List of Figures

Chapter 2

ECDL of Littrow and Lttman-Metcalf type mounting	5
Geometric requirements for widely mode -hop-free tunable ECDL	6
The continuous tuning range as a function of x and y pivot-point errors with	
respect to optimum pivot	8
Optimum pivot points of Littman-Metcalf configurations	8
The tolerance of pivot point position (Littman-Metcalf configuration)	9
ECDL tuned with an intracavity EOC	11
ECDL tuned with two AO devices	13
ECDL based on MEMS electrostatic rotary actuator	14
	ECDL of Littrow and Lttman-Metcalf type mounting Geometric requirements for widely mode –hop-free tunable ECDL The continuous tuning range as a function of x and y pivot-point errors with respect to optimum pivot Optimum pivot points of Littman-Metcalf configurations The tolerance of pivot point position (Littman-Metcalf configuration) ECDL tuned with an intracavity EOC ECDL tuned with two AO devices ECDL based on MEMS electrostatic rotary actuator

Chapter 3

Fig. 3.1	Lyot filter	16
Fig. 3.2	Liquid-crystal Fabry-perot étalon filter	17
Fig. 3.3	ECDL uses a LC-FPI and a MQW laser diode	18
Fig. 3.4	The tunable wavelength filter by combining a SLM and a fixed grating	19
Fig. 3.5	An ECDL tuned with an intracavity liquid crystal array	19
Chapter 4	ESA	

Chapter 4

Fig. 4.1	ECDL in the Littrow configuration	21
Fig. 4.2	ECDL in the grating-incidence configuration	22
Fig. 4.3	Temperature dependence of LD wavelength	24
Fig. 4.4	Gain profile of LD and longitudinal cavity modes	25
Fig. 4.5	Illustration of the cause of mode hopping	25
Fig. 4.6	The structure of the planar-aligned NLC cell	27
Fig. 4.7	The planar NLC cell without and with an external electric field	28
Fig. 4.8	The LC is used as a phase retarder	29
Fig. 4.9	The NLC cell sandwiched between two crossed polarizers	30
Fig. 4.10	Schematic of the ECDL with an intracavity NLC cell	31
Fig. 4.11	The structure of the LCPM and ITO patterns	33
Fig. 4.12	The transmission T as a function of Mauguin parameter <i>u</i>	35
Fig. 4.13	TNLC cell of normally black mode in off-state and on-state	36
Fig. 4.14	The transmission T as a function of LC thickness d	37
Fig. 4.15	The ITO pattern	37
Fig. 4.16	LCPM based ECDL	38

Chapter 5

Fig. 5.1	Experimental setup for characterization of the NLC cell	41
Fig. 5.2	Transmission of the NLC cell plotted as a function of the rms driving	
	voltage	41

Fig. 5.3	Theoretical prediction of the relative frequency shift of the ECDL, 10 cm in length, as the voltage driving the NLC cell (5CB, 35.5 μ m thick) is changed	42
Fig. 5.4	L-I curves of the bare diode and the ECDL in Littman configuration	43
Fig. 5.5	Spontaneous emission spectra of the bare LD as a function of driving current	43
Fig. 5.6	Typical lasing spectrum of the ECDL as monitored by a SFP. The ramp voltage for driving the SFP is also shown	44
Fig. 5.7	Output wavelength of the ECDL is tuned from 767.7 nm to 786.8 nm	44
Fig. 5.8	Output frequency shift of the 15-cm ECDL for several driving voltages of the NLC cell	45
Fig. 5.9	Laser frequency shift with two different cavity lengths as the driving voltage of the NLC cell is changed	46
Fig. 5.10	The change in laser wavelength as a function of the LD driving current	47
Fig. 5.11	Mode-hop-free tuning of the ECDL by varying the driving voltage of the NLC cell	47
Fig. 5.12	Variations of LD drive current as a function of the driving voltage of the NLC cell for achieving mode-hop-free tuning	48
Fig. 5.13	Unbanced Michelson interferometer	49
Fig. 5.14	Interference fringes of the unbalanced Michelson interferometer	49
Fig. 5.15	The effect of tilt angle of the NLC cell on tuning of the laser cavity length by varying the driving voltage of the NLC cell	50
Fig 5 16	Hyterisis effect of the NLC cell	51
Fig. 5.10	Frequency switching repeatability	52
Fig. 5.17	Temperature and frequency shift	52
Fig. 5.19	Trigger and response signals	53
	minist	

Chapter 6

Fig. 6.1	Basic experimental arrangement for saturation spectroscopy	56
Fig. 6.2	Energy level for the $5S_{1/2}$ to $5S_{2/3}$ transition in 85 Rb and 87 Rb	57
Fig. 6.3	Linear absorption profile and hyperfine structure component of D ₂ -line for	
	natural Rb	57
Fig. 6.4	Experimental setup for saturation spectroscopy	58
Fig. 6.5	Sub-Doppler resonances of Rb D ₂ -line	58
Fig. 6.6	The schematic of locking the ECDL to the transmission peak of an étalon	59
Fig. 6.7	Transmission and 1 st derivative spectrum of the étalon	60
Fig. 6.8	The trace of wavelength fluctuations	60
Fig. 6.9	The square root of Allan variance	62
Fig. 6.10	The spectra of a mode-lock laser in time and frequency domains	63
Fig. 6.11	Beat signals of the ECDL and the fs combs	64
Fig. 6.12	Trace of frequency fluctuations when the ECDL is locked to the fs comb	64
Fig. 6.13	Schematic diagram of the ECDL digitally tuned with the LCPM and	
	fine-tuned with an intracavity NLC phase plate	65
Fig. 6.14	Output wavelength of the ECDL digitally tuned with the LCPM	67

Fig. 6.15	Fine-tuning of one channel by varying the applied pixel voltages of the LCPM	67
Fig. 6.16	Measured and predicted tuning range of one channel by varying the applied voltages of the NLC cell	68
Fig. 6.17	The schematic of transmission type LC cell gap measurement	71
Fig. 6.18	Wavelength shift as a function of the driving voltages (9.6 µm cell)	72
Fig. 6.19	Transmission curve of the 9.6 μm cell measured by the crossed polarizer method	72
Fig. 6.20	Transmission curve of the 4.25 μm cell measured by the crossed polarizer method	73
Fig. 6.21	Wavelength shift as a function of the driving voltages (4.25 µm cell)	74
Fig. 6.22	The accuracy of birefringence $\delta(\Delta n)$ versus the accuracy of cell gap δd	75
Fig. 6.23	The accuracy of angle $\delta\theta$ versus the accuracy of cell gap δd	76

Chapter 7

Fig. 7.1	A sandwich-type LCPM	81
Fig. 7.2	Schematic of a channel selectable laser with LC enabled functionalities	81
Fig. 7.3	Schematic for measurement of uniformity of LC cell gaps	83

Appendix A

Appendix A	STATE OF THE OWNER	
Fig. A-1.1	Fitted curve of 5CB at T=25.1 °C	94
Fig. A-1.2	Fitted curve of 5CB at T=27.2 °C	95
Fig. A-1.3	Fitted curve of 5CB at T=29.9 °C	96
Fig. A-2.1	Fitted curve of BDH-18523 at T=25 °C	97

Appendix B

Fig. B.1	Typical dual-wavelengths lasing spectrum	100
Fig. B.2	Dual-wavelengths spectra with wavelength separations of 1 nm, 3.57 nm and 9.52 nm	100
Fig. B.3	L-I curve of dual-wavelengths (1550 nm LD)	101
Fig. B.4	Dual-wavelengths spectrum monitored by a SFP at randomly time intervals	103
Fig. B.5	Dual-wavelengths spectrum with power differences from 2 dB to 9.3 dB	104
Fig. B.6	Dual-wavelengths power fluctuations of single stripe LD and broad area	
	LD	105
Fig. B.7	LCPM based ECDL with an intracavity étalon	107
Fig. B.8	Optical spectra without and with employing an étalon	108
Fig. B.9	Single wavelength spectrum observed by an OSA (a) and a SFP (b) when	
-	employ an intracavity étalon	108
Fig. B.10	Dual-wavelengths étalon-employed spectrum	109
Fig. B.11	Dual-wavelengths spectra at the status of λ_2 is just lasing and the power of	
-	λ_1 and λ_2 are nearly equal	110
Fig. B.12	The spectra of stable dual-wavelengths with unequal and nearly equal	
C	power	110

Fig. B.13	Experimental setup of mutual injection	111
Fig. B.14	Gain profiles of the LD and SOA at 20 °C	112
Fig. B.15	Lower gain area of the LD is enhanced by injection of the SOA	112
Fig. B.16	Single wavelength lasing spectrum of the ECDL and SOA when mutual	l
	injection	113
Fig. B.17	Dual-wavelengths generation when mutual injection ($\delta\lambda$ =1.41 nm). The	•
	spectrum are observed by SOA and SFP	114
Fig. B.18	Dual-wavelengths generation when mutual injection ($\delta\lambda$ =5.4 nm). The	•
	spectrum are observed by SOA and SFP	115

