
國 立 交 通 大 學

電信工程學系

碩 士 論 文

以局部收集的網路狀態為依據

之服務品質繞徑法

Localized State-Dependent Control
in QoS Routing

研 究 生：顏廷任

指導教授：廖維國 教授

中 華 民 國 九 十 五 年 十二 月

以局部收集的網路狀態為依據之服務品質繞徑法

Localized State-Dependent Control in QoS Routing

研 究 生：顏廷任 Student：Ting-Jen Yen

指導教授：廖維國 Advisor：Wei-Kuo Liao

國 立 交 通 大 學

電信工程學系

碩 士 論 文

A Thesis

Submitted to Department of Communication Engineering

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Communication Engineering

December 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年十二月

i

以局部收集的網路狀態為依據之服務品質繞徑法

研究生︰顏廷任 指導教授︰廖維國 博士

國立交通大學電信工程學系

摘要

我們研究探討一種服務品質繞徑(QoS routing)的問題，其中網路狀態的資訊只是附

加包含於原有的資源保留協定(RSVP)中的 RESV 信息，而沒有使用另外的繞徑協定。如

此的作法是令人滿意的，因為它完全排除了在服務品質繞徑協定裡由於時常更新網路狀

態而造成的運算負擔。基本上，我們所提出的繞徑法，也就是所謂的”局部性依據網路

狀態繞徑法”(localized state-dependent routing)，促進改善了”局部性比例分配繞徑

法”(localized proportional routing)以及藉由離散時間馬可夫決策過程所模擬出來的”依據

網路狀態可分離式繞徑法”(state-dependent separable routing)。我們的方法是這樣的：假

如網路狀態的資訊仍然是即時的，那我們就採用這個資訊；相反的，我們則採用平均頻

寬資訊。隨著增加”依據網路狀態可分離式繞徑法”使用上的比重，我們發現在我們所設

計的模擬情境中，由我們所提出的繞徑法的效能表現越來越好。除此之外，從我們模擬

的結果可以看出，我們提出的繞徑法表現的比”局部性依據網路狀態繞徑法”還要好。而

且當網路流量沒有很繁重的時候，我們所提出的繞徑法的效能甚至接近最理想的效能。

ii

Localized State-Dependent Control in QoS Routing

Student: Ting-Jen Yen Advisor: Dr. Wei-Kuo Liao

Department of Communication Engineering
National Chiao Tung University

Abstract

We study the QoS routing problem where the network state information is only

piggybacked in the RESV messages in RSVP (Resource Reservation Protocol) without using

any other routing protocol. Doing so is desirable because it completely eliminates the

communication overheads entailed by frequent state updates by QoS routing protocol.

Basically, our proposed routing called localized state-dependent routing boosts the localized

proportional routing and the state-dependent separable routing formulated by Discrete-Time

Markov Decision Process in such a way that the link state information will be explored if it is

fresh enough; otherwise it remains to use the average bandwidth information. By increasing

the configurable weight on the state-dependent separable routing, we find the performance of

our proposed routing eventually getting better in our selected simulation scenario. Besides, as

the simulation results shown, our proposed routing outperforms the localized proportional

routing and even is nearly optimal when the load is not heavy.

iii

誌謝

 首先，感謝我的父母，從小到大提供我一個良好的求學環境，並且提供

我生活上的幫助，讓我可以無後顧之憂的唸書做學問。另外感謝我的指導

教授廖維國老師，在這兩年多來，在課業及學術方面給我很好的教導，讓

我的學習到很多做學問的知識和方法，受益良多。同時也感謝兩位口試委

員，張仲儒教授以及魏學良教授，對我口試時的建議和建言，對於我的論

文有很大幫助。此外，也感謝我的實驗室同學、學長姊、學弟妹，平常對

我的照顧和幫忙，也讓我生活添加了很多樂趣。最後要感謝我的女朋友媛

茜，從我大學到碩士，一路上都一直默默的幫助我和支持我，是我最大的

精神糧食。

iv

Contents
摘要 ... 1

Abstract ... ii

誌謝 ..iii

Contents.. iv

List of Tables... v

List of Figures .. vi

Chapter 1 Introduction ... 1

Chapter 2 Background.. 3

2.1 Discrete-Time Markov Decision Process ...3
2.2 RSVP (Resource Reservation Protocol) ...7
2.3 State-Dependent Routing: Separable Routing ..10
2.4 Adaptive Proportional Routing: A Localized QoS Routing Approach14

Chapter 3 Localized State-Dependent Routing.. 17

3.1 Shortcomings of State-Dependent Routing and Proportional Routing.......17
3.2 Overview of Proposed Boosting Methods ..17
3.3 Assumptions..18
3.4 Boosting with Fixed Weights..19
3.5 Boosting with Dynamic Weights Adjusted by Blocking Probability20
3.6 Boosting with Dynamic Weights Adjusted by the Delay Time of State
Information...21

Chapter 4 Simulation Results... 24

4.1 Comparison of Proportional Routing and MDP Routing25
4.2 Simulator Parameters Setting..26
4.3 Simulator Design and Results for BFW..27

4.3.1 System Operations..27
4.3.2 Source Operations ..28
4.3.3 Path Operations ..29
4.3.4 Server Operations ...29
4.3.5 Simulation Result ...31

4.4 Simulator Design and Results for BDW-BP...31
4.4.1 System Operations..32
4.4.2 Source Operations ..32

v

4.4.3 Path Operations ..34
4.4.4 Simulation Result ...35

4.5 Simulator Design and Results for BDW-DT ..36
4.5.1 Source Operations ..36
4.5.2 Path Operations ..36
4.5.3 Simulation Result ...37

Chapter 5 Conclusion ... 41

References ... 42

List of Tables

Table .1 Setting of parameters in our simulator.. 27

vi

List of Figures
Fig. 1 A possible five-state problem ... 5
Fig. 2 Policy Iteration Cycle ... 6
Fig. 3 Make reservation on a multicast tree .. 9
Fig. 4 Disjoint paths between a source-destination pair 15
Fig. 5 VCR Procedure ... 16
Fig. 6 Source routing... 19
Fig. 7 Boosting process ... 23
Fig. 8 Fish topology .. 24
Fig. 9 Object Model Diagram in UML ... 25
Fig. 10 Comparison of Proportional Routing and MDP Routing 25
Fig. 11 System diagram of BFW in UML .. 27
Fig. 12 Source diagram of BFW in UML ... 28
Fig. 13 Path diagram of BFW in UML ... 29
Fig. 14 Server diagram of BFW in UML.. 30
Fig. 15 Sequence diagram for BFW in UML.. 30
Fig. 16 Comparison of BFW with different weight (δ) 31
Fig. 17 System diagram of BDW-BP in UML.. 32
Fig. 18 Source Diagram of BDW-BP in UML ... 33
Fig. 19 Path Diagram of BDW-BP in UML ... 34
Fig. 20 Sequence diagram for BDW-BP in UML... 35
Fig. 21 Comparison of BDW-BP.. 35
Fig. 22 Path diagram of BDW-DT in UML.. 37
Fig. 23 Comparison of BDW-DT with different gamma (γ) 38

Fig. 24 Flow proportion of BDW-DT (gamma=0.01) .. 39
Fig. 25 Comparison of BDW-DT with different gamma (γ) 39
Fig. 26 Comparison of all methods ... 40

1

Chapter 1
Introduction

For a large-scale network, controlling the load to each link is mandatory to meet the

requirements of each connection. Without appropriate load control on links, the load may

exceed the link capacity and end user will experience quality degradation, such as delay jitter,

unexpected dropping packets, etc.

To this end, the IntServ (Integrated Service) working group defined the RSVP (Resource

Reservation Protocol) [7] to enable the reservation-based load control. Consider the case of

one sender and one receiver trying to get a reservation for traffic flowing between them. By

sending a PATH message from the sender to the receiver that contains the flow’s traffic

characteristics (i.e. the sender’s TSpec), the receiver can establish a resource reservation at

each router on that path. Each router looks this PATH message as it goes past, and it figures

out the reverse path. Having received a PATH message, the receiver sends back a RESV

message for resource reservation along the reverse path. This message contains the sender’s

TSpec and an RSpec describing the requirements of this receiver. Each router on the path

looks at the reservation request and tries to allocate the necessary resources to satisfy it. If the

reservation can be made, the RESV request is passed on to the next router. If not, an error

message is returned to the receiver who made the request. If all goes well, the correct

reservation is installed at every router between the sender and the receiver.

The issue of how to direct the PATH message to reduce the chance of declined flow

request is addressed in the QoS routing. Among many alternatives, the source-routing-based

QoS routing has been extensively studied. Essentially, the source selects a “best path” for

flow according to the QoS requirement of the flow and the knowledge of the resource

availability at network nodes. The source-routing-based QoS routing can be categorized by

the way that they gather information about the network state and select a path by this

information. For instance, in the state-dependent routing approach [2] each node can construct

a global view of the network QoS state information through periodic information exchange

among nodes in a network and selects the best path for a flow based on this global view of the

network state. Examples of state-dependent routing approach are those QoS routing schemes

[9, 10] based on QoS extensions to the OSPF (Open Shortest Path First) routing protocol.

2

However, for a large-scale network, the prohibitive communication overheads entailed

by such frequent state updates precludes the possibility of always maintaining an accurate

view of the current network QoS state for each node. To handle such scalability problem, in

[4] the authors proposed a method called localized proportional routing, where feasible path

are selected based on the average available bandwidth information and flows are adaptively

proportioned among these feasible path based on locally collected information from other

nodes. Indeed, by collecting the information which is piggybacked in the RESV messages,

there is no need for another protocol to collect the network state information. As shown in

their simulation results, by adaptively proportioning flows the localized proportional routing

approach performs well than the state-dependent routing approach when the update interval is

long enough, typically more than one minute.

In viewing that the state-dependent routing with short update interval still outperforms

the localized proportional routing, we proposed the routing scheme called localized

state-dependent routing. Briefly put, our proposed routing combines the localized

proportional routing scheme with the state-dependent separable routing formulated by

Discrete-Time Markov Decision Process in a way that the state information will be explored

if it is fresh enough; otherwise it remains to use the average bandwidth information. By

sending RESV message which additionally contains the state information back to source,

source obtains the local network information feedback from the routers, and therefore we do

not increase the communication overhead. From the simulation results of our selected system

model, our proposed routing outperforms the localized proportional routing.

The remainder of this thesis is organized as follows: in chapter 2, we discuss the
necessary background knowledge, including Discrete-Time Markov Decision Process [1],
Resource Reservation Protocol (RSVP) [7], State-Dependent Routing [2], and Adaptive
Proportional Routing [3, 4]. In chapter 3, we describe the proposed “localized state-dependent
routing” to minimize the overall blocking probability by its self-refrained alternative routing
with the localized view of the network state. The simulator design and the simulation results
are shown in chapter 4. Finally, we make a conclusion in chapter 5.

3

Chapter 2
Background

In this chapter, we will introduce the basic concept of Discrete-Time Markov Process [1]

and RSVP (Resource Reservation Protocol) [7]. And then we introduce two kinds of routing

schemes, state-dependent routing [2] and adaptive proportional routing [3, 4].

2.1 Discrete-Time Markov Decision Process

Suppose that in the system there are N states numbered from 1 to N. If the system now

occupies state i, the probability of a transition to state j during the next constant time interval is

a function only of i and j and not any history of the system before its arrival in i. In other word,

we may specify a set of conditional probability ijp that a system which now occupies state i

will occupy state j after its next transition. Since the system must be in some state after its next

transition, 1
1

=∑
=

N

j
ijp , where the probability that the system will remain in i, iip , has been

included. Since ijp is probability, 0 ≦ ijp ≦ 1. The set of transition probabilities for the

process may be described by a transition probability matrix P with elements ijp .

Suppose that an N-state Markov process earns ijr if it makes a transition from state i to

state j. We call ijr the “reward” associated with the transition from i to j. The set of rewards for

the process may be described by a reward matrix R with elements ijr . The Markov process

generates a sequence of rewards as it makes transitions from state to state. The reward is thus a

random variable with a probability distribution governed by the probabilistic relations of the

Markov process.

Now we define)(nvi as the expected total rewards in the next n transitions if the system is

in state i now. Some reflection on this definition allows us to write the recurrent relation,

ΛΛ ,3 ,2 ,1 , ,2 ,1)]1([)(
1

==−+=∑
=

nNinvrpnv
N

j
jijiji (2.1)

4

If the system makes a transition from i to j, it will earn the reward ijr plus the amount it

expects to earn if it starts in state j with one move fewer remaining. As shown in Eq. (2.1), these

rewards from i to j must be weighted by the probability of such a transition, ijp , to obtain the

expected total rewards.

Notice that Eq. (2.1) may be also written in the form

 ΛΛ ,3 ,2 ,1 , ,2 ,1)1()(
1

==−+= ∑
=

nNinvpqnv
N

j
jijii (2.2)

, where the quantity iq is defined by

 Nirpq
N

j
ijiji , ,2 ,1

1

Λ== ∑
=

 (2.3)

The quantity iq may be defined as the reward to be expected in the next transition out of

state i. It will be called the “expected immediate reward” for state i. Rewriting Eq. (2.1) as Eq.

(2.2) shows us that it is not necessary to specify both a P matrix and an R matrix in order to

determine the expected earnings of the system. All that is needed is a P matrix and a q column

vector with N components iq . In vector form, Eq. (2.2) may be written as

Λ ,3 ,2 ,1)1()(=−+= nnn Pvqv (2.4)

, where)(nv is a column vector with N components)(v ni , called the total-value vector.

If there is only one recurrent chain in the system so that it is completely ergodic. Consider

a completely ergodic N-state Markov process described by a transition-probability matrix P and

a reward matrix R. Suppose that the process is allowed to make transitions for a very, very long

time and that we are interested in the earnings of the process. The total expected earnings

(rewards or costs) depend upon the total number of transitions that the system undergoes, so

that this quantity grows without limit as the number of transitions increases. A more useful

quantity is the average earnings of the process per unit time. This quantity is meaningful if the

process is allowed to make many transitions; it was called the “gain” of the process.

5

Since the system is completely ergodic, the limiting state probabilities iπ are independent

of the starting state, and the gain g of the system is

1

N

i i
i

g qπ
=

= ∑ (2.5)

, where iq is the expected immediate return state i defined by Eq. (2.3).

Consider the three-dimensional array of Fig. 1, which presents in graphical form the states

and alternatives.

X

X

X

X
X

1 1
11 11p ,r 1 1

12 12p ,r 1 1
15 15p ,r

1 1
21 21p ,r

1 1
51 51p ,r 1 1

55 55p ,r

 k alternatives

 j succeeding
state

 i presemt state

Fig. 1 A possible five-state problem

The array as drawn illustrates a five-state problem that has four alternatives in the first

state, three in the second, two in the third, one in the fourth, and five in the fifth. Entered on the

face of the array are the parameters for the first alternative in each state, the second alternative

in each state, and so forth. An X indicates that we have chosen a particular alternative in a state

with a probability and reward distribution that will govern the behavior of the system at any

time that it enters that state. Thus the alternative selected is called the “decision” for that state.

The set of decisions for all states is called a “policy”. Selection of a policy thus determines the

Markov process with rewards that will describe the operation of the system.

An optimal policy is defined as a policy that maximizes the gain, or average return per

transition. We can find the optimal policy in a small number of iterations by the policy-iteration

6

method. It is composed of two parts, the value-determination operation and the

policy-improvement routine which are diagrammed as shown in Fig.2

Fig. 2 Policy Iteration Cycle

In [1] it proves that the new policy will have a higher gain than the old policy. First,

however, we shall show how the value-determination operation and the policy-improvement

routine are combined in an iteration cycle whose objective is to find a policy that has highest

gain among all possible policies. The upper box, the value-determination operation, yields the g

and iv corresponding to a given choice of ijp and iq . The lower box yields ijp and iq that

increase the gain for a given set of iv . In other words, the value-determination operation yields

values as a function of policy, whereas the policy-improvement routine yields the policy as a

function of the values.

We may enter the iteration cycle in either box. If the value-determination operation is

chosen as the entrance point, an initial policy must be selected. If the cycle is to start in the

policy-improvement routine, then a starting set of values is necessary. The selection of an initial

policy that maximizes expected immediate reward is quite satisfactory in the majority of cases.

7

At this point it would be wise to say a few words about how to stop the iteration cycle once

it has done its job. The rule is quite simple: The final robust policy has been reached (g is

maximized) when the policies on two successive iterations are identical. In order to prevent the

policy-improvement routine from quibbling over equally good alternatives in a particular state,

it is only necessary to require that the old decision id be left unchanged if the test quantity for

that id is as large as that of any other alternative in the new policy determination.

In summary, the policy-iteration method just described has the following three properties:

a. The solution of the sequential decision process is reduced to solving sets of linear

simultaneous equations and subsequent comparisons.

b. Each succeeding policy found in the iteration cycle has a higher gain than the previous

one.

c. The iteration cycle will terminate on the policy that has largest gain attainable within

the realm of the problem; it will usually find this policy in a small number of

iterations.

These three properties are proved in detail in [1].

2.2 RSVP (Resource Reservation Protocol)

The term “Integrated Service” (often called IntServ fo short) refers to a body of work that

was produced by the IETF around 1995-97. The IntServ working group developed

specifications of a number of service classes (e.g. guaranteed service and controlled load

service) designed to meet the need of some the application types. It also defined how RSVP

(Resource Reservation Protocol) could be used to make reservation using these service classes.

With a best-effort service we can just tell the network where we want our packets to go and

leave it at that, but a real-time service involves telling the network something more about the

type of service we require. In addition to describing what we want, we need to tell the network

something about what we are going to inject into it, since a low-bandwidth application is going

to require fewer network resources than a high-bandwidth application. The set of information

that we provide to the network is referred to as a flowspec. There are two separable parts to the

flowspec: the part that describes the flow’s traffic characteristics (called the TSpec) and the part

that describes the service requested from the network (called the RSpec).

8

When we ask the network to provide us with a particular service, the network needs to

decide if it can in fact provide that service. The process of deciding when to say no is called

admission control. When some new flow wants to receive a particular level of service,

admission control looks at the TSpec and RSpec of the flow and tries to decide if the desired

service can be provided to that amount of traffic, given the currently available resources,

without causing any previously admitted flow to receive worse service than it had requested.

More knowledge about admission control could be found in [7].

One of the key assumptions underlying RSVP is that it should not detract from the

robustness that we fid in today’s connectionless network. RSVP tries to maintain this

robustness by using the idea of soft state in the routers. In contrast to the hard state found in

connection-oriented networks, soft state doesn’t need to be explicitly deleted when it is no

longer needed. Instead, it times out after some fairly short period if it is not periodically

refreshed. Another important characteristic of RSVP is that it aims to support multicast flows

just as effectively as unicast flows. For multicast applications, rather than having the senders

keep track of a potentially large number of receivers, it makes more sense to let the receivers

keep tack of their own needs.

The soft state and receiver-oriented nature of RSVP give it a number of nice properties.

One nice property is that it is very straightforward to increase or decrease the level of resource

allocation provided to a receiver. Since each receiver periodically sends refresh messages to

keep the soft state in place, it is easy to send a new reservation that asks for a new level of

resources. In the event of a host crash, resources allocated by that host to a flow will naturally

time out and be released. Now we look a little more closely at the mechanics of making a

reservation.

Initially, consider the case of one sender and one receiver trying to get a reservation for

traffic flowing between them. There are two things that need to happen before a receiver can

make a reservation. First, the receiver needs to know what traffic the sender is likely to send so

that it can make an appropriate reservation. That is, it needs to know the sender’s TSpec.

Second, it needs to know what path the packets will follow from sender to receiver, so that it

can establish a resource reservation at each router on that path. Both of these requirements can

be met by sending a PATH message from the sender to the receiver that contains the TSpec.

9

The other thing that happens is that each router looks this PATH message as it goes past, and it

figures out the reverse path that will be used to send reservation from the receiver back to the

sender in an effort to get the reservation to each router on the path.

Having received a PATH message, the receiver sends a reservation back “up” the

multicast tree in a RESV message. This message contains the sender’s TSpec and an RSpec

describing the requirements of this receiver. Each router on the path looks at the reservation

request and tries to allocate the necessary resources to satisfy it. If the reservation can be made,

the RESV request is passed on to the next router. If not, an error message is return to the

receiver who made the request. If all goes well, the correct reservation is installed at every

router between the sender and the receiver.

Now we can see what happens when a router or link fails. Routing protocols will adapt to

the failure and create a new path from sender to receiver. PATH messages are sent about every

30 seconds, and may be sent sooner if a router detects a change in its forwarding table, so the

first one after the new route stabilizes will reach the receiver over the new path. The receiver’s

next RESV message will follow the new path and hopefully establish a new reservation on the

new path. Meanwhile, the routers that are no longer on the path will stop getting RESV message

and these reservations will time out and be released. Thus RSVP deals quite well with changes

in topology, as long as routing changes are not excessively frequent.

As for the case of multi-senders and multi-receivers, it is discussed in detail in [7]. In Fig.

3, it graphically displays how senders make reservations on a multicast tree.

Fig. 3 Make reservation on a multicast tree

10

2.3 State-Dependent Routing: Separable Routing

Separable routing is the first of some routing schemes for circuit switched telephone traffic

invented at Bellcore. These routing schemes are state-dependent, in the sense that, for each call

attempt, a routing decision is made on the basis of the state of the network (defined in terms of

the numbers of busy and idle trunks in the various links at the moment of the call attempt).

In the state-dependent network, the nodes are connected by links. An n-hop route is a route

which traverses n links, or two end nodes and (n-l) via nodes. Therefore the goal is to find some

rules which make an optimal or almost optimal routing decision, for each call attempt, as a

function of the origin-destination of the call attempt and of the state of the network at the

moment of the call attempt.

There are two kinds of state space of the system: “route-based state space” and “link-based

state space”. We first discuss the route-based state space. For each node pair (S; D) we have a

list of legal routes from S to D; the state of the system at time t is given by the array

{))(RD,S,(N t }, where the element))(RD,S,(N t gives the number of busy calls in over route

R at time t for each node pair (S, D). As for the link-based state space, we number the link

description k = 1, 2.... K, and that the state of the network at any time t is given by the array

{)(tX k }, 1 < k < K, where)(tX k is the number of busy calls in link k at time t.

It must be noted that if calls have independent, exponentially distributed holding times

with the same mean (independent of the node pair of the call), and if each call that is routed as

an n-hop call at once split into n independently terminating one-hop calls with exponential

holding times of the same mean, then the link-based state description would be mathematically

complete. The assumption is, of course, incorrect. The oversimplification is warranted because

of the considerable decrease in complexity, and because it is a fairly minimal source of error.

We assume that there are N nodes (switches) in the network. The links will be numbered k

= 1, 2...,)1(2/1 −×= NNK . Link k has kS trunks (unit of bandwidth), kS > 0. We also

assumed that kS is given and does not vary over time.)(tX k denotes the number of busy

trunks in link k at time t. We use the link-based state description, which means that the state of

the network at time t is defined by the vector))(,),(),(()(21 tXtXtXtX KΚ= .

11

In separable routing, we have costs),(kXk∆ (kk SX ≤≤0) for every k (Kk ≤≤1),

with the property that

1),(),()1,()0,(0 1 =∆<∆<<∆<∆< − kk SkSkkk Κ (2.6)

, where),(kXk∆ is an estimate of the expected cost, in terms of additional calls blocked in the

future, of now adding one call to link k if that link currently already has kX busy trunks.

Whenever a call attempt is made from node n1 to node n2, for each route),(RR 21 nn∈ , we

compute the state-dependent cost of routing the call over route R. This cost is computed by the

formula

∑
∈

∆=
Rk

kXkRt),()(cos (2.7)

, where the summation is over all link k in route R. Eq. (2.7) assumes that kX , the number of

busy trunks in link k, is known for all R∈k .

Next, we find the minimum cost route *R :

find),(RR 21 nn *∈ with)R(costmin)R(cost
),(RR 21 nn

*
∈

= (2.8)

The decision rule now is that

if cost (*R) < 1: route the call over *R , (2.9a)

if cost (*R) > 1: block the call. (2.9b)

The intuition behind this rule is that blocking the call leads to the loss of exactly one call

(the blocked call), while routing the call over route R leads to an expected number cost(R) of

future blocked calls.

In [2],)(tN A is the total number of call attempts offered to the network during the time

12

interval [0, t], and)(tN B is the total number of calls blocked during the same time interval.

Furthermore, it is assumed that the statistical patterns in the call attempt process are constant

over time (i.e. we assume that the call attempt process is a stationary process), so that the

average arrival rate λA exists, where

t
tN A

tA
)(lim

∞→
=λ (2.10)

, and we of course assume that

∞<< Aλ0 (2.11)

We also consider only state-dependent routing policies for which

t
tNg B

t

)(lim
∞→

= (2.12)

exist; g is called the overall blocking rate in the network (the average number of calls blocked

per unit of time). Our goal is to find a routing scheme which minimizes g.

Eq. (2.10) and Eq. (2.12) imply the following exists,

)(
)(lim

tN
tNgP

A

B

t
A

B ∞→
==

λ
 (2.13)

where PB is called the average blocking probability.

Let P be a state-dependent routing policy. With some additional assumptions described in

[2], we have a result which is stronger than (2.12)

)((1))()(] ,)0(|)([)(∞→++⋅== tovgttNE B xPPxX P (2.14)

, where][⋅E denotes the expectation operator and where x is any K-dimensional vector in the

13

state space of the stochastic process)(tX . In Eq. (2.14), the conditioning is on the initial state

)0(X and on the fact that policy P is consistently used to make routing decisions,)()(xv P is (up

to an undetermined additive constant) the well-known relative value (in Markov decision

processes) or cost of starting in state x=)0(X . Eq. (2.14) also determines this constant. The

"small o" symbol o(1) means that while for t ∞ both the RHS and LHS in Eq. (2.14) go to

infinity, the difference goes to zero. Since)()(xv P represents an expected number of blocked

(lost) calls, we call it the cost of starting in state x under policy P. In Markov decision theory,

determining)()(xv P from P is called the value determination step. It is convenient to define

+∞=)()(xv P for all K-dimensional vector x not in the state space of the process)(tX . Suppose

that, for any policy P, the value determination step can be done. Then, given any policy P0, it is

possible to find a new policy P1 which is at least as good as P0. P1 is found by the policy

improvement step defined in Markov decision theory, see [1].

It is well known, see [3], that for this Erlang-B model with calls arriving according to a

Poisson process with intensity λ and call holding times which are exponentially distributed with

expected value 1, we say that this system is in state k (sk ≤≤0) when exactly k trunks are busy.

In this model, the stationary probability that the system is in state k is equal to

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= s

j

j

k

k

j

ksp

0 !

!),(λ

λ

λ (2.15)

, and that the blocking probability equals

),(

!

!),(

0

λλ

λ

λ sB

j

ssp s

j

j

s

s =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
∑
=

 (2.16)

, where),(λsB is the well-known Erlang-B function which is defined by Eq. (2.16). The

blocking rate g equals

14

),(),(λλλ sBsgg ⋅== (2.17)

In a telephone network where only direct routing is allowed, all links become independent

systems. If each link k (Kk ≤≤1) is modeled as an Erlang-B system with ks trunks and arrival

rate kλ , then the cost function)(⋅v satisfies

 ∑
=

=
K

k
kkk xvxxv

1
1)(),,(Κ (2.18)

),(
),()()1(

k

kk
kk jB

sBjvjv
λ
λ

=−+ ksj ≤≤0for (2.19)

 ∑
=

=
ks

j
kkkj jvsp

0

0)(),(λ (2.20)

where [)()1(jvjv kk −+] is the expected cost of the increase in the number of future blocked

calls, of now adding one call to link k if the system is in state),,,(21 Kxxxx Κ= . It finds that

the cost depends only on kx and is independent of the states of the other links. We thus can take

delta-costs

),(
),(),(

kk

kk
k xB

sBxk
λ
λ

=∆ (2.21)

and use these delta-costs to derive a separable routing scheme.

2.4 Adaptive Proportional Routing: A Localized QoS Routing Approach

QoS (Quality-Of-Service) routing is concerned with the problem of how to select a path

for a flow such that the flow’s QoS requirements such as bandwidth or delay are likely to be met.

Most of the QoS routing schemes proposed so far require periodic exchange of QoS state

information among routers, imposing both communication overhead on the network and

processing overhead on core routers. Furthermore, stale QoS state information causes the

15

performance of these QoS routing schemes to degrade drastically. In order to circumvent these

problems, we focus on localized QoS routing schemes where the edge routers make routing

decisions using only local information and thus reducing the overhead at core routers.

We assume that source routing is used, and that network topology information is available

to all source nodes (e.g., via the OSPF protocol), and one or multiple explicit-routed paths are

setup a priori for each source and destination pair using, e.g., MPLS [5].

Fig. 4 Disjoint paths between a source-destination pair

Consider a simple topology shown in Fig.4, where a source and a destination are

connected by k disjoint paths Krrr ,,, 21 Κ . Each path ir has a (bottleneck) capacity of ic units

of bandwidth and is assumed to be known to the source S. Suppose that calls arrive at the source

S at an average rate λ, and the average call holding time is 1/µ. We assume that call arrivals are

Poisson and call holding times are exponentially distributed. For simplicity, we also assume

that each call consumes one unit of bandwidth. In other words, path ir can accommodate ic

calls at any time. Suppose that, on the average, the proportion of calls routed along path ir

is iα , where ∑=
==

K

1
1 and ,,2,1

i iKi αΚ . Then the blocking probability ib at path ir is:

∑
=

==
i

i

c

n

n
i

c
i

iii

n
v

c
v

cvEb

0 !

!),(

, where)/(µλα iiv = is referred to as the average load on path ir . The total load on the

system is denoted by µλ /
1

== ∑ =

k

i ivv .

There are two alternative strategies for flow proportioning: equalization of blocking

16

probabilities (ebp) and equalization of blocking rates (ebr). Here we skip the first strategy and

account for the ebr strategy. The objective of the ebr strategy is to find a set of

proportions { }Kααα ˆ,,ˆ,ˆ 21 Κ such that flow blocking rates of all the paths are equalized,

i.e., KK bbb ˆˆˆˆˆˆ 2211 ααα === Λ , where ib̂ is the flow blocking probability of path ir .

By incorporating this self-refrained alternative routing method into the virtual capacity

model defined in [3], it devise a theoretical adaptive proportional routing scheme, which is

referred to as the Virtual Capacity based Routing (vcr) scheme. In this vcr scheme, it uses the

ebr strategy to proportion calls along the min-hop paths, and proportion calls along the

alternative paths. The scheme is shown in Fig. 5.

Fig. 5 VCR Procedure

Suppose the total load for a source–destination pair is v. At a given step, n ≥ 0 let

vv n
r

n
r ×=)()(α be the amount of the load currently routed along a path R∈r , and let)(n

rb be

its observed blocking probability on that path. Then the virtual capacity of path r is given

by),()()(1)(n
r

n
rvc

n
r bvEvc −= . For each min-hop path, the mean blocking rate of all the min-hop

paths)(nβ is used to compute a new target load. Similarly, for each alternative path, a new

target load is computed using the target blocking probability *b×ψ where ψ is a constant

parameter. Given these new target loads for all the paths, the new proportion of flows,)1(+n
rα ,

for each path r, is obtained in lines10–11, resulting in a new load vv n
r

n
r ×= ++)1()1(α on path r.

17

Chapter 3
Localized State-Dependent Routing

In this chapter, we first describe the shortcomings of the state-dependent separable

routing scheme [2] and adaptive proportional routing scheme [3, 4]. We then propose three

possible boosting methods in anticipate that the shortcomings of both routing schemes can be

remedied.

3.1 Shortcomings of State-Dependent Routing and Proportional Routing

In chapter 2, we understand the concepts of state-dependent separable routing scheme and

adaptive proportional routing scheme. In the state-dependent separable routing formulated by

the Markov decision process, a routing decision is made on the basis of the state of the network.

It gathers global network state information and selects a best path with minimum delta-cost for

an incoming flow based on network state information. The routing will work well when each

source node has a reasonably accurate global view of the network state. Since network resource

availability changes with each flow arrival and departure, it is impractical to maintain an

accurate view of the network state, due to prohibitive communication and processing overheads

entailed by frequent state information exchanges. However, as our simulation in Chapter 4

shown, inaccurate view of network state increases the blocking rate dramatically.

In adaptive proportional routing scheme feasible paths are selected based on infrequently

exchanged average available bandwidth information and flows are adaptively proportioned

among these feasible paths based on locally collected information from other nodes. However,

our simulation also shows that the adaptive proportional routing approach works significantly

worse than the state-dependent separable routing approach if the network state information

obtained in the source is delayed not more than one minute.

3.2 Overview of Proposed Boosting Methods

The above discussions give us the motivation for boosting the state-dependent separable

routing by Markov Decision Process (MDP Routing for shorted) on the basis of Proportional

Routing approach to compensate each other. In this section, we propose three methods to

boost these two routing schemes.

18

First, we can statically boost these two routing schemes by assigning fixed weight. For

example, we can assign weight δ)10(≤≤ δ for Proportional Routing and weight (1- δ) for

MDP Routing. If we prefer the Proportional Routing scheme, we can increase the weight δ. It

is noteworthy that the selection of optimal weight δ is network-dependent and is expected to

be a difficult task. We propose such a boosting simply for the comparison purpose.

Second, we dynamically adjust the weight of these two routing schemes. Given the

observed blocking probability of these two routing schemes for a fixed time interval, we can

calculate the new weight of these schemes for next time interval to favor the one with low

blocking probability. Using the new weight, we can randomly choose one of these two

schemes to select one best path for various network situations.

And from the observation in Chapter 2, we find that the Proportional Routing approach

works well than the MDP Routing when its update interval is more than one minute. So the

third method is that we can dynamically adjust the weight based on the delay time of local

state information piggybacked in RESV message. If the state information is delayed too long,

the state information must be stale and therefore we prefer to use the average bandwidth

information in Proportional Routing to select a best path. Otherwise, we use the state

information in MDP routing because it is fresh enough. Before we introduce these methods in

detail, we make some assumptions for our model

3.3 Assumptions

We assume that source routing is used, and that network topology information is available

to all source nodes (via the OSPF protocol), and one or multiple explicit-routed paths are setup

a priori for each source and destination pair. In Fig.6, source S has K feasible paths

{ Kiri ,,2,1| Κ= }. Each path ir can accommodate ic unit of bandwidth. For source S, we

assume that call arrivals are Poisson with intensity sλ and call holding times are independent,

exponentially distributed with meanµ (independent of the node pair of the call). For simplicity,

we also assume that each call consumes one unit of bandwidth. Suppose that, on the average,

the proportion of calls routed along path ir is iα , where ∑=
==

K

1i
1 and ,,2,1 iKi αΚ .

19

Fig. 6 Source routing

And in the following sections, we will introduce particularly these three methods to

boost the Proportional Routing and MDP Routing in various network situations.

3.4 Boosting with Fixed Weights

Every “Update Proportion Interval” (upi), source S calculates the new proportion of

paths {][⋅fp } by the VCR algorithm defined in Fig. 5 according to the old proportions of

paths {][⋅fp }, the observed blocking probability of paths {][⋅bp }, and the load of source S

{ sv } during this update proportion interval. And every “Update Lambda Interval” (uli),

source S calculates iλ , the average arrival rate of path i, in order to compute the delta-cost

{][⋅dc } defined in Eq. (2.21).

When a new call arrives, we first check whether there is available bandwidth or not. If

there is no available bandwidth, we have to reject this call. Otherwise, we select one best path

based on the state information. We have two kinds of approaches to choose one path, i.e.

Proportional Routing and MDP Routing. We can assign fixed weight δ)10(≤≤ δ for

Proportional Routing and weight (1- δ) for MDP Routing statically. According to the

following pseudo code, we can find out the best path and use RSVP to setup this call along

the selected path.

 // pseudo code for path-selecting

 If (available bandwidth)

 tmp = (rand()%1000) /1000.0; // random value : tmp

if(0<=tmp && tmp<δ)

 using “ Proportional Routing ” to select path

 else // if (δ<=tmp && tmp<1)

20

 using “ MDP Routing “ to select path

 else

 Reject this call

3.5 Boosting with Dynamic Weights Adjusted by Blocking Probability

Besides Update Proportion Interval and Update Lambda Interval, we calculate the

blocking probability for calls using Proportional Routing and MDP Routing for every

“Update Weight Interval” (uwi). Then we calculate new weights using the following

equations.

 In “n-th” Update Weight Interval:

For Proportional Routing:

nterval Weight IUpdatethkbpPR

bpPRPRbpbpPRbpPRbpPRbpPRPRbp

e

eeeeeee

k

nnnnn

 in y probabilit blocking theis where

__

)(

)()1()()1()1()0()(

−

×=××××=
−−

Λ

For MDP Routing:

nterval Weight IUpdatethkbpMR

bpMRMRbpbpMRbpMRbpMRbpMRMRbp

e

eeeeeee

k

nnnnn

 in y probabilit blocking theis where

__

)(

)()1()()1()1()0()(

−

×=××××=
−−

Λ

New weight for using Proportional Routing:

(3.1a)
__

_

)()(

)(

(n)

MRbpPRbp

PRbp

ee
e

nn

n

+
=δ

New weight for using MDP Routing:

(3.1b)
__

_
1

)()(

)(

(n)

MRbpPRbp

MRbp

ee
e

nn

n

+
=−δ

21

Different from the previous method which using fixed weights δ, we calculate the new

weight)(nδ for Proportional Routing and)(1 nδ− for MDP Routing in the n-th Update Weight

Interval. According to the following pseudo code, we can find out the best path and use RSVP

to setup this call along the selected path.

 // pseudo code for path-selecting

 If (available bandwidth)

 tmp = (rand()%1000) /1000.0; // random value : tmp

if(0<=tmp && tmp< δ(n))

 using “ Proportional Routing ” to select path

 else // if (δ(n)<=tmp && tmp<1)

 using “ MDP Routing “ to select path

 else

 Reject this call

3.6 Boosting with Dynamic Weights Adjusted by the Delay Time of State

Information

After source S receives the RESV message of RSVP, source S records the moment of

message feedback from path i, i.e.][0 it . The delay time,][idt , of a new call attempt at time t is

calculated as follows:

Kiittidti ,,2,1][][,path For 0 Κ=−=

Different from the previous two methods which choose one of these two routing

approaches to select one best path, we non-linearly combine MDP Routing and Proportional

Routing by the exponentially decayed weights. We introduce this method in detail as follow:

For path i, Ki ,,2,1 Κ= , we calculate the path-combine-proportion][ipcp , using the

following equation :

])[1(][)1(][][][idceifpeipcp idtidt −⋅+⋅−= ⋅−⋅− γγ
 (3.2)

22

where γ is a configurable parameter, and

][idt is the delay time of this call for path i,

][idc is the delta-cost of this call for path i using Eq .(2.21) in MDP routing

][ifp is the flow-proportion of path i using VCR algorithm in proportional routing,

And then we normalize the path-combine-proportion][ipcp for path i, Ki ,,2,1 Κ=

∑ =

=
Kj

jpcp
ipcpipcp

,...,2,1
][

][][(3.3)

Finally we select one path proportionally based on Kiiipcp ,,2,1 , path for][Κ=

Given a random value rv , 10 <≤ rv , Km ,,2,1 Κ=

If][]1[mbvrvmbv ≤≤− , we choose path m as the best path.

1][]1[][

;]2[]1[]2[
;]1[0]1[

 0]0[where

=+=

+=
+=

=

KpcpK-bvKbv

pcpbvbv
pcpbv

bv

Μ

When the average load of source is heavy, the state-information is fresh because the

update interval (delay-time information][idt) of the source is short. When the state information

is fresh, we have better to choose the MDP Routing scheme to find the best path. On the other

hand, if the state information is delayed and outdated, we need to use the Proportional Routing

scheme. Therefore, we have to multiply (][1 idc−) by][idte ×− γ and multiply][ifp by

23

][1 idte ×−− γ in order to cooperate these two schemes adaptively and choose one path

proportionally. So we use the different weight with exponentially decayed for MDP routing

and proportional routing. And by sending RESV message which additionally contains the state

information back to source, source obtains the local network information feedback from the

routers, and therefore we do not increase the communication overhead.

 In the summary, we illustrate our methods by the following block diagram.

Fig. 7 Boosting process

24

Chapter 4
Simulation Results

In the following we illustrate a simple network topology how our scheme works better

than adaptive proportional routing when the load of source is varying with time.

Consider the fish topology shown in Fig. 8.

Fig. 8 Fish topology

The nodes 1, 2, 3, and 4 are the source nodes and node 12 is the destination node. Each of

node 1 and node 2 has two min-hop paths (1 5 6 12, 1 5 7 12 and 2 5 6 12,

2 5 7 12) and two alternative paths (1 5 8 9 12, 1 5 10 11 12 and

2 5 8 9 12, 2 5 10 11 12) to the destination node 12. Other two sources, nodes 3

and node 4, have just one min-hop path (3 8 9 12 and 4 10 11 12) to the destination

node 12.The alternative path of source node1 and node 2 share the bottleneck link 9 12 and

11 12 with the min-hop paths of source node 3 and node4. We assume that the capacities c1,

c2, c3, and c4 of the bottleneck links are all set to 80 units of bandwidth and others are infinite

bandwidth.

The follow are our simulator design for this fish topology. At first, the Object Model

Diagram in UML is illustrated in Fig. 9 below. There are four Source objects constructed by

system in our simulation model. Source S1 and source S2 have four feasible paths and source S3

and source S4 have only one feasible path.

25

Fig. 9 Object Model Diagram in UML

4.1 Comparison of Proportional Routing and MDP Routing

Before displaying the simulation performance of our proposed routing, we first compare

these two routing approaches “State-Dependent Separable Routing formulated by MDP

“(called MDP routing for shorted) and “Adaptive Proportional Routing” (called Proportional

routing for shorted). We observe the blocking probability of source S1 by increasing the update

interval of S1 when the average load of all sources is set to 40.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

update interval

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

MDP_Routing
Proportional Routing

Fig. 10 Comparison of Proportional Routing and MDP Routing

26

In Fig. 10, we find that the performance of MDP Routing degrades rapidly as the update

interval increases. As for the scheme of Proportional Routing, the blocking probability of S1 is

keeping at about 0.3 and is even better than the scheme of MDP Routing when its update

interval is longer than one minute. It is because that the proportional routing adopts the

average available bandwidth information instead of stale state information to make path

selection.

From the observation in Fig. 10, we proposed three boosting methods, which are

mentioned at Chapter 3 in detail. Before we illustrate how these three routing methods

adaptively adjust the load proportion of feasible paths as the load increases, we firstly

introduce some parameters in our simulator.

4.2 Simulator Parameters Setting

We assume that the average offered load of S1, S2, S3, and S4 are 40, 40, 5, and 5

respectively in the beginning. And we set the “Update Proportional Interval” as 10 minutes,

“Update Lambda Interval” as 1 minute and “Update Weight Interval” as 1 minute. For source

S1, we set the initial flow proportion of path 1, 2, 3, and 4 to 0.4999, 0.4999, 0.0001, and 0.0001

respectively. So does source S2. And we set the constant parameter γ in Eq.(3.2) to 0.01.

Consider the scenario: when the number of calls generated by source S1 is equal to 1000, we

increase the average load of S3 and S4 to 20. And when the number of calls generated by source

S1 is equal to 3000, we increase the average load of S3 and S4 to 40. By increasing the average

load of S3 and S4, we study how source S1 and S2 adjust their flow proportion on the feasible

paths in order to decrease the overall blocking probability.

The following table is the setting of parameters in our simulator.

Parameter Initial value

Path1_Flow-proportion of S1 and S2 0.499

Path2_Flow-proportion of S1 and S2 0.499

Path3_Flow-proportion of S1 and S2 0.001

Path4_Flow-proportion of S1 and S2 0.001

Average Load of S1 and S2 40 calls/min

27

Average Load of S3 and S4 5 calls/min

Link Capacity (c1 , c2 , c3, c4) 80 calls

psi (ψ) 0.95

Update Proportional Interval 10 minutes

Update Lambda Interval 1 min

Update Weight Interval 1 min

Total Arrival of Source1 5000 calls

Gamma(γ) 0.01

Table .1 Setting of parameters in our simulator

In the following sections, we will introduce our simulator for these three methods and

their simulation results.

4.3 Simulator Design and Results for BFW

In this method, we assign fix weight δ to Proportional Routing and fix weight δ−1 to
MDP Routing. We define this method as “Boosting with Fixed Weight” (BFW for shorted).

4.3.1 System Operations

Fig. 11 System diagram of BFW in UML

28

In Fig.11, there are four sub-states. In System_Timer sub-state, timer is running and the

parameter systemTime plus one per second. And in Update_Path_Proportion sub-state, system

calculates the total arrival of sources during the “Update Proportion Interval”, and triggers the

event evUpdate1 of sources to calculate the new path flow proportion (][⋅fp) by VCR

algorithm. And in Update_Path_Arrival_Rate sub-state, system triggers the event evUpdate2 of

sources to calculate the path arrival rate (iλ) during the “Update Lambda Interval”. Finally,

system can change the arrival rate of source S3 and S4 in the Change_S3S4_Arrival_Rate

sub-state.

4.3.2 Source Operations

Fig. 12 Source diagram of BFW in UML

In Fig. 12, there are three sub-states. In the gen_call sub-state, source generates calls by

Poisson arrival process. Each call performs callArrival() to find a path by

Path-Selection-Process based on the value of δ , path flow-proportion (][⋅fp), and path

delta-cost (][⋅dc). And then source uses RSVP to setup this call along the selected path. When

29

the number of call generated by source equals to Total_Arrival, source stops generating new

call. In Update_Path_Proportion sub-state, the event evUpdate1 is triggered from system and

source updates the path flow-proportion (][⋅fp) by VCR algorithm. At last, in

Update_Path_Arrival_Rate sub-state, the event evUpdate2 is triggered from system and source

updates the path arrival rate (iλ) in order to calculate the path-delta-cost, (][⋅dc) in Eq. (2.21).

4.3.3 Path Operations

Fig. 13 Path diagram of BFW in UML

In Fig. 13, it demonstrates that the selected path accepts this call which consumes one unit

of bandwidth (count plus one) and triggers one server object. At the same time, the selected

path has to inform source, which generates this call, the latest state information by RESV

message.

4.3.4 Server Operations
In Fig. 14, it describes that call holding time is exponentially distributed with meanµ .

After the serviceTime, this call stops serving and the server object will be terminated.

30

Fig. 14 Server diagram of BFW in UML

In summary, our simulator model could be illustrated in the sequence diagram below.

Fig. 15 Sequence diagram for BFW in UML

31

4.3.5 Simulation Result

Comparsion of BFW with different weight

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70 80 90 100 110 120
time

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

MDP Routing without delay MDP Routing with delay
Proportional Routing BFW(0.25)
BFW(0.5) BFW(0.75)

Fig. 16 Comparison of BFW with different weight (δ)

In Fig.16, the scheme of MDP Routing without delay is nearly optimal because sources

obtain instantaneous network state information. We can find that when the average load of S3

and S4 are low, the performance of Proportional Routing is worst. As the average load of S3

and S4 are increasing, the performance of MDP Routing with delayed information gets worse.

When the average loads of S3 and S4 increase to 40, the performance of MDP Routing with

delayed information gets worse than Proportional Routing. Consider our proposed method

BFW with different value of δ which is the weight of using Proportional Routing to select

one path. No matter what the value δ is, the performance of BFW is better than Proportional

Routing and is better than MDP Routing with delayed information when the load is heavy.

4.4 Simulator Design and Results for BDW-BP

In this method, we dynamically boost the weight adjusted by the observed blocking

probability during a fixed time interval. We define this method as “Boosting with Dynamic

Weights Adjusted by Blocking Probability” (BDW-BP for shorted). The server operation in

UML is the same as previous method.

32

4.4.1 System Operations

In order to update the new weights of the new Update Weight Interval, we have to

calculate the blocking probability of calls using Proportional Routing and calls using MDP

Routing in the Update_Blocking_Probability sub-state in Fig. 17.

Fig. 17 System diagram of BDW-BP in UML

4.4.2 Source Operations

33

Fig. 18 Source Diagram of BDW-BP in UML

Different from the source operations in BFW, when the event evUpdate3 is triggered,

source has to calculate the blocking probability of calls using Proportional Routing and calls

using MDP Routing in order to find out the new weights using Eq. (3.1a) and Eq. (3.1b).

In “ n-th ” Update Weight Interval:

New weight for using Proportional Routing:

(3.1a)
__

_

)()(

)(

(n)

MRbpPRbp

PRbp

ee
e

nn

n

+
=δ

New weight for using MDP Routing:

(3.1b)
__

_
1

)()(

)(

(n)

MRbpPRbp

MRbp

ee
e

nn

n

+
=− δ

34

And then source chooses one path proportionally based on the new weight)(nδ , path

flow-proportion (][⋅fp), and path delta-cost (][⋅dc).

4.4.3 Path Operations

Fig. 19 Path Diagram of BDW-BP in UML

Different from path operations in BFW, path has to check the blocked call which is using

Proportional Routing or using MDP Routing, and then informs source that generated this

blocked call.

In summary, our simulator model could be illustrated in the sequence diagram below.

35

Fig. 20 Sequence diagram for BDW-BP in UML

4.4.4 Simulation Result

Comparison of BDW-BP

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70 80 90 100 110 120

time

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

MDP Routing without delay MDP Routing with delay

Proportional Routing BDW-BP

Fig. 21 Comparison of BDW-BP

36

The performances of “MDP Routing without delay”, “MDP Routing with delay” and

“Proportional Routing” are the same as the results in Fig. 16. Consider the performance of

BDW-BP, we find that the performance is comparable with the MDP Routing with delayed

information, but is worse than the performance of Proportional Routing when the load is

heavy.

4.5 Simulator Design and Results for BDW-DT

In this method, we dynamically boost the weight adjusted by the delay time of state

information. We define this method as “Boosting with Dynamic Weight Adjusted by the

Delay Time of State Information” (BDW-DT for shorted). The system operations and server

operations in UML are the same as BFW.

4.5.1 Source Operations

The source diagram in UML is the same as the source operations in BFW. For each new

call arrival, source has to calculate the delay-time (][⋅dt) for all feasible paths and

proportionally selects one path using Eq. (3.2).

For path i, Ki ,,2,1 Κ= , we calculate the path-combine-proportion][ipcp

])[1(][)1(][][][idceifpeipcp idtidt −⋅+⋅−= ⋅−⋅− γγ
 (3.2)

where γ is a configurable parameter, and

][idt is the delay-time of this call for path i,

][idc is the delta-cost of this call for path i using Eq .(2.21) in MDP routing

][ifp is the flow-proportion of path i using VCR algorithm in proportional routing,

4.5.2 Path Operations

37

Fig. 22 Path diagram of BDW-DT in UML

No matter the call is accepted or blocked, path not only feedbacks the state information,

but also asks source to record the ack_time[] for this path in order to calculate the delay-time

of state information.

4.5.3 Simulation Result

38

Comparison of BDW-DT with different gamma

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70 80 90 100 110 120

time

bl
oc

ki
ng

 p
ro

ba
bi

li
ty

MDP Routing without delay MDP Routing with delay
Proportional Routing BDW-DT(1)
BDW-DT(0.1) BDW-DT(0.01)

Fig. 23 Comparison of BDW-DT with different gamma (γ)

In Fig. 23, the performances of “MDP Routing without delay”, “MDP Routing with

delay” and “Proportional Routing” are the same as the results in Fig. 16. By changing the value

of γ in Eq. (3.2), we find that the performances of “BDW-DT (0.1)” and “BDW-DT (0.01)”

are better than “BDW-DT (1)”, and are even better than “MDP Routing with delay” when the

load is heavy. Consider Eq.(3.2).

])[1(][)1(][][][idceifpeipcp idtidt −⋅+⋅−= ⋅−⋅− γγ
 (3.2)

When the load is heavy, the link state information is fresh enough. So we increase the weight

][idte ⋅−γ
 on “][1 idc− ” and decrease the weight)1(][idte ⋅−− γ

on][ifp . On the other

hands, the link state information may be delayed, i.e.][idt is long. So the bigger

e idt][⋅−γ compensates the uncertainty of “][1 idc− ”. No matter what the value of][idt it is, we

adaptively proportion flows in any situation using Eq. (3.2).

39

flow proportion of BDW-DT(0.01)

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100 110 120

time

fp_minhop fp_alternative

Fig. 24 Flow proportion of BDW-DT (gamma=0.01)

In Fig. 24, it illustrates that the flow proportion of min-hop paths and alternative paths. In

the beginning, the flow proportion of min-hop paths is 0.998 and the flow proportion of

alternative path is 0.002. With the increasing load of S3 and S4, the flow proportional of

alternative paths increases because the blocking probability of min-hop paths is higher than

alternative paths. And when the blocking probability of alternative path is increasing with the

increasing load of S3 and S4, the system starts decreasing the proportion of alternative in order

to equalize the overall blocking rate.

Comparison of BDW-DT with different gamma

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60 70 80 90 100 110 120

time

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

BDW-DT(1) BDW-DT(0.1) BDW-DT(0.2) BDW-DT(0.3)

Fig. 25 Comparison of BDW-DT with different gamma (γ)

40

In Fig .25, we compare four scenarios where gamma (γ) in Eq. (3.2) is equal to 1, 0.1,

0.2, and 0.3, respectively. From the simulation results, we find that the performance is not

necessarily getting better if we decreaseγ . We consider that the performance is not only

related toγ but also to the load of the network.

Finally, we compare our proposed three methods with MDP Routing and Proportional

Routing in Fig. 26. We find that these three methods indeed boost MDP Routing and

Proportional Routing in some network situation.

Comparison of Different Methods

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70 80 90 100 110 120

time

bl
oc

ki
ng

 p
ro

ba
bi

li
ty

MDP Routing without delay MDP Routing with delay
Proportional Routing BFW(delta= 0.5)
BDW-BP BDW-DT(gamma = 0.1)

Fig. 26 Comparison of all methods

41

Chapter 5
Conclusion

In this thesis, we first compare the state-dependent separable routing and adaptive

proportional routing with different update interval and find that the latter works significantly

worse than the former if the network state information obtained in the source is delayed not

more than one minute. So we propose three possible boosting methods to compensate the

shortcoming of proportional routing and state-dependent routing. As shown in Fig. 26, when

the load is light, the performance of BDW-BP is better than other boosting methods. But as

the load increases, we find that the performance of BFW is getting better and even better than

MDP Routing with delayed state information when the load is heavy. Therefore, these three

boosting methods are load-dependent and none of them can outperform others in any network

situations.

Our future work will be conducting the simulation on the more complicated network

model where the call arrival rates for most of the source-destination pairs are less frequent. We

believe in such a model the network state tends to be more obsolete whereby configuring the

weight on the state-dependent separable routing will become a more important issue.

42

References

[1] R. A. Howard, Dynamic Programming and Markov Processes

[2] T. J. Oti, and K. R. Krishnan, “Separable Routing: A Scheme for State-Dependent Routing

of Circuit Switched Telephone Traffic”, Beilcore. 445 South Street. P.O. Box 1910.

Morristown. NJ 07960-1910. USA

[3] S. Nelakuditi, Zhi-Li Zhang, R. P. Tsang, and David. H.C. Du, “Adaptive Proportional

Routing: A Localized QoS Routing Approach”, IEEE/ACM Transactions on Networking,

VOL.10, NO.6, DECEMBER 2002

[4] S. Nelakuditi and Zhi-Li Zhang, “A Localized Adaptive Proportioning Approach to QoS

Routing”, IEEE Communications Magazine June 2002

[5] E. Rosen, A. Viswanathan, and R. Callon, “Multi-Protocol Label Switching Architecture”,

Internet Draft draft-ietf-mpls-arch-06.txt, August1999, work in progress.

[6] R. B. Cooper, Introduction to Queuing Theory, Edition 2, North-Holland 1981.

[7] L. L. Peterson and B. S. Davie, Computer Networks, A System Approach, Edition 3.

[8] S. Chen and K. Nahrstedt, “An overview of Quality-of-Service Routing for the Next

Generation High-Speed Networks: Problems and Solutions” IEEE Network Magazine, vol.

12, pp.14-79, Nov.-Dec. 1998.

[9] G. Apostolo, “Quality of Service Based Routing: A Performance Perspective”, ACM

SIGCOMM, 1998.

[10] M. Q. Ma and P. Steenkiste, “On Path Selection for Traffic with Bandwidth Guarantees”,

IEEE ICNP, 1997.

