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利用共極串音消除器建立強健三度

空間音效 

 

學生：黃俊榮           指導教授：謝世福 

 

國立交通大學電信工程學系碩士班 

 

摘要 

 

 在現代多媒體系統中，有越來越多的虛擬實境應用。因此三度空間音效技術

便越來越重要。我們將使用雙喇叭來產生三度空間音效。然而，主要的問題是串

音(crosstalk)的干擾。我們將使用FIR和IIR兩種形式的串音消除器(crosstalk 

canceller)來解決這個問題。在這兩種內，我們都會提出反矩陣(matrix-inverse)

或是直接最小平方錯誤(LSE)的方法。在反矩陣方法中，為了避免不穩定性，我

們提出最小比例錯誤(ratio error)的方法。在直接 LSE IIR 設計中，為了避免

非線性帶來設計上的困難，我們提出共極串音消除器結構。接下來我們將探討另

一個問題，串音消除器的強健性。我們知道假如使用一組固定的串音濾波器，在

頭可以移動的狀況下，接收到的信號將會和我們想要的信號差很多。因此，我們

提出一個利用區域等化觀念的設計方法來降低頭移動造成的影響。最後，我們將

用錯誤能量(EN)，串音壓制係數(CSF)和等化改善係數(EIF)來量化串音消除器的

效能。 
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Robust 3D Sound based on 
Common-pole Crosstalk Canceller  

 

Student : C. R. Huang      Advisor : S. F. Hsieh 

Department of Communication Engineering 

National Chiao Tung University 

 

Abstract 
 There are more and more virtual reality applications in the modern multimedia 

systems. Therefore, the 3D sound technique becomes more important. We will use a 

loudspeaker pair to generate the 3D sound. However, the most critical problem is the 

crosstalk disturbance. To overcome this problem, we investigate both FIR and IIR 

forms of crosstalk cancellers. In both forms, we propose matrix inverse and direct 

LSE methods to implement the filters. In matrix-inverse method, to avoid the 

un-stability, we propose to minimize the ratio error. In direct LSE IIR design, to avoid 

the nonlinearity, the common-pole structure is proposed. Then, we consider another 

problem, the robustness of the crosstalk canceller. We know that if the crosstalk 

canceller is fixed, and the received signals may be very different to the signals we 

want when the head moves. Therefore, we propose a method by using the 

region-equalized concept to reduce the effect of head movements. Finally, Error 

energy (EN), crosstalk suppression factor (CSF) and equalization improvement factor 

(EIF) are used to quantify the performance of crosstalk cancellers. 
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Chapter 1 

Introduction 
 

As we know, virtual reality technique can be used to render virtual sound sources 

in three-dimensional (3-D) space around a listener [1]. Applications for this technique 

include entertainments, communications, and simulations. For example, a traditional 

5-channel system requires five speakers (Left, Center, Right, Surround Left, and 

Surround Right). However, the measure of the room must be large enough to position 

each speaker properly. Besides, the system costs a lot of money. By using the virtual 

reality technique, we can use only two loudspeakers to realize the effect of the 

5-channel system. Therefore, a lot of money can be saved, and the measure of the 

room where the speakers are placed will not be limited. Figure 1.1 shows virtual 

5-channel system, where the five loudspeakers are not real and created by virtual 

reality technique.  
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Figure 1.1: Virtual 5-channel system 
 

To realize the 3-D sound system, we must have the sufficient database of the 

directional cues. It is well known that the principal cues for sound localization, are 

Interaural Time Difference (ITD) and Interaural Intensity Difference (IID), which 

represent the time and intensity differences between right and left ears [2]. However it 
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has some problem to localize using only the two interaural cues, so called cone of 

confusion [2]. Therefore, we use the head related transfer functions (HRTFs) from a 

database, based on MIT Media Lab. [3]. HRTFs have the spectral cues, so we can 

know the sound from any direction [4]. Based on these transfer functions, a virtual 

sound can be synthesized at any 3-D direction.  

The thesis is organized as follows. Chapter 2 will explain the directional cues 

and how to create a 3-D sound system. Besides, the problems of sound reproduction 

over headphones and loudspeakers are considered in details. Chapter 3, Chapter 4 and 

Chapter 5 are the main parts of this thesis, and they focus on the structures and 

robustness of crosstalk cancellers. In Chapter 6, we will use computer simulations to 

compare performance of different crosstalk cancellers. In Chapter 7, we will make a 

conclusion to summarize the results of simulations. 
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Chapter 2 

3-D Sound System 

 In Chapter 1, we mentioned that a 3-D sound system can be realized by using 

HRTFs. Therefore, the localization cues of HRTFs will be introduced in Section 2.1 

first. We will show the ITD, IID, and spectral cues in a pair of measured HRTFs. In 

Section 2.2, the synthesis of a directional sound is presented. Section 2.3 will 

investigate the problems of the 3-D sound system over loudspeakers and the 

robustness of crosstalk cancellers. 

 

2.1 Sound Localization Cues 
 HRTFs are frequency-domain functions which have corresponding time-domain 

functions called head-related impulse responses (HRIRs). HRIRs are the impulse 

responses measured from some specific position to left and right ears. 
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S
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Figure 2.1: A listener with a sound source oriented on azimuth 30o and elevation 0o 
 

A pair of HRTFs are measured in Figure 2.1, where RH  is the transfer function 

of source S to right ear and LH  is the transfer function to left ear, and their impulse 

and frequency responses are plotted in Figure 2.2 and Figure 2.3. 
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Figure 2.2: Impulse responses of two HRTFs 
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Figure 2.3: Magnitude responses of two HRTFs 
 

In Figure 2.2, we can find the amplitude of vibration in RH  is much larger than 

that in LH  and LH  has more delays than RH  because of the length difference of 

two transmission paths. In other words, the observations in Figure 2.2 are the 

interaural cues of IID and ITD. In Figure 2.3, the high frequency at 8-10 kHz 

responses have notches caused by the concha reflection [5], and the peaks at 2-3 kHz 

are caused by the ear canal resonance [6]. These notched and peaks are dependent on 

the location of the sound source. This result suggests that spectral notches and peaks 

in HRTFs determine the location of sounds. 
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2.2 Creation of Virtual Sounds 
 We can create a virtual loudspeaker by using a pair of HRTFs. The binaural 

synthesis process is diagrammed in Figure 2.4. When a sound signal S  is processed 

by the digital filters ( RHφ  and LHφ , a pair of HRTFs) and played over headphones, 

the sound localization cues are reproduced and the listener should perceive the sound 

at the location specified by the pair of HRTFs.  

RHφLHφ

RsLs

RsLs

≡

 

Figure 2.4: Binaural synthesis using headphones 
 

Headphones are often used for 3-D sound audio because they have good channel 

separation. The directional signals ( Rs  and Ls ) can be received directly. However, 

there are some drawbacks by using headphone reproduction. It often suffers from 

in-head localization, and is also cumbersome and inconvenient.  
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2.3 Virtual Sounds over Loudspeakers 

2.3.1 Crosstalk Phenomenon 
To avoid the drawbacks of headphones, we would replace the headphones with a 

pair of loudspeakers. However, the left and right loudspeakers are not coupled directly 

to the left and right ears. The emitted sound from the right loudspeaker goes to the left 

ear as well as to the right ear of a listener, and vice versa. This phenomenon is called 

crosstalk. If two-channel binaural sound is reproduced through a pair of loudspeakers, 

sound received by the listener can be severely changed from the original sound due to 

the crosstalk effect. 

The effect of crosstalk can be cancelled if binaural signals are filtered before they 

are sent to the loudspeakers. The process is diagrammed is Figure 2.5. 

RHφ

LHφ

Rs

Ls

Ry

Ly

Re

Le

s

rrg

rlg

lrg

llg

 

Figure 2.5: Binaural sound reproduced with crosstalk canceller 
 

2.3.2 Crosstalk Cancellation 
 Crosstalk cancellation is a technique involving cancelling the crosstalk which 

transits the head from each speaker to the opposite ear.    
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The goal of the crosstalk cancellation is that the ear signals Re  and Le  should 

be same as the binaural signals Rs  and Ls . Essentially, the transfer functions from 

the loudspeakers to the ears form a system transfer function matrix. Using the matrix 

notations and refer to Figure 2.5, we can write: 

( ) ( )
( )

( ) ( )
R R

L L

e z y z
G z

e z y z
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

,                        (2.3.1) 

where 
( ) ( )

( )
( ) ( )

rr lr

rl ll

g z g z
G z

g z g z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 is the system transfer function matrix and xyg  

represents the channel impulse response between the x  side loudspeaker and y  

side ear, and , { , }x y r l∈ ;  R Ly and y are the input signals of loudspeakers, and  

( ) ( )
( )

( ) ( )
R R

L L

y z s z
C z

y z s z
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦                           (2.3.2) 

Therefore, combine Equation (2.3.2) into Equation (2.3.1), we can get 

( ) ( )
( ) ( )

( ) ( )
R R

L L

e z s z
G z C z

e z s z
⎡ ⎤ ⎡ ⎤

= ⋅⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦                       (2.3.3) 

Obviously, the signals of ears are same as the binaural signals if:  

2 2( ) ( ) ( )G z C z I z×⋅ =                             (2.3.4) 

Thus, our work is to find out the inverse of the system transfer function matrix ( )G z . 

( )C z  can be found by inversing ( )G z  directly as follows: 

1( ) ( )
( ) ( ) 1       
( ) ( ) ( )

ll lr

lr rr

C z G z
g z g z
g z g z D z

−=

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

,                     (2.3.5) 

where  ( ) ( ) ( ) ( ) ( )rr ll rl lrD z g z g z g z g z= −  
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From Equation (2.3.5), there are some problems. First, each element of ( )C z  is 

in fractional form, and the denominator ( )D z  may be of non-minimum phase so that 

some poles of each term may lie outside the unit circle in the z-plane. In other words, 

the elements of ( )C z  may be unstable. Second, because of the transmission delay, 

these elements would be non-causal; we should add some delay to make them causal. 

 There are many structures to implement the crosstalk canceller. The crosstalk 

canceller was first put into practice by Schroeder and Atal in 1963 [7], and the 

structure as follows: 

Σ

Σ

( ) / ( )llg z D z

( ) / ( )rlg z D z−

( ) / ( )lrg z D z−

rrg

rlg

lrg

llg

( )Rs z

( )Ls z

( )Ry z

( )Ly z( ) / ( )rrg z D z
 

Figure 2.6: Crosstalk canceller described by Schroeder and Atal 
 

When the listening condition is symmetry, i.e. rr llg g= and rl lrg g= , Cooper and 

Bauck in 1989 proposed the shuffler structure [2]. There are more structures and 

detailed discussions in [7]. In next chapter, we will use the least square error method 

to design the crosstalk canceller. 

 

2.3.3 Robustness 
 So far in this chapter, the design of crosstalk canceller is discussed with single 

set of the channel transfer function matrix; in other words that means the position of a 
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listener does not change. In practice, it is impossible. If the position of the listener’s 

head moves, and the crosstalk canceller does not change, the signals to ears may be 

very different to the original signals.  

The question now is how to design a crosstalk canceller that can reduce the effect 

of head movements. Before designing, there are some researches and analyses about 

the robustness of the crosstalk cancellers. Ward and Elko et al. [9] show an evaluation 

of the robustness of crosstalk cancellers for various loudspeaker spacing. They noted 

a rule-of-thumb for the optimum loudspeaker spacing is given by 2s Hd dλ= ⋅ ⋅ , 

where Hd  is the distance of the head from the loudspeaker center-line (see Figure 

2.7), and λ  is the wavelength of operation tone. Therefore, we know that optimum 

loudspeaker spacing is varied with frequency of sound. 

/ 2sd / 2sd

Hd

 

Figure 2.7: Geometry of head and loudspeakers 
 

Later, they show another method of analysis by using the condition number [10]. 

Because the difference of the transfer function matrix ΔG  between the fixed head 

and the moving head can be considered as perturbations of the matrix G . The result 

indicates that a small incidence angle between two loudspeakers and the head is better 

on the high frequency (above about 4 kHz) band, and lager incidence angle is better 

on the lower frequency band. Because different incidence angles are robust to 
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different frequency band, they analyzed the asymmetric listening condition. A 

crosstalk cancellation system with three loudspeakers was proposed [11]. An analysis 

of three loudspeakers by using condition number also shows that the robustness of 

three loudspeakers is better than that of two loudspeakers [12]. 

So far, the robustness was increased by increasing the number of loudspeakers. 

We will propose a new method to increase the robustness with only two loudspeakers. 

 

2.3.4 Crosstalk Canceller Structures 
In this section, we will provide an overview for the design flow of the crosstalk 

canceller in the thesis, and Figure 2.8 is the design flow chart. 

GC I=

1C G−= 1C G−≈ 1
DE C G−= −

f DE E= Δ ⋅

r D
x

E E
h
Δ

= ⋅

GC I≈ LSEE GC I= −

 

Figure 2.8: Design flow of the crosstalk canceller 
 

Our starting point is Equation (2.3.4), and then the design can be separated into 

two ways, matrix-inverse and direct LSE methods. In matrix-inverse design, we can 

find it is hard to handle the direct error, so we handle the filtered error instead of the 

direct error. In filtered error, we can separate two types filtered by Δ  and filtered by 

ratio term 
xh
Δ . The type filtered by Δ  is used in Section (3.1.1) and Section (4.1.1), 
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and the type filtered by ratio term 
xh
Δ  is used in Section (3.1.2) and Section (4.1.2). 

In direct LSE design, the FIR form is implemented in Section (3.2), and the IIR form 

is hard to handle. Therefore, we handle the filtered error instead of the direct LSE IIR 

error and propose the structure, common pole model in Section (4.2). 
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Chapter 3 

FIR Crosstalk Canceller 

As we have discussed in Chapter 2, in order to generate 3-D sound, ( )C z  must 

be the inverse of the channel transfer function matrix ( )G z . If ( )G z  is inversed 

directly, the stability and causality must be considered. 

 To avoid these problems, we use the matrix inverse criterion and the direct least 

square error (LSE) criterion to find the filter coefficients of the crosstalk canceller.  

 

3.1 Matrix Inverse Design 

3.1.1 Design in Time Domain 

 Referring to Equation (2.3.5) in Chapter 2, we know each theoretical element of 
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the crosstalk canceller is given as follows: 

11
( )( )

( ) ( ) ( ) ( )
ll

rr ll rl lr

g zc z
g z g z g z g z

=
−

 ; 21
( )( )

( ) ( ) ( ) ( )
rl

rr ll rl lr

g zc z
g z g z g z g z

−
=

−
 ; 

12
( )( )

( ) ( ) ( ) ( )
lr

rr ll rl lr

g zc z
g z g z g z g z

−
=

−
 ; 22

( )( )
( ) ( ) ( ) ( )

rr

rr ll rl lr

g zc z
g z g z g z g z

=
−

 ; 

Therefore, we want to find filters of the crosstalk canceller by using these theoretical 

solutions, and the block diagram is expressed in Figure 3.1. 

Σ

Σ

11( )c z

12 ( )c z

21( )c z

22 ( )c z

Rs

Ls

rrg

rlg

lrg

llg

Re

Le

 
Figure 3.1: Crosstalk canceller in FIR form 

From Equation (2.3.5), we know each term is in the same form, so we can 

estimate each term in FIR form by using the same algorithm. The following method is 

proposed to find each filter. We want to find a FIR filter ( )c z  so that it can be 

approximated to each theoretical solution of the crosstalk canceller, i.e. 

( )( )
( )

x

y

h zc z z
h z

τ−≈ ⋅ ,                         (3.1.1) 

where ( ) { ( ), ( ), ( ), ( )}x rl lr ll rrh z g z g z g z g z∈ , and ( ) ( ) ( ) ( ) ( )y rr ll lr rlh z g z g z g z g z= − ; 

τ  is a delay to guarantee the causality. Therefore, the criterion is to minimize the 
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direct error ( )FIRerror z  as follows: 

   ( )( ) ( )
( )

x
FIR

y

h zerror z c z z
h z

τ−= − ⋅                             (3.1.2) 

{ }2( ) arg min ( )FIRc z error z=                         (3.1.3) 

The impulse response of ( ) / ( )x yh z z h zτ−⋅  is showed in upper Figure 3.2 and zoomed 

in tap-20 to tap-40 in lower figure. From Figure 3.2, we know that it is hard to find a 

FIR filter to approximate the IIR system ( ) / ( )x yh z z h zτ−⋅  because it diverges too 

fast.  

0 10 20 30 40 50 60 70 80 90
-5

0

5

10
x 1020

20 22 24 26 28 30 32 34 36 38 40
-2

0

2

4

6
x 1010

Taps
 

Figure 3.2: The impulse response of ( ) / ( )x yh z z h zτ−⋅  

Therefore, Mochtaris proposes to minimize a filtered error _ ( )FIR filterederror z  

expressed in Equation (3.1.4) and its block diagram is plotted in Figure 3.3 [13]. 

_ ( ) ( ) ( )FIR filtered x FIRerror z h z error z= ⋅                   (3.1.4) 
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+

−
Σ( )yh z

( )xh z

( )c z

z τ−

_ ( )FIR filterederror z

 

Figure 3.3: Block diagram of the filtered error _ ( )FIR filterederror z  

According to Figure 3.3, the filtered error can be formulated is as follows: 

_ ( ) ( ) ( ) ( )FIR filtered y xerror z c z h z h z z τ−= ⋅ − ⋅               (3.1.5) 

Therefore, the criterion is as follows: 

{ }2
_( ) arg min || ( ) ||FIR filteredc z error z=                   (31.6) 

Equation (3.1.5) can be written in convolution matrix and vector forms, and expressed 

in Equation (3.1.7). 

_FIR filtered y x= ⋅error H c - h ,                      (3.1.7) 

[ ]where (0) (1) ( 1) Tc c c N= −c is a FIR filter with N taps; yH  is a 

convolution matrix; 
2

0 0 (0) (1) ( 1) 0 0
T

x x x x

M N

h h h M
τ τ+ − −

⎡ ⎤
= −⎢ ⎥
⎢ ⎥⎣ ⎦

h , and 

M is the channel length. 

We can write yH  in detail as follows: 
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(2 2)

(0) 0 0
(1) (0) 0

(2 2) (0)
0 (2 2) (1)

0 0 (2 2)

y

y y

y yy

y y

y M N N

h
h h

h M h
h M h

h M
+ − ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−= ⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

H            (3.1.8) 

One of the filters in the crosstalk canceller c  is found as follows: 

( ) 1T T
y y y x

−
=c H H H h                          (3. 1.9) 

Referring to Equation (3.1.9) with different ( )xh z , we can find each filter of the 

crosstalk canceller. One point should be noted is that the delay in each term of the 

crosstalk canceller must be the same. 

 

3.1.2 Design in Frequency Domain 

In the previous section, the direct error is designed in the time domain, and met a 

divergence problem. Now we will propose a method designed in the frequency 

domain to avoid the problem. Equation (3.1.1) is rewritten in frequency domain as 

follows: 

( )( ) ( )
( )

j
j jx

FIR j
y

H eerror c e e
H e

ω
ω ωτ

ωω −= − ,                 (3.1.10) 

where ( )jc e ω , ( )j
xH e ω and ( )j

yH e ω  are the Fourier transforms of ( )c n , ( )xh n  

and ( )yh n .Therefore, the criterion is as follows: 
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21( ) arg min ( )
2 FIRc n error d

π

π
ω ω

π −

⎧ ⎫= ⎨ ⎬
⎩ ⎭∫                 (3.1.11) 

In order to find the filter coefficients, we can rewrite the Fourier transform of ( )jc e ω  

in vector form as follows [14]. 

             
1

0
( ) ( )

          ( )

n Nj jn
n

T

c e c n eω ω

ω

= − −
=

= ⋅

= ⋅

∑
c ex

,                    (3.1.12) 

0 1 ( 1)where ( ) [ , , , ]j j j N Te e eω ω ωω − × − × − − ×=ex  

Referring to Equation (3. 1.12), the error energy can be rewritten as follows: 

2

2

1 ( )
2

( )1     ,
2 ( )

FIR FIR

j
x

j
y

J error d

H e d
H e

π

π

ωπ

ωπ

ω ω
π

ω
π

−

−

=

= ⋅ ⋅

∫

∫T Tc c - 2c b +
                    (3.1.13) 

*( )1where Re{ ( ) ( ) }
2 ( )

j
jx

j
y

H e e d
H e

ωπ τ ω
ωπ

ω ω
π

− ⋅ ⋅

−
= ⋅ ⋅∫b ex  

In order to minimize FIRJ , let  FIRJ∂
=

∂
0

c
. We can get  

c = b                               (3.1.14) 

However, we find the performance is bad. The reason is that it is difficult to 

approximate the high frequency band of ( )( ) / ( )j j
x yH e H eω ω . We know that ( )yh n  

is the convolution of two HTRFs, so ( )( ) / ( )j j
x yH e H eω ω  can be viewed as the 

inverse of first order of HRTF. From Figure 2.3, we can know that the high frequency 

of HRTF are decayed very much, so the high frequency magnitude responses of 

( )( ) / ( )j j
x yH e H eω ω  are very large. The frequency magnitude responses of 

( )( ) / ( )j j
x yH e H eω ω  and ( )jc e ω  are plotted in Figure 3.4. 
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Figure 3.4: Magnitude responses of ( )( ) / ( )j j
x yH e H eω ω  and ( )jc e ω  

From Figure 3.4, we know that the filter ( )jc e ω  would seek the high gain in the high 

frequency band and sacrifice the low band in order to compromise the full band. The 

following figure is the magnitude response of the direct error. 

 
Figure 3.5: Magnitude response of the direct error ( )FIRerror ω  
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From Figure 3.5, we can know that the error in high frequency band is large, so the 

performance is bad. Therefore, we propose a method to minimize the ratio error 

_ ( )FIR ratioerror ω  instead of the direct error ( )FIRerror ω . The ratio error is defined as 

follows: 

_

( )
( ) ( )

( )

( )
                      ( )

( )

j
y

FIR ratio FIRj
x

j
y j j

j
x

H e
error error

H e

H e
c e e

H e

ω

ω

ω
ω ω τ

ω

ω ω

− ⋅ ⋅

= ⋅

= ⋅ −

              (3.1.15) 

The block diagram of the ratio error is as follows: 

+

−
Σ( )

( )

j
y

j
x

H e
H e

ω

ω
( )jc e ω

je τω−

_ ( )FIR ratioerror ω

 

Figure 3.6: Block diagram of the ratio error _ ( )FIR ratioerror ω  

Therefore, the criterion is as follows: 

2
_

1( ) arg min | ( ) |
2 FIR ratioc n error d

π

π
ω ω

π −

⎧ ⎫= ⎨ ⎬
⎩ ⎭∫           (3.1.16) 

In the same way, we change the expression of ( )jc e ω  in the vector form as Equation 

(3.1.12) and the error energy can be rewritten as follows: 

2( )1 | ( ) |
2 ( )

       1

j
y j j

ratio j
x

H e
J c e e d

H e

ω
π ω τ ω

ωπ
ω

π
− ⋅ ⋅

−
= ⋅ −

= ⋅ ⋅ ⋅

∫
T Tc A c - 2c b +

,          (3.1.17) 
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2
1 ( )where ( ) ( )

2 ( )

1 ( )           Re{ ( ) ( )}
2 ( )

j
H

j

j
j

j

Hy e d
Hx e

Hy e e d
Hx e

ωπ

ωπ

ωπ τ ω
ωπ

ω ω ω
π

ω ω
π

−

⋅ ⋅

−

= ⋅ ⋅

= ⋅ ⋅

∫

∫

A ex ex

b ex

 

In order to minimize _FIR ratioJ , let _ FIR ratioJ∂
=

∂
0

c
. We can get 

Ac = b                                     (3.1.18) 

Therefore, the filter can be found out as follows: 

-1c = A b                                    (3.1.19) 

The frequency magnitude responses of ( )( ) / ( )j j
y xH e H eω ω  and ( )jc e ω  are plotted 

in Figure 3.7. 

 

Figure 3.7: Magnitude responses of ( )( ) / ( )j j
y xH e H eω ω  and ( )jc e ω  
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The high frequency band of ( )( ) / ( )j j
y xH e H eω ω  would be very small because it can 

be approximate as first order of HRTF. Therefore, the high frequency band of ( )jc e ω  

must be very large. From Figure 3.7, although the high frequency band of ( )jc e ω  is 

not large enough, the error is smaller than the direct error. Therefore, the errors in 

high band are reduced, and the low frequency band can be done better. Figure 3.8 

shows the magnitude response of the ratio error. 

 
Figure 3.8: Magnitude response of the ratio error ( )ratioerror ω  

 

From Equation (3.1.15), we know the relation between the direct error and the ratio 

error. Therefore, Figure 3.9 shows the results of the direct error and the ratio error 

filtered by ( ) / ( )j j
x yH e H eω ω  in order to compare these two errors.  
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Figure 3.9: Magnitude responses of ( )FIRerror ω  and _
( )( )
( )

j
x

FIR ratio j
y

H eerror
H e

ω

ωω ⋅  

From Figure 3.9, it is obvious that the ratio error filtered by ( ) / ( )j j
x yH e H eω ω  is 

smaller than the direct error. 

 From Equation (3.1.15), we can find it is the same as the direct LSE FIR method 

which will be proposed in the next section. 

 

3.2 Direct LSE FIR Design 

3.2.1 Design in Time Domain 

 In this section, we design the crosstalk canceller by using the direct least square 

error (LSE) method instead of the matrix-inverse design. The structure of the 
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crosstalk canceller is plotted in Figure 3.1, and ( )C z can be represented in matrix 

form as follows: 

                  11 12

21 22

( ) ( )
( )

( ) ( )
c z c z

C z
c z c z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                          (3.2.1) 

In order to show how the crosstalk canceller works, Rs  is an impulse signal, and 

Ls  sends the zero-signal. Because of causality, we want Re  to be same as Rs  with 

some extra delay, and Le  to be a zero-signal. The signals to ears can be expressed as 

follows: 

( ) ( )Re z d z≈                                  (3.2.2) 

     ( ) 0Le z ≈ ,                                   (3.2.3) 

where ( )d z  is the desired signal which is a delayed impulse signal. Therefore, the 

LSE criterion to find the filters 11( )c z  and 21( )c z  can be rewritten as follows: 

( )
2

11
11 21

21

( ) ( )
( ) ( ) arg min ( )

( ) 0
c z d z

c z c z G z
c z

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= −⎨ ⎬⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦⎪ ⎪⎩ ⎭

             (3.2.4) 

In the same way, if Ls  is an impulse signal, and Rs  is a zero-signal such that: 

( )
2

12
12 22

22

( ) 0
( ) ( ) arg min ( )

( ) ( )
c z

c z c z G z
c z d z

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= −⎨ ⎬⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦⎪ ⎪⎩ ⎭

            (3.2.5) 

Equation (3.2.4) and Equation (3.2.5) can be derived in convolution matrixes as 

follows: 

( )
2

11
11 21

21

arg min rr lr

rl ll

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪= −⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦⎣ ⎦⎪ ⎪⎩ ⎭

G G c d
c c

G G c 0
                 (3.2.6) 
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( )
2

12
12 22

22

arg min rr lr

rl ll

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪= −⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦⎣ ⎦⎪ ⎪⎩ ⎭

G G c 0
c c

G G c d
,                (3.2.7) 

where rrG , lrG , rlG , and llG  are the convolution matrixes of ( )rrg z , ( )lrg z , 

( )rlg z , and ( )llg z  in the time domain; [ ]11 11 11 11(0) (1) ( 1) Tc c c N= −c and 

[ ]21 21 21 21(0) (1) ( 1) Tc c c N= −c ; the desired signal [ ]0 0  1 0  0 T=d  and 

zero-vector 0  with ( )1L M N= + −  taps. 

Rewrite  in detail , where , { , }ij i j r l∈G  as follows: 

(0) 0 0
(1) (0) 0

( 1) (0)
0 ( 1) (1)

0 0 ( 1)

ij

ij ij

ij ijij

ij ij

ij L N

g
g g

g M g
g M g

g M
×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−= ⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

G                (3.2.8) 

Refer to Equation (3.2.6), and let  

11
1 1

21

  ,    ,  rr lr

rl ll

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦⎣ ⎦

G G c d
G c q

G G c 0
                  (3.2.9) 

we know the error as follows: 

1 1= −error Gc q                              (3.2.10) 

The least square error criterion is such that: 

{ }2
1 arg min || ||=c error                            (3.2.11) 

The solution can be easily shown as 

    ( )1 1=
-1T Tc G G G q                                (3.2.12) 



 

 27

Therefore, 

[ ]11 1 1 1(0), (1), , ( 1) Tc c c N= −c                      (3.2.13) 

[ ]21 1 1 1( ), ( 1), , (2 1) Tc N c N c N= + −c                 (3.2.14) 

Refer to Equation (3.2.7), and let  

12
2 2

22

  ,  
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

c 0
c q

c d
,                            (3.2.15) 

where 12c  and 22c  with N  taps, too. In the same way, we can get 

    ( )2 2=
-1T Tc G G G q                                (3.2.16) 

Therefore, 

[ ]12 2 2 2(0), (1), , ( 1) Tc c c N= −c                      (3.2.17) 

[ ]22 2 2 2( ), ( 1), , (2 1) Tc N c N c N= + −c                (3.2.18) 

If the listening situation is symmetric, Equation (3.2.15) can be reduced. The other 

two filters can be found in Equation (3.2.13) and Equation (3.2.14) such that: 

                12 21 22 11  and   = =c c c c                             (3.2.19) 

 

3.2.2 Design in Frequency Domain 

 In this section, we will implement the system in the frequency domain. Equation 

(3. 2.4) can be written in the frequency domain as follows:  

( )
2

11
11 21

21

( ) ( ) ( )1
( ) ( ) arg min

2 ( ) ( ) ( ) 0

j j j j
j j rr lr

j j j
rl rr

g e g e c e e
c e c e d

g e g e c e

ω ω ω ωτπ
ω ω

ω ω ω
π

ω
π

−

−

= −
⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪
⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦⎣ ⎦⎪ ⎪⎩ ⎭
∫    (3.2.20) 
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As described in Section 3.1.1.2, we can rewrite 11( )jc e ω  and 12 ( )jc e ω  as follows: 

11 1 11( )j Tc e ω = ⋅ex c ,                                       (3.2.21) 

0 1 ( 1)
1where ( ) [ , , , ]j j j N Te e eω ω ωω − × − × − − ×=ex . 

  21 2 21( )j Tc e ω = ⋅ex c ,                                       (3.2.22) 

0 1 ( 1)
2where ( ) [ , , , ]j j j N Te e eω ω ωω − × − × − − ×=ex . 

Therefore, Equation (3.2.20) can be rewritten as follows: 

( )
2

11
11 21

21

arg min
0

je
d

ωτπ

π
ω

−

−

⎧ ⎫⎡ ⎤⎡ ⎤⎪ ⎪= ⋅ −⎨ ⎬⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

∫
c

c c P
c

,               (3.2.23) 

 where 1 2

1 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

j T j T
rr lr

j T j T
rl ll

g e g e
g e g e

ω ω

ω ω

ω ω
ω ω

⎡ ⎤⋅ ⋅
= ⎢ ⎥⋅ ⋅⎣ ⎦

ex ex
P

ex ex
. 

The error _LSE FIRJ  can be calculated as follows: 

11 2
_

21

1 | |
2 0

j

LSE FIR
e

J d
ωτπ

π
ω

π

−

−

⎡ ⎤⎡ ⎤
= ⋅ − ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
∫

c
P

c
                 (3.2.24) 

In the same way, we can rewrite the above equation as follows: 

_ 1 1 12 1T T
LSE FIRJ = ⋅ ⋅ − ⋅ ⋅ +c O c c m ,                   (3.2.25) 

where [ ]1 11 21
T=c c c , 

 ( )1
2

H d
π

π
ω

π −
= ∫O P P , and  

( )
( )

1

2

( )1 Re
( )2

j j
rr

j j
lr

e g e
d

e g e

ωτ ω
π

ωτ ωπ

ω
ω

ωπ −

⎧ ⎫⎡ ⎤⋅ ⋅⎪ ⎪= ⎨ ⎬⎢ ⎥⋅ ⋅⎪ ⎪⎣ ⎦⎩ ⎭
∫

ex
m

ex
. 

In order to minimize the error _LSE FIRJ , let _

1

0LSE FIRJ∂
=

∂c
 We can get  

1Oc = m                                    (3.2.26) 
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Therefore, the filter can be found out as follows: 

1
-1c = O m                                   (3.2.27) 

We can find the filter coefficients as follows: 

[ ]11 1 1 1(0), (1), , ( 1) Tc c c N= −c                              (3.2.28) 

[ ]21 1 1 1( ), ( 1), , (2 1) Tc N c N c N= + −c                         (3.2.29) 

12c  and 22c  can be found out by using the same method. 

 

3.2.3 Comparison between FIR Designs in Time and 

Frequency Domains 

In Section (3.1.2.1) and Section (3.1.2.2), we can find out the crosstalk canceller 

in LSE FIR model in the time domain and in the frequency domain. The difference 

between these two methods is to minimize the error in time and frequency domains. 

According to Parseval theorem [14], they should be equal. Therefore, the results of 

the two methods should be the same intuitionally. We will prove that two crosstalk 

cancellers designed in the two methods are the same, and the process of the proof is as 

follows: 

 First, let ' T=O G G  and 1' Tm = G q . Equation (3.2.12) can be rewritten as 

follows: 

( ) 1
1 ' '−=c O m                            (3.2.30) 
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We can write 'O  in more detail as follows: 

1 2

3 4

' '
'

' '
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

O O
O

O O
,                            (3.2.31) 

where 

1

2

3

4

'

'

'

'

T T
rr rr rl rl

T T
rr lr rl ll

T T
lr rr ll rl

T T
lr lr ll ll

=

=

=

=

O G G + G G

O G G + G G

O G G + G G

O G G + G G

 

In order to compare 'O  with O  in Equation (3.2.27), O  is also written in 

detail as follows: 

1 2

3 4

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

O O
O

O O
,                         (3.2.32) 

where 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

* *2 2

1 1 1 1 1

* ** *
2 1 2 1 2

* * * ** *
3 2 1 2 1

1 1( ) ( )
2 2
1 1( ) ( ) ( ) ( )

2 2
1 1( ) ( ) ( ) ( )

2 2

j H j H
rr rl

j j H j j H
lr rr ll rl

j j H j j H
lr rr ll rl

g e d g e d

g e g e d g e g e d

g e g e d g e g e d

π πω ω

π π

π πω ω ω ω

π π

π ω ω ω ω

π π

ω ω
π π

ω ω
π π

ω ω
π π

− −

− −

− −

= +

= +

= +

∫ ∫

∫ ∫

∫

O ex ex ex ex

O ex ex ex ex

O ex ex ex ex

( ) ( )* *2 2

4 2 2 2 2
1 1( ) ( )

2 2
j H j H

lr llg e d g e d

π

π πω ω

π π
ω ω

π π− −
= +

∫

∫ ∫O ex ex ex ex

Comparing the elements between in O  and 'O , we can find they are the same and 

the proof as follows: 

Take 2O  and 2 'O  for example, and other elements are proved in the same way. 

From 2 ' T T
rr lr rl ll=O G G + G G , the first right terms T

rr lrG G  is considered.  
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1 1 1

0 0 0

1

0

1 1

0 0

( ) ( ) ( ) ( 1) ( ) ( )

( 1) ( )

( ) ( ) ( ) ( )

L L L

rr lr rr lr rr lr
k k k

L

rr lrT
krr lr

L L

rr lr rr lr
k k

g k g k g k g k g k g k N

g k g k

g k N g k g k N g k N

− − −

= = =

−

=

− −

= =

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥⎣ ⎦

∑ ∑ ∑

∑

∑ ∑

G G  

From above equation, we can know each element in T
rr lrG G  as follows: 

1

0

( , ) ( ) ( ),

                    0 ~ 1  0 ~ 1

L
T

rr lr rr lr
k

p q g k p g k q

where p N and q N

−

=

= − −

= − = −

∑G G
              (3.2.33) 

From 2O , the first right term ( )**
1 2

1 ( ) ( )
2

j j H
lr rrg e g e d

π ω ω

π
ω

π −∫ ex ex  is considered. 

( )
( )21

11 11 21

**
1 2

*0 ( 1)(0) (0 1)

(1)
*

( 1) ( )

1Let ( ) ( )
2

1 ( ) ( )
2

j j H
lr rr

j Nj j

j
j j

lr rr

j N j N N

g e g e d

e e e
eg e g e d

e e

π ω ω

π

ωω ω

ωπ ω ω

π

ω ω

ω
π

ω
π

−

− − −− − −

−

−

− − − −

=

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫

∫

T ex ex

T
 

* ( )

*1 1
( )

0 0

1 1
( )

0 0

1( , ) ( ) ( )
2
1            ( ) ( )

2
1            ( ) ( )

2

            (

j j j p q
lr rr

L L
jn jm j p q

lr rr
n m

L L
j p m q n

lr rr
n m

lr

p q g e g e e d

g n e g m e e d

g n g m e d

g m q

π ω ω ω

π

π ω ω ω

π

π ω

π

ω
π

ω
π

ω
π

−

−

− −
− − −

−
= =

− −
+ − −

−
= =

=

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

=

= −

∫

∑ ∑∫

∑ ∑ ∫

T

1

0

) ( )
L

rr
m

g m p
−

=

−∑

            (3.2.34) 

where 0 ~ 1  0 ~ 1p N and q N= − = − . 

We can find that the results in Equation (3.2.33) and Equation (3.2.34) are the 

same. Therefore, ( )**
1 2

1 ( ) ( )
2

j j H
lr rrg e g e d

π ω ω

π
ω

π −∫ ex ex  equals T
rr lrG G . In the same 

way, we can prove that ( )**
1 2

1 ( ) ( )
2

j j H
ll rlg e g e d

π ω ω

π
ω

π −∫ ex ex  equals T
rl llG G . In 

other words, we can prove 2 2 '=O O . In the same way, other terms in  and 'O O  can 
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be proved equals. Therefore, we can say  

'=O O                             (3.2.35) 

Now, we consider the terms m  and 'm . We know that  

1'
T

T rr
T

lr

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦

G d
m G q

G d
 

We first consider the upper term T
rrG d  written as follows: 

( )11( ) ( 1) ( 1)
TT

rr rr rr rrg g g Nτ τ τ= − − −⎡ ⎤⎣ ⎦G d             (3.2.36) 

The upper term in m  is also considered first. Each term in upper term is as follows: 

{ }

( )*( ) ( )

rr

1( ) Re ( ) ,  0 ~ 1
2

( ) ( )1               
2 2

              g ( )

j j js
upper rr

j j s j j s
rr rr

s e g e e d s N

g e e g e e
d

s

π ωτ ω ω

π

ω ω τ ω ω τ
π

π

ω
π

ω
π
τ

−

−

− − − −

−

= ⋅ ⋅ = −

⋅ + ⋅
=

−

∫

∫

m

=

             (3.2.37) 

We can find that the results in Equation (3.2.36) and Equation (3.2.37) are the same. 

In the same way, we can prove the lower terms in m  and 'm  are the same. 

Therefore, we can say that 

           'm = m                               (3.2.38) 

From the results in Equation (3.2.37) and Equation (3.2.38), we can know the FIR 

crosstalk cancellers designed directly in the time and frequency domains are the same. 
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Chapter 4 

IIR Crosstalk Canceller 
 In this chapter, the crosstalk canceller is designed in IIR form. We also use these 

two criteria, matrix inverse and direct LSE IIR to design the filters.  

 

4.1 Matrix Inverse Design 

4.1.1 Design in Time Domain 

Referring to Equation (2.3.5) and Equation (3.1.1), we have known the theoretical 

solutions of the crosstalk canceller. We want that each term of 1G−  can be 

approximated by using IIR from as expressed in Equation (4.1.1) and the IIR structure 

of the crosstalk canceller is diagramed in Figure 4.1.  

( )( )
( ) ( )

x

y

h zb z z
a z h z

τ−≈ ⋅                          (4.1.1) 
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Σ

Σ
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11

( )
( )

b z
a z
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( )
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b z
a z

21
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( )
( )

b z
a z

22

22

( )
( )

b z
a z
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Ls

rrg

rlg

lrg

llg
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Figure 4.1: The structure of the crosstalk canceller in IIR form 

Now, the criterion to design the IIR filter is to minimize the error as follows: 

( )( )( )
( ) ( )

x
IIR

y

h zb zerror z z
a z h z

τ−= − ⋅                            (4.1.2) 

   ( )
2

0
( ), ( ) arg min ( )IIR

n
b n a n error n

∞

=

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭
∑                    (4.1.3) 

Let 1( )
( )

u z
a z

= , and (0) 1a = . We can get 

( ) ( ) ( ) ( )
k

u n n a k u n kδ= − −∑  

Therefore, ( )IIRerror n  can be rewritten as follows: 

0 1

( ) ( ) ( ) ( ) ( ) ( )IIR
t k

error n b t n t a k u n t k r nδ
= =

⎛ ⎞= − + − − −⎜ ⎟
⎝ ⎠

∑ ∑ ,         (4.1.4) 

where ( )r n  is the impulse response of ( ) / ( )x yh z z h zτ−⋅ . 

Therefore, we can find that Equation (4.1.4) is a function of ( )a k  and ( )b t . We 

may want to differentiate Equation (4.1.4) with respect to ( )a k  and ( )b t , and set the 

derivatives to zeros to find ( )a k  and ( )b t . However, a lot of nonlinear equations 
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will appear and it will be a very tough work. Therefore, we use the Prony’s Method 

concept [15] to linearilize the problem by multiplication (filtering) of the denominator 

( )a z . Equation (4.1.2) can be rewritten as follows: 

_ _1( ) ( ) ( )

( )                           ( ) ( )
( )

IIR fitered IIR

x

y

error z a z error z

h zb z a z z
h z

τ−

= ⋅

= − ⋅
               (4.1.5) 

The filtered error _ _1( )IIR fiterederror z  can be expressed as follows: 

_ _1
1

( ) ( ) ( ) ( ) ( )IIR filtered
k

error n b n a k r n k r n
=

= − − −∑             (4.1.6) 

From the discussion in the previous section, we know that ( )r n  will diverge. 

Therefore, we multiply ( )yh z to further stabilize the problem and minimize the 

following filtered error _ _ 2 ( )IIR filterederror z . 

_ _ 2 _ _1( ) ( ) ( )

                       ( ) ( ) ( ) ( )
IIR filtered y IIR filtered

x y

error z h z error z

a z h z z b z h zτ−

= ⋅

= ⋅ ⋅ − ⋅
           (4.1.7) 

The block diagram of the filtered error is given in Figure 4.2. 

+

−
Σ( )yh z

( )xh z z τ−

( )b z

( )a z

_ _ 2 ( )IIR flterederror z

 

Figure 4.2: Block diagram of the filtered error _ _ 2 ( )IIR filterederror z  

Our goal is to minimize the filtered error, _ _ 2 ( )IIR filterederror z , and its expression 

in convolution form is as follows: 
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_ _ 2 ( ) ( ) ( ) ( ) ( ) * *IIR filtered x yerror n a n h n b n h nτ= − − ,           (4.1.8) 

where ' '*  means convolution; ( )b n , and ( )a n  are FIR filters with nb , and na  

taps. Let 1(0) 1a = , and ( ) ( )xu n h n τ= − . Equation (4.1.3) can be rewritten as 

follows: 

( )
1 1

_ _ 2 1 11
1 0

( ) ( ) ( ) ( ) ( ) ( )
na nb

IIR filtered y
l m

error n u n u n l a l h n m b m
− −

= =

= + − + − −∑ ∑       (4.1.9) 

The above equation can be rewritten in the matrix form as follows: 

( )( )_ _ 2IIR filtered y= − ⋅ − + ⋅error u U a H b ,              (4.1.10) 

where vectors a , and b  are the filter coefficients. 

[ ](1) (2) ( 1) Ta a a na= −a ; 

 [ ](0) (1) ( 1) Tb b b nb= −b ; 

0, ,0 , (0), (1), ( 1),0, ,0
T

x x x
L M

h h h M
τ τ− −

⎡ ⎤
= −⎢ ⎥
⎢ ⎥⎣ ⎦

u , 2 max( , ) 2L M nb na= + −  

U , and yH  are the convolution matrices given by 

( )1

0 0 0
(0) 0 0
(1) (0)

(1) (0)
(1)

( 2) ( 3) ( ) L na

u
u u

u u
u

u L u L u L na
× −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

U              (4.1.11) 
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(0) 0 0
(1) (0) 0

(2 2) (0)
0 (2 2) (1)

0 0 (2 2)

y

y y

y yy

y y

y L nb

h
h h

h M h
h M h

h M
×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−= ⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

H        (4.1.12) 

Equation (4.1.5) can be rewritten as follows: 

_ _ 2IIR filtered y

−⎡ ⎤
⎡ ⎤= − ⎢ ⎥⎣ ⎦

⎣ ⎦

a
error u U H

b
            

Our goal is to minimize _ _ 2IIR filterederror , so the criterion is as follows: 

{ }2
_ 2

2

arg min || ||

        arg min || ||

filtered

y

−⎡ ⎤
=⎢ ⎥

⎣ ⎦
⎧ − ⎫⎡ ⎤

⎡ ⎤= −⎨ ⎬⎢ ⎥⎣ ⎦
⎣ ⎦⎩ ⎭

a
error

b

a
u U H

b

          (4.1.13) 

Let y⎡ ⎤= ⎣ ⎦W U H , and 
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

a
v

b
. We can get the filtered least squares solution as 

follows: 

( ) 1T T−
= ⋅ ⋅ ⋅v W W W u                        (4.1.14) 

From the above equation, we can get the filter coefficients as follows: 

[ ]( ) 1 (0) (1) ( 2) Ta n v v v na= −              (4.1.15) 

[ ]( ) ( 1) ( ) ( 2) Tb n v na v na v na nb= − + −                          (4.1.16) 

 

4.1.2 Design in Frequency Domain 

Similarly, we will try to find the filters in the frequency domain. The direct error 

is given by 
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   ( )( )( )
( ) ( )

jj
jx

IIR j j
y

H eB eerror e
A e H e

ωω
ωτ

ω ωω −= −                  (4.1.17) 

In the previous section, we know that the ratio error can be used for stabilization, 

so we would minimize the ratio error _ ( )IIR ratioerror ω  in IIR form as follows: 

_
( )( ) ( )
( )

( )( )                       
( ) ( )

j

IIR ratio IIRj

jj
y j

j j
x

B eerror error
A e

H eB e e
A e H e

ω

ω

ωω
ωτ

ω ω

ω ω

−

= ⋅

= ⋅ −

                 (4.1.18) 

2

_

( )1 ( )
2 ( ) ( )

jj
y j

IIR ratio j j
x

H eB eJ e d
A e H e

ωωπ ωτ
ω ωπ

ω
π

−

−
= ⋅ −∫              (4.1.19) 

In the same way, we will use the vector form to express the Fourier transforms of 

( )jB e ω  and ( )jA e ω  as follows: 

( )1( )j TB e ω ω= ⋅b ex , where 0 1 ( 1)
1( ) [ , , , ]j j j nb Te e eω ω ωω − × − × − − ×=ex          (4.1.20) 

( )2

1
( ) 1j TA e ω

ω
⎡ ⎤

⎡ ⎤= ⋅ ⎢ ⎥⎣ ⎦
⎣ ⎦

a
ex

, where 1 ( 1)
2 ( ) [ , , ]j j na Te eω ωω − × − − ×=ex         (4.1.21) 

However, we find it is difficult to solve Equation (4.1.19) because of the inherent 

nonlinearity duo to ( )jA e ω . Therefore, _ ( )j
IIR ratioerror e ω  is multiplied by ( )jA e ω to 

linearize the problem, and modified into _ _ ( )IIR ratio filterederror ω  as  

_ _ _( ) ( ) ( )j
IIR ratio filtered IIR ratioerror A e errorωω ω= ⋅           (4.1.22) 

Figure 4.3 is its block diagram. 



 

 39

+

−
Σ

( )
( )

j
y

j
x

H e
H e

ω

ω

je τω−

( )jB e ω

( )jA e ω

_ _ ( )IIR ratio flterederror ω

 

Figure 4.3: Block diagram of the ratio filtered error _ _ ( )IIR ratio filterederror ω  

Therefore, our goal is to minimize the filtered error energy: 

2

_ _

( )1 ( ) ( )
2 ( )

j
yj j j

IIR ratio filtered j
x

H e
J B e A e e d

H e

ω
π ω ω τ ω

ωπ
ω

π
− ⋅ ⋅

−

⎛ ⎞
= ⋅ − ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
∫     (4.1.23) 

In the same way, ( )jB e ω  and ( )jA e ω  can be rewritten in vector form as described in 

Equation (4.1.20) and Equation (4.1.21). Combining Equation (4.1.20) and Equation 

(4.1.21) into Equation (4.1.23), we can rewrite Equation (4.1.23) in matrix form as 

follows: 

_ _ 1 2 3 4 52 2 2 1T
IIR ratio filteredJ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ +T T T Tb Q b - b Q a + a Q a b Q a Q ,   (4.1.24) 

2

1 1 1
1 ( )where ( ) ( )

2 ( )

j
H

j

Hy e d
Hx e

ωπ

ωπ
ω ω ω

π −
= ⋅ ⋅∫Q ex ex  

2 1 2
1 ( )          Re ( ) ( )

2 ( )

j
j H

j

Hy e e d
Hx e

ωπ τ ω
ωπ

ω ω ω
π

⋅ ⋅

−

⎧ ⎫
= ⋅ ⋅ ⋅⎨ ⎬

⎩ ⎭
∫Q ex ex  

3 2 2
1           ( ) ( )

2
H d

π

π
ω ω ω

π −
= ⋅∫Q ex ex  

4 1
1 ( )           Re ( )

2 ( )

j
j

j

Hy e e d
Hx e

ωπ τ ω
ωπ

ω ω
π

⋅ ⋅

−

⎧ ⎫
= ⋅ ⋅⎨ ⎬

⎩ ⎭
∫Q ex  

{ }5 2
1           Re ( )

2
d

π

π
ω ω

π −
= ∫Q ex  
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In order to minimize the error _ _IIR ratio fitleredJ , let _ _ IIR ratio filteredJ∂
=

∂
0

b
 and 

_ _ IIR ratio filteredJ∂
=

∂
0

a
 such that: 

( )_ _
1 2 4

 
2IIR ratio filteredJ∂

= ⋅ ⋅ − ⋅ − =
∂

Q b Q a Q 0
b

              (4.1.24) 

( )_ _
3 2 5

 
2IIR ratio filtered TJ∂

= ⋅ ⋅ − ⋅ + =
∂

Q a Q b Q 0
a

              (4.1.25) 

Combine Equation (4.1.24) and Equation (4.1.25) into matrix form such that: 

1 2 4

2 3 5
T

−⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦⎣ ⎦ ⎣ ⎦

Q Q Qb
Q Q Qa

                      (4.1.26) 

Therefore, the solution a  and b  can be found by 

    
1

1 2 4

2 3 5
T

−−⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Q Q Qb
Q Q Qa

                    (4.1.27) 

 

4.2 Common-pole Structure 

4.2.1 Design in Time Domain 

 In Section (4.1), the filters of the crosstalk canceller are found from the matrix 

inverse 1G− . Similar to Section (3.2), we want to find the filters by using direct LSE 

method. The discussion here is same as in Section (3.2). Let Rs  be an impulse signal, 

and Ls  be a zero signal. The direct IIR error between the ear signals and desired 

signals can be expressed as follows:  

1 11 11
_

2 21 21

( ) ( ) / ( ) ( )
( ) ( )

( ) ( ) / ( ) 0IIR LSE

error z b z a z d z
z G z

error z b z a z
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

error            (4.2.1) 

Therefore, the direct least square error criterion is such that: 
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{ }11 11 2
_

21 21

( ) / ( )
arg min || ( ) ||

( ) / ( ) IIR LSE

b z a z
z

b z a z
⎡ ⎤

=⎢ ⎥
⎣ ⎦

error ,              (4.2.2) 

where 11 21
_1

11 21

( ) ( )( )
( ) ( )

T

IIR
b z b zh z
a z a z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

Equation (4.2.2) can be rewritten as follows: 

  2 211 11
1 2

021 21

( ) / ( )
arg min ( ) ( )

( ) / ( ) n

b z a z
error n error n

b z a z

∞

=

⎡ ⎤ ⎧ ⎫= +⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦
∑            (4.2.3) 

Let 1
11

1( )
( )

q z
a z

=  and 2
21

1( )
( )

q z
a z

= , and they can express in the time domain as 

follows: 

1 1

1 1
1

( ) ( ) ( ) ( )
na

ll
k

q n n a k q n kδ
−

=

= − −∑  

1 1

2 21 2
1

( ) ( ) ( ) ( )
na

k
q n n a k q n kδ

−

=

= − −∑  

Therefore, 1( )error n  and 2 ( )error n  can be written as follows: 

11 11

21

1 11 1 21 2

1 1

11 11 1
0 0 1

1

21 21 2
1

( ) ( ) ( ) ( ) ( ) ( )* ( ) ( )

              ( ) ( ) ( ( ) ( )) ( )

                  ( ) ( ) ( ( ) ( )

rr lr

nb na

rr rr
t l k

na

lr
k

error n g n b n q n g n b n q n d n

b t g n t a k q l k g n t l

b t g n t a k q l k

− −∞

= = =

−

=

= ∗ ∗ + ∗ −

⎛ ⎞
= ⋅ − + − ⋅ − − +⎜ ⎟

⎝ ⎠

⋅ − + −

∑ ∑ ∑
21 1

0 0

) ( ) ( )
nb

lr
t l

g n t l d n
− ∞

= =

⎛ ⎞
⋅ − − −⎜ ⎟

⎝ ⎠
∑ ∑ ∑

 

11 11

21

2 11 1 21 2

1 1

11 11 1
0 0 1

1

21 21 2
1

( ) ( ) ( ) ( ) ( ) ( )* ( )

              ( ) ( ) ( ( ) ( )) ( )

                  ( ) ( ) ( ( ) ( ))

rl ll

nb na

rl rl
t l k

na

ll l
k

error n g n b n q n g n b n q n

b t g n t a k q l k g n t l

b t g n t a k q l k g

− −∞

= = =

−

=

= ∗ ∗ + ∗

⎛ ⎞
= ⋅ − + − ⋅ − − +⎜ ⎟

⎝ ⎠

⋅ − + − ⋅

∑ ∑ ∑

∑
21 1

0 0

( )
nb

l
t l

n t l
− ∞

= =

⎛ ⎞
− −⎜ ⎟

⎝ ⎠
∑ ∑

 

 We can find Equation (4.2.3) is a function of 11( )a k , 21( )a k , 11( )b t , and 21( )b t . 

To minimize it, we should differentiate it with respect to 11( )a k , 21( )a k , 11( )b t  and 

21( )b t , and set the derivatives to zeros to find 11( )a k , 21( )a k , 11( )b t  and 21( )b t . 

Similarly, a lot of nonlinear equations will appear. It would be a very tough work to 



 

 42

solve these equations. Therefore, minimization of a filtered error can be formulated as 

_ _ 1 11 21 _

11 21
11 21

21 11

( ) ( ) ( ) ( )

( ) ( ) ( )
        ( ) ( ) ( )

( ) ( ) 0

IIR LSE filtered IIR LSEz a z a z z

b z a z d z
G z a z a z

b z a z

= ⋅ ⋅

⋅⎡ ⎤ ⎡ ⎤
= ⋅ − ⋅ ⋅⎢ ⎥ ⎢ ⎥⋅ ⎣ ⎦⎣ ⎦

error error

              (4.2.4) 

Equation (4.2.2) can be rewritten as follows: 

11 21 2
_ _ 1 11 21

21 11

( ) ( ) ( )
( ) arg min || ( ) ( ) ( ) ||

( ) ( ) 0IIR LSE filtered

b z a z d z
h z G z a z a z

b z a z
⎧ ⎫⋅⎡ ⎤ ⎡ ⎤⎪ ⎪= ⋅ − ⋅ ⋅⎨ ⎬⎢ ⎥ ⎢ ⎥⋅⎪ ⎪⎣ ⎦⎣ ⎦⎩ ⎭

  (4.2.5) 

However, it is also difficult to solve the solution of Equation (4.2.5) because of 

nonlinearity due to multiplication of 11( )a z  and 21( )a z . Therefore, we propose a 

new structure to linearize the problem. Our approach is to impose a common-pole 

constraint: 

11 21 1( ) ( ) ( )a z a z a z= =                           (4.2.6) 

12 22 2( ) ( ) ( )a z a z a z= =                          (4.2.7) 

The new structure is called common-pole model and its block diagram is plotted 

in Figure 4.4. 

Σ

Σ

1

1
( )a z

2

1
( )a z 22 ( )b z

rrg

rlg

lrg

llg

( )Rs z

( )Ls z

( )Ry z

( )Ly z

11( )b z

21( )b z

12 ( )b z

 
Figure 4.4: Common-pole model of the crosstalk canceller 
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After combining Equation (4.2.6), the error which we minimize is as follows: 

_ 2_1
_ _ 2

_ 2_ 2

11
1

21

( )
( )

( ) ( )
                            ( ) ( )

( ) 0

IIR filtered
IIR LSE filtered

IIR filtered

error z
error z

b z d z
G z a z

b z

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

⎡ ⎤ ⎡ ⎤
= ⋅ − ⋅⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

error
       (4.2.8) 

Equation (4.2.3) can be rewritten as follows: 

{ }211 21
_ _ 2

1 1

( ) ( ) arg min || ( ) ||
( ) ( ) LSE IIR filtered

b z b z z
a z a z

⎛ ⎞
=⎜ ⎟

⎝ ⎠
error         (4.2.9) 

The above equation can be described as follows: 

_ 2_1 11 21 1( ) ( ) ( ) ( ) ( ) ( ) ( )IIR filtered rr lrerror z g z b z g z b z a z d z= + −         (4.2.10) 

_ 2_ 2 11 21( ) ( ) ( ) ( ) ( )IIR filtered rl llerror z g z b z g z b z= +                  (4.2.11) 

Then we rewrite the above two equations in time domain. We modify Equation 

(4.2.10) first as follows: 

_ 2_1 1 11 21( ) ( ) ( ) ( ( ) ( ) ( ) ( ))  * * *IIR filtered rr lrerror n a n d n g n b n g n b n= − + ,    (4.2.12) 

where 11b , 21b  , and 1a are FIR filters with 11nb , 21nb , and 1na  taps. Let 1(0) 1a = , 

and Equation (4.2.10) can be rewritten as follows: 

( )
1 11 211 1 1

_ 2_1 1 11 21
1 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
na nb nb

IIR filtered rr lr
l m q

error n d n d n l a l g n m b m g n q b q
− − −

= = =

⎛ ⎞
= − − − + − + −⎜ ⎟

⎝ ⎠
∑ ∑ ∑

(4.2.13) 

In the matrix form we have 

( )( )_ 2 _1 1 11 21IIR filtered rr lr= − ⋅ − + ⋅ + ⋅error d D a G b G b ,        (4.2.14) 

where vectors 1a , 11b , and 21b  are the filter coefficients 
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[ ]1 1 1 1 1(1) (2) ( 1) Ta a a na= −a ; 

 [ ]11 11 11 11 11(0) (1) ( 1) Tb b b nb= −b ; 

[ ]21 21 21 21 21(0) (1) ( 1) Tb b b nb= −b ; 

and [ ](0) (1) ( 1) Td d d L= −d , where 11 21 1max( , , ) 1L M nb nb na= + − , 

represents the desired signal. 

D , rrG , and lrG  are the convolution matrices given by 

( )11 1

0 0 0
(0) 0 0
(1) (0)

(1) (0)
(1)

( 2) ( 3) ( ) L na

d
d d

d d
d

d L d L d L na
× −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

D            (4.2.15) 

 

11

(0) 0 0
(1) (0) 0

( 1) (0)
0 ( 1) (1)

0 0 ( 1)

rr

rr rr

rr rr rr

rr rr

rr L nb

g
g g

g M g
g M g

g M
×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

G           (4.2.16) 

 

21

(0) 0 0
(1) (0) 0

( 1) (0)
0 ( 1) (1)

0 0 ( 1)

lr

lr lr

lr lr lr

lr lr

lr L nb

g
g g

g M g
g M g

g M
×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

G           (4.2.17) 
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Equation (4.2.14) can be rewritten as 

[ ]
1

2_1 11

21

filtered rr lr

−⎡ ⎤
⎢ ⎥= − ⎢ ⎥
⎢ ⎥⎣ ⎦

a
error d D G G b

b
              (4.2.18) 

_ 2_ 2 ( )IIR filterederror z  in Equation (4.2.11) can be further modified as  

11 21

_ 2_ 2 11 21

-1 -1

11 21
0 0

( ) ( ) ( ) ( ) ( )* *

                             ( - ) ( ) ( - ) ( )

IIR filtered rl ll

nb nb

rl ll
k q

error n g n b n g n b n

g n k b k g n q b q
= =

= +

= +∑ ∑
  (4.2.19) 

In convolution matrix, it becomes 

_ 2 _ 2 11 21IIR filtered rl ll= ⋅ + ⋅error G b G b                  (4.2.20) 

with rlG  and llG  being the convolution matrices 

11

(0) 0 0
(1) (0) 0

( 1) (0)
0 ( 1) (1)

0 0 ( 1)

rl

rl rl

rl rl rl

rl rl

rl L nb

g
g g

g M g
g M g

g M
×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

G         (4.2.21) 

 

21

(0) 0 0
(1) (0) 0

( 1) (0)
0 ( 1) (1)

0 0 ( 1)

ll

ll ll

ll ll ll

ll ll

ll L nb

g
g g

g M g
g M g

g M
×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

G          (4.2.22) 

Equation (4.2.20) can be written as 
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[ ]
1

_ 2 _ 2 11

21

IIR filtered rl ll

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

a
error 0 G G b

b
           (4.2.23) 

Our goal is to minimize _ 2_1errorIIR filtered  and _ 2_ 2errorIIR filtered , so the combined 

criterion is given by 

_ 2_1 211 21

_ 2_ 21 1

( ) ( ) arg min || ||
( ) ( )

IIR filtered

IIR filtered

b z b z
a z a z

⎧ ⎫⎛ ⎞
= ⎨ ⎬⎜ ⎟

⎝ ⎠ ⎩ ⎭

error
error

          (4.2.24) 

Using Equation (4.2.18) and Equation (4.2.23), Equation (4.2.24) becomes 

1
211 21

11
1 1

21

( ) ( ) arg min || ||
( ) ( )

rr lr

rl ll

b z b z
a z a z

⎧ − ⎫⎡ ⎤
⎛ ⎞ ⎡ ⎤⎡ ⎤⎪ ⎪⎢ ⎥= −⎨ ⎬⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

a
D G Gd

b
0 G G0

b
     (4.2.25) 

Let 1
rr lr

rl ll

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

D G G
G

0 G G
 and [ ]1 1 11 21

T= −v a b b  

Equation (4.2.25) can be solved as follows: 

( ) 1

1 1 1 1
T T− ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

d
v G G G

0
                        (4.2.26) 

We can get the filter coefficients in Equation (4.2.26) as follows: 

[ ]1 1 1 1 11 (0) (1) ( 2)a v v v na= − − − −                             (4.2.27) 

[ ]11 1 1 1 1 1 11 1( 1) ( ) ( 2)b v na v na v nb na= − + −                        (4.2.28) 

[ ]21 1 11 1 1 11 1 1 21 11 1( 1) ( ) ( 2)b v nb na v nb na v nb nb na= + − + + + −         (4.2.29) 

In the same way, we can find out 2a , 12b , and 22b  with 2na , 12nb , and 22nb  taps. 

( ) 1

2 2 2 2
T T− ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

0
v G G G

d
,                          (4.2.30) 

where 2 2
2

2 2 2

rr lr

rl ll

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0 G G
G

D G G
 and [ ]2 2 12 22

T= −v a b b . The terms in 2G  can 
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be found by using similar method obtaining 1G . 

[ ]2 2 2 2 21 (0) (1) ( 2)a v v v na= − − − −                            (4.2.31) 

[ ]12 2 2 2 2 2 12 2( 1) ( ) ( 2)b v na v na v nb na= − + −                       (4.2.32) 

[ ]22 2 12 2 2 12 2 2 22 12 2( 1) ( ) ( 2)b v nb na v nb na v nb nb na= + − + + + −       (4.2.33) 

 From Equation (4.2.24), if the order of the common pole 1a  is zero, we can find 

it is the same as the LSE FIR design. The LSE FIR is the special case of the 

common-pole IIR model. 

 

4.2.2 Design in Frequency Domain 

 Because of nonlinearity, it is also difficult to handle _IIR LSEerror  and 

_ _ 1IIR LSE filterederror  in the frequency domain. We minimize the error _ _ 2IIR LSE filterederror  

in the frequency. We replace Equation (4.2.8) in the frequency domain, and the error 

is expressed as follows: 

11
_ _ 2 1

21

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) 0

j j j j
jrr lr

IIR LSE filtered j j j
rl ll

g e g e B e e
error A e

g e g e B e

ω ω ω τω
ω

ω ω ωω
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦⎣ ⎦

,     (4.2.34) 

where 11( )jB e ω , 21( )jB e ω  and 1( )jA e ω  are the Fourier transforms of 11( )b n , 

21( )b n  and 1( )a n . Our goal is to minimize the error norm and its formulation is as 

follows: 

211
_ _ 2 1

21

( ) ( ) ( )1
|| ( ) ||

2 ( ) ( ) ( ) 0

j j j j
jrr lr

IIR LSE filtered j j j
rl ll

g e g e B e e
J A e d

g e g e B e

ω ω ω τω
π ω

ω ω ωπ
ω

π

−

−
= −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦⎣ ⎦
∫     (4.2.35) 
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In the same way, the filters of Fourier transforms are replaced with vector forms as 

follows: 

( )11 11 1( )j TB e ω ω= ⋅b ex , where 11( 1)0 1
1( ) [ , , , ]j nbj j Te e e ωω ωω − − ×− × − ×=ex       (4.2.36) 

( )21 21 2( )j TB e ω ω= ⋅b ex , where 21( 1)0 1
2 ( ) [ , , , ]j nbj j Te e e ωω ωω − − ×− × − ×=ex      (4.2.37) 

Here, the first coefficient of filter ( )a n  is also set to 1, and its Fourier transform 

expressed in vector form is as follows: 

( )1 1
3

1
( ) 1j TA e ω

ω
⎡ ⎤

⎡ ⎤= ⋅ ⎢ ⎥⎣ ⎦
⎣ ⎦

a
ex

, where 1( 1)1
3( ) [ , , ]j naj Te e ωωω − − ×− ×=ex       (4.2.38) 

Combining Equation (4.2.36) to Equation (4.2.38) into Equation (4.2.35), the error 

norm can be rewritten as follows: 

_ _ 2 1 1 1 11 2 1 21 3 1 11 4 11

11 5 11 21 6 21 1 7 11 8 21 9      1

T T T T
IIR LSE filtered

T T T T

J = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

a M a - 2 b M a - 2 b M a + b M b +

2 b M b + b M b + 2 a M - 2 b M - 2 b M +
 (4.2.39) 

Where 

1 3 3
1

2
H d

π

π
ω

π −
= ∫M ex ex  

{ }* *
2 1 3

1 Re ( )
2

j j T
rre g e d

π τ ω ω

π
ω

π
− ⋅ ⋅

−
= ⋅ ⋅ ⋅∫M ex ex  

{ }* *
3 2 3

1 Re ( )
2

j j T
lre g e d

π τ ω ω

π
ω

π
− ⋅ ⋅

−
= ⋅ ⋅ ⋅∫M ex ex  

2 2*
4 1 1

1 ( ( ) ( ) )
2

j j T
rr rlg e g e d

π ω ω

π
ω

π −
= ⋅ + ⋅∫M ex ex  

( ){ }* * *
5 1 2

1 Re ( ) ( ) ( ) ( )
2

j j j j T
rr lr rl llg e g e g e g e d

π ω ω ω ω

π
ω

π −
= ⋅ ⋅ + ⋅ ⋅∫M ex ex  

2 2*
6 2 2

1 ( ( ) ( ) )
2

j j T
lr llg e g e d

π ω ω

π
ω

π −
= ⋅ + ⋅∫M ex ex  

{ }7 3
1 Re

2
d

π

π
ω

π −
= ∫M ex  
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{ }* *
8 1

1 Re ( )
2

j j
rre g e d

π τω ω

π
ω

π
−

−
= ⋅ ⋅∫M ex  

{ }* *
9 2

1 Re ( )
2

j j
lre g e d

π τω ω

π
ω

π
−

−
= ⋅ ⋅∫M ex  

In order to minimize the error _ _ 2IIR LSE filteredJ , let _ _ 2

11

 IIR LSE filteredJ∂
=

∂
0

b
, 

_ _ 2

21

 IIR LSE filteredJ∂
=

∂
0

b
 and _ _ 2

1

 IIR LSE filteredJ∂
=

∂
0

a
 such that: 

( )_ _ 2
1 1 2 11 3 21 7

1

 
2IIR LSE filtered T TJ∂

= ⋅ ⋅ − ⋅ − ⋅ + =
∂

M a M b M b M 0
a

             (4.2.40) 

( )_ _ 2
2 1 4 11 5 21 8

11

 
2IIR LSE filteredJ∂

= ⋅ − ⋅ + ⋅ + ⋅ − =
∂

M a M b M b M 0
b

              (4.2.41) 

( )_ _ 2
3 1 5 11 6 21 9

21

 
2IIR LSE filtered T TJ∂

= ⋅ − ⋅ + ⋅ + ⋅ − =
∂

M a M b M b M 0
b

            (4.2.42) 

Combining the above three equations, we can write them as follows: 

1 2 3 1 7

2 4 5 11 8

3 5 6 21 9

T T

T

⎡ ⎤ −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

M M M a M
M M M b M
M M M b M

                   (4.2.43) 

Therefore, the coefficients of the IIR filters can be solved as the following equation. 

  

1

1 1 2 3 7

1 11 2 4 5 8

21 3 5 6 9

T T

T

−
⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

a M M M M
v b M M M M

b M M M M
                  (4.2.44) 

We can find each filter as follows: 

[ ]1 1 1 1 11 (0) (1) ( 2)a v v v na= − − − −                             (4.2.45) 

[ ]11 1 1 1 1 1 11 1( 1) ( ) ( 2)b v na v na v nb na= − + −                        (4.2.46) 

[ ]21 1 11 1 1 11 1 1 11 21 1( 1) ( ) ( 2)b v nb na v nb na v nb nb na= + − + + + −         (4.2.47) 
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4.2.3 Comparison between IIR Designs in Time and 

Frequency Domain 

 In the same way, the error is minimized just in different domains. Therefore, the 

results of these two methods are the same. The proof is as follows: 

First, Equation (4.2.26) can be decomposed two parts, TG G  and T ⎡ ⎤
⎢ ⎥
⎣ ⎦

d
G

0
, and they 

are rewritten as follows: 

1 2 3

2 4 5

3 5 6

' ' '
' ' '
' ' '

T T

T

T

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Μ Μ Μ
G G M Μ Μ

Μ Μ Μ
 and 

7

8

9

'
'
'

T

⎡ ⎤
⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

M
d

G M
0

M
,                  (4.2.48) 

where 

1 ' T=M D D ; 2 ' T
rr= ⋅M G D ; 3 ' T

lr= ⋅M G D ; 4 ' T T
rr rr rl rl=M G G + G G  

5 ' T T
rr lr rl ll=M G G + G G ; 6 ' T T

lr lr ll ll=M G G + G G ; 7 ' T=M D d  

8 ' T
rr=M G d ; 9 ' T

lr=M G d  

We can find Equation (4.2.44) is similar to Equation (4.2.48), so we will compare 

each term in the two equations. First, 1 'M  is considered, and each element is 

calculated as follows: 

1

1
0

'( , ) ( , ) ( , )
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i j D i k D k j
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            ( ( 1)) ( ( 1))
L

k

k i k jδ τ δ τ
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0,  
i j
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( ) ( )1 11 1

1 0 0
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0 0 1 na na− × −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                 (4.2.49) 

We can find that 1 'M  is the identity matrix. Similarly, 1M  is calculated as follows: 

1 3 3
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2
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π −
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− ×
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⎢ ⎥⎣ ⎦
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( ) ( )1 11 1
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0 0

0 0 1 na na− × −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                      (4.2.50) 

We can find 1 'M  and 1M  are identity matrixes with same dimension. Then, 2 'M  

is considered, and each term of 2 'M  is calculated as follows: 

1

2 11 1
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'( , ) ( , ) ( , ),  0 ~ -1 and 0 ~ 2

             ( ) ( 1)

             ( 1 )
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∑
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11 1 11

( 1) ( 2) ( 1)
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'
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rr rr

rr rr

g g g na
g g

g nb g na nb
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M            (4.2.51) 

2M  is calculated as follows: 
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           (4.2.52) 

 

From Equation (4.2.51) and Equation (4.2.52), it is proved that 2 'M  equals 

2M . We can find that 3 'M  and 3M  have the same forms as 2 'M  and 2M , so 

they can also be proved to be equal in the same way. Next, the forms of 4 'M , 5 'M , 

6 'M , 4M , 5M  and 6M  are the same as those expressed in Section (4.2.3). 

Therefore, the same technique can be applied to prove that they are equal. We 

consider 7 'M  and 7M , and each element is expressed as follows: 

1 1

7 1
0 0

'( ) ( , ) ( ) ( 1) ( ) 0,  0 ~ 2
L L

k k

i k i k k i k i naδ τ δ τ δ τ
− −

= =

= − = − − − − = = −∑ ∑M D     (4.2.53) 

We can know that 7 'M  is a zero vector with dimension 1 1na − .  
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From Equation (4.2.53) and Equation (4.2.54), 7 'M  and 7M  are the same. The 

forms of 8 'M , 9 'M , 8M , and 9M  are the same as those expressed in Section 

(4.2.3). We can prove that they are the same. Because all the elements in Equation 

(4.2.26) are the same as those in Equation (4.2.44), the IIR crosstalk cancellers 

designed in the time and frequency domains are the same. 
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Chapter 5 

Robust Crosstalk Canceller 
 As we know, we must consider the robustness of the crosstalk canceller. So far, 

only single one set of system transfer functions is used to design the crosstalk 

canceller. We propose a new method to design a robust crosstalk canceller. A 

region-based concept [16] is considered instead of single one point. The new crosstalk 

canceller is designed by using the transfer function matrices in the region. In the 

previous section, we only want one set of ear signals to approach the desired signals. 

However, when the head moves, we get another set of ear signals. Figure 5.1 shows 

that when the head rotates around right to left, the transfer function matrix also 

changes accordingly.  
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Figure 5.1: Head movements 

Now, we want other sets of ear signals with head movements to approach the 

desired signals. We can express the concept as follows: 

( )
( )

( ) ( ) ( )
0

d z
G z G z C z ⎡ ⎤

+ Δ ⋅ ≈ ⎢ ⎥
⎣ ⎦

                        (5.1) 

Referring to the concept in Equation (5.1), the problem can be formulated as 

1

1

1

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

o oG z h z q z
G z h z q z
G z h z q z

+ +

− −

⋅ ≈⎧
⎪ ⋅ ≈⎨
⎪ ⋅ ≈⎩

,                           (5.2) 

where [ ]1 11 21( ) ( ) ( ) Th z c z c z=  is the filters of the crosstalk canceller; ( )oG z  is the 

transfer function matrix of fixed head, ( )G z+  is the one which head rotates to right, 

and ( )G z−  is the one head rotates to left. [ ]( ) ( ) 0 T
o oq z d z= , [ ]( ) ( ) 0 Tq z d z+ += , 

and [ ]( ) ( ) 0 Tq z d z− −= where ( )od z , ( )d z+ , and ( )d z−  are the desired signals 

dependent on the head positions. Because of different head positions, the desired 

signals must add delay compensation. We will propose the method to find the 
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compensation by using a head-centered coordinate model in the next section. 

 

5.1 Delay Compensations 
 We have known that when the head moves, the distance between the source and 

the ears changes. Therefore, the time and the amplitude of the sound source arrived to 

the ear change. We will calculate the changes by the following figure. 

φ
θ

X
Y

Z

r

 

Figure 5.2: Head-centered coordinate model 

From Figure 5.2, any source can be presented in the head-centered coordinate 

model, where the radius of the head is r . A source can be presented in three elements, 

distance R , azimuth angle θ , and elevation angle φ . The source and the fixed right 

ear can be written in vector forms as follows: 

  ( )cos cos ,cos sin ,sinRs R φ θ φ θ φ=  and (0,1,0)ore r= ,           (5.3) 

where Rs  represents the source and ore  represents the fixed right ear. 

If the head rotates θΔ  and φΔ , the rotated right ear can be written as follows: 

( )cos sin ,cos cos ,sinre r φ θ φ θ φΔ = − Δ Δ Δ Δ Δ                (5.4) 
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If the distance from the source to the head center R  is much larger than the radius of 

the head r . The compensated delay can be calculated by using the difference of two 

transmission paths such that: 

( )_ ( , ) /

                                    , / ,

o

o

delay comp Rs re Rs re fs S

r s e e fs S

θ φ Δ

Δ

Δ Δ = − − − ⋅

≈ ⋅ < − > ⋅
          (5.5) 

where fs  is the sampling frequency and S  is the sound velocity; ,< >  means 

vector inner product. Then the _ ( , )delay comp θ φΔ Δ  can be rounded off to get the 

integer. The amplitude compensation will be omitted if R r .  

According to Equation (5.5), the compensated desired signals can be expressed. For 

example, the desired signal to the fixed head is ( )od z  and then the head rotates right 

side about θ+Δ  and φ+Δ . The desired signal to the rotated-right head becomes 

_ ( , )( ) ( ) delay comp
od z d z z θ φ+ +− Δ Δ

+ = ⋅                   (5.6) 

In the same way, if the head turn left side about θ−Δ  and φ−Δ , the desired signal to 

the rotated-left head becomes 

     _ ( , )( ) ( ) delay comp
od z d z z θ φ− −− Δ Δ

− = ⋅                   (5.7) 

Therefore, the desired signals dependent on the head positions in Equation (5.2) can 

be found from Equation (5.6) and Equation (5.7). 
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5.2 Robust Common Pole Design 
When the compensated delay has been found, it can be incorporated to 

implement the region-equalized concept. The LSE criterion is as follows: 

1
2

1 1 1

1

( ) ( )
( ) arg min || ( ) ( ) ( ) ||

( ) ( )

oG z q z
h z G z h z q z

G z q z
+ +

− −

⎧ ⎫⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥= ⋅ −⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

              (5.7) 

If 1( )h z  is designed in FIR form, the solution is easy to find out. 

We continue use the same concept by using IIR filters. The LSE criterion can be 

written as follows: 

   

11 11

11 11 2

21 21

21 21

( ) ( )
( ) ( )

( ) ( )
arg min || ( ) ( ) ||

( ) ( )
( ) ( )

( ) ( )
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b z b z

G z q z
a z a z

G z q z
b z b z

G z q z
a z a z

+ +

− −

⎧ ⎫⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⋅ −⎨ ⎬⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

          (5.8) 

From the discussions in the previous section, we will meet the non-linearity because 

of the denominators 11( )a z  and 21( )a z . Therefore, the concept of the common pole 

model is used, and let 

     11 21 1( ) ( ) ( )a z a z a z= =                            (5.9) 

Equation (5.8) can be written as  
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1 11 2
1

2121

1

( )
( ) ( )
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( )( )
( ) ( )
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+ +

− −

⎡ ⎤ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎡ ⎤⎪ ⎪⎢ ⎥ ⎢ ⎥⎢ ⎥ = ⋅ − ⋅⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎪ ⎪⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎩ ⎭⎣ ⎦

       (5.10) 

The above equation can be written as  
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         (5.11) 

We can find that the right term in Equation (5.11) is composed by three common pole 

models. Therefore, we can express the above equation in matrix and vector forms by 

using the Equation (4.2.25). 
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,                 (5.12) 

where xyzG  is the convolution matrix of channel xyzg ; zD  is the convolution 

matrix of the desired signal; zq  is the vectors composed with desired signal and zero 

signal. From above equation, we can find out the filters, 11b , 21b  and 1a  by using 

the LSE method. 
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Chapter 6 

Computer Simulations 
In this chapter, we will simulate different crosstalk cancellers to see their 

performance. Besides, we will compare the results of single point method and 

region-based method. Here, our channels used in the simulations are the HRTFs from 

the database of MIT Media Lab. 

 

6.1 Figure of Merit 
 Perfect crosstalk cancellation would make the listener to receive no crosstalk and 

desired signal without distortion. Our simulation is that an impulse signal [ ]nδ  is 

inputted at Rs  and a zero signal is inputted at Ls  in Figure 2.5. Figure 6.1 and 

Figure 6.2 show the signals received at both ears without the crosstalk canceller. The 

loudspeakers are placed at 30o± . 
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Figure 6.1: The impulse response at 30o±  without the crosstalk canceller 
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Figure 6.2: The frequency response at 30o±  without the crosstalk canceller 
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The received impulses in Figure 6.1 we want should be a delayed impulse signal 

and the crosstalk signal should be zero. In the same way, the magnitude response of 

the received impulse in Figure 6.2 should be flat and the crosstalk signal should be 

negative infinite dB. Therefore, we define two indexes to evaluate the difference of 

channel attenuations and the flatness of the magnitude response. First, differential 

attenuation (DA) is to evaluate the difference of channel attenuations and defined as 

follows: 

1
2

0
1

2

0

( )
10log

( )

k K

R
k

k K

L
k

E k
DA

E k

= −

=
= −

=

=
∑

∑
,                        (6.1) 

where ( )RE k  and ( )LE k  are the K-point DFT of ( )Re n  and ( )Le n . Second, 

equalization index (EI) is to evaluate the flatness of the received impulse signal and 

defined as follows: 

     ( )
1/ 21

2

0

1 20log | ( ) |
k K

R
k

EI E k AV
K

= −

=

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

∑ ,            (6.2) 

1

0

1where 20log | ( ) |
k K

R
k

AV E k
K

= −

=

= ∑ . It indicates the average deviation and AV  is the 

average of the magnitude of ( )RE k . 

In order to see the performance of the crosstalk canceller, we define three FOM 

(Figure of Merit) to quantify it. The crosstalk suppression factor (CSF) [16] is to 

evaluate how much the crosstalk canceller reduces crosstalk and defined as follows: 

( )  ( )with C z without C zCSF DA DA= −                     (6.3) 
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The first term of the CSF indicates the DA after crosstalk cancellation, and the second 

term indicates the one without crosstalk cancellation.  

The equalization improvement factor (EIF) is to see the equalization 

performance in the frequency domain and defined as follows: 

( )  ( )without C z with C zEIF EI EI= − ,                      (4.4) 

We also want to see the total performance including the crosstalk suppression 

and spectral flatness of the crosstalk canceller. Therefore, we see the total energy of 

the error (EN) between the desired signals and the era signals, which is defined as  

2 2

0

| ( ) ( ) | | ( ) |R L
n

EN n delay e n e nδ
∞

=

= − − +∑                (4.5) 

 In the simulation, the larger the CSF and EIF are, the more important in crosstalk 

suppression and spectral flatness the crosstalk cancellation achieve. The smaller the 

EN is, the smaller difference to desired signals achieves. In the next paragraph, we 

will use these factors, CSF, EIF, and EN to justify or compare the performance of 

different implements of crosstalk cancellers. From the definitions, we can calculate 

DA = 8.45 dB, and EI = 12 2dB  at 30o±  without the crosstalk canceller. We also 

use the small angle at 5o±  to simulate the 3-D mobile phone environment. These 

results at 5o±  are DA = 1.85 dB, and EI= 11.69 2dB . Figure 6.3 and Figure 6.4 show 

the signals received at both ears at 5o±  without the crosstalk canceller. 
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Figure 6.3: The impulse response at 5o±  without the crosstalk canceller 
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Figure 6.4: The frequency response at 5o±  without the crosstalk canceller 
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 Comparing Figure 6.2 and Figure 6.4, the DA at 30o±  is larger than the DA at 

5o±  because there is small difference of transmission distances to the both ears at 

small incidence angle. 

 

6.2 FIR Form 
 In this section, we will first simulate the matrix-inverse designs in both time and 

frequency domains. Next, the direct LSE design is also implemented in both time and 

frequency domains. We will test different lengths of the filters to show how it affects 

the performance.  

 

6.2.1 Matrix-Inverse FIR Design 
 The first step to design the FIR filter is to calculate the denominator of 1G− , 

( ) ( ) ( ) ( ) ( )rr ll rl lrD z g z g z g z g z= − , and uses the solutions from Equation (3.1.9) and 

Equation (3.1.19) to design the crosstalk canceller. Besides, we must add delay for 

causality. In [8], we know that the extra delay can determine the performance of the 

crosstalk canceller. Here for comparison, we have taken the optimum delay for each 

FIR order in our simulations.  

 

6.2.1.1 Design in Time Domain 
 The HRTFs we used are of 512-point. In the simulation, we will try different 

numbers of filter lengths to see how it affects the crosstalk cancellation.  
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Figure 6.5 and Figure 6.6 show the results of crosstalk cancellation over a pair of 

loudspeakers at 5o±  with the crosstalk canceller of 50-tap and an extra 67 sample 

delay. The results of DA and EI are 13.78 dB and 19.08 2dB , so the FOM are CSF = 

11.93 dB, EIF = 7.39 2dB , and EN = 0.1223.  
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Figure 6.5: The time response at 5o± with 50-tap FIR designed from G-1 
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Figure 6.6: The frequency response at 5o±  with 50-tap FIR designed from G-1 
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Figure 6.7 and Figure 6.8 are the impulse responses of 11c  and 21c .  
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Figure 6.7: Impulse response of 11c  at 5o±  designed from G-1 
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Figure 6.8: Impulse response of 21c  at 5o±  designed from G-1 
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Because the denomination of the theoretical formulation in Equation (2.3.5) is often 

of non-minimum phase, the impulses have oscillations in the above two figures. 

Next, Figure 6.9 and Figure 6.10 show the results that 11c  and 21c  are used 

with 200 taps and an extra 114 sample delay. In this simulation, DA and EI are 21.68 

dB and 21.75 2dB , in other words, the performance of crosstalk cancellation can 

reach CSF = 19.83 dB, EIF = 10.06 2dB , and EN = 0.0287. We can find that the CSF 

and EIF become larger and the EN becomes smaller because the FIR filter length is 

increased. 
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Figure 6.9: The impulse response at 5o± with 200-tap FIR designed from G-1 
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Figure 6.10: The frequency response at 5o± with 200-tap FIR designed from G-1 

Figure 6.11 and Figure 6.12 are the impulse responses of 11c  and 21c . 
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Figure 6.11: Impulse response of 11c  at 5o±  designed from G-1 
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Figure 6.12: Impulse response of 21c  at 5o±  designed from G-1 

Next, let the filter length N equal 25, 50, 100 and200 taps successively, and the 

results are listed in Table 6.1. 

Filter Order EN CSF (dB) EIF (dB2) 

25 0.1977 13.31 6.11 

50 0.1223 11.93 7.39 

100 0.0502 21.92 8.36 

200 0.0287 19.83 10.06 

Table 6.1: FOM at 5o± of FIR form designed from G-1  
in the time domain 

From Table 6.1, as the order increases, the EN decreases, and CSF and EIF increase. 

In other words, as the length of the filters increases, the performance also gets better. 

Next, we will test the situation of the loudspeaker pair set at 30o± . Figure 6.13 
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and Figure 6.14 show the results of crosstalk cancellation with 50 taps and an extra 60 

sample delay. DA and EI are 16.99 dB and 20.71 2dB , so the performance can reach 

CSF = 8.54 dB, EIF = 8.71 2dB , and EN = 0.1344.  
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Figure 6.13: The impulse response at 30o±  with 50-tap FIR designed from G-1  
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Figure 6.14: The frequency response at 30o± with 50-tap FIR designed from G-1 
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Figure 6.15 and Figure 6.16 are the impulse responses of 11c  and 21c . 
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Figure 6.15: Impulse response of 11c  at 30o±  designed from G-1 
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Figure 6.16: Impulse response of 21c  at 30o±  designed from G-1 
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 Figure 6.17 and Figure 6.18 show the results of the crosstalk cancellation with 

200 taps and an extra 133 sample delay. In this simulation, DA and EI are 21.43 dB 

and 21.61 2dB , so the performance of crosstalk cancellation can reach CSF = 12.98 

dB, EIF = 9.61 2dB , and EN = 0.03. 
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Figure 6.17: The impulse response at 30o± with 200-tap FIR designed from G-1 
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Figure 6.18: The frequency response at 30o± with 200-tap FIR designed from G-1 
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The following two figures are the impulse responses of the filters 11c  and 21c . 
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Figure 6.19: Impulse response of 11c  at 30o± designed from G-1 
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Figure 6.20: Impulse response of 21c  at 30o±  designed from G-1 
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We can find that the CSF and EIF also become larger and EN becomes smaller. 

Next, we use N = 25, 50, 100, 200 taps successively, and the results are listed in Table 

6.2. 

Filter Order EN CSF (dB) EIF (dB2) 

25 0.2425 5.89 5.82 

50 0.1344 8.54 8.71 

100 0.0578 10.43 9.55 

200 0.0322 12.98 9.61 

Table 6.2: FOM at 30o± of FIR form designed from G-1  
in the time domain 

 

6.2.1.2 Design in Frequency Domain 
 We also use different lengths to see the effect to the performance of the crosstalk 

cancellation. Table 6.3 lists the results of the loudspeaker pair at 5o±  and Table 6.4 

lists the results of the loudspeaker pair at 30o± . 

Filter Order EN CSF (dB) EIF (dB2) 

25 0.1631 13.98 6.53 

50 0.0843 17.21 8.12 

100 0.0441 19.62 9.10 

200 0.0274 21.73 9.87 

Table 6.3: FOM at 5o± of FIR form from G-1 in the frequency domain 
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Filter Order EN CSF (dB) EIF (dB2) 

25 0.2059 7.09 5.88 

50 0.089 10.71 8.42 

100 0.0512 13.00 8.51 

200 0.0307 13.08 9.66 

Table 6.4: FOM at 30o± of FIR form designed from G-1 in the frequency domain 
 

We will compare design in the time domain and design in the frequency domain. 

Figure 6.21 and Figure 6.22 are plotted the EN of designs in the time and frequency 

domain with different taps. 

 

Figure 6.21: Comparison of design from 1G− at 5o± in time and frequency domains 
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Figure 6.22: Comparison of design from 1G− at 30o± in time and frequency domains 
 
 From Figure 6.21 and Figure 6.22, the performance of design in the frequency 

domain is better than design in the time domain. 

 

6.2.2 Direct LSE FIR Designed 

6.2.2.1 Design in Time Domain 
 In this section, we will design the crosstalk canceller filters by using the direct 

LSE method. Similarly in this section, we will test different filter lengths of crosstalk 

cancellers to see the how it affects the crosstalk cancellation. Figure 6.23 is the results 

of the EN with different filter order at 5o± . We plot the EN with respect to the tap 

number from 1 to 200. 
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Figure 6.23: EN with different taps at 5o±  using direct LSE in time domain 
 

From the figure, it is obvious that the order of filters is increased and the 

performance of the crosstalk cancellation gets better. Similarly, we take four orders, 

25, 50, 100 and 200 to see the FOM and the results are listed in Table 6.5. 

Filter Order EN CSF (dB) EIF (dB2) 

25 0.1506 15.69 6.49 

50 0.0782 18.22 8.03 

100 0.0408 20.01 9.20 

200 0.0244 21.18 10.16 

Table 6.5: FOM at 5o±  of FIR form designed using direct LSE 
in the time domain 

Next, we simulate the situation the loudspeaker pair placed at 30o±  and also 
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plot the EN with respect to the tap number from 1 to 200 in Figure 6.24. 
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Figure 4.24: EN with different taps at 30o±  using LSE in time domain 

 

We also simulate four orders, 25, 50, 100 and 200, to see the FOM at 30o± , and 

the results are listed in Table 6.6.  

Filter Order EN CSF (dB) EIF (dB2) 

25 0.1964 7.86 5.79 

50 0.0843 11.43 8.59 

100 0.0451 12.27 8.80 

200 0.0253 11.99 10.11 

Table 6.6: FOM at 30o±  of FIR form designed using LSE 
in the time domain 

Next, we will compare the direct FIR LSE with the matrix-inverse design, and the EN 

of the two methods at 5o±  and 30o±  is plotted in Figure 6.25 and Figure 6.26. 
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Figure 6.25: Comparison between the direct FIR LSE and matrix-inverse at 5o±  

 

Figure 6.26: Comparison between the direct FIR LSE and matrix-inverse at 30o±  

From the above figures, the performance of the direct LSE FIR method is better 

than design from matrix-inverse. 
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6.2.2.2 Design in Frequency Domain 

In this section, we will simulate the crosstalk canceller designed in the 

frequency domain and the results of the loudspeaker pair placed at 5o±  and 30o±  

are listed in Table 6.7 and Table 6.8. 

 

Filter Order EN CSF (dB) EIF (dB2) 

25 0.1506 15.69 6.49 

50 0.0782 18.22 8.03 

100 0.0408 20.01 9.20 

200 0.0244 21.18 10.16 

Table 6.7: FOM at 30o±  of FIR form designed using LSE  
in the frequency domain 

 

Filter Order EN CSF (dB) EIF (dB2) 

25 0.1964 7.86 5.79 

50 0.0843 11.43 8.59 

100 0.0451 12.27 8.80 

200 0.0253 11.99 10.11 

Table 6.8: FOM at 30o±  of FIR form designed using LSE  
in the frequency domain 

 
Comparing Table 6.7 and Table 6.8 with Table 6.5 and Table 6.6, the results are 

the same. In other words, the performance designed in the frequency domain is the 

same as that designed in the time domain. 
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6.3 IIR Form 

6.3.1 Filters Designed from Matrix-Inverse 

6.3.1.1 Design in Time Domain 

 So far, we have found the crosstalk canceller in FIR forms. We want to design 

the filters in IIR form instead of FIR form. In Section (4.1.1), we will use IIR to 

approximate the theoretical solutions. We use different total taps (the sum of one 

denominator and one numerator) to simulate the performance and the results of the 

loudspeakers pair placed at 5o±  and 30o±  at are listed in Table 6.9 and Table 6.10. 

Filter Order EN CSF (dB) EIF (dB2) 

25 0.1947 14.63 5.59 

50 0.1068 18.10 6.86 

100 0.0462 20.79 8.84 

200 0.0271 20.86 9.95 

Table 6.9: FOM at 5o±  of IIR form 1G−  in the time domain 

Filter Order EN CSF (dB) EIF (dB2) 

25 0.2338 3.9 7.52 

50 0.1089 9.82 8.05 

100 0.0578 11.66 9.24 

200 0.0318 12.28 9.62 

Table 6.10: FOM at 30o±  of IIR form 1G−  in the time domain 
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6.3.1.2 Design in Frequency Domain 

In this section, we will design the filters from matrix inverse 1G−  in the 

frequency domain and we also use different total taps to see the performance. The 

results of the loudspeaker pair placed at 5o±  and 30o±  are listed in Table 6.11 and 

Table 6.12. 

Filter Order EN CSF (dB) EIF (dB2) 

25 0.1631 13.99 6.54 

50 0.0833 16.01 8.29 

100 0.0349 20.05 9.78 

200 0.0244 21.44 10.36 

Table 6.11: FOM at 5o±  of IIR form 1G−  in the frequency domain 
 

Filter Order EN CSF (dB) EIF (dB2) 

25 0.2059 7.09 5.90 

50 0.089 10.634 8.45 

100 0.0457 11.3141 9.34 

200 0.0301 11.85 9.8 

Table 6.12: FOM at 30o±  of IIR form 1G−  in the frequency domain 
 

We will compare the IIR design between in the time and frequency domains and 

also compare IIR and FIR designs from matrix-inverse. The results of loudspeaker 
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pair placed at 5o±  and 30o±  are in Figure 6.27 and Figure 6.28. 

 
Figure 6.27: Comparison with FIR and IIR designs from 1G−  at 5o± in the time 

and frequency domains 

 
Figure 6.28: Comparison with FIR and IIR designs from 1G−  at 30o± in the time 

and frequency domains 
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and frequency domains, and solid and dotted lines represent designs in IIR and FIR. 

We can find that the performance of IIR is better than FIR and design in the frequency 

domain is better than design in the time domain. 

 

6.3.2 Common-Pole IIR Design 

6.3.2.1 Design in Time Domain 

 In this section, we will simulate the performance of the common-pole IIR model. 

We simulate different total combined taps (the sum of two numerators and one 

denominator) and the results of loudspeaker pair placed at 5o±  and 30o±  are listed 

in Table 6.13 and Table 6.14. 

 

Filter Order EN CSF (dB) EIF (dB2) 

50 0.1437 13.89 7.5 

100 0.0614 15.43 9.09 

200 0.0336 18.26 9.85 

400 0.0222 21.47 10.39 

Table 6.13: FOM at 5o±  of common pole model 
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Filter Order EN CSF (dB) EIF (dB2) 

50 0.1964 7.86 5.79 

100 0.0756 6.79 10.19 

200 0.0369 11.02 9.38 

400 0.0224 11.706 10.54 

Table 6.14: FOM at 30o±  of common pole model 
 

We compare the common-pole model with IIR design from matrix-inverse, and 

the EN of common-pole model and matrix-inverse at 5o±  and 30o±  are plotted in 

Figure 6.29 and Figure 6.30. 

 

Figure 6.29: comparison between common-pole and IIR design form 1G−  at 5o±  
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Figure 6.30: comparison between common-pole and IIR design form 1G− at 30o±  
 

In Figure 6.29 and Figure 6.30, the blue lines represent the EN from 

matrix-inverse design in the both domains and the red line represents the common 

pole model. We can find the performance of common is better than the design from 

matrix-inverse. 

We compare the common pole model with LSE FIR form which is the best 

performance in FIR designs. The EN results which loudspeaker pair placed at 5o±  and 

30o±  with different total combined taps of the common pole model and direct LSE 

FIR model are plotted in Figure 6.31 and Figure 6.32. 
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Figure 6.31: Comparison of EN with direct LSE FIR and Common-pole IIR at 5o±  
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Figure 6.32: Comparison with direct LSE FIR and Common-pole IIR at 30o±  
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 From these above two figures, the performance of the common pole model is 

better than the direct LSE FIR model. However, we want to know that the 

improvement performance of the common pole model is from the IIR structure or the 

common part, so we compare the performance between common pole model and 

direct LSE FIR model with same total taps instead of combined taps. The EN results 

loudspeaker pair placed at 5o±  and 30o±  are plotted in Figure 6.33 and Figure 

6.34. 
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Figure 6.33: Comparison between common pole and direct LSE FIR using same 

total taps at 5o±  
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Figure 6.34: Comparison between common pole and direct LSE FIR using same 

total taps at 30o±  

From Figure 6.33 and Figure 6.34, the EN of the direct LSE FIR is better than 

common pole model with small taps. In other words, we can know the performance of 

the common pole model is from the common part and not from the IIR. 

 

 

6.3.2.1 Design in Frequency Domain 

 In this section, we will simulate the common pole model in the frequency 

domain, and find EN of difference total taps. The results loudspeaker pair placed at 

5o±  and 30o±  are shown in Table 6.15 and Table 6.16. 
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        Total tap 
Category 

50 100 200 400 

Time Domain 0.1437 0.0614 0.0336 0.0222 

Frequency Domain 0.1437 0.0614 0.0336 0.0222 

Table 6.15: Comparison Common-pole IIR at 5o±  in time and frequency domains 
 

        Taps 
Category 

50 100 200 400 

Time Domain 0.1964 0.0756 0.0369 0.0224 

Frequency Domain 0.1964 0.0756 0.0369 0.0224 

Table 6.16: Comparison Common-pole IIR at 30o±  in time and frequency domains 

From the above tables, the performance of design in the time domain is the same as 

design in the frequency domain. 

 

6.4 Robust Crosstalk Canceller 
As we know, the head movement will eliminate the performance of the crosstalk 

cancellation. We first design a crosstalk canceller with the loudspeakers placed at 

30o± . We design the crosstalk canceller by using the direct LSE FIR method. Each 

filter length is 200 and the result is plotted in Figure 6.35. Figure 6.36 and Figure 6.37 

show that the received signals in the frequency domain at both ears after the head 

rotating around 5o± . We can find that the received signals at rotated head compare 

poorly with that the received signals at the fixed head. The flatness of these two 

figures in the high frequency band is bad, and the crosstalk suppression is, either. The 

FOM in Figure 4.37 are EN = 0.3237, CSF = 4.486 dB and EIF = 9.249 dB2. Those in 

Figure 6.38 are EN = 0.3325, CSF = 5.747 dB and EIF = 9.785 dB2.  
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Figure 6.35: The frequency response at 30o± with 200-tap FIR designed using LSE 
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Figure 6.36: The frequency response with head rotated 5o+ at 30o±  
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Figure 6.37: The frequency response with head rotated 5o−  at 30o±  
 

Compared with the FOM of the fixed head, we can find the EN and CSF are 

worse very much. Therefore, we should take the robust crosstalk canceller to 

eliminate the effect of the head movement. 

When we design the robust crosstalk canceller, the delay compensation has to be 

considered. Figure 6.38 and Figure 6.39 show the frequency response of the received 

signals using robust design without delay compensations. The received signals in 

Figure 6.38 are at the fixed head and these in Figure 6.39 are at rotated head. 

Obviously, we can find the equalization is very bad in these two figures.  
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Figure 6.38: The frequency response at fixed head without compensation 
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Figure 6.39: The frequency response at rotated head without compensation 
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Referring to from Equation (5.5), the delay compensation is calculated, and their 

value are 1± . The desired compensated signal can be rewritten referring to Equation 

(5.6). Figure 6.40, Figure 6.41 and Figure 6.42 are the frequency responses with 

compensations. We can find the equalization is improved very much. The 

performance of the robust crosstalk canceller will be listed in Table 6.13 to compare 

with and without considering robustness. 
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Figure 6.40: The frequency response at fixed head with compensation 
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Figure 6.41: The frequency response at rotated 5o+  head with compensation 
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Figure 6.42: The frequency response at rotated 5o−  head with compensation 
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 In Table 6.17, 0o , 5o+  and 5o−  represent the places of the head. 0o  is the 

fixed, 5o+  is rotated right around 5o  and 5o−  is rotated left around 5o .  

Total EN CSF (dB) EIF (dB2)     FOM 

Category 0o  5o+  5o− 0o  5o+ 5o− 0o  5o+  5o−  

0.6814 
Non-robust 

0.025 0.32 0.33
11.99 4.49 5.75 10.11 9.25 9.79 

0.5541 Robust 

131 0.055 0.22 0.28
9.42 5.40 6.54 9.76 9.18 9.45 

Table 6.17: FOM at 30o± of non-robust and robust FIR crosstalk cancellers 
 

 

Figure 6.43: EN between robust design and non-robust design at 30o±  

We list the each EN, CSF, and EIF at different places. Besides, we also list the 

total EN to compare the performance of the robust crosstalk cancellation. From Table 
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crosstalk canceller than the one with non-robust crosstalk canceller. Therefore, the 

performance gets better. The EN of the fixed head becomes bad, but those of the 

rotated heads become better. Because our method is to strike a balance in a region, we 

do not handle a specific place. Our goal is to minimize the total error in the region. 

The next table is to show that the performance gets better as the filter length increases. 

     Taps 
Category 

25 50 100 200 

Non-robust 1.019 0.7768 0.6926 0.6814

Robust 0.9593 0.6863 0.5904 0.5541

Table 6.18: Total EN with different length at 30o±  

 

Figure 6.44: Total EN between robust design and non-robust design at 30o±  

From Table 6.18 and Figure 6.44, it is obvious that the performance with robust 

crosstalk cancellers is better than that with non-robust crosstalk cancellers.  

Next, we will try the small angle at 5o± .Figure 4.45 is the result at the fixed 
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head, and Figure 4.46 and Figure 4.47 show the received signals at rotated-head 

places with non-robust crosstalk canceller designed by LSE 200-tap FIR. Similarly, 

we must calculate the delay compensation first. From the delay-compensated equation, 

we can find the compensated delay is 1± . Then, we can design the robust crosstalk 

canceller. Here, we use the crosstalk canceller with 200 taps and extra 121 sample 

delay.  

0 5 10 15 20
-80

-70

-60

-50

-40

-30

-20

-10

0

10

Frequency (kHz) 

 M
ag

ni
tu

de
(d

B
) 

 

 

Received Impulse
 Crosstalk Signal

 

Figure 6.45: The frequency response at 5o±  with 200-tap FIR designed using LSE 
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Figure 6.46: The frequency response with head rotated 5o+  
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Figure 6.47: The frequency response with head rotated 5o−  
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Figure 6.48, Figure 6.49 and Figure 6.50 are the received signals at three 
locations where the head moved. 
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Figure 6.48: The frequency response at fixed head with compensation 
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Figure 6.49: The frequency response at rotated 5o+  head with compensation 
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Figure 6.50: The frequency response at rotated 5o−  head with compensation 
 

The FOM of the three locations is listed in detail in Table 6.19. 

Total EN CSF (dB) EIF (dB2)     FOM 

Category 0o  5o+  5o−  0o  5o+ 5o− 0o  5o+  5o−

0.3002 
Non-robust 

0.0244 0.1395 0.1364
21.18 9.85 16.57 10.16 10.05 9.40

0.2579 Robust 

121 0.0348 0.1301 0.093 
18.54 12.86 15.29 9.97 9.79 9.50

Table 6.19: FOM at 5o± of non-robust and robust FIR crosstalk cancellers 
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Figure 6.51: EN between robust design and non-robust design at 5o±  

From Table 6.19 and Figure 6.51, the total EN with robust crosstalk canceller is 

smaller than the one with non-robust crosstalk canceller. Similarly, the origin becomes 

worse but other places are improved. Table 6.20 is listed the results compared total 

EN with different taps. From Figure 6.52 and Table 6.20, we can know that the robust 

crosstalk canceller can reduce the total EN. 

     Taps 
Category 

25 50 100 200 

Non-robust 0.6172 0.4140 0.3281 0.3002

Robust 0.5991 0.3908 0.2959 0.2579

Table 6.20: Total EN with different length at 5o±  
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Figure 6.52: Total EN between robust design and non-robust design at 5o±  

Next, we will test the common-pole model in robust method. We test different 

combined tap number of the robust common pole model and compare with design in 

robust direct LSE FIR model. The results of total EN with the loudspeaker pair at 

5o± are listed in Table 6.21. 

     Taps 
Category 

50 100 200 400 

Direct LSE FIR 0.5991 0.3908 0.2959 0.2579 

Common pole IIR 0.5991 0.383 0.2879 0.2574 

Table 6.21: Comparison between robust direct LSE FIR and  
robust common pole IIR at 5o±  

We also test the loudspeaker pair at 30o±  and the results are the same as the 

robust direct LSE FIR model. 
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Chapter 7 
Conclusions 
 
 In the thesis, we investigate two methods, matrix-inverse and LSE to design 

crosstalk cancellers and each method can be implemented in FIR or IIR forms. 

Matrix- inverse design in the frequency domain is better than in the time domain. In 

FIR form, we can find that the performance of LSE FIR is better than that designed 

from matrix-inverse. In IIR form, the common-pole model is also better than that 

designed from matrix-inverse. Compare LSE FIR with common-pole model, the 

common pole model is better because the LSE FIR model can be seen as the special 

case of common-pole model. 

Then we propose the region-equalized method to eliminate the effect of the head 

movements. In the simulations, we can find that the performance at the origin place is 

worse than that designed with single one place, but the performance of other places 

are improved. It is proved that the region-equalized method can reduce the total 

difference between the received signals and the desired signals. 
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