists of two decoding phases—
interpolation and factorization, is the first efficient SDD algorithm for RS codes that
is capable of correcting beyond the designed (HD) distance. The Koetter-Vardy (KV)
soft-decision algorithm reduces the decoding complexity of the GS algorithm by con-
verting the probabilistic reliability information into a set of interpolation points along
with their multiplicities. As the complexity of KV algorithm is still relatively high, a
improvement that uses a transformation of the received word to reduce the number of
iterations was then presented, making the implementation of the KV algorithm feasible.

The purpose of this thesis is to investigate the feasibility of soft-input soft-output

(SISO) RS decoders so that iterative decoding of concatenated RS-convolutional codes



becomes possible. We present a SISO RS decoder that is based on the modified Koetter-

Vardy (KV) and Jiang-Narayanan soft-decision algorithms.
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Chapter 1

Introduction

Reed-Solomon (RS) codes are maximum distance separable (MDS) codes which pro-
vide powerful error correction capability with minimum number of overhead symbols. A
classical hard-decision (HD) decoder for an (n, k) RS code can correct up to t = |dnin/2]
errors where d,;, = (n—k+1) is the minimum distance of the code. Furthermore, as RS
codewords consist of non-binary symbols the correction of a single symbol results in the
correction of more than one of the constituent bits, they are well suited to the correction
of burst errors. This fact had motivated Forney to propose a serial concatenated coding
scheme with a RS outer code and a convelutional inner code [11]. For these reasons RS
codes have found wide applications m both digital @@mmunication and storage systems.
The ubiquitous nature of this class of codes continues to fuel research into the associated
decoding algorithm even almost fifty years after their introduction.

Most concatenated RS-convolutional coding system use HD decoding (HDD) algo-
rithm because soft-decision decoding (SDD) algorithms usually demand very high com-
putational effort. Traditional HD RS decoding algorithms are efficient because they are
algebraic; that is, they exploit the underlying algebraic structure of the code to generate
a system of equations that is solved using finite field arithmetic. However, it is known
that significant performance gain can be achieved by using a SD decoder for RS codes.
Unfortunately, an algebraic decoder based on finite field arithmetic does not appear to

be compatible with the real-valued, soft information available either from the channel



or from the convolutional decoder output. Therefore, it has been a research challenge
to develop an SD RS decoder.

An early example of SDD of block codes is given by Wagner decoding and its gener-
alizations. The reliability-based proposals of Forney [12] and Chase [13] have attracted
many followers. Using the binary image expansions of M-ary symbols, Vardy and Be’ery
[15] showed that RS codes can be decomposed into BCH subfield subcodes which are
glued together using glue vectors. Even though this decomposition significantly reduces
the trellis complexity of maximum likelihood (ML) decoding of RS codes, the complexity
still grows exponentially with the code length and d,,;, and it is thus infeasible for de-
coding long codes. Ponnampalam and Vucetic [16] suggest an SDD algorithm to reduces
the complexity to generate soft output efficiently. Similarly, one can also use reliabil-
ity based ordered statistics decoding (OSD) [17] and its variations [18] for soft decision
decoding of RS codes. Related works include the hybrid algorithm by Hu and Lin [19]
and the box and match algorithm (BMA) [20] by Eessorier and Valembois. OSD based
algorithms are quite efficient for practical RS:codes even though they do not take the
structure of the RS codes into account.

In 1997 Madhu Sudan [1] presented a polynomialstime algorithm for decoding certain
low-rate RS codes beyond the classical d/2 ‘error-correcting bound. Two years later, he
and his student, Guruswami discovered [2] a significantly improved version of Sudan’s
algorithm, which was capable of decoding virtually every RS code at least somewhat,
and often significantly, beyond the d/2 limit. Several subsequent investigations were
able to find low-complexity realizations for the key steps in the Guruswami-Sudan (GS)
algorithm, thus making GS a genuinely practical engineering alternative. In particular,
Koetter and Vardy (KV) [9] have proposed an algebraic SDD algorithm by extending
the list GS decoder to include a method for converting soft information into algebraic
conditions. The KV SDD procedure shows a lot of promise from the point of view of error

correcting performance. However, the algorithm is still quite computationally complex



and not straightforward to implement in VLSI. KOtter et al. [7, 8] later introduce
techniques that reduce the complexity of interpolation-based decoders to the point where
an efficient VLSI implementation is feasible. The purpose of this thesis is to evaluate the
SDD performance of concatenated RS-convolutional coding systems. We also suggest an
iterative decoder structure and show that the corresponding performance does improve
as the number of iterations increases.

The rest of this thesis is organized as follows. In Chapter 2, we will prove the GS
error correction capability beyond the classical error correction bound. In this chapter,
we also present the realizable interpolation and factorization algorithm that makes the
GS algorithm a genuinely practical engineering alternative in storage and transmission
systems. In Chapter 3, we show how the channel reliability can be translated into the
multiplicities that makes the HD GS algorithm into the SD KV algorithm. In Chapter
4, we describe a algorithm that reduces the complexity and memory requirements of
interpolation-based decoders. A modified factorization algorithm is presented in this
chapter as well. In Chapter 5, we present a-soft-input-soft-output (SISO) iterative de-
coding algorithm for serial concatenated convolutional and RS coding systems. Chapter
6 provides numerical examples associated with various SDD algorithms discussed in the

earlier chapters.



Chapter 2

The Guruswami-Sudan Decoding
Algorithm for RS Codes

A polynomial-time algorithm for decoding certain low-rate RS codes beyond the
classical d/2 error-correcting bound was invented by Sudan [1] who formulated the de-

coding problem as follows.

e Input: A field F'; n distinct pairg«of elemeiits {x;, y;}7_; from F' x F’; and integers
d and t.

e Output: A list of all functions f : E= E satisfying: f(z) is a polynomial in x of

degree at most d with [{i|f(x;)=uy;}| > t.

This problem is also known as the list decoding problem. A much improved version

of Sudan’s algorithm was discovered by Guruswami and Sudan (GS) [2].

2.1 A First Look at the GS Algorithm

This section provides an overview of the GS algorithm. We give a motivating exam-
ple, an informal description of the algorithm and several numerical examples.

Let (aq, -+, ay) be a fixed list of n distinct elements of F' =GF(q), called the support
set of the code. The encoding process of an (n, k) RS code is that of mapping a vector

(fo, f1,+++, fe—1) of k information symbols into an n-symbol codeword (z1,--- ,x,) by



polynomial evaluation, i.e.,

(@1, ) = (flen), -+, flam)) (2.1)

where

f@) = fot frw+ -+ froaz™? (2.2)

The corresponding RS code consists of all n-vectors of the form in (2.1), where f(z) is
a polynomial of degree < k.
It is well-known that this code has minimum Hamming distance d =n — k 4+ 1 and,

therefore, is capable of correcting up to

to = Vﬂ (2.3)

errors. Conceptually, this may be accomplished as follows. The decoder searches the

Hamming sphere of radius ¢, centerediat the received word for codewords. If the sphere
contains a unique codeword, it is the decoder’s output. Otherwise, the decoder reports
a failure. (This strategy is called bounded distance decoding (BDD).) The decoding
sphere cannot contain more than one codeword, singethe minimum distance of the code
is > 2ty. If we attempt to correct more than ¢y errors by increasing the decoding radius,
it is possible for the decoding sphere to contain more than one codeword, in which case
the decoder will fail. For this reason, conventional wisdom asserts that the code is not
capable of correcting more than t; errors. Nevertheless, if we examine the probability
that the decoding sphere will contain multiple codewords, rather than the possibility,

we may reach a different conclusion.

Example 1 Consider the (32,8) RS code over GF(32), with d = 25 and ty = 12. If the
decoding radius is taken to be t = 13, and the transmitted codeword suffers 13 errors, it
s possible for the decoding sphere to contain two codewords: the transmitted codeword

(which we will call the causal codeword) and one other, a noncausal codeword at distance



12 or 13 from the received word. However, it can be shown that the probability of this
unfavorable happening is 2.08437 x 10712/ In short, the code is capable of correcting vir-
tually all patterns of 13 errors, despite having a conventional error-correcting capability

of only 12.

The above example suggests that it might be possible to design a decoding algorithm
for RS codes capable of correcting more than ¢y errors. The GS list decoding algorithm
does just this. It is a polynomial-time (Conservatively, the time complexity is O(n?*m?),
where n is the code length and m is the interpolation multiplicity). algorithm for cor-
recting up to tgg errors, where tgg is the largest integer strictly less than n— \/m,

tGS =n—1-— |_ (/{J — 1)’/”LJ (24)

It is easy to show that tgs > to, and often tgg is considerably greater than ¢, (see the
examples below). Asymptotically, forsRS codes of rate R, the conventional decoding
algorithms will correct a fraction 75 = (1 =:R)/2 of errors, while the GS algorithm
can correct up to 7gg = 1 — VR. Figure 2.1 shows this fact. The GS decoder has an
adjustable integer parameter m > 1 called the“interpolation multiplicity. Associated
with the interpolation multiplicity m is‘pesitive integer ¢ = t,,, called the designed
decoding radius. Given a received word, the GS(m) decoder returns a list that includes
all codewords with Hamming distance t,,, or less from the received word, and perhaps a
few others. The exact formula for t,, is a bit complicated, but for now it suffices to say
that

lo <t <ty <---
and there exists an integer mg such that
tmO = ZfmoJrl == tGS’

Here is an overview of the G.S(m) algorithm (a detailed description will be given in

Section 2.5 ). Suppose C' = (f(aq), -, f(ay)) is the transmitted codeword, where f(x)

6
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Figure 2.1: Error-correcting capacity plotted against the rate of the code

is a polynomial of degree < k, and.that Cris received'as R = (51, ,3,). Let p(z) be
any polynomial of degree < k that maps to-an RS codeword with Hamming distance

<t, from R, i.e.,
{i: plea) B < tm

The GS(m) decoder “finds” p(z) as follows.

1. The interpolation step. Given the received vector R = (f1,--- , 3,), the decoder

constructs a two-variable polynomial
Qla,y) =Y ai;a'y’
Z‘ij

with the property that @ has a zero of multiplicity m (exact definition is given in
Section 2.3) at each of the points (a4, 5;), and for which the (1,5 — 1) weighted
degree (exact definition is given in Section 2.2) of Q(z,y) is as small as possible.

2. The factorization step. The decoder then finds all factors of Q(x,y) of the form

7



y — p(z), where p(z) is a polynomial of degree k — 1 or less. Let

L= {pi(x), - ,pr(2)}

be the list of polynomials produced by this step. The polynomials (codewords)

p(z) € £ are of three possible types:
(a) Type 1. The transmitted, or causal, codeword.

(b) Type 2. Codewords with Hamming distance < ¢,, from R, which we call

plausible codewords.

(¢) Type 3. Codewords with distance > t,, from R, which we call implausible

codewords.

In Section 2.5, we give a proof of the following theorem.

Theorem 1 If the GS(m) decoding algorithmi ws, used, all plausible codewords will be
in £. In particular, the transmitted codeword will be in £ if the number of channel
errors is < tm. The list may also:contain wmplausible“codewords, but the total number
of codewords in the list, plausible and mmplausible, will satisfy L < L,,, where the ez-
act determination of L, is given in (2.81)-of Section 2.5, but which is conservatively

estimated by

1 n
L., —~
<(m—i—2) -

(2.5)

Example 2 Consider again the (32,8) RS code over GF(32), with r = 24 and d =
25. Its conventional error-correcting capability is to = 12 errors, but by (2.4), the GS
algorithm can correct up to tgs = 17 errors! The value of the designed decoding radius
t.m as a function of the interpolation multiplicity m is given in the table below, together
with the exact value of L, as given in (2.31). The value

— ‘/n

=72 ()

8



which is the average number of codewords in a randomly chosen sphere of radiust, gives a
heuristic upper bound on the probability that the decoding sphere will contain a noncausal
codeword. Values of m that do not afford a larger value of t,, than the previous value

are omitted. For example, in the present example, to = t3 = 15, and so m = 3 is omitted

from the table. Similarly, t5 =t = --- = t119 = 16 : It is interesting to note the growth
m tw L L(tm)
classical 12 1  1.36305 x 10719
1 14 2 274982 x 107"
2 15 4 0.0000102619
4 16 8 0.000339205

mo =120 17 256 0.00993659

in the required value of m as t increases from 16 (m = 4) to 17 (m = 120), which

indicates that t = 16 is the practical limit for the GS algorithm in this case.

Example 3 Similarly, for the (16,4 )RS code over. GF(16) (to = 6 and tgs = 9), we

have Here we see that fort = tgs =9 the wnterpolation. multiplicity may be prohibitively

m t, Pl L(t,,)
classical. . 6 1--10.000336183

1 T 2 0.00728043

2 8 4 0.124465
mo =28 9 120 1.68692

large, so that t = 8 s the practical limait.

Example 4 For the (6,4) RS code over GF(7), to = tgs = 1 and This is a rare ezample

m tm  Lm  L(tm)
classical 1 1 0.7551

where the GS algorithm provides no improvement over conventional decoding.



m trm, Lo L(t,,)
classical 16 1  2.609 x 10714
mo =112 17 120 9.35 x 10~

Example 5 For the (255,223) RS code over GF(256) (to = 16 and tgs = 17): Not
until m = 112 does the GS algorithm offer an improvement over conventional decoders,
and even then the improvement is only one extra error corrected. With the decoding

complexity O(m?), it seems pointless to try to correct the extra error.

Example 6 The (255,239) RS code over GF(256) (to =8 and tgs = 8):

m tm  Lum L(tm)
classical 8 1 2.0853 x 107%

2.2 Polynomials in Two Variables I: Monomial Or-
ders and Generalized Deégree

In this section, we present a self=contained introduction to the algebraic fundamentals
of two-variable polynomials. These fundamentals-include weighted monomial orderings,
generalized degree functions, and certain.related.¢ombinatorial results. It is the basis to
prove the algorithm of G.S(m) algorithm.

If Fis a field, we denote by F'[x,y] the ring of polynomials in x and y with coefficients
from F. A polynomial Q(z,y) € Flz,y] is, by definition, a finite sum of monomials,
viz.,

Qz,y) = Z a; 'y’ (2.6)

i.§>0
where only a finite number of the coefficients a; ; are nonzero. The summation in Eq.
(2.6) is two-dimensional, but often it is desirable to have a one-dimensional representa-

tion instead. To do this, we need to have a linear ordering of the set of monomials
Mlz,y] = {z"y’ : i,j > 0}

10



There are many possible monomial orderings, but for us the most important ones are
the weighted degree (WD) monomial orders. A WD monomial order is characterized by
a pair w = (u,v) of nonnegative integers, not both zero. For a fixed w, the w-degree of

the monomial 2%y’ is defined as
deg, z'y’ = ui + vj
Definition 1 The w-lex order is defined as follows:
Ty < 25y

if either uiy + vj1 < uig + vVJja, or uty + vj; = uly + Vo and 11 < 13. w-revlex order
is similar, except that the rule for breaking ties is iy > iy. (In the special case w =
(1, 1), these orderings are called graded-lex, or grlex, and reverse graded-lez, or grevlex,

respectively. )

The w-revlex order plays an important rolesin-our discourse.

Example 7 For any monomial order, we have vy <-z?y. Also, xy* <guex Yy, but

:CQy <grevlex :Cy2~ ana”y; wa = (1; 3); x6 <wrevlex 5633/ <wrevlem y2'
Let ”<” be a fixed monomial ordering;:

1= ¢0(x7y) < ¢1(9E,y) < ¢2($,y> < e

With respect to this ordering, every nonzero polynomial in F|x,y] can be expressed

uniquely in the form
J
Qlz,y) = > a;05(x,y)
=0

for suitable coefficients a; € F, with a; # 0. The integer J is called the rank of
Q(z,y), and the monomial ¢; is called the leading monomial of Q(x,y). We indicate

this notationally by writing Rank(Q) = J and LM(Q) = ¢,(x,y).

11



In the case of a WD order, the weighted degree of the leading monomial ¢; is also

called the weighted degree, or w-degree, of Q(x,y), denoted by deg,, Q). Thus,

deg, Q(7,y) = max deg, ¢(z,y) : a; # 0}

If ¢o(z,y) < ¢1(x,y) < --- is a fixed monomial ordering, and ¢ = z'y’ is a particular

monomial, the index of ¢, denoted by Ind(¢), is defined as the unique integer K such

that ¢ (z,y) = ¢.

Example 8 Here is a listing of the first few monomials, in the "natural” two-dimensional

array, but labelled according to (1,3)-revlex order:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o 1 2 3 5 7 9 12 15 18 22 26 30 35 40 45
4 6 8 10 13 16 19 23 27 31 36 41 46

11 14 17 20 24 28 32 37 42 47

21 25 29 33 38 43 48

34 39 44

— e

[ A S A -
I
= w N — O

Thus, we have (bO: 17 ¢1 = T, ¢2 ' 132, ¢3 — $3, ¢4 =Yy, ¢48 = 1763/37 AISO,
Ind(zy) = 6, Ind(2%y?) = 17, Ind(z%2).= 47, etc.For (1,v) revlex order, the numbers
Ind(2%) and Ind(y%) are especially important, so we introduce a special notation for

them.

A(K,v) & Ind(z") (2.7)

B(L,v) = Ind(y*) (2.8)

It is understood that the underlying monomial order is (1,v)-revlex. In terms of the
two-dimensional array given above, the numbers A(K,v) appear in the j = 0 row and

the numbers B(L,v) appear in the i=0 column. Thus, with v = 3, we have

12



x |01 2 3 4 5 6 7
A@3)[0 1T 2 3 5 7 9 12
B(z,3) [0 4 11 21 34 50 69 90

We note that 2% is the first monomial of (1, v)-degree K, and y’ is the last monomial

of (1, v)-degree vL, so that

AK,v) = |{(i,7) i+vj < K} (2.9)

B(L,v) = |{(i,j) :i4+vj < Lv} -1 (2.10)
We conclude this section with a consideration of two-variable polynomials of the form
J
Qz,y) =Y a;¢;(z,y)
=0

where ¢y < ¢y < -+ is (1,v)-revlex order, and {ag, a1, -+ ,a;} are arbitrary elements of
F. (N.B., We do not assume that a; # 0.)
Two important questions that will%arise are (1).what is the (1, v)-degree of Q(z,y)

and (2) what is the y-degree, i.e., the (0,1)-degree,.of @ (z,y)? We know that
deg, , Q(z,y) <'maxdeg,»¢;{L,y)=j=0,---,J}

degy, Q(x,y) < maxdegyye;(zr.y):j=0,---,J}

Thus, if we define!
D(u,v; J) = maxdeg, , ¢;(z,y) : j=0,---,J}
we have the upper bounds
deg, , Q(z,y) < D(1,v;J)

degg Q(z,y) < D(0,1;J)

A new definition is needed. Let A = {0 = a9 < a1 < ay < ---} be an increasing

sequence of integers, and let x > 0 be a nonnegative real number. The rank of apparition

Tt is understood that the monomial order is (1,v)-revlex
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of x with respect to A, denoted by 74(z), is the unique index K such that ax < x < ag1.

Alternatively,

ra(z) = max{K :ax <z} (2.11)

= min{L:z < a1} (2.12)

Theorem 2 Given a fized v, define sequences {ax = A(K,v)} and {b, = B(L,v)}.

Then
D(1,v:J) =ra(J) (2.13)
D(0,1:J)=rg(J) (2.14)
Corollary 1 Forv>1,K >0,
K? (K +v/2)?
50 < A(K,v) < 59 (2.15)
Corollary 2 Forv>1,J >0,
L\/zw . gJ < ra() < b/zwj 1 (2.16)

Corollary 3 Forv>1,J >0,

W?— ”;JQJ <R < { %J (2.17)

Detailed proofs of the above theorem and corollaries can be found in [3].

2.3 Polynomials in Two Variables II: Zeros and Mul-
tiple Zeros

In this section, we continue with our study of bivariate polynomials and focus on
the notion of a zero or a multiple zero of such polynomials.

If Q(x,y) € Flz,y], and Q(«, 3) = 0, we say that @ has a zero at («, 3) (Alterna-
tively, we say that the curve Q(z,y) = 0 passes through the point (v, 3)). We shall be

interested in polynomials with multiple zeros.
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Definition 2 We say that Q(z,y) = >, aijx'y! € Flx,y] has a zero of multiplicity,

or order m at (0,0), and write
ord(@Q : 0,0) =m

if Q(x,y) involves no term of total degree less than m, i.e., a;; = 0 if i +j < m.

Similarly, we say that Q(x,y) has a zero of order m at («, ) and write
ord(Q : a, ) =m
if Q(x + o,y + B) has a zero of order m at (0,0).

Example 9 Let Q(z,y) = 2?y+ay®+23y. Then Q has a zero of multiplicity 3 (a "triple
zero”) at (0,0). Similarly, P(x,y) = (v —a)*(y — B) + (x — a)(y — B)®> + (x — )3 (y — )

has a triple zero at (o, 3).

To calculate ord(Q : «, 3), we need to be able te.express Q(x+ o, y+ () as a polynomial
in z and y. The following theoremgy due toyH.-Hasse, tell us one way to do this. We
begin with the one-variable version of Hasse’s theorem =because it serves as a simplified

introduction to the two-variable case.
Theorem 3 If Q(z) = >, a;x* € Flx], thew for-any o € F, we have
Qr+a) = Z Qr(a)x” (2.18)

where

7 )
(x) = T 2.1
Q) =3 (aa (2.19)
which is called the rth Hasse derivative of Q(x)%.

Note that

Qu(a) = Coeft,rQ( +0) = 3 (i) e (2.20)

7

2The alternative notation D,.Q(r) instead of Q,.(z) is sometimes used.
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Furthermore, (2.16) is Taylor’s formula (without remainder) when F' has characteristic

0, since in that case,

Q(z) (2.21)

We also have

Corollary 4

Q@) = 3" Qu(a)(z — a)’

r>0

Theorem 4 Let Q(z,y) = Y, s a;j2'y’ € Flz,y]. For any (a.3) € F?, we have
Q(.T +o,y+ 6) - Z Qr,s(a7 6>xrys (222)

’ ’ ih r S d

which is called the (r,s)th Hasse (tnized partial). derivative of Q(x,y)>.

Note that (2.19) is Taylor’s formula (without remainder) when F' has characteristic 0,

since in that case,
1 ar+s
Tl ox"oy*

Qrs(z,y) Q(z,y)

Note also the alternative, but equivalent, formula:

Qrs(a, 3) = Coeflyr s Q(z + o,y + ) (2.24)

One can easily show

Corollary 5
Q,y) =Y Qrsla, Bz — ) (y — B)°

and

3Sometimes we use the alternative notation D, ;Q(z,vy) instead of Q, s(z,y).
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Corollary 6 The polynomial Q(x,y) has a zero of order m at («, 3) if and only if
Qrs(a, ) =0 for all v and s such that 0 <r+s<m

which follows directly from Corollary 5.
Corollary 7 If CNQ(x, y) = zQ(x,y), then

Qrs(2,9) = Qr15(x,y) + 2Qr (2, y)
Similarly,if @(a:, y) = yQ(z,y), then

Qrs(@,y) = Qro1(2,y) + yQurs(,y)

For proofs of these corollaries see [3].

2.4 The Interpolation and Factorization Theorems

In this section, we will state and provethe.two basic theorems that support the
GS algorithm. We call these theorems the Interpolation Theorem and the Factorization

Theorem.

2.4.1 The Interpolation Theorem

Suppose a nonnegative integer m(«) is assigned to each element a € F', and we are asked
to construct a polynomial f(z) of least degree that has a zero of multiplicity m(«a), at
r = a, for all « € F. Clearly a minimum-degree solution to this one-dimensional

interpolation problems is

f@) = JJ@—ayme
degf(z) = 3 m(a)

acF
We are interested in the analogous two-dimensional interpolation problem: Given a

required multiplicity m(a, 8) for each (o, 3) € F?, construct a low-degree polynomial
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Q(z,y) that has zeros of the required multiplicity. This is a much harder problem, in
general, but the following theorem gives a useful upper bound on the minimum required

degree.

Theorem 5 (The Interpolation Theorem) Let {m(a,(): (o, 3) € F?} be a multi-
plicity function as above and let g < ¢1 < --- be an arbitrary monomial order. Then

there exists a nonzero polynomial Q(x,y) of the form

Qz,y) = p_aii(x.y) (2.25)

where
m(a, 3) + 1
=3 (")

which has a zero of multiplicity m at (v, 8), for all (o, 3) € F?.

Proof. By Corollary 6, Q(x,y) has a zero of multiplicity m at («, ) if and only if
Qrs(a,8) =0 forall (#;s) suehthat 0.<r+s<m(a,f) (2.26)

There are (m(o"f )+1) choices for (r, §) in (2.24); and from:(2.21), each such choice imposes
one homogeneous linear constraint on the coefficients ai. In total there are C' such linear
constraints imposed on the C + 1 coefficients ag, a1, - -- ,ac. It follows that there must
be at least one nonzero solution to this set of equations, which corresponds to a nonzero

polynomial Q(x,y) of the form in (2.23) with the required multiplicities. B

Corollary 8 For any (u,v), there is a nonzero polynomial Q(z,y) with required zero

multiplicities whose (u,v)-degree is strictly less than v/ 2uvC'.
Proof: Take {¢;(x,y)} to be (u,v)-revlex order. Then by (2.23),

degu,vQ(x> y) < max{degu,v¢j ($7 y) : ] = 07 U 70} = degu,v¢c($7 y) = TA(C)

where A = (ag) is the sequence Ind(2%), for (u,v)-revlex order. But r4(C) < v2uvC

by a straightforward generalization of Corollary 2. W
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2.4.2 The Factorization Theorem

Lemma 1 If f(z) € F[a], then deg Q(x, f(x)) < deg, , Q(z, ).

Proof: For a;; # 0, deg(z' f(z)?) < deg Q(z'a") =i+ vj < max{i +vj : a;; # 0} =

deg,, Q(z,y). W
Lemma 2 Q(z, f(z)) = 0 if and only if (y — f(2))|Q(z,y).
Lemma 3 If ord(Q : o, §) = K, and f(a) = 3, then
(o — 0)¥ Qe £(2).

Proof: Using Corollary 5 to express Q(z, y) as a polynomial in z — a and y — 5

Qw,y) = D _bislx = )'(y - B

7
Then
Qz, f(z)) = Z b (=) (f (w) — B)’ (2.27)
i3

since f(a) = 8, f(x)—f is divisible by x=¢v, so-that the term (z—a)*(f(z)—3)? in (2.25)
is divisible by (z —a)"™/. But ord (Q : a;B)= K implies that if b; ; # 0, then i+j > K.
Thus, every nonzero term in (2.25) is divisible by (z — )% ie., (x — )¥|Q(z, f(z). W

Let F,[z] be polynomials of degree < v from Flz|. If Q(x,y) € Flz,y], and f(x) €
F[z]. Define the Q-score of f as

So(f) = _ord(@Q: a, f(a))

a€eF

Theorem 6 Suppose f(z) € F,[z], Q(z,y) € Flz,y], and

SQ(f) > degl,'uQ

then y — f(x) is a factor of Q(z,y)*

4Be careful the condition 3 = f(a)
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Proof: By Lemma 3, we know that ], p(z— a)0rd@af@)|Q(z, f(z)). But by Lemma

1, the degree of Q(x, f(x)) is (at most) deg;,Q(z,y), and the degree of [[ . p(z —

0)OTd(@anf(@) ig 5o (f). Thus, if So(f) exceeds deg,@Q, it follows that Q(z, f(z)) = 0,
and so by Lemma 2, y — f(z) divides Q(z,y). W

An alternative statement of this theorem is

Lemma 4 If f(z) is a polynomial of degree at most v such that 5; = f(«;) for at least

t values of i € [n] and mt > deg, ,Q, then y — f(z) divides Q.

2.5 A Second Look at the GS Algorithm

Armed with the preliminary material, we give a formal description and proof of the

correctness of the GS algorithm in this section.

2.5.1 Prerequisite Notations and Concepts

To begin with, we list some of the technieal.details needed for a full discussion of the

GS algorithm.

o K(f,5)={i: flai) = Gi}], DAL By ="Hi"f (aa) # Gi}l.
e C(n,m)=n("}").

2

e (1,v)—revlex monomial order.

e The indices A(K,v) =Ind(z¥) and B(L,v) =Ind(y*) (with respect to (1, v)-revlex

order), with the rank of apparition functions

ra(€) = max{K: A(K,v) < C}

rg(C) = max{L: B(L,v) <C}
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e The numbers K,,,t,,, and L,,:

Kn(nk) = 1+ [ra(C)/m] (2.28)
tm(n, k) = n—Kyn(nk)=n—1—[ra(C)/m] (2.29)
Ln(n,k) = max{L: B(L,v) <C(n,m)}=rz(C) (2.30)

P’I"OOfI By (211)7 degl,vQ(xay) < max{degl,v¢i(xay) S 07 e 70} = TA(C)’
By Factorization Theorem, any polynomial f(z) of degree < v such that

mK(f,5) > ra(C), will be a y—root of Q(x,y). = K(f, ) > 14+[ra(C)/m| = K,

e Estimates of K,, and L,,:

1 1
{\/vnm%— - LJ +1<K, < { vnm+ (2.31)
m 2m m

1 1
n—{ Unm+ Jgtmgn—l—{ vnm+ S (2.32)
m

m 2m

n v+ 2 . v+ 2 1 n
L, = — 1 & - - 2.
m \/vm(m+ )-I—( o > & | < <m+2) ” (2.33)

2.5.2 Detailed GS Decoding' Algorithm

Given an (n, k) RS code over the finite field £, with support set (aq,- -, ), and a

positive integer m. The input of the GS(m) decoder is a vector of the form

=B, Bn) € F"

The output of the GS(m) decoder is a list of polynomials

{fioo fo}

The GS(m) Decoder.

1. The GS(m) decoder constructs a nonzero two-variable polynomial of the form

C(n,m)

Qlz,y) = Y aj0i(z,y)

J=0
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where ¢y < ¢ < -+ - is (1,v)-revlex monomial order, such that Q(z,y) has a zero

of order m at each of the n points (o, 3;), fori =1,--+ n >,

2. The output of the algorithm is the list of y-roots of Q(x,y), i.e.,
L=A{f(z) e Fla]: (y— f(=))|Q(z,y)}
2.6 KOtter’s Solution to the Interpolation Problem

In general terms, the interpolation problem is to construct a bivariate polynomial

Q(z,y) with minimal (1,v)—degree that satisfies a number of constraints of the form

D?",SQ<Q7 ﬁ) =0

where (r,s) € N? and (a, 8) € F?. It turns out that the mapping

Q(x,y) = LsQ(cv, B)

is an example of what is called a linear functional.on F|x,y|. It is no harder mathemati-
cally, and much easier notationally;to considetr the more general problem of constructing
a bivariate polynomial Q(z,y) of minimal weighted-deégree that satisfies a number of con-
straints of the form

D;Q(x,y) =0, for i=1,2,---

where each D; is a linear functional. The goal of this section is to describe an algorithm

for solving the more general problem.

2.6.1 Linear Functionals on F|x, ]

Definition 3 A mapping D : Flx,y] — F is called a linear functional if

D(aP + Q) = aD(P) + D(Q)

5The Interpolation Theorem guarantees that such a polynomial exists.
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V P,Q € Flx,yl,a, 3 € F. The kernel of a linear functional D is the set
K = kerD ={Q : D(Q) = 0}

If D is a linear functional with kernel K, the corresponding bi-linear mapping [P, Q|p is

defined as
[P,Qlp = D(Q)P — D(P)Q (2.34)

This simple mapping is a crucial part of the algorithms we present below; its key property

is given in the following lemma.
Lemma 5 For all P,Q in Flz,y|, [P,Q|p € kerD.

Proof:* Let a = D(Q) and 8 = D(P). Then D(|P,Q|p) = D(aP — Q) = aD(P) —
BD(Q) = aff — fa = 0, which proves [P,Q|p € kerD. R

2.6.2 Problem Statement

Let Fp[x,y] denote the set of polynomials:from Flx,y| whose y-degree is < L, i.e.,

those of the form

where each gx(z) € Flz].
Let Dy,---, Dc be C linear functions defined on Fi[z,y], and let Ky, -+, K¢ be the

corresponding kernels, i.e.,

K; ={Q(z,y) € Fr[z,y] : Di(Q) = 0}

The cumulative kernels Ko, -, K¢ are defined as follows: K, = Fy[r,y] and for

i=1.---.C,

71' == Ki,lﬂKi
= Klﬂ...ﬁKi
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The Generalized Interpolation Problem: Construct a minimal element from
Ke=K nNn---NKe¢
i.e., calculate

Qo(z,y) € min{Q(z,y) : D1(Q) = -+ = Dc(Q) = 0}

where “minimal” means minimal rank (weighted degree) with respect to the given

monomial order.

2.6.3 Kotter’s Algorithm

The set of monomials from F[z,y](the polynomials from F[x,y] whose y-degree is
< L), viz.,

Mp[z,y] = {29’ :0<i,0<j < L}
is partitioned according to the exponentiofy: Mgz, y| = Uf:o M, where
M, = {a"y > 0}
The partition of M, includes a partition on Fii#y|: Fr [z, y] = SoU--- U Sy, where
S =A{Q € Frlz,y]'* LM (Q) € M}
KOtter’s algorithm generated a sequence of lists Go, Gy, - - - , Ge, with
Gi = (g0, +9iL)

where g; ; is a minimal element of K; N S;. The algorithm’s output is the polynomial

Qo(z,y) = Jin, gei(z,y)

which is a minimal element of K .

KOtter’s algorithm is initialized as follows:

go,j:ij j:()J?L
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Given G, i.e., {gi;}ig, Git1 is defined recursively:
Jo = {j:Dina(gi;) =0}
Ji = {j:Dit1(g:,) # 0}

If J, is not empty,among the polynomials g; ; with j € Ji, let g; ;» be the one with

minimal rank, and temporarily denote g; ;- by f:

f = ming; ;
]€J1 (2¥)
je€N

Then using the notation of (2.32), ¢;4+1,; is defined for j =0, -, L:

gi+1,5 = L‘h’,j?f]DiH ifj€J1 bUt]#]*
@f. flp,,, ifi=j"

Theorem 7 [3] Fori=0,---,C, we have
gi; =min{g: g& K,NS;} forj=0,--- L
Moreover, for GS decoding,
o Given L, (ay, Bi)1y, (mi)i-y, =m, (I k=71)weighted degree monomial order.
D, gi(, ;) =0,for0<r+s<m,1<i<n 0<j<L.

2.7 The Roth-Ruckenstein Solution to the Factor-
ization Problem

In this section, we present the most efficient algorithm currently known for solving
the factorization problem, due to Roth and Ruckenstein (RR) [4].

The factorization problem can be stated as follows. Given a polynomial Q(x,y) €
F[z,y], find all polynomials f(x) of degree < v such that (y — f(z))|Q(x,y). Alterna-
tively, find all f(z) € F,[z] such that

Q(z, f(z)) =0 (2.35)



If (2.33) holds, we call f(z) a y-root of Q(x,y). In this section, we will describe the RR
algorithm for finding y—roots.
For a two-variable polynomial Q(z,y) such that x™|Q(z,y), but 2™ ¥ Q(x,y), we

define
Qlz,y)

xm

(Q(z,y)) =

Although Q(0,y) might be identically zero, nevertheless (Q(0,y)) is a nonzero polyno-

mial in y (e.g., if Q(z,y) = 2y, Q(z,y) = 0 but (Q(0,y)) = y).
Suppose

flx)=ao+ a1z + -+ a,z’

is a y—root of Q(z,y). We will see that the coefficients ag,aq,-- - ,a, can be picked off

one at a time. As a start, the following lemma shows how to determine a.

Lemma 6 If (y — f(x))|Q(z,y), then y = f(0) = ag is a root of the equation
Qo(0,y) =0

where Qo(x,y) = (Q(z,y)) and f(Z) =ag+ ar@+ - = + a,z".

Proof: By definition, Q(z,y) = 2"™Qo (@, y) forsomem > 0. Thus, if (y— f(z))|Q(z,y),
then (y—f(x))|Qo(z,y) as well, so that Q(@sy) = (y— f(z))To(z, y) for some polynomial
To(z,y). Thus, y = f(0) is a solution of the equation Qy(0,y) = 0.

We now proceed by induction, defining three sequences of polynomials, f;(z), Tj(x,y),
and Q;(z,y), for j =0,1,--- ,v, as follows.

Initialization: fy := f(z), Qo(x,y) = (Q(z,y)).

For 7 > 1, define

filw) = (fim(z) = f;-1(0)) /2 = a; + - + a2 (2.36)
Tj(x,y) = Qja(z,xy+a;-1) (2.37)
Qi(z,y) = (Ti(z,y)) (2.38)
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Theorem 8 Given f(x) = a9 + a1z + -+ + a,2” € Fylz], and Q(z,y) € Flz,y].
For any j > 1, (y — f(x))|Q(z,y) if and only if (y — f;(2))|Q;(z,y). Ifj = 1,(y —
[ie)Q;(x,y) < (y — f-1(2))|Qj-1(z, )

For detailed proof see [3].

Here is the “picking off’ theorem.

Corollary 9 If (y — f(2))|Q(x,y), then y = a; is a root of the equation

Q](O7y) :07 fOT’j:O,"' , U

Proof: By Theorem 8, y — f;(x) divides Q;(z,y) for all 7 > 0. Substituting z = 0
yields the stated result, since f;(0) =a;. B

Stopping Criterion:

Corollary 10 If y|Qui1(x,y), i.e., if Qui1(z,0) =0, then f(z) = apg+ -+ + a,z’ is a

y-root of Q(x,y).

Proof: (2.34) implies that f;(xz) =0 forall j >0 +1, sothat the hypothesis y|Q.,+1(z,y)
says that (y— fu41(2))|Qut1(z, y). Invoking Theorem 8, we have j > 1, (y—f;(x))|Q;(x,y) <
(v = fi-1(2)|Qj-1(z,y) = (y — f(2))|Qolmyy)s 7'M
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Chapter 3

Algebraic Soft-Decision Decoding of
the GS Algorithm

Fig. 2.1 has shown that for high rate RS codes, the error-correcting capability can not
be improved anymore. Therefore, we need to do soft-decision decoding to improve this
situation. In the following section we show how the soft-decision reliability information
provided by the channel should be translated into algebraic interpolation conditions. A

block diagram of soft-decision algorithm is given.in Fig. 3.1.

.................................................................................

calculate decoded

soft T . find select
multiplicities interpolate
information P P roots output codeword
from
channel

Koetter-Vardy
soft-decision
front end

modified Gurusw ami-Sudan algorithm

Figure 3.1: The K0tter-Vardy algorithm

3.1 Algebraic Soft-Decision Decoding

For RS codes, let oy, ag, - - - , oy be ¢ distinct element in GF(g). We think of channel
input and output as random variables X and Y, respectively. Given the received vector

Yy = (Y1,Y2,- -+ ,Yn) Observed at the channel output, we compute, for i = 1,2,---,q and
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Ty = Pr(X = Y =y;). (3.1)

Let II be the ¢ x n matrix with entries m;; defined in (3.1). We will refer to II as
the reliability matriz and assume that II is the input to a soft-decision decoding
algorithm. For notational convenience, we will sometimes write II(«, j) to refer to the
entry found in the jth column of II in the row indexed by a € GF(q).

The first step in hard-decision decoding is the construction of the hard-decision vector

u = (ur,ug, - ,up) € Fy', where

A . .
;= II f =1,2,..
J arg aGI%E}:‘}({q) (Oé, j)) or j ) Sy ,

u

This hard-decision vector is then taken as the channel output ¢ + e, thereby converting
the channel at hand into a hard-decision channel.

On the other hand, a soft-decision decoder works directly with the probabilities
compiled in the reliability matrix 1L If the decodet: is algebraic, it must somehow convert
these probabilities into algebraic ‘conditions.. The" algebraic soft-decision RS decoder
developed in this section converts the reliability matrix II into a choice of interpolation
points and their multiplicities in the Gurtiswami-Sudan list-decoding algorithm.

A convenient way to keep track of the interpolation points and their multiplicities is
by means of a multiplicity matrix. A multiplicity matriz is a ¢ x n matrix M with
nonnegative integer entries m, ;. Thus the first step of our decoding algorithm consists
of computing the multiplicity matrix M from the reliability matrix II. This step is
discussed in detail in the next section. The second step consists of the following.

Soft interpolation step: Given the point set and the multiplicity matrix M =
[m; ;], compute a nontrivial bivariate polynomial Q»/(X,Y) of minimal (1,v)-revlex
weighted degree that has a zero of multiplicity at least m;; at the point (z;, ;) for

every i, j such that m;, j # 0.
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The third step of the algorithm is the factorization step, which is identical to the
factorization step(will be described later) of the Guruswami-Sudan algorithm.

In the following, we characterize the conditions under which the decoder will produce
the transmitted codeword, for a given choice of interpolation points and their multiplic-

ities (that is, for a given multiplicity matrix M).

Definition 4 Given a ¢ X n matriz M with nonnegative integer entries m; ;, we define
the cost of M as follows:
1R
C(M) 2 5 SN milmig+1)
i=1 j=1
It is easy to see that the computation of Q/(X,Y) is equivalent to solving a system
of linear equations of (2.21), like the G'S algorithm interpolation. Since a given zero of
multiplicity m imposes m(m + 1)/2 linear constraints on the coefficients of @/ (X,Y),
the cost C(M) is precisely the total number of limear equations. We can always find a
nonzero solution Q (X, Y) to the soft interpolation task if the deg @1, is large enough.
That is

N, (0) = [{ XY i = 0Tand dw, + jw, < 4|
if
Nig-1(0) > C(M) (3.2)

so that the number of degrees of freedom is greater than the number of linear constraints.

Thus we define the function

A (V) 2 min{d € Z : Nyy oy (6) > v}. (3.3)

wx,wy

Next, given two ¢ X n matrices A and B over the same field, we define the inner

product

q n
<A, B> £ trace(ABT) = Z Z ai,jbm

i=1 j=1
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Finally, it will be convenient to think of the codewords of the RS code C,(n,k) as ¢ x n
matrices over the reals. Specifically, any vector v = (vy, vy, ,v,) over GF(q) can be
represented by the ¢ x n real-valued matrix defined as follows: [v];; = 1 if v; = o; , and

[v]; ; = 0 otherwise. With this notation, we have the following definition.

Definition 5 The score of a vector v = (vq1,v2,- -+ ,v,) over GF(q) with respect to a

given multiplicity matriz M is defined as the inner product Sy (v) = (M, [v]).

The following theorem characterizes the set of codewords produced by our soft-

decision decoding algorithm for a given multiplicity matrix.

Theorem 9 Let C' be the cost of a given multiplicity matric M . Then the polynomial
Qu(X,Y) has a factor Y — f(X), where f(X) evaluates to a codeword ¢ with degree v

, if the score of c is large enough, namely, if
Su (€ >"A1 =)

The proof is similar to the GSalgerithm factorization theorem.(see theorem6.)

3.2 From Posterior Probabilities to Interpolation Points

This section develops an algorithm that converts posterior probabilities derived from
the channel output into a choice of interpolation points and their multiplicities. More
specifically, given a reliability matrix I1, as defined in (3.1), we compute the multiplicity
matrix M that serves as input to the soft interpolation step. Let M, , denote the set
of all ¢ x n matrices with nonnegative integer entries m; ;, and let M(C') be the finite
set of all matrices in M, whose cost is equal to C'. Thus

I
M(C)E2{MeM,,: 5 SN miglmi+1) =C}
i=1 j=1
In view of Theorem 9, we would like to choose M € M(C') so as to maximize the score

of the transmitted codeword ¢ € Cy(n, k).
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As far as the decoder is concerned, the transmitted codeword may be thought of as a
random vector X = (X1, X2, ", Xn). Thus Sp(x) is a random variable, and the question
is: what is the best choice of a multiplicity matrix M € M(C) in this probabilistic
setting? We choose to compute the matrix M € M(C) that directly maximizes the
expected value of Sys(x).

To proceed, let us define the expected score with respect to a probability distribu-
tion P(-) on the random vector x = (X1, X2, , Xn) as follows:

Ep{Su(x)} £ Y Su(@)P(x)= Y Y M(z;,j)P(), (3.4)
zEFy zeFy j=1

where M (z;,j) denotes the entry found in the jth column of M in the row indexed
by x;. It remains to specify P(-). For this purpose, we adopt the product distribution

determined by the channel output (y1, ¥y, ,¥n), namely

n

P(ay, @3, ) & | [ P, = ) = [ [ 11z, 5) (3.5)
j=1

j=1
where II is the reliability matrix defined in Eq.{3.1).. It=is easy to see that this would be
the a posteriori distribution of y given the channel observations.

Thus, we want to find M (I, C') defined as follows:

M(IL, C) = argmaXMeM(C)EP{SM(X)}

where the expectation is taken with respect to the probability distribution P(:) in
Eq.(3.5). We start with the following lemma, which gives a useful expression for the

expected score.

Lemma 7 The expected score with respect to the probability distribution of (3.5) is equal

to the inner product of the multiplicity matriz and the reliability matriz, namely

Ep{Su(x)} = (M, 1)
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Input: Reliability matrix IT and a positive integer s,
indicating the total number of interpolation points.
Output:Multiplicity matrix M.
Initialization step: Set II* := II and M := all-zero matrix
Iteration step: Find the position (i, j) of the largest entry m;; in 1", and set

L i,
Triaj T my; ;+2
mij = mi; + 1
s:=s—1

Control step: If s = 0, return M; otherwise go to the iteration step.

Table 3.1: Algorithm A

Proof - It is easy to see that if x is distributed according to (3.5), then II is
precisely the componentwise expected value of [y]. The lemma now follows by linearity

of expectation

Ep{Su(x)} = Ep{{M, X} = (M, Ep{[x]}) = (M,1I)

We will construct M (11, C') iteratively, startingswith the all-zero matrix and increas-
ing one of the entries in the matrix-at each iteration. Reéferring to Lemma 5, we see that
increasing m; ; from 0 to 1 increases thé expeeted score by ; ; while increasing the cost
by 1. If we require that Q (X, Y") passes through'the same point again (that is, increase
m; ; from 1 to 2), then the expected score again grows by ; ;, but now we have to pay
two additional linear constraints. In general, increasing m; ; from a to a + 1 always in-
creases the expected score by 7; ; while introducing a + 1 additional constraints. These
observations lead to Algorithm A, which greedily maximizes the ratio of the increase
in the expected score to the increase in cost at each iteration.

Let M(IL, s) denote the multiplicity matrix produced by Algorithm A for a given
reliability matrix II and a given number of interpolation points s. The following theorem

shows that this matrix is optimal.

Theorem 10 The matriz M(11, s) mazimizes the expected score among all matrices in

33



M, ., with the same cost. That is, if C is the cost of M(11, s), then
M(IL, s) = argmazy ey ey (M, 11)

Proof:  With each position (i,7) in the reliability matrix II, we associate an infinite
sequence of rectangles B; 1, B; 2, - - indexed by the positive integers. Let B denote the
set of all such rectangles. For each rectangle B, ;; € B, we define its length(B; ;) = [,
height(B; ;) = m;;/1, and

area(B; j;) = length(B; ;) - height(B; ;1) = m;
For a multiplicity matrix M € M, ,,, we define the corresponding set of rectangles
IM) £ {Biju:1<i<q,1<j<n, 1 <1 <myy)

Note that the number of rectangles in J(M) is Y77, > % | m;; which is precisely the

total number of interpolation points imposed by the:multiplicity matrix M. Furthermore

mi g

C(M) = qzn: M Z Zl
i=1,j=1 i=kyj=1 =1
RO (R
= QE: ilength B i) Z length(B
i=1,j=1 I=1 Bed(M)
q,n mi,j
<M, H> = Z Mg - T = Z Zﬂ-z’]
i—l,j—l i=1,j=1 I=1
= Z iarea Bii) Z area(B).
i=1,j=1 =1 Bed(M)

Thus the cost of M is the total length of all the rectangles in ¥(M) and the expected
score (M, TI) is the total area of all the rectangles in J(M). It is intuitively clear that to
maximize the total area for a given total length, one has to choose the highest rectangles.
This is precisely what Algorithm A does: the algorithm constructs the matrix M(I1, s)
that corresponds to the set of s highest rectangles in B. Indeed, it is easy to see that the

ratios 77 ; with which Algorithm A operates are precisely the heights of the rectangles.
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The algorithm removes from B and puts in (M) the highest rectangle available at each
iteration. It is now obvious that if the s highest rectangles in B have total length C|

then no collection of rectangles of total length at most C' can have a larger total area.
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Chapter 4

Reduced-Complexity
Interpolation-Based Soft-Decision
RS Decoders

The KV soft-decision decoding procedure results in very impressive error correcting
performance. Nevertheless, the algorithm is still quite computationally complex and not
straightforward to implement. This chapter introduces algorithmic techniques that re-
duce the complexity of interpolation-based.décoders to the point where efficient software

or VLSI implementations are possible.

4.1 Modified Interpolation

The interpolation algorithm is the most time-consuming component of KV decoding
and it is essential to reduce its complexity if KV decoding is to be used in real-time
applications. From the discussion in section (2.4), if a multiplicity matrix has a maximum
entry m, then the maximum interpolation cost would be the cost of hard-decision GS
decoding with multiplicity m:

C = (g)m(m +1)

. For the remainder of this discussion, we will assume the worst-case where the cost of
interpolation is the maximum possible cost, C. The interpolation algorithm needs to

store (d, + 1) bivariate polynomials.(d, is the maximal y—degree) Since a homogeneous
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linear system must have more unknowns than equations, the length (number of terms)
of the polynomials must be at least C'. The memory requirements of interpolation are
~ (dy, + 1)C field elements. Therefore the complexity of interpolation in terms of the
0(d,C?).

number of Galois field operations is Nop.interp =

Example 10 Consider a decoder for a (255,239) RS code with maximum multiplicity
m = {1,4,16}. The interpolation cost, complexity and memory requirements are sum-

marized in Table (4.1).

m C Nopinterp ~ emory

1 255 1x10° 512 bytes
4 2550 3 x 107 12 Kbytes
16 34680 2 x 10'Y 576 Kbytes

Table 4.1: The maximum cost, complexity (N and memory requirements for

op,interp)
the interpolation algorithm applied to a RS(255,239) code with maximum multiplicity
m. The data is from [5]

;From Table(4.1) we see that :the decoding compléxity and memory requirements
grow very quickly as the multiplicity inereases =l the maximum multiplicity is fixed to
deliver a desired error-rate, then to lower the cost 'and hence the complexity, the number
of interpolation points (nonzero entries in the multiplicity matrix) that we apply the
bivariate interpolation algorithm to must be reduced. We apply the trick of "reencoding”

the received word to reduce the interpolation complexity.

4.1.1 Systematic Encoding

A systematic encoding is one where all the k input symbols to the encoder explicitly
appear in the encoded codeword. If they appear in k£ consecutive positions then the
encoding is called strictly systematic. Strictly systematic encoders, where the k message
symbols appear as the last £ symbols in a codeword, are easily implemented with a

linear feedback shift register [6] and are commonly used.
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Interpolation-based decoding algorithms rely on an evaluation map encoding, how-
ever it is more efficient to implement an encoder as a linear feedback shift register. We
would also like to apply the decoder to existing RS transmission systems that use a
systematic encoder. Therefore we would like to use a systematic encoding in place of
the evaluation map encoding.

We are also interested in generating systematic encodings where the information ap-
pears in arbitrary positions in an encoded codeword. If these positions can change for ev-
ery encoder use, then an efficient way of implementing this systematic encoder is with an
erasures-only RS decoder [6]. Since RS codes are minimum-distance-separable (MDS),
a codeword may be perfectly recovered from any k of its symbols. An erasures-only
decoder is much simpler than an error-and-erasures decoder since the erasure locations
are known a-priori. Therefore, the expensive iterative Berlekamp-Massey algorithm for

solving the key equation and the Chien search root-finding can be skipped .

4.1.2 Re-encoding

The idea of re-encoding is toztransform-the interpolation problem into one that
is easier to solve. The codeword cs transmitted through a noisy channel. The hard
decision vector, r = (rg, 71, -+ ,T,_1), which ¢an be extracted from the reliability matrix
I, is r = ¢ + e, where e is an error vector. The first step is to partition the received
symbols in 7 into two sets, U ("unreliable”) and R ("reliable”). The set R consists
of the k& most reliable symbols, where the reliability information can be derived from
the reliability matrix II. The set of positions of the symbols in R(labeled from 1 to n
corresponding to {a!, a?, -+  a™}) is the set R;. Now systematically encode the symbols
in R so that they appear in the reencoded codeword, ,in the same positions that they

appeared in 7. As discussed in Section (4.1.1), this can be done efficiently for & arbitrary
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positions with an erasures-only decoder. Taking the difference between r and v we get:

ro= r—1 (4.1)
= (c+e)— (4.2)
= (c—v)+e (4.3)

which is a codeword (by the linearity of the code) that is corrupted by the same error
pattern as r. However, ' has a very interesting property; since the reencoding of r is
systematic, k symbols of r" are zero. These zero symbols correspond to k interpolation

points with a zero y—component:

V={(0)}, i€Ry (4.4)
An interpolation polynomial for the &k points in V' is v(x)™ where v(x) is found through
a simple univariate interpolation:

v(z) = H (x="a) (4.5)

1€Ry;

The advantage for high-rate codes is that we have found an interpolation polynomial for
most of the points without having to\use the expensive bivariate interpolation algorithm.
The calculation of v(x) requires a single polynomial to be updated k times instead of
(d, + 1) polynomials being updated (k/2)(m? + m) times. Now that we have v(z),
the bivariate interpolation algorithm is run at decode time starting from the initial

polynomial set:

G = {v(@)™ v(z)" 1y, ..., v(x)" " yb} (4.6)
and run for at most
¢ = “Hmym )
- 01N

iterations, where C' is the maximum cost of the bivariate interpolation without reencod-

ing. The reduced cost, C’, gets smaller as the code rate k/n increases.
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4.1.3 Reducing the Memory Requirements

The memory requirements for interpolation can be very large since the maximum
length of the bivariate polynomials is at least C' terms. The polynomials can be shortened
by factoring out the polynomial v(z). It is shown in [7],[8] that if reencoding is used

then the interpolation polynomial P(x,y) can be written as:

P(e.y) = 3 wo) [ (X = @) T a)y’ @.7)
where,
Ty(a) = [ (v — atymaxt-mo) (1)

i€Ry,
This is the most general way to decompose P(x,y) and it allows any k& symbols to
be chosen for R. However, it seems that the most logical choice for R is to choose the k
symbols with the largest reliability (largestsmultiplicities) to achieve the maximum com-
plexity reduction. To obtain the shaortest possible.polynomials, we make the assumption
that R consists of k points that have'the maximum possible multiplicity m = d,. Then

i(z)=1,7=0,---,d, and Eq.(4:7) réduces-to-{10]:

P(z,y) = Z wy(2)o(x)™ Ty’ (4.9)

which means that common factors of v(z) are being carried around needlessly, wasting
memory. It would be nice to factor out the powers of v(x) and only have to calculate

the w;(x) in real-time. The interpolation polynomial can be written as

Pla.y) = Y @)y (4.10)
= V@) L w@) ) (4.11)

The decoding algorithm takes the transformed word " as input and tries to estimate

the transformed codeword ¢’ = ¢ —1. Therefore, if the decoding is successful, a message
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polynomial f’(z) corresponding to ¢’ will be a linear y—root of P(x,y), i.e.:

Pa,y) = (s — /() Alz,y) (112)
P(z, f'(x)) =0 (4.13)
From Eq.(4.11),
dy ’ " A
@) S w0 (414)
> ua)E iy =0 (1.15)

Define the reduced interpolation polynomial :
dy

Pla,i) = 3 wi(@)if (4.16)
§=0

where ¥ = y/v(z). Then if f'(z) is adinear y—root-of P(z,y) it follows that f'(x)/v(z)
is a linear y-root of the reduced interpolation polynomial ﬁ(az, y). A simplified interpo-
lation can be carried out to find P(z, §) which is much shorter than P(z,y) since the
degree k polynomial v(z) has been fagtored out in‘advance. To implement the simpli-
fied interpolation, consider the original set of polynomials, G = {1,y,--- ,y%}. After

applying the reencoding technique, the starting polynomial set for decoding is:

G = {v(@)" v(@)" Ty, u(a) Ty ) (4.17)

=vmwmﬁﬂﬁﬁwnﬁﬁm (4.18)

(
After a change of variables § = y/v(z), we have G = {1,7,--- ,®}. Note that the

weighted degree of the new variable v is :
deg™* V() = deg™*V(y) — deg™ "V (v())
= (k—-1)—k
= -1
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The y-coordinates of the interpolation points need to be rescaled:

(4.19)

where the y; are the y-coordinates of points after the translation in the reencoding
step. Starting from G = {1,9,--- ,y™}, one applies the KV interpolation algorithm
to the O(n — k) rescaled points where the min function is taken with respect to the
(1,-1)-weighted degree of the polynomials in  and y. A formal proof that simplified
interpolation produces a correct result is given in [7] where the factorization step is
slightly modified. This will be discussed in the following.

However, from (4.9), the simplified interpolation is not always realizable in all cases.

It must satisfy

Lemma 8 The mazximum y-degree is equal to m.

4.2 Reduced-Complexity!Factorization

The savings realized by simplifiéd interpolation ¢an be carried over into the factoriza-
tion procedure by applying the RRralgorithm'directly to the reduced polynomial P (z,79)
as proposed in [7],[8],[14]. If the meSsage polynomial-corresponding to ¢’ = (¢ — 1) is a

linear y-root of P(x,y) then f'(z)/v(x) is a linear j-root of P(z,7), or

= - f(2)
P = (y — B 4.20
(@) = (T~ 4 )B.) (420
Applying the RR algorithm to the reduced polynomial, we obtain a sequence sq, S1, -+ , $;_1

(as a rule of thumb, we use | = 2[(k/n)t|) which are the coefficients of

_ f)
o(a)

The transformed received hard-decision word is ' = ¢’ + e, which has zeroes in the k

s(x)

re-encoded positions, Rj. Therefore, in the k re-encoded positions, ¢, = —e;, i € Ry, or

Y

f'(a") = —e;, i€ Ry
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If there is no error in position i € Ry then e; = 0 and f’(a’) = 0. Therefore (z — o) is

a root of f/(x), or f'(x) = (x — a*)D(x). Considering all the error-free positions in Ry,

fo= I @-a)ow (4.21)

i€ERy s.t. ;=0

Therefore,

s(z) = {} '((;”)) (4.22)
HiERk s.t. ei:0<m - O“/Z)Q<x)
[Lieg, (z — &)
Q(z)

I_L'ER;c s.t ei;«éO(‘T - a/i)

(4.23)

(4.24)

The denominator is an error-locator polynomial for the k positions in R;. Given the
syndrome polynomial s(z), we can use the Berlekamp-Massey algorithm to reconstruct
the rational function (z)/A(x) where A(z) is an error-locating polynomial for the &
positions in Ry and (z) is an error-evaluator pélynomial for the &k positions in Ry. The
roots of A(z) give the error locatious it R -| Thisitechnique only finds errors in the set
of k reliable positions and not in the (n — k) vnreliable-positions. To correct any errors
in the (n — k) unreliable positions; wercan do-a systématic reencoding in k arbitrary
positions using the erasures-only decoder that is already implemented for the reencoding
step.

We are only directly correcting errors in the k reliable positions. Fortunately, most
errors are likely in the (n — k) unreliable positions so we only need to correct a small
number of errors and hence only need a few coefficients in the syndrome sequence.
This greatly speeds up the Roth-Ruckenstein algorithm. As a rule of thumb we use

I = 2[(k/n)t] coefficients where t = | (n—Fk)/2] is the classical error-correcting capability.

To compute the error values, we invoke (4.22) to have e; = — f'(a'),i € Ry, and
/ Qux
'@ _
e = (4.25)
! = ——= 4.26
F@) == (4.26)
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When evaluating f’(z) at z-values corresponding to the error locations, v(a’) = 0 and
A(a?) = 0 where 7 is an error position in Rj. Using the L’Hopital’s rule, we obtain the
error-evaluation formula

Q(a®)vM(a?)

(@) = =75 ) (4.27)

for the z-values o' corresponding to error positions in Ry, where v(!)(z) and AW (z) are
the formal derivatives of v(z) and A(z). Notice that we have directly found an estimate
of the error vector, e, without having to subtract off r’. The estimated codeword can be
found by adding € to the received word r and the message can be read off directly if a

systematic encoder was used. A block diagram of this scheme is shown in Fig. 4.1.

7 —p systematic —’@_c L modified modified ¢
encoder ro @_.r' > —.'@ > C

: - r* |mierpolation factorzation
T 5 fw

systernatic
encoder

!

I"* -

Figure 4.1: Transforming the decoding problem via reencoding

44



Chapter 5

Serially concatenated Convolutional
and RS codes

In this chapter, we discuss the serially concatenated convolutional and RS codes
with an emphasis on soft input and soft output algorithms. Although GS algorithm is
an SD decoding algorithm it cannot provide soft output value. We therefore introduce
the SSID algorithm [21] (stochastic shifting based iterative decoding) which does yield

soft output values.

5.1 Stochastic Shifting Based Iterative Decoding (SSID)
of RS codes

Consider a narrow sense (n,k) RS code over GF(¢™), n = ¢™ — 1, which has a

minimum distance 6 = n — k + 1. The parity check matrix can be represented by

1 g p2 .. pd
H— 1 62 54 62(7171) | (51)

1 B pt ... ppeh)
Here we consider RS codes over an extension field of GF(2). Let 3 be a primitive element
in GF(2™), all the 2™ elements in GF(2™), 0,1,3,32,---,3%" 72, can be represented
using a binary vector expansion in GF(2). Let p(x) be a primitive polynomial in Fj|x]
and C' be its companion matrix. The companion matrix is an m X m binary matrix.

Since the mapping 3* «— C* {i = 0,1,2,---} induces a field isomorphism, a binary
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parity-check matrix H is obtained by replacing every element (3% in the parity check

matrix H by its corresponding matrix C*.

Example 11 For GF(32), the primitive polynomial p(z) is 2° + x? + 1, then

10000
01000
1=« 0010 0
00010
00001
00001
10000
Bes] 01001
00100
00010

Given the channel output samples, the a posteriori log-likelihood ratio (LLR) and soft
symbol values can be derived by using the belief propagation (BP) algorithm. However,
standard BP does not work well for high density parity check codes (HDPC) codes due
to error propagation.

By taking advantage of the cyeli¢ property of RS eodes, a sum product algorithm
(SPA) with a stochastic shifting sc¢hedule asrpropesed 21, 22] to help alleviate the de-
terministic errors. Let LU) denote thé‘sum of the réceived LLRs and all extrinsic LLR
produced until the jth iteration. During the jth iteration, the SPA is used on the vector
LY to produce extrinsic information LY. The LLR LU*Y is then updated according

to:

LU = 10 4 oY) (5.2)

ext

where 0 < o < 1 is a damping coefficient. The updated LLR LU*Y is cyclically shifted
by 6 symbols, where 6 is a random integer uniformly distributed between (0,n — 1).
Since RS codes are cyclic, the cyclically shifted version of x is a valid codeword. Hence,
a shifted version of LUt can be thought of as the received signal when a shifted version

of another valid codeword was transmitted. Therefore, another iteration of the SPA
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is performed with the shifted version of the LLR LU*Y). Since the geometry of the
factor graph associated with the shifted version is different from that of the original one,

deterministic errors can be eliminated. We continue this procedure for a predetermined

Algorithm 1 SSID algorithm for RS codes

Step 1. Initialization: set ¢ = 0,7 = 0 and «y.

Step 2. Set the coded bits LLR as observed from the channel:
LO() = 2y

Step 3. SPA: Feed the LLRs into the decoder and generate
extrinsic LLRs for each bit using SPA:
L = p(LV).

Step 4. Parameter Update: Update the LLR of each bit:
LU (') = LU (') + aLgy(a')
where « is a gradually increasing damping coefficient
to control the updating step width.

Step 5. Random Shifting: Cyclicly shift the LLRs by 6
symbols and record the overall shift ©:
L(j+1) - Léj-i—l)

0, LU (z%) >0

1y LU (z%) < 0

Step 7. Termination Criterion: If all:the checks are satisfied,
stop iterationand go to.Step 9, else if 7 = j,az, €O
to Step 8, otherwise set j«— 4 + 1 and go to Step 3
for another SPA iteration.

Step 8. Outer Round: If' ¢ =wgmzz-declare a decoding failure,
otherwise set .+ ¢ + 1 and 4 = 0,update the damping
coefficient a = g (g (@mar — 1))(1 — ap) and go to
Step 2 for another outer round.

Step 9. Extract Information Bits: Shift the decoded bits back
to their original position and get the information bits

~

from coded bits. ¢ = ¢(_g)

Step 6. Hard decision: ¢; =

Table 5.1: Algorithm B

number of times or until the parity check equations are satisfied. When the maximum
of Jmae iterations is reached, another outer round, with a different realization of the
random shifts and an increased «, begins with the original LLR from the channel, which

prevents SPA decoding from getting stuck at pseudo-equilibrium points.
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Define ¢(L) as an one iteration of the SPA algorithm function with the input LLR
L. Define Ly as a cyclic shift of the vector by € symbols (Note that received symbols
should be shifted at symbol level). A detailed description of the algorithm is then given
in Algorithm B.

However, there will has some problems as the codeword length becomes long. This
is mainly due to the fact that the parity check matrix has high density and correlated
unreliable information bits cause error propagation. Therefore, the above algorithm

should be modified.

5.2 Iterative Decoding Algorithm By Adaptive Par-
ity Check Matrix

Consider a narrow sense (N, K) RS code over GF(2™), which has a parity check
matrix Hy over GF(2™). Let n = N x m and k = K x m be the length of the codeword
and the number of information bits,wespectively. H, has an equivalent binary image
expansion Hy, where Hy, is an (n —%) X n bmary check matrix.

Let ¢ = [c1, o, -+ , ] be the binary representation of an RS codeword. Jiang and
Narayanan (JN) [22] proposed an iterative BP-based soft-decision RS decoding algo-
rithm that is composed of two stages: the matrix updating stage and the bit-reliability
updating stage. In the matrix updating stage, the magnitude of the received LLR’s
|L(c;)| are first sorted so that iy,49, -+ ,in_k,- - ,i, denote the positions of the bits in
terms of ascending order of |L(c;)|, i.e., the bit ¢;, is the least reliable and ¢;, is the most
reliable. We begin with the original parity check matrix H;, and perform elementary
column operations to convert the i;th column of Hy into the form [1 0 --- 0]7. Then,
we convert the ith column of Hj into the form [0 1 0 --- 0]” and so on. Finally, we
transform (n — k) columns among the n columns of H, into the identity matrix. In the
second stage, a standard BP algorithm is invoked to update the bit reliabilities.

The JN algorithm can be summarized as follows.
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The JN Algorithm :
Initialization: Given the vector A® of initial LLRs, the BP algorithm outputs the
extrinsic LLR’s A* and let AP:=A}

Do

1. Sort AP in ascending order of magnitude and store the sorting index. The resulting

vector of sorted LLRs is

Ain = [A11n7 Al2n7 T 7A;Ln]

AP < ||Ait4]]n for & = 1,2,--- ,n — 1 and A™ = PAP, where P defines a

permutation matrix.

2. Rearrange the columns of the binary parity-check matrix H; to form a new matrix

Hp, where the rearrangement is defined by the permutation P.

3. Perform Gaussian elimination(GE) on_the matrix Hp from left to right. GE will
reduce the first independent {n —'%k) columns in' Hp to an identity submatrix. Let

this new matrix be }AIP.

4. Run log BP on the parity-check matrix H p with initial LLR’s A™ for a maximum

number of iterations I;,,. The log BP algorithm outputs extrinsic LLR’s A*.

5. Update the LLR’s via
A = A" 4 o AX

and

AP .= P71AQ
where 0 < a; < 1 is called the ABP damping factor and P! is the inverse of P.

6. Make bit hard-decision based on AP and use the bit-level parity check matrix to

check if it is a valid codeword. If it passes the parity check then stop.
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While the number of iterations < the maximum number of iterations N;

Jiang and Narayanan [22] proposed running N, outer iterations, each with the JN
stopping criterion and a maximum of /Ny inner iterations. Each one of these N, iterations
starts with a different random permutation of the sorted channel LLRs in the first inner
iteration. We also run N, outer iterations, each with the list-decoding stopping criterion,
to form a global list of at most N; Ny codewords. Finally, from the NiNs codewords,
choose the most probable one.

El-Khamy and McEliece (EM) [23] modify the JN algorithm by sending AP to a KV
decoder. They showed that the significant performance gain can be obtained by using

the additional KV decoder.

5.3 Iterative Decoding of Serial Concatenated RS-
Convolutional Codes

Based on the iterative SISO bit-leyel RS decoderof Section 5.1, we propose an archi-
tecture of serial concatenated RS aﬁd convolutional céde with SISO iterative decoding.
A block diagram of the proposed decoding scheme is dépicted in Fig. 5.1. The convolu-
tional code’s constrain length is 7 and the code rateds’1 /2. The BCJR algorithm is used

for MAP decoding. A SOVA or soft-output BCJR decoder is used to obtain soft output

soft information = — - o
from p| convo ko ; 4
channel code nberjever & SSID algorithm T
- cofnpare
deinterleawver Whﬁthgr two
bits equal 7 | -

Figure 5.1: Soft-input soft-output iterative serial concatenated convolutional-RS codes

from the convolutional decoder. The soft output is passed to the SSID whose output is

used as the channel reliability for the KV decoder. The KV decoder’s HD codeword is
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compared with the SSID soft output to see whether the two decoded bits are equal. If
the two bits coincided, we feedback the soft bit level information of log-likelihood ratio
p1/po from SSID to the convolutional decoder input as the a prior information. If the
two bits are not the same, we set the log-likelihood ratio p;/py = 0(p1 = po). This is our
SISO serial concatenated decoding algorithm.

Based on the discussion presented in Section 5.2, we have the modified concatenated
code decoding algorithm given by the block diagram of Fig. 5.2 where the most probable

codeword is chosen and the most reliable LLRs are sent back to the CC decoder input.

soft information - — output
from > convolutional »| interleaver N modified KV p-codew ord
channel code JN algorithm

<— compare
w hether two

bits equal ? | <&

deinterleaver

Figure 5.2: Iterative decoder structare for serial concatenated convolutional-RS codes
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Chapter 6

Numerical Results

In this chapter, we present numerical results obtained by computer simulations of
various decoding algorithms discussed so far.

Figs. 6.1 and 6.2, we can see that in the fixed codeword length n, as the k£ decrease
(the code-rate decrease), there will be more coding gain.

Consider the (31,25) RS code with BPSK modulation over AWGN channel. The
performance of several schedules are;shown in Fig:.6.2. We note that the SSID with
BM algorithm with SPA=10, outer=5 and I} =2.outperforms classical hard-decision
decoding by 0.2dB at an FER of 1072, |We ¢an expect that the performance of SSID
with BM can be better, if the SPA arnd the outer rounds are larger. However, in this way
the complexity is quite high. It is a trade-off between complexity and error correcting
capability. For the KV algorithm, we simulate it based on the simplified reencoding KV
algorithm with mmax = 4. Therefore, the interpolation cost is at most 60 iterations.
It is a reasonable scheme. We can see that the KV algorithm outperforms the classical
hard-decision decoding by 0.7 dB at an FER of 10~

In Figs. 6.3 and 6.4, we show the most used case in different codeword length.
Fig. 6.4 shows the performance of the high rate (0.9373) (255,239) RS code with BPSK
modulation over an AWGN channel. Due to the high code rate, we can see that the
performance gain is not impressive. The KV algorithm with mmax = 4 outperforms the

classical hard-decision decoding by 0.2 dB at an FER of 10~%. The interpolation cost is
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at most 160 iterations.

Fig. 6.5 presents the BER performance of serially-concatenated (255,239) RS-(7,1/2)
convolutional code using the KV algorithm with 16-QAM modulation over an AWGN
channel. The decoding algorithm for CC is the soft-input soft-output (SISO) BCJR
algorithm. The soft CC and KV RS decoder has significant gain about 3dB at an BER
of 10~* over the classical all hard-decision RS-CC code.

In Fig. 6.6, we show the BER performance of the SISO iterative decoder for the serial
concatenated code. We use the decoder shown in Fig. 5.1. The SSID algorithm uses
SPA=10, outer rounds=>5, I;;,=2. The soft CC and SSID with KV (mmax)=4 with pass
1 outperforms the HD decoder by about 3.1 dB at BER = 10~°, with pass 2 by a margin
of 3.3 dB, and with pass 3 by about 3.4 dB. We also simulate the SISO algorithm shown
in Fig. 5.2. Due to the required extreme long simulation time, we simplify the case with
N1=5 (inner iterations), No=2 (outer iterations), and [;,=2. We find a performance
gain of 5 dB while at the SNR = 6 dBj the coding’gain is about 4 dB at BER = 107°.

However the iterative decoding gain is not significant due to the small N; and Ns.
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Figure 6.2: (31,25) RS code with BPSK modulation over AWGN channel, code rate=0.8065
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Chapter 7

Conclusion

In this thesis we investigate the performance of several coding systems involved RS
codes. We first examine the performance of SD decoded RS codes and serial concatenated
RS-CC codes using modified KV algorithm, using a transformation of the received word
to reduce the iterative decoding complexity.

We then study the effectiveness of using the SSID algorithm in conjunction with the
KV algorithm for iterative decoding of serial concatenated codes. An alternate iterative
decoding structure replaces the SSID algorithm by:the EM algorithm which eliminates
short cycles in long RS codes and gives improved SD décoding performance.

Performance gain of SD RS decoder and iterative serial concatenated decoder is
evaluated through simulations. But the complexity is still significant high using the
JN algorithm to derive a soft output associated with a RS code. A reliable and easily-
generated soft RS decoder output is highly desired for it will make iterative decoding
of serial concatenated RS-CC codes practically realizable and the applications of such a

practical decoder are too numerous.
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