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ABSTRACT:

The use of particle filter on the channel equalization problem has been studied by
many researches for years. As mentioned in [3], the weak light-of-sight (LOS)
channel is one of the problems limiting the performance of the sequential
importance-sampling (SIS) based equalization. In [3], the delayed-SIS (D-SIS)
algorithm was proposed to solve this problem at the expense of high computation
complexity. In this thesis we introduce a new class of blind SIS equalization
algorithms for the frequency selective channels no matter how the first impulse of
CIR (Channel Impulse Response) is.

We begin with a brief review of the particle filtering theory and establish the

model of the particle filter equalizer. After the mathematical analysis of the BER in



the particle filter based channel equalization systems, we can know how the
performance of the SIS equalization algorithm is affected by the channel with an
attenuated LOS. To overcome this problem and improve the performance, we use the
idea of minimum-phase pre-filtering to maximize the LOS of the equivalent channel
and propose the SIS decision feedback equalization algorithms. In the case when the
channel state information (CSI) is known, this minimum- phase pre-filtering can be
implemented with the decision feedback equalizers (DFE), whose coefficients are
computed based on either the zero-forcing (ZF) or minimum mean square error
(MMSE) criteria. In the case of unknown CSI and time-varying channel, the proposed
adaptive blind SIS equalization algorithm pre-filters the receiver input by using the
adaptive filters such as the least mean-square (LMS) or the recursive least squares
(RLS). In both cases, we conduct the computet. simulations to illustrate how the
proposed SIS DFE algorithms, improve ~the. performance. We compare the
performance of the D-SIS equalization-and-the proposed SIS decision feedback
equalization and find that our approach outperforms the D-SIS on both the BER
performance and the computation complexity.

Moreover, to save the computation of the adaptive SIS equalization algorithms,
we propose a simplified scheme of the adaptive blind SIS DFE, named the
Max-Weight blind SIS DFE algorithm We show that the proposed cost-effective
algorithm can provide the performance almost the same as the original adaptive SIS

DFE algorithm from the computer simulation results.
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1 INTRODUCTION TO PARTICLE FILTERING THEORY

1.1 INTRODUCTION

Particle filter is a novel optimal filtering algorithm based on the Bayesian
formulation and the sequential importance sampling (SIS) technique. It is basically
one of the sequential Monte Carlo (MC) methodologies. The particle filter employs
discrete random measures to recursively compute and to approximate the desired
probability distributions. As a simulation-based algorithm, particle filtering is
particularly useful in dealing with nonlinear and non-Gaussian problems, in which it
is typically impossible to obtain the desired statistical estimates or distributions by
using the traditional methods.

The sequential Monte Carlo.methods like particle filtering were invented decades
ago. However, they did not cause much attention because of the high computation
complexity. The recent advances in digital-cireuit technologies make high-bandwidth
computation possible and are able to put the MC methods into practice. Therefore the
research of these topics has become active and attractive again recently. The SIS
algorithm and the particle filtering theory have been discussed in detail in some
previously published papers, as references [1] [2]. In this chapter, we will first bring
out the motivation of this thesis, and then give a brief introduction on the particle
filtering theory. The applications of equalizations using particle filtering are main

topics of this thesis and will be discussed in the next chapters.

1.2 MOTIVATION

There have been many articles discussing about the particle filtering equalization.
However, rare of them addressed about the mathematical analysis of its bit error rate

(BRE) performance. In sight of this, we would like to derive the BER of a particle as

10



a mathematic equation, and then analyze its behavior in the first part of this thesis.
Besides, followed by the BER analysis of the particle filter equalizer, we can
soon discover that its performance decays greatly under channels with an attenuated
line of sight (LOS). As also discussed in the reference [3], this problem can be
alleviated by the method of the delayed sequential importance sampling (D-SIS). The
D-SIS algorithm, however, has some limitations and the notorious complexity issue in
practical. This gives us some motivation to bring up an alternative solution that
utilizes the minimum-phase pre-filtering to maximize the LOS of the equivalent

channel.
1.3 FUNDAMENTALS OF THE PARTICLE FILTERING THEORY

The particle filtering is basically, a, suboptimal approach to perform Bayesian
filtering. Consider the following state-space model;

X, = f,(x,_,u,) (1-1)

Y= (Xsny) (1-2)

where u, is the input vector, y, is awector of observations, X, is the state vector,

/() 1s the system transition function, 74, (-) is the measurement function, and n,

is the noise vector. Equation (1-1) is known as the state equation, and equation (1-2) is

the measurement equation. Note that f,(-) and #(-) are possibly nonlinear

functions. In many signal processing applications, we are interested in the way of

recursively computing the posteriori distribution p(xk:0 |yk:0) '. To recursively

compute the posteriori probability, we can consider the following decomposition (see
[2]):

p(xk:o |Yk:o ) oc p(xk |Xk—1 ) P (Yk |Xk:0 ) P (Xk—l;o |Yk—1:0 ) (1-3)

' Here y o = {yo,yl,...,y k} is a set of observation vectors. We would use this form to represent a

sequential set of symbols or vectors in different time indices throughout this article.
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The Bayesian filtering is stated as the ways of analytically computing these kinds

of distributions in the close forms. Unfortunately, the analytic solutions (known as

Kalman filter [1]) to the transition from p(x, |y, o) 10 p(x,,]y,,) €xistonlyina

very restricted set of cases (e.g. when the systems are /inear and the noises are
Gaussian distributed). Therefore the particle filtering method has become an
important alternative when we are solving nonlinear and non-Gaussian problems.
When the particle filter is used, the distributions are approximated by discrete random
measures via the Monte Carlo method. The random measures are composed of
numerous particles which are samples drawn based on an estimated probability
density function of the particles. The state space, and the weights are computed by
using the Bayes theory. They are used to represent the “probability mass” of the
particles. By the concept of Monte Carloyithe mterested distribution p(x) can be

approximated as
Ny - .
p(x) =pxry= 3w 5(x - x) (1-4)
i=1

where x'” is the i-th particle, w” is its weight, and N, is the number of the

particles used in the approximation. It can be shown that as N, —c , the
approximation approaches p(x). o () is the Dirac delta function, i.e. 5(x —x") =1

if x=x",and o(x—-x"")=0, otherwise. As shown in [9], this kind of Monte Carlo
approximation has a certain advantage: the computations of expectations involving
complicated integrations are now simplified as summations. Particle filtering is
simply a simulation-based Monte Carlo method to solve the sequential Bayesian
problems by the approximation in (1-4).

The key concept in constructing the weights and the particles of particle filtering

is the importance sampling principle. In the process of drawing particles, it is often
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not possible to draw the samples directly from the desired distribution p(x). Therefore
we have to generate particles from another distribution ¢(x), which is also known as

the importance function. The un-normalized weights are assigned as follows,

70 = P 1-5
4w o

The weights are obtained after normalization:

~ (i)
Wi =— k=12, N (1-6)

Zjv:lw/(cj) ’

The selection of the importance function ¢g(x) plays a crucial role in
determining the performance of the particle filter. In general, the closer the
importance function is selected to the desired distribution, the better the performance
would be. A good choice of importance function can also reduce the effect of the
degeneracy problem, which will.be discussed-in the next section. There are two most
frequently used importance functions in the particle filtering applications: the priori
importance function and the opfimal impertance function. The priori one is much
easier for implementation while thé*optimal importance function minimizes the
variance of the importance weights conditional on the trajectory of transmitted signal
and the observations. The detail of the selection of the importance function is
discussed in [8]. We would adopt the optimal importance function for analysis and
simulations throughout this thesis.

To sequentially and recursively compute the importance functions and the
particle weights, we need to update the weights and the importance function of each
particle at every time slot through the equations as (1-3). The resulting method is
referenced to the sequential importance sampling (SIS) algorithm. The detailed theory
of the SIS algorithm can be found in many articles like [1] and [8]. We will discuss

some important issues about the particle filtering in the following sections.
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1.4 RESAMPLING

One major problem of the particle filtering is the degeneracy problem, which has
been addressed in many previous articles like [1], [2] and [8]. It has been shown (as in
[11] and [12]) that the variance of the importance weights can only increase over time
due to propagation. Most of the particles will have negligible weights (very close to
zero) after a few iterations. That is, much computation would be devoted in vain, The
performance of the particle filter will become worse after a few interations. However,
this problem can be alleviated by a good choice of the importance sampling function
and resampling.

The idea of resampling is to elimiate the particles with negilible weights and
replicate the largely-weighted particles, During the resampling, the larger weight a
particle has, the more propable:its patticle (trajectory) would be replicated and
overwrites the others. Each patticles, after being re-allocated , would be given the
same weight and then proceed the particle-filtering process. In this article, the
resampling is conducted whenever the‘effective sample size of the particle filter goes

below a threshold €. The effective sample size is defined as:

1+ var(w")
In practical, we estimate N, with
1
N,=——<N

eff N A\ 2 K]
s (i)
zl‘:l(wk )

The effective sample size can roughly represent the number of particles with
weights that are not negilible (or, say, the particles that are still effective). The

procedure of resampling is summarized as the following:

14



if (N <é&),then

1. Replicate a new set of particles X" = x{", for all i.
2. Foreach i, the i-th particle is assigend to the value of particle j with
probability w(’,i.e. x =% with probability w".

3. Normalize/re-assign the particle weights w” = Ni , for each i.

S

end if
Finally we give an example in Fig. 1-1, illustrating how the resampling works

during the particle filtering.

4 0.002 ! 0.01
o : E

« Every particle has a probability of 0.853 to be overwritten with the
trajectory of the 3rd particle. (and 0.09 to be written with the 1st
particle ..., etc.)

Particle Particle Particlesiwith Particle Particles with
#  Weights |trajectories of xy Weights | trajectories of x;
| |
1 0.009 |[ 0101 .. After = 001 |[ 1101 ..
| Resampling I
2 0132 |[[ 1110 001 |[ 1110..
! !
3 0.853 ! 1101 .. 0.01 ! 1101 ..
! 1101 ..
!
|

Fig. 1-1 Ilustration of resampling (when N = 100).
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1.5 PRACTICAL APPLICAIONS AND LIMITATIONS OF PARTICLE FILTERING

Particle filtering has been demonstrated as a powerful and promising
methodology with a great range of applications in science and engineering. Within the
field of communications, particle filtering has been widely applied to solve the
channel equalization problems, including blind equalization, blind detection over flat
fading channel (as addressed in [2]), and multi-user detections (MIMO) [13][14].

Nevertheless, as proposed in many articles like [3], particle filtering equalization
suffers from performance decay under channels with a much attenuated line of sight
(LOS), i.e. the first channel impulse response (CIR) is weak. To improve the
performance under these channels, some solutions have been proposed. One of them
is the method of delayed sequential importance sampling with resampling (D-SIR)
proposed in [3], which incorporates the future obsérvations to compute each particle
at present. This method, however, requires the knowledge of the position of the largest
impulse in CIR. Furthermore, the performance-improvement of the D-SIR is achieved
at the expense of the computational complexity, which is exponentially increased in
proportional to the delay d. A large delay would lead to a great computational
complexity which is nearly impractical.

Hence in this thesis we come out with a novel method that employs the idea of
minimum phase filter implemented with the decision feedback equalizations (DFE)
scheme. Instead of the idea to incorporate the future observations, we are considering
to move the largest pulse in the CIR to the first one by employing the minimum
energy-delay property of the minimum phase filter. This can be done by
pre-calculated feedforward and feedback filter coefficients when the channel is known
or by utilizing the adaptive filtering techniques (the least-mean-square (LMS) or the

recursive least-squares (RLS) algorithms) when the channel is unknown.
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1.6 THESIS ORGANIZATION

In Chapter 2 and Chapter 3, we would propose a particle filtering equalization
scheme and analyze its bit error rate (BER) performance mathematically in the first
part of this paper. And in the second part we come out with a new idea to keep good
performance of the particle filtering under channel with attenuated LOS by applying
minimum phase pre-filter followed by the particle filter. We verify the improvement of
this method with mathematical prooves and give some comments at the end of
Chapter 3.

Next we put this idea into practice in Chapter 4 as a realization of particle
filtering blind equalizations. We propose the system diagram of the SIS-based blind
and adaptive equalizers. In sight of the complexity of the blind particle filter equalizer
(PF EQ), we further induce the.method of Max-Weight PF EQ, which can greatly
reduce the computation and system complexity.

In Chapter 5 we utilize the computer-simulations to verify the inference and
conclusions in Chapters 3 and 4. Finally we make the thesis conclusion and present
the future works in Chapter 6. The appendixes and the references are provided at the

end of this thesis for further information and consultation.
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2 PARTICLE FILTERING FOR CHANNEL EQUALIZATION

The main topics of this thesis are the performance and problems of the particle
filter applied to equalization in the communication systems. In this chapter we first
introduce the signal model and the SIS algorithm for equalizations. Then we discuss
the problems and solutions of particle filter when the fading channels have a weak

light-of-sight transmission path.
2.1 SYSTEM MODEL OF THE PARTICLE FILTER EQUALIZER

Consider a digital communication system where the BPSK symbols
b, € {il},k =0,1,2,... are transmitted to a frequency-selective multi-path channel.
The channel impulse response (CIR)«is assumed to be time invariant within the frame

duration (i.e. the coherence tim¢ of the fading channel is much longer than the frame

duration.). The system model is:shown in‘Fig. 2-1.

Nk
Mapper Channel ‘
Xk
b« — &() —>  H(z) Yk

Fig.2-1  The system model.

The transmitted bit stream b, is mapped into x, by using the BPSK mapping

function ¢( ) as illustrated in Table. 2-1.:

by 0 1

x, =P(b,) +A —A

Table2-1.BPSK mapping function & ()
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The CIR i1s assumed to be finite-length and has M tap weights: {A,,h,,....h,, }.
For simplicity, the CIR is normalized to have unity power, i.c. Zgl|h,|2 =1. The
channel noise #n, is assumed to be additive white Gaussian noise (AWGN) with zero

mean and the variances,’, i.e.n, ~ N(0,0,”). Thus the discrete-time sequence of

n

observations can be written as:
M-1
Vi = Z Xy +m, (2-1)
=0

We can now model the transmission by modifying the state-space formulation in (1-1)

and (1-2) as follows:

(stateequation) x, =Gx,, +u, (2-2)
(observation equation) y, =h"x, +n, (2-3)
where the M x 1 vector x, = [xk,xkfl,...,xk‘M+1 ]T is the system state at symbol £,

and h =[h0,h,,...,hM_l]T: M x 1is the CIR vector. | & is the M x M state-transition

matrix:

such that G-[x, ,,x, ,....x,,, | =[0.x,»-.0nx, 0] » and u, =[x,.0,...,0]" is an

M x 1 vector of inputs. Our goal is to estimate the transmitted symbols x,
recursively from the observations y, . The optimum estimate of x, is given by the

maximum likelihood (ML) estimate (or MAP, if x, 1is sent equally likely). However,
it is not possible to compute the posteriori probability p(x k:0|y k:O) in the close form
if the noise is non-Gaussian or the system is non-linear. Instead of using the
complicated optimal solution, we are seeking the sub-optimal way, in which the
approximation of posteriori probability p(x k:0|y k:O) is recursively computed with the
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aid of sequential importance sampling (SIS) algorithm.
2.2 THE SIS-BASED EQUALIZATION

The optimal blind equalization is achieved by MAP detection of the transmitted
sequence X,,, given the observationsy,,. Let p(xk10|yk:0) denote the posteriori
probability mess function (p.m.f.) of the data sequence given the observations, The

MAP algorithm is to find the estimated data sequence that maximizes this posteriori

probability. The most straightforward way of finding the MAP solution is to

exhaustedly compute the probabilities of all 2" possible %,, and select the largest

one. However, this is impractical due to the high computation complexity. It is
a MAP

preferable to find the estimate X, that maximizes the posteriori p.m.f. from the

previous estimate X,"1» recursively even thought the final solution is sub-optimal. To

recursively compute the posteriort probability, we utilize the decomposition in (1-3)
of Chapter 1:

lf’("k:0|yk:o)°C p(xk|xk—1 ) p(yk|xk:0)- p(Xk—l:0|yk—l:O) (1-3)
Assume that the data bit b, is uncorrelated with the bit 5, at the different time / , K
[, ie. p(xk|xk71): p(xk) . Using the similar derivation in [3], we can obtain the
likelihood function:

‘2

_‘J’k _hHXk

(2-4)

2
n

p(yk|xk:0): \/%O_ eXp o

From the equations (1-3) and (2-4), we can find a recursive equalization
algorithm by computing the posteriori p.m.f. p(x 0 |y k:O) sequentially.

According to the particle filtering theory in Chapter 1 and [1, 2], we want to

draw N, particles x\,i=1,2,...,N, from an importance function q(xk:0|yk:0) and
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give them the weights based on the true posteriori probability p(x 0 |y 0 ):

x ~ gl ) 2-5)

plx \xgﬁ?l )', ol x5 ) (2-6)
Q(xz({l) X521:0 > Vi )

(i) (i)
Wio Wy

The importance function q(xk:0|y k:O) is the trial p.m.f. which approximates

p(xk:0|yk:0). It is easier to draw samples from q(xk:0|yk:0) than p(xk:0|yk:0). The

adaptation of the normalized weight (2-6) is derived from (1-3) and the following

factorization of importance function:
‘](szo |y k0 ) oc Q(xk |Xk—1:0 > Vi ) Q(kal;o |y k-1:0 ) (2-7)
The N; particles constitute a Monte Carlo smoother (MC smoother) that approximates

the true posteriori p.m.f. for each time slot &:

NS ] .
(X |Yk:o) ~ p(X,. |Yk:0) - Zwl(cl) 0(X 0 — X% (2-8)
)

where x{} are the particles, w{’ are;their; weights and &(-) is the Dirac delta

function.

There are many choices to decide the importance sampling function q(x k:0|y kzo),.

Here we choose the optimal importance function that collects all available

information up to time & .

q(x, ‘ngzho Vi) = p(x, ‘ngzho Vi)
3 Py, ‘xkixgzlzo) -p(x, XEQI:O (2-9)

(Y, chizlzo

Substituting (2-9) into (2-5) and (2-6), we have

p(yk‘xk = Zanzl:o)'p(xk =)
Zp(yk ‘xk = X, X )P (x, = x)
Vxe
constellation

K~ () =

(2-10)
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w e pr[x” )= “)ZMMM,HQMm) (2-11)

If the channel is known, the estimate of the likelihood function for the i-th

particle at time £ is

. 1 —M h50[
p(yk‘xk Zaxy)lo)_\/go_ 28 25> (2-12)

A
where X! = (;(,x,ﬁ”l,x,i”z, x,E’)M+1) and y isthe drawn sample for testing x.”.

To draw samples for a particle according to the likelihood function (2-10) and
put the SIS algorithm into practice, we propose two algorithms here for sample
drawing of each particle.

2.2.1 Log SIS
From the definition of P (y)in (2-10) and.the fact that ¥ could be either +4 or

—A. We can determine a sample. drawing .mechanism that employs a uniformly

(l)

distributed random variable (rw.). u~U(0;})-to draw samples for x,”’. Since the

denominator of P (y) is the same when y =+A4or— A4, we consider only the

numerator.  Define  p/”, & p”, as  the numerator of P (y)

when y =+4 and — A4, respectively:

p;ﬁ’lA = p(yk‘xk =+4 Xg)lo) p(x, =+4)

|y Ay = X,

N2zo, 265

(2-13)

p(x;, =+4)

and similarly

~ly, +A-h, — h x\”,
. 1 Vi 0

= X
P-4 = \/ﬂO‘n p 265

px,==4)  (2-14)
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By normalizing p;", , & p,” ,, we can determine a threshold ¢"),

O =P el + P ) =B (+4) (2-15)

so that if the uniform r.v. u falls in the interval [0, & A] then the particle x\” is

(@)

assigned as +4, and vice versa. The way of generating the i-th particle x,” at time k&

is illustrated in Fig. 2-2.

~U(0,1 == ~
u (0,1) xl({') = —A if u falls here

Threshold ,Eli . T T

x\" = +Aif u falls here

0__._

Fig. 2-2  Tllustration of Log. SIS sampling mechanism

The update of the weight for the-j~th particleds-(from+(2-11))
W = ot ) oo @16

()

where " it the weight before normalization, and the new weight w'’ of i-th

particle at time k can be obtained after the normalization:

~(t)
w = ,Vi=1,2,..,N

z s ~(/) s

(2-17)

2.2.2 Max-Log SIS

In this section we want to further simplify the computation of the threshold by
using some approximations. Let us look at the definition of & ,f’l , 1n (2-15). Since

p,f’l & p(’) , are composed of exponential terms, we can obtain the new threshold

t//,ﬁ’l , of Max-Log SIS by applying the Jacobian approximation (see Appendix A) on
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the denominator of the original threshold:

(i)

i _ P a
kA = 70 0]
(Prsa* Pia
(1)
exp(-a;” (0 (@) e (D) (@
1- 0] ) =1 _eXp(_(ak,—A Oy ) > lfpk,+A > Pr-4
~ exp(-«,”, ,) +exp(—a,”
B (i)
exp(—-,”, 4 ‘ ) e (i '
(i) ’ (i) = exp(_(algl,)—/l - alEI,JrA )3 lfplgllA S plgl)—A

exp(-¢,”. ) +exp(-¢;”,
Thus we have simplified the computation of the threshold as

)
Pr-a _ (0 (0 e (D) Q)
1-—5= =1 _eXp(_‘ak,m T4 ) P> Pl
(i) pk,+A
k+d = i
) (@)
Pk x4 M) M)

o °Xp (_‘ak,+A — Q4
k,—A

TN O (@)
)9 if Piia < Pila

where o, =—log(p{" ), o, =-log(p” ). If p(x, =+4)=p(x, =—A4), then

(i) (i) T (i) o .
a,., and «,, canbe simplified as the exponentterm of p,” , and p" ,:

2

O = M- )
Vi 5 Ah, _21:1 by - x,,

ak,+A .

(i) ?
U —
Qp_ 4=

M1 ;
Vi Ay _21:1 h ‘xl(c—)z

To reduce the error produced by this approximation and to make the new threshold
closer to the original one, we generalize the ratio of p{” ,/pi”, or p\",/pP, as

1 . ‘
(i) _ (0) ()
Pr = EeXp(—y‘aktM - akl,—A

), 7>0
with the parameter y to give some exponential weighting on it. The effects of this
parameter would be discussed later in this section. Now we can define the threshold

w,", for the Max-Log SIS as:

l_ l_p(i) , if p(ii >,D(i)7
W}E,Z’A = (i]; . (i)k’ ! (,-)k’ B (2_18)
P> P <SPl

We can see that in both cases, y,”, would approach to ([’ , if y is chosen
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properly. To further illustrate that the Log SIS algorithm can be approximated by the
Max-log SIS, we plot ¢, and y;”, as functions of (y, —ZZ;I h,-x) in Fig.

2-3. with different values of y.

Log SIS vs Max-Log SIS

()
k+A

o S S— T S S— T — —
Viia ; : : ) ; : :

— 0y 315G
—— WA Log SIS with y =03 |
¢=085
¢y —0.75

— =1
— =4

Fig. 2-3 Illustration of Max-Log SIS approximating Log SIS with different y

We can observe that ", approaches ([, as y is around 0.75. As y
increases, the characteristic function of 1,//,&’1 , would approach to a step function,

which implies that the hard decision scheme is applied to draw sample for x!”. In

this case, most of the particles would be drawn to be the same value at each time slot,

and the particle filter can no longer compute the estimation of the desired posteriori

probability. On the other hand, if we choose y to be a very small value (e.g.

y<05 ), we can observe from Fig. 2-3 that even when

(y, - Zj:lh, -x")> A-h, ,the threshold is still not very close to 1. That is, there
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is still quite a little probability that the particles would be drawn wrongly, and the

error probability would increase.

Similarly, if we define W\ =log(w’) and W =log(W") , we can take

logarithm and apply Jacobian approximation to the weight w(” (2-16) and (2-17). We

can obtain the following weight adaptation for Max-Log SIS:

Vf/k(i) =log (WI((i—)l ) +log (pliilA + p/Ei)—A )

=) +log(max(p{’, . p{" ,))
=W - min(e, ", (2-19)
Similar to the Log-SIS case, the normalized weights would be:

WO =W —log(X 7). Vi=1.2,...N (2-20)

These logarithm SIS algorithms have, an addition advantage on the
implementation. Consider the ¢ase when the likelthood function is too small. The
value may be truncated and may not be stored accurately due to the finite precision
problem caused by limiting number of bits in a word. By utilizing the logarithms we

can avoid these undesired truncations caused by insufficient bits.
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2.3 PRACTICAL ISSUE — PROBLEM AND SOLUTIONS OF SIS EQ UNDER

WEAK LOS CHANNELS

As we have mentioned in Chapter 1, the particle filter based equalization
encounters a performance loss under the channel with a much attenuated line of sight

(LOS).

= \&
Rx

Fig. 2-4  Tllustration of line of sightiin coinmunication systems

In this case, the first impulse of-the CIR“(4,) would be very small. The value of

the likelihood

2

. ) 1 _yk_hO'l_ZZl_lhl'xlgi—)l
p(yk ‘xk = Z’Xk—ko) = \/ﬁo} CXp 252

n

(2-12)

for all possible outcomes, y =+4 and — 4, would be very close. Assume that

symbols are sent equally likely, the difference between pj”, and p;” ,, in (2-13) and

(2-14), , would be small so that the SIS algorithm can hardly determine (or draw out)
the desired particle. Hence the symbols will be erroneously decided in the receiver,

and the performance of the particle filter decreases.

? Line of sight (LOS) is commonly used to refer to telecommunication links that rely on a line of sight
directly between the transmitting antenna and the receiving antenna (as illustrated in Fig. 2-4), and its
gain would usually be valued as the first impulse response of the CIR.
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2.3.1 Delayed Sampling

One strategy to overcome this problem is the delayed-sampling technique,
proposed in [3]. The basic idea of the delayed-sampling algorithm is to utilize the
possible large (un-attenuated) and lagged CIR pulses and enumerate the future

observations to determine the present particle, as illustrated in Fig. 2-5.

SIS Delayed SIS
Less attenuated channel path.
v Severely attenuated LOS
- T h 1 - o I h 1
h2 l ho h2 l ho

T Xk > T Xk xk+lI >

Tl [

Vi=hy-x, +h-x,_ +h-x_,+.. Viwr =hy X s+ 0 -x, +hy X +

« Delayed SIS incorporates future obServation yj+» because in which x; is

multiplied with larger channel impulse/,

Fig.2-5  Illustration of'the idea of delayed-sampling

Note that the CIR in this figure is placed"mn reversed order to illustrate how the

computations work in the convolution of h and x.
More specifically, the sampling of a particle x\” is delayed until y, , is
observed,
5~ (3 X0 Y ) (2-21)

(i)
szo)

(1) | (@)
Q(xk Xk—l:O’yk:k+d)

(D) | ,.(D)
0 0 p (xk Xl ) P (yk:k+d
Wy W,y

(2-22)

Compared with the original SIS algorithm (2-10) and (2-11), the particles are now
drawn from the delayed importance p.m.f. and the weights are updated accordingly.

The likelihood function now becomes
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_ (@) _ ~ =
X = ;(7Xk—1:0) = z p(Yk:k+d’xt+l:t+d

- d
Sertrva €1ELY

_ ()
X = Z’Xk—lzo)

i)(yk:lwd

oC Z D (yk:k+d

5 d
1
Stali+d E{il/

(2-23)

ot _ (i)
Xivturd s X = X> Xk—l:O)

Again, the proportionality comes from the assumption that the transmitted symbols
are sent equally likely.

The delayed-SIS algorithm, however, has some limitations. First, as depicted in
Fig. 2-5, it is straightforward that the delay d needs to be large enough to cover the
less attenuated CIR. This requires the knowledge of the channel delay, which is
usually unknown in the blind equalization scenarios. In addition, the computational
complexity of the delayed-SIS algorithm has been increased exponentially because of
the marginalization of all possible outcomes as shown in (2-23). Furthermore, the
performance of the delayed-SIS method is not mecessarily growing with the delay d
(we will illustrate this in Chapter 5)- In" other® words, it is possible that the
performance decays when the delay d inereéases. The' computation spent for the extra
delay would be in vain. This usually happens when the delay d is larger than the
channel length. In this situation, all of the information given in (2-23) would be the

future symbols x and none of the previous particles would be applied in this

t+1:it+d °
computation. The particle filter loses its function to storage the discrete measures.

2.3.2 Minimum Phase filter Solutions

As discussed in the previous section, the delayed-SIS has some limitations and
high computation complexity. Here we will propose a novel particle filtering scheme,
which utilizes the minimum phase filters implemented in the form of decision
feedback equalizations (DFE). As introduced in many digital signal processing
textbooks, the minimum phase system has the property that the partial energy is most

concentrated at the first impulse of the impulse response A(n) (the minimum energy

delay property [sec. 5.6.3 [7]]). The idea of this method is illustrated in Fig. 2-6.

29



SIS SIS with minimum phase pre-filter
CIR with an attenuated LOS
Equivalent CIR after DFE

<o I hi't <o ! HzT
h; ho g1 Lo

I i
Lo ] [0 ]

Ve=hy Xt hx +Hhyox V=80 X T & X T & X, T

(reversely ordered)

v

+ After the minimum phase pre-filtering, the equivalent channel would have a

large first impulse, and therefore Xk would by multiplied with a larger LOS gy,

Fig.2-6  Illustration of the idea of minimum phase filtering method

To combine the minimum phase, system with particle filters, we propose the
following system diagram of th& SIS decision. feedback equalization (SIS DFE), as

shown in Fig. 2-7.

Channel
Yk FeedForward Uk Particle Filter
Xk ¥ H(z) >D > . >»D—> .
T Filter + A— Equalizer
Ny Feedback Filter [« ~
Xpa

Fig.2-7  System diagram of the SIS decision feedback equalization

The match filter cascaded with a noise whitening filter forms a feedforward filter
(FFF). The feedback filter (FBF) is a minimum phase filter. In the case of known
channel state information (CSI) in the time-invariant system, the coefficients of the
FFF and FBF can be pre-calculated under the criteria of zero-forcing (ZF) or minimum
mean square error (MMSE). When the channel information is unknown or varies with

time, the adaptive filtering techniques such as RLS or LMS can be applied to fulfill
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the operation of blind equalization. The details of the SIS based ZF and MMSE DFE
would be introduced in the next chapter, and the implementation of blind equalization

with adaptive filtering would be discussed in Chapter 4.

2.4 CHAPTER SUMMARY

In this chapter, we have briefly introduced the particle filtering equalization
structure, and conceptually explained why channels with a weak LOS would reduce
the performance of a particle filtering equalizer (PF EQ). To solve the weak LOS
problem, we propose the SIS decision feedback equalization structure. Based on the
defined notations and models, we will provide the detailed mathematical analysis of
its bit error rate in the next chapter. We will show the effects of the weak LOS
problem and how the proposed SIS decision feedback equalization can solve this

problem.
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3 PERFORMANCE ANALYSIS OF MAX-LOG SIS

EQUALIZATION ALGORITHMS

In this chapter, we attempt to analyze the BER of the equalization system based on
the Max-Log SIS algorithm. We will first derive the BER in 3.1 and further analyze
the convergence behavior in 3.2. Then, we will focus on the performance analysis of
the SIS decision feedback equalizers proposed in Chapter 2 and illustrate how they
improve the performance (BER). Finally we will have a chapter summary in the end

of the chapter.
3.1 DERIVATION OF THE BIT ERROR PROBABILITY

In the following analysis, we’consider only the i-th particle and analyze the bit
error rate (BER) of this particle. Assume that the data sequence by are sent equally
likely, i.e. the priori probability p(b, =0)= p(b, =1)=1/2 . According to the
Max-Log SIS algorithm, we can calculate the-efror probability of the i-th particle as:

P =1-p(x =+4|x, =+A4) p(x, =+4) = p(x;” =4 |x, ==A4)- p(x, =~ 4)

err,k

(&)

1 (i) (i)
_I_E'J.()p(u Slﬂl{,+A

Vi = 0.5 =+A) py ), = olx, =+ A)dg

- 5 : J.o p(u< V/li,)m

v =p.x, =—A) pyy = olx, =—A)dp
1L (i) 1 (i)
=== [0 Wil =gy =+ dp——-[ o pWi) = plx, == A)dy
1Ly W =-4 3-1
> [‘//k,+A|xk +A4] 5 [Wk,—Alxk ] (3-1)

where u ~U(0,1) is a uniform distributed r.v. with the range [0,1].

Based on the calculation of E[y",|b, =0] and E[y,",|b, =1] (the details

are in Appendix B), we obtain the error probability Pe(r")’k as:
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2 2

B =FRA0, || O+EQS, k[, & p) (3-2)
where
F(ﬂ(i) |h 2 é,) Q h2
o\ % o of » 41(1) l/é,
FEAL, s ¢ )

1 2 2 i i hoz
=5-expi[ ¢y (44/12)+1—1/7)Q(7(8C/1£)+2— %)Jﬁ]

1 2 2 i j h2
——-exp(2|h 420 +1+1 (8 A0 +2+ 1 ) —
S exp2lh 7 (4G + +/y>Q(y N ey

where ¢ = AZ(ZZ:WF)/G‘; = A*/c? (recall that Z?:|hl|2 =1) is the SNR,

and the O-function is defined as following:

O(x) = TJW e_gdt.

We define the error propagation factor.as

-l

err,k—1

This factor indicates the error contribution of the previous BERs after the
channel responses are applied.

In the rest of this section, we will observe the influence of all parameters on F)

and F;. The BER of the i-th particle at time & pPY , 1s a function of the error

err,

propagation factor A",

| » the SNR £, and the
Max-Log SIS parameter y. To see the effect |h0|2 on the performance, we choose

7y=0.75 and fix 1" to observe the BER versus SNR graph with different values of

2

o[-

Fig. 3-1 is the plot of P, versus the SNR ¢ according to (3-2) with several
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values of |ho|2 with A =107

10°

er

2
=005
en_
i
@ h2=01
2 _
10°F 5/ hi=02
n2=0.
10’5 | | | | | | | |
0 5 10 15 20 25 30 35
SNR (dB)
: Q)
Fig.3-1 BER P,

ver$us SNRJ & with diffetent |ho|2 with A =107

As shown in the figure, we can find that the doublé of |ho|2 is equivalent to a 6 dB
increase in SNR when |ho|2 is sufficiently large. Therefore it is essential to make
|ho|2 large enough to obtain acceptable low bit error rate. Note that this BER versus
SNR plot is drawn under the condition that the error propagation factor A" is fixed.
In fact, when |ho|2 is small, the value of 4" would be increased because the error

propagation may be enlarged by the rest impulses of the CIR. When A" is increased

to 0.1, the BER versus SNR plot would be as shown in Fig. 3-2.
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|
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| | | |
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Fig. 3-2

20
BER Pefl),k versus SNR ¢ with different |h0| as A" =0.1

To evaluate the effects of A" :on the performance is difficult because 4" varies with

time. However, our simulation résults show the BER curves are similar to the lower

curves in Fig. 3-1 when |ho|2 is large and similar to the upper ones in Fig. 3-2 as
2 .
|h0| 1s small.

3.2 CONVERGENCE BEHAVIOR OF THE AVERAGE BER OF A PARTICLE

From (3-2) and the definition of A, we can observe that P!

18 @ function of
the previous M-1 averaged bit error probabilities {P

(@)
err,k—1

=1,2,..,M —1}. That is, the
averaged bit error probability of a particle may change with time. It is not easy to

analyze the convergence behavior of P\, when M is large. In general P.), will

converge to stable equilibrium points, which are determined by the crossing points of

a plane and a line in the hyper space (p,, p;,....P,_,) as the following.
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The hyper plane:
i i 2
Py = lje‘E’r),O(Z’l‘(t !, hy| 5¢,7)
and the hyper lines:
b1 =Dy
P, =D

Py = Py
The negative going cross points correspond to stable equilibrium points whereas the

positive going cross points correspond to unstable equilibrium points.

To illustrate the convergence of P!” | we observe the case M = 2 with different

err,k °
values of |ho|2 and plot the convergence trajectories of the P, as in Fig. 3-3, Fig.

3-4, and Fig. 3-5. The arrowed lines represent the convergence trajectories of P\, as

the time index k& increases (k = 05 1, 2 .5)5 We, can.see that in Fig. 3-3 and Fig. 3-4,

P will eventually converge:to single stable equilibrium point E. In Fig. 3-5, when

|ho|2 =0.36 (in the middle range), there are two-stable equilibrium points (EO and E1)

and an unstable equilibrium point (U). If P is initially located in the range IO,

err,0

PY  would eventually converge to EO. On the other hand, if PY, is initially

err, err,0

located in the range I1, Bfr?,k would eventually converge to E1, as shown in Fig.3-3.
The steady state P\, at EO is much smaller that at E1. We call the initial point within

the interval 10 a good initial. How to make P~ fall in good initials is one of the

err,0

important factors of obtaining good performance. That is actually the research topics
we intend to study in the future. In addition, the unstable equilibrium point separate

the convergence intervals 10 and I1.
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Fig. 3-3  Convergence trajeetory of I::_,(’r),k as |h0| =0.2, SNR = 15 dB.
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Fig. 3-4  Convergence trajectory of P(’),k as |h0| =0.6, SNR = 15 dB.
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Fig.3-5  Convergenceirajectory of P, as |h0| =10.36, SNR = 15 dB.

err,

From the above observations, we conclude that the averaged bit error probability
is likely to converge to a higher value (poor performance) if |ho|2 is not high enough.
This situation usually happens when the channel has a weak LOS.

3.3 ANALYSIS OF SIS DECISION FEEDBACK EQUALIZATION

From the previous sections, we have proven that the power of the first impulse
response of the CIR plays an important role in the SIS equalization. In this section, we
will see how the SIS decision feedback equalization scheme proposed in Chapter 2
improves the system performance. In the following analysis, we assume the channel
impulse response is known. First we will derive the coefficients of the FFF and FBF
under the criteria of zero-forcing (ZF) and minimum mean square error (MMSE),

respectively. Then we analyze the BER performance of SIS decision feedback
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equalization with the coefficients calculated from these two criteria.

3.3.1 Zero-Forcing DFE (ZF-DFE)

We employ the technique of zero-forcing decision-feedback equalization and
modify the system model in Fig. 2-7 into the ZF-DFE scheme, as shown in Fig. 3-6.
The original receiver input Yk is filtered by a feedforward filter (FFF) with the
response Fzr(z), which is composed of the match filter and the error whitening filter.
The estimated sequence x,_, is filtered by a feedback filter (FBF) with the response

Bzr(z), as shown in Fig. 3-6.

: Error Whitening i
| Filter !
Channel i Match Filter . :
Yki YK z 1 Uy
> > > H*(1/z* Y >D >
Xk H(z) \u% : H*(1/z%) SgG (1/2) : i o Zy

e e - - - - S s - G(Z)-l 4—/€ k-d
Feedforward Filter £,(z)
Feedback Filter BzHz)

Fig. 3-6: .. System model'of theZF-DFE

The intermediate output Y’ after the match filter can be written as:

Y (2) = X(2)- R, (2) + N'(2) (3-3)
where the noise sequence N'(z) 1s a complex Gaussian sequence with
(z)=E[N'(z)N"(1/z")]=R,,(z)-0. . The average

autocorrelation function R

n'n
noise energy isc_ = R, (0)-o. .

By applying spectral factorization in [4], we can factorize the autocorrelation function

of the CIR as (If it is factorizable?):

3 An autocorrelation function R(2) is said to be factorizatble if its Fourier transform, the power

spectrum density (PSD) |S(6)|’ and its logarithm log|S(6)|’ are both integrable over — 7 <0 < 17 .
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R, (2)=H(z)-H (1/z")=5,G(2)-G"(1/z") (3-4)

where S, :exp(i [ log(‘H(e-/’”)‘z)da)j .
2r ox

G(z) is a canonical filter response of the length N, i.e. it is causal (gx = 0 if k < 0),
monic (gyp = 1), and minimum-phase (all poles and zeros are fallen inside the unit
circle)[4]. In addition, from the unity power property of CIR (Z:j‘:)_l|hl|2 =1) and the
relation in (3-4), the power of the filter response g, would be equal to

M-1 2
21=o |gl| - I/Sg :
Based on the derivations in [5] , we have the following ZF-DFE solutions :

zH (1/2")

Fu(z)= 5.6z (3-5)
Therefore the equalized output is:
U(z)=G(2)X(2)+V(2)
or equivalently,
N A
u, = Zgi “Xp_g TV, (3-6)

i=0
where vy is the whitened Gaussian noise signal with the variance o’ =0, /S . [5],

and the feedforward filter Fz(z) is called the whitened match filter (WMF) because it
whitens the noise signal after the match filter H (1/z"). Note that the Fz+(z) is an

anti-causal IIR filter so that the delay d is usually induced for the implementation
purpose.

From (3-6), we can treat u, as the convolution result of the input x, and the

minimum-phase response g plus the whitened noise v, . In other words, u, is the

equivalent channel output when the input x, is transmitted through the equivalent
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minimum-phase channel g with the noise v, .

Comparing the linear convolution formula in (3-6) with (2-1), we can apply the
BER analysis on the SIS-based ZF-DFE using the same procedure as in 2.2 (simply
replacing y, with ;) and obtain:
p(uk‘xk—d = 2% ) Py = 2)
zp(uk‘xk—d = XX} 410 (X, g = X)

Vxe
constellation

2 ~ PO () =

(3-7)

. . 0) i ()
W/(cl—)d oc Wl(cl—)d—l 'p(“k|Xk_d_1:0) = W/(cl—)l : Zp(uk|xk—d X, o) P(Xy) (3-3)

Xi—d

And the estimate of the likelihood function is calculated as

|y gt |?
]}(uk‘xk—d :Z7X§cizd—1:0): \/%O_ eXp ‘uk 2i2Xkd‘ (3-9)

where g= [go,gl,...gNg_l]T is thescoefticients of G(z), and

<) _ (i) ) (i) 7
X, g =X 05X g 2 X ]

We can see that the equations (2-10)~(2-12) and the equations (3-7)~(3-9) have the
same mathematical form except for the delay d. Likewise, by following the same

derivations as in 3.1 and Appendix B, we can obtain the averaged bit error probability

of the i-th particle in the SIS-based ZF-DFE as follows (using the same parameter y ):

2

2 i
) é/ZF)+E(;l’§c,)ZF7 |g0

})e(rir),k,ZF = Fo(ﬂ'gci,)ZF’ |g0 s Cars V) (3-10)

To compare P, . in(3-10) and P\ in equation (3-2), we could express the

err

i 2 . i 2
parameters 4., |g,| ,and ¢, in terms of 4", |h|",and {. Then we compare

the difference between (3-10) and (3-2). Unfortunately, since the BER P! is

err

complicated, and the parameters are mutually dependent on each other, it is very
difficult to have a close form comparison of these two BERs. To simplify the

comparison, we assume that the N, particles before the time k are all detected
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correctly, i.e. P\, , =0,for/=12,..N, —1.
Thus
i M-1 2 i
/12,)ZF = z,=1 |g1| Pe(rr),k—l =0

We can simplify P (4", *.Cy) as

err,

hy

i i 2
P()k(/’i]g)a 9§ay)

err,

hO

i 2 i
g]{"):o:PeE’r),k(|h0| 4/97/) :st’r),k(n’ 7/)
where 7 =( |ho|2 ). We can show (in Appendix C) that P.) (7,7) is a
monotonically decreasing function of 7 when y is within [0.5, 1]. Thus, we can

show that P

err,k,ZF

=PY (n,,7) is smaller than P

A0.=0 “Terk err,

. (17, 7) if we can prove that

n,- 21 . The proof'is as follows.

From the definition of 7, :
e S (3-11)
where go= 1 (G(z) is monic), and ', =4 Jo} =4 [(c;/S,)=S,-{ . Let G\(2)
be the minimum phase response having the same magnitude response as H(z), i.e.
H)f =[G ')

Compare this with (3-4),

R, (2)=H(z)-H (1/z')=5,G(z)-G"(1/z") (3-4)

it can be easy to obtain that G'(z) = \/E -G(z). Since G(z) is monic with gy= 1, the

first impulse response of G'(z) would be g',=,/S, and its power is | g'0|2 =S,.

From the Komogoroff’s error formula® [sec. 13-A, [6]] and the minimum

* Let H(z) be a minimal-phase response, it can be proven (in [6]) that

1 ¢« NG
log hg = 2— J:” log|H (e’)| dw , where hy is the magnitude of the first impulse response of /(n).
r
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energy-delay property’ of the minimum phase filter [sec. 5.6.3 [7]], we can know

S, = |g'0|2 > |ho|2 . Hence we have proven

Mzr :Sg.é/2|h0|2.é/:77

=20

(3-12)

It follows:

P e =P (1, 1) S By (1,7) (3-13)

Note that the equality holds when the CIR /(n) itself is a minimum phase response.

In conclusion, when the previous particles are drawn correctly and y is chosen
properly, the SIS based ZF-DFE scheme indeed improves the performance (i.e.
reduces the averaged bit error probability) of the particle filter because it enhances the

amplitude (or power) of the first impulse of the'equivalent CIR G(z).

3.3.2 Minimum Mean Square Error DFE (MMSE-DFE)

Now we consider the DFE ‘scheme with thefilter coefficients computed under
the MMSE criterion. To analyze the BER of a particle in the SIS based MMSE-DFE
scheme, we consider the equivalent discrete system model as shown in Fig. 3-7. The
receiver’s input signal Yy is filtered by a feedforward filter (FFF) with the response
Fyuse(z). The estimated sequence x,_, is filtered by a feedback filter (FBF) with

the response Byuse(z).

> Among all impulse responses h(n) belonging to the same family of systems that have the same

magnitude response, that is,

|H(ef”’) Jfor every H(e”),

=|H,;, (")

the partial energy of a minimum phase system /,,;,(7) would be most concentrated around its first

impulse /2,;,(0):

Z,VnZO

NZCIE NG
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Match Filter
H*(1/z%)

Nk
Channel L
Yk
Xk ¥ H(z) V%

Y
A 4

> > 7k
A

Q
[N]
=

~

.............................. | M)l e—— Xy

Feedback Filter Bynyse(z)

Fig. 3-7  System model of the MMSE-DFE

According to the theory of linear prediction and spectral factorization ([4] and

[5]), we can write down the key equation:

olH(z)H (1/z)+0. =S, MM (1/2) (3-14)

1 ex 2 N~ 2
where S, =exp —J. log(o: |H (e’ )‘ +i0;)dow |.
2md-n

The left hand side of the equation is known as.the system autocorrelation function,

and the right hand side is the spectral factorization. Note that M(z) is also a canonical

filter response with the length N,,"From [5], the MMSE-DFE solutions of the FFF and

FBF are
o’z H (1/z")
F, z)=—% . * 3-15
By e (2) =M (2) -1 (3-16)

and the equalized output becomes

R(z)=M(2)X(z)+ E(z)
or equivalently,

N, -1
v, = Z m -x, , . te, (3-17)

i=0

The feedforward filter Fynse(z) 1s called the mean-square whitened match filter

(MS-WMF) because it whitens the filtered output noise e, , which is the combination
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of both the noise and the inter-symbol interference (ISI) sequences. After the
MS-WMF, e, would have the variance o> =(c’/S,)-o” [5]. Although e, is

white, it is not Gaussian distributed in general. That is because e, is dependent on
the data sequence x,. However, from the Central Limit Theorem, the error signal e,
can still be approximated to be Gaussian.

Following the same procedure as used in the previous sections, we proceed the
BER analysis of this MMSE-DFE scheme by writing:

p(rk‘xk—d = l’ngzd—lzo) (X = %)
zp(rk ‘xk—d = X, Xy g 10)P(X, g = X)
Vxe
constellation

Xy ~ B (n) = (3-18)

(@) (@) ® — 1D ®
Wilg € Wil 'p(”k|xk_d_1:0) =w. - zp(rk|xk—dﬂxk_d_1:0) P(x_y) (3-19)

Yk ~d

The estimate of the likelihood funiction is'¢alculated.as

Ha@)

~|r=m"%
13(7” ‘x = 7.x )= ; ‘ : £
k|7 k—d > P k—d-1:0 2
\N27e; 20,

(3-20)

where m =[my,m,,..m, T is the coefficients of M(z), and

<) _ (i) ) (i) T
X, g =X X g g X g ] -

Similar to the ZF-DFE, we can see that the equations (2-10)~(2-12) and the equations
(3-18)~(3-20) again have the same mathematical form except for the delay d. Hence
we can obtain the averaged bit error probability of a particle in the MMSE-DFE

scheme as

pi 2

_ ()
err ke, MMSE — E)(/lk,MMSE9 |m0

s Cumses V) (321

5 .
s Gamse) T B (ﬂ“lgfj\/lMSE > |m0

Similar to the BER analysis in the case of ZF-DFE, we simplify P\, - asa

function of 7,,,, and y by assuming that lﬁ{"’),WSE =0:
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(i)
Perr,k,MMSE

= PeE’ir),k (Mrspasizs V)

‘ (i)
j'k‘,}\/lf\/l.S'E =0

where 77, = |mo|2 & MusE :1"42/0—5 =S, /Gj , and

_ 1 ¢# 2 IPNG 2
S =exp —j log(4°|H(e")[ +o)dw |.
2w

If o2 =0, we can obtain

S =exp Lj” log(4® ‘H(ej‘”)z)da)]
™ |on=0 27 Y-
1 ¢~ ) w2
=exp| — j log(4°) + log(H (¢"*)| )da))
27 d-m
2 1 4 jo 2
= exp| log(4 )+2—j7 log((H (") )de
7Z' T
— £,
where S, =2Lr log(‘H (e*’“’)‘z)da) is the same as (3-4) in ZF-DFE scheme, and
7Z' -7

A* is the symbol power.

Since o is always positive: and the logarithm -function is also a monotonic
increasing function, we can concludeithat S _isaalways larger than 4° S .-
S, >A*-S

m g

2 . . . .
, as mentioned in the previous section, we have:

Utilizing the property S, > |h0

S, 248, >4 || (3-22)
. m A2 .|h0|2 2 —
Thus: Movse = — 2 - =|h0| L=n
o, o,
= sz 277 (3-23)
We have finally proved that
Pﬁ,k,MMSE = Pe*(i’i),k (Myase» V) < Pe(rl;)k (m,7) (3-24)

Note that the equality holds when the both equalities in (3-22) maintain. The first



equality in (3-22) holds when o> =0. In this situation, the MMSE-DFE solution

becomes the ZF-DFE solution. And the second equality in (3-22) maintain as the CIR
h(n) is a minimum phase system.

In sum, we have shown that when the particle filter operates with correct
previous bit decisions and with a properly choseny, the MMSE-DFE scheme also
improves the performance of the SIS-based equalization. The improvement is caused
by enlarging the amplitude (or power) of the LOS of the equivalent channel impulse
response M(z).

Furthermore, from the first inequality in (3-22), we can have the following

relationship between 7,,,. and 7,

— o . L =
Muvse 355 = 2 _Sg ¢ =My
O (o2

n

NTTT [Ty

The equality holds when o =0. Therefore we can;conclude that as noise variance

approaches to zero (o, —0), ot signal-to-noise’ ratio (SNR) is high enough, the

MMSE-DFE scheme would approaches to the ZF-DFE. In general, the SIS-based
MMSE-DFE schemes would generally have a better performance than the ZF-DFE

schemes, i.e.

P(i) < P(i)

err.,k ,MMSE err,k,ZF

3.4 CHAPTER SUMMARY

In this chapter we have conducted the analyses of the averaged bit error
probability of a particle in the SIS-based equalization schemes. During the analysis,
we have found that the performance is unacceptable when the power of the first

impulse of the channel impulse response (CIR) is low, namely, the weak LOS
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problem. To combat this effect, we have proposed the SIS-based decision feedback
equalization (DFE) schemes (either based on ZF or MMSE criterion). We have proven
that by employing the DFE schemes, the BERs are lower than that of the original
SIS-based equalization. In the next chapter, we would focus on the unknown CSI
case and propose the SIS-based blind decision feedback equalization algorithms. The

simulation results based on all the proposed schemes would be shown in Chapter 5.
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4 BLIND AND ADAPTIVE PARTICLE FILTERING

EQUALIZATIONS

In Chapter 3, we have introduced the SIS decision feedback equalization based
on ZF and MMSE criteria. We have confirmed that they can improve the performance
when the channel LOS is weak. Nevertheless, the coefficients of the FFF and FBF
must be calculated in advance. That means the channel impulse response must be
known and not vary with time. In this chapter, we will propose an adaptive blind SIS
decision feedback equalization for the situation that the CIR is unknown or varies

with time.
4.1 ADAPTIVE DECISION FEEDBACK/EQUALIZATIONS

According to the adaptive filter theory:[10]; the adaptive filtering algorithms can
be divided into two categories:ithe stochastic gradient approach and the least square
estimate. The former algorithmi+is. designed t0 minimize the mean-square error
(MMSE) E[e’(n)] by solving the Wiener-Hopf equations for stationary inputs (or
observations) in the sense of “ensemble average”. The later algorithm is to minimize

the sum of error squares Z:Z:n e’(n) by solving the normal equation with “time

averages”. The stochastic gradient algorithm is optimal in the probability sense while
the method of least squares involves the time averages and is the optimal solution
based on the deterministic data.

In practical situations, when the statistical information of the channel is unknown,
the representative recursive solutions of these two methods are the Least-Mean-
Square (LMS) adaptive filter and Recursive Least Squares (RLS) adaptive filter.
Compared with the RLS algorithm, the LMS algorithm is much simpler in complexity.

But the LMS algorithm has a slower convergence and is more sensitive to the
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eigenvalue spread’ of the correlation matrix than the RLS algorithm.

Both of the two adaptive filtering algorithms can be applied in the blind
SIS-based decision feedback equalization. Here we will adopt the RLS algorithm as an
example.

First we have a quick overview of the RLS algorithm for the linear equalization

filter (without feedback), as given in [10]:

Channel
X)) H(z) RN ];g?;‘/;’éc)d »  Decision >
B ) S Desired response %, ,
ny § error e
Adaptive Weight-control

|

input vector y Mechanism

Fig. 4-1 Block diagram of the adaptive filter algorithm

With the system block diagram-and the-notations shown in Fig. 4-1, the method

of least squares is to minimize the sum of error squares with respect to the filter

coefficient vector f(n)= [fo(n),fl(n),...,f,\,f_l (n)]" attime n. i.e.

aﬁg{min(zzz_ etof )} (4-1)
where
e(k) = x(k)—£" (n)y(k) (4-2)

,andy(k) (ory,)is the tap-input vector at time k:

y(k) =[y(k), y(k=1),..,y(k—= N, + 1] . From [10], the cost function

e(f)= zzzn e(k)-e (k) is minimized for a particular estimation error e_. (k) such

min

® The eigenvalue spread is the ratio of the largest over the smallest eigenvalue. When the eigenvalue
spread of a channel correlation matrix is large, the convergence of the learning curve would be slow
and the misadjusment would be relatively large [10].
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that Ve =0 or, equivalently,

> vk —i)- ey, (k)=0, fori=0,1,..,N, -1 (4-3)
k=n

Let f (n)=] fo (n), ]A‘l(n),..., ]A‘Nf _(m]" be the optimal filter coefficients such that

N, -1

€y (k) = £0k) = £ (m)y (k) = £(k) - Z S (n)- y(k—1) (4-4)

By substituting (4-4) into (4-3), we obtain the system of normal equations:

S hm) S =iy k-0 =Y ylk—i)- &' k)

k=n, k=m

1

. i f,(n)-CD(t,i):z(—i),fori:O,l,...,Nf—1 (4-5)

where ®(¢,i) =Y *  y(k—i)-y (k="¢yand Z(<i)= > " y(k—i)-% (k). Please note
that ®(¢,i) and Z(—i) represent. the time-averaged autocorrelation of y(k) and
the cross-correlation between y(k) -and=x(k) =[xX(k),x(k —1),...,x(k — N, +D]",

respectively. If we rewrite (4-5) in matrix form:

D f=z,0rf=0"z (4-6)

where z = y(k)- £ (k) =[2(0), 2(~1),..., 2(~N, + D',

#(0,0) . #(N,—1,0)
@ =y(k)-y" (k)= : 3
¢ON, =) - ¢(N,~LN,-1) ’

N xN;

Thus we have derived the least squares solution of the filter f . The inversion
lemma is applied to obtain the way of recursively computing the inverse of the
autocorrelation matrix ® '(n) from ®'(n—1) without direct matrix inversion
[Chapter 9, [10]]. The resulting algorithm is known as the Recursive Least-Squares
(RLS) algorithm. We will generalize this algorithm form linear equalization filter to

decision feedback equalization filters.
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Consider the following conceptual diagram of adaptive filtering generalized from

Fig. 2-7 and Fig. 4-1:

Channel FeedF. J P icle Fil
X Wk eedForwar. I article Filter %
—» HE) '”T\ Filter F(7) > Equalizer >
ny | Feedback Filter |
B(z)
= 4
SPA -
+ Desired response
error ¢y %
A 4 k—d
_| Adaptive Weight-control

input vector y(n) Mechanism

Fig.4-2  System diagram of the SIS adaptive DFE.

The major difference between linear equalizer and the decision feedback
equalizers is the error term. As Shown.in Fig.-4-2; the error term now can be written

as:

e(k) = (k= d)— (" (n)y(k) =b" (m)x(k - d))

(4-7)
= %k —d)-w" (n)-u(k)

where w(n) =[f" (n),-b" (n)]"
= [fo (n)’ﬁ(n)""’fN,-—l(n)ﬂ_bO (n)a_bl(n)a“"_bN,,—l(n)]T
u(k) =[y" (k),x" (k- )
= [9(k), y(k = 1),y = N, + 1), 5(k = d), 5k —d = 1),..., 5k —d — N, + )]

Note that the delay d is added for the practical considerations. In this way, (4-7) has

the same mathematical form as (4-2). Using the similar derivations, we can obtain

A 2]~

O Ww=Z,orw=D "% (4-8)
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with Z =u(k)- £ (k —d) =[2(0), Z(~1),.... Z(-N, + )T,

~ H _ Iyy (I)yx
® =u(k)-u" (k) =|
Xy SN+ Ny XN +Ny)

where ® =@ is the time-averaged autocorrelation matrix of y(k), ®  is the

time-averaged cross-correlation matrix between y(k) and Xx(k), and so forth.
Similarly, we can derive the recursive computation of the inverse ®' and the RLS
algorithm simply by replacing f(n) with w(n),and y(k) with u(k).

The coefficients of the LMS based adaptive DFE can be derived likewise by

solving the Wiener-Hopf equation instead of the normal equation (4-5).
4.2 ADAPTIVE BLIND SIS EQUALIZATIONS

To conduct the SIS algorithm based on the DEF structure, we have to consider a
number of particles during the equalization process. Each of the particles has its own
filter coefficients (FFF+FBF), -weight, and the drawn particle trajectory x,,. The

drawn samples %) and the filter coefficients (£”and b\”) of the i-th particle are

used to update the filter coefficients and obtain f\” and b\’,. The final decision bit

+

sequence would be determined when & reaches the end of a time frame. Unlike the
structure in Fig. 4-2, each particle of the adaptive SIS-based DFE has the equivalent
minimum-phase channel response estimated based on its own drawn particle
trajectory by applying adaptive filtering algorithms (LMS, RLS, etc), as illustrated in

Fig. 4-3.
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o ‘ —-~-__ Particle filter 1
Adaptive Filters I Ist Particle » st Particle

» 1 1 Equivalent minimum | . 1
0 & p® phase channel 1| sampler Trajectory X%
T T ~~~-__ Particle filter 2
¥ T T <
Adaptive Filters _ B 2nd Particle 2nd Particle
g 1(2) ) Equivalent minimum | - . 2
&b phase channel 2 ’ sampler Trajectory X,
e ~~~.__ Particle filter 3
y I I <
y Adaptive Filters Eeuivalont e 3rd Particle » 3rd Particle
K » 3 3 quivalent minimum | - . 3
9 & p® phasechannel 3| sampler Trajectory XEC(;
>

.

Fig. 4-3  Practical implementation:of the SIS blind DFE.

We apply the RLS algorithnito the adaptive SIS-based DFE as an example. At

an iteration, the i-th particle filter uses the trajectory x.) to calculate the coefficient

vector (4-9) and acquires the FFF and FBF coefficients (from W) to calculate the

likelihood functions (4-10).

-1

w =PV .79 where PY = ((Dm) @2

withz? =>"" u?(k)-x""(k - d) =[2"(0),2" (1),...2" (=N, + DT,

k=n

P — z:inl u? (k) - (u(i) (k))

H
9

w0 =| ¥ R(x - )|
= [, 9k = 1)y (k= N, +1), 57 = d),x " (k = d =1),..., X" (k —d = N, + )]
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2

(i) H (i)
A i (i) _ 1 - rk —m Xk—d
p(’”k Xeca = X5 Xk—d—l:O) = eXp P (3-20)
\2ro, 20,
. ) . ) 2
| _ f(z)H _ygcl) _b(l)HXEQd—l _Z‘

2ro, 207

. . 2
1 —|(w)" - 4]

2ro, 207

(4-10)

where ) =" .y, | here we have chosen b=m-[1,0,..,0]" (since the first

impulse response of the canonical response M (z) would always be 1) The function of
the RLS adaptive filter is to calculate the minimum phase solution, namely, the
coefficients FFF and FBF for the PF whereas the PF is responsible for the decision of
the next data samples being used for the RLS adaptation. As shown in the conceptual
block diagram in Fig.4-4, they provide informationto each other. In the SIS algorithm,
the particle in which the RLS has the good estimate of the channel would be given a
large weight and is likely to be preserved (via the particle weight adaptations and
resampling’). We will see this example‘inthe'next chapter talking about simulations.

FFF & FBF Coefficients w"

Weight Adaptation
Mechanism
of the i-th adaptive filter

i-th particle in
Particle Filter

Particle trajectories x!"

Fig. 4-4  Illustration of information transmission between i-th PF and adaptive filter.

7 Notably, the coefficients of the filters W and the matrix P“ should be copied and replaced

together with the particle trajectories during the resampling process.
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4.3 COMPLEXITY ISSUES AND THE MAX-WEIGHT SIS DFE

It is realizable that the complexity of the blind SIS DFE (as well as the blind
delayed-SIS equalizer (blind D-SIS EQ)) is very high. Every particle filter has its own

set of filter coefficients adapted individually for the blind SIS equalization. Take RLS

as an example; each adaptive filter requires a (N, +N,)by (N, +N,) matrix p¥

and several (N,+N,)by 1 vectors and updates the coefficients with 8 matrix

multiplications and 2 matrix additions at every time iteration for each particle.
Obviously, the computation and storage requirement would be huge. To meet the
broadband applications, the enormous hardware cost is required in practice. Another
important task of this thesis is to reduce the number of adaptive filter coefficient
adaptations to minimize the computation complexity and the storage required for the
SIS equalization.

From the particle filtering theory, the particle trajectories with large weights are
more likely to be preserved than those.with small weights. A particle with the large
weight will be replicated and replace the others in the procedure of resampling.
Normally, the particle trajectory of the maximum weight would become the final
decision sequence of the particle filter. We could use this feature to save the
computation complexity. We use only a single set of adaptive filters and update the
coefficients according to the trajectory of the maximally weighted particle Thus, we
can greatly reduce the complexity of the blind SIS DFE without suffering from great
performance loss. The idea of this Max-Weight blind SIS DFE is illustrated in Fig.

4-5.
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Implementation of the Max=Weight blind PF DFE.
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index
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Compared with Fig. 4-3, this implementation réquires only one set of adaptive

filter so that the computation Complexity is greatly reduced. The performance

comparison of the Max-Weight blind SIS DFE and the original blind SIS DFE would

be discussed in Chapter 5.
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4.4 CHAPTER SUMMARY

In this chapter, we have proposed an adaptive blind SIS decision feedback
equalizer (blind SIS DFE). Unlike the algorithms introduced in Chapter 3, this method
does not need the knowledge of the CSI in advance in order to applying the minimum
phase pre-filtering before the SIS equalization. But it requires N, sets of adaptive
filters and the adaptation processes for N, individual particles of the blind SIS
equalization. The high computation requirement can be alleviated by the Max-Weight
SIS DFE algorithm proposed in 4.3. The proposed Max-Weight blind SIS DFE
algorithm indeed outperform the original SIS equalization proposed in [3] especially
in the environment with the weak LOS.

Compared with the method of blind,delayed-SIS equalization, which was also
proposed in [3] to solve the .weak LEOS problem, the Max-Weight blind SIS
equalization algorithm can provide better performance at lower computation
complexity requirement. As shown in(2-23)ef 2.3.1, the computational complexity
of the delayed-SIS grows exponentially'with'the delay d. In addition, the selection of
the delay d in the blind delayed SIS algorithm has the big impact on the performance.
Unfortunately, increasing the delay d does not necessarily improve the performance.
This effect and the performance these algorithms will be observed by using computer

simulation in the next chapter.
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5 COMPUTER SIMULATIONS & OBSERVATIONS

In this chapter, we will show the computer simulation results based on the
aforementioned algorithms. The purpose is to confirm the conclusions we obtain from
the mathematical performance analysis in the previous chapters. We first performed
the simulations by assuming that the CIR is known. The simulation results coincide
with the analysis results in Chapter 3. We also do the performance comparison of the
regular SIS equalizer [3], the minimum-phase SIS DFE, and the delayed-SIS EQ. In
the second section, we provide the simulation results of adaptive blind SIS
equalization algorithms as mentioned in Chapter 4. We compare the performance of
the blind SIS EQ, the adaptive minimum-phase SIS DFE and the blind Delayed-SIS

EQ with different delays d. Finally:we make some simple conclusion.

5.1 PERFECT CHANNEL STATE INFORMATION

In this section, we examirie the results‘we _obtain in the BER analysis of SIS
equalization in Chapter 3 under the “assumption that the channel state information
(CSI) is perfectly known. In this case, the fixed CIR is used to calculate the
minimum-phase decision feedback filter coefficients according to the method in
Appendix D.

In the simulation, we normalize the CIR to have the unity power, i.e.

ZM_I |h]|2 =1. The number of the particles N; is 100. The Max-Log SIS weighting

=0
parameter is set as y =0.75. The signals are transmitted equally likely with the
BPSK modulation. In this section, we consider three types of equalizers during the
simulations:

(1).The SIS equalizer (SIS EQ): This is the original particle filter using the

Max-Log SIS algorithm as proposed in 2.2.2. The BER and the convergence
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behaviors are analyzed in 3.1 and 3.2.

(2).The (minimum-phase) SIS decision feedback equalizer (SIS DFE): This
algorithm is proposed in 2.3.2. The coefficients are calculated based on the
given CIR according to two criterions — zero forcing (ZF) and minimum mean
square error (MMSE). The structures of this algorithm based on these two
criteria are illustrated in Fig. 3-6 and Fig. 3-7.

(3).The delayed-SIS equalizer (D-SIS EQ): The delayed-SIS algorithm is
proposed in [3] and described in 2.3.1 of this thesis. Different from [3], the
channel is assumed to be known here. We will see the effect of the delay d by
conducting the simulation with different values of d.

To observe how the channel LOS amplitude affects the performance, we consider
the following two cases of CIR separately: the first case is the CIR with a large LOS
and the second one is the opposite case which-has an attenuated LOS.

5.1.1 Channel with a strong 1LOS

We begin with a channel with'a strong LOS."As shown above in Fig. 5-1, there is
not much difference between the SIS EQ and the SIS DFE when the first impulse of
the channel response is large. That is because the most energy of this channel is
concentrated at the first channel impulse. The minimum phase DFE has very limited
effect on this kind of channel, as described in 3.3.2. Nevertheless, we can find that the
D-SIS EQ behaves well as d = 0. However, when the delay d = 2, which is larger than
the actual channel delay (in this case, channel delay = 0), the performance deteriorates
greatly in spite of spending extra computation. This problem can be further testified in

the case when channel LOS is weak.
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SNR vs BER under channel with strong LOS
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Fig. 5-1 BER versus SNR plots of the three equalizers under channel with a

strong LOS . (Perfect CSI)

5.1.2 Channel with a weak LOS

In this subsection, we will-provide the-simulation results to see how well the
minimum-phase SIS DFE and the D-SIS EQ ‘improve the system performance when
the channel LOS is weak. One of the simulations is purposed to compare the
performance of the original SIS EQ under channels with different values of LOS, as
shown in Fig. 5-2. We can see that the SIS EQ operating with weak LOS channels
suffers from error propagation and has a relatively high BER in the high SNR (as
SNR = 8~12) whereas the BER of the SIS EQ operating with strong LOS channels
drops significantly. This phenomenon coincides with the analytical results we have
obtained in Fig. 3-1 and Fig. 3-2. In other words, we have shown that, by both means
of analyses and simulations, the SIS EQ indeed has the performance decay problem

when the channel LOS is attenuated.
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SNR vs BER under channels with different LOS
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Fig. 5-2 BER versus SNR plots of the SIS EQ under channel with different LOS.
(Perfect-=CSI)

The next simulation is to compare the performance of the SIS EQ and the
minimum-phase SIS DEF (both ZE and MMSE) selely in the case when channel LOS
is weak. As shown in Fig. 5-3, compared with the SIS EQ, the minimum-phase SIS
DFEs (either ZF or MMSE) successfully attain lower BERs, especially in the high
SNR. We can see that the BER versus SNR curves of these two SIS DFEs act just like
the one of the SIS EQ under a good® channel (the one in Fig. 5-1). This implies the
SIS DFE has successfully converted the poor channel into a good one by the
minimum phase pre-filtering.

In addition, comparing the curves of the ZF and the MMSE SIS DFEs in Fig. 5-3,
we can see that although they have little difference in the high SNR, the MMSE DFE
indeed outperforms the ZF DFE in all SNR values. (The difference between the

MMSE and the ZF in the low SNR looks very little. However, the difference is

¥ In this chapter, we say that a channel is good if its LOS is strong (good for the SIS EQ), and,
oppositely, a channel is said to be poor when its LOS is weak.
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actually larger than what we can see in the figure because the BER is drawn in log

scale.) This observation testifies the conclusions of 3.3.2, that is, the MMSE DFE

would have a better performance than the ZF DFE in the low SNR, and their

performance would come close to each other when the SNR increases (the noise

variance approaches to zero).

BER vs SNR under channel with weak LOS
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BER versus SNR plots of the three equalizers under channel with weak
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SNR vs BER under channel with weak LOS
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Fig. 5-4 Comparison of BER versus SNR plots of the D-SIS EQ with different delay d

under channel with weak. LOS. (Perfect CSI)

At last, let us take a close look at the effect of the delay d on the performance of
the D-SIS EQ in Fig. 5-4. In this simulation;-the channel has a poor LOS, and the
highest channel gain appears at the P mpulse. That means the D-SIS EQ would not
have good performance unless the delay d is large enough to cover the largest channel
impulse (i.e.d > 2). If we observe the BER versus SNR curves of different values of d
(d=0,1, ... 5)in Fig. 5-4, we can see that the D-SIS EQ has the best performance
when d = 2 and 3 (around the real channel delay 2). However, it is interesting that the
performance is worsen not only when the delay is not large enough (d = 0, 1), but also
when the delay is too large (d = 4, 5). Therefore it is very important for the D-SIS EQ
to have the delay d chosen properly, which is nearly impossible in the blind
equalization scenarios. Furthermore we can observe that, despite of the high
computation complexity, the D-SIS EQ, with all values of d, still does not have a

better performance than the MMSE SIS DFE.
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From the observations we have from the above simulation results, we can
conclude that the minimum-phase SIS DFE scheme is definitely an attractive
alternative of the particle filtering based equalization algorithm to overcome the

channel impairment.

5.2 BLIND AND ADAPTIVE EQUALIZATIONS

In this section, we will provide the simulation results of the blind SIS
equalization schemes as introduced in Chapter 4. The channel state information is
assumed to be unknown to the receiver (equalizer) and is estimated/tracked using the
recursive least-squares (RLS) algorithm in the simulation.

Same as the previous simulation, we, assume that the CIR has unity power, i.e.

ZM_I |h]|2 =1. The number of the particles N;iis 100. The Max-Log SIS weighting

=0
parameter is set asy =0.75. The signals are transmitted equally likely with BPSK
modulations. In this section, we consider four types of equalizers in the simulation:

(1).The blind SIS equalizer (Blind SIS EQ): This is the original particle filter
based equalization using the Max-Log SIS algorithm as proposed in 2.2.2 with
the CIR estimated by a set of RLS adaptive filters for each particle.

(2).The blind SIS decision feedback equalizer (Blind SIS DFE): This is the
scheme we proposed in 4.2. The FFF and FBF filter coefficients are updated
with the RLS algorithm introduced in 4.1.

(3).The blind delayed-SIS equalizer (Blind D-SIS EQ): This is the delayed-SIS
algorithm proposed in [3]. The CIR here is estimated in the same way as the
blind SIS EQ in (1) through RLS adaptive filters.

(4).The Max-Weight blind SIS decision feedback equalizer (MW blind SIS DFE):

This is the complexity reduced version of (2), the blind SIS DFE, as
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introduced in 4.3. Only one set RLS adaptive filter coefficients is used for 100
(=N;) particles.

Again we consider two cases of CIR and see the performance of these blind
equalizers.

5.2.1 Channel with a strong LOS

First in the case of strong LOS channels, the blind SIS EQ behaves as well as the
blind SIS DFE does. This is because when the channel LOS is large, there is no much
difference before and after the minimum-phase pre-filtering. These two algorithms
result in the similar performance.

As far as the blind D-SIS algorithm is concerned in this case, the best choice of
the delay d should be 0 because the channel has the largest impulse at 4. The blind
D-SIS with delay d = 0 acts exactly as the blind SIS EQ. In addition, as we have
testified in previous section (the perfect CSlsscenario), choosing a larger d than the
channel delay would not only ‘rise itheé. computation complexity but also cause the
performance decay. Compared with the. D-SIS'EQ with d = 2 in the known CSI case
in Fig. 5-1, the blind D-SIS EQ with d = 2 even has worse performance, especially in
low SNR. This is because when the SNR is low, the particle filters are likely to draw
the particles wrongly. The adaptation of the RLS filter according to the bad particles
would be erroneous. The information exchange between the RLS filters and the SIS
algorithm becomes a vicious circle, the error propagates through the iteration and

hence raised the BER.
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SNR vs BER of blind equalization under channel with strong LOS
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Fig. 5-5 BER versus SNR plots of the different blind equalizations under channel
with'sttong LOS.

5.2.2 Channel with a weak LOS

Now we turn to the case Wwhen the channel LOS is seriously attenuated to see

how the SIS DFE and D-SIS EQimprove the-situation in blind equalization.
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First we observe the curve of the SIS EQ: It is interesting that the curve climbs
up with the SNR in the range of SNR = 8~12. This phenomenon has been found

earlier in the analysis in Chapter 3, as drawn in Fig. 3-2, when the error propagation
factor 4 is quite large. As expected, the SIS EQ does not attain a desirable low

BER at the high SNR when it is used in the weak-LOS channel environment.

Second, the results of the D-SIS algorithm indicate again whether the
performance is good enough or not is greatly dependent on the selection of d. Only
when d is selected to be close to the channel delay (in this case, the channel delay is 2.)
can the D-SIS EQ have the best performance. Similar to the case of the known
channel with a weak LOS in Fig. 5-4, we can see that the D-SIS EQ with delay d = 2
has the best performance compared with, that.with other values of delay.

We end up with the simulation for, the petformance comparison of the blind SIS
DFE and the Max-Weight blitid SIS DFE; which utilizes the maximally-weighted
particle to update the only one set of-adaptive-filter-at each iteration (see 4.3). As we
expected, this method would have a little worse performance than the blind SIS DFE
because of the simplification. However, we have found (in Fig. 5-7) that the
performance difference is small. This is a promising result because, we can use the
Max-Weight blind SIS DFE, to save a lot of computations without sacrificing much
performance. As shown in Fig 5-7, we can find that the Max-Weight blind SIS DFE
even outperforms the D-SIS EQ (delay = 2) in the high SNR. Under the situations
when the computation resources are relatively limited, the Max-Weight SIS DFE may

become one of the appealing options for blind equalization.
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5.3 CHAPTER SUMMARY

In this chapter, we have conducted the computer simulation of the particle filter
based equalization algorithm described in the previous chapters. From the simulation
results, we have testified that the weak LOS problem indeed affects the performance
of the SIS EQ, as indicated in the BER analysis of the SIS EQ. We have performed
the simulation on the ZF and the MMSE SIS DFE algorithms, showing their
performance is not affected by the weak LOS channel, We also made simple
comparison between the proposed SIS DFE and the D-SIS EQ.

In the second part, we simulated the blind SIS equalizers introduced in Chapter 4.
Both the blind SIS DFE and the blind D-SIS EQ can improve the system performance
under the weak LOS channel. However, the D-SIS EQ requires the knowledge of the
channel delay in order to determine the best value of the delay d, and its computation
complexity grows exponentially with its delay d. The blind SIS DFE can be further
simplified to the Max-Weight- blind."SIS=DFE without the significant loss of
performance. The cost-effective Max-Weight blind SIS DFE can be considered a

promising algorithm for the practical system implementation.
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6 CONCLUSIONS AND PROSPECTIVE

6.1 CONCLUSION

Particle filter is a simulation-based algorithm utilizing the Monte Carlo
methodologies. The Sequential Importance Sampling (SIS) algorithm is successfully
applied to the channel equalization applications.

One of the major problems the SIS based equalization is the performance
degeneracy caused by the weak-LOS in the channel response. In this thesis, we begin
with the BER analysis of the SIS equalization and show how the energy of LOS
affects the performance. To overcome this weak LOS problem, we employ the
minimum-phase pre-filtering technique to, ttansform the weak LOS channel into the
equivalent strong LOS channel.for, themSIS-equalization. This idea is realized by
proposing SIS decision feedback equalizers."We mathematically prove that the MMSE
DFE and the ZF PF DFE providé better. performance than the original SIS EQ.

In addition, we compare the proposed algorithms with the Delay-SIS equalizer
(D-SIS EQ), which was proposed to solve the weak LOS problem in [3] in the
viewpoints of performance and computation complexity. We also indicate that the
good performance of the D-SIS EQ is fatally determined by the proper selection of the
delay d, which is hard to achieve in the real implementation.

The blind SIS based EQ algorithms are realized by using the techniques of
adaptive filtering in the cases of unknown CSI and timing-varying channels. We
propose a simplified blind SIS DFE algorithm, named the Max-Weight blind SIS DFE,
which saves much computation complexity without causing obvious performance loss.
From the computer simulation, we compare the performance of the particle filter

based equalization algorithms and summarize the observations obtained from the
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simulation results. We conclude that the Max-Weight blind SIS DFE is a promising
algorithm, which has good performance, robustness (less limitations), and much

lessened computation complexity.
6.2 PROSPECTIVE AND THE FUTURE WORKS

At the end of this thesis, we would like to propose some innovations or
directions for the further research of the particle filter based equalizers.

The first work is the low-complexity blind SIS DFE algorithm. Although we
have proposed the method of Max-Weight SIS DFE, there is still some room for
improvement. For example, the Max-Weight method may not be stabilized in the
beginning when the particle weights are very close to each other. Therefore, we may
have to wait for a period of time 7 (after the.convergence of the particle weights) and
then pick up the particle with the rlargest weight. That is, we choose the
maximally-weighted particle and update the adaptive filters for every k = nT. The
operation would be similar to a-certain kind-of windowing method which has been
frequently used in digital signal processing.

In addition, the most important information that the particle filters provide is the
desired probability distribution. As some kind of soft information, the estimated
distributions can be used to help the backend decoders. Therefore we may apply the
technique of particle filtering to the turbo equalizers, which exchanges information
between the equalizer and decoder iteratively to attain a desirable performance.

On the other hand, in sight of the great advance in the wireless communication,
the multiple-input multiple-output (MIMO) wireless communication systems have
drawn lots of interests in the recent years. The SIS-based algorithm can be further
used for the blind equalization and detection in the MIMO system. I am convinced

that the particle filter can provide some equilibrium between the implementation
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complexity and the performance for the MIMO systems.

In sum, the importance sampling algorithm and the particle filtering can be
applicable to any physical problems that acquire the knowledge of probability
densities by estimating the them with the discrete random measures. We have
introduced a probable application in this thesis. Whether the PF and the SIS algorithm
may be applicable in other practical situations depends on their computation resources,

the response time they require, and the performance they require, and so on.
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APPENDIX

A. JACOBIAN APPROXIMATION

The Jacobian approximation is basically the following equation:
log(exp(a) + exp(h)) = max(a,b)

To obtain this equation, first we look at the case a > b, then
log(exp(a) +exp(b))
= log(exp(a) - (1+ exp(b)/ exp(a)))
= log(exp(a) - (1+exp(—(a —b))) recall thata >b
= a +log((1+ exp(—(a —b)))

Considering jointly the case b > a, we can write the general form
log(exp(a) +exp(h)) = max(a,b) + log(l + exp(-Ja — b))

Now recall from the Taylor Series:

2 3 4
X X

log(l+x):x—%+?—7+ ...... if|x|<1

By identifying x as exp(—|a—b) , We.can see that'it is always true that |x| <1, and

log(exp(a) + exp(b)) = max(a, b) + log(1 + ™"

e—2<‘a—b‘ e—3-‘a—b‘

Ja-b

= max(a,b) +e 17 — + —
2 3

Note that the argument in the exponent only has to be a little bigger than zero to cause
all of these extra terms to become small quickly. The Max-Log algorithm basically

ignores the all the exponential terms and ends up with the following approximation:

log(exp(a) + exp(b)) = max(a,b)
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B. DERIVATION OF THE EXPECTED VALUES IN THE BER DERIVATION (3-1)

To obtain the expected value E[y,”,|b, =0] and E[y", |b, =1], we

consider the two cases that b, =0 and b, =1, respectively:
1. Case by=0

To compute E[y”, | b, =0], we first consider the case when b, =0. Define

", as the error term (yk —A-h, —ZZ;I h, -x,({"_),) in the exponent of (2-13) and

@ " ag ()’k +A4-h, —ZZ{I h, -x,(f_)l) in (2-14) then:

k,—A

(1)
k,+A

) _ M- (i) _ (i)
ked|b=0 = (J’k +A4-h, _ZH h, 'xk—l]b,(:o =24h, + &

M- : A
— (i) _
=0 — (yk —A-hy - -1 h 'xk-llbk:o =&

(0 _ M-1 M-1, @
where g = (Z:l:1 hx, , +ng)— Zz=1 hx
M-l ;
- @
=210 M ey
@ _ (@)
and Al =X =Xy

If M is sufficiently large, and the inter-symbel.interference (ISI) is the sum of many

similarly-sized components, we can’approximate variables with Gaussian distribution

through Central Limit Theorem:

(i) _ ) 2 1(i) 2
b =& ~ N, 44240 +52)

k,+A4| by

O =24k, +el” ~ NQAh,, 44° 2 +07)

ko—A| b=

; M1y, 12 i
where A" :ZH |h,| PY. .
Under the assumption of equal priori probability, the condition p;”, > p,”, in

(2-18) can be equivalent to the following conditions in terms of!”.

(@) (@)
Piia 2 Pi-a

|? |?
=G ‘ S‘ZAh0+gk ‘

& el Ahy > -A|h,|”

and the threshold ", , can also be written in terms of &/ :
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1Ll 2R b1 02) ol 2
@
Visa =

%-exp(+ 2p(A% | + Ahog,g”)/oj) e Ahy <—A ||’

According to all the equations above in this section, we can finally obtain:

I:l//ill 4 ‘b = O:I

1 (1- ie*ZV(AW*A%*'i”)/Uf ). e""':”‘n/z("’mf”*”'%)dg(t) +
k
) dhy2— 420} 2

@0 o) L I

Al 1 1 ( lr AR AR _ef\ci”f/zmh':”m Ve + J‘ AR 2y (R ok Vef\ci”\z/u4414:‘%5)(18;)]
(i) -
V@A +67) \/2,,(4/“«. To?) anl® Sl
h,

ol _ 702 1 e (“ A o) 1 Zh(f{yzt4{/l,f”+l+%). ) o | B
_Q[ 4/1£”+1/§] 4 [2 Q[ (Sﬁ " /)\’ /1“'+1/§]]+4e >0 y(sg/y +2+/7) 420 +1/¢

n[* 2500 2
le+2y(.42/,§+m,g;”)/oﬁ .e*\z‘i I s ’*6,.)d€2,)l

el Ahy<—A2h 2

2.Caseby=1

Similar to the case by = 0, we can write

PR P =(yk b <'>] = 24h, + & ~ N(=24h,, 44°2 +c2)
O s =+ Aeh, - -xi”,)b SEelh~ N(O, 44220 +07)

and the condition :

(@) (7
PriaZ Pr-a

NV ~12
—2AR ¥ 0| <e|
& el Ahy > Ahy|

And thus ,” , can be written as:

%-exp(+ 2p(A%|hy|’ +Ahog,§">)/aj) ce" Ahy > A% ||’
V/zil)A =

1_%.exp(_ 2p(A%hy|” +Ahog,§”)/a§) ce Ahy < A|hy|°

And finally the expected value:

(i) —
I:l//k -4 ‘h = I:I
I S J' leﬂﬂﬂzhﬁ%%d”i/vf .e"‘f”\r/““z‘ﬁ”*”?’dgm 4 a ,lefzﬂthﬁfAlmci")/mf )_e’\fi"r/z“‘”i”*df)dgm
. k 13

[ 2 2

27(44 ﬂ,,i') +0,) \ oanzii &0 g <A 2
-0 7A‘h0‘ 1 N 1 lj‘” 2 A Alle]o} _e*‘é’i""/ﬂ"fﬂ"l”wf)dgii) 7lJ‘A\hn\efzy(/#hgﬂ\hﬂ\si”)/aﬁ .e*‘é’i”"/l("/izlf"wﬁ)dgii)

2644’20 +02) ) \2r@d 20 + o2y \ 27 2°=
n

ol hg l 2h§{72(4;4'f”+l+%). ) o 1 hg _l 2/,5572(401:”+1—){/). )
_Q[ 4/1é"+1/§]+4e [2 Q[}/(S% +2+/7) 40y || 4¢ (85& 2= /) /Im Ve
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Substitute the results of these two cases into (3-1), we can obtain the averaged bit

error probability as:
i 1 i i
Py =1=SEy b, —0]——E[l//” b =1]

1 (LY b =01+ Ely ) B, =1)
~ he L 2w (4”1 1) .1 h
_Q( 4y’ +1/¢ J 2 [e Q£7 (8% 2= ) 420 +1/¢

_ e y) Q( (84”/1(’) 2+ /y)\/ﬂ“iﬂ/{ ]]

2

s & )

where Q(x) is the "Q function" encountered in integrating the normal distribution

2

= Fy(&", |k

, O+F(A, |k

(which is a normalized form of the Gaussian function), and is defined by:

0(x) ET j ~e2dr.
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C. PROOF OF THE BER AS A MONOTONICALLY DECREASING FUNCTION

In this section we intend to prove that the BER PV of the i-th particle, under

certain assumptions, would be a monotonically decreasing function of 7 E|h0|2 .

This may seem to be trivial from the perspective of communication theory, however,

here we still need to have some validated proofs to show that P indeed decreases

err.k

(i) (i) :
and B iomse S F, n

err.,k

as n grows to simplify the proof of PV, <P

err,k

Chapter 3.

First we assume that previous N, particles before time k are all detected (or

drawn) correctly, i.e. P\, , =0,for/ =12,.N, -1, and A&’ = ZZ;1|hl|2Pe§.",)~k_, =0,

err,k—I
which is the same assumption in all the analysis'of BER in the DFE (ZF and

MMSE-DFE) part of this thesis=Since A\ = 05 we-can write (from the result of

Appendix B):

(i)

err,k

A0=0

= Q(\/;)+%,[e2777(71) 'Q((2]/—1)\/;) _82777(;/+1) 'Q((27+1)\/;)}
=P (1), where n=|h["-¢.

To prove that Pe(r’,)k (n,y) 1is a monotonically decreasing function of 7 (when y is

fixed), we next take derivatives of P

err,

.(1,7) w.rt(with respectto) 7 as:
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ory

err,k

240=0

| n, 1
- exp(—1)+—2y (7 ~1)-exp(2
o S ey 2y )-exp (27 (7-1))-0((27 -1)n)

n
g 5

1
- 527/(7/+1) exp(277;/ 7+1 Q 2}/+1 \/;)

27+1 - 27+1)
exp| — 2\/_

+% exp(277}/(;/+1 [

where the derivative of the O-function is given by:

d -
EQ(X) __\/Ee

By combining the 3" and the 5" terms above, we have

%.exp(z,ﬁ,(],_ﬂ)).{\é_ﬁexp{_(27+1)2 .UJ_(ZJ/H)]

2 2\n
1 1 2715 ) (27-1
E'exp(zm/(?’l))'{m@(p[( /4 2) ’7}(27:/;)]
=%-eXp(2f772)- Tl;m exp(—(47/2 +1)-%J[e2"7 ey +)—e -e2”7(2)/—1)]

1 n
= -exp| 2ny’ —2ny° ——) 2
N p( =2y
exp(—%)

N

We may soon discover that the sum of the 3™ term and 5™ term is exactly the

minus of the 1* term in the derivatives of P, so that the sum of these three terms

would be zero. Therefore the derivative can be further simplified as:

or.

err,k /1(1):0

— = +7(7_1)'6XP(2777(7—1))-Q((Z}/—l)\/;)
=7 (r+1)-exp (207 (r +1))-0((27 +1)\n )
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po) P(i)

err,k

20 =0

5 would be always less than 0, and
n

We can see that for y €[0.5,1],

therefore we have proved that P, is a monotonically decreasing function of

err,

n=|h| ¢
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D. PRE-FILTER COEFFICIENTS

In this appendix, we give the procedure of how the coefficients of the
feedforward filters (Fzr and Fyuse) are calculated when the CIR is known. The details
of the related material can be referenced as to [5]. First, we take the ZF scheme as an

example, and consider the following spectral factorization:
Ry (2)= H(z)-H (1/z7) = §,G(z)-G"(1/z") (3-4)

We can obtain the minimum phase response G(z), (or equivalently, gz ) from the

spectral factorization. And then we may calculate the coefficients of Fzr by:

zH (1/2")

S,G°(1/2") (3-5)

Fu(z)=

In order to make the feedforward filtet stable, F- is chosen to be an anti-causal filter.
In practical, we make it a FIR filter by delay it with d slots and truncating the
anti-causal component in (3-5).

Theoretically, the spectral factorization is expended with Laurent series and then
using Taylor series expansion to obtain the coefficients gi, k = 0,1, ... N,. (see reference
[6] ) In practical, however, the coefficients of G(z)and1/G (1/z"), can be calculated
as the following:

Step 1.  Calculate the cepstrum’

of the autocorrelation function R,,(n):
R, (m)=F" {log(H(e-/“’)H * (1/e*-f“’))}

Step 2.  The coefficient of G(z) can be calculated by

? Let the Fourier Transform of x(n) be X(e’”),and )?(ejw) = log[X(ejw)] , then the complex

cepstrum of x(n) is %(n)=F" {)A( (e] a))} , where F' denotes for the inverse Fourier Transform

and X(e) =log[X(e')] = 10g|X(e/“’) + jarg[X(e”)] (p788~p789, [7])
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koo
8k = Zégk—ith(i):With g,=1,for0<k<N-1.

i=1

S, =exp(R,,(0))

Step 3.  The coefficient of 1/G'(1/z") can be calculated by:

min{N-1,-k}
&= Y & &.withg =lLandk>0

i=1

Step 4. Then we can obtain the coefficients of the feedforward filter:
=~

S,G(1/z)

= [y (n)=h(n)*(&(n)/ S, ),where h(n)=Z " {H"(1/z")}

F,(z2)=H(1/z)-
The coefficients of the F)se can be calculated in similar procedures by

replacing the log(H (e’YH *(1/ e‘j‘")) term in Step 1 with

log(ofH(ej”’)H *1/e’)+ o’ ) y
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