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Efficient Pattern Matching Scheme in LZW

Compressed Sequences

Student: Nai-Lun Huang Advisor: Prof. Tsern-Huei Lee

Institute of Communication Engineering

National Chiao Tung University

Abstract

Compressed pattern matching (€PM) is an emerging research field addressing the
problem: Given a compressed sequence and-a pattern; find the pattern occurrence(s) in
the (uncompressed) sequence with minimal-(or no) decompression. It can be applied
to detection of computer virus "and «confidential information leakage in compressed
files directly. In this thesis, we ‘report.our. work of CPM in LZW compressed
sequences. LZW is one of the most effective compression algorithms used
extensively. We propose a simple bitmap-based realization of the well-known
Amir-Benson-Farach algorithm. We also generalize the algorithm to find all pattern
occurrences (rather than just the first one) and to report their absolute positions in the
uncompressed sequence. Experiments are conducted to compare the performance of
our proposed generalization with the decompress-then-search scheme. We found
that our proposed generalization is much faster than the decompress-then-search
scheme. The memory space requirement of our proposed generalization is compared
with that of the Navarro-Raffinot scheme, an alternative CPM algorithm which can
also be realized with bitmaps. Results show that our proposed generalization has
better space performance than the Navarro-Raffinot scheme for moderate and long

patterns.
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Chapter 1 Introduction

Chapter 1

Introduction

As the population of communication networks users grows at a rapid rate, it is
expected that the networks be capable of delivering data more effectively. In other
words, how to utilize the transmission bandwidth efficiently is a key upon which the
success of the communication networks heavily relies.  Obviously, an economic way
to utilize limited bandwidth efficiently is to send smaller amount of data by using data
compression mechanisms.  Accordingly, compressed pattern matching (CPM) that
performs pattern search directly on the compressed data without initial decompression
gains more and more attention; * The CPM" problem is often defined as: Given a
compressed sequence and a pattern, find the . pattern occurrence(s) in the
(uncompressed) sequence with: ‘minimal (or.~no) decompression. Possible
applications of CPM include detection of computer virus and confidential information

leakage in compressed files directly.

Since LZW [1] is one of the most effective and popular lossless compression
algorithms, CPM in LZW compressed sequences is quite important. In the last
decade, many related researches have been conducted. The first CPM algorithm
which finds the first pattern occurrence in an LZW compressed file was presented in
[2]. The complexity of the algorithm is O(n+m?) in both time and space, where n
and m are, respectively, the lengths of the compressed text and the pattern. It was
shown that, with different implementations, one can trade between the amount of

extra space used and the algorithmm’s time complexity. This algorithm is now
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well-known and will be referred to as the Amir-Benson-Farach (ABF) algorithm in
this thesis. Details of the ABF algorithm are presented in Chapter 2.2. In [3], the
ABF algorithm is extended to find all pattern occurrences. The basic idea is to use a
flag to indicate that complete pattern occurs inside a compressed data block, in
addition to checking pattern occurrences across two consecutive blocks. However,
the algorithm cannot tell how many occurrences are there inside a block. Moreover,
there is no discussion about how to efficiently realize it. In [4], another CPM
algorithm was proposed to do decompression and pattern matching on-the-fly. The
drawback of the algorithm is its high computation complexity because it still needs
partial decompression. Reference [5] presented a general scheme to find all pattern
occurrences in sequential blocks and realized the scheme by using the technique of
bit-parallelism.  This scheme can'be applied to:LZ-family compression algorithms
such as LZW and LZ77 and-will be referred.to- as the Navarro-Raffinot (NR)
algorithm in this thesis. A-similar-bitmap based implementation for pattern
matching in LZW compressed sequences was independently proposed in [6]. The

scheme was then generalized to match multiple patterns simultaneously [7].

In this thesis, we present our work of CPM in LZW compressed sequences.
We propose a simple and efficient realization of the ABF algorithm. Moreover, a
generalization of the ABF algorithm to find all pattern occurrences and report their
absolute positions in the uncompressed sequence is presented. Experiments are
conducted to compare the performance of our proposed generalization with the
decompress-then-search scheme.  We found that our proposed generalization
significantly outperforms the decompress-then-search scheme. When compared
with the NR scheme, our proposed generalization requires less memory space for

moderate and long patterns with roughly the same throughput performance.

2



Chapter 1 Introduction

The rest of this thesis is organized as follows. Chapter 2.1 and Chapter 2.2
give brief reviews of LZW and ABF algorithms, respectively. Efficient realization
of the ABF algorithm with bitmaps is presented in Chapter 3.1, followed by the
generalization for all pattern occurrences in Chapter 3.2. Chapter 4 describes the
most related work, i.e., the NR scheme. Experimental results and comparisons are

shown in Chapter 5.  Finally, Chapter 6 concludes this thesis.
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Chapter 2

Background

2.1 The LZW Compression Algorithm

In this chapter, we briefly review the LZW compression algorithm and the
corresponding decompression procedure [1]. The notations used here are similar to
those in [2]. Let S = c;cac3...c, be the uncompressed sequence (or text) of length u
over alphabet ~ = {a;, a,, as, ..., a,}, where q is the size of the alphabet. The LZW
compressed format of S is S.Z and each code in S.Z is S.Z[i], where 1< S.Z[i]< nt+g-1
fori =1, ..., n. The pattern being searched 1S'P:= p;pps...pm, Where m denotes the
length of P and p;eX for 1<i<m. 'For convenience, we use the notation §, S, to

denote the concatenation of two.strings~.S, _and. S,.

The LZW is a dictionary-based compression algorithm that uses a trie 7y to
generate the compressed sequence. Each node on 7, contains:
e A node number: A unique number in the range [0, ntg-1]. (“node N’ or “N”
represents “the node numbered N in this thesis.)
e A label: A symbol belonging to .
e A chunk: The string that the node represents. It is simply the concatenation of

the labels on the path from root to the node.

T, and the compressed sequence are constructed as follows:
1. T, is initialized as a (g+1)-node trie consisting of a root node numbered 0 and

labeled NULL and ¢ child nodes numbered 1, ..., g. Child node i is labeled a;.

4



Chapter 2 Background

2. During compression, the LZW algorithm finds the longest substring in the
uncompressed sequence that is a chunk represented by some node N on 7; and
outputs Nto S.Z. T is then grown by adding a new node as a child of N. The
new node’s label is the next unencoded symbol in the sequence.

At the end of the compression, there are n+g nodes on 7.

The decompression procedure constructs the same trie 7, and uses it to decode
S.Z. It is obvious that both compression and decompression can be done in time
O(u). The following observation makes it possible to construct 7, from S.Z in time
O(n) without decoding S.Z [2]. Note that, in order to construct 7; from S.Z, an
additional symbol is stored in each node. This additional symbol is the first symbol

of the string represented by the node.

Observation. Each code S.Z[/]«(1 < l<n-1)-causes creation of a new node numbered
[+q as a child of node S.Z[/].

o The first symbol of node /+q is the first symbol of S.Z[/]’s chunk.

e The last symbol or the label of node /+¢ is the first symbol of S.Z[/+1]’s chunk if

S.Z[1+1] is different from /+¢q or the first symbol of S.Z[/] otherwise.

2.2 The Amir-Benson-Farach Algorithm

The Amir-Benson-Farach (ABF) algorithm [2] is an effective scheme which
finds the first pattern occurrence in LZW compressed sequence without

decompression. To facilitate pattern matching, the following terms of a node on 7§

are defined with respect to pattern P.
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Definition 1: A chunk is a prefix chunk if it ends with a nonempty prefix of P.
Similarly, a chuck is a suffix chunk if it begins with a nonempty suffix of P.
Definition 2: A chunk is an internal chunk if it is an internal substring of P. That is,
the substring p;...p; is an internal chunk if 1 <i<j< m.

Definition 3: The prefix number of a chunk is the length of the longest pattern prefix
the chunk ends with. Similarly, the suffix number of a chunk is the length of the
longest pattern suffix the chunk begins with.

Definition 4: The internal range [i, j] (1< i<j< m) of a chunk indicates that the chunk

is the internal substring p;...p;.

If a node’s chunk is a prefix chunk, a suffix chunk, or an internal chunk, the
node is called a prefix node; a.suffix ‘node, or-an internal node, respectively.
Moreover, prefix number = 0, suffix number=.0, or internal range = [0, 0] means that

the node is not a prefix node, a suffix nede, oran internal node, respectively.

The ABF algorithm consists of the Pattern Preprocessing part and the

Compressed Text Scanning part which are described separately below.

A. Pattern Preprocessing

The pattern is pre-processed to allow answering the following queries:
1 Let §, be a pattern prefix with prefix number P (which is 0 if S is a null

string) and S, be a string with internal range / (which is [0, 0] if S, is not an

internal substring of P).

O,(P,I) =the length of the longest pattern prefix that is a suffix of §, S, .
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2 Let §, be a pattern prefix with prefix number P (which is 0 if S is a null

string) and S, be a pattern suffix with suffix number S .

i, 1 isthe smallest index of S1S2 where the pattern occures.

Q2(Px, Sx) :{

0, no pattern occurs in Si1S2.
3 Let §, be an internal substring of P and aeX.

Qx(Si,a) :{ [i, j], Sia is the internal substring pi...p;.

[0, 0], Si« isnot an internal substring of P.

B. Compressed Text Scanning

The compressed text scanning part is further divided into two components: the
LZW Trie Construction and the Pattern Search.” When constructing T, each node is
assigned a node number, a first symbol, a label, a prefix number, a suffix number, and
an internal range. The Pattern Search-part-keeps track of the largest partial match
and finds out if the partial match can be.extended to a complete match. The

compressed text scanning procedure is described below.

Initialize: variable Prefix € 0
for/=1tondo

(Let node S.Z[/]’s prefix number = P, suffix number = S_ and internal range = /.)

1 LZW Trie Construction

1.1 Add a new node numbered /g to 7 as a child node of S.Z[/]. Let a be
the label of node /+gq.

1.2 The first symbol of node /+¢ is that of node S.Z[/].

1.3 The label of node /+¢ is the first symbol of node S.Z[/+1]. (If S.Z[[+1] =

[+q then the label is S.Z[/]'s first symbol.)

7
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1.4 IfS.Z[]] is an internal node with corresponding string S,
Set /+¢'s internal range [i, j] as O,(S,, &) .
Else
Set [+¢'s internal range [i, ;] as [0, 0].
1.5 If j = m, set [+¢'s suffix number as m-i+1. Otherwise, set /+¢'s suffix
number as S .
1.6 Set [+q's prefix number as Q,(P,1,), where I, is the internal range of a.
2 Pattern Search
If Prefix=10
Prefix € P.
Else /I Prefix #0
If S.Z[1] is a suffix node H=S. #0
/I Check the pattern oecurrence with-Q,(Prefix,S,)
If Qx(Prefix,Sy) #0
a pattern occurrence 1s found
If S.Z[I] is an internal node  // I # [0, 0]
Prefix < Q;(Prefix,l)
Else /I'S.Z[I] is not an internal node

Prefix & P.

To answer query O3, we need to construct the suffix trie of P, denoted by S7,,.

Note that there are m nonempty suffixes of P and the number of nodes in S7, is
O(m®). Moreover, there is a unique node on S7, which represents a specific

substring of P (even if the substring appears multiple times in P). Query O,(S,,a)

can be easily answered by tracing S7,. If there is a node representing substring S,
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on S7, which has an outgoing edge labeled a, then §, a is an internal substring of P.
If no such outgoing edge exists, then S, a is not an internal substring of P and its

internal range is [0, 0].

Note that it is possible to reduce the space complexity of S7,. A node on
ST, is said to be explicit if and only if (iff) either it represents a suffix of P or it has
more than one child node. The nodes that are not explicit are said to be implicit.
One can construct the compacted S7, which contains only explicit nodes of the
uncompacted S7, by eliminating all implicit nodes in between two explicit nodes.
As a result, the label on each edge becomes a substring of P. The space complexity

can be reduced because the number of explicit nodes on the uncompacted ST, is

O(m) [2].

Query (O3 can be answered with-the compacted S7, as follows. Let S, be
an internal substring of P. If §|/is.represented by a node, say node N, on the
compacted S7,, then S a is an internal substring iff a is the first symbol of a label
on some outgoing edge of node N. Suppose that there is no node on the compacted
ST, which represents S;. In this case, one can find two nodes on the compacted
ST, ,say nodes N, and N,,such thatnode N, represents the longest prefix (could
be empty) of S, and node N, represents the shortest internal substring of P which

contains S, as a prefix. Note that node N, is actually a parent node of node N,

on the compacted S7,. Assume that node N, represents substring S,. As a

result, S, is an internal substring iff the (| S,|—|S,|+1)" symbol of the label on

the edge connecting nodes N, and N, isequal to a.
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Queries Q; and O can be answered in constant time during text scanning if two
tables of space complexity O(m’) are constructed in advance [2]. Obviously, when
m is large, these two tables require significant amount of memory. In the following

chapter, we present a novel realization which requires only O(m) storage.

10
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Chapter 3
An Efficient Pattern Matching Scheme in LZW

Compressed Sequences

3.1 An Efficient Realization of Amir-Benson-Farach

Algorithm

Let us consider the implementation of query Q; first. Given a pattern P =
pipaps...pm of length m, we need two sets of bitmaps where each bitmap has m bits.

The first set, called prefix bitmaps,consists of m bitmaps that correspond to the m

possible prefix numbers 0, 1, 2;..., m=1= "Let'd = a'a’...a” denote the i” prefix
bitmap which corresponds to prefix humber=1. We assign a' = 1 iff k<i and

Pik+1...pi1 1S a nonempty prefix of P, 1.e., Dy Diy = DyePis - Note that p; s+1...pi1

represents a null string if k =1. Clearly, with the assignment, we have a =0 for all i,

1<i<m, a =1ifl<i<m,and a/ =0ifj>i.

The second set of bitmaps, called suffix bitmaps, consists of m-1 bitmaps which

correspond to the m-1 possible suffix numbers 1, 2, ..., m-1. Again, the size of each

suffix bitmap is m bits. Let B, = b'b’..b" be the i” suffix bitmap which
corresponds to suffix number i. Assign b'=1iff k>m-i+1and p, ;. ...0y ;40 15

a nonempty suffix of P, i.e., p, ;1o -Pomisu = Pi-P,- Inother words, b= 1 iff

the length-(m-k+1) prefix of p,  ..,..p, 1s a nonempty suffix of P. Similarly, with

11
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the assignment, we have " ""'=1and b/=0ifj<m-i+1.

We now show that query Q,(P.,S.) can be answered with the two sets of
bitmaps. Let P.=i-1 and S =k. In other words, we have S, = p,..p,,, S, =
DPoisr--Pus> and S S, = p..p_p, i.--Pn- Note that § = p,..p , represents
a null string if i = 1. To answer query (,, we first perform the bitwise AND
operation of 4, and B,. Let R = rr,...r, denote the result, ie., R = 4 ® B,,

where & represents the bitwise AND operation. If i > 1 and there is a

th

cross-boundary pattern occurrence starting at the ;" position of S, then it must

hold that p,..p,, is a prefix of P and p, ., ...p,, ., 1s a suffix of P. Since
p,..p., is a prefix of P, we have o "' = Lz, Similarly, p, . ...p,, ., is a
suffix of P implies b; ’*' = 1. = Consequently, the pattern occurrence can be detected

because it holds that B

= 1. “To.determine the first pattern occurrence, we need
only identify the rightmost 1 of R. Assume that the rightmost 1 of R occurs in the

" position, i.e., r, =land r =0 for [+1<i<m, then the first pattern occurrence is

found starting at the (| S,|—/+2)" position of S,. There is no pattern occurrence

crossing the boundary of S, and §, ifr, =0 forallx, 1<x<m. In the case thati=

X

I, 1e., S, isanullstring, a; =0 forall x, 1 <x<m implies r, = 0 for all x, 1 <x<m

as expected. Note that the implementation can actually find all cross-boundary
pattern occurrences. This function will be used in the generalization to find all

pattern occurrences presented in Chapter 3.2.

To implement query Qs, we need to construct the compacted suffix trie S7,.

12
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The answer of O, can be obtained by tracing the compacted S7,, as mentioned

before. It is obvious that the implementation can result in correct answer for query

O, and thus its proof is omitted.

Let us consider the implementation of query (,. A third set of m-bit bitmaps

are required. For convenience, we number the nonempty suffixes of P so that suffix

i is of length i, 1<i<m. We need a bitmap to be associated with each node on the

compacted ST, . Consider the bitmap C, = cjc,..ch associated with a

particular node N. Assign ¢, = 0 for all i, 1<i<m, if node N is the root node.

The bitmap associated with the root node is for the internal range [0, 0].  Assume

that node N is not the root node.« It-is clear that node N represents a unique

m—k+1

nonempty substring of P. Assign cy = 1 iff'node N represents suffix k£ or the

node which represents suffix & is a-descendent node of N. Note that the above

m—k+1

assignment results in c = 1"iff the substring represented by node N is a

nonempty prefix of suffix 4.

With the prefix bitmaps and the bitmaps associated with the nodes on the

compacted S7,, one can now answer query Q,(P,I). Let M be the node on the
LZW trie T, which represents the substring S, with internal range /. Also, let N
be the node on the compacted S7, which either represents the substring S, or the

substring it represents is the shortest substring represented by any node on the

compacted S7, which contains S, as a prefix. Node M contains a pointer which
points to the bitmap associated with node N. To answer query Q,(P.,I), we

perform the bitwise AND operation of the prefix bitmap corresponding to prefix

13
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number P. and the bitmap pointed to by the pointer stored in node M. Let R =
nr,...r, denote the result of the bitwise AND operation. If » =0 forall i, 1 <i<m,
then Q,(P,,I)returns the prefix number of node M. Assume that » =1 for at least
one i. The answer of Q,(P.,I) equals (k-1) + Dep(M) if r, = 1 and r, = 0,
k+1<i<m, where Dep(M), the depth of node M, denotes the length of the chunk

represented by node M.

The correctness of the above implementation for query Q, can be proved as
follows. Assume that P = i-1 so that S, = p,..p,,. If i > 1 and the longest

h

pattern prefix that is a suffix of S, S, starts at the ;” position of S, then it holds

that p;..p,, is a prefix of P and, suffix,m-itj contains §, as a prefix. As a

=1 and ¢ = F whichimplies 7_,,,

i—j+l1
i

result, we have a = 1. In other words,

such a prefix can be detected by the:bitwise-AIND operation. Since we are looking
for the longest pattern prefix, the rightmost 1-0f R is selected. If it happens in the

k"™ position, then the symbol p, ., starts the longest pattern prefix whose length is

equal to (k-1) + Dep(M). Of course, if , = 0 for all i, 1<i<m, then the longest
pattern prefix is completely contained in S, , which implies the length of the longest

pattern prefix is equal to the prefix number of node M. Therefore, the above

implementation does result in correct answer for query Q.

Below are two examples.

Example 1. Let P =abcab. Table 3-1 and Table 3-2 show the prefix bitmaps and

the suffix bitmaps of P, respectively. As an example of query O,, assume that S, =

14
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abca and S, = bcab. Consequently, we have P =4, § =4, and R = 01001.
For this example, the first pattern occurrence starts at the first position of S,. In fact,

as indicated by the two 1’s appeared in R, there are two pattern occurrences in S, S, .

Table 3-1. Prefix bitmaps of P = Table 3-2.  Suffix bitmaps of P =
abcab abcab

P, | Prefix | Bitmap# | Bitmap Sy | Suffix | Bitmap # Bitmap
0 | NULL 1 00000 1 b 1 00001
1 |a 2 01000 2 ab 2 00010
2 |ab 3 00100 3 cab 3 00100
3 | abc 4 00010 4 bcab 4 01001
4 | abca 5 01001

Example 2. Let P =ababc. Table 3-3 shows the prefix bitmaps of P. For ease of

description, we use the uncompacted suffix tric §7, of P as illustrated in Figure 3-1.
The bitmaps associated with the explicit nodées of S7, are given in Table 3-4. As
an example of query Q;, assume;that" §,=wababand the internal range / = [1, 2] (or [3,
4]) which represents substring S, =ab.Inour implementation, / = [1, 2] (or [3, 4])
is represented by node 2 of the uncompacted suffix trie S7,. Since the prefix
number of S, is 4 with corresponding prefix bitmap 00101 and the bitmap associated
with node 2 on S7, is 10100, we have R = 00100. In other words, one pattern
prefix starting at the third position of S, is found. As a result, the answer of query
0,4, [1,2]) (or O,(4,[3,4])1s 3-1) +|S,|=2+2=4. As another example, if
S,=ab and I = [2, 4] (the bitmap to be used is the one associated with node 9 of S7})
which represents substring S, = bab, then we have P, =2 and R = 00100® 01000 =
00000. In this case, the answer of query Q;(2, [2, 4]) is 2, which is the prefix
number of bab.

Let us consider now examples of query (3. Assume that S, = ab which is

15
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represented by node 2 of the uncompacted S7,. If o= b, then we have Q,(S,,a)

= [0, O] because there is no transition from node 2 to any node with label b.
However, if a = c, then we have O;(S,,a) =[1, 3] which is represented by node 10

of ST,.

Table 3-3. Prefix bitmaps of P =

ababc

P, | Prefix | Bitmap # Bitmap

0 | NULL 1 00000

1 |a 2 01000

2 |ab 3 00100

3 | aba 4 01010

4 | abab 5 00101

0 Table 3-4. Bitmaps associated

a b v with explicit nodes

1 6 12 Explicit node Bitmap
b a = 0 00000
2 7 i1 2 10100
a c b 5 10000
3 10 8 6 01010
b c 9 01000
4 9 10 00100
c 11 00010
5 12 00001

Figure 3-1. The uncompacted suffix trie S7, of
P =ababc

3.2 Generalization to All Pattern Occurrences

As mentioned before, the pattern occurrence checking in the original ABF

algorithm is only performed cross two consecutive data blocks. Moreover, only the

16
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first occurrence is reported. To generalize the ABF algorithm to find all pattern
occurrences, we need to consider all pattern occurrences cross two consecutive data
blocks and those inside a data block as well. Our implementation presented in
Chapter 3.1 allows detection of all pattern occurrences cross two consecutive data
blocks. Therefore, the remaining work is to detect all pattern occurrences inside a
data block. The generalization is designed to also report the absolute positions of
pattern occurrences. Reporting the absolute positions of all occurrences may be

desirable to some applications.

To detect all pattern occurrences inside a data block, we add two fields, called
pattern inside flag (PIF) and pattern inside pointer (PIP), to every node of the LZW
trie 7;. The PIF flag is an indication of existence of patterns inside the chunk and
the PIP pointer is used for backtracking to find the positions of all pattern occurrences
inside the chunk. For the root nodeits PIEis-0 and'its PIP pointer points to the node
itself, which is also 0. Assume that a-new node M is to be added as a child node of
node N. The PIP pointer of node M inherits the PIP value of node N if N is not a
final node, i.e., a node whose chuck ends with the complete pattern P. To identify
final nodes, we let the prefix number of a final node equal m. In case node N is a
final node, the PIP pointer of node M points to node N. Similarly, the PIF of node M
inherits the PIF value of node N unless the PIF of node N is 0 and node M is a final
node. In this case, we set the PIF of node M to 1. With these additional fields, one
can trace back the LZW trie to find all pattern occurrences inside a chuck. The
trace-back ends once a node with PIP pointer points to the root node, i.e., PIP = 0, is
reached. Note that although PIF can be replaced by the PIP pointer and the prefix
number (PIF =1 is equivalent to PIP # 0 or prefix number = m), we suggest to use

PIF to simplify the checking of pattern existence inside a chunk.
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Note that, since we allow the prefix number of a node to be equal to m, we need
to add to the set of prefix bitmaps an additional prefix bitmap corresponding to prefix
number = m. The contents of the bitmap are assigned with the same algorithm
described in Chapter 3.1. It is clear that the value of the variable Prefix may equal m
too. However, it does not cause any error because the bitmap corresponding to
prefix number = m is the same as the bitmap corresponding to prefix number = £,
where p, ,.,...p,, 1s the longest suffix of P which is also a proper prefix of P, i.e., a

prefix which is not P itself.

For convenience, we also allow the suffix number of a node to be equal to m.
As a consequence, another bitmap.¢orresponding to suffix number = m is added to the
set of suffix bitmaps. Again,-the.contents of the added suffix bitmap are assigned

according to the algorithm described.in.Chapter 3.1 and the additional suffix bitmap

does not cause any error because a' <= 0foralli, 1 <i<m+l.

To report absolute positions of pattern occurrences, we can rely on the depth
fields of nodes on the LZW trie Ty and a global variable COUNT which stores the
number of bytes in text S that have been scanned. Computation of the depth field
is simple. The depth of the root node is 0. When node M is added as a child node
of node N, the depth of node M equals that of node N plus one. Clearly, with the
depth fields, one can compute the position of a node inside a chuck, which, together
with the global variable COUNT, can be used to determine the absolute position of

any pattern occurrence. The overall generalized algorithm is described below.
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A. Pattern Preprocessing

The prefix bitmaps and the suffix bitmaps are computed. Also, the compacted

suffix trie S7, of pattern P with the associated bitmaps are determined.

B. Compressed Text Scanning

When constructing the LZW trie T, each node’s node number, label, prefix

number, suffix number, internal range, the first symbol, depth, PIF, and PIP are

computed and stored. The compressed text scanning procedure is described below.

Initialize: Prefix € 0, COUNT € 0

for/=1tondo

(Let node S.Z[/]’s prefix number =+ P, suffix number = S, internal range = /, PIF =

F and depth = D.)

1 LZW Trie Construction

1.1

1.2

1.3

1.4

1.5

1.6

Add a new node numbered./+q to 75 - as a child node of S.Z[/]. Let a be
the label of node /+gq.
The first symbol of node /+¢ is that of node S.Z[/].
The label of node /+q is the first symbol of node S.Z[/+1]. (If S.Z[/+1] =
[+¢ then the label is S.Z[/]'s first symbol.)
If S.Z[1] is an internal node with corresponding string S,
Set /+¢'s internal range [i, j] as O,(S,, &) .
Else
Set [+¢'s internal range [i, j] as [0, 0].
If j = m, set [+q's suffix number as m-i+1. Otherwise, set /[+¢'s suffix
number as S .
Set /+¢'s prefix number as Q,(P.,1,), where [ is the internal range of a.
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1.7  If F=0 and /+¢'s prefix number = m, then /+¢'s PIF < 1.
Else, I[+¢'s PIF € F.
1.8  Set the depth of node /+-q as D+1.
1.9 If P =m,then [+q's PIP & S.Z[I].
Else, [+¢'s PIP < S.Z[[]’s PIP.
2 Pattern Search
If S #0
Check cross-boundary occurrences with the bitwise AND operation for query
Ox(Prefix,S.). LetR= nr..r, be theresult of the bitwise AND operation.
for k=1tomdo
If o =1
Report the positioni' COUNT — k+2
If F=1 // Pattern is inside S.Z}/]
If P =m
Report the position: COUNT+.D —m +1
N & S.Z[1]’s PIP
While N # 0
Report the position: COUNT + Dep(N) —m + 1
N & N’s PIP
Prefix € Q(Prefix,[) // Note that the answer of Q;(Prefix,]) is P, if the result of
bitwise AND operation for Q,(Prefix,l) is all-zero

COUNT €« COUNT + D

The following example illustrates the process to detect all pattern occurrences

and report their absolute positions.
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Example 3.  As in Example 2, let P = ababc. The prefix bitmaps and the suffix
bitmaps are shown in Tables 3-5 and 3-6, respectively. Since the suffix trie of
pattern P and the bitmaps associated with the explicit nodes are not changed, they are
not reproduced here. Assume that some of the compressed text had been processed
and the current value of COUNT = 100. Assume further that the last three chunks

that had been processed are xxx, xxxx, and xaba, and the current chunk to be processed

1s N b= becababcexababexx.

Table 3-7 shows the contents of the nodes along the path from the root node to node

N, onthe LZW tire. Note that there are two pattern occurrences inside the current

chunk which can be determined by tracing back the PIP pointers. Table 3-8 shows a
brief summary of the results when the last: three chunks are processed. The

procedure of pattern detection: with report. of ‘absolute occurrence positions in

processing N, is sketched below.

e Reporting absolute positions of eross-boundary pattern occurrences:
Since N,’s suffix number = 2 # 0
/I Check cross-boundary occurrences with bitmaps:
Prefix =3 with corresponding bitmap 01010.
N,’s suffix number = 2 with corresponding bitmap 00010.
The result of bitwise AND operation R =01010® 00010 = 00010.
=>» The absolute occurrence position COUNT — 4 + 2 = 98 is reported.

e Reporting absolute positions of inside-chunk pattern occurrences:

Since N,’s PIF =1
Since N,’sPIP=N;#0
The absolute occurrence position COUNT + Dep(N;) —m + 1 =109 is
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reported.

Since N,’s PIP=N;#0

The absolute occurrence position COUNT + Dep(N;) —m + 1 =103 is

reported.

Since N;’s PIP =0

The trace-back ends.

Table 3-5. Prefix bitmaps of P = ababc

Table 3-6. Suffix bitmaps P = ababc

P, | Prefix | Bitmap # Bitmap Sy | Suffix | Bitmap # Bitmap
0 | NULL 1 00000 1 c 1 00001
1 |a 2 01000 2 bc 2 00010
2 |ab 3 00100 3 abc 3 00100
3 |aba 4 01010 4 babc 4 01000
4 | abab 5 00101 5 ababc 5 10000
5 | ababc 6 00000
Table 3-7. Contents of nodes along the path from root to N, on T
Node First | Prefix- |~ Suffix
Label Internal range | PIF | PIP | Depth
number symbol | number {.number
0 (root) | NULL - - - - 0 0 0
b b 0 0 [2, 2] (or [4, 4]) 0 0 1
c b 0 2 [4, 5] 0 0 2
a b 1 2 [0, 0] 0 0 3
b b 2 2 [0, 0] 0 0 4
a b 3 2 [0, O] 0 0 5
b b 4 2 [0, O] 0 0 6
N, c b 5(=m) 2 [0, O] 1 0 7
X b 0 2 [0, 0] 1 N, 8
a b 1 2 [0, 0] 1 N, 9
b b 2 2 [0, O] 1 N; 10
a b 3 2 [0, O] 1 N; 11
b b 4 2 [0, O] 1 N; 12
N c b 5(=m) 2 [0, 0] 1 N; 13
X b 0 2 [0, 0] 1 N 14
N, X b 0 2 [0, 0] 1 N 15
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Table 3-8. Brief summary of the results when the last

three chunks are processed

The last three .
chunks that had | N,

been processed

=...| xxx | xxxx | xaba | bcababcxababcxx

Depth=| 3 4 4

COUNT=| 92 96 100
Prefix =| 0 0 3
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Chapter 4
Related Work

A different bitmap based implementation was independently developed by two
groups of researchers [5] and [6]. The scheme proposed in [5] is more general than
the one presented in [6] and thus we will follow its description and call it the
Navarro-Raffinot (NR) scheme. As our generalization, the NR scheme can find all
pattern occurrences and report their absolute positions. Below is a description of the

NR scheme extracted from [5].

The NR scheme is a general technique to perform string matching when the text
Is presented as a sequence of atomic strings, called blocks, instead of a sequence of
symbols. The blocks either have just one symbol or are formed by concatenating
previously seen blocks. Let T':denoterthe text already processed at any moment of

the search. When the search process is over, it holds that 7’ = 7, the original text.

The blocks are processed one by one. Foreach new block B, a description for
B which has all the information of the block that is relevant for the search is computed.
This description is denoted by D(B) =(L, O, S, P, M), where
e L =|Bj, the length of B in symbols
e O = Offs(B) = the length in symbols of the text we had processed when B
appeared
o S = Suff(B) = all the pattern positions which either start a complete occurrence
of B inside the pattern, or start a proper pattern suffix which matches with a
prefix of B. Formally,
Suff(B) = {|x|, P=xBy} u {|x|, |x| >0A|z| >0AP=xzAB=2zy}
o P =Pref(B) = all the pattern positions which either follow a complete occurrence
of B inside the pattern, or follow a proper pattern prefix which matches with a
suffix of B. Formally,
Pref(B) = {|xB|, P=xBy A [y| > 0}y U {lz], |zl >0A || >0AP=zy A
B=xz}
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o M = Matches(B) = all the block positions where the pattern occurs (@ if |B| <
|P]). Formally,
Matches(B) ={|x|, B = xPy}
Note that, to simplify the notation, the pattern positions start at zero in the above

description, while in previous chapters, the pattern positions start at one.

There are two cases for a new block B: () the block is a symbol or () the block
is a concatenation of other blocks previously known. For case (a), the description
D(B) can be obtained directly and, for case (b), it can be derived from the descriptions

of the previous blocks.

Once the description of the new block is computed, it is used to update the states
of the search. This concludes the processing of a block and the search process
moves to the next one. The states of the search contains the matches that have
already occurred and the potential matches in progress, that is,

e Res(7") = the text positions that matehed.up to now. Formally,
Res(7") = {|x|, T"= xPy}
o Active(7T") = the set of positions following the: pattern prefixes which match a
suffix of the current text. "~ Formally,
Active(T) = {|x|, |x| > OAW|>0AP=xy AT =zx}

Hence, when the text processing is complete and 7" is the whole text, Res(7) is
the answer. The initial state of the search is Res(¢&) = Active(e) = @, and T" =¢,

where & denotes the empty string.

Four operations which are used in the search process are defined below [5].

o Left;, which receives a set of Suff() positions not smaller than i, subtracts i to all
them and then adds new pattern positions filling the holes left by the shift.
Formally,

Left(X) = {x—i, x€X} U {m—i, m—i+1, ...., m—1}
e Right;, which does the same for Pref() positions, in the other direction.

Formally,
Right; (X) = {&+i, xeX} U {1,2, ..., i}
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e Addi(X) = {i + x, xe X}, which adds i to all the elements of the set.
o Subtr,(X) = {i — x, xe X}, which subtracts all the elements of the set from i.

The base case of the scheme is to obtain the description of a block which is a

symbol a. We have

e |B|=1

o Offs(B) = |T"|

o SUuff(B) = {|x|, P = xay}

e Pref(B) = {|xal|, P =xay A |y| > 0}

e Matches(B) = if P = a then {0} else @

which are direct applications of the general formulas.

Assume that block B is defined as the concatenation of one or more previous
blocks. If B is identical to one previous block B’, we just copy the description of B’
for B. Assume that B is a concatenation of two blocks B; and B,. Note that it
suffices to study concatenation .of two sblocks because the case of more than two
blocks is a simple iteration over this procedure. - We have to obtain the description
for their concatenation D(B) ==D(BiB2)-= D(B:1) : D(B,) (where - is a notation for
concatenation of block descriptions).. “The formulas were given in [5] as follows

o |B| = |Ba| + |B]
Offs(B) = |T|
Suff(B) = Suff(B1) n Left (Suff(By))

Pref(B) = Pref(B2) m Rights, (Pref(B1))

Matches(B) = Matches(B1) v Addjz,(Matches(By))
U (Subtrj, (Pref(B1) ~ Suff(Bz)) n {0, 1,2,...., |B|-m})

We need to update the states of the search after processing a new block B. The
formulas to obtain the new Res(7"B) and Active(7'B) values from the old Res(7”) and
Active(T") ones are

« Active(7T'B) = Right;z(Active(7”)) ~ Pref(B)
» Res(7T"B) = Res(7T") u Add,r(Matches(B))
w Subtrp(Active(T) n Suff(B) n {m—|B|, m—|B|+1,..., m—1})
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The above searching technique can be easily realized with two sets of bitmaps,
Pref(B) and Suff(B), for every block B. The length of every bitmap for Pref(B) and
Suff(B) is equal to m, the pattern length. Obviously, for LZW compressed sequences,
the number of bitmaps for Pref(B) and Suff(B) is the same as the number of nodes on
the LZW trie.  This number tends to be large for a big file. The states of the search,
I.e., Res(7") and Active(7"), and the result of each block B, i.e., Matches(B), can be
represented by either bitmaps or arrays of numbers. In the comparison presented in
Chapter 5, we assume that Active(7") is represented by an m-bit bitmap and Res(7")
and Matches(B) are represented by arrays of numbers. The reason to represent
Res(7") as an array of numbers is that it is more space efficient because the number of
pattern occurrences is usually much smaller than the file size. The reason to
represent Matches(B) as an array of numbers is simply because the length of block B

is not fixed.
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Chapter 5

Comparison and Experimental Results

In this chapter, we compare the performance of our generalized algorithm with
the one that performs decompression followed by pattern searching with the KMP
algorithm [8]. The algorithms were implemented in C++ and the experiments were
carried out on a PC with an AMD Athlon XP 1800+ CPU operated at 1.15GHz with
224MB of RAM running Microsoft Windows XP operating system. In the first test
case, we use dosx.exe (an executable file in Windows) as our text which contains no
pattern at all. The uncompressed size of dosx.exe is 53856 bytes. In the second
test case, we insert various numbers of patterns with m = 4 in dosx.exe at randomly
selected positions. The experimental results-of test cases 1 and 2 are shown in
Figures 5-1 and 5-2, respectively, - As_one ‘Can see, in comparison with the
decompress-then-search  algorithm, our proposed generalized algorithm has
significantly better performance as expected. The performance of the NR scheme is
very close to that of our generalized algorithm and thus is not shown in the figures.
However, we can compare the space requirements of our generalized algorithm and

the NR scheme.
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In our generalized algorithm, the number of bitmaps, including prefix bitmaps,
suffix bitmaps, and the bitmaps associated with the nodes on the compacted suffix trie

ST, is O(m). The LZW trie T, takes space O(t), where t is the number of nodes
on T;. The prefix number, the suffix number, and the internal ranges stored in every
node of T are replaced by three pointers, each of size O(log,m) bits, which point to
the appropriate bitmaps. Therefore, the space complexity of our generalized
algorithm is O(m+t). For the NR scheme, the space complexity is O(t+r), where r is
the number of pattern occurrences in text S. Each of the O(t) descriptions contains
five elements, L, O, S, P and M. Hence, there are O(t) bitmaps of S and O(t) bitmaps
of P, each of the bitmaps has size m bits. Clearly, the space requirement of these
two sets of bitmaps increases proportional to the size of the LZW trie. Another
significant difference between the.NR scheme and. our generalized scheme is that the
number of pattern occurrences ¥ affects the space.requirement of the NR scheme, but
not ours. This effect will be studied.later.——Since the element O is not necessary for
every node, we assume that it is‘omitted and .instead a global counter COUNT is

adopted in comparison.

We ignore the space requirement of the NR scheme caused by r, that is, we
intentionally let r = 0, in the third test case. The text used in test case 3 is
dfrgntfs.exe (an executable file in Windows) whose uncompressed size is 104960
bytes. Comparison of the space requirements of our generalized scheme and the NR
scheme for test case 3 is shown in Figure 5-3. It can be seen from the curves that our
generalized scheme requires less storage than the NR scheme does if the pattern

length is longer than 25.

In test cases 4 and 5 we use case4.txt (a randomly generated text file with 3000
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patterns inserted) of uncompressed size 296126 bytes and case5.txt (another randomly
generated text file with 18000 patterns inserted) of uncompressed size 1705714 bytes
as the texts, respectively. Figures 5-4 and 5-5 show, respectively, the space
requirements under these two test cases for different pattern lengths. The NR
scheme requires significantly more memory space than our generalized scheme,
especially for long patterns. In Figure 5-6, we show the space requirements for
pattern length m = 25 with various numbers of patterns inserted in dfrgntfs.exe. The
uncompressed size of the modified dfrgntfs.exe is 249860 bytes. As one can see, the
space requirement of the NR scheme increases as r increases while the space

requirement of our generalized scheme is insensitive to the value of r.
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Chapter 6

Conclusion

We have presented in this thesis an efficient bitmap-based realization of the
Amir-Benson-Farach algorithm for pattern search in LZW compressed sequences.
The realization is then generalized to detect all pattern occurrences and report the
absolute match positions. It is shown with experimental results that our proposed
realization performs pattern search much faster than the decompress-then-search
scheme. Moreover, compared with the Navarro-Raffinot scheme, another algorithm
which can be realized with bitmaps, our proposed generalized algorithm requires less
storage when the pattern is longer than 25 bytes.. ‘The difference could be huge if the
number of pattern occurrences:in the text is large. = An interesting further research
topic which is currently under investigation is-to" apply the idea of our design to

pattern search with other compression techniques.
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