
國 立 交 通 大 學

電 信 工 程 學 系 碩 士 班

碩 士 論 文

應用於LZW壓縮序列之高效能字串比對機制

Efficient Pattern Matching Scheme in LZW

Compressed Sequences

研究生 ：黃迺倫

指導教授：李程輝 教授

中 華 民 國 九 十 五 年 六 月

應用於 LZW 壓縮序列之高效能字串比對機制

Efficient Pattern Matching Scheme in LZW

Compressed Sequences

研 究 生： 黃迺倫 Student: Nai-Lun Huang
指導教授： 李程輝 教授 Advisor: Prof. Tsern-Huei Lee

國 立 交 通 大 學

電 信 工 程 學 系 碩 士 班

碩 士 論 文

A Thesis
Submitted to Department of Communication Engineering

College of Electrical and Computer Engineering
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in
Communication Engineering

June 2006
Hsinchu, Taiwan, Republic of China.

中 華 民 國 九 十 五 年 六 月

應用於 LZW 壓縮序列之高效能字串比對機制

學生: 黃迺倫 指導教授: 李程輝 教授

國立交通大學電信工程學系碩士班

中文摘要

壓縮字串比對(CPM; compressed pattern matching)乃一新興之研究領域，著

眼於此類問題：給定一壓縮序列及一字串，在最少量之解壓縮作用（或無解壓縮

作用）下，於序列中尋找字串的出現(pattern occurrences)。可應用於直接在壓縮

檔案中做電腦病毒及機密資訊外洩漏與否的偵查。LZW 為一廣受應用且壓縮效

率高的壓縮演算法，本論文即記述了我們在壓縮字串比對上，對於處理 LZW 壓

縮序列的研究成果。著名的 Amir-Benson-Farach 演算法是最早能在 LZW 壓縮序

列中尋得字串的首次出現位置的演算法，我們針對此演算法提出一以位元串映像

為基礎的(bitmap-based)實現方式，同時亦將其推廣為可尋得所有的字串出現，並

回報它們在序列未壓縮前所處的絕對位置。程式模擬結果顯示，相較於解壓縮後

再於解開之序列中搜尋的機制，我們採用的機制具有較高的時間效能；而相較於

另一套同樣以位元串映像實現的壓縮字串比對演算法──Navarro-Raffinot 機

制，我們的機制對於中等長度以上的字串，在所需的記憶體空間上，是較為節省

的。

i

Efficient Pattern Matching Scheme in LZW

Compressed Sequences
Student: Nai-Lun Huang Advisor: Prof. Tsern-Huei Lee

Institute of Communication Engineering

National Chiao Tung University

Abstract

Compressed pattern matching (CPM) is an emerging research field addressing the

problem: Given a compressed sequence and a pattern, find the pattern occurrence(s) in

the (uncompressed) sequence with minimal (or no) decompression. It can be applied

to detection of computer virus and confidential information leakage in compressed

files directly. In this thesis, we report our work of CPM in LZW compressed

sequences. LZW is one of the most effective compression algorithms used

extensively. We propose a simple bitmap-based realization of the well-known

Amir-Benson-Farach algorithm. We also generalize the algorithm to find all pattern

occurrences (rather than just the first one) and to report their absolute positions in the

uncompressed sequence. Experiments are conducted to compare the performance of

our proposed generalization with the decompress-then-search scheme. We found

that our proposed generalization is much faster than the decompress-then-search

scheme. The memory space requirement of our proposed generalization is compared

with that of the Navarro-Raffinot scheme, an alternative CPM algorithm which can

also be realized with bitmaps. Results show that our proposed generalization has

better space performance than the Navarro-Raffinot scheme for moderate and long

patterns.

ii

誌謝

由衷感謝我的指導教授──李程輝教授。在研究的過程中，您給予充分的信

任，讓我有足夠的空間思考，並選擇感興趣的題目著手研究。在您的教誨下，我

學到做研究的正確態度與方法，此外，您適時的鼓勵也讓我增加自信心。尤其感

謝您的悉心指導以及在本論文研究上所提供的各項建議與協助，讓我有機會將研

究成果投稿至IEE期刊，這對我來說是莫大的鼓舞。

感謝網路技術實驗室的魏震榮學長、郭耀文學長和謝景融學長在課業及研

究上的指教，也要感謝一起奮鬥的同窗夥伴──郁文、政家和紹瑜，不論在課業、

研究或生活上，都能不吝分享、相互勉勵，能成為你們之中的一份子，我感到幸

運而且珍惜。

最後，我要特別感謝我的父親黃金宗先生與母親柯祝女女士，感謝您們的

栽培與教養，以及無限的關懷和鼓勵，每當遭遇挫折，是您們給予我溫暖的避風

港，也是您們再度教會我勇敢，讓我能重拾信心，接受挑戰。同時，感謝我的男

友羅木榮先生所給予我的一切支持與包容。

謹將此論文獻給我的父親與母親。

西元2006年6月 於風城交大

iii

 Contents

Contents

中文摘要 i

English Abstract ii

誌謝 iii

Contents iv

List of Tables v

List of Figures vi

Chapter 1 Introduction 1

Chapter 2 Background 4

 2.1 The LZW Compression Algorithm 4

 2.2 The Amir-Benson-Farach Algorithm 5

Chapter 3 An Efficient Pattern Matching Scheme in LZW

Compressed Sequences 11

 3.1 An Efficient Realization of Amir-Benson-Farach Algorithm 11

 3.2 Generalization to All Pattern Occurrences 16

Chapter 4 Related Work 24

Chapter 5 Comparison and Experimental Results 28

Chapter 6 Conclusion 34

Bibliographies 35

iv

 List of Tables

List of Tables

Table 3-1. Prefix bitmaps of P = abcab 15

Table 3-2. Suffix bitmaps of P = abcab 15

Table 3-3. Prefix bitmaps of P = ababc 16

Table 3-4. Bitmaps associated with explicit nodes 16

Table 3-5. Prefix bitmaps of P = ababc 22

Table 3-6. Suffix bitmaps P = ababc 22

Table 3-7. Contents of nodes along the path from root to Np on Ts 22

Table 3-8. Brief summary of the results when the last three chunks are

processed 23

v

 List of Figures

List of Figures

vi

Figure 3-1. The uncompacted suffix trie STp of P = ababc 16

Figure 5-1. Performance comparison for test case 1 29

Figure 5-2. Performance comparison for test case 2 29

Figure 5-3. Comparison of space requirements for test case 3 32

Figure 5-4. Comparison of space requirements for test case 4 32

Figure 5-5. Comparison of space requirements for test case 5 33

Figure 5-6. Comparison of space requirements for different number of

pattern occurrences (m is fixed to be 25) 33

 Chapter 1 Introduction

Chapter 1

Introduction

As the population of communication networks users grows at a rapid rate, it is

expected that the networks be capable of delivering data more effectively. In other

words, how to utilize the transmission bandwidth efficiently is a key upon which the

success of the communication networks heavily relies. Obviously, an economic way

to utilize limited bandwidth efficiently is to send smaller amount of data by using data

compression mechanisms. Accordingly, compressed pattern matching (CPM) that

performs pattern search directly on the compressed data without initial decompression

gains more and more attention. The CPM problem is often defined as: Given a

compressed sequence and a pattern, find the pattern occurrence(s) in the

(uncompressed) sequence with minimal (or no) decompression. Possible

applications of CPM include detection of computer virus and confidential information

leakage in compressed files directly.

Since LZW [1] is one of the most effective and popular lossless compression

algorithms, CPM in LZW compressed sequences is quite important. In the last

decade, many related researches have been conducted. The first CPM algorithm

which finds the first pattern occurrence in an LZW compressed file was presented in

[2]. The complexity of the algorithm is O(n+) in both time and space, where n

and m are, respectively, the lengths of the compressed text and the pattern. It was

shown that, with different implementations, one can trade between the amount of

extra space used and the algorithmm’s time complexity. This algorithm is now

2m

1

 Chapter 1 Introduction

well-known and will be referred to as the Amir-Benson-Farach (ABF) algorithm in

this thesis. Details of the ABF algorithm are presented in Chapter 2.2. In [3], the

ABF algorithm is extended to find all pattern occurrences. The basic idea is to use a

flag to indicate that complete pattern occurs inside a compressed data block, in

addition to checking pattern occurrences across two consecutive blocks. However,

the algorithm cannot tell how many occurrences are there inside a block. Moreover,

there is no discussion about how to efficiently realize it. In [4], another CPM

algorithm was proposed to do decompression and pattern matching on-the-fly. The

drawback of the algorithm is its high computation complexity because it still needs

partial decompression. Reference [5] presented a general scheme to find all pattern

occurrences in sequential blocks and realized the scheme by using the technique of

bit-parallelism. This scheme can be applied to LZ-family compression algorithms

such as LZW and LZ77 and will be referred to as the Navarro-Raffinot (NR)

algorithm in this thesis. A similar bitmap based implementation for pattern

matching in LZW compressed sequences was independently proposed in [6]. The

scheme was then generalized to match multiple patterns simultaneously [7].

In this thesis, we present our work of CPM in LZW compressed sequences.

We propose a simple and efficient realization of the ABF algorithm. Moreover, a

generalization of the ABF algorithm to find all pattern occurrences and report their

absolute positions in the uncompressed sequence is presented. Experiments are

conducted to compare the performance of our proposed generalization with the

decompress-then-search scheme. We found that our proposed generalization

significantly outperforms the decompress-then-search scheme. When compared

with the NR scheme, our proposed generalization requires less memory space for

moderate and long patterns with roughly the same throughput performance.

2

 Chapter 1 Introduction

The rest of this thesis is organized as follows. Chapter 2.1 and Chapter 2.2

give brief reviews of LZW and ABF algorithms, respectively. Efficient realization

of the ABF algorithm with bitmaps is presented in Chapter 3.1, followed by the

generalization for all pattern occurrences in Chapter 3.2. Chapter 4 describes the

most related work, i.e., the NR scheme. Experimental results and comparisons are

shown in Chapter 5. Finally, Chapter 6 concludes this thesis.

3

 _ Chapter 2 Background

Chapter 2

Background

2.1 The LZW Compression Algorithm

In this chapter, we briefly review the LZW compression algorithm and the

corresponding decompression procedure [1]. The notations used here are similar to

those in [2]. Let S = c1c2c3…cu be the uncompressed sequence (or text) of length u

over alphabet Σ = {a1, a2, a3, …, aq}, where q is the size of the alphabet. The LZW

compressed format of S is S.Z and each code in S.Z is S.Z[i], where 1 S.Z[i] n+q-1

for i = 1, ..., n. The pattern being searched is P = p

≤ ≤

1p2p3…pm, where m denotes the

length of P and pi∈Σ for 1 ≤ i m. For convenience, we use the notation to

denote the concatenation of two strings and .

≤ 1S 2S

1S 2S

The LZW is a dictionary-based compression algorithm that uses a trie to

generate the compressed sequence. Each node on contains:

ST

ST

• A node number: A unique number in the range [0, n+q-1]. (“node N” or “N”

represents “the node numbered N” in this thesis.)

• A label: A symbol belonging to Σ.

• A chunk: The string that the node represents. It is simply the concatenation of

the labels on the path from root to the node.

ST and the compressed sequence are constructed as follows:

1. is initialized as a (q+1)-node trie consisting of a root node numbered 0 and

labeled NULL and q child nodes numbered 1, ..., q. Child node i is labeled a

ST

i.

 4

 _ Chapter 2 Background

2. During compression, the LZW algorithm finds the longest substring in the

uncompressed sequence that is a chunk represented by some node N on and

outputs N to S.Z. is then grown by adding a new node as a child of N. The

new node’s label is the next unencoded symbol in the sequence.

ST

ST

At the end of the compression, there are n+q nodes on . ST

The decompression procedure constructs the same trie and uses it to decode

S.Z. It is obvious that both compression and decompression can be done in time

O(u). The following observation makes it possible to construct from S.Z in time

O(n) without decoding S.Z [2]. Note that, in order to construct from S.Z, an

additional symbol is stored in each node. This additional symbol is the first symbol

of the string represented by the node.

ST

ST

ST

Observation. Each code S.Z[l] (1 ≤ l ≤ n-1) causes creation of a new node numbered

l+q as a child of node S.Z[l].

• The first symbol of node l+q is the first symbol of S.Z[l]’s chunk.

• The last symbol or the label of node l+q is the first symbol of S.Z[l+1]’s chunk if

S.Z[l+1] is different from l+q or the first symbol of S.Z[l] otherwise.

2.2 The Amir-Benson-Farach Algorithm

The Amir-Benson-Farach (ABF) algorithm [2] is an effective scheme which

finds the first pattern occurrence in LZW compressed sequence without

decompression. To facilitate pattern matching, the following terms of a node on

are defined with respect to pattern P.

ST

 5

 _ Chapter 2 Background

Definition 1: A chunk is a prefix chunk if it ends with a nonempty prefix of P.

Similarly, a chuck is a suffix chunk if it begins with a nonempty suffix of P.

Definition 2: A chunk is an internal chunk if it is an internal substring of P. That is,

the substring pi…pj is an internal chunk if 1 ≤ i ≤ j ≤ m.

Definition 3: The prefix number of a chunk is the length of the longest pattern prefix

the chunk ends with. Similarly, the suffix number of a chunk is the length of the

longest pattern suffix the chunk begins with.

Definition 4: The internal range [i, j] (1 ≤ i ≤ j ≤ m) of a chunk indicates that the chunk

is the internal substring pi…pj.

If a node’s chunk is a prefix chunk, a suffix chunk, or an internal chunk, the

node is called a prefix node, a suffix node, or an internal node, respectively.

Moreover, prefix number = 0, suffix number = 0, or internal range = [0, 0] means that

the node is not a prefix node, a suffix node, or an internal node, respectively.

The ABF algorithm consists of the Pattern Preprocessing part and the

Compressed Text Scanning part which are described separately below.

A. Pattern Preprocessing

The pattern is pre-processed to allow answering the following queries:

1 Let be a pattern prefix with prefix number (which is 0 if 1S xP 1S is a null

string) and be a string with internal range I (which is [0, 0] if is not an

internal substring of P).

2S 2S

1(,)xQ P I = the length of the longest pattern prefix that is a suffix of . 1S 2S

 6

 _ Chapter 2 Background

2 Let be a pattern prefix with prefix number (which is 0 if 1S xP 1S is a null

string) and be a pattern suffix with suffix number . 2S xS

1 2

2
1 2.

 , is the smallest index of where the pattern occures.
(,)

 0, no pattern occurs in
x x

i i S S
Q P S

S S
⎧

= ⎨
⎩

3 Let be an internal substring of P and α1S ∈Σ.

1

3 1
1 .

 [,], is the internal substring
(,)

 [0, 0], is not an internal substring of
i ji j S p p

Q S
S P
α

α
α

⎧
= ⎨
⎩

B. Compressed Text Scanning

The compressed text scanning part is further divided into two components: the

LZW Trie Construction and the Pattern Search. When constructing , each node is

assigned a node number, a first symbol, a label, a prefix number, a suffix number, and

an internal range. The Pattern Search part keeps track of the largest partial match

and finds out if the partial match can be extended to a complete match. The

compressed text scanning procedure is described below.

ST

Initialize: variable Prefix 0

for l = 1 to n do

(Let node S.Z[l]’s prefix number = , suffix number = and internal range = I.) xP xS

1 LZW Trie Construction

1.1 Add a new node numbered l+q to as a child node of S.Z[l]. Let α be

the label of node l+q.

ST

1.2 The first symbol of node l+q is that of node S.Z[l].

1.3 The label of node l+q is the first symbol of node S.Z[l+1]. (If S.Z[l+1] =

l+q then the label is S.Z[l]'s first symbol.)

 7

 _ Chapter 2 Background

1.4 If S.Z[l] is an internal node with corresponding string 1S

Set l+q's internal range [i, j] as 3 1(,)αQ S .

Else

Set l+q's internal range [i, j] as [0, 0].

1.5 If j = m, set l+q's suffix number as m-i+1. Otherwise, set l+q's suffix

number as . xS

1.6 Set l+q's prefix number as 1(,)αxQ P I , where αI is the internal range of α.

2 Pattern Search

If Prefix = 0

Prefix xP

Else // Prefix ≠ 0

If S.Z[l] is a suffix node // ≠ 0 xS

// Check the pattern occurrence with Q2(Prefix,Sx)

 If Q2(Prefix,Sx) ≠ 0

a pattern occurrence is found

If S.Z[l] is an internal node // I ≠ [0, 0]

Prefix Q1(Prefix,I)

Else // S.Z[l] is not an internal node

Prefix xP

To answer query Q3, we need to construct the suffix trie of P, denoted by PST .

Note that there are m nonempty suffixes of P and the number of nodes in PST is

O(). Moreover, there is a unique node on 2m PST which represents a specific

substring of P (even if the substring appears multiple times in P). Query 3 1(,)αQ S

can be easily answered by tracing PST . If there is a node representing substring 1S

 8

 _ Chapter 2 Background

on PST which has an outgoing edge labeled α, then α is an internal substring of P.

If no such outgoing edge exists, then α is not an internal substring of P and its

internal range is [0, 0].

1S

1S

Note that it is possible to reduce the space complexity of PST . A node on

PST is said to be explicit if and only if (iff) either it represents a suffix of P or it has

more than one child node. The nodes that are not explicit are said to be implicit.

One can construct the compacted PST which contains only explicit nodes of the

uncompacted PST by eliminating all implicit nodes in between two explicit nodes.

As a result, the label on each edge becomes a substring of P. The space complexity

can be reduced because the number of explicit nodes on the uncompacted PST is

O(m) [2].

Query Q3 can be answered with the compacted PST as follows. Let be

an internal substring of P. If is represented by a node, say node N, on the

compacted

1S

1S

PST , then α is an internal substring iff α is the first symbol of a label

on some outgoing edge of node N. Suppose that there is no node on the compacted

1S

PST which represents . In this case, one can find two nodes on the compacted 1S

PST , say nodes and , such that node represents the longest prefix (could

be empty) of and node represents the shortest internal substring of P which

contains

1N 2N 1N

1S 2N

1S as a prefix. Note that node is actually a parent node of node

on the compacted

1N 2N

PST . Assume that node represents substring . As a

result, α is an internal substring iff the

1N '
1S

1S '
1 1(| | | | 1)thS S− + symbol of the label on

the edge connecting nodes and is equal to α. 1N 2N

 9

 _ Chapter 2 Background

Queries Q1 and Q2 can be answered in constant time during text scanning if two

tables of space complexity O(m2) are constructed in advance [2]. Obviously, when

m is large, these two tables require significant amount of memory. In the following

chapter, we present a novel realization which requires only O(m) storage.

 10

 Chapter 3 An Efficient Pattern Matching Scheme In LZW Compressed Sequences

Chapter 3

An Efficient Pattern Matching Scheme in LZW

Compressed Sequences

3.1 An Efficient Realization of Amir-Benson-Farach

Algorithm

Let us consider the implementation of query Q2 first. Given a pattern P =

p1p2p3…pm of length m, we need two sets of bitmaps where each bitmap has m bits.

The first set, called prefix bitmaps, consists of m bitmaps that correspond to the m

possible prefix numbers 0, 1, 2, …, m-1. Let = denote the prefix

bitmap which corresponds to prefix number i-1. We assign = 1 iff k i and

p

iA 1 2... m
i i ia a a thi

k
ia ≤

i-k+1…pi-1 is a nonempty prefix of P, i.e.,
1 1...i k ip p− + − = 1... k 1p p −

. Note that pi-k+1…pi-1

represents a null string if k =1. Clearly, with the assignment, we have = 0 for all i,

1 i≤m, = 1 if 1<i m, and

1
ia

≤ i
ia ≤ j

ia = 0 if j > i.

The second set of bitmaps, called suffix bitmaps, consists of m-1 bitmaps which

correspond to the m-1 possible suffix numbers 1, 2, …, m-1. Again, the size of each

suffix bitmap is m bits. Let iB = be the suffix bitmap which

corresponds to suffix number i. Assign = 1 iff k m-i+1 and is

a nonempty suffix of P, i.e.,

1 2... m
i i ib b b thi

k
ib ≥ 1 2...− + − − +m i m i kp p 1

11 2...− + − −m i m i kp p + m = ...kp p . In other words, = 1 iff

the length-(m-k+1) prefix of

k
ib

1...− +m i mp p is a nonempty suffix of P. Similarly, with

 11

 Chapter 3 An Efficient Pattern Matching Scheme In LZW Compressed Sequences

the assignment, we have = 1 and 1− +m i
ib j

ib = 0 if j < m-i+1.

We now show that query can be answered with the two sets of

bitmaps. Let = i-1 and =k. In other words, we have =

2 (,)x xQ P S

xP xS 1S 1 1... ip p − , = 2S

1...− +m k mp p , and = 1S 2S 1 1 1... ...− − +i m k mp p p p . Note that = 1S 1... i 1p p − represents

a null string if i = 1. To answer query , we first perform the bitwise AND

operation of and

2Q

iA kB . Let R = denote the result, i.e., 1 2... mr r r R = iA ⊗ kB ,

where represents the bitwise AND operation. If i > 1 and there is a

cross-boundary pattern occurrence starting at the position of , then it must

hold that

⊗

thj 1S

1...j ip p − is a prefix of and P 1 2...− + − −m k m k i jp p + is a suffix of P. Since

1...j ip p − is a prefix of , we have P 1i j
ia − + = 1. Similarly, 1 2...− + − −m k m k i jp p + is a

suffix of P implies = 1. Consequently, the pattern occurrence can be detected

because it holds that = 1. To determine the first pattern occurrence, we need

only identify the rightmost 1 of R. Assume that the rightmost 1 of R occurs in the

 position, i.e., = 1 and = 0 for l+1

1i j
kb − +

1i jr − +

thl lr ir ≤ i≤m, then the first pattern occurrence is

found starting at the position of . There is no pattern occurrence

crossing the boundary of and if r

1(| | 2)thS l− + 1S

1S 2S x = 0 for all x, 1≤ x≤m. In the case that i =

1, i.e., is a null string, = 0 for all x, 11S x
ia ≤x≤m implies rx = 0 for all x, 1 x≤m

as expected. Note that the implementation can actually find all cross-boundary

pattern occurrences. This function will be used in the generalization to find all

pattern occurrences presented in Chapter 3.2.

≤

To implement query Q3, we need to construct the compacted suffix trie PST .

 12

 Chapter 3 An Efficient Pattern Matching Scheme In LZW Compressed Sequences

The answer of can be obtained by tracing the compacted 3Q PST , as mentioned

before. It is obvious that the implementation can result in correct answer for query

 and thus its proof is omitted. 3Q

Let us consider the implementation of query . A third set of m-bit bitmaps

are required. For convenience, we number the nonempty suffixes of P so that suffix

i is of length i, 1

1Q

≤ i m. We need a bitmap to be associated with each node on the

compacted

≤

PST . Consider the bitmap = NC 1 2 ... m
N N Nc c c associated with a

particular node N. Assign i
Nc = 0 for all i, 1≤ i≤m, if node N is the root node.

The bitmap associated with the root node is for the internal range [0, 0]. Assume

that node N is not the root node. It is clear that node N represents a unique

nonempty substring of P. Assign 1m k
Nc − + = 1 iff node N represents suffix k or the

node which represents suffix k is a descendent node of N. Note that the above

assignment results in = 1 iff the substring represented by node N is a

nonempty prefix of suffix k.

1m k
Nc − +

With the prefix bitmaps and the bitmaps associated with the nodes on the

compacted PST , one can now answer query . Let M be the node on the

LZW trie which represents the substring with internal range I. Also, let N

be the node on the compacted

1(,)xQ P I

ST 2S

PST which either represents the substring or the

substring it represents is the shortest substring represented by any node on the

compacted

2S

PST which contains as a prefix. Node M contains a pointer which

points to the bitmap associated with node N. To answer query , we

perform the bitwise AND operation of the prefix bitmap corresponding to prefix

2S

1(,)xQ P I

 13

 Chapter 3 An Efficient Pattern Matching Scheme In LZW Compressed Sequences

number and the bitmap pointed to by the pointer stored in node M. Let R =

 denote the result of the bitwise AND operation. If = 0 for all i, 1 i m,

then returns the prefix number of node M. Assume that = 1 for at least

one i. The answer of equals (k-1) + Dep(M) if = 1 and = 0,

k+1 i m, where Dep(M), the depth of node M, denotes the length of the chunk

represented by node M.

xP

1 2... mr r r ir ≤ ≤

1(,)xQ P I ir

1(,)xQ P I kr ir

≤ ≤

The correctness of the above implementation for query can be proved as

follows. Assume that = i-1 so that =

1Q

xP 1S 1... i 1p p − . If i > 1 and the longest

pattern prefix that is a suffix of starts at the position of , then it holds

that

1S 2S thj 1S

1...j ip p − is a prefix of and suffix m-i+j contains as a prefix. As a

result, we have

P 2S

1i j
ia − + = 1 and 1i j

Nc − + = 1 which implies 1− +i jr = 1. In other words,

such a prefix can be detected by the bitwise AND operation. Since we are looking

for the longest pattern prefix, the rightmost 1 of R is selected. If it happens in the

 position, then the symbol thk 1i kp − + starts the longest pattern prefix whose length is

equal to (k-1) + Dep(M). Of course, if = 0 for all i, 1ir ≤ i≤m, then the longest

pattern prefix is completely contained in , which implies the length of the longest

pattern prefix is equal to the prefix number of node M. Therefore, the above

implementation does result in correct answer for query .

2S

1Q

Below are two examples.

Example 1. Let P = abcab. Table 3-1 and Table 3-2 show the prefix bitmaps and

the suffix bitmaps of P, respectively. As an example of query Q2, assume that = 1S

 14

 Chapter 3 An Efficient Pattern Matching Scheme In LZW Compressed Sequences

abca and = bcab. Consequently, we have = 4, = 4, and R = 01001.

For this example, the first pattern occurrence starts at the first position of . In fact,

as indicated by the two 1’s appeared in R, there are two pattern occurrences in .

2S xP xS

1S

1S 2S

Table 3-1. Prefix bitmaps of P =

abcab
Px Prefix Bitmap # Bitmap
0 NULL 1 00000
1 a 2 01000
2 ab 3 00100
3 abc 4 00010
4 abca 5 01001

Table 3-2. Suffix bitmaps of P =
abcab

Sx Suffix Bitmap # Bitmap
1 b 1 00001
2 ab 2 00010
3 cab 3 00100
4 bcab 4 01001

Example 2. Let P = ababc. Table 3-3 shows the prefix bitmaps of P. For ease of

description, we use the uncompacted suffix trie PST of P as illustrated in Figure 3-1.

The bitmaps associated with the explicit nodes of PST are given in Table 3-4. As

an example of query Q1, assume that = abab and the internal range I = [1, 2] (or [3,

4]) which represents substring = ab. In our implementation, I = [1, 2] (or [3, 4])

is represented by node 2 of the uncompacted suffix trie

1S

2S

PST . Since the prefix

number of 1S is 4 with corresponding prefix bitmap 00101 and the bitmap associated

with node 2 on PST is 10100, we have R = 00100. In other words, one pattern

prefix starting at the third position of is found. As a result, the answer of query

(4, [1, 2]) (or (4, [3, 4])) is (3-1) + | | = 2 + 2 = 4. As another example, if

= ab and I = [2, 4] (the bitmap to be used is the one associated with node 9 of

1S

1Q 1Q 2S

1S PST)

which represents substring = bab, then we have = 2 and R = 00100 01000 =

00000. In this case, the answer of query Q

2S xP ⊗

1(2, [2, 4]) is 2, which is the prefix

number of bab.

Let us consider now examples of query Q3. Assume that = ab which is 1S

 15

 Chapter 3 An Efficient Pattern Matching Scheme In LZW Compressed Sequences

represented by node 2 of the uncompacted PST . If α = b, then we have 3 1(,)αQ S

= [0, 0] because there is no transition from node 2 to any node with label b.

However, if α = c, then we have 3 1(,)αQ S = [1, 3] which is represented by node 10

of PST .

Table 3-3. Prefix bitmaps of P =

ababc
Px Prefix Bitmap # Bitmap
0 NULL 1 00000
1 a 2 01000
2 ab 3 00100
3 aba 4 01010
4 abab 5 00101

0

a b c
1 6 12
b a c
2 7 11
a c b
3 10 8
b c
4 9
c
5

Table 3-4. Bitmaps associated
with explicit nodes
Explicit node Bitmap

0 00000
2 10100
5 10000
6 01010
9 01000
10 00100
11 00010
12 00001

Figure 3-1. The uncompacted suffix trie STp of
P = ababc

3.2 Generalization to All Pattern Occurrences

As mentioned before, the pattern occurrence checking in the original ABF

algorithm is only performed cross two consecutive data blocks. Moreover, only the

 16

 Chapter 3 An Efficient Pattern Matching Scheme In LZW Compressed Sequences

first occurrence is reported. To generalize the ABF algorithm to find all pattern

occurrences, we need to consider all pattern occurrences cross two consecutive data

blocks and those inside a data block as well. Our implementation presented in

Chapter 3.1 allows detection of all pattern occurrences cross two consecutive data

blocks. Therefore, the remaining work is to detect all pattern occurrences inside a

data block. The generalization is designed to also report the absolute positions of

pattern occurrences. Reporting the absolute positions of all occurrences may be

desirable to some applications.

To detect all pattern occurrences inside a data block, we add two fields, called

pattern inside flag (PIF) and pattern inside pointer (PIP), to every node of the LZW

trie . The PIF flag is an indication of existence of patterns inside the chunk and

the PIP pointer is used for backtracking to find the positions of all pattern occurrences

inside the chunk. For the root node, its PIF is 0 and its PIP pointer points to the node

itself, which is also 0. Assume that a new node M is to be added as a child node of

node N. The PIP pointer of node M inherits the PIP value of node N if N is not a

final node, i.e., a node whose chuck ends with the complete pattern P. To identify

final nodes, we let the prefix number of a final node equal m. In case node N is a

final node, the PIP pointer of node M points to node N. Similarly, the PIF of node M

inherits the PIF value of node N unless the PIF of node N is 0 and node M is a final

node. In this case, we set the PIF of node M to 1. With these additional fields, one

can trace back the LZW trie to find all pattern occurrences inside a chuck. The

trace-back ends once a node with PIP pointer points to the root node, i.e., PIP = 0, is

reached. Note that although PIF can be replaced by the PIP pointer and the prefix

number (PIF = 1 is equivalent to PIP

ST

≠ 0 or prefix number = m), we suggest to use

PIF to simplify the checking of pattern existence inside a chunk.

 17

 Chapter 3 An Efficient Pattern Matching Scheme In LZW Compressed Sequences

Note that, since we allow the prefix number of a node to be equal to m, we need

to add to the set of prefix bitmaps an additional prefix bitmap corresponding to prefix

number = m. The contents of the bitmap are assigned with the same algorithm

described in Chapter 3.1. It is clear that the value of the variable Prefix may equal m

too. However, it does not cause any error because the bitmap corresponding to

prefix number = m is the same as the bitmap corresponding to prefix number = k,

where 1...− +m k mp p is the longest suffix of P which is also a proper prefix of P, i.e., a

prefix which is not P itself.

For convenience, we also allow the suffix number of a node to be equal to m.

As a consequence, another bitmap corresponding to suffix number = m is added to the

set of suffix bitmaps. Again, the contents of the added suffix bitmap are assigned

according to the algorithm described in Chapter 3.1 and the additional suffix bitmap

does not cause any error because = 0 for all i, 11
ia ≤ i≤m+1.

To report absolute positions of pattern occurrences, we can rely on the depth

fields of nodes on the LZW trie and a global variable COUNT which stores the

number of bytes in text that have been scanned. Computation of the depth field

is simple. The depth of the root node is 0. When node M is added as a child node

of node N, the depth of node M equals that of node N plus one. Clearly, with the

depth fields, one can compute the position of a node inside a chuck, which, together

with the global variable COUNT, can be used to determine the absolute position of

any pattern occurrence. The overall generalized algorithm is described below.

ST

S

 18

 Chapter 3 An Efficient Pattern Matching Scheme In LZW Compressed Sequences

A. Pattern Preprocessing

The prefix bitmaps and the suffix bitmaps are computed. Also, the compacted

suffix trie PST of pattern P with the associated bitmaps are determined.

B. Compressed Text Scanning

When constructing the LZW trie , each node’s node number, label, prefix

number, suffix number, internal range, the first symbol, depth, PIF, and PIP are

computed and stored. The compressed text scanning procedure is described below.

ST

Initialize: Prefix 0, COUNT 0

for l = 1 to n do

(Let node S.Z[l]’s prefix number = , suffix number = , internal range = I, PIF =

F and depth = D.)

xP xS

1 LZW Trie Construction

1.1 Add a new node numbered l+q to as a child node of S.Z[l]. Let α be

the label of node l+q.

ST

1.2 The first symbol of node l+q is that of node S.Z[l].

1.3 The label of node l+q is the first symbol of node S.Z[l+1]. (If S.Z[l+1] =

l+q then the label is S.Z[l]'s first symbol.)

1.4 If S.Z[l] is an internal node with corresponding string 1S

Set l+q's internal range [i, j] as 3 1(,)αQ S .

Else

 Set l+q's internal range [i, j] as [0, 0].

1.5 If j = m, set l+q's suffix number as m-i+1. Otherwise, set l+q's suffix

number as . xS

1.6 Set l+q's prefix number as 1(,)αxQ P I , where αI is the internal range of α.

 19

 Chapter 3 An Efficient Pattern Matching Scheme In LZW Compressed Sequences

1.7 If F = 0 and l+q's prefix number = m, then l+q's PIF 1.

 Else, l+q's PIF F.

1.8 Set the depth of node l+q as D+1.

1.9 If = m, then l+q's PIP S.Z[l]. xP

Else, l+q's PIP S.Z[l]’s PIP.

2 Pattern Search

If ≠ 0 xS

Check cross-boundary occurrences with the bitwise AND operation for query

Q2(Prefix,). Let R = be the result of the bitwise AND operation. xS 1 2... mr r r

for k = 1 to m do

If = 1 kr

Report the position: COUNT – k + 2

If F = 1 // Pattern is inside S.Z[l]

If = m xP

Report the position: COUNT + D – m + 1

N S.Z[l]’s PIP

While N ≠ 0

Report the position: COUNT + Dep(N) – m + 1

N N’s PIP

Prefix Q1(Prefix,I) // Note that the answer of Q1(Prefix,I) is , if the result of

bitwise AND operation for Q

xP

1(Prefix,I) is all-zero

COUNT COUNT + D

The following example illustrates the process to detect all pattern occurrences

and report their absolute positions.

 20

 Chapter 3 An Efficient Pattern Matching Scheme In LZW Compressed Sequences

Example 3. As in Example 2, let P = ababc. The prefix bitmaps and the suffix

bitmaps are shown in Tables 3-5 and 3-6, respectively. Since the suffix trie of

pattern P and the bitmaps associated with the explicit nodes are not changed, they are

not reproduced here. Assume that some of the compressed text had been processed

and the current value of COUNT = 100. Assume further that the last three chunks

that had been processed are xxx, xxxx, and xaba, and the current chunk to be processed

is = bcababcxababcxx. pN

Table 3-7 shows the contents of the nodes along the path from the root node to node

 on the LZW tire. Note that there are two pattern occurrences inside the current

chunk which can be determined by tracing back the PIP pointers. Table 3-8 shows a

brief summary of the results when the last three chunks are processed. The

procedure of pattern detection with report of absolute occurrence positions in

processing is sketched below.

pN

pN

• Reporting absolute positions of cross-boundary pattern occurrences:

Since Np’s suffix number = 2 ≠ 0

// Check cross-boundary occurrences with bitmaps:

Prefix = 3 with corresponding bitmap 01010.

Np’s suffix number = 2 with corresponding bitmap 00010.

The result of bitwise AND operation R = 01010⊗00010 = 00010.

 The absolute occurrence position COUNT – 4 + 2 = 98 is reported.

• Reporting absolute positions of inside-chunk pattern occurrences:

Since ’s PIF = 1 pN

Since ’s PIP = NpN 2 ≠ 0

The absolute occurrence position COUNT + Dep(N2) – m + 1 = 109 is

 21

 Chapter 3 An Efficient Pattern Matching Scheme In LZW Compressed Sequences

reported.

Since N2’s PIP = N1 ≠ 0

The absolute occurrence position COUNT + Dep(N1) – m + 1 = 103 is

reported.

Since N1’s PIP = 0

 The trace-back ends.

Table 3-5. Prefix bitmaps of P = ababc
Px Prefix Bitmap # Bitmap
0 NULL 1 00000
1 a 2 01000
2 ab 3 00100
3 aba 4 01010
4 abab 5 00101
5 ababc 6 00000

Table 3-6. Suffix bitmaps P = ababc
Sx Suffix Bitmap # Bitmap
1 c 1 00001
2 bc 2 00010
3 abc 3 00100
4 babc 4 01000
5 ababc 5 10000

Table 3-7. Contents of nodes along the path from root to Np on Ts

Node
number

Label
First

symbol
Prefix

number
Suffix

number
Internal range PIF PIP Depth

0 (root) NULL - - - - 0 0 0
 b b 0 0 [2, 2] (or [4, 4]) 0 0 1
 c b 0 2 [4, 5] 0 0 2
 a b 1 2 [0, 0] 0 0 3
 b b 2 2 [0, 0] 0 0 4
 a b 3 2 [0, 0] 0 0 5
 b b 4 2 [0, 0] 0 0 6

N1 c b 5 (= m) 2 [0, 0] 1 0 7
 x b 0 2 [0, 0] 1 N1 8
 a b 1 2 [0, 0] 1 N1 9
 b b 2 2 [0, 0] 1 N1 10
 a b 3 2 [0, 0] 1 N1 11
 b b 4 2 [0, 0] 1 N1 12

N2 c b 5 (= m) 2 [0, 0] 1 N1 13
 x b 0 2 [0, 0] 1 N2 14

Np x b 0 2 [0, 0] 1 N2 15

 22

 Chapter 3 An Efficient Pattern Matching Scheme In LZW Compressed Sequences

Table 3-8. Brief summary of the results when the last

three chunks are processed
 The last three

chunks that had
been processed

Np

S =… xxx xxxx xaba bcababcxababcxx
Depth = 3 4 4

COUNT = 92 96 100
Prefix = 0 0 3

 23

 _ Chapter 4 Related Work

Chapter 4

Related Work

A different bitmap based implementation was independently developed by two

groups of researchers [5] and [6]. The scheme proposed in [5] is more general than

the one presented in [6] and thus we will follow its description and call it the

Navarro-Raffinot (NR) scheme. As our generalization, the NR scheme can find all

pattern occurrences and report their absolute positions. Below is a description of the

NR scheme extracted from [5].

The NR scheme is a general technique to perform string matching when the text

is presented as a sequence of atomic strings, called blocks, instead of a sequence of

symbols. The blocks either have just one symbol or are formed by concatenating

previously seen blocks. Let T' denote the text already processed at any moment of

the search. When the search process is over, it holds that T' = T, the original text.

The blocks are processed one by one. For each new block B, a description for

B which has all the information of the block that is relevant for the search is computed.

This description is denoted by D(B) =(L, O, S, P, M), where

• L = |B|, the length of B in symbols

• O = Offs(B) = the length in symbols of the text we had processed when B

appeared

• S = Suff(B) = all the pattern positions which either start a complete occurrence

of B inside the pattern, or start a proper pattern suffix which matches with a

prefix of B. Formally,

Suff(B) = {|x|, P = xBy} ∪ {|x|, |x| > 0 ∧ |z| > 0 ∧ P = xz ∧ B = zy}

• P = Pref(B) = all the pattern positions which either follow a complete occurrence

of B inside the pattern, or follow a proper pattern prefix which matches with a

suffix of B. Formally,

Pref(B) = {|xB|, P = xBy ∧ |y| > 0} ∪ {|z|, |z| > 0 ∧ |y| > 0 ∧ P = zy ∧

B = xz }

 24

 _ Chapter 4 Related Work

• M = Matches(B) = all the block positions where the pattern occurs (Ø if |B| <

|P|). Formally,

Matches(B) ={|x|, B = xPy}

Note that, to simplify the notation, the pattern positions start at zero in the above

description, while in previous chapters, the pattern positions start at one.

There are two cases for a new block B: (a) the block is a symbol or (b) the block

is a concatenation of other blocks previously known. For case (a), the description

D(B) can be obtained directly and, for case (b), it can be derived from the descriptions

of the previous blocks.

Once the description of the new block is computed, it is used to update the states

of the search. This concludes the processing of a block and the search process

moves to the next one. The states of the search contains the matches that have

already occurred and the potential matches in progress, that is,

• Res(T') = the text positions that matched up to now. Formally,

Res(T') = {|x|, T' = xPy}

• Active(T') = the set of positions following the pattern prefixes which match a

suffix of the current text. Formally,

Active(T') = {|x|, |x| > 0 ∧ |y| > 0 ∧ P = xy ∧ T' = zx}

Hence, when the text processing is complete and T' is the whole text, Res(T) is

the answer. The initial state of the search is Res(ε) = Active(ε) = Ø, and T' =ε ,

where ε denotes the empty string.

Four operations which are used in the search process are defined below [5].

• Lefti, which receives a set of Suff() positions not smaller than i, subtracts i to all

them and then adds new pattern positions filling the holes left by the shift.

Formally,

Lefti(X) = {x−i, x∈X} ∪ {m−i, m−i+1, …., m−1}

• Righti, which does the same for Pref() positions, in the other direction.

Formally,

Righti (X) = {x+i, x∈X} ∪ {1,2, …., i}

 25

 _ Chapter 4 Related Work

• Addi(X) = {i + x, x∈X}, which adds i to all the elements of the set.

• Subtri(X) = {i − x, x∈X}, which subtracts all the elements of the set from i.

The base case of the scheme is to obtain the description of a block which is a

symbol a. We have

• |B| = 1

• Offs(B) = |T'|

• Suff(B) = {|x|, P = xay}

• Pref(B) = {|xa|, P = xay ∧ |y| > 0}

• Matches(B) = if P = a then {0} else Ø

which are direct applications of the general formulas.

Assume that block B is defined as the concatenation of one or more previous

blocks. If B is identical to one previous block B', we just copy the description of B'

for B. Assume that B is a concatenation of two blocks B1 and B2. Note that it

suffices to study concatenation of two blocks because the case of more than two

blocks is a simple iteration over this procedure. We have to obtain the description

for their concatenation D(B) = D(B1B2) = D(B1) · D(B2) (where · is a notation for

concatenation of block descriptions). The formulas were given in [5] as follows

• |B| = |B1| + |B2|

• Offs(B) = |T'|

• Suff(B) = Suff(B1) Left∩ |B1|(Suff(B2))

• Pref(B) = Pref(B2) Right∩ |B2| (Pref(B1))

• Matches(B) = Matches(B1) ∪ Add|B1|(Matches(B2))

∪ (Subtr|B1|(Pref(B1) ∩ Suff(B2)) ∩ {0, 1, 2,…., |B|−m})

We need to update the states of the search after processing a new block B. The

formulas to obtain the new Res(T'B) and Active(T'B) values from the old Res(T') and

Active(T') ones are

• Active(T'B) = Right|B|(Active(T')) ∩ Pref(B)

• Res(T'B) = Res(T') ∪ Add|T'|(Matches(B))

∪ Subtr|T'|(Active(T') ∩ Suff(B) ∩ {m−|B|, m−|B|+1,…, m−1})

 26

 _ Chapter 4 Related Work

The above searching technique can be easily realized with two sets of bitmaps,

Pref(B) and Suff(B), for every block B. The length of every bitmap for Pref(B) and

Suff(B) is equal to m, the pattern length. Obviously, for LZW compressed sequences,

the number of bitmaps for Pref(B) and Suff(B) is the same as the number of nodes on

the LZW trie. This number tends to be large for a big file. The states of the search,

i.e., Res(T') and Active(T'), and the result of each block B, i.e., Matches(B), can be

represented by either bitmaps or arrays of numbers. In the comparison presented in

Chapter 5, we assume that Active(T') is represented by an m-bit bitmap and Res(T')

and Matches(B) are represented by arrays of numbers. The reason to represent

Res(T') as an array of numbers is that it is more space efficient because the number of

pattern occurrences is usually much smaller than the file size. The reason to

represent Matches(B) as an array of numbers is simply because the length of block B

is not fixed.

 27

 ______________ _ Chapter 5 Comparison and Experimental Results

Chapter 5

Comparison and Experimental Results

In this chapter, we compare the performance of our generalized algorithm with

the one that performs decompression followed by pattern searching with the KMP

algorithm [8]. The algorithms were implemented in C++ and the experiments were

carried out on a PC with an AMD Athlon XP 1800+ CPU operated at 1.15GHz with

224MB of RAM running Microsoft Windows XP operating system. In the first test

case, we use dosx.exe (an executable file in Windows) as our text which contains no

pattern at all. The uncompressed size of dosx.exe is 53856 bytes. In the second

test case, we insert various numbers of patterns with m = 4 in dosx.exe at randomly

selected positions. The experimental results of test cases 1 and 2 are shown in

Figures 5-1 and 5-2, respectively. As one can see, in comparison with the

decompress-then-search algorithm, our proposed generalized algorithm has

significantly better performance as expected. The performance of the NR scheme is

very close to that of our generalized algorithm and thus is not shown in the figures.

However, we can compare the space requirements of our generalized algorithm and

the NR scheme.

 28

 ______________ _ Chapter 5 Comparison and Experimental Results

0

10

20

30

40

50

10 20 30 40 50 60 70 80 90
pattern length(m), bytes

pr
oc

es
si

ng
 ti

m
e,

 m
s

Decompress then KMP

Our Scheme

Figure 5-1. Performance comparison for test case 1

0

50

100

150

200

250

1 10 20 30 40 50 60 70 80 90 100

number of pattern occurrences(r)

pr
oc

es
si

ng
 ti

m
e,

 m
s

Decompress then KMP

Our Scheme

Figure 5-2. Performance comparison for test case 2

 29

 ______________ _ Chapter 5 Comparison and Experimental Results

In our generalized algorithm, the number of bitmaps, including prefix bitmaps,

suffix bitmaps, and the bitmaps associated with the nodes on the compacted suffix trie

PST is O(m). The LZW trie takes space O(t), where t is the number of nodes

on . The prefix number, the suffix number, and the internal ranges stored in every

node of are replaced by three pointers, each of size O() bits, which point to

the appropriate bitmaps. Therefore, the space complexity of our generalized

algorithm is O(m+t). For the NR scheme, the space complexity is O(t+r), where r is

the number of pattern occurrences in text . Each of the O(t) descriptions contains

five elements, L, O, S, P and M. Hence, there are O(t) bitmaps of S and O(t) bitmaps

of P, each of the bitmaps has size m bits. Clearly, the space requirement of these

two sets of bitmaps increases proportional to the size of the LZW trie. Another

significant difference between the NR scheme and our generalized scheme is that the

number of pattern occurrences r affects the space requirement of the NR scheme, but

not ours. This effect will be studied later. Since the element O is not necessary for

every node, we assume that it is omitted and instead a global counter COUNT is

adopted in comparison.

ST

ST

ST 2log m

S

We ignore the space requirement of the NR scheme caused by r, that is, we

intentionally let r = 0, in the third test case. The text used in test case 3 is

dfrgntfs.exe (an executable file in Windows) whose uncompressed size is 104960

bytes. Comparison of the space requirements of our generalized scheme and the NR

scheme for test case 3 is shown in Figure 5-3. It can be seen from the curves that our

generalized scheme requires less storage than the NR scheme does if the pattern

length is longer than 25.

In test cases 4 and 5 we use case4.txt (a randomly generated text file with 3000

 30

 ______________ _ Chapter 5 Comparison and Experimental Results

patterns inserted) of uncompressed size 296126 bytes and case5.txt (another randomly

generated text file with 18000 patterns inserted) of uncompressed size 1705714 bytes

as the texts, respectively. Figures 5-4 and 5-5 show, respectively, the space

requirements under these two test cases for different pattern lengths. The NR

scheme requires significantly more memory space than our generalized scheme,

especially for long patterns. In Figure 5-6, we show the space requirements for

pattern length m = 25 with various numbers of patterns inserted in dfrgntfs.exe. The

uncompressed size of the modified dfrgntfs.exe is 249860 bytes. As one can see, the

space requirement of the NR scheme increases as r increases while the space

requirement of our generalized scheme is insensitive to the value of r.

 31

 ______________ _ Chapter 5 Comparison and Experimental Results

110000

210000

310000

410000

510000

610000

710000

810000

910000

1010000

1 10 20 30 40 50 60 70 80 90
pattern length(m), bytes

re
qu

ire
d

m
em

or
y

si
ze

, b
yt

es
Our Scheme
Navarro-Raffinot Scheme

Figure 5-3. Comparison of space requirements for test case 3

40000

75000

110000

145000

180000

215000

250000

285000

320000

1 10 20 30 40 50 60 70 80 90
pattern length(m), bytes

re
qu

ire
d

m
em

or
y

si
ze

, b
yt

es

Our Scheme
Navarro-Raffinot Scheme

Figure 5-4. Comparison of space requirements for test case 4

 32

 ______________ _ Chapter 5 Comparison and Experimental Results

110000

160000

210000

260000

310000

360000

410000

460000

510000

1 10 20 30 40 50 60 70 80 90
pattern length(m), bytes

re
qu

ire
d

m
em

or
y

si
ze

, b
yt

es
Our Scheme
Navarro-Raffinot Scheme

Figure 5-5. Comparison of space requirements for test case 5

436000

437000

438000

439000

440000

441000

442000

443000

444000

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

number of pattern occurrences(r)

re
qu

rie
d

m
em

or
y

si
ze

, b
yt

es

Our Scheme

Navarro-Raffinot Scheme

Figure 5-6. Comparison of space requirements for different number of
pattern occurrences (m is fixed to be 25)

 33

 Chapter7 Conclusions

Chapter 6

Conclusion

We have presented in this thesis an efficient bitmap-based realization of the

Amir-Benson-Farach algorithm for pattern search in LZW compressed sequences.

The realization is then generalized to detect all pattern occurrences and report the

absolute match positions. It is shown with experimental results that our proposed

realization performs pattern search much faster than the decompress-then-search

scheme. Moreover, compared with the Navarro-Raffinot scheme, another algorithm

which can be realized with bitmaps, our proposed generalized algorithm requires less

storage when the pattern is longer than 25 bytes. The difference could be huge if the

number of pattern occurrences in the text is large. An interesting further research

topic which is currently under investigation is to apply the idea of our design to

pattern search with other compression techniques.

 34

 Bibliography

Bibliography

[1] Welch, T.A.: ‘A technique for High-Performance Data Compression’, June 1984,

IEEE Computer, 17(6): 8-19

[2] Amir, A., Benson, G., and Farach, M.: ‘Let Sleeping Files Lie: Pattern Matching

in Z-Compressed Files’, April 1996, Journal of Computer and System Sciences,

vol. 52, pp. 299-307

[3] Tao, T., and Mukherjee, A.: ‘Pattern Matching in LZW Compressed Files’,

August 2005, IEEE Transactions on Computers, vol. 54, no. 8, pp. 929-938

[4] Ho, M.H., and Yen, H.C.: ‘A Dictionary-based Compressed Pattern Matching

Algorithm’, IEEE Proceedings of the 26th Annual International Computer

Software and Applications Conference, Oxford, England, August 2002, pp.

873-878

[5] Navarro G., and Raffinot, M.: ‘A General Practical Approach to Pattern

Matching over Ziv-Lempel Compressed Text’, Proc. 10th Ann. Symp. on

Combinatorial Pattern Matching, Springer-Verlag, London, UK, 1999, Lecture

Notes in Computer Science, vol. 1645, pp. 14-36

[6] Kida, T., Takeda, M., Shinohara, A., and Arikawa, S.: ‘Shift-And Approach to

Pattern Matching in LZW Compressed Text’, Proc. 10th Ann. Symp. on

 35

 Bibliography

Combinatorial Pattern Matching, Springer-Verlag, London, UK, 1999, Lecture

Notes in Computer Science, vol. 1645, pp. 1–13

[7] Kida, T., Takeda, M., Shinohara, A., Miyazaki, M., and Arikawa, S.: ‘Multiple

Pattern Matching in LZW Compressed Text’, 2000, J. Discrete Algorithms, vol.

1, no. 1, pp. 133-158

[8] Knuth, D.E., Morris, J.H., and Pratt, V.R.: ‘Fast Pattern Matching in Strings’,

1977, SIAM Journal on Computing, 6, (2), pp.323-350

 36

簡歷

一、 個人資料

姓名 黃迺倫

性別 女

生日 1981/11/29

E-mail nellen.cm93g@nctu.edu.tw

實驗室 交大電信所 網路技術實驗室 (工程四館 823 室)

二、 學歷

國小 桃園縣新明國民小學

國中 桃園縣私立復旦高級中學國中部

高中 桃園縣私立復旦高級中學高中部

大學 國立交通大學電信工程學系

研究所 國立交通大學電信工程學系 碩士班 系統組

碩士畢業去向 國立交通大學電信工程學系 博士班 系統組

 37

