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以局部收集的網路狀態為依據之服務品質繞徑法 
 

研究生︰顏廷任                   指導教授︰廖維國 博士 
 
 

國立交通大學電信工程學系 
 
 

摘要 

 
我們研究探討一種服務品質繞徑(QoS routing)的問題，其中網路狀態的資訊只是附

加包含於原有的資源保留協定(RSVP)中的 RESV 信息，而沒有使用另外的繞徑協定。如

此的作法是令人滿意的，因為它完全排除了在服務品質繞徑協定裡由於時常更新網路狀

態而造成的運算負擔。基本上，我們所提出的繞徑法，也就是所謂的”局部性依據網路

狀態繞徑法”(localized state-dependent routing)，促進改善了”局部性比例分配繞徑

法”(localized proportional routing)以及藉由離散時間馬可夫決策過程所模擬出來的”依據

網路狀態可分離式繞徑法”(state-dependent separable routing)。我們的方法是這樣的：假

如網路狀態的資訊仍然是即時的，那我們就採用這個資訊；相反的，我們則採用平均頻

寬資訊。隨著增加”依據網路狀態可分離式繞徑法”使用上的比重，我們發現在我們所設

計的模擬情境中，由我們所提出的繞徑法的效能表現越來越好。除此之外，從我們模擬

的結果可以看出，我們提出的繞徑法表現的比”局部性依據網路狀態繞徑法”還要好。而

且當網路流量沒有很繁重的時候，我們所提出的繞徑法的效能甚至接近最理想的效能。 
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Abstract 
 

We study the QoS routing problem where the network state information is only 

piggybacked in the RESV messages in RSVP (Resource Reservation Protocol) without using 

any other routing protocol. Doing so is desirable because it completely eliminates the 

communication overheads entailed by frequent state updates by QoS routing protocol. 

Basically, our proposed routing called localized state-dependent routing boosts the localized 

proportional routing and the state-dependent separable routing formulated by Discrete-Time 

Markov Decision Process in such a way that the link state information will be explored if it is 

fresh enough; otherwise it remains to use the average bandwidth information. By increasing 

the configurable weight on the state-dependent separable routing, we find the performance of 

our proposed routing eventually getting better in our selected simulation scenario. Besides, as 

the simulation results shown, our proposed routing outperforms the localized proportional 

routing and even is nearly optimal when the load is not heavy. 
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Chapter 1 
Introduction 

 
For a large-scale network, controlling the load to each link is mandatory to meet the 

requirements of each connection. Without appropriate load control on links, the load may 

exceed the link capacity and end user will experience quality degradation, such as delay jitter, 

unexpected dropping packets, etc.  

 

To this end, the IntServ (Integrated Service) working group defined the RSVP (Resource 

Reservation Protocol) [7] to enable the reservation-based load control. Consider the case of 

one sender and one receiver trying to get a reservation for traffic flowing between them. By 

sending a PATH message from the sender to the receiver that contains the flow’s traffic 

characteristics (i.e. the sender’s TSpec), the receiver can establish a resource reservation at 

each router on that path. Each router looks this PATH message as it goes past, and it figures 

out the reverse path. Having received a PATH message, the receiver sends back a RESV 

message for resource reservation along the reverse path. This message contains the sender’s 

TSpec and an RSpec describing the requirements of this receiver. Each router on the path 

looks at the reservation request and tries to allocate the necessary resources to satisfy it. If the 

reservation can be made, the RESV request is passed on to the next router. If not, an error 

message is returned to the receiver who made the request. If all goes well, the correct 

reservation is installed at every router between the sender and the receiver.  

 

The issue of how to direct the PATH message to reduce the chance of declined flow 

request is addressed in the QoS routing. Among many alternatives, the source-routing-based 

QoS routing has been extensively studied. Essentially, the source selects a “best path” for 

flow according to the QoS requirement of the flow and the knowledge of the resource 

availability at network nodes. The source-routing-based QoS routing can be categorized by 

the way that they gather information about the network state and select a path by this 

information. For instance, in the state-dependent routing approach [2] each node can construct 

a global view of the network QoS state information through periodic information exchange 

among nodes in a network and selects the best path for a flow based on this global view of the 

network state. Examples of state-dependent routing approach are those QoS routing schemes 

[9, 10] based on QoS extensions to the OSPF (Open Shortest Path First) routing protocol.  
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However, for a large-scale network, the prohibitive communication overheads entailed 

by such frequent state updates precludes the possibility of always maintaining an accurate 

view of the current network QoS state for each node. To handle such scalability problem, in 

[4] the authors proposed a method called localized proportional routing, where feasible path 

are selected based on the average available bandwidth information and flows are adaptively 

proportioned among these feasible path based on locally collected information from other 

nodes. Indeed, by collecting the information which is piggybacked in the RESV messages, 

there is no need for another protocol to collect the network state information. As shown in 

their simulation results, by adaptively proportioning flows the localized proportional routing 

approach performs well than the state-dependent routing approach when the update interval is 

long enough, typically more than one minute.  

 

In viewing that the state-dependent routing with short update interval still outperforms 

the localized proportional routing, we proposed the routing scheme called localized 

state-dependent routing. Briefly put, our proposed routing combines the localized 

proportional routing scheme with the state-dependent separable routing formulated by 

Discrete-Time Markov Decision Process in a way that the state information will be explored 

if it is fresh enough; otherwise it remains to use the average bandwidth information. By 

sending RESV message which additionally contains the state information back to source, 

source obtains the local network information feedback from the routers, and therefore we do 

not increase the communication overhead. From the simulation results of our selected system 

model, our proposed routing outperforms the localized proportional routing. 

 

The remainder of this thesis is organized as follows: in chapter 2, we discuss the 
necessary background knowledge, including Discrete-Time Markov Decision Process [1], 
Resource Reservation Protocol (RSVP) [7], State-Dependent Routing [2], and Adaptive 
Proportional Routing [3, 4]. In chapter 3, we describe the proposed “localized state-dependent 
routing” to minimize the overall blocking probability by its self-refrained alternative routing 
with the localized view of the network state. The simulator design and the simulation results 
are shown in chapter 4. Finally, we make a conclusion in chapter 5. 



3 

Chapter 2 
Background 

 

In this chapter, we will introduce the basic concept of Discrete-Time Markov Process [1] 

and RSVP (Resource Reservation Protocol) [7]. And then we introduce two kinds of routing 

schemes, state-dependent routing [2] and adaptive proportional routing [3, 4]. 

 

2.1 Discrete-Time Markov Decision Process  

Suppose that in the system there are N states numbered from 1 to N. If the system now 

occupies state i, the probability of a transition to state j during the next constant time interval is 

a function only of i and j and not any history of the system before its arrival in i. In other word, 

we may specify a set of conditional probability ijp  that a system which now occupies state i 

will occupy state j after its next transition. Since the system must be in some state after its next 

transition, 1
1

=∑
=

N

j
ijp , where the probability that the system will remain in i, iip , has been 

included. Since ijp  is probability, 0 ≦ ijp  ≦ 1. The set of transition probabilities for the 

process may be described by a transition probability matrix P with elements ijp . 

 

Suppose that an N-state Markov process earns ijr  if it makes a transition from state i to 

state j. We call ijr  the “reward” associated with the transition from i to j. The set of rewards for 

the process may be described by a reward matrix R with elements ijr . The Markov process 

generates a sequence of rewards as it makes transitions from state to state. The reward is thus a 

random variable with a probability distribution governed by the probabilistic relations of the 

Markov process.  

 

Now we define )(nvi as the expected total rewards in the next n transitions if the system is 

in state i now. Some reflection on this definition allows us to write the recurrent relation,  

 

ΛΛ  ,3 ,2 ,1       , ,2 ,1       )]1([)(
1

==−+=∑
=

nNinvrpnv
N

j
jijiji              (2.1) 
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If the system makes a transition from i to j, it will earn the reward ijr  plus the amount it 

expects to earn if it starts in state j with one move fewer remaining. As shown in Eq. (2.1), these 

rewards from i to j must be weighted by the probability of such a transition, ijp , to obtain the 

expected total rewards. 

Notice that Eq. (2.1) may be also written in the form  

 

    ΛΛ  ,3 ,2 ,1       , ,2 ,1      )1()(
1

==−+= ∑
=

nNinvpqnv
N

j
jijii               (2.2) 

 

, where the quantity iq  is defined by 

 

              Nirpq
N

j
ijiji  , ,2 ,1                 

1

Λ== ∑
=

            (2.3) 

 

The quantity iq  may be defined as the reward to be expected in the next transition out of 

state i. It will be called the “expected immediate reward” for state i. Rewriting Eq. (2.1) as Eq. 

(2.2) shows us that it is not necessary to specify both a P matrix and an R matrix in order to 

determine the expected earnings of the system. All that is needed is a P matrix and a q column 

vector with N components iq . In vector form, Eq. (2.2) may be written as 

 

Λ ,3 ,2 ,1      )1()( =−+= nnn Pvqv                   (2.4) 

 

, where )(nv  is a column vector with N components )(v ni , called the total-value vector. 

 

If there is only one recurrent chain in the system so that it is completely ergodic. Consider 

a completely ergodic N-state Markov process described by a transition-probability matrix P and 

a reward matrix R. Suppose that the process is allowed to make transitions for a very, very long 

time and that we are interested in the earnings of the process. The total expected earnings 

(rewards or costs) depend upon the total number of transitions that the system undergoes, so 

that this quantity grows without limit as the number of transitions increases. A more useful 

quantity is the average earnings of the process per unit time. This quantity is meaningful if the 

process is allowed to make many transitions; it was called the “gain” of the process. 
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Since the system is completely ergodic, the limiting state probabilities iπ are independent 

of the starting state, and the gain g of the system is  

 

1

N

i i
i

g qπ
=

= ∑                                       (2.5) 

 

, where iq  is the expected immediate return state i defined by Eq. (2.3). 

 

Consider the three-dimensional array of Fig. 1, which presents in graphical form the states 

and alternatives. 

 

X

X

X

X
X

1 1
11 11p ,r 1 1

12 12p ,r 1 1
15 15p ,r

1 1
21 21p ,r

1 1
51 51p ,r 1 1

55 55p ,r

 k alternatives

 j succeeding 
state

     i presemt state

 
Fig. 1 A possible five-state problem 

 

The array as drawn illustrates a five-state problem that has four alternatives in the first 

state, three in the second, two in the third, one in the fourth, and five in the fifth. Entered on the 

face of the array are the parameters for the first alternative in each state, the second alternative 

in each state, and so forth. An X indicates that we have chosen a particular alternative in a state 

with a probability and reward distribution that will govern the behavior of the system at any 

time that it enters that state. Thus the alternative selected is called the “decision” for that state. 

The set of decisions for all states is called a “policy”. Selection of a policy thus determines the 

Markov process with rewards that will describe the operation of the system.  

 

An optimal policy is defined as a policy that maximizes the gain, or average return per 

transition. We can find the optimal policy in a small number of iterations by the policy-iteration 
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method. It is composed of two parts, the value-determination operation and the 

policy-improvement routine which are diagrammed as shown in Fig.2 

 

 
Fig. 2 Policy Iteration Cycle 

 

In [1] it proves that the new policy will have a higher gain than the old policy. First, 

however, we shall show how the value-determination operation and the policy-improvement 

routine are combined in an iteration cycle whose objective is to find a policy that has highest 

gain among all possible policies. The upper box, the value-determination operation, yields the g 

and iv  corresponding to a given choice of ijp  and iq . The lower box yields ijp  and iq  that 

increase the gain for a given set of iv . In other words, the value-determination operation yields 

values as a function of policy, whereas the policy-improvement routine yields the policy as a 

function of the values. 

 

We may enter the iteration cycle in either box. If the value-determination operation is 

chosen as the entrance point, an initial policy must be selected. If the cycle is to start in the 

policy-improvement routine, then a starting set of values is necessary. The selection of an initial 

policy that maximizes expected immediate reward is quite satisfactory in the majority of cases. 
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At this point it would be wise to say a few words about how to stop the iteration cycle once 

it has done its job. The rule is quite simple: The final robust policy has been reached (g is 

maximized) when the policies on two successive iterations are identical. In order to prevent the 

policy-improvement routine from quibbling over equally good alternatives in a particular state, 

it is only necessary to require that the old decision id  be left unchanged if the test quantity for 

that id  is as large as that of any other alternative in the new policy determination. 

 

In summary, the policy-iteration method just described has the following three properties: 

a. The solution of the sequential decision process is reduced to solving sets of linear 

simultaneous equations and subsequent comparisons. 

b. Each succeeding policy found in the iteration cycle has a higher gain than the previous 

one. 

c. The iteration cycle will terminate on the policy that has largest gain attainable within 

the realm of the problem; it will usually find this policy in a small number of 

iterations. 

These three properties are proved in detail in [1]. 

 

2.2 RSVP (Resource Reservation Protocol)  

The term “Integrated Service” (often called IntServ fo short) refers to a body of work that 

was produced by the IETF around 1995-97. The IntServ working group developed 

specifications of a number of service classes (e.g. guaranteed service and controlled load 

service) designed to meet the need of some the application types. It also defined how RSVP 

(Resource Reservation Protocol) could be used to make reservation using these service classes. 

 

With a best-effort service we can just tell the network where we want our packets to go and 

leave it at that, but a real-time service involves telling the network something more about the 

type of service we require. In addition to describing what we want, we need to tell the network 

something about what we are going to inject into it, since a low-bandwidth application is going 

to require fewer network resources than a high-bandwidth application. The set of information 

that we provide to the network is referred to as a flowspec. There are two separable parts to the 

flowspec: the part that describes the flow’s traffic characteristics (called the TSpec) and the part 

that describes the service requested from the network (called the RSpec).  
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When we ask the network to provide us with a particular service, the network needs to 

decide if it can in fact provide that service. The process of deciding when to say no is called 

admission control. When some new flow wants to receive a particular level of service, 

admission control looks at the TSpec and RSpec of the flow and tries to decide if the desired 

service can be provided to that amount of traffic, given the currently available resources, 

without causing any previously admitted flow to receive worse service than it had requested. 

More knowledge about admission control could be found in [7].  

 

One of the key assumptions underlying RSVP is that it should not detract from the 

robustness that we fid in today’s connectionless network. RSVP tries to maintain this 

robustness by using the idea of soft state in the routers. In contrast to the hard state found in 

connection-oriented networks, soft state doesn’t need to be explicitly deleted when it is no 

longer needed. Instead, it times out after some fairly short period if it is not periodically 

refreshed. Another important characteristic of RSVP is that it aims to support multicast flows 

just as effectively as unicast flows. For multicast applications, rather than having the senders 

keep track of a potentially large number of receivers, it makes more sense to let the receivers 

keep tack of their own needs. 

 

The soft state and receiver-oriented nature of RSVP give it a number of nice properties. 

One nice property is that it is very straightforward to increase or decrease the level of resource 

allocation provided to a receiver. Since each receiver periodically sends refresh messages to 

keep the soft state in place, it is easy to send a new reservation that asks for a new level of 

resources. In the event of a host crash, resources allocated by that host to a flow will naturally 

time out and be released. Now we look a little more closely at the mechanics of making a 

reservation. 

 

Initially, consider the case of one sender and one receiver trying to get a reservation for 

traffic flowing between them. There are two things that need to happen before a receiver can 

make a reservation. First, the receiver needs to know what traffic the sender is likely to send so 

that it can make an appropriate reservation. That is, it needs to know the sender’s TSpec. 

Second, it needs to know what path the packets will follow from sender to receiver, so that it 

can establish a resource reservation at each router on that path. Both of these requirements can 

be met by sending a PATH message from the sender to the receiver that contains the TSpec. 
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The other thing that happens is that each router looks this PATH message as it goes past, and it 

figures out the reverse path that will be used to send reservation from the receiver back to the 

sender in an effort to get the reservation to each router on the path. 

 

Having received a PATH message, the receiver sends a reservation back “up” the 

multicast tree in a RESV message. This message contains the sender’s TSpec and an RSpec 

describing the requirements of this receiver. Each router on the path looks at the reservation 

request and tries to allocate the necessary resources to satisfy it. If the reservation can be made, 

the RESV request is passed on to the next router. If not, an error message is return to the 

receiver who made the request. If all goes well, the correct reservation is installed at every 

router between the sender and the receiver.  

 

Now we can see what happens when a router or link fails. Routing protocols will adapt to 

the failure and create a new path from sender to receiver. PATH messages are sent about every 

30 seconds, and may be sent sooner if a router detects a change in its forwarding table, so the 

first one after the new route stabilizes will reach the receiver over the new path. The receiver’s 

next RESV message will follow the new path and hopefully establish a new reservation on the 

new path. Meanwhile, the routers that are no longer on the path will stop getting RESV message 

and these reservations will time out and be released. Thus RSVP deals quite well with changes 

in topology, as long as routing changes are not excessively frequent. 

 

As for the case of multi-senders and multi-receivers, it is discussed in detail in [7]. In Fig. 

3, it graphically displays how senders make reservations on a multicast tree. 

 

 

 
 

Fig. 3 Make reservation on a multicast tree 
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2.3 State-Dependent Routing: Separable Routing 

Separable routing is the first of some routing schemes for circuit switched telephone traffic 

invented at Bellcore. These routing schemes are state-dependent, in the sense that, for each call 

attempt, a routing decision is made on the basis of the state of the network (defined in terms of 

the numbers of busy and idle trunks in the various links at the moment of the call attempt). 

 

In the state-dependent network, the nodes are connected by links. An n-hop route is a route 

which traverses n links, or two end nodes and (n-l) via nodes. Therefore the goal is to find some 

rules which make an optimal or almost optimal routing decision, for each call attempt, as a 

function of the origin-destination of the call attempt and of the state of the network at the 

moment of the call attempt. 

 

There are two kinds of state space of the system: “route-based state space” and “link-based 

state space”. We first discuss the route-based state space. For each node pair (S; D) we have a 

list of legal routes from S to D; the state of the system at time t is given by the array 

{ ))(RD,S,(N t }, where the element ))(RD,S,(N t  gives the number of busy calls in over route 

R at time t for each node pair (S, D). As for the link-based state space, we number the link 

description k = 1, 2.... K, and that the state of the network at any time t is given by the array 

{ )(tX k }, 1 < k < K, where )(tX k  is the number of busy calls in link k at time t. 

 

It must be noted that if calls have independent, exponentially distributed holding times 

with the same mean (independent of the node pair of the call), and if each call that is routed as 

an n-hop call at once split into n independently terminating one-hop calls with exponential 

holding times of the same mean, then the link-based state description would be mathematically 

complete. The assumption is, of course, incorrect. The oversimplification is warranted because 

of the considerable decrease in complexity, and because it is a fairly minimal source of error. 

 

We assume that there are N nodes (switches) in the network. The links will be numbered k 

= 1, 2..., )1(2/1 −×= NNK . Link k has kS trunks (unit of bandwidth), kS  > 0. We also 

assumed that kS  is given and does not vary over time. )(tX k  denotes the number of busy 

trunks in link k at time t. We use the link-based state description, which means that the state of 

the network at time t is defined by the vector ))(,),(),(()( 21 tXtXtXtX KΚ= . 
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In separable routing, we have costs ),( kXk∆  ( kk SX ≤≤0 ) for every k ( Kk ≤≤1 ), 

with the property that  

 

1),(),()1,()0,(0 1 =∆<∆<<∆<∆< − kk SkSkkk Κ              (2.6) 

 

, where ),( kXk∆  is an estimate of the expected cost, in terms of additional calls blocked in the 

future, of now adding one call to link k if that link currently already has kX  busy trunks. 

Whenever a call attempt is made from node n1 to node n2, for each route ),(RR 21 nn∈  , we 

compute the state-dependent cost of routing the call over route R. This cost is computed by the 

formula 

 

∑
∈

∆=
Rk

kXkRt ),()(cos                   (2.7) 

 

, where the summation is over all link k in route R. Eq. (2.7) assumes that kX , the number of 

busy trunks in link k, is known for all R∈k .  

 

Next, we find the minimum cost route *R  :  

 

find  ),(RR 21 nn  *∈   with )R(costmin)R(cost
),(RR 21 nn

*
∈

=         (2.8) 

 

The decision rule now is that  

 

if cost ( *R ) < 1: route the call over *R ,                             (2.9a) 

if cost ( *R ) > 1: block the call.                      (2.9b) 

 

The intuition behind this rule is that blocking the call leads to the loss of exactly one call 

(the blocked call), while routing the call over route R leads to an expected number cost(R) of 

future blocked calls. 

 

In [2], )(tN A  is the total number of call attempts offered to the network during the time 
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interval [0, t], and )(tN B  is the total number of calls blocked during the same time interval. 

Furthermore, it is assumed that the statistical patterns in the call attempt process are constant 

over time (i.e. we assume that the call attempt process is a stationary process), so that the 

average arrival rate λA exists, where 

 

t
tN A

tA
)(lim

∞→
=λ                   (2.10) 

 

, and we of course assume that 

 

∞<< Aλ0                   (2.11) 

 

We also consider only state-dependent routing policies for which 

 

t
tNg B

t

)(lim
∞→

=                (2.12) 

 

exist; g is called the overall blocking rate in the network (the average number of calls  blocked 

per unit of time). Our goal is to find a routing scheme which minimizes g.  

 

Eq. (2.10) and Eq. (2.12) imply the following exists, 

 

)(
)(lim

tN
tNgP

A

B

t
A

B ∞→
==

λ
              (2.13) 

 

where PB is called the average blocking probability. 

 

Let P be a state-dependent routing policy. With some additional assumptions described in 

[2], we have a result which is stronger than (2.12) 

 

)(            (1)    )(   )(    ]  ,)0(  |  )([ )( ∞→++⋅== tovgttNE B xPPxX P            (2.14) 

 

, where ][⋅E denotes the expectation operator and where x is any K-dimensional vector in the 
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state space of the stochastic process )(tX . In Eq. (2.14), the conditioning is on the initial state 

)0(X  and on the fact that policy P is consistently used to make routing decisions, )()( xv P  is (up 

to an undetermined additive constant) the well-known relative value (in Markov decision 

processes) or cost of starting in state x=)0(X .  Eq. (2.14) also determines this constant. The 

"small o" symbol o(1) means that while for t  ∞ both the RHS and LHS in Eq. (2.14) go to 

infinity, the difference goes to zero. Since )()( xv P  represents an expected number of blocked 

(lost) calls, we call it the cost of starting in state x under policy P. In Markov decision theory, 

determining )()( xv P from P is called the value determination step. It is convenient to define 

+∞=)()( xv P  for all K-dimensional vector x not in the state space of the process )(tX . Suppose 

that, for any policy P, the value determination step can be done. Then, given any policy P0, it is 

possible to find a new policy P1 which is at least as good as P0. P1 is found by the policy 

improvement step defined in Markov decision theory, see [1]. 

 

It is well known, see [3], that for this Erlang-B model with calls arriving according to a 

Poisson process with intensity λ and call holding times which are exponentially distributed with 

expected value 1, we say that this system is in state k ( sk ≤≤0 ) when exactly k trunks are busy. 

In this model, the stationary probability that the system is in state k is equal to 

 

     
∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= s

j

j

k

k

j

ksp

0 !

!),( λ

λ

λ                 (2.15) 

 

, and that the blocking probability equals 

 

),(      

!

!       ),(

0

λλ

λ

λ sB

j

ssp s

j

j

s

s =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
∑
=

             (2.16) 

 

, where ),( λsB  is the well-known Erlang-B function which is defined by Eq. (2.16). The 

blocking rate g equals 
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     ),(),( λλλ sBsgg ⋅==                (2.17) 

  

In a telephone network where only direct routing is allowed, all links become independent 

systems. If each link k ( Kk ≤≤1 ) is modeled as an Erlang-B system with ks trunks and arrival 

rate kλ , then the cost function )(⋅v satisfies 

 

     ∑
=

=
K

k
kkk xvxxv

1
1 )(),,( Κ                (2.18) 

 

   ),(
),()()1(

k

kk
kk jB

sBjvjv
λ
λ

=−+       ksj ≤≤0for               (2.19) 

 

     ∑
=

=
ks

j
kkkj jvsp

0

0)(),( λ                (2.20) 

 

where [ )()1( jvjv kk −+ ] is the expected cost of the increase in the number of future blocked 

calls, of now adding one call to link k if the system is in state  ),,,( 21 Kxxxx Κ= . It finds that 

the cost depends only on kx and is independent of the states of the other links. We thus can take 

delta-costs 

 

),(
),(),(

kk

kk
k xB

sBxk
λ
λ

=∆                (2.21) 

 

and use these delta-costs to derive a separable routing scheme. 

 
2.4 Adaptive Proportional Routing: A Localized QoS Routing Approach 

QoS (Quality-Of-Service) routing is concerned with the problem of how to select a path 

for a flow such that the flow’s QoS requirements such as bandwidth or delay are likely to be met. 

Most of the QoS routing schemes proposed so far require periodic exchange of QoS state 

information among routers, imposing both communication overhead on the network and 

processing overhead on core routers. Furthermore, stale QoS state information causes the 
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performance of these QoS routing schemes to degrade drastically. In order to circumvent these 

problems, we focus on localized QoS routing schemes where the edge routers make routing 

decisions using only local information and thus reducing the overhead at core routers. 

 

We assume that source routing is used, and that network topology information is available 

to all source nodes (e.g., via the OSPF protocol), and one or multiple explicit-routed paths are 

setup a priori for each source and destination pair using, e.g., MPLS [5]. 

 

 
Fig. 4 Disjoint paths between a source-destination pair 

 

Consider a simple topology shown in Fig.4, where a source and a destination are 

connected by k disjoint paths Krrr ,,, 21 Κ . Each path ir  has a (bottleneck) capacity of ic units 

of bandwidth and is assumed to be known to the source S. Suppose that calls arrive at the source 

S at an average rate λ, and the average call holding time is 1/µ. We assume that call arrivals are 

Poisson and call holding times are exponentially distributed. For simplicity, we also assume 

that each call consumes one unit of bandwidth. In other words, path ir  can accommodate ic  

calls at any time. Suppose that, on the average, the proportion of calls routed along path ir  

is iα , where ∑=
==

K

1
1   and    ,,2,1

i iKi αΚ . Then the blocking probability ib  at path ir  is: 

 

∑
=

==
i

i

c

n

n
i

c
i

iii

n
v

c
v

cvEb

0 !

!),(  

 

, where )/( µλα iiv =  is referred to as the average load on path ir . The total load on the 

system is denoted by µλ /
1

== ∑ =

k

i ivv . 

 

There are two alternative strategies for flow proportioning: equalization of blocking 
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probabilities (ebp) and equalization of blocking rates (ebr). Here we skip the first strategy and 

account for the ebr strategy. The objective of the ebr strategy is to find a set of 

proportions { }Kααα ˆ,,ˆ,ˆ 21 Κ such that flow blocking rates of all the paths are equalized, 

i.e., KK bbb ˆˆˆˆˆˆ 2211 ααα === Λ , where ib̂ is the flow blocking probability of path ir . 

 

By incorporating this self-refrained alternative routing method into the virtual capacity 

model defined in [3], it devise a theoretical adaptive proportional routing scheme, which is 

referred to as the Virtual Capacity based Routing (vcr) scheme. In this vcr scheme, it uses the 

ebr strategy to proportion calls along the min-hop paths, and proportion calls along the 

alternative paths. The scheme is shown in Fig. 5. 

 

 
Fig. 5 VCR Procedure 

 
Suppose the total load for a source–destination pair is v. At a given step, n ≥ 0 let 

vv n
r

n
r ×= )()( α  be the amount of the load currently routed along a path R∈r , and let )(n

rb  be 

its observed blocking probability on that path. Then the virtual capacity of path r is given 

by ),( )()(1)( n
r

n
rvc

n
r bvEvc −= . For each min-hop path, the mean blocking rate of all the min-hop 

paths )(nβ  is used to compute a new target load. Similarly, for each alternative path, a new 

target load is computed using the target blocking probability *b×ψ  where ψ  is a constant 

parameter. Given these new target loads for all the paths, the new proportion of flows, )1( +n
rα , 

for each path r, is obtained in lines10–11, resulting in a new load vv n
r

n
r ×= ++ )1()1( α  on path r. 
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Chapter 3 
Localized State-Dependent Routing 

In this chapter, we first describe the shortcomings of the state-dependent separable 

routing scheme [2] and adaptive proportional routing scheme [3, 4]. We then propose three 

possible boosting methods in anticipate that the shortcomings of both routing schemes can be 

remedied.  

 

3.1 Shortcomings of State-Dependent Routing and Proportional Routing 

In chapter 2, we understand the concepts of state-dependent separable routing scheme and 

adaptive proportional routing scheme. In the state-dependent separable routing formulated by 

the Markov decision process, a routing decision is made on the basis of the state of the network. 

It gathers global network state information and selects a best path with minimum delta-cost for 

an incoming flow based on network state information. The routing will work well when each 

source node has a reasonably accurate global view of the network state. Since network resource 

availability changes with each flow arrival and departure, it is impractical to maintain an 

accurate view of the network state, due to prohibitive communication and processing overheads 

entailed by frequent state information exchanges. However, as our simulation in Chapter 4 

shown, inaccurate view of network state increases the blocking rate dramatically.  

 

In adaptive proportional routing scheme feasible paths are selected based on infrequently 

exchanged average available bandwidth information and flows are adaptively proportioned 

among these feasible paths based on locally collected information from other nodes. However, 

our simulation also shows that the adaptive proportional routing approach works significantly 

worse than the state-dependent separable routing approach if the network state information 

obtained in the source is delayed not more than one minute. 

 
3.2 Overview of Proposed Boosting Methods 

The above discussions give us the motivation for boosting the state-dependent separable 

routing by Markov Decision Process (MDP Routing for shorted) on the basis of Proportional 

Routing approach to compensate each other. In this section, we propose three methods to 

boost these two routing schemes.  
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First, we can statically boost these two routing schemes by assigning fixed weight. For 

example, we can assign weight δ )10( ≤≤ δ  for Proportional Routing and weight (1- δ) for 

MDP Routing. If we prefer the Proportional Routing scheme, we can increase the weight δ. It 

is noteworthy that the selection of optimal weight δ is network-dependent and is expected to 

be a difficult task. We propose such a boosting simply for the comparison purpose. 

 

Second, we dynamically adjust the weight of these two routing schemes. Given the 

observed blocking probability of these two routing schemes for a fixed time interval, we can 

calculate the new weight of these schemes for next time interval to favor the one with low 

blocking probability. Using the new weight, we can randomly choose one of these two 

schemes to select one best path for various network situations.  

 

And from the observation in Chapter 2, we find that the Proportional Routing approach 

works well than the MDP Routing when its update interval is more than one minute. So the 

third method is that we can dynamically adjust the weight based on the delay time of local 

state information piggybacked in RESV message. If the state information is delayed too long, 

the state information must be stale and therefore we prefer to use the average bandwidth 

information in Proportional Routing to select a best path. Otherwise, we use the state 

information in MDP routing because it is fresh enough. Before we introduce these methods in 

detail, we make some assumptions for our model 

  

3.3 Assumptions 

We assume that source routing is used, and that network topology information is available 

to all source nodes (via the OSPF protocol), and one or multiple explicit-routed paths are setup 

a priori for each source and destination pair. In Fig.6, source S has K feasible paths 

{ Kiri ,,2,1| Κ= }. Each path ir can accommodate ic  unit of bandwidth. For source S, we 

assume that call arrivals are Poisson with intensity sλ  and call holding times are independent, 

exponentially distributed with meanµ  (independent of the node pair of the call). For simplicity, 

we also assume that each call consumes one unit of bandwidth. Suppose that, on the average, 

the proportion of calls routed along path ir  is iα , where ∑=
==

K

1i
1   and   ,,2,1 iKi αΚ .  
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Fig. 6 Source routing 

 

And in the following sections, we will introduce particularly these three methods to 

boost the Proportional Routing and MDP Routing in various network situations. 

 
3.4 Boosting with Fixed Weights 

Every “Update Proportion Interval” (upi), source S calculates the new proportion of 

paths { ][⋅fp } by the VCR algorithm defined in Fig. 5 according to the old proportions of 

paths { ][⋅fp }, the observed blocking probability of paths { ][⋅bp }, and the load of source S 

{ sv } during this update proportion interval. And every “Update Lambda Interval” (uli), 

source S calculates iλ , the average arrival rate of path i, in order to compute the delta-cost 

{ ][⋅dc } defined in Eq. (2.21).  

 

When a new call arrives, we first check whether there is available bandwidth or not. If 

there is no available bandwidth, we have to reject this call. Otherwise, we select one best path 

based on the state information. We have two kinds of approaches to choose one path, i.e. 

Proportional Routing and MDP Routing. We can assign fixed weight δ )10( ≤≤ δ  for 

Proportional Routing and weight (1- δ) for MDP Routing statically. According to the 

following pseudo code, we can find out the best path and use RSVP to setup this call along 

the selected path.  

 

 // pseudo code for path-selecting 

 If (available bandwidth) 

  tmp =  (rand()%1000) /1000.0;      // random value : tmp 

if( 0<=tmp && tmp<δ) 

     using “ Proportional Routing ” to select path 

  else                 // if (δ<=tmp && tmp<1 ) 
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     using “ MDP Routing “ to select path 

 else 

  Reject this call 

 

3.5 Boosting with Dynamic Weights Adjusted by Blocking Probability 

Besides Update Proportion Interval and Update Lambda Interval, we calculate the 

blocking probability for calls using Proportional Routing and MDP Routing for every 

“Update Weight Interval” (uwi). Then we calculate new weights using the following 

equations. 

 

 In “n-th” Update Weight Interval:  

 

For Proportional Routing: 
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For MDP Routing: 
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New weight for using Proportional Routing: 
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Different from the previous method which using fixed weights δ, we calculate the new 

weight )(nδ  for Proportional Routing and )(1 nδ− for MDP Routing in the n-th Update Weight 

Interval. According to the following pseudo code, we can find out the best path and use RSVP 

to setup this call along the selected path.  

 

 // pseudo code for path-selecting  

 If (available bandwidth) 

  tmp =  (rand()%1000) /1000.0;      // random value : tmp 

if( 0<=tmp && tmp< δ(n)) 

     using “ Proportional Routing ” to select path 

  else                 // if (δ(n)<=tmp && tmp<1 ) 

     using “ MDP Routing “ to select path 

 else 

  Reject this call 

 
3.6 Boosting with Dynamic Weights Adjusted by the Delay Time of State 

Information 

After source S receives the RESV message of RSVP, source S records the moment of 

message feedback from path i, i.e. ][0 it . The delay time, ][idt , of a new call attempt at time t is 

calculated as follows: 

Kiittidti ,,2,1                ][][          ,path For 0 Κ=−=  

 
Different from the previous two methods which choose one of these two routing 

approaches to select one best path, we non-linearly combine MDP Routing and Proportional 

Routing by the exponentially decayed weights. We introduce this method in detail as follow: 

 

For path i, Ki ,,2,1 Κ= , we calculate the path-combine-proportion ][ipcp , using the 

following equation : 

 

])[1(][)1(][ ][][ idceifpeipcp idtidt −⋅+⋅−= ⋅−⋅− γγ
       (3.2) 
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where  γ is a configurable parameter, and 

][idt  is the delay time of this call for path i, 

][idc  is the delta-cost of this call for path i using Eq .(2.21) in MDP routing 

][ifp  is the flow-proportion of path i using VCR algorithm in proportional routing, 

 

And then we normalize the path-combine-proportion ][ipcp  for path i, Ki ,,2,1 Κ=  

 

∑ =

=
Kj

jpcp
ipcpipcp

,...,2,1
][

][][           (3.3) 

 

Finally we select one path proportionally based on Kiiipcp ,,2,1  ,  path for     ][ Κ=  

Given a random value rv ,  10 <≤ rv , Km ,,2,1 Κ=  

If  ][]1[ mbvrvmbv ≤≤− , we choose path m as the best path. 
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When the average load of source is heavy, the state-information is fresh because the 

update interval (delay-time information ][idt ) of the source is short. When the state information 

is fresh, we have better to choose the MDP Routing scheme to find the best path. On the other 

hand, if the state information is delayed and outdated, we need to use the Proportional Routing 

scheme. Therefore, we have to multiply ( ][1 idc− ) by ][ idte ×− γ  and multiply ][ifp  by 
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][1 idte ×−− γ  in order to cooperate these two schemes adaptively and choose one path 

proportionally. So we use the different weight with exponentially decayed for MDP routing 

and proportional routing. And by sending RESV message which additionally contains the state 

information back to source, source obtains the local network information feedback from the 

routers, and therefore we do not increase the communication overhead.  

 

 In the summary, we illustrate our methods by the following block diagram. 

 

 
Fig. 7 Boosting process 
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Chapter 4 
Simulation Results 

 
In the following we illustrate a simple network topology how our scheme works better 

than adaptive proportional routing when the load of source is varying with time. 

 

Consider the fish topology shown in Fig. 8.  

 

 
Fig. 8 Fish topology 

 

The nodes 1, 2, 3, and 4 are the source nodes and node 12 is the destination node. Each of 

node 1 and node 2 has two min-hop paths (1 5 6 12, 1 5 7 12 and 2 5 6 12, 

2 5 7 12) and two alternative paths    (1 5 8 9 12, 1 5 10 11 12 and 

2 5 8 9 12, 2 5 10 11 12) to the destination node 12. Other two sources, nodes 3 

and node 4, have just one min-hop path (3 8 9 12 and 4 10 11 12) to the destination 

node 12.The alternative path of source node1 and node 2 share the bottleneck link 9  12 and 

11  12 with the min-hop paths of source node 3 and node4. We assume that the capacities c1, 

c2, c3, and c4 of the bottleneck links are all set to 80 units of bandwidth and others are infinite 

bandwidth.  

 

The follow are our simulator design for this fish topology. At first, the Object Model 

Diagram in UML is illustrated in Fig. 9 below. There are four Source objects constructed by 

system in our simulation model. Source S1 and source S2 have four feasible paths and source S3 

and source S4 have only one feasible path. 
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Fig. 9 Object Model Diagram in UML 

 

4.1 Comparison of Proportional Routing and MDP Routing 

Before displaying the simulation performance of our proposed routing, we first compare 

these two routing approaches “State-Dependent Separable Routing formulated by MDP 

“(called MDP routing for shorted) and “Adaptive Proportional Routing” (called Proportional 

routing for shorted). We observe the blocking probability of source S1 by increasing the update 

interval of S1 when the average load of all sources is set to 40. 
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Fig. 10 Comparison of Proportional Routing and MDP Routing 
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In Fig. 10, we find that the performance of MDP Routing degrades rapidly as the update 

interval increases. As for the scheme of Proportional Routing, the blocking probability of S1 is 

keeping at about 0.3 and is even better than the scheme of MDP Routing when its update 

interval is longer than one minute. It is because that the proportional routing adopts the 

average available bandwidth information instead of stale state information to make path 

selection. 

 
From the observation in Fig. 10, we proposed three boosting methods, which are 

mentioned at Chapter 3 in detail. Before we illustrate how these three routing methods 

adaptively adjust the load proportion of feasible paths as the load increases, we firstly 

introduce some parameters in our simulator. 

 
4.2 Simulator Parameters Setting 

We assume that the average offered load of S1, S2, S3, and S4 are 40, 40, 5, and 5 

respectively in the beginning. And we set the “Update Proportional Interval” as 10 minutes, 

“Update Lambda Interval” as 1 minute and “Update Weight Interval” as 1 minute. For source 

S1, we set the initial flow proportion of path 1, 2, 3, and 4 to 0.4999, 0.4999, 0.0001, and 0.0001 

respectively. So does source S2. And we set the constant parameter γ in Eq.(3.2) to 0.01. 

Consider the scenario: when the number of calls generated by source S1 is equal to 1000, we 

increase the average load of S3 and S4 to 20. And when the number of calls generated by source 

S1 is equal to 3000, we increase the average load of S3 and S4 to 40. By increasing the average 

load of S3 and S4, we study how source S1 and S2 adjust their flow proportion on the feasible 

paths in order to decrease the overall blocking probability. 

 

The following table is the setting of parameters in our simulator. 

 

Parameter Initial value 

Path1_Flow-proportion of S1 and S2 0.499 

Path2_Flow-proportion of S1 and S2 0.499 

Path3_Flow-proportion of S1 and S2 0.001 

Path4_Flow-proportion of S1 and S2 0.001 

Average Load of S1 and S2 40 calls/min 
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Average Load of S3 and S4 5 calls/min 

Link Capacity (c1 , c2 , c3, c4) 80 calls 

psi (ψ ) 0.95 

Update Proportional Interval 10 minutes 

Update Lambda Interval 1 min 

Update Weight Interval 1 min 

Total Arrival of Source1 5000 calls 

Gamma(γ ) 0.01 

Table .1 Setting of parameters in our simulator 

 
In the following sections, we will introduce our simulator for these three methods and 

their simulation results. 
 
4.3 Simulator Design and Results for BFW 

In this method, we assign fix weight δ to Proportional Routing and fix weight δ−1 to 
MDP Routing. We define this method as “Boosting with Fixed Weight” (BFW for shorted). 

4.3.1 System Operations 
 

 
Fig. 11 System diagram of BFW in UML 
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In Fig.11, there are four sub-states. In System_Timer sub-state, timer is running and the 

parameter systemTime plus one per second. And in Update_Path_Proportion sub-state, system 

calculates the total arrival of sources during the “Update Proportion Interval”, and triggers the 

event evUpdate1 of sources to calculate the new path flow proportion ( ][⋅fp ) by VCR 

algorithm. And in Update_Path_Arrival_Rate sub-state, system triggers the event evUpdate2 of 

sources to calculate the path arrival rate ( iλ ) during the “Update Lambda Interval”. Finally, 

system can change the arrival rate of source S3 and S4 in the Change_S3S4_Arrival_Rate 

sub-state. 

 

4.3.2 Source Operations 
 

 
Fig. 12 Source diagram of BFW in UML 

 
In Fig. 12, there are three sub-states. In the gen_call sub-state, source generates calls by 

Poisson arrival process. Each call performs callArrival() to find a path by 

Path-Selection-Process based on the value of δ , path flow-proportion ( ][⋅fp ), and path 

delta-cost ( ][⋅dc ). And then source uses RSVP to setup this call along the selected path. When 
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the number of call generated by source equals to Total_Arrival, source stops generating new 

call. In Update_Path_Proportion sub-state, the event evUpdate1 is triggered from system and 

source updates the path flow-proportion ( ][⋅fp ) by VCR algorithm. At last, in 

Update_Path_Arrival_Rate sub-state, the event evUpdate2 is triggered from system and source 

updates the path arrival rate ( iλ ) in order to calculate the path-delta-cost, ( ][⋅dc ) in Eq. (2.21).  

 

4.3.3 Path Operations 
 

 
Fig. 13 Path diagram of BFW in UML 

 
In Fig. 13, it demonstrates that the selected path accepts this call which consumes one unit 

of bandwidth (count plus one) and triggers one server object. At the same time, the selected 

path has to inform source, which generates this call, the latest state information by RESV 

message. 

 

4.3.4 Server Operations 
In Fig. 14, it describes that call holding time is exponentially distributed with meanµ . 

After the serviceTime, this call stops serving and the server object will be terminated.  
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Fig. 14 Server diagram of BFW in UML 

 

In summary, our simulator model could be illustrated in the sequence diagram below. 

 

 
Fig. 15 Sequence diagram for BFW in UML 
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4.3.5 Simulation Result 

Comparsion of BFW with different weight
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Fig. 16 Comparison of BFW with different weight (δ ) 

 
In Fig.16, the scheme of MDP Routing without delay is nearly optimal because sources 

obtain instantaneous network state information. We can find that when the average load of S3 

and S4 are low, the performance of Proportional Routing is worst. As the average load of S3 

and S4 are increasing, the performance of MDP Routing with delayed information gets worse. 

When the average loads of S3 and S4 increase to 40, the performance of MDP Routing with 

delayed information gets worse than Proportional Routing. Consider our proposed method 

BFW with different value of δ  which is the weight of using Proportional Routing to select 

one path. No matter what the value δ is, the performance of BFW is better than Proportional 

Routing and is better than MDP Routing with delayed information when the load is heavy. 

 

4.4 Simulator Design and Results for BDW-BP 

In this method, we dynamically boost the weight adjusted by the observed blocking 

probability during a fixed time interval. We define this method as “Boosting with Dynamic 

Weights Adjusted by Blocking Probability” (BDW-BP for shorted). The server operation in 

UML is the same as previous method. 



32 

 

4.4.1 System Operations 
 

In order to update the new weights of the new Update Weight Interval, we have to 

calculate the blocking probability of calls using Proportional Routing and calls using MDP 

Routing in the Update_Blocking_Probability sub-state in Fig. 17. 

 

 
Fig. 17 System diagram of BDW-BP in UML 

 

4.4.2 Source Operations 
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Fig. 18 Source Diagram of BDW-BP in UML 

 
Different from the source operations in BFW, when the event evUpdate3 is triggered, 

source has to calculate the blocking probability of calls using Proportional Routing and calls 

using MDP Routing in order to find out the new weights using Eq. (3.1a) and Eq. (3.1b). 

 

In “ n-th ” Update Weight Interval:  

 

New weight for using Proportional Routing: 
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New weight for using MDP Routing: 
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And then source chooses one path proportionally based on the new weight )(nδ , path 

flow-proportion ( ][⋅fp ), and path delta-cost ( ][⋅dc ). 

 

4.4.3 Path Operations 
 

 
Fig. 19 Path Diagram of BDW-BP in UML 

 

Different from path operations in BFW, path has to check the blocked call which is using 

Proportional Routing or using MDP Routing, and then informs source that generated this 

blocked call. 

 
In summary, our simulator model could be illustrated in the sequence diagram below. 
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Fig. 20 Sequence diagram for BDW-BP in UML 

 

4.4.4 Simulation Result 
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Fig. 21 Comparison of BDW-BP 
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The performances of “MDP Routing without delay”, “MDP Routing with delay” and 

“Proportional Routing” are the same as the results in Fig. 16. Consider the performance of 

BDW-BP, we find that the performance is comparable with the MDP Routing with delayed 

information, but is worse than the performance of Proportional Routing when the load is 

heavy.  

 

4.5 Simulator Design and Results for BDW-DT 

In this method, we dynamically boost the weight adjusted by the delay time of state 

information. We define this method as “Boosting with Dynamic Weight Adjusted by the 

Delay Time of State Information” (BDW-DT for shorted). The system operations and server 

operations in UML are the same as BFW. 

 

4.5.1 Source Operations 
 

The source diagram in UML is the same as the source operations in BFW. For each new 

call arrival, source has to calculate the delay-time ( ][⋅dt ) for all feasible paths and 

proportionally selects one path using Eq. (3.2). 

 

For path i, Ki ,,2,1 Κ= , we calculate the path-combine-proportion ][ipcp  

 

])[1(][)1(][ ][][ idceifpeipcp idtidt −⋅+⋅−= ⋅−⋅− γγ
       (3.2) 

 

where  γ is a configurable parameter, and 

][idt  is the delay-time of this call for path i, 

][idc  is the delta-cost of this call for path i using Eq .(2.21) in MDP routing 

][ifp  is the flow-proportion of path i using VCR algorithm in proportional routing, 

 

4.5.2 Path Operations 
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Fig. 22 Path diagram of BDW-DT in UML 

 
No matter the call is accepted or blocked, path not only feedbacks the state information, 

but also asks source to record the ack_time[] for this path in order to calculate the delay-time 

of state information. 

 

4.5.3 Simulation Result 
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Comparison of BDW-DT with different gamma
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Fig. 23 Comparison of BDW-DT with different gamma (γ ) 

 

In Fig. 23, the performances of “MDP Routing without delay”, “MDP Routing with 

delay” and “Proportional Routing” are the same as the results in Fig. 16. By changing the value 

of γ in Eq. (3.2), we find that the performances of “BDW-DT (0.1)” and “BDW-DT (0.01)” 

are better than “BDW-DT (1)”, and are even better than “MDP Routing with delay” when the 

load is heavy. Consider Eq.(3.2).  

 

])[1(][)1(][ ][][ idceifpeipcp idtidt −⋅+⋅−= ⋅−⋅− γγ
          (3.2) 

 

When the load is heavy, the link state information is fresh enough. So we increase the weight 

][idte ⋅−γ
 on “ ][1 idc− ” and decrease the weight )1( ][idte ⋅−− γ

on ][ifp . On the other 

hands, the link state information may be delayed, i.e. ][idt  is long. So the bigger 

e idt ][⋅−γ compensates the uncertainty of “ ][1 idc− ”. No matter what the value of ][idt  it is, we 

adaptively proportion flows in any situation using Eq. (3.2). 
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Fig. 24 Flow proportion of BDW-DT (gamma=0.01) 

 
In Fig. 24, it illustrates that the flow proportion of min-hop paths and alternative paths. In 

the beginning, the flow proportion of min-hop paths is 0.998 and the flow proportion of 

alternative path is 0.002. With the increasing load of S3 and S4, the flow proportional of 

alternative paths increases because the blocking probability of min-hop paths is higher than 

alternative paths. And when the blocking probability of alternative path is increasing with the 

increasing load of S3 and S4, the system starts decreasing the proportion of alternative in order 

to equalize the overall blocking rate. 

 

Comparison of BDW-DT with different gamma
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Fig. 25 Comparison of BDW-DT with different gamma (γ ) 
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In Fig .25, we compare four scenarios where gamma (γ ) in Eq. (3.2) is equal to 1, 0.1, 

0.2, and 0.3, respectively. From the simulation results, we find that the performance is not 

necessarily getting better if we decreaseγ . We consider that the performance is not only 

related toγ  but also to the load of the network. 

 

Finally, we compare our proposed three methods with MDP Routing and Proportional 

Routing in Fig. 26. We find that these three methods indeed boost MDP Routing and 

Proportional Routing in some network situation. 

 

Comparison of Different Methods
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Fig. 26 Comparison of all methods 
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Chapter 5 
Conclusion 

In this thesis, we first compare the state-dependent separable routing and adaptive 

proportional routing with different update interval and find that the latter works significantly 

worse than the former if the network state information obtained in the source is delayed not 

more than one minute. So we propose three possible boosting methods to compensate the 

shortcoming of proportional routing and state-dependent routing. As shown in Fig. 26, when 

the load is light, the performance of BDW-BP is better than other boosting methods. But as 

the load increases, we find that the performance of BFW is getting better and even better than 

MDP Routing with delayed state information when the load is heavy. Therefore, these three 

boosting methods are load-dependent and none of them can outperform others in any network 

situations. 

 

Our future work will be conducting the simulation on the more complicated network 

model where the call arrival rates for most of the source-destination pairs are less frequent. We 

believe in such a model the network state tends to be more obsolete whereby configuring the 

weight on the state-dependent separable routing will become a more important issue. 
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