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電信工程學系碩士班 

 

摘要: 

 近年來，有關於量子濾波器 (Particle Filter) 在系統通道等化器之應用問題

已經在很多論文當中引起廣泛的討論。如同參考資料[3]中所提到，當通道有一

個很微弱的直線傳輸路徑(light of sight, LOS)時，連續關鍵取樣(Sequential 

Importance Sampling, SIS)等化器的系統效能會被嚴重的影響而衰退。在參考資料

[3]中同時也提出了一種延遲連續關鍵取樣演算法(Delayed SIS Algorithm)來試圖

解決這個問題。然而這種演算法需要大量的運算複雜度來提升系統的效能，因此

在本篇論文中我們提出一種新的盲蔽式(blind)連續關鍵取樣演算法，該演算法不

會受通道直線傳輸路徑的強弱影響而衰退。 

 在論文中，我們首先簡單的介紹量子濾波器的理論，並建立起量子濾波

等化器的系統架構。接著透過錯誤率(bit error rate, BER)的數學分析，我們可以了

解到一個擁有微弱的直線傳輸路徑的通道是如何的影響連續關鍵取樣等化器的

效能。為了克服這個問題，我們利用最小相位濾波器(minimum phase filter)的概
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念來轉化原來的通道，使轉化後的等效通道的直線傳輸路徑增強。這種方式稱做

連續關鍵取樣決策回授等化器(SIS decision feedback equalizer, SIS DFE)。在通道

已知的情況下，最小相位濾波器可以用回授等化器來實現，其中濾波器的係數可

以根據(zero-forcing, ZF)或最小平方平均誤差(minimum mean square error, MMSE)

準則來求出。而在通道係數未知以及時變通道的系統中，我們提出適應性盲蔽式

連 續 關 鍵 取 樣 等 化 器 ， 利 用 適 應 性 濾 波 器 演 算 法 如 最 小 平 均 平 方 (least 

mean-square, LMS)或遞迴最小平方(recursive least squares, RLS)來調出最小相位

濾波器的係數。針對上述兩種情況，我們都提出電腦模擬結果來驗證這種連續關

鍵取樣決策回授等化器可以改善系統的效能。另外我們也比較連續關鍵取樣決策

回授等化器與延遲連續關鍵取樣演算法的效能，並證明我們提出的方法不論在錯

誤率或系統複雜度方面都有更好的表現。 

此外，為了更進一步簡化這種適應性連續關鍵取樣等化器的複雜度，我們提

出最大比重適應性盲蔽式連續關鍵取樣決策回授等化器(Max-Weight blind SIS 

DFE)。透過電腦模擬結果，我們證明這種節省系統資源的演算法可以大幅減少

系統的複雜度，卻可以提供幾乎不遜於原本的適應性盲蔽式連續關鍵取樣決策回

授等化器的效能。  
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ABSTRACT: 
 The use of particle filter on the channel equalization problem has been studied by 

many researches for years. As mentioned in [3], the weak light-of-sight (LOS) 

channel is one of the problems limiting the performance of the sequential 

importance-sampling (SIS) based equalization. In [3], the delayed-SIS (D-SIS) 

algorithm was proposed to solve this problem at the expense of high computation 

complexity. In this thesis we introduce a new class of blind SIS equalization 

algorithms for the frequency selective channels no matter how the first impulse of 

CIR (Channel Impulse Response) is.  

We begin with a brief review of the particle filtering theory and establish the 

model of the particle filter equalizer. After the mathematical analysis of the BER in 
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the particle filter based channel equalization systems, we can know how the 

performance of the SIS equalization algorithm is affected by the channel with an 

attenuated LOS. To overcome this problem and improve the performance, we use the 

idea of minimum-phase pre-filtering to maximize the LOS of the equivalent channel 

and propose the SIS decision feedback equalization algorithms. In the case when the 

channel state information (CSI) is known, this minimum- phase pre-filtering can be 

implemented with the decision feedback equalizers (DFE), whose coefficients are 

computed based on either the zero-forcing (ZF) or minimum mean square error 

(MMSE) criteria. In the case of unknown CSI and time-varying channel, the proposed 

adaptive blind SIS equalization algorithm pre-filters the receiver input by using the 

adaptive filters such as the least mean-square (LMS) or the recursive least squares 

(RLS). In both cases, we conduct the computer simulations to illustrate how the 

proposed SIS DFE algorithms improve the performance. We compare the 

performance of the D-SIS equalization and the proposed SIS decision feedback 

equalization and find that our approach outperforms the D-SIS on both the BER 

performance and the computation complexity.  

Moreover, to save the computation of the adaptive SIS equalization algorithms, 

we propose a simplified scheme of the adaptive blind SIS DFE, named the 

Max-Weight blind SIS DFE algorithm We show that the proposed cost-effective 

algorithm can provide the performance almost the same as the original adaptive SIS 

DFE algorithm from the computer simulation results.  
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1 INTRODUCTION TO PARTICLE FILTERING THEORY 

1.1 INTRODUCTION 

Particle filter is a novel optimal filtering algorithm based on the Bayesian 

formulation and the sequential importance sampling (SIS) technique. It is basically 

one of the sequential Monte Carlo (MC) methodologies. The particle filter employs 

discrete random measures to recursively compute and to approximate the desired 

probability distributions. As a simulation-based algorithm, particle filtering is 

particularly useful in dealing with nonlinear and non-Gaussian problems, in which it 

is typically impossible to obtain the desired statistical estimates or distributions by 

using the traditional methods.  

The sequential Monte Carlo methods like particle filtering were invented decades 

ago. However, they did not cause much attention because of the high computation 

complexity. The recent advances in digital circuit technologies make high-bandwidth 

computation possible and are able to put the MC methods into practice. Therefore the 

research of these topics has become active and attractive again recently. The SIS 

algorithm and the particle filtering theory have been discussed in detail in some 

previously published papers, as references [1] [2]. In this chapter, we will first bring 

out the motivation of this thesis, and then give a brief introduction on the particle 

filtering theory. The applications of equalizations using particle filtering are main 

topics of this thesis and will be discussed in the next chapters.  

1.2 MOTIVATION 

There have been many articles discussing about the particle filtering equalization. 

However, rare of them addressed about the mathematical analysis of its bit error rate 

(BRE) performance. In sight of this, we would like to derive the BER of a particle as 
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a mathematic equation, and then analyze its behavior in the first part of this thesis. 

Besides, followed by the BER analysis of the particle filter equalizer, we can 

soon discover that its performance decays greatly under channels with an attenuated 

line of sight (LOS). As also discussed in the reference [3], this problem can be 

alleviated by the method of the delayed sequential importance sampling (D-SIS). The 

D-SIS algorithm, however, has some limitations and the notorious complexity issue in 

practical. This gives us some motivation to bring up an alternative solution that 

utilizes the minimum-phase pre-filtering to maximize the LOS of the equivalent 

channel. 

1.3 FUNDAMENTALS OF THE PARTICLE FILTERING THEORY  

The particle filtering is basically a suboptimal approach to perform Bayesian 

filtering. Consider the following state-space model,   

  1( , )k k k kf −=x x u           (1-1) 

  ( , )k k k kh=y x n         (1-2) 

where ku is the input vector, ky  is a vector of observations, kx  is the state vector, 

( )kf ⋅  is the system transition function, ( )kh ⋅  is the measurement function, and kn  

is the noise vector. Equation (1-1) is known as the state equation, and equation (1-2) is 

the measurement equation. Note that ( )kf ⋅  and ( )kh ⋅  are possibly nonlinear 

functions. In many signal processing applications, we are interested in the way of 

recursively computing the posteriori distribution ( ):0 :0k kp x y 1 . To recursively 

compute the posteriori probability, we can consider the following decomposition (see 

[2]): 

( ) ( ) ( ) ( ):0 :0 1 :0 1:0 1:0k k k k k k k kp p p p− − −∝ ⋅ ⋅x y x x y x x y    (1-3) 

                                                 
1 Here { }:0 0 1, ,...,k k=y y y y  is a set of observation vectors. We would use this form to represent a 
sequential set of symbols or vectors in different time indices throughout this article. 
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The Bayesian filtering is stated as the ways of analytically computing these kinds 

of distributions in the close forms. Unfortunately, the analytic solutions (known as 

Kalman filter [1]) to the transition from ( )1:0 1:0k kp − −x y  to ( ):0 :0k kp x y  exist only in a 

very restricted set of cases (e.g. when the systems are linear and the noises are 

Gaussian distributed). Therefore the particle filtering method has become an 

important alternative when we are solving nonlinear and non-Gaussian problems. 

When the particle filter is used, the distributions are approximated by discrete random 

measures via the Monte Carlo method. The random measures are composed of 

numerous particles which are samples drawn based on an estimated probability 

density function of the particles. The state space, and the weights are computed by 

using the Bayes theory. They are used to represent the “probability mass” of the 

particles. By the concept of Monte Carlo, the interested distribution ( )p x  can be 

approximated as  

( ) ( )

1

ˆ( ) ( ) ( )
sN

i i

i
p x p x w x xδ

=

≈ = ⋅ −∑         (1-4) 

where ( )ix  is the i-th particle, ( )iw  is its weight, and sN  is the number of the 

particles used in the approximation. It can be shown that as sN →∞ , the 

approximation approaches ( )p x . ( )δ ⋅  is the Dirac delta function, i.e. ( )( ) 1ix xδ − =  

if ( )ix x= , and ( )( ) 0ix xδ − = , otherwise. As shown in [9], this kind of Monte Carlo 

approximation has a certain advantage: the computations of expectations involving 

complicated integrations are now simplified as summations. Particle filtering is 

simply a simulation-based Monte Carlo method to solve the sequential Bayesian 

problems by the approximation in (1-4). 

The key concept in constructing the weights and the particles of particle filtering 

is the importance sampling principle. In the process of drawing particles, it is often 
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not possible to draw the samples directly from the desired distribution ( )p x . Therefore 

we have to generate particles from another distribution ( )q x , which is also known as 

the importance function. The un-normalized weights are assigned as follows, 

( ) ( ) 
( )

i
k

p xw
q x

=        (1-5) 

The weights are obtained after normalization: 

( )
( )

( )
1

, 1,2,...,
i

i k
k sN j

kj

ww i N
w

=

= ∀ =
∑

    (1-6) 

The selection of the importance function ( )q x  plays a crucial role in 

determining the performance of the particle filter. In general, the closer the 

importance function is selected to the desired distribution, the better the performance 

would be. A good choice of importance function can also reduce the effect of the 

degeneracy problem, which will be discussed in the next section. There are two most 

frequently used importance functions in the particle filtering applications: the priori 

importance function and the optimal importance function. The priori one is much 

easier for implementation while the optimal importance function minimizes the 

variance of the importance weights conditional on the trajectory of transmitted signal 

and the observations. The detail of the selection of the importance function is 

discussed in [8]. We would adopt the optimal importance function for analysis and 

simulations throughout this thesis. 

 To sequentially and recursively compute the importance functions and the 

particle weights, we need to update the weights and the importance function of each 

particle at every time slot through the equations as (1-3). The resulting method is 

referenced to the sequential importance sampling (SIS) algorithm. The detailed theory 

of the SIS algorithm can be found in many articles like [1] and [8]. We will discuss 

some important issues about the particle filtering in the following sections. 
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1.4 RESAMPLING 

One major problem of the particle filtering is the degeneracy problem, which has 

been addressed in many previous articles like [1], [2] and [8]. It has been shown (as in 

[11] and [12]) that the variance of the importance weights can only increase over time 

due to propagation. Most of the particles will have negligible weights (very close to 

zero) after a few iterations. That is, much computation would be devoted in vain, The 

performance of the particle filter will become worse after a few interations. However, 

this problem can be alleviated by a good choice of the importance sampling function 

and resampling.  

The idea of resampling is to elimiate the particles with negilible weights and 

replicate the largely-weighted particles. During the resampling, the larger weight a 

particle has, the more propable its particle (trajectory) would be replicated and 

overwrites the others. Each particles, after being re-allocated , would be given the 

same weight and then proceed the particle filtering process. In this article, the 

resampling is conducted whenever the effective sample size of the particle filter goes 

below a threshold ε. The effective sample size is defined as: 

( )1 var( )
s

eff si
k

NN N
w

= ≤
+

 

In practical, we estimate effN with 

( )2( )
1

1
s

eff sN i
ki

N N
w

=

≅ ≤
∑

 

The effective sample size can roughly represent the number of particles with 

weights that are not negilible (or, say, the particles that are still effective). The 

procedure of resampling is summarized as the following: 
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if )( ε≤effN , then 

1. Replicate a new set of particles )()(~ i
k

i
k xx = , for all i. 

2. For each i, the i-th particle is assigend to the value of particle j with 

probability )( j
kw , i.e. )()( ~ j

k
i

k xx =  with probability )( j
kw . 

3. Normalize/re-assign the particle weights ( ) 1i
k

s

w
N

= , for each i. 

end if 

 Finally we give an example in Fig. 1-1, illustrating how the resampling works 

during the particle filtering. 

 

 

 
Fig. 1-1  Illustration of resampling (when Ns = 100). 
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1.5 PRACTICAL APPLICAIONS AND LIMITATIONS OF PARTICLE FILTERING 

Particle filtering has been demonstrated as a powerful and promising 

methodology with a great range of applications in science and engineering. Within the 

field of communications, particle filtering has been widely applied to solve the 

channel equalization problems, including blind equalization, blind detection over flat 

fading channel (as addressed in [2]), and multi-user detections (MIMO) [13][14]. 

Nevertheless, as proposed in many articles like [3], particle filtering equalization 

suffers from performance decay under channels with a much attenuated line of sight 

(LOS), i.e. the first channel impulse response (CIR) is weak. To improve the 

performance under these channels, some solutions have been proposed. One of them 

is the method of delayed sequential importance sampling with resampling (D-SIR) 

proposed in [3], which incorporates the future observations to compute each particle 

at present. This method, however, requires the knowledge of the position of the largest 

impulse in CIR. Furthermore, the performance improvement of the D-SIR is achieved 

at the expense of the computational complexity, which is exponentially increased in 

proportional to the delay d. A large delay would lead to a great computational 

complexity which is nearly impractical. 

Hence in this thesis we come out with a novel method that employs the idea of 

minimum phase filter implemented with the decision feedback equalizations (DFE) 

scheme. Instead of the idea to incorporate the future observations, we are considering 

to move the largest pulse in the CIR to the first one by employing the minimum 

energy-delay property of the minimum phase filter. This can be done by 

pre-calculated feedforward and feedback filter coefficients when the channel is known 

or by utilizing the adaptive filtering techniques (the least-mean-square (LMS) or the 

recursive least-squares (RLS) algorithms) when the channel is unknown. 



 17

1.6 THESIS ORGANIZATION 

In Chapter 2 and Chapter 3, we would propose a particle filtering equalization 

scheme and analyze its bit error rate (BER) performance mathematically in the first 

part of this paper. And in the second part we come out with a new idea to keep good 

performance of the particle filtering under channel with attenuated LOS by applying 

minimum phase pre-filter followed by the particle filter. We verify the improvement of 

this method with mathematical prooves and give some comments at the end of 

Chapter 3. 

Next we put this idea into practice in Chapter 4 as a realization of particle 

filtering blind equalizations. We propose the system diagram of the SIS-based blind 

and adaptive equalizers. In sight of the complexity of the blind particle filter equalizer 

(PF EQ), we further induce the method of Max-Weight PF EQ, which can greatly 

reduce the computation and system complexity. 

In Chapter 5 we utilize the computer simulations to verify the inference and 

conclusions in Chapters 3 and 4. Finally we make the thesis conclusion and present 

the future works in Chapter 6. The appendixes and the references are provided at the 

end of this thesis for further information and consultation.  
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2 PARTICLE FILTERING FOR CHANNEL EQUALIZATION 

The main topics of this thesis are the performance and problems of the particle 

filter applied to equalization in the communication systems. In this chapter we first 

introduce the signal model and the SIS algorithm for equalizations. Then we discuss 

the problems and solutions of particle filter when the fading channels have a weak 

light-of-sight transmission path. 

2.1 SYSTEM MODEL OF THE PARTICLE FILTER EQUALIZER 

Consider a digital communication system where the BPSK symbols 

}{ 1 , 0,1,2,...kb k∈ ± =  are transmitted to a frequency-selective multi-path channel. 

The channel impulse response (CIR) is assumed to be time invariant within the frame 

duration (i.e. the coherence time of the fading channel is much longer than the frame 

duration.). The system model is shown in Fig. 2-1.  

 

yk ψ( ) bk H(z) 

nk 

Mapper Channel 
xk 

 
Fig. 2-1 The system model. 

 

The transmitted bit stream kb  is mapped into kx  by using the BPSK mapping 

functionψ( ) as illustrated in Table. 2-1.:  

 

kb  0 1 

)( kk bx φ= ＋A －A 

Table2-1.BPSK mapping functionψ()
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The CIR is assumed to be finite-length and has M tap weights: },...,,{ 110 −Mhhh . 

For simplicity, the CIR is normalized to have unity power, i.e. 11

0

2 =∑ −

=

M

l lh . The 

channel noise kn  is assumed to be additive white Gaussian noise (AWGN) with zero 

mean and the variance 2
nσ , i.e. ),0(~ 2

nk Νn σ . Thus the discrete-time sequence of 

observations can be written as:  
1

0

M

k k l l k
l

y x h n
−

−
=

= +∑        (2-1) 

We can now model the transmission by modifying the state-space formulation in (1-1) 

and (1-2) as follows: 

kkk uGxx += −1     equation) (state      (2-2) 

kk
H

k ny += xh    equation)on (observati       (2-3) 

where the M × 1 vector [ ]TMkkkk xxx 11 ,,, +−−= …x  is the system state at symbol k, 

and [ ]0 1 1 , , , T
Mh h h −=h … : M × 1 is the CIR vector. G  is the M × M state-transition 

matrix: 

⎥
⎦

⎤
⎢
⎣

⎡
=

×−−

−×

111

11 0

MM

M

0I
0

G  

such that [ ] [ ]TMkk
T

Mkkk xxxxx 1121 ,,,0,, +−−−−− =⋅ ……G , and [ ]Tkk x 0,,0, …=u is an 

M × 1 vector of inputs. Our goal is to estimate the transmitted symbols kx  

recursively from the observations ky . The optimum estimate of kx  is given by the 

maximum likelihood (ML) estimate (or MAP, if kx  is sent equally likely). However, 

it is not possible to compute the posteriori probability ( )0:0: kkp yx  in the close form 

if the noise is non-Gaussian or the system is non-linear. Instead of using the 

complicated optimal solution, we are seeking the sub-optimal way, in which the 

approximation of posteriori probability ( )0:0: kkp yx  is recursively computed with the 
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aid of sequential importance sampling (SIS) algorithm. 

2.2 THE SIS-BASED EQUALIZATION 

The optimal blind equalization is achieved by MAP detection of the transmitted 

sequence 0:kx , given the observations 0:ky . Let ( )0:0: kkp yx  denote the posteriori 

probability mess function (p.m.f.) of the data sequence given the observations, The 

MAP algorithm is to find the estimated data sequence that maximizes this posteriori 

probability. The most straightforward way of finding the MAP solution is to 

exhaustedly compute the probabilities of all 2k+1 possible 0:ˆ kx  and select the largest 

one. However, this is impractical due to the high computation complexity. It is 

preferable to find the estimate MAP
k 0:x̂ that maximizes the posteriori p.m.f. from the 

previous estimate MAP
k 0:1ˆ −x  recursively even thought the final solution is sub-optimal. To 

recursively compute the posteriori probability, we utilize the decomposition in (1-3) 

of Chapter 1: 

( ) ( ) ( ) ( )0:10:10:10:0: −−− ⋅⋅∝ kkkkkkkk pypxxpp yxxyx    (1-3) 

Assume that the data bit kb  is uncorrelated with the bit lb at the different time l , k≠ 

l., i.e. ( ) ( )kkk xpxxp =−1  . Using the similar derivation in [3], we can obtain the 

likelihood function: 

( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −−
= 2

2

0: 2
exp

2
1

n

k
H

k

n
kk

y
yp

σσπ

xh
x     (2-4) 

From the equations (1-3) and (2-4), we can find a recursive equalization 

algorithm by computing the posteriori p.m.f. ( )0:0: kkp yx  sequentially. 

 According to the particle filtering theory in Chapter 1 and [1, 2], we want to 

draw Ns particles ( ) , 1,2,...,i
k sx i N=  from an importance function ( )0:0: kkq yx  and 
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give them the weights based on the true posteriori probability ( )0:0: kkp yx : 

     ( )k
i

k
i

k
i

k yxqx ,~ )(
0:1

)()(
−x       (2-5) 

    
( ) ( )

( )k
i

k
i

k

i
kk

i
k

i
ki

k
i

k yxq

ypxxp
ww

,)(
0:1

)(

)(
0:

)(
1

)(
)(
1

)(

−

−
−

⋅
⋅∝

x

x
     (2-6) 

The importance function ( )0:0: kkq yx  is the trial p.m.f. which approximates 

( )0:0: kkp yx . It is easier to draw samples from ( )0:0: kkq yx  than ( )0:0: kkp yx . The 

adaptation of the normalized weight (2-6) is derived from (1-3) and the following 

factorization of importance function: 

( ) ( ) ( )0:10:10:10:0: , −−− ⋅∝ kkkkkkk qyxqq yxxyx     (2-7) 

The Ns particles constitute a Monte Carlo smoother (MC smoother) that approximates 

the true posteriori p.m.f. for each time slot k: 

( ) ( )
:0 :0 :0 :0 :0 :0

1

ˆ( ) ( ) ( )
sN

i i
k k k k k k k

i
p p w δ

=

≈ = ⋅ −∑x y x y x x     (2-8) 

where )(
0:

i
kx  are the particles, )(i

kw  are their weights and ( )δ ⋅  is the Dirac delta 

function.  

There are many choices to decide the importance sampling function ( )0:0: kkq yx ,. 

Here we choose the optimal importance function that collects all available 

information up to time k . 

)(

)(),(

),(),(

)(
0:1

)(
0:1

)(
0:1

)(
0:1

)(
0:1

i
kk

i
kk

i
kkk

k
i

kkk
i

kk

yp

xpxyp

yxpyxq

−

−−

−−

⋅
=

=

x

xx

xx

    (2-9) 

Substituting (2-9) into (2-5) and (2-6), we have  

)(),(

)(),(
)(~

)(
0:1

)(
0:1)()(

xxpxxyp

xpxyp
Px

k

ionconstellat
x

i
kkk

k
i

kkki
k

i
k

==

=⋅=
≡

∑
∈∀

−

−

x

x χχ
χ     (2-10) 
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)(),()( )(

0:1
)(
1

)(

0:1
)(
1

)(
k

x

i

kkk
i

k
i

kk
i

k
i

k xpxypwypww
k

∑ ⋅⋅=⋅∝
−−−− xx   (2-11) 

If the channel is known, the estimate of the likelihood function for the i-th 

particle at time k is 

( )
2( )

( )
1:0 2

1ˆ , exp
22

H i
k ki

k k k
nn

y
p y x χ

σπσ−

⎛ ⎞− −⎜ ⎟= =
⎜ ⎟
⎝ ⎠

h x
x    ((22--1122)) 

where ( )Ti
Mk

i
k

i
k

i
k xxx )(

1
)(
2

)(
1

)( ,...,,,~
+−−−= χx , and χ  is the drawn sample for testing )(i

kx . 

To draw samples for a particle according to the likelihood function (2-10) and 

put the SIS algorithm into practice, we propose two algorithms here for sample 

drawing of each particle. 

2.2.1 Log SIS 

  From the definition of )()( χi
kP in (2-10) and the fact that χ could be either +A or

－A. We can determine a sample drawing mechanism that employs a uniformly 

distributed random variable (r.v.) )1,0(~ Uu  to draw samples for )(i
kx . Since the 

denominator of )()( χi
kP  is the same when AA −+= or  χ , we consider only the 

numerator. Define )(
,

)(
, & i

Ak
i

Ak −+ ρρ  as the numerator of )()( χi
kP  

when  and A Aχ = + − , respectively: 
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  (2-13) 

and similarly  

)(
2

exp
2

1
2

21

1
)(

0)(
, Axp

xhhAy
k

n

M

l
i

lklk

n

i
Ak −=⋅

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ ⋅−⋅+−
=

∑ −

= −

− σσπ
ρ   (2-14) 
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By normalizing )(
,

)(
, & i

Ak
i

Ak −+ ρρ , we can determine a threshold )(
,
i

Ak +ζ   

)()( )()(
,

)(
,

)(
,

)(
, AP i

k
i

Ak
i

Ak
i

Ak
i

Ak +=+≡ −+++ ρρρζ     (2-15) 

so that if the uniform r.v. u falls in the interval [ ])(
,,0 i

Ak +ζ , then the particle )(i
kx  is 

assigned as +A, and vice versa. The way of generating the i-th particle )(i
kx  at time k 

is illustrated in Fig. 2-2. 

 

 

0

1

Threshold )(
,
i

Ak +ζ  

u ~ U(0,1) 
here falls  if )( uAx i

k −=  

here falls  if )( uAx i
k +=  

 
Fig. 2-2 Illustration of Log SIS sampling mechanism 

 

The update of the weight for the i-th particle is (from (2-11)) 

)()(
,

)(
,

)(
1

)( )(~ i
k

i
Ak

i
Ak

i
k

i
k www ∝+≡ −+− ρρ         (2-16) 

where )(~ i
kw  it the weight before normalization, and the new weight )(i

kw of i-th 

particle at time k can be obtained after the normalization: 

( )
( )

( )
1

, 1,2,...,
s

i
i k

k sN j
kj

ww i N
w

=

= ∀ =
∑

      (2-17) 

2.2.2 Max-Log SIS 

In this section we want to further simplify the computation of the threshold by 

using some approximations. Let us look at the definition of )(
,
i

Ak +ζ  in (2-15). Since 

)(
,

)(
, & i

Ak
i

Ak −+ ρρ  are composed of exponential terms, we can obtain the new threshold 

)(
,
i

Ak +ψ  of Max-Log SIS by applying the Jacobian approximation (see Appendix A) on 
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the denominator of the original threshold:  

( )

( )

( )
,( )

, ( ) ( )
, ,

( )
, ( ) ( ) ( ) ( )

, , , ,( ) ( )
, ,

( )
, ( ) ( )

, ,( ) ( )
, ,

( )
exp( )

1 1 exp ( )   ,  if 
exp( ) exp( )

exp( )
exp ( )

exp( ) exp( )

i
k Ai

k A i i
k A k A

i
k A i i i i

k A k A k A k Ai i
k A k A

i
k A i i

k A k Ai i
k A k A

ρ
ζ

ρ ρ
α

α α ρ ρ
α α

α
α α

α α

+
+

+ −

−
− + + −

+ −

+
− +

+ −

≡
+

−
− = − − − >

− + −
=

−
= − −

− + −
( ) ( )
, ,,  if  i i

k A k Aρ ρ+ −

⎧
⎪
⎪
⎨
⎪ ≤⎪
⎩

Thus we have simplified the computation of the threshold as  

( )

( )

( )
, ( ) ( ) ( ) ( )

, , , ,( )
,( )

, ( )
, ( ) ( ) ( ) ( )

, , , ,( )
,

1  =1 exp  ,  if 

  =exp ,  if  

i
k A i i i i

k A k A k A k Ai
k Ai

k A i
k A i i i i

k A k A k A k Ai
k A

ρ
α α ρ ρ

ρ
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ρ
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−
+ − + −

+
+

+
+ − + −
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⎧
− − − − >⎪

⎪≅ ⎨
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⎩

 

( ) ( ) ( ) ( )
, , , ,where log( ), log( )i i i i

k A k A k A k Aα ρ α ρ+ + − −= − = − . If ( ) ( )k kp x A p x A= + = = − , then 

( )
,
i

k Aα +  and ( )
,
i

k Aα −  can be simplified as the exponent term of ( )
,
i

k Aρ +  and ( )
,
i

k Aρ + :  

21( ) ( )
, 0 1

Mi i
k A k l k ll

y A h h xα −
+ −=

= − ⋅ − ⋅∑  

21( ) ( )
, 0 1

Mi i
k A k l k ll

y A h h xα −
− −=
= + ⋅ − ⋅∑  

To reduce the error produced by this approximation and to make the new threshold 

closer to the original one, we generalize the ratio of )(
,

)(
,

i
Ak

i
Ak −+ ρρ  or )(

,
)(

,
i

Ak
i

Ak +− ρρ  as  

( ) ( ) ( )
, ,

1 exp( ), 0
2

i i i
k k A k Aρ γ α α γ+ −= − − >  

with the parameter γ  to give some exponential weighting on it. The effects of this 

parameter would be discussed later in this section. Now we can define the threshold 

)(
,
i

Ak +ψ  for the Max-Log SIS as:  

⎩
⎨
⎧

≤
>−

≡
−+

−+
+   if  ,  

 if  ,  1
)(

,
)(

,
)(

)(
,

)(
,
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i
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i
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i
Ak

i
Ak

i
ki

Ak ρρρ
ρρρ

ψ      (2-18) 

We can see that in both cases, )(
,
i

Ak +ψ  would approach to (i)
Ak,ζ +  if γ  is chosen 
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properly. To further illustrate that the Log SIS algorithm can be approximated by the 

Max-log SIS, we plot (i)
Ak,ζ +  and )(

,
i

Ak +ψ  as functions of )( 1

1
)(∑ −

= −⋅−
M

l
i

lklk xhy  in Fig. 

2-3. with different values of γ .  

 

 

)( 1

1
)(∑ −

= −⋅−
M

l
i

lklk xhy  
0Ah−  0Ah0

(i)
Ak,ζ +  

& 
)(

,
i

Ak +ψ  

 
Fig. 2-3  Illustration of Max-Log SIS approximating Log SIS with different γ  

 

We can observe that )(
,
i

Ak +ψ  approaches (i)
Ak,ζ +  as γ  is around 0.75. As γ   

increases, the characteristic function of )(
,
i

Ak +ψ  would approach to a step function, 

which implies that the hard decision scheme is applied to draw sample for )(i
kx . In 

this case, most of the particles would be drawn to be the same value at each time slot, 

and the particle filter can no longer compute the estimation of the desired posteriori 

probability. On the other hand, if we choose γ  to be a very small value (e.g. 

0.5<γ ), we can observe from Fig. 2-3 that even when 

0
1

1
)( )( hAxhy M

l
i

lklk ⋅>⋅− ∑ −

= −  , the threshold is still not very close to 1. That is, there 
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is still quite a little probability that the particles would be drawn wrongly, and the 

error probability would increase.  

  Similarly, if we define ( ) ( ) ( ) ( ) log( ) and log( )i i i i
k k k kW w W w= = , we can take 

logarithm and apply Jacobian approximation to the weight )( i
kw  (2-16) and (2-17). We 

can obtain the following weight adaptation for Max-Log SIS:  

( ) ( )
( )

( ) ( ) ( ) ( )
1 , ,

( ) ( ) ( )
1 , ,

( ) ( ) ( )
1 , ,

 log log

log max( , )

min( , )                                         (2 -19)

i i i i
k k k A k A

i i i
k k A k A

i i i
k k A k A

W w

W

W

ρ ρ

ρ ρ

α α

− + −

− + −

− + −

≡ + +

= +

= −

 

Similar to the Log-SIS case, the normalized weights would be: 

( ) ( ) ( )
1

log( ), 1, 2,...,                         (2 - 20)Ni i j
k k kj

W W w i N
=

= − ∀ =∑  

 These logarithm SIS algorithms have an addition advantage on the 

implementation. Consider the case when the likelihood function is too small. The 

value may be truncated and may not be stored accurately due to the finite precision 

problem caused by limiting number of bits in a word. By utilizing the logarithms we 

can avoid these undesired truncations caused by insufficient bits. 

 



 27

2.3 PRACTICAL ISSUE — PROBLEM AND SOLUTIONS OF SIS EQ UNDER 

WEAK LOS CHANNELS 
 

As we have mentioned in Chapter 1, the particle filter based equalization 

encounters a performance loss under the channel with a much attenuated line of sight 

(LOS)2.  

 

Tx 
Rx 

Line of sight 

 

Fig. 2-4  Illustration of line of sight in communication systems 

 

In this case, the first impulse of the CIR (h0) would be very small. The value of 

the likelihood  

( )
21 ( )

0 1( )
1:0 2

1ˆ , exp
22

M i
k l k lli

k k k
nn

y h h x
p y x

χ
χ

σπσ

−
−=

−

⎛ ⎞− − ⋅ − ⋅⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
x      (2-12) 

for all possible outcomes,  and A Aχ = + − , would be very close. Assume that 

symbols are sent equally likely, the difference between ( ) ( )
, , and i i

k A k Aρ ρ+ − , in (2-13) and 

(2-14), , would be small so that the SIS algorithm can hardly determine (or draw out) 

the desired particle. Hence the symbols will be erroneously decided in the receiver, 

and the performance of the particle filter decreases. 

                                                 
2 Line of sight (LOS) is commonly used to refer to telecommunication links that rely on a line of sight 
directly between the transmitting antenna and the receiving antenna (as illustrated in Fig. 2-4), and its 
gain would usually be valued as the first impulse response of the CIR. 
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2.3.1 Delayed Sampling  

One strategy to overcome this problem is the delayed-sampling technique, 

proposed in [3]. The basic idea of the delayed-sampling algorithm is to utilize the 

possible large (un-attenuated) and lagged CIR pulses and enumerate the future 

observations to determine the present particle, as illustrated in Fig. 2-5. 

 

Less attenuated channel path. 

Severely attenuated LOS 

1 1 2 20 ...k k kky h x xx hh − −+ ⋅ + ⋅ +⋅=

h0 

h1 

h2 … 

xk 

xk－1 

… 

22 0 2 1 1 ...k k k ky h x h h xx+ + += ⋅ + ⋅ +⋅+

… 

h0 

h1 

h2 … 

xk+2 

xk+1 xk 

xk－1 

‧Delayed SIS incorporates future observation yk+2 because in which xk is 

multiplied with larger channel impulse h2 

… 

Delayed SIS  SIS  

 
Fig. 2-5 Illustration of the idea of delayed-sampling 

 

Note that the CIR in this figure is placed in reversed order to illustrate how the 

computations work in the convolution of h and x.  

More specifically, the sampling of a particle ( )i
kx  is delayed until k dy + is 

observed, 

( )( ) ( ) ( )
1:0 :~ ,i i i

k k k k k dx q x − +x y      (2-21) 

( ) ( )
( )

( ) ( ) ( )
1 : :0( ) ( )

1 ( ) ( )
1:0 :,

i i i
k k k k d ki i

k k i i
k k k k d

p x x p
w w

q x
− +

−

− +

⋅
∝ ⋅

y x

x y
    (2-22) 

Compared with the original SIS algorithm (2-10) and (2-11), the particles are now 

drawn from the delayed importance p.m.f. and the weights are updated accordingly. 

The likelihood function now becomes 
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y x
  (2-23) 

Again, the proportionality comes from the assumption that the transmitted symbols 

are sent equally likely. 

The delayed-SIS algorithm, however, has some limitations. First, as depicted in 

Fig. 2-5, it is straightforward that the delay d needs to be large enough to cover the 

less attenuated CIR. This requires the knowledge of the channel delay, which is 

usually unknown in the blind equalization scenarios. In addition, the computational 

complexity of the delayed-SIS algorithm has been increased exponentially because of 

the marginalization of all possible outcomes as shown in (2-23). Furthermore, the 

performance of the delayed-SIS method is not necessarily growing with the delay d 

(we will illustrate this in Chapter 5). In other words, it is possible that the 

performance decays when the delay d increases. The computation spent for the extra 

delay would be in vain. This usually happens when the delay d is larger than the 

channel length. In this situation, all of the information given in (2-23) would be the 

future symbols 1:t t dx + + , and none of the previous particles would be applied in this 

computation. The particle filter loses its function to storage the discrete measures. 

2.3.2 Minimum Phase filter Solutions 

As discussed in the previous section, the delayed-SIS has some limitations and 

high computation complexity. Here we will propose a novel particle filtering scheme, 

which utilizes the minimum phase filters implemented in the form of decision 

feedback equalizations (DFE). As introduced in many digital signal processing 

textbooks, the minimum phase system has the property that the partial energy is most 

concentrated at the first impulse of the impulse response h(n) (the minimum energy 

delay property [sec. 5.6.3 [7]]). The idea of this method is illustrated in Fig. 2-6.  
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CIR with an attenuated LOS 

0 1 1 2 2 ...k k k ky h x h x h x− −= ⋅ + ⋅ + ⋅ +

h0 

h1 

h2 … 

xk 

xk－1 

… 

0 21 1 2 ...k k k kg gy x xgx − −= ⋅ + ⋅ + ⋅ +

g0 g1 

g2 

… 

‧After the minimum phase pre-filtering, the equivalent channel would have a 

large first impulse, and therefore xk would by multiplied with a larger LOS g0. 

Equivalent CIR after DFE 
(reversely ordered) 

xk 

xk－1 

… 

SIS SIS with minimum phase pre-filter 

 

Fig. 2-6 Illustration of the idea of minimum phase filtering method 

 

 To combine the minimum phase system with particle filters, we propose the 

following system diagram of the SIS decision feedback equalization (SIS DFE), as 

shown in Fig. 2-7. 

 

 

H(z) 

nk 

Channel 

xk 
yk  FeedForward 

Filter 

Feedback Filter 

+ － 

uk Particle Filter 

Equalizer 

dkx −ˆ  
 

Fig. 2-7 System diagram of the SIS decision feedback equalization 

 

The match filter cascaded with a noise whitening filter forms a feedforward filter 

(FFF). The feedback filter (FBF) is a minimum phase filter. In the case of known 

channel state information (CSI) in the time-invariant system, the coefficients of the 

FFF and FBF can be pre-calculated under the criteria of zero-forcing (ZF) or minimum 

mean square error (MMSE). When the channel information is unknown or varies with 

time, the adaptive filtering techniques such as RLS or LMS can be applied to fulfill 
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the operation of blind equalization. The details of the SIS based ZF and MMSE DFE 

would be introduced in the next chapter, and the implementation of blind equalization 

with adaptive filtering would be discussed in Chapter 4. 

2.4 CHAPTER SUMMARY 

In this chapter, we have briefly introduced the particle filtering equalization 

structure, and conceptually explained why channels with a weak LOS would reduce 

the performance of a particle filtering equalizer (PF EQ). To solve the weak LOS 

problem, we propose the SIS decision feedback equalization structure. Based on the 

defined notations and models, we will provide the detailed mathematical analysis of 

its bit error rate in the next chapter. We will show the effects of the weak LOS 

problem and how the proposed SIS decision feedback equalization can solve this 

problem.  
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3 PERFORMANCE ANALYSIS OF MAX-LOG SIS 

EQUALIZATION ALGORITHMS 

 

In this chapter, we attempt to analyze the BER of the equalization system based on 

the Max-Log SIS algorithm. We will first derive the BER in 3.1 and further analyze 

the convergence behavior in 3.2. Then, we will focus on the performance analysis of 

the SIS decision feedback equalizers proposed in Chapter 2 and illustrate how they 

improve the performance (BER). Finally we will have a chapter summary in the end 

of the chapter. 

3.1 DERIVATION OF THE BIT ERROR PROBABILITY 

In the following analysis, we consider only the i-th particle and analyze the bit 

error rate (BER) of this particle. Assume that the data sequence bk are sent equally 

likely, i.e. the priori probability 21)1()0( ==== kk bpbp . According to the 

Max-Log SIS algorithm, we can calculate the error probability of the i-th particle as: 

( ) ( ) ( )
,

1 ( ) ( ) ( )
, , ,0

1 ( ) ( ) ( )
, , ,0

1 ( | ) ( ) ( | ) ( )
1         1 ( , ) ( )
2
1              ( , ) (
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i i i
err k k k k k k k

i i i
k A k A k k A k

i i i
k A k A k k A k

P p x A x A p x A p x A x A p x A

p u x A p x A d

p u x A p x

ψ ψ ϕ ψ ϕ ϕ

ψ ψ ϕ ψ ϕ

+ + +

+ − −

= − = + = + ⋅ = + − = − = − ⋅ = −

= − ⋅ ≤ = = + ⋅ = = +

− ⋅ ≤ = = − ⋅ = = −

∫

∫
1 1( ) ( )
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( ) ( )
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1 1         1 ( ) ( )
2 2
1 1         1 [ | ] [ | ]                                     (3-1)
2 2

i i
k A k k A k

i i
k A k k A k

A d

p x A d p x A d

E x A E x A

ϕ

ϕ ψ ϕ ϕ ϕ ψ ϕ ϕ

ψ ψ

+ −

+ −

= − ⋅ ⋅ = = + − ⋅ ⋅ = = −

= − = + − = −

∫ ∫

where )1,0(~ Uu  is a uniform distributed r.v. with the range [0,1].  

Based on the calculation of ]0|[ )(
, =+ k
i

Ak bE ψ  and ]1|[ )(
, =− k
i

Ak bE ψ  (the details 

are in Appendix B), we obtain the error probability )(
,

i
kerrP  as:  



 33

2 2( ) ( ) ( )
, 0 0 1 0( , , ) ( , , , )i i i

err k k kP F h F hλ ζ λ ζ γ= +    ((33--22)) 
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1 12 22 2 2

0 0
)   (recall that 1) is the SNR,M M

l n n ll l
h A hσ σ− −

= =
= =∑ ∑

 

and the Q-function is defined as following: 

2

21( ) .
2

t

x
Q x e dt

π

−∞
≡ ∫  

We define the error propagation factor as 

∑ −

= −=
1

1
)(
,

2)( M

l
i

lkerrl
i

k Phλ  

 This factor indicates the error contribution of the previous BERs after the 

channel responses are applied. 

In the rest of this section, we will observe the influence of all parameters on F0 

and F1. The BER of the i-th particle at time k )(
,

i
kerrP  is a function of the error 

propagation factor ( )i
kλ , the power of the first CIR 2

0h , the SNR ζ , and the 

Max-Log SIS parameter γ . To see the effect 2
0h  on the performance, we choose 

0.75γ =  and fix ( )i
kλ  to observe the BER versus SNR graph with different values of 

2
0h .  

Fig. 3-1 is the plot of )(
,

i
kerrP  versus the SNR ζ  according to (3-2) with several 
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values of 2
0h  with 3)( 10−=i

kλ .  
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Fig. 3-1 BER )(
,

i
kerrP  versus SNR ζ  with different 

2
0h  with 3)( 10−=i

kλ  

 

As shown in the figure, we can find that the double of 2
0h  is equivalent to a 6 dB 

increase in SNR when 2
0h  is sufficiently large. Therefore it is essential to make 

2
0h  large enough to obtain acceptable low bit error rate. Note that this BER versus 

SNR plot is drawn under the condition that the error propagation factor ( )i
kλ  is fixed. 

In fact, when 2
0h is small, the value of ( )i

kλ  would be increased because the error 

propagation may be enlarged by the rest impulses of the CIR. When ( )i
kλ is increased 

to 0.1, the BER versus SNR plot would be as shown in Fig. 3-2. 
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Fig. 3-2 BER )(
,

i
kerrP  versus SNR ζ  with different 

2
0h  as ( ) 0.1i

kλ =  

 

To evaluate the effects of ( )i
kλ  on the performance is difficult because ( )i

kλ varies with 

time. However, our simulation results show the BER curves are similar to the lower 

curves in Fig. 3-1 when 2
0h  is large and similar to the upper ones in Fig. 3-2 as 

2
0h  is small. 

3.2 CONVERGENCE BEHAVIOR OF THE AVERAGE BER OF A PARTICLE 

From (3-2) and the definition of )(i
kλ , we can observe that )(

,
i

kerrP  is a function of 

the previous M-1 averaged bit error probabilities { }1,...,2,1)(
, −=− MlP i

lkerr . That is, the 

averaged bit error probability of a particle may change with time. It is not easy to 

analyze the convergence behavior of )(
,

i
kerrP when M is large. In general )(

,
i

kerrP  will 

converge to stable equilibrium points, which are determined by the crossing points of 

a plane and a line in the hyper space ),...,,( 110 −Mppp  as the following. 
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2( ) ( )
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2 1
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The hyper plane:

( , , , )
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i i
err k

M M

p P h

p p
p p

p p

λ ζ γ

− −

=

=⎧
⎪ =⎪
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⎪
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The negative going cross points correspond to stable equilibrium points whereas the 

positive going cross points correspond to unstable equilibrium points. 

To illustrate the convergence of )(
,

i
kerrP , we observe the case M = 2 with different 

values of 2
0h  and plot the convergence trajectories of the )(

,
i

kerrP  as in Fig. 3-3, Fig. 

3-4, and Fig. 3-5. The arrowed lines represent the convergence trajectories of )(
,

i
kerrP  as 

the time index k increases (k = 0, 1, 2 ...). We can see that in Fig. 3-3 and Fig. 3-4, 

)(
,

i
kerrP  will eventually converge to single stable equilibrium point E. In Fig. 3-5, when 

2
0h =0.36 (in the middle range), there are two stable equilibrium points (E0 and E1) 

and an unstable equilibrium point (U). If )(
0,

i
errP  is initially located in the range I0, 

)(
,

i
kerrP  would eventually converge to E0. On the other hand, if )(

0,
i

errP  is initially 

located in the range I1, )(
,

i
kerrP  would eventually converge to E1, as shown in Fig.3-3. 

The steady state )(
,

i
kerrP at E0 is much smaller that at E1. We call the initial point within 

the interval I0 a good initial. How to make )(
0,

i
errP  fall in good initials is one of the 

important factors of obtaining good performance. That is actually the research topics 

we intend to study in the future. In addition, the unstable equilibrium point separate 

the convergence intervals I0 and I1.  
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Fig. 3-3 Convergence trajectory of )(
,

i
kerrP  as 

2
0h  = 0.2, SNR = 15 dB. 

 

Fig. 3-4 Convergence trajectory of )(
,

i
kerrP  as 

2
0h  = 0.6, SNR = 15 dB. 
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Fig. 3-5 Convergence trajectory of )(
,

i
kerrP  as 

2
0h  = 0.36, SNR = 15 dB. 

 

From the above observations, we conclude that the averaged bit error probability 

is likely to converge to a higher value (poor performance) if 2
0h  is not high enough. 

This situation usually happens when the channel has a weak LOS. 

3.3 ANALYSIS OF SIS DECISION FEEDBACK EQUALIZATION  

From the previous sections, we have proven that the power of the first impulse 

response of the CIR plays an important role in the SIS equalization. In this section, we 

will see how the SIS decision feedback equalization scheme proposed in Chapter 2 

improves the system performance. In the following analysis, we assume the channel 

impulse response is known. First we will derive the coefficients of the FFF and FBF 

under the criteria of zero-forcing (ZF) and minimum mean square error (MMSE), 

respectively. Then we analyze the BER performance of SIS decision feedback 
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equalization with the coefficients calculated from these two criteria. 

3.3.1 Zero-Forcing DFE (ZF-DFE)  

We employ the technique of zero-forcing decision-feedback equalization and 

modify the system model in Fig. 2-7 into the ZF-DFE scheme, as shown in Fig. 3-6. 

The original receiver input yk is filtered by a feedforward filter (FFF) with the 

response FZF(z), which is composed of the match filter and the error whitening filter. 

The estimated sequence dkx −ˆ  is filtered by a feedback filter (FBF) with the response 

BZF(z), as shown in Fig. 3-6. 

 

H(z) 

nk 

Channel 

xk 
yk 

H*(1/z*) 
Match Filter 

* *(1/ )

d

g

z
S G z

−

G(z)-1 
Feedforward Filter FZF(z) 

Feedback Filter BZF(z) 

+ － 

uk zk 

dkx −ˆ

Error Whitening 
Filter 

y’k 

 

Fig. 3-6  System model of the ZF-DFE 

 

The intermediate output y’k after the match filter can be written as: 

)(')()()(' zNzRzXzY hhk +⋅=       (3-3) 

where the noise sequence )(' zN  is a complex Gaussian sequence with 

autocorrelation function 2**
'' )()]/1(')('[)( nhhnn zRzNzNEzR σ⋅== . The average 

noise energy is 22
' )0( nhhn R σσ ⋅= . 

By applying spectral factorization in [4], we can factorize the autocorrelation function 

of the CIR as (If it is factorizable3): 

                                                 
3 An autocorrelation function R(z) is said to be factorizatble if its Fourier transform, the power 

spectrum density (PSD) |S(θ)|2 and its logarithm log|S(θ)|2 are both integrable over –π<θ≦π. 
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* * * *( ) ( ) (1 ) ( ) (1 )hh gR z H z H z S G z G z≡ ⋅ = ⋅     ((33--44)) 

where ⎟
⎠
⎞

⎜
⎝
⎛= ∫−

π

π

ω ω
π

deHS j
g ))(log(

2
1exp

2
 . 

G(z) is a canonical filter response of the length Ng, i.e. it is causal (gk = 0 if k < 0), 

monic (g0 = 1), and minimum-phase (all poles and zeros are fallen inside the unit 

circle)[4]. In addition, from the unity power property of CIR ( 11

0

2 =∑ −

=

M

l lh ) and the 

relation in (3-4), the power of the filter response kg  would be equal to 

g
M

l l Sg 11

0

2 =∑ −

=
.  

Based on the derivations in [5] , we have the following ZF-DFE solutions : 

)/1(
)/1()( **

**

zGS
zHzzF

g

d

ZF

−

=        (3-5) 

Therefore the equalized output is: 

)()()()( zVzXzGzU +=  

or equivalently, 

k

N

i
idkik vxgu

g

+⋅= ∑
−

=
−−

1

0
      (3-6) 

where vk is the whitened Gaussian noise signal with the variance gnv S22 σσ = [5], 

and the feedforward filter FZF(z) is called the whitened match filter (WMF) because it 

whitens the noise signal after the match filter )/1( ** zH . Note that the FZF(z) is an 

anti-causal IIR filter so that the delay d is usually induced for the implementation 

purpose. 

 From (3-6), we can treat ku  as the convolution result of the input kx  and the 

minimum-phase response g  plus the whitened noise kv . In other words, ku  is the 

equivalent channel output when the input kx  is transmitted through the equivalent 
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minimum-phase channel g  with the noise kv . 

 Comparing the linear convolution formula in (3-6) with (2-1), we can apply the 

BER analysis on the SIS-based ZF-DFE using the same procedure as in 2.2 (simply 

replacing yk with uk) and obtain: 
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And the estimate of the likelihood function is calculated as  
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where 0 1 1[ , ,... ]
g

T
Ng g g −=g  is the coefficients of )(zG , and 

( ) ( ) ( ) ( )
1 2 1[ , , ,..., ]i i i i T

k d k d k d k d Mx x xχ− − − − − − − +=x .   

We can see that the equations (2-10)~(2-12) and the equations (3-7)~(3-9) have the 

same mathematical form except for the delay d. Likewise, by following the same 

derivations as in 3.1 and Appendix B, we can obtain the averaged bit error probability 

of the i-th particle in the SIS-based ZF-DFE as follows (using the same parameterγ ): 

),,,(),,( 2
0

)(
,1

2
0

)(
,0

)(
,, γζλζλ ZF

i
ZFkZF

i
ZFk

i
ZFkerr gFgFP +=   ((33--1100)) 

To compare )(
,,

i
ZFkerrP  in (3-10) and )(i

errP  in equation (3-2), we could express the 

parameters 2( )
, 0,   , and i

k ZF ZFgλ ζ  in terms of 2( )
0,   , and i

k hλ ζ . Then we compare 

the difference between (3-10) and (3-2). Unfortunately, since the BER )(i
errP  is 

complicated, and the parameters are mutually dependent on each other, it is very 

difficult to have a close form comparison of these two BERs. To simplify the 

comparison, we assume that the Ng particles before the time k are all detected 
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correctly, i.e. 1,...2,1for  ,0)(
, −==− g

i
lkerr NlP . 

Thus 

01

1
)(
,

2)(
, == ∑ −

= −
M

l
i

lkerrl
i

ZFk Pgλ   

We can simplify 2( ) ( )
, 0( , , , )i i

err k kP hλ ζ γ  as  

( )

2 2( ) ( ) ( ) ( )
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( , , , ) ( , ) ( , )i
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i i i i
err k k err k err kP h P h P

λ
λ ζ γ ζ γ η γ

=
= ⋅ =  

where 2
0(  )hη ζ≡ ⋅ . We can show (in Appendix C) that ( )

, ( , )i
err kP η γ  is a 

monotonically decreasing function of η  when γ  is within [0.5, 1]. Thus, we can 

show that ( )
,

( ) ( )
, , ,0

( , )i
k ZF

i i
err k ZF err k ZFP P

λ
η γ

=
=  is smaller than ( )

, ( , )i
err kP η γ if we can prove that 

ZFη η≥ . The proof is as follows. 

From the definition of ZFη : 

2 2 2
0 1ZF ZF v gg A Sη ζ σ ζ≡ ⋅ = ⋅ = ⋅     (3-11) 

where g0 = 1 (G(z) is monic), and 2 2 2 2( )ZF v n g gA A S Sζ σ σ ζ= = = ⋅ . Let '( )G z  

be the minimum phase response having the same magnitude response as ( )H z , i.e. 

2 2( ) '( )H z G z=  

Compare this with (3-4), 

* * * *( ) ( ) (1 ) ( ) (1 )hh gR z H z H z S G z G z≡ ⋅ = ⋅     ((33--44)) 

it can be easy to obtain that '( ) ( )gG z S G z= ⋅ . Since ( )G z  is monic with g0 = 1, the 

first impulse response of '( )G z  would be 0' gg S=  and its power is 2
0' gg S= . 

From the Komogoroff’s error formula 4   [sec. 13-A, [6]] and the minimum 

                                                 
4 Let H(z) be a minimal-phase response, it can be proven (in [6]) that 

2
2
0

1
log ( )

2
log jh H e d

π ω

π
ω

π −
= ∫ , where h0 is the magnitude of the first impulse response of h(n). 
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energy-delay property5 of the minimum phase filter [sec. 5.6.3 [7]], we can know 

2 2
0 0'gS g h= ≥ . Hence we have proven  

2
0ZF g

ZF

S hη ζ ζ η

η η

= ⋅ ≥ ⋅ =

⇒ ≥
       (3-12) 

It follows: 

( ) ( ) ( )
, , , ,( , ) ( , )i i i

err k ZF err k ZF err kP P Pη γ η γ= ≤       ((33--1133))  

Note that the equality holds when the CIR h(n) itself is a minimum phase response. 

In conclusion, when the previous particles are drawn correctly and γ  is chosen 

properly, the SIS based ZF-DFE scheme indeed improves the performance (i.e. 

reduces the averaged bit error probability) of the particle filter because it enhances the 

amplitude (or power) of the first impulse of the equivalent CIR G(z). 

 

3.3.2 Minimum Mean Square Error DFE (MMSE-DFE) 

Now we consider the DFE scheme with the filter coefficients computed under 

the MMSE criterion. To analyze the BER of a particle in the SIS based MMSE-DFE 

scheme, we consider the equivalent discrete system model as shown in Fig. 3-7. The 

receiver’s input signal yk is filtered by a feedforward filter (FFF) with the response 

FMMSE(z). The estimated sequence dkx −ˆ  is filtered by a feedback filter (FBF) with 

the response BMMSE(z). 

                                                 
5 Among all impulse responses h(n) belonging to the same family of systems that have the same 

magnitude response, that is, 

min( ) ( ) ,for every ( )jw jw jwH e H e H e= , 

the partial energy of a minimum phase system hmin(n) would be most concentrated around its first 

impulse hmin(0): 
2 2

min
0 0

( ) ( ) , 0
n n

k k
h k h k n

= =

≤ ∀ ≥∑ ∑  
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Fig. 3-7 System model of the MMSE-DFE 

 

According to the theory of linear prediction and spectral factorization ([4] and 

[5]), we can write down the key equation: 

2 * * 2 * *( ) (1/ ) ( ) (1/ )x n mH z H z S M z M zσ σ+ =     ((33--1144)) 

where 
22 21exp log( ( ) )

2
j

m x nS H e d
π ω

π
σ σ ω

π −

⎛ ⎞= +⎜ ⎟
⎝ ⎠∫ . 

The left hand side of the equation is known as the system autocorrelation function, 

and the right hand side is the spectral factorization. Note that M(z) is also a canonical 

filter response with the length Nm. From [5], the MMSE-DFE solutions of the FFF and 

FBF are 

2 * *

* *
(1/ )( )

(1/ )

d
x

MMSE
m

z H zF z
S M z

σ −

=        (3-15) 

( ) ( ) 1MMSEB z M z= −                            (3-16) 

and the equalized output becomes  

( ) ( ) ( ) ( )R z M z X z E z= +  

or equivalently, 
1

0

mN

k i k d i k
i

r m x e
−

− −
=

= ⋅ +∑       (3-17) 

The feedforward filter FMMSE(z) is called the mean-square whitened match filter 

(MS-WMF) because it whitens the filtered output noise ke , which is the combination 
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of both the noise and the inter-symbol interference (ISI) sequences. After the 

MS-WMF, ke  would have the variance 2 2 2( )e x m nSσ σ σ= ⋅  [5]. Although ke  is 

white, it is not Gaussian distributed in general. That is because ke  is dependent on 

the data sequence kx . However, from the Central Limit Theorem, the error signal ke  

can still be approximated to be Gaussian. 

 Following the same procedure as used in the previous sections, we proceed the 

BER analysis of this MMSE-DFE scheme by writing: 
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The estimate of the likelihood function is calculated as  

( )
2( )

( )
1:0 2

1ˆ , exp
22

H i
k k di

k k d k d
ee

r
p r x χ

σπσ
−

− − −

⎛ ⎞− −⎜ ⎟= =
⎜ ⎟
⎝ ⎠

m x
x    (3-20) 

where 0 1 1[ , ,... ]
m

T
Nm m m −=m  is the coefficients of ( )M z , and 

( ) ( ) ( ) ( )
1 2 1[ , , ,..., ]i i i i T

k d k d k d k d Mx x xχ− − − − − − − +=x .  

Similar to the ZF-DFE, we can see that the equations (2-10)~(2-12) and the equations 

(3-18)~(3-20) again have the same mathematical form except for the delay d. Hence 

we can obtain the averaged bit error probability of a particle in the MMSE-DFE 

scheme as  

2 2( ) ( ) ( )
, , 0 , 0 1 , 0( , , ) ( , , , )i i i

err k MMSE k MMSE MMSE k MMSE MMSEP F m F mλ ζ λ ζ γ= +  (3-21) 

 Similar to the BER analysis in the case of ZF-DFE, we simplify )(
,,

i
MMSEkerrP  as a 

function of MMSEη  and γ  by assuming that 0)(
, =i
MMSEkλ : 
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( )
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( , )i
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i i
err k MMSE err k MMSEP P
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η γ

=
=  

where 2 2 2 2
0 1MMSE MMSE e m nm A Sη ζ σ σ≡ ⋅ = ⋅ = , and 

22 21exp log( ( ) )
2

j
m nS A H e d

π ω

π
σ ω

π −

⎛ ⎞= +⎜ ⎟
⎝ ⎠∫ .  

If 02 =nσ , we can obtain 
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21where  log( ( ) )
2

j
gS H e d

π ω

π
ω

π −
= ∫  is the same as (3-4) in ZF-DFE scheme, and 

2A  is the symbol power. 

Since 2
nσ  is always positive and the logarithm function is also a monotonic 

increasing function, we can conclude that mS  is always larger than 2A gS . 

2
m gS A S≥ ⋅  

Utilizing the property 2
0hSg ≥ , as mentioned in the previous section, we have:  

22 2
0m gS A S A h≥ ⋅ ≥ ⋅       (3-22) 

Thus:     
22

20
02 2

m
MMSE

n n

A hS hη ζ η
σ σ

⋅
= ≥ = ⋅ ≡           

MMSEη η⇒ ≥             (3-23) 

We have finally proved that  

( ) ( ) ( )
, , , ,( , ) ( , )i i i

err k MMSE err k MMSE err kP P Pη γ η γ= ≤     ((33--2244)) 

Note that the equality holds when the both equalities in (3-22) maintain. The first 
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equality in (3-22) holds when 02 =nσ . In this situation, the MMSE-DFE solution 

becomes the ZF-DFE solution. And the second equality in (3-22) maintain as the CIR 

h(n) is a minimum phase system. 

In sum, we have shown that when the particle filter operates with correct 

previous bit decisions and with a properly chosenγ , the MMSE-DFE scheme also 

improves the performance of the SIS-based equalization. The improvement is caused 

by enlarging the amplitude (or power) of the LOS of the equivalent channel impulse 

response M(z).  

Furthermore, from the first inequality in (3-22), we can have the following 

relationship between MMSEη  and ZFη  

2

2 2
gm

MMSE g ZF
n n

A SS Sη ζ η
σ σ

⋅
= ≥ = ⋅ ≡  

The equality holds when 02 =nσ . Therefore we can conclude that as noise variance 

approaches to zero ( 02 →nσ ), or signal-to-noise ratio (SNR) is high enough, the 

MMSE-DFE scheme would approaches to the ZF-DFE. In general, the SIS-based 

MMSE-DFE schemes would generally have a better performance than the ZF-DFE 

schemes, i.e. 

( ) ( )
, , , ,

i i
err k MMSE err k ZFP P≤  

 

3.4 CHAPTER SUMMARY 

In this chapter we have conducted the analyses of the averaged bit error 

probability of a particle in the SIS-based equalization schemes. During the analysis, 

we have found that the performance is unacceptable when the power of the first 

impulse of the channel impulse response (CIR) is low, namely, the weak LOS 
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problem. To combat this effect, we have proposed the SIS-based decision feedback 

equalization (DFE) schemes (either based on ZF or MMSE criterion). We have proven 

that by employing the DFE schemes, the BERs are lower than that of the original 

SIS-based equalization.  In the next chapter, we would focus on the unknown CSI 

case and propose the SIS-based blind decision feedback equalization algorithms. The 

simulation results based on all the proposed schemes would be shown in Chapter 5.  
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4 BLIND AND ADAPTIVE PARTICLE FILTERING 

EQUALIZATIONS 

 

In Chapter 3, we have introduced the SIS decision feedback equalization based 

on ZF and MMSE criteria. We have confirmed that they can improve the performance 

when the channel LOS is weak. Nevertheless, the coefficients of the FFF and FBF 

must be calculated in advance. That means the channel impulse response must be 

known and not vary with time. In this chapter, we will propose an adaptive blind SIS 

decision feedback equalization for the situation that the CIR is unknown or varies 

with time. 

4.1 ADAPTIVE DECISION FEEDBACK EQUALIZATIONS 

According to the adaptive filter theory [10], the adaptive filtering algorithms can 

be divided into two categories: the stochastic gradient approach and the least square 

estimate. The former algorithm is designed to minimize the mean-square error 

(MMSE) 2[ ( )]E e n  by solving the Wiener-Hopf equations for stationary inputs (or 

observations) in the sense of “ensemble average”. The later algorithm is to minimize 

the sum of error squares 2

1

2 ( )n

n n
e n

=∑  by solving the normal equation with “time 

averages”. The stochastic gradient algorithm is optimal in the probability sense while 

the method of least squares involves the time averages and is the optimal solution 

based on the deterministic data. 

In practical situations, when the statistical information of the channel is unknown, 

the representative recursive solutions of these two methods are the Least-Mean- 

Square (LMS) adaptive filter and Recursive Least Squares (RLS) adaptive filter. 

Compared with the RLS algorithm, the LMS algorithm is much simpler in complexity. 

But the LMS algorithm has a slower convergence and is more sensitive to the 
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eigenvalue spread6 of the correlation matrix than the RLS algorithm. 

Both of the two adaptive filtering algorithms can be applied in the blind 

SIS-based decision feedback equalization. Here we will adopt the RLS algorithm as an 

example. 

First we have a quick overview of the RLS algorithm for the linear equalization 

filter (without feedback), as given in [10]: 

ˆk dx −

 
Fig. 4-1 Block diagram of the adaptive filter algorithm 

 

With the system block diagram and the notations shown in Fig. 4-1, the method 

of least squares is to minimize the sum of error squares with respect to the filter 

coefficient vector 0 1 1( ) [ ( ), ( ),..., ( )]
f

T
Nn f n f n f n−=f  at time n. i.e. 

( ){ }2

1

2arg min ( )n

k n
e k

=∑
f

      (4-1) 

where  

ˆ( ) ( ) ( ) ( )He k x k n k= − f y       (4-2) 

, and ( ) (or )kky y is the tap-input vector at time k: 

( ) [ ( ), ( 1),..., ( 1)]T
fk y k y k y k N= − − +y . From [10], the cost function 

2

1

*( ) ( ) ( )n

k n
e k e kε

=
≡ ⋅∑f  is minimized for a particular estimation error min ( )e k  such 

                                                 
6 The eigenvalue spread is the ratio of the largest over the smallest eigenvalue. When the eigenvalue 
spread of a channel correlation matrix is large, the convergence of the learning curve would be slow 
and the misadjusment would be relatively large [10]. 



 51

that 0ε∇ =  or, equivalently,  

2

1

*
min( ) ( ) 0,

n

k n

y k i e k
=

− ⋅ =∑  for 0,1,..., 1fi N= −    (4-3) 

Let 0 1 1
ˆ ˆ ˆˆ( ) [ ( ), ( ),..., ( )]

f

T
Nn f n f n f n−=f  be the optimal filter coefficients such that  

1
*

min
0

ˆˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )
fN

H
t

t
e k x k n k x k f n y k t

−

=

= − = − ⋅ −∑f y    (4-4) 

By substituting (4-4) into (4-3), we obtain the system of normal equations: 

2 2

1 1

1
* *

0

ˆ ˆ   ( ) ( ) ( ) ( ) ( )
fN n n

t
t k n k n

f n y k i y k t y k i x k
−

= = =

⋅ − ⋅ − = − ⋅∑ ∑ ∑  

⇒
1

0

ˆ ( ) ( , ) ( ),for 0,1,..., 1
fN

t f
t

f n t i z i i N
−

=

⋅Φ = − = −∑     ((44--55))  

2 2

1 1

* *ˆwhere ( , ) ( ) ( ) and ( ) ( ) ( )n n

k n k n
t i y k i y k t Z i y k i x k

= =
Φ = − ⋅ − − = − ⋅∑ ∑ . Please note 

that ( , )t iΦ  and ( )Z i−  represent the time-averaged autocorrelation of ( )ky  and 

the cross-correlation between ( )ky  and ˆ ˆ ˆ ˆ( ) [ ( ), ( 1),..., ( 1)]T
fk x k x k x k N= − − +x , 

respectively. If we rewrite (4-5) in matrix form: 

1ˆ ˆ, or −⋅ = = ⋅Φ f z f Φ z       ((44--66)) 

*ˆwhere ( ) ( ) [ (0), ( 1),..., ( 1)] ,

(0,0) ( 1,0)
( ) ( )

(0, 1) ( 1, 1)
f f

T
f

f
H

f f f N N

k x k z z z N

N
k k

N N N

φ φ

φ φ
×

= ⋅ = − − +

⎛ ⎞−
⎜ ⎟

= ⋅ = ⎜ ⎟
⎜ ⎟− − −⎝ ⎠

z y

Φ y y
…

 

 Thus we have derived the least squares solution of the filter f̂ . The inversion 

lemma is applied to obtain the way of recursively computing the inverse of the 

autocorrelation matrix 1( )n−Φ  from 1( 1)n− −Φ  without direct matrix inversion 

[Chapter 9, [10]]. The resulting algorithm is known as the Recursive Least-Squares 

(RLS) algorithm. We will generalize this algorithm form linear equalization filter to 

decision feedback equalization filters. 
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Consider the following conceptual diagram of adaptive filtering generalized from 

Fig. 2-7 and Fig. 4-1: 

ˆk dx −

 
Fig. 4-2 System diagram of the SIS adaptive DFE. 

 

The major difference between linear equalizer and the decision feedback 

equalizers is the error term. As shown in Fig. 4-2, the error term now can be written 

as:  

( )ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( )

H H

H

e k x k d n k n k d

x k d n k

= − − − −

≡ − − ⋅

f y b x

w u
   ((44--77)) 

0 1 1 0 1 1

where ( ) [ ( ), ( )]
[ ( ), ( ),..., ( ), ( ), ( ),..., ( )]

ˆ( ) [ ( ), ( )]
ˆ ˆ ˆ[ ( ), ( 1),..., ( 1), ( ), ( 1),..., ( 1)]

f b

T T T

T
N N

T T T

T
f b

n n n
f n f n f n b n b n b n

k k k d
y k y k y k N x k d x k d x k d N

− −

= −

= − − −

= −

= − − + − − − − − +

w f b

u y x

Note that the delay d is added for the practical considerations. In this way, (4-7) has 

the same mathematical form as (4-2). Using the similar derivations, we can obtain  

1ˆ ˆ,or −⋅ = = ⋅Φ w z w Φ z       ((44--88))  
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*

( ) ( )

ˆwith ( ) ( ) [ (0), ( 1),..., ( 1)] ,

( ) ( )
f b f b

T
f

yy yxH

xy xx N N N N

k x k d z z z N

k k
+ × +

= ⋅ − = − − +

⎛ ⎞
= ⋅ = ⎜ ⎟

⎝ ⎠

z u

Φ Φ
Φ u u

Φ Φ
 

where yy =Φ Φ  is the time-averaged autocorrelation matrix of ( )ky , yxΦ  is the 

time-averaged cross-correlation matrix between ( )ky  and ˆ ( )kx , and so forth. 

Similarly, we can derive the recursive computation of the inverse 1−Φ  and the RLS 

algorithm simply by replacing ( )nf  with ( )nw , and ( )ky  with ( )ku . 

The coefficients of the LMS based adaptive DFE can be derived likewise by 

solving the Wiener-Hopf equation instead of the normal equation (4-5). 

4.2 ADAPTIVE BLIND SIS EQUALIZATIONS 

To conduct the SIS algorithm based on the DEF structure, we have to consider a 

number of particles during the equalization process. Each of the particles has its own 

filter coefficients (FFF+FBF), weight, and the drawn particle trajectory :0ˆkx . The 

drawn samples )(
0:ˆ i

kx  and the filter coefficients ( ( )i
kf and ( )i

kb ) of the i-th particle are 

used to update the filter coefficients and obtain ( )
1

i
k+f and ( )

1
i

k+b . The final decision bit 

sequence would be determined when k reaches the end of a time frame. Unlike the 

structure in Fig. 4-2, each particle of the adaptive SIS-based DFE has the equivalent 

minimum-phase channel response estimated based on its own drawn particle 

trajectory by applying adaptive filtering algorithms (LMS, RLS, etc), as illustrated in 

Fig. 4-3. 
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Trajectory (3)

:0kx

Particle filter 3

…
……

Equivalent minimum 
phase channel 2

Equivalent minimum 
phase channel 3

 
Fig. 4-3 Practical implementation of the SIS blind DFE. 

 

We apply the RLS algorithm to the adaptive SIS-based DFE as an example.  At 

an iteration, the i-th particle filter uses the trajectory )(
0:ˆ i

kx  to calculate the coefficient 

vector (4-9) and acquires the FFF and FBF coefficients (from ( )ˆ iw ) to calculate the 

likelihood functions (4-10). 

( ) 1( ) ( ) ( ) (i) (i)ˆ , where P  = i i i −
= ⋅w P z Φ     ((44--99)) 

( )

( )

2
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2

1

( ) ( ) ( )* ( ) ( ) ( )

( ) ( ) ( )
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( ) ( ) ( )

with ( ) ( ) [ (0), ( 1),..., ( 1)] ,

( ) ( ) ,

( ) ( ), ( )

[ ( ), ( 1),..., ( 1), ( ), ( 1),..., (

ni i i i i i T
fk n

Hni i i
k n

TTi T i

i i i
f

k x k d z z z N

k k

k k k d

y k y k y k N x k d x k d x k d

=

=

= ⋅ − = − − +

= ⋅

⎡ ⎤= −⎢ ⎥⎣ ⎦
= − − + − − − − −

∑

∑

z u

Φ u u

u y x

1)]T
bN +
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k k d
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⎝ ⎠

m x
x

f y b x

w u
            (4-10)

 

( ) ( )where i i H
k kr = ⋅f y , here we have chosen [1,0,...,0]T= −b m  (since the first 

impulse response of the canonical response ( )M z  would always be 1) The function of 

the RLS adaptive filter is to calculate the minimum phase solution, namely, the 

coefficients FFF and FBF for the PF whereas the PF is responsible for the decision of 

the next data samples being used for the RLS adaptation. As shown in the conceptual 

block diagram in Fig.4-4, they provide information to each other. In the SIS algorithm, 

the particle in which the RLS has the good estimate of the channel would be given a 

large weight and is likely to be preserved (via the particle weight adaptations and 

resampling7). We will see this example in the next chapter talking about simulations. 

FFF & FBF Coefficients

Weight Adaptation 
Mechanism 

of the i-th adaptive filter

Particle trajectories

i-th particle in
Particle Filter

( )i
k d−x

( )iw

 
Fig. 4-4 Illustration of information transmission between i-th PF and adaptive filter. 

 

                                                 
7 Notably, the coefficients of the filters ( )iw and the matrix ( )iP  should be copied and replaced 
together with the particle trajectories during the resampling process. 
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4.3 COMPLEXITY ISSUES AND THE MAX-WEIGHT SIS DFE 

It is realizable that the complexity of the blind SIS DFE (as well as the blind 

delayed-SIS equalizer (blind D-SIS EQ)) is very high. Every particle filter has its own 

set of filter coefficients adapted individually for the blind SIS equalization. Take RLS 

as an example; each adaptive filter requires a ( )f bN N+ by ( )f bN N+  matrix P(i)  

and several ( )f bN N+ by 1 vectors and updates the coefficients with 8 matrix 

multiplications and 2 matrix additions at every time iteration for each particle. 

Obviously, the computation and storage requirement would be huge. To meet the 

broadband applications, the enormous hardware cost is required in practice. Another 

important task of this thesis is to reduce the number of adaptive filter coefficient 

adaptations to minimize the computation complexity and the storage required for the 

SIS equalization. 

From the particle filtering theory, the particle trajectories with large weights are 

more likely to be preserved than those with small weights. A particle with the large 

weight will be replicated and replace the others in the procedure of resampling. 

Normally, the particle trajectory of the maximum weight would become the final 

decision sequence of the particle filter. We could use this feature to save the 

computation complexity. We use only a single set of adaptive filters and update the 

coefficients according to the trajectory of the maximally weighted particle Thus, we 

can greatly reduce the complexity of the blind SIS DFE without suffering from great 

performance loss. The idea of this Max-Weight blind SIS DFE is illustrated in Fig. 

4-5. 
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(1)
:0ˆ kx

(2)
:0ˆ kx

(3)
:0ˆ kx

( )
:0ˆ k
maxx  

Fig. 4-5 Implementation of the Max-Weight blind PF DFE. 

 

Compared with Fig. 4-3, this implementation requires only one set of adaptive 

filter so that the computation complexity is greatly reduced.  The performance 

comparison of the Max-Weight blind SIS DFE and the original blind SIS DFE would 

be discussed in Chapter 5. 
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4.4 CHAPTER SUMMARY 

In this chapter, we have proposed an adaptive blind SIS decision feedback 

equalizer (blind SIS DFE). Unlike the algorithms introduced in Chapter 3, this method 

does not need the knowledge of the CSI in advance in order to applying the minimum 

phase pre-filtering before the SIS equalization. But it requires Ns sets of adaptive 

filters and the adaptation processes for Ns individual particles of the blind SIS 

equalization. The high computation requirement can be alleviated by the Max-Weight 

SIS DFE algorithm proposed in 4.3. The proposed Max-Weight blind SIS DFE 

algorithm indeed outperform the original SIS equalization proposed in [3] especially 

in the environment with the weak LOS.  

Compared with the method of blind delayed-SIS equalization, which was also 

proposed in [3] to solve the weak LOS problem, the Max-Weight blind SIS 

equalization algorithm can provide better performance at lower computation 

complexity requirement. As shown in (2-23) of 2.3.1, the computational complexity 

of the delayed-SIS grows exponentially with the delay d. In addition, the selection of 

the delay d in the blind delayed SIS algorithm has the big impact on the performance. 

Unfortunately, increasing the delay d does not necessarily improve the performance. 

This effect and the performance these algorithms will be observed by using computer 

simulation in the next chapter.  
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5 COMPUTER SIMULATIONS & OBSERVATIONS 

In this chapter, we will show the computer simulation results based on the 

aforementioned algorithms. The purpose is to confirm the conclusions we obtain from 

the mathematical performance analysis in the previous chapters. We first performed 

the simulations by assuming that the CIR is known. The simulation results coincide 

with the analysis results in Chapter 3. We also do the performance comparison of the 

regular SIS equalizer [3], the minimum-phase SIS DFE, and the delayed-SIS EQ. In 

the second section, we provide the simulation results of adaptive blind SIS 

equalization algorithms as mentioned in Chapter 4. We compare the performance of 

the blind SIS EQ, the adaptive minimum-phase SIS DFE and the blind Delayed-SIS 

EQ with different delays d. Finally we make some simple conclusion. 

5.1 PERFECT CHANNEL STATE INFORMATION 

In this section, we examine the results we obtain in the BER analysis of SIS 

equalization in Chapter 3 under the assumption that the channel state information 

(CSI) is perfectly known. In this case, the fixed CIR is used to calculate the 

minimum-phase decision feedback filter coefficients according to the method in 

Appendix D.  

In the simulation, we normalize the CIR to have the unity power, i.e. 

11

0

2 =∑ −

=

M

l lh . The number of the particles Ns is 100. The Max-Log SIS weighting 

parameter is set as 0.75=γ . The signals are transmitted equally likely with the 

BPSK modulation. In this section, we consider three types of equalizers during the 

simulations: 

(1). The SIS equalizer (SIS EQ): This is the original particle filter using the 

Max-Log SIS algorithm as proposed in 2.2.2. The BER and the convergence 
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behaviors are analyzed in 3.1 and 3.2. 

(2). The (minimum-phase) SIS decision feedback equalizer (SIS DFE): This 

algorithm is proposed in 2.3.2. The coefficients are calculated based on the 

given CIR according to two criterions – zero forcing (ZF) and minimum mean 

square error (MMSE). The structures of this algorithm based on these two 

criteria are illustrated in Fig. 3-6 and Fig. 3-7. 

(3). The delayed-SIS equalizer (D-SIS EQ): The delayed-SIS algorithm is 

proposed in [3] and described in 2.3.1 of this thesis. Different from [3], the 

channel is assumed to be known here. We will see the effect of the delay d by 

conducting the simulation with different values of d. 

To observe how the channel LOS amplitude affects the performance, we consider 

the following two cases of CIR separately: the first case is the CIR with a large LOS 

and the second one is the opposite case which has an attenuated LOS. 

5.1.1 Channel with a strong LOS 

We begin with a channel with a strong LOS. As shown above in Fig. 5-1, there is 

not much difference between the SIS EQ and the SIS DFE when the first impulse of 

the channel response is large. That is because the most energy of this channel is 

concentrated at the first channel impulse. The minimum phase DFE has very limited 

effect on this kind of channel, as described in 3.3.2. Nevertheless, we can find that the 

D-SIS EQ behaves well as d = 0. However, when the delay d = 2, which is larger than 

the actual channel delay (in this case, channel delay = 0), the performance deteriorates 

greatly in spite of spending extra computation. This problem can be further testified in 

the case when channel LOS is weak. 
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Fig. 5-1  BER versus SNR plots of the three equalizers under channel with a 

strong LOS. (Perfect CSI) 

 

5.1.2 Channel with a weak LOS 

In this subsection, we will provide the simulation results to see how well the 

minimum-phase SIS DFE and the D-SIS EQ improve the system performance when 

the channel LOS is weak. One of the simulations is purposed to compare the 

performance of the original SIS EQ under channels with different values of LOS, as 

shown in Fig. 5-2. We can see that the SIS EQ operating with weak LOS channels 

suffers from error propagation and has a relatively high BER in the high SNR (as 

SNR = 8~12) whereas the BER of the SIS EQ operating with strong LOS channels 

drops significantly. This phenomenon coincides with the analytical results we have 

obtained in Fig. 3-1 and Fig. 3-2. In other words, we have shown that, by both means 

of analyses and simulations, the SIS EQ indeed has the performance decay problem 

when the channel LOS is attenuated. 
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Fig. 5-2  BER versus SNR plots of the SIS EQ under channel with different LOS. 

(Perfect CSI) 

 

The next simulation is to compare the performance of the SIS EQ and the 

minimum-phase SIS DEF (both ZF and MMSE) solely in the case when channel LOS 

is weak. As shown in Fig. 5-3, compared with the SIS EQ, the minimum-phase SIS 

DFEs (either ZF or MMSE) successfully attain lower BERs, especially in the high 

SNR. We can see that the BER versus SNR curves of these two SIS DFEs act just like 

the one of the SIS EQ under a good8 channel (the one in Fig. 5-1). This implies the 

SIS DFE has successfully converted the poor channel into a good one by the 

minimum phase pre-filtering.  

In addition, comparing the curves of the ZF and the MMSE SIS DFEs in Fig. 5-3, 

we can see that although they have little difference in the high SNR, the MMSE DFE 

indeed outperforms the ZF DFE in all SNR values. (The difference between the 

MMSE and the ZF in the low SNR looks very little. However, the difference is 

                                                 
8 In this chapter, we say that a channel is good if its LOS is strong (good for the SIS EQ), and, 
oppositely, a channel is said to be poor when its LOS is weak. 
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actually larger than what we can see in the figure because the BER is drawn in log 

scale.) This observation testifies the conclusions of 3.3.2, that is, the MMSE DFE 

would have a better performance than the ZF DFE in the low SNR, and their 

performance would come close to each other when the SNR increases (the noise 

variance approaches to zero). 
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Fig. 5-3  BER versus SNR plots of the three equalizers under channel with weak 

LOS. (Perfect CSI) 
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Fig. 5-4  Comparison of BER versus SNR plots of the D-SIS EQ with different delay d 

under channel with weak LOS. (Perfect CSI) 

 

At last, let us take a close look at the effect of the delay d on the performance of 

the D-SIS EQ in Fig. 5-4. In this simulation, the channel has a poor LOS, and the 

highest channel gain appears at the 2nd impulse. That means the D-SIS EQ would not 

have good performance unless the delay d is large enough to cover the largest channel 

impulse (i.e. 2d ≥ ). If we observe the BER versus SNR curves of different values of d 

(d = 0, 1, … 5) in Fig. 5-4, we can see that the D-SIS EQ has the best performance 

when d = 2 and 3 (around the real channel delay 2). However, it is interesting that the 

performance is worsen not only when the delay is not large enough (d = 0, 1), but also 

when the delay is too large (d = 4, 5). Therefore it is very important for the D-SIS EQ 

to have the delay d chosen properly, which is nearly impossible in the blind 

equalization scenarios. Furthermore we can observe that, despite of the high 

computation complexity, the D-SIS EQ, with all values of d, still does not have a 

better performance than the MMSE SIS DFE. 
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From the observations we have from the above simulation results, we can 

conclude that the minimum-phase SIS DFE scheme is definitely an attractive 

alternative of the particle filtering based equalization algorithm to overcome the 

channel impairment. 

 

5.2 BLIND AND ADAPTIVE EQUALIZATIONS 

In this section, we will provide the simulation results of the blind SIS 

equalization schemes as introduced in Chapter 4. The channel state information is 

assumed to be unknown to the receiver (equalizer) and is estimated/tracked using the 

recursive least-squares (RLS) algorithm in the simulation. 

Same as the previous simulation, we assume that the CIR has unity power, i.e.  

11

0

2 =∑ −

=

M

l lh . The number of the particles Ns is 100. The Max-Log SIS weighting 

parameter is set as 0.75=γ . The signals are transmitted equally likely with BPSK 

modulations. In this section, we consider four types of equalizers in the simulation: 

(1). The blind SIS equalizer (Blind SIS EQ): This is the original particle filter 

based equalization using the Max-Log SIS algorithm as proposed in 2.2.2 with 

the CIR estimated by a set of RLS adaptive filters for each particle. 

(2). The blind SIS decision feedback equalizer (Blind SIS DFE): This is the 

scheme we proposed in 4.2. The FFF and FBF filter coefficients are updated 

with the RLS algorithm introduced in 4.1. 

(3). The blind delayed-SIS equalizer (Blind D-SIS EQ): This is the delayed-SIS 

algorithm proposed in [3]. The CIR here is estimated in the same way as the 

blind SIS EQ in (1) through RLS adaptive filters. 

(4). The Max-Weight blind SIS decision feedback equalizer (MW blind SIS DFE): 

This is the complexity reduced version of (2), the blind SIS DFE, as 
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introduced in 4.3. Only one set RLS adaptive filter coefficients is used for 100 

(=Ns) particles. 

Again we consider two cases of CIR and see the performance of these blind 

equalizers. 

5.2.1 Channel with a strong LOS 

First in the case of strong LOS channels, the blind SIS EQ behaves as well as the 

blind SIS DFE does. This is because when the channel LOS is large, there is no much 

difference before and after the minimum-phase pre-filtering. These two algorithms 

result in the similar performance. 

As far as the blind D-SIS algorithm is concerned in this case, the best choice of 

the delay d should be 0 because the channel has the largest impulse at h0. The blind 

D-SIS with delay d = 0 acts exactly as the blind SIS EQ. In addition, as we have 

testified in previous section (the perfect CSI scenario), choosing a larger d than the 

channel delay would not only rise the computation complexity but also cause the 

performance decay. Compared with the D-SIS EQ with d = 2 in the known CSI case 

in Fig. 5-1, the blind D-SIS EQ with d = 2 even has worse performance, especially in 

low SNR. This is because when the SNR is low, the particle filters are likely to draw 

the particles wrongly. The adaptation of the RLS filter according to the bad particles 

would be erroneous. The information exchange between the RLS filters and the SIS 

algorithm becomes a vicious circle, the error propagates through the iteration and 

hence raised the BER. 
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Fig. 5-5  BER versus SNR plots of the different blind equalizations under channel 

with strong LOS. 

5.2.2 Channel with a weak LOS 

Now we turn to the case when the channel LOS is seriously attenuated to see 

how the SIS DFE and D-SIS EQ improve the situation in blind equalization. 
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Fig. 5-6  BER versus SNR plots of the three blind equalizations under channel 

with weak LOS. 
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 First we observe the curve of the SIS EQ: It is interesting that the curve climbs 

up with the SNR in the range of SNR = 8~12. This phenomenon has been found 

earlier in the analysis in Chapter 3, as drawn in Fig. 3-2, when the error propagation 

factor ( )i
kλ  is quite large. As expected, the SIS EQ does not attain a desirable low 

BER at the high SNR when it is used in the weak-LOS channel environment. 

Second, the results of the D-SIS algorithm indicate again whether the 

performance is good enough or not is greatly dependent on the selection of d. Only 

when d is selected to be close to the channel delay (in this case, the channel delay is 2.) 

can the D-SIS EQ have the best performance. Similar to the case of the known 

channel with a weak LOS in Fig. 5-4, we can see that the D-SIS EQ with delay d = 2 

has the best performance compared with that with other values of delay. 

 We end up with the simulation for the performance comparison of the blind SIS 

DFE and the Max-Weight blind SIS DFE, which utilizes the maximally-weighted 

particle to update the only one set of adaptive filter at each iteration (see 4.3). As we 

expected, this method would have a little worse performance than the blind SIS DFE 

because of the simplification. However, we have found (in Fig. 5-7) that the 

performance difference is small. This is a promising result because, we can use the 

Max-Weight blind SIS DFE, to save a lot of computations without sacrificing much 

performance. As shown in Fig 5-7, we can find that the Max-Weight blind SIS DFE 

even outperforms the D-SIS EQ (delay = 2) in the high SNR. Under the situations 

when the computation resources are relatively limited, the Max-Weight SIS DFE may 

become one of the appealing options for blind equalization. 
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Fig. 5-7  BER versus SNR plots of the four different blind equalizations under 

channel with weak LOS. 
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5.3 CHAPTER SUMMARY 

In this chapter, we have conducted the computer simulation of the particle filter 

based equalization algorithm described in the previous chapters. From the simulation 

results, we have testified that the weak LOS problem indeed affects the performance 

of the SIS EQ, as indicated in the BER analysis of the SIS EQ. We have performed 

the simulation on the ZF and the MMSE SIS DFE algorithms, showing their 

performance is not affected by the weak LOS channel, We also made simple 

comparison between the proposed SIS DFE and the D-SIS EQ. 

In the second part, we simulated the blind SIS equalizers introduced in Chapter 4. 

Both the blind SIS DFE and the blind D-SIS EQ can improve the system performance 

under the weak LOS channel. However, the D-SIS EQ requires the knowledge of the 

channel delay in order to determine the best value of the delay d, and its computation 

complexity grows exponentially with its delay d. The blind SIS DFE can be further 

simplified to the Max-Weight blind SIS DFE without the significant loss of 

performance. The cost-effective Max-Weight blind SIS DFE can be considered a 

promising algorithm for the practical system implementation. 

 



 71

6 CONCLUSIONS AND PROSPECTIVE 

6.1 CONCLUSION 

Particle filter is a simulation-based algorithm utilizing the Monte Carlo 

methodologies. The Sequential Importance Sampling (SIS) algorithm is successfully 

applied to the channel equalization applications.  

One of the major problems the SIS based equalization is the performance 

degeneracy caused by the weak-LOS in the channel response. In this thesis, we begin 

with the BER analysis of the SIS equalization and show how the energy of LOS 

affects the performance. To overcome this weak LOS problem, we employ the 

minimum-phase pre-filtering technique to transform the weak LOS channel into the 

equivalent strong LOS channel for the SIS equalization. This idea is realized by 

proposing SIS decision feedback equalizers. We mathematically prove that the MMSE 

DFE and the ZF PF DFE provide better performance than the original SIS EQ.  

In addition, we compare the proposed algorithms with the Delay-SIS equalizer 

(D-SIS EQ), which was proposed to solve the weak LOS problem in [3] in the 

viewpoints of performance and computation complexity. We also indicate that the 

good performance of the D-SIS EQ is fatally determined by the proper selection of the 

delay d, which is hard to achieve in the real implementation.  

The blind SIS based EQ algorithms are realized by using the techniques of 

adaptive filtering in the cases of unknown CSI and timing-varying channels. We 

propose a simplified blind SIS DFE algorithm, named the Max-Weight blind SIS DFE, 

which saves much computation complexity without causing obvious performance loss. 

From the computer simulation, we compare the performance of the particle filter 

based equalization algorithms and summarize the observations obtained from the 
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simulation results. We conclude that the Max-Weight blind SIS DFE is a promising 

algorithm, which has good performance, robustness (less limitations), and much 

lessened computation complexity. 

6.2 PROSPECTIVE AND THE FUTURE WORKS 

At the end of this thesis, we would like to propose some innovations or 

directions for the further research of the particle filter based equalizers. 

The first work is the low-complexity blind SIS DFE algorithm. Although we 

have proposed the method of Max-Weight SIS DFE, there is still some room for 

improvement. For example, the Max-Weight method may not be stabilized in the 

beginning when the particle weights are very close to each other. Therefore, we may 

have to wait for a period of time T (after the convergence of the particle weights) and 

then pick up the particle with the largest weight. That is, we choose the 

maximally-weighted particle and update the adaptive filters for every k = nT. The 

operation would be similar to a certain kind of windowing method which has been 

frequently used in digital signal processing. 

In addition, the most important information that the particle filters provide is the 

desired probability distribution. As some kind of soft information, the estimated 

distributions can be used to help the backend decoders. Therefore we may apply the 

technique of particle filtering to the turbo equalizers, which exchanges information 

between the equalizer and decoder iteratively to attain a desirable performance. 

On the other hand, in sight of the great advance in the wireless communication, 

the multiple-input multiple-output (MIMO) wireless communication systems have 

drawn lots of interests in the recent years. The SIS-based algorithm can be further 

used for the blind equalization and detection in the MIMO system. I am convinced 

that the particle filter can provide some equilibrium between the implementation 
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complexity and the performance for the MIMO systems.  

 In sum, the importance sampling algorithm and the particle filtering can be 

applicable to any physical problems that acquire the knowledge of probability 

densities by estimating the them with the discrete random measures. We have 

introduced a probable application in this thesis. Whether the PF and the SIS algorithm 

may be applicable in other practical situations depends on their computation resources, 

the response time they require, and the performance they require, and so on. 
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APPENDIX 

A.  JACOBIAN APPROXIMATION 

The Jacobian approximation is basically the following equation: 

( ) ),max()exp()exp(log baba ≅+  

To obtain this equation, first we look at the case ba > , then  
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Considering jointly the case ab > , we can write the general form 

( ) ( ))exp(1log),max()exp()exp(log bababa −−++=+  

Now recall from the Taylor Series: 
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Note that the argument in the exponent only has to be a little bigger than zero to cause 

all of these extra terms to become small quickly. The Max-Log algorithm basically 

ignores the all the exponential terms and ends up with the following approximation: 

( )log exp( ) exp( ) max( , )a b a b+ ≅  
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B.  DERIVATION OF THE EXPECTED VALUES IN THE BER DERIVATION (3-1) 

To obtain the expected value ]0|[ )(
, =+ k
i

Ak bE ψ  and ]1|[ )(
, =+ k
i

Ak bE ψ , we 

consider the two cases that bk =0 and bk =1, respectively: 
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If M is sufficiently large, and the inter-symbol interference (ISI) is the sum of many 

similarly-sized components, we can approximate variables with Gaussian distribution 

through Central Limit Theorem: 
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Under the assumption of equal priori probability, the condition )(
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and the threshold )(
,
i

Ak +ψ  can also be written in terms of )(i
kε  : 
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According to all the equations above in this section, we can finally obtain:  
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2. Case bk = 1 

Similar to the case bk = 0, we can write  
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And thus )(
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And finally the expected value: 
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Substitute the results of these two cases into (3-1), we can obtain the averaged bit 

error probability as: 
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where ( )Q x  is the "Q function" encountered in integrating the normal distribution 

(which is a normalized form of the Gaussian function), and is defined by: 
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C.  PROOF OF THE BER AS A MONOTONICALLY DECREASING FUNCTION 

In this section we intend to prove that the BER )(
,

i
kerrP  of the i-th particle, under 

certain assumptions, would be a monotonically decreasing function of 2
0hη ζ≡ ⋅ . 

This may seem to be trivial from the perspective of communication theory, however, 

here we still need to have some validated proofs to show that )(
,

i
kerrP  indeed decreases 

as η  grows to simplify the proof of ( ) ( )
, , ,

i i
err k ZF err kP P≤  and ( ) ( )

, , ,
i i

err k MMSE err kP P≤  in 

Chapter 3. 

 First we assume that previous Ng particles before time k are all detected (or 

drawn) correctly, i.e. 1,...2,1for  ,0)(
, −==− g

i
lkerr NlP , and 01

1
)(
,

2)( == ∑ −

= −
M

l
i

lkerrl
i

k Phλ , 

which is the same assumption in all the analysis of BER in the DFE (ZF and 

MMSE-DFE) part of this thesis. Since 0)( =i
kλ , we can write (from the result of 

Appendix B):  
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To prove that ( )
, ( , )i

err kP η γ  is a monotonically decreasing function of η  (when γ  is 

fixed), we next take derivatives of ( )
, ( , )i

err kP η γ  w.r.t (with respect to) η  as: 



 81

( ) ( )( ) ( )( )

( )( ) ( ) ( )

( )
( )

, 0

2

1 1exp( ) 2 1 exp 2 1 2 1
2 22 2

2 1 2 11 1                                                      exp 2 1 exp
2 22 2

                                  

i
k

i
err kP

Qλ η γ γ ηγ γ γ η
τ πη

γ η γ
ηγ γ

π η

=
∂

= − ⋅ − + − ⋅ − ⋅ −
∂

⎡ ⎤⎛ ⎞− ⋅ −
⎢ ⎥⎜ ⎟− ⋅ − ⋅ − ⋅

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

( ) ( )( ) ( )( )

( )( ) ( ) ( )2

1                     2 1 exp 2 1 2 1
2

2 1 2 11 1                                                      exp 2 1 exp
2 22 2

where the derivative of the -function is given 
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By combining the 3rd and the 5th terms above, we have 
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We may soon discover that the sum of the 3rd term and 5th term is exactly the 

minus of the 1st term in the derivatives of  )(
,

i
kerrP so that the sum of these three terms 

would be zero. Therefore the derivative can be further simplified as: 
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We can see that for [ ]1 ,5.0∈γ , 
( )

( )
, 0i

k

i
err kP

λ

η
=

∂

∂
 would be always less than 0, and 

therefore we have proved that )(
,

i
kerrP  is a monotonically decreasing function of 

2
0hη ζ≡ ⋅ . 
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D.  PRE-FILTER COEFFICIENTS 

In this appendix, we give the procedure of how the coefficients of the 

feedforward filters (FZF and FMMSE) are calculated when the CIR is known. The details 

of the related material can be referenced as to [5]. First, we take the ZF scheme as an 

example, and consider the following spectral factorization: 

)1()()1()()( **** zGzGSzHzHzR ghh ⋅=⋅≡      (3-4) 

We can obtain the minimum phase response G(z), (or equivalently, gk ) from the 

spectral factorization. And then we may calculate the coefficients of FZF by: 

)/1(
)/1()( **

**

zGS
zHzzF

g

d

ZF

−

=        (3-5) 

In order to make the feedforward filter stable, FZF is chosen to be an anti-causal filter. 

In practical, we make it a FIR filter by delay it with d slots and truncating the 

anti-causal component in (3-5).  

Theoretically, the spectral factorization is expended with Laurent series and then 

using Taylor series expansion to obtain the coefficients gk, k = 0,1,…Ng. (see reference 

[6] ) In practical, however, the coefficients of ( )G z and * *1/ (1/ )G z , can be calculated 

as the following: 

Step 1. Calculate the cepstrum9 of the autocorrelation function ( )hhR n : 

( ){ }1ˆ ( ) log ( ) * (1/ )j j
hhR n F H e H eω ω− −=  

Step 2. The coefficient of G(z) can be calculated by 

                                                 
9 Let the Fourier Transform of ( )x n  be ( )jX e ω , and ˆ ( ) log[ ( )]j jX e X eω ω≡ , then the complex 

cepstrum of ( )x n  is 1 ˆˆ( ) { ( )}jx n F X e ω−= , where 1F − denotes for the inverse Fourier Transform 

and ˆ ( ) log[ ( )] log ( ) arg[ ( )]j j j jX e X e X e j X eω ω ω ω= = +  (p788~p789, [7]) 
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Step 3. The coefficient of * *1/ (1/ )G z  can be calculated by: 
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Step 4. Then we can obtain the coefficients of the feedforward filter: 
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The coefficients of the FMMSE can be calculated in similar procedures by 

replacing the ( )log ( ) * (1/ )j jH e H eω ω−  term in Step 1 with 

( )2 2log ( ) * (1/ )j j
x nH e H eω ωσ σ− + . 

 

 




