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利用多喇叭實現強健串音消除系統 

 

 

學生：蘇大中           指導教授：謝世福 

 

國立交通大學電信工程學系碩士班 

 

 

摘要 

 

    傳統串音消除技術是針對一對喇叭來實現。而串音消除器主要的問題來自於

容易受到擾動的影響。由文獻可得知，當喇叭數增加則串音消除器消除串音的能

力亦隨之提升。同時，多喇叭架構對於擾動而造成雙耳音訊失真的效應較一對喇

叭要來得輕微。在本篇論文中，我們將呈現各種不同形態的串音消除器在三個喇

叭架構下，並且能夠達到節省成本及計算複雜度的目標。我們也會針對兩個喇叭

和三個喇叭架構的串音消除器作擾動分析，以及透過模擬數據來作為分析的依

據。 
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Robust Crosstalk Cancellation for 
3D Sound Using Multiple 

Loudspeakers 
 

Student : D. J. Su      Advisor : S. F. Hsieh 

Department of Communication Engineering 

National Chiao Tung University 

                        

Abstract 

 

  Traditional crosstalk cancellation is for two loudspeakers. The most critical 

problem bothering us is the effect of perturbation. In several literatures, we know that 

multiple loudspeakers arrangement results in good performance of crosstalk 

cancellation. In addition, it is more robust for perturbation than two loudspeakers 

setup. In this thesis, we show different types of crosstalk canceller of multiple 

loudspeakers arrangement and economical realizations with less computational 

complexity is achievable. Perturbation analysis is proposed in comparing two and 

three loudspeakers setup. The simulation results are used to compare their 

performance numerically in this thesis. 



 iii

Acknowledgement 
 

I would like to express my deepest gratitude to my advisor, Dr. S. F. 

Hsieh, for his enthusiastic guidance and great patience, especially the 

autonomy in research. I also appreciate my friends for their inspiration 

and help. Finally, I would like to show my thanks to my parents for their 

unceasing encouragement and love. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv

 

 

Contents 
 

Chinese Abstract                                    i 

English Abstract                                    ii 

Acknowledgement                                  iii 

Contents                                          iv 

List of Tables                                      vii 

List of Figures                                     ix 

1 Introduction....................................................................................................1 

2 Transaural Stereo System……………………………………………4 

2.1 Spatial Audio……………………………………………….………………..5 

2.2 HRTFs……………………………………………………………………….6 

2.3 Crosstalk cancellation………………………………………………………8. 

2.3.1 Problem Formulation…………………………………………………9. 

3 Crosstalk Cancellers….............................................................................12 

3.1 Conventional Two Loudspeakers Arrangement……...…….………………13 

3.2 Three Loudspeakers Setup…………………………………………………16 



 v

3.2.1  Direct Forward Type………..…..……………………………………17 

3.2.2  Least Square Forward Type…………………………………………19 

3.2.3  Shuffler Structure……………………………………………………20 

3.2.4  A Simplified Shuffler Form.…..…………..…………………………24 

3.2.5  A Simplified Shuffler Form of Four Loudspeakers Arrangement…...28 

      3.2.6  Reduced-Order Modeling……………………………………………31 

4 Perturbation Analysis…...…….………………………………………32 

4.1 Perturbation Analysis for Filter Modeling..……………….……………….33 

4.1.1 Analysis on Shuffler Form of Two Loudspeakers Setup.....…………34 

4.1.2 Analysis on Shuffler Form of Three Loudspeakers Arrangement...…38 

4.1.3 Analysis on Simplified Shuffler Form…..…………………………...44 

4.2 Perturbation Analysis for Headmovement.…...……………………………47 

4.3 Optimum Loudspeakers Position for Robust Crosstalk Canceller…………50 

4.3.1 Two Loudspeakers Arrangement……………..........……...…………52 

4.3.2 Three Loudspeakers Arrangement…………….......…………………54 

4.3.3 Four Loudspeakers Arrangement…………………….………………56 

4.4 Conclusions………………………………………………………………59 

5 Computer Simulations……..…………………………………………60 

5.1 Assumptions……………………….…...………………….……………….60 



 vi

5.2 Two Loudspeakers Geometric………………………………………..……63 

5.3 Three Loudspeakers Geometric……………………………………………66 

5.3.1 Least Square Forward Type……………………..........……...………66 

5.3.2 Shuffler Structure……………………………….......………………..71 

5.3.3 A Simplified Shuffler Form……………………………………….....73 

5.3.4 A Simplified Shuffler Form of Four Loudspeakers Arrangement…...78 

5.4 Perturbation Analysis………………………………………………………82 

5.4.1 Simulations on Filter Modeling………………….........……......……84 

5.4.2 Simulations on Head movement……………….....………………….91 

6 Conclusions…………………………………….………………………….95 

Bibliography........................................................................................................97 



 vii

 

 

List of Tables 
 

5.1 The performance of shuffler form for two loudspeakers setup with different order 

of FIR filters…….................................................................................................63 

5.2 The CSF with different degree of freedom of the center loudspeaker………….65 

5.3 The performance of least forward type crosstalk canceller for three loudspeakers 

setup with different order of FIR filters………………………………………..66 

5.4 The performance comparison of crosstalk cancellation by using least square 

method for different numbers of loudspeakers arrangement…………………...67 

5.5 The performance of shuffler form for three loudspeakers setup with different FIR 

filter order………………………………………………………………………70 

5.6 The performance of simplified shuffler form for three loudspeakers setup with 

different orders of FIR filters………………………………………………..…74 

5.7 The performance of simplified shuffler form for four loudspeakers setup with 

different orders of FIR filters…………………………………………………79 

5.8 The error norm of equalization and crosstalk part for two loudspeakers shuffler 

form crosstalk canceller………………………………………………………86 



 viii

5.9 The performance of crosstalk cancellation for two loudspeakers shuffler form 

after head movement…………………………………………………………...91 

5.10 The performance of crosstalk cancellation for three loudspeakers simplified 

shuffler form after head movement……………………………………………92 

5.11 The performance of crosstalk cancellation for four loudspeakers simplified 

shuffler form after head movement……………………………………………92 



 ix

 

 

List of Figures 
 

2.1 The ITD and ILD…………………………………………………………………6 

2.2 The setup of the dummy head……………………………………………………8 

2.3 Signal and transfer function definitions for transaural stereo…………………10 

3.1 Crosstalk cancellation system (Atal and Schroeder in 1963)…………………...13 

3.2 Shuffler filter structure (Cooper and Bauck in 1989)…………………………14 

3.3 Geometry and transfer functions for three loudspeakers………………………..17 

3.4 The structure of the direct forward type crosstalk canceller……………………18 

3.5 The shuffler topology of three loudspeakers geometric (Cooper and Bauck in 

1996)…………………………………………………………………………….22 

3.6 The impulse response of the filter 2∑ …………………………………………22 

3.7 The impulse response of the filter 2C ………………………………………...23 

3.8 The impulse response of the filter 2∆ …………………………………………23 

3.9 The simplified shuffler structure of crosstalk canceller for three loudspeakers 

arrangement……………………………………………………………………26 

3.10 The impulse response of the filter 3H …………………………………………27 



 x

3.11 The impulse response of the filter 3∆ …………………………………………...27 

3.12 Geometry and transfer functions for four loudspeakers………………………...28 

3.13 The simplified shuffler structure of crosstalk canceller for four loudspeakers 

arrangement……………………………………………………………………30 

4.1 The geometry of crosstalk cancellation system for multiple loudspeakers after 

filter modeling…………………………………………………………………..31 

4.2 The factorized two loudspeakers shuffler form…………………………………33 

4.3 The factorized three loudspeakers shuffler form………………………………37 

4.4 The factorized three loudspeakers simplified shuffler form……………………44 

4.5 The geometry of crosstalk cancellation system for multiple loudspeakers due to 

head movement…………………………………………………………………46 

4.6 The condition numbers of 2G  with different loudspeakers position………….51 

4.7 The condition numbers of 3G  with different loudspeakers position………….53 

4.8 The robust bandwidth of different number of loudspeakers with the side 

loudspeakers located at 30± °…………………………………………………..56 

5.1 The crosstalk cancellation results in frequency domain by using least square 

error method with loudspeaker located at 30± ………………………………63 

5.2 The crosstalk cancellation results in time domain by using least square method 

with loudspeaker located at 30± ………………………………………………64 



 xi

5.3 The crosstalk cancellation results in frequency domain of least square forward 

type with the side loudspeakers located at 30±  and the center one located at 

0 ………………………………………………………………………………66 

5.4 The crosstalk cancellation results in time domain of least square forward type 

with the side loudspeakers located at 30±  and the center one located at 0 ...67 

5.5 The signal power ratio cR  of different numbers of loudspeakers with different 

filter orders……………………………………………………………………...68 

5.6 The total errorε  of different number of loudspeakers with different filter 

orders…………………………………………………………………………....68 

5.7 The crosstalk cancellation results in frequency domain of shuffler structure with 

the side loudspeakers located at 30±  and the center one located at 0 ……...70 

5.8 The crosstalk cancellation results in time domain of shuffler structure with the 

side loudspeakers located at 30±  and the center one located at 0 ………….71 

5.9 The crosstalk cancellation results in frequency domain of simplified shuffler 

form.…………………………………………………………………………..74 

5.10 The crosstalk cancellation results in time domain of simplified shuffler form…76 

5.11 The CSF of different structure crosstalk canceller of three loudspeakers 

arrangement……………………………………………………………………..76 

5.12 The EQ of different structure crosstalk canceller of three loudspeakers 



 xii

arrangement……………………………………………………………………..77 

5.13 The total error of different structure crosstalk canceller of three loudspeakers 

arrangement……………………………………………………………………..77 

5.14 The crosstalk cancellation results in frequency domain of simplified shuffler 

form of four loudspeakers setup…………………………………………….......79 

5.15 The crosstalk cancellation results in time domain of simplified shuffler form of 

four loudspeakers setup…………………………………………………………80 

5.16 The signal power ratio after crosstalk cancellation cR  of two loudspeakers 

shuffler form and three and four loudspeakers simplified shuffler form with 

different FIR filter orders……………………………………………………….81 

5.17 The total error of two loudspeakers shuffler form and three and four 

loudspeakers simplified shuffler form with different FIR filter orders…………81 

5.18 The crosstalk cancellation result in frequency domain after perturbing………..83 

5.19 The crosstalk cancellation result in time domain after perturbing……………...83 

5.20 The norm of equalized error of two loudspeakers shuffler form with different 

orders of IIR filter………………………………………………………………86 

5.21 The norm of crosstalk error of two loudspeakers shuffler form with different 

orders of IIR filter………………………………………………………………87 

5.22 The equalized error of shuffler form versus direct forward type 2……………..88 



 xiii

5.23 The crosstalk error of shuffler form versus direct forward type 2……………...88 

5.24 The equalized error of different structures of crosstalk canceller with different 

IIR filter orders………………………………………………………………….90 

5.25 The crosstalk error of different structures of crosstalk canceller with different IIR 

filter orders……………………………………………………………………...90 

5.26 The signal power ratio cR  of crosstalk cancellation after head moving for 

different numbers of loudspeakers……………………………………………...94 

5.27 The total error of crosstalk cancellation after head moving for different numbers 

of loudspeakers………………………………………………………………….94 

 



 1

 

 

Chapter 1 

Introduction  

 

Using immersive audio techniques it is possible to render virtual sound sources in 

3D space via a set of loudspeakers or headphones. The goal of such systems is to 

reproduce the same sound pressure level at the listener’s eardrums that would be 

present if a real sound source was placed in the location of the virtual sound source. 

However, reproducing the 3D sound via two or more loudspeakers will suffer from 

several factors to degrade the performances, such as room reverberance, crosstalk 

disturbance and imperfection of the loudspeakers. In this thesis, we will focus on 

crosstalk cancellation. 

Previous work [13] has investigated that the design of conventional crosstalk 

cancellation systems which deliver binaural audio to a listener has the serious 

constraint that the listener may not move. In many literatures, [2, 3, 4, 5, 6], have 
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demonstrated that the performance of crosstalk canceller suffered from head 

movement and have mathematically calculated the robustness of crosstalk 

cancellation system. The approach proposed in [1] is to track the listener and adjust 

the loudspeaker signals to maintain the binaural transmission so that a more robust 

crosstalk canceller is possible. Recent work [9, 23] has demonstrated that if a number 

of loudspeakers is used which exceeds the number of points in the listening space, the 

performance of such a system can be improved. In such case, the reproduction is 

sought and has better immunity of the head movement. Therefore, multi-channel 

sound reproduction is our main focus in this thesis. 

In this thesis, we will discuss how to synthesize the aural virtual reality 

environment via multiple loudspeakers. We will focus on how to reduce the crosstalk 

and design different types of crosstalk canceller so that the 3D sound can be 

reproduced at listener’s ear precisely. Also, we will discuss how to factorize the 

crosstalk canceller matrix so that economical realizations and less computation are 

possible. In addition, we will discuss the robustness of crosstalk canceller by 

perturbation analysis. The perturbation analysis of different structures of crosstalk 

canceller for multiple loudspeakers arrangement is shown in chapter 4. 

This thesis is organized as follows. In chapter 2, we will introduce the properties of 

HRTFs and discuss the problem of sound reproduction via headphones and 
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loudspeakers. Chapter 3 focuses on the design of crosstalk canceller using three 

loudspeakers. Chapter 4 is the main part of this thesis; we will investigate the 

robustness of crosstalk canceller and derive the optimum loudspeakers position for 

different number of loudspeakers arrangement. In chapter 5, we will use computer 

simulations to compare performances of different crosstalk cancellers and discuss the 

robustness of crosstalk canceller. In chapter 6, we will make a conclusion to 

summarize the results of the simulations. 
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Chapter 2 

Transaural Stereo System 

 

  A transaural stereo system uses the binaural sound recording and reproduces them. 

The system may have more than two loudspeakers. We will focus on the transaural 

system with multiple loudspeakers. In this chapter, we will first introduce how the 

human localize the sound source by the principle of ITD (interaural time differences) 

and ILD (interaural level difference). 

  In section 2.2, we will illustrate how HRTFs (head-related transfer functions) can 

aid in distinguishing sound location from one position to listener. Section 2.3 will 

investigate the problems encountered in binaural reproduction via loudspeakers and 

the idea of crosstalk canceller will be presented in detail. In the last section, we will 

investigate the design of the transaueal stereo system and two types of layout 

reformatters will be presented in this section. 
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2.1 Spatial audio 

  The human hearing process is based on the analysis of input signals to the two ears 

for differences in intensity, time of arrival, and directional filtering by the outer ear. 

[11], [12] identified two basic mechanisms as being responsible for sound location 

which are ITD (interaural time differences) and ILD (interaural level difference). As 

described in [21], ITD and ILD cues that operated in different wavelength. For short 

wavelengths (corresponding to frequencies in the range of about 4–20 kHz), the 

listener’s head casts an acoustical shadow giving rise to a lower sound level at the ear 

farthest from the sound source (ILD) as shown in Figure 2.1. (b). At long wavelengths 

(corresponding to frequencies in the range of about 20 Hz–1 kHz), the head is very 

small compared to the wavelength, and localization is based on perceived differences 

in the time of arrival of sound at the two ears (ITD) as shown in Figure 2.1. (a). The 

two mechanisms of interaural time and level differences formed the basis of what 

became known as the duplex theory of sound localization. In the frequency range 

between approximately 1 and 4 kHz, both of these mechanisms are active, which 

results in several conflicting cues that tend to cause localization errors. 

  While time or intensity differences provide source direction information in the 

horizontal plane, in the median plane, time differences are constant and localization is 

based on spectral filtering. The reflection and diffraction of sound waves from the 
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head, torso, shoulders, and pinna, combined with resonances caused by the ear canal, 

form the physical basis of the head-related transfer functions (HRTFs). 

 

 

 

 

 

 

2.2 HRTFs 

  3D audio rendering systems are based on digital implementations of such 

head-related transfer functions (HRTFs). In principle, it is possible to achieve 

excellent reproduction of 3D sound fields using such methods, however, this requires 

precise measurement of each listener’s individual HRTFs. In fact, the magnitude and 

phase of these head-related transfer functions vary significantly not only for each 

(a) (b) 

Figure 2.1 The ITD and ILD. (a) In the low-frequency regime, sound is localized 
based on differences in the time of arrival at each ear. (b) At higher frequencies, sound 
localization is based on perceived level differences caused by head shadowing. 
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sound direction, but also from person to person. Current research [7] in this area is 

focused on achieving good localization performance while using nonindividualized 

HRTFs derived through averaging or modeling or based on the HRTFs of subjects that 

have been determined to be “good localizer”. In [26], Begault found that there are 

currently three major barriers in 3D audio implementations: 1) psychoacoustic errors 

such as front-back reversals typical in headphone-based systems, 2) large amounts of 

data required to represent measured HRTFs accurately, and 3) frequency and phase 

response errors that arise from mismatches between nonindividualized and measured 

HRTFs. 

  The HRTFs database we use is from MIT Multi-Media Lab in [27], each HRTFs 

has 512 samples and with 44.1 kHz sample rate. The pickup of the HRTFs is a pair of 

microphones embedded in the ears of a dummy head to simulate the ears of the 

human head. The setup of the dummy head is shown in Figure 2.2. The spherical 

space around the dummy head was sampled at elevations from -40 degrees (40 

degrees below the horizontal plane) to +90 degrees (directly overhead). At each 

elevation, a full 360 degrees of azimuth was sampled in equal sized increments. The 

increment sizes were chosen to maintain approximately 5 degree great-circle 

increments. In total, 710 different positions were sampled at elevations from -40 

degrees to +90 degrees. 
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2.3 Crosstalk Cancellation 

  A simple way to reproduce the 3D sound is using headphones. Listening the 

binaural signals via headphones can avoid the crosstalk interference, since the audio 

signals are sent solely to their own destination. Because the listener would feel the 

virtual sound image exists inside the head and be unable to provide sufficient realistic 

perceptual feeling. Hence, using headphone for 3D sound might not be proper. To get 

rid of the phenomenon, we would replace the headphones with two or more 

loudspeakers. 

  In the case of conventional crosstalk canceller, this situation states playbacking the 

binaural signals via a pair loudspeakers for one listener. However, the left ear of 

listener received the sound not only from the left loudspeaker but also the right 

Figure 2.2 The setup of the dummy head. 
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loudspeaker and vice versa. This phenomenon is called crosstalk. These crosstalks 

would disturb the directional perception in 3D sound reproduction since it would 

change the spectrum, conveying the direction perception cues of the audio signals. In 

order to eliminate the crosstalk, the crosstalk cancellation should be introduced. 

 

 

2.3.1 Problem Formulation 

  The algebraic structure of transaural stereo will be developed with the aid of Figure 

2.3. In that figure, N program signals 1 2, , , Nx x x"  are to be used to create M 

loudspeaker signals 1 2, , , My y y" , which in turn result in L ear signals 1 2, , , Ls s s" . 

Let these three sets of signals be represented by the vectors 

[ ]1 2
T

Nx x x=x "                       (2.1) 

[ ]1 2
T

My y y=y "                       (2.2) 

[ ]1 2
T

Ls s s=s "                        (2.3) 

where T denotes matrix transposition. Next, define three matrices of transfer functions. 

First let G be an L M×  matrix, the acoustic matrix, such that element ijg  is the 

transfer function to the ith ear from the jth speaker. Similarly, let C be an M N×  

matrix, the crosstalk canceller matrix, for which ijc  is the transfer function of the  
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C

D

s

y

x

G

 

 

 

 

crosstalk canceller from jth input to the ith output of the network, and let D be the 

L N×  matrix of desired transfer functions describing the overall transfer of signal 

from the inputs of the crosstalk canceller to the ears, for which ijd  is the transfer 

function to the ith ear from the jth crosstalk canceller input. With this notation in place, 

the acoustic propagation can be written as the matrix form 

=s Gy ,                            (2.4) 

the action of the crosstalk canceller can be written 

=y Cx ,                            (2.5) 

and the desired transfer of signals is 

=s Dx .                             (2.6) 

From these, a solution is found by solving 

Figure 2.3 Signal and transfer function definitions for transaural stereo. 
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=GC D                              (2.7) 

for C. In this thesis, where N = 2, M = 2, 3, 4 and L = 2 so that G is a 2 M×  matrix, 

C is an 2M ×  and GC results in a 2 2×  desired transfer matrix D. In order to 

deliver the binaural signals to listener precisely so that D must be an identity matrix. 

Thus, we will find the crosstalk canceller by solving × × ×=2 M M 2 2 2G C I  in chapter 3. 
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Chapter 3 

Crosstalk cancellers 
 

To achieve good reproduction of 3D audio it is necessary to precisely control the 

acoustic signals at the listener’s ear. The simplest way to do this is to deliver binaural 

signals through headphones. However, in many applications, e.g., home entertainment 

environment, spatialized video-conferencing, it is preferable that the listener is not 

required to wear headphones. If loudspeakers are used to deliver binaural signals, the 

crosstalk signal that arrives at each ear from the other loudspeakers must be canceled. 

This is achieved by pre-filtering binaural signals before send to loudspeakers and is 

shown in Figure 3. 1. 

In this chapter, we will discuss difference structures of crosstalk canceller of three 

loudspeakers arrangement. In addition, economical realizations, less computations 

and performance comparison are our main focus. 
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1h 2h 3h 4h

1g
2g

 

 

 

 

 

3.1 Conventional Two Loudspeakers Arrangement 

First, we consider the typical crosstalk canceller. Assume a symmetrical case here. 

This case has two channels, two loudspeakers, and two ears, as shown in Figure 3.1. 

The acoustic transfer function matrix ( )ZG  is 

( ) ( ) ( )
( ) ( )

1 2

2 1

g z g z
z

g z g z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

G .                        (3.1) 

In order to reproduce the binaural signal at each ear, ( )zC  must be the inverse of the 

acoustic transfer function matrix ( )zG , so that 

Figure 3.1 Crosstalk cancellation system (Atal and Schroeder in 1963). 
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( ) ( ) ( )
( ) ( )
( ) ( )

1 2
2 2

2 11 2

1 g z g z
z

g z g zg z g z
−⎡ ⎤

= ⎢ ⎥−− ⎣ ⎦
C            (3.2) 

From Eq. (3.2), it requires four filters to realize crosstalk cancellation which has 

heavy computation load. However, some simplification is possible in implementation. 

In 1989, Cooper and Bauck proposed shuffler structure which ( )zC  can be factored 

by the standard diagonalization technique of finding its eigenvectors and eigenvalues. 

This results in the shuffler form. 

( )
( ) ( )( )

( ) ( )( )

1 2

1 2

1 0
21 1 1 1

1 1 1 1 10
2

g z g z
z

g z g z

⎡ ⎤
⎢ ⎥+⎡ ⎤ ⎡ ⎤⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥

−⎢ ⎥⎣ ⎦

C     (3.3) 

The structure of the shuffler form crosstalk canceller is shown in Figure 3. 2. We can 

see only two filters ∑  and Δ  are needed, unlike the conventional four filters in 

Figure 3.1. 

 

∑

Δ

1x

2x
2y

1y1 2

1 2

1g

2g

1s

2s

 

 Figure 3.2 Shuffler filter structure (Cooper and Bauck in 1989). 
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In our approach, we adopt the FIR filter and use the least square error method to 

find out the finite impulse responses of the filters in Eq. (3.3). Let 

( ) ( ) ( )1 2

1z
g z g z

∑ =
+

                           (3.4) 

and 

( ) ( ) ( )1 2

1z
g z g z

Δ =
−

                           (3.5) 

then we can obtain two equation as follows: 

( ) ( ) ( ) ( ) ( )1 2 1z g z z g z d z∑ ∑⋅ + ⋅ =                  (3.6) 

( ) ( ) ( ) ( ) ( )1 2 2z g z z g z d zΔ ⋅ − Δ ⋅ =                  (3.7) 

where ( )1d z  and ( )2d z  are the signal that we want to approximate . In the matrix 

form, these two equations can be expressed as follows: 

⋅ =G c D                              (3.8) 

1

2

0
0

∑

Δ

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
1

2

G d
G d

                           (3.9) 

where 1G  and 2G  represent the convolution matrices of [ ] [ ]1 2g n g n+  and 

[ ] [ ]1 2g n g n− , respectively. The vector [ ] [ ] [ ]{ }0 1 1J∑ ∑ ∑ ∑= −"  and 

[ ] [ ] [ ]{ }0 1 1JΔ Δ ΔΔ = −"  represent the inverse FIR filters with J taps. The 

desired response [ ] [ ] [ ]{ } { }0 1 2 1 0 0i i i id d d K J= + − =d " "  for i =1, 2 

represents the impulse response in time domain, where K is the number of taps of the 

transfer functions. 

In this method, we want the convolution sum approaches [ ]iD  for i = 0, 1, 2 … 
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K+J-2 such that the following square error as small as possible. 

22e = − ⋅D G c                            (3.10) 

The least square error solution can be shown as 

( )T T⋅ =G G c G D                             (3.11) 

( ) 1T T−
=c G G G D                     (3.12) 

Hence, the FIR filter would be 

[ ] [ ] [ ]{ }0 1 1c c c J∑ = −"                     (3.13) 

[ ] [ ] [ ]{ }1 2 1c J c J c J=Δ + −"               (3.14) 

  It should be mentioned that the desired signal can not be the pure impulse. It 

requires an extra delay to decrease the least square error while approximating the 

desired signal. The extra delay we choice is typically the half of the inverse FIR filter 

order. 

 

3.2 Three Loudspeakers Setup 

Next, we look at the situation depicted in Figure 3.3, a symmetrical arrangement of 

three loudspeakers and one listener. We have 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 3 2

2 3 1

g z g z g z
z

g z g z g z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

G                 (3.15) 

It should be mentioned that the solution of crosstalk canceller is not unique. Since 

there are three variables to be solved from only two equations. Thus, there exist an 
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infinite number of solutions of ( )iC z . In the following sections, we will discuss 

some possible solutions of crosstalk canceller of three loudspeakers geometric and 

illustrate how to find the crosstalk canceller. 

 

1g2g 3g

×3 2C

 

 

 

 

3.2.1 Direct Forward Type 

This structure has proposed by Cooper and Bauck in [10]. In order to reproduce the 

binaural signal at both ear accurately, the general solution is that ( )zC  must be the 

pseudoinverse of ( )zG  as shown below 

( ) ( ) ( ) ( )( ) 1H Hz z z z
−+ =G G G G                  (3.16) 

hence, the crosstalk canceller ( )zC  is 

( ) ( )z z+=C G                                   (3.17) 

Figure 3.3 Geometry and transfer functions for three loudspeakers. 
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( ) ( )
( ) ( )
( ) ( )

1 3

2 2

3 1

C z C z
C z C z
C z C z

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                         (3.18) 

in which 

( ) ( ) ( ) ( ) ( )
( ) ( )

* *
1 1 2 2

1 2 2
1 2

B z g z B z g z
C z

B z B z
−

=
−

                 (3.19) 

( ) ( ) ( ) ( ) ( )
( ) ( )

* *
1 3 2 3

2 2 2
1 2

B z g z B z g z
C z

B z B z
−

=
−

                 (3.20) 

( ) ( ) ( ) ( ) ( )
( ) ( )

* *
1 2 2 1

3 2 2
1 2

B z g z B z g z
C z

B z B z
−

=
−

                 (3.21) 

and 

( ) ( ) ( ) ( )2 2 2
1 1 3 2B z g z g z g z= + +                  (3.22) 

( ) ( ) ( ) ( ) ( ) ( )2* *
2 1 2 3 2 1B z g z g z g z g z g z= + +           (3.23) 

. 

1y

2y

3y

1x

2x

1e

2e

1g

2g

3g

1C

1C

2C

2C

3C

3C

 

 Figure 3.4 The structure of the direct forward type crosstalk canceller. 
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The structure of the direct forward type crosstalk canceller is shown in Figure 3. 4. 

To perform these filters directly causes ( )iC z  unstable due to the denominator of 

( )iC z  has non-minimum phase. Thus, in order to avoid the stability problem we can 

find these filters by using the least square method 

 

3.2.2 Least Square Forward Type 

In order to overcome the problem of stability, we can find the crosstalk cancellation 

filters by using the least square method. The structure of this type crosstalk canceller 

is same as Figure 3. 4. Our goal is that ( )zC  multiplied by ( )zG  equals an identity 

matrix 2 2×I  with some extra delay. Since symmetric arrangement, the four equations 

need to solve become two equations as shown below 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 3 2 2 3g z C z g z C z g z C z d z+ + =        (3.24) 

( ) ( ) ( ) ( ) ( ) ( )2 1 3 2 1 3 0g z C z g z C z g z C z+ + =           (3.25) 

In the matrix form: 

= sGc D                              (3.26) 

1
2
⎡ ⎤

⎡ ⎤ ⎡ ⎤⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

1 3
2

2 3 1
3

c
G G G d

c
G G G 0

c
                     (3.27) 

where 1G , 2G  and 3G  represent the convolution matrices of [ ]1g n , [ ]2g n  and 

[ ]3g n , respectively. The vector ic  for i = 1, 2, 3 represent the FIR filters with J taps. 
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The desired response { }0 0 1 0=d " "  represents the impulse response 

with K+J-1 taps and 2J  modeling delay in time domain. 0  represents the zero 

vector with K+J-1 taps. Thus, the least square error solution can be obtained by Eq. 

(3.11) and Eq. (3.12) then the FIR filter would be 

[ ] [ ] [ ]{ }0 1 1c c c J= −1c "                    (3.28) 

[ ] [ ] [ ]{ }1 2 1c J c J c J= + −2c "               (3.29) 

[ ] [ ] [ ]{ }3 2 2 1 3 1c J c J c J= + −c "             (3.30) 

This type crosstalk canceller requires six FIR filters and causes complex calculation. 

In the next section, we will focus on factoring the crosstalk canceller matrix ( )zC  so 

that economical realizations are possible. 

 

 

3.2.3 Shuffler Structure 

  This structure has proposed by Cooper and Bauck in [10]. Eq. (3.18) is useful in 

showing that six filters are required, but of the six there are only three specifications. 

Noticing that if we ignore the middle row of Eq. (3.18), the remaining elements have 

the same symmetric form as Eq. (3.2), and we can benefit from the factorization of Eq. 

(3.3). With this aid, we can write the factorization of Eq. (3.18) by inspection, 

reinserting the middle row: 
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( )

( ) ( )

( )
( ) ( )

1 3

2

1 3

01 0 1 2 1 1
0 1 0 0

1 1
1 0 1

0
2

C z C z

z C z
C z C z

+⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎡ ⎤⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

C     (3.31) 

( )

( )
( )

2

2

2

01 0 1 2 1 1
0 1 0 0

1 1
1 0 1

0
2

z

C z
z

∑⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎡ ⎤⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦⎢ ⎥⎢ ⎥− Δ⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

                 (3.32) 

The shuffler topology of three loudspeakers setup is shown in Figure 3. 5. It can be 

shown that of the three loudspeaker signals 1y , 2y  and 3y , 1y  and 3y  are 

created from the symmetric combination of 1x  and 2x , one signal can be found from 

the other by replacing 1x  by 2x  and vice versa. In addition, 2y  is formed of only a 

filtered 1 2x x+  signal. If ( )zG  are real-valued, then 

( ) ( ) ( )
( ) ( )( ) ( )

1 2
2 2 2

1 2 32

g z g z
z

g z g z g z

+
∑ =

+ +
                (3.33) 

( ) ( )
( ) ( )( ) ( )

3
2 2 2

1 2 32

g z
C z

g z g z g z
=

+ +
                (3.34) 

( ) ( ) ( )2
1 2

1z
g z g z

Δ =
−

                          (3.35) 

Note that these filters become identical to the corresponding filters of crosstalk 

canceller of Eq. (3.3) when ( )3 0g z = . The impulse response of these filters are 

shown in Figure 3.6, Figure 3.7 and Figure 3.8. 
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Figure 3.5 The shuffler topology of three loudspeakers geometric (Cooper and 
Bauck in 1996). 

Figure 3.6 The impulse response of the filter 2∑ . 
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Figure 3.7 The impulse response of the filter 2C . 

Figure 3.8 The impulse response of the filter 2Δ . 
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3.2.4 A Simplified Shuffler Form 

  As described above, the direct forward type requires six filters to realize crosstalk 

cancellation and has heavy computation. Although the shuffler structure requires 

fewer filters than direct implementation, the crosstalk cancellation filters of such 

structure are not easy to realize. In this section, we derive one possible solution of 

crosstalk canceller, that is, a simplified shuffler form, in which only two filters are 

needed to realize crosstalk cancellation. In addition, the crosstalk cancellation filters 

of this structure are easier to implement than those in shuffler form.  

Now, we illustrate how to find C. Ideally, 3 3× × ×=2 2 2 2G C I . Since symmetric 

arrangement so that 3 3× ×2 2G C  results in two equations as follows: 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 3 3 2 1C z g z C z g z C z g z+ + =           (3.36) 

( ) ( ) ( ) ( ) ( ) ( )1 2 2 3 3 1 0C z g z C z g z C z g z+ + =           (3.37) 

From Eq. (3.36) and Eq. (3.37), there are three variables to be solved by two 

equations so that there exist infinite solutions of ( )iC z . The ( )iC z  we find here is 

one possible solution. First, by subtracting and adding Eq. (3.36) and Eq. (3.37), we 

have 

( ) ( ) ( ) ( )1 3
1 2

1C z C z
g z g z

− =
−

                     (3.38) 

( ) ( )( ) ( ) ( )( ) ( ) ( )1 3 1 2 2 32 1C z C z g z g z C z g z+ + + =       (3.39) 

In order to cancel the right-hand-side of Eq. (3.39), we then choose 
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( ) ( )2
3

1
2

C z
g z

=                                 (3.40) 

In addition, ( ) ( )1 2 0g z g z+ ≠  so that 

( ) ( )1 3 0C z C z+ =                                (3.41) 

From Eq. (3.38) and Eq. (3.41), we can obtain: 

( ) ( ) ( )( )1
1 2

1
2

C z
g z g z

=
−

                         (3.42) 

( ) ( ) ( )( )3
1 2

1
2

C z
g z g z

−
=

−
                        (3.43) 

Thus, one possible solution of crosstalk canceller can be: 

( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 2 1 2

3 3

1 2 1 2

1 1

1 1 1
2

1 1

g z g z g z g z

z
g z g z

g z g z g z g z

⎡ ⎤−
⎢ ⎥− −⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥

− −⎢ ⎥⎣ ⎦

C              (3.44) 

Also, we can utilize the factorization as described in section 3.2.3. If we ignore the 

middle row of Eq. (3.44), the remaining elements have the same symmetric form as 

Eq. (3.2), then we can benefit from the factorization of Eq. (3.3) and we can write the 

factorization of Eq. (3.44) by reinserting the middle row as shown below 

( ) ( )

( ) ( )

3

1 2

0 01 0 1
1 11 10 1 0 0
1 12

1 0 1
10

z
g z

g z g z

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎡ ⎤⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥ ⎣ ⎦⎢ ⎥−⎣ ⎦ ⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

C       (3.45) 
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( )
( )

3

3

0 1
0 1 11 1 0

0 1 12
0 1

H z
z

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥ Δ −⎣ ⎦⎣ ⎦⎢ ⎥−⎣ ⎦

               (3.46) 

The structure of this type crosstalk canceller is shown in Figure 3. 9 and the impulse 

response of these filters are shown in Figure 3.10 and Figure 3.11. Obviously, this 

structure is easier to implement than direct forward type and shuffler form. In addition, 

it requires only two filters so that economical realization and less computation can be 

achievable. 

It should be mentioned that only the sum signal 1 2x x+  is fed to the center 

loudspeaker, and only the difference signal ( )1 2x x± −  is fed to the side loudspeakers. 

One side gets the same signal as the other side loudspeaker, but inverted in sign. 

Feeding the side loudspeakers with opposite sign signals is similar to a dipole, 

especially when the side loudspeakers are placed close together as described in [17]. 

1y
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1/ 2

1/ 2

1/ 2−
3Δ

1g

3g

2g

1s

2s

3H

 

 

 

Figure 3.9 The simplified shuffler structure of crosstalk canceller for three 
loudspeakers arrangement. 
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Figure 3.10 The impulse response of the filter 3H . 

Figure 3.11 The impulse response of the filter 3Δ . 
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3.2.5 A Simplified Shuffler Form of Four Loudspeakers 

Arrangement 

Similarly, we can extend to four loudspeakers and derive the simplified shuffler 

form. In this case, we deliver the binaural signals to listener via four loudspeakers as 

shown in Figure 3.12. Under symmetric arrangement, the acoustic matrix G is a 2 4×  

matrix and the crosstalk canceller matrix C  is a 4 2×  matrix as shown below 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 4

4 3 2 1

g z g z g z g z
z

g z g z g z g z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

G             (3.53) 

( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 4

2 3

3 2

4 1

C z C z
C z C z

z
C z C z
C z C z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C                           (3.54) 

 

4×2C

1g 2g 3g 4g

 

 

 

 

Figure 3.12 Geometry and transfer functions for four loudspeakers. 
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In addition, our desired transfer function matrix D is a 2 2×  identity matrix. Thus, 

we can obtain two equations as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3 4 4 1C z g z C z g z C z g z C z g z+ + + =      (3.55) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 4 2 3 3 2 4 1 0C z g z C z g z C z g z C z g z+ + + =     (3.56) 

By subtracting and adding Eq. (3.55) and Eq. (3.56), we have 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

1 4 1 4 2 3 2 3

1 4 1 4 2 3 2 3

1

1

g z g z C z C z g z g z C z C z

g z g z C z C z g z g z C z C z

⎧ − − + − − =⎪
⎨

+ + + + + =⎪⎩
    (3.57) 

Next, we choose ( ) ( )2 3C z C z=  and ( ) ( ) ( ) ( )( )2 3 2 31C z C z g z g z+ = +  so that 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 4 1 4

1 4 1 4

1

0

g z g z C z C z

g z g z C z C z

⎧ − − =⎪
⎨

+ + =⎪⎩
              (3.58) 

We can further obtain 

( ) ( ) ( ) ( )1 4
1 4

1 1
2

C z C z
g z g z

= − =
−

                 (3.59) 

and 

( ) ( ) ( ) ( )2 3
2 3

1 1
2

C z C z
g z g z

= =
+

                  (3.60) 

then one possible solution of crosstalk canceller can be 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 4 1 4

2 3 2 3

2 3 2 3

1 4 1 4

1 1

1 1
1

1 12

1 1

g z g z g z g z

g z g z g z g z
z

g z g z g z g z

g z g z g z g z

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥+ +⎢ ⎥= ⎢ ⎥
⎢ ⎥

+ +⎢ ⎥
⎢ ⎥−⎢ ⎥

− −⎢ ⎥⎣ ⎦

C             (3.61) 

Using the factorization as described in section 3.2.3, we have 
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( )
( ) ( )( )

( ) ( )( )

2 3

1 4

10 1 0
21 0 1 1

1 0 1 1 10
20 1

g z g z
z

g z g z

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ + ⎡ ⎤⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥ −⎣ ⎦⎢ ⎥⎢ ⎥ −− ⎢ ⎥⎣ ⎦ ⎣ ⎦

C  

( )
( )

4

4

0 1
01 0 1 11

01 0 1 12
0 1

z
z

⎡ ⎤
⎢ ⎥ ∑⎡ ⎤ ⎡ ⎤⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥ Δ −⎣ ⎦⎣ ⎦⎢ ⎥−⎣ ⎦

                  (3.62) 

The structure of this type crosstalk canceller is shown in Figure 3.13. Same as the 

simplified shuffler form of three loudspeakers setup, it requires only the inversed-sum 

filter ( )4 z∑  and the inversed-difference filter ( )4 zΔ  to realize the crosstalk 

canceller. 

It should be mentioned that the approach we propose here is only one possible 

solution. There must be lots of different implementation of crosstalk canceller for four 

loudspeakers arrangement. 
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Figure 3.13 The simplified shuffler structure of crosstalk canceller for four loudspeakers 
arrangement. 
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3.2.6 Reduced-Order Modeling 

  In order to efficiently reduce the orders of the model, we use pole-zero models to 

approximate the impulse response of FIR filters. Here, we use Prony appoximation 

method to model. Either model can be expressed by the system function: 

( ) ( )
( )

( )
( )

0

11

q k
q k q

p k
p k p

B z b k z
C z

A z a k z

−
=

−
=

∑
= =

+∑
                  (3.63) 

The Prony approximation wants to minimize the error: 

( ) ( ) ( ) ( )p qE z A z x z B z= −                         (3.64) 

where ( )x z  is the system’s impulse response that we want to model. Since 

( ) 0qb n =  for n q> , we may write the error explicitly for each n as follows: 

( ) [ ] [ ] [ ] [ ]
[ ] [ ] [ ]

1

1

; 0,1, ,
;

p
l p q
p
l p

x n a l x n l b n n q
e n

x n a l x n l n q
=

=

⎧ + ∑ − − =⎪= ⎨ +∑ − >⎪⎩

…
   (3.65) 

Prony approximation begins by finding the coefficients ( )pa k  that minimize the 

square error 

[ ] [ ] [ ] [ ]
2

2

1 1 1

p

prony p
n q n q l

e e n x n a l x n l
∞ ∞

= + = + =

= = + −∑ ∑ ∑         (3.66) 

Form this equation, we know the modeled impulse response [ ]x̂ n  approximates 

[ ]x n  without error over the interval [ ]0, q . However, there is modeling error 

between [ ]x n  and [ ]x̂ n . We will discuss how the modeling error affects the 

performance of crosstalk cancellation in chapter 4. 
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Chapter 4 

Perturbation Analysis 
 

The main disadvantage of crosstalk canceller system is that it is critically dependent 

on the listener’s head being in a fixed design position, the so called “sweet-spot”. 

Many studies have shown that the lateral movement away from the design position of 

as little as a few centimeters results in loss of the 3D audio effect. In this chapter, we 

will discuss the robustness of two and three loudspeakers arrangement. The analysis 

of shuffler form and simplified shuffler form are our main focus here. 

In addition, we will focus on the performances of crosstalk suppression, and see 

how perturbations or modeling errors of these inverse filters will affect the crosstalk 

suppression in the crosstalk canceller. In the following section, we will discuss which 

type of crosstalk canceller has better immunity to perturbation. 
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4.1 Perturbation Analysis for Filter Modeling 

  First, we will investigate the robustness of crosstalk canceller due to filter modeling 

error as shown in Figure 4.1. Ideally, the product of 0C  and G  results in an 

identity matrix. After modeling, 0C  becomes +C  which means there are modeling 

errors in +C . Hence, the product of +C  and G  is no longer an identity matrix, since 

the modeling error affects the performance of equalization and crosstalk cancellation. 

In this section, we will analyze how the modeling errors affect the performance of two 

and three loudspeakers shuffler forms and simplified shuffler form, since their 

structures are similar. 

 

0C

e

x

+⇒ C

y

G

 

 

 

 

 

Figure 4.1 The geometry of crosstalk cancellation system for multiple loudspeakers after 
filter modeling 
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4.1.1 Analysis on Shuffler Form of Two Loudspeakers Setup 

From Figure 3.2, we can derive the relation between Y and X in a matrix form. 

1 1

2 2

1
2

Y X
Y X

∑+Δ ∑−Δ⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥∑−Δ ∑+Δ⎣ ⎦⎣ ⎦ ⎣ ⎦

                   (4.1) 

After modeling, the filters ∑  and Δ will be changed to be +∑  and +Δ  with 

modeling error ,1se  and ,1de , respectively, so that the relation between Y+  and X can 

be written as follows: 

,1 1

,2 2

1
2

Y X
Y X
+ + + + +

+ + + + +

∑ +Δ ∑ −Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥∑ −Δ ∑ +Δ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

   ,1 ,1 ,1 ,1 1

,1 ,1 ,1 ,1 2

1
2

s d s d

s d s d

e e e e X
e e e e X

∑+ + Δ + ∑+ −Δ −⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥∑+ −Δ − ∑+ + Δ + ⎣ ⎦⎣ ⎦

 (4.2) 

where ,1Y+  and ,2Y+  represent the perturbed signals sent to the loudspeaker pair. The 

modeling errors after crosstalk cancellation can be expressed as follows: 

,1 ,1 ,1 ,1 1
2,

,1 ,1 ,1 ,1 2

1
2

s d s d
Shuffler

s d s d

e e e e g
E

e e e e g
+ −⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥− + ⎣ ⎦⎣ ⎦
              (4.3) 

Now, we begin the analysis. First, we factorize the filters ∑  and Δ  as shown 

below 

1 2 1

1 1 1
1g g g F

∑ = = ⋅
+ +

                     (4.4) 

1 2 1

1 1 1
1g g g F

Δ = = ⋅
− −

                     (4.5) 

In Eq. (4.4) and Eq. (4.5), we let 

2

1

gF
g

=                            (4.6) 
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1x

2x
2y

1y1 2

1 2

1g

2g

1s

2s

1
1 F+

1
1 F−

1

1
g

1

1
g

 

 

 

Thus, we can obtain the structure as shown in Figure 4.2. It should be mentioned that 

we focus on the perturbation of F due to filter modeling so that we assume there are 

no modeling errors in 11 g . By utilizing Taylor series, we have 

( )
11

1 1 n

n

F
g

∞

=

⎡ ⎤∑ = ⋅ + −⎢ ⎥⎣ ⎦
∑                       (4.7) 

11

1 1 n

n

F
g

∞

=

⎡ ⎤Δ = ⋅ +⎢ ⎥⎣ ⎦
∑                          (4.8) 

After low order filter design, F becomes F+  with filter modeling error e, i.e. 

e F F+= −                                 (4.9) 

Therefore, we have 

1

1 1
1g F+

+

∑ = ⋅
+

 

( ) ( ) ( )2 3

1

1 1 F e F e F e
g

⎡ ⎤= ⋅ − + + + − + +⎣ ⎦"  

( ) ( )
11

1 1 1 n n

n

F e
g

∞

=

⎡ ⎤= ⋅ + − +⎢ ⎥⎣ ⎦
∑                 (4.10) 

Figure 4.2 The factorized two loudspeakers shuffler form. 
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Using binomial series, we can obtain 

( )
1 01

1 1 1
n

n k n k

n k

n
e F

kg

∞
−

+
= =

⎡ ⎤⎛ ⎞
∑ = ⋅ + −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑  

( ) ( )
1 1 11

1 1 1
n

n n k n k

n n k

n
F e F

kg

∞ ∞
−

= = =

⎡ ⎤⎛ ⎞
= ⋅ + − + −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑∑   (4.11) 

Similarly, 

1

1 1
1g F+

+

Δ = ⋅
−

 

1 1 11

1 1
n

n k n k

n n k

n
F e F

kg

∞ ∞
−

= = =

⎡ ⎤⎛ ⎞
= ⋅ + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑∑           (4.12) 

We then have 

,1se += ∑ −∑  

( )
1 11

1 1
n

n k n k

n k

n
e F

kg

∞
−

= =

⎛ ⎞
= ⋅ − ⎜ ⎟

⎝ ⎠
∑∑  

( )2 2 2 3

1

1 2 3 3e eF e eF e F e
g

= ⋅ − + + − + − +"     (4.13) 

Assume ( ) ( )2 2 2 32 3 3eF e e eF e F e− − + − +� "  so that 

( ),1
1

1 2 1se F e
g

≅ ⋅ −                            (4.14) 

and 

,1de += Δ −Δ  

1 11

1 n
k n k

n k

n
e F

kg

∞
−

= =

⎛ ⎞
= ⋅ ⎜ ⎟

⎝ ⎠
∑∑  

( )2 2 2 3

1

1 2 3 3e eF e eF e F e
g

= ⋅ + + + + + +"      (4.15) 

Assume the common error e much small so that 
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( ),1
1

1 2 1de F e
g

≅ ⋅ +                        (4.16) 

Thus, the modeling error vector can be written as follows 

1
2,

21

21
2Shuffler

gFe e
E

ge Feg
− ⎡ ⎤⎡ ⎤

≅ ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦
                  (4.17) 

To further simplify this analysis, we will assume vectors are reduced to scalars, 

1 1g =  and 2g r=  to account for interaural intensity difference. Hence, F r=  and 

the error vector can be rewritten as 

2,

2 1
2Shuffler

re e
E

e re r
−⎡ ⎤ ⎡ ⎤

≅ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
 

( )22 1

er

e r
⎡ ⎤

= ⎢ ⎥
−⎢ ⎥⎣ ⎦

                       (4.18) 

The first element of this error vector indicates the error of equalization part and the 

second element represents the error of crosstalk part due to the filter modeling. In [20], 

the author has investigated the perturbation analysis on direct forward type 2. The 

error vector can be derived as 

2 2

0 11
01
e

E
e rr
⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥− ⎣ ⎦ ⎣ ⎦
 

   2

1
1

er
er

⎡ ⎤
= ⎢ ⎥− ⎣ ⎦

                        (4.19) 

It is difficult to compare which structure has better immunity of the perturbation. We 

will make more detailed comparison from simulated results as shown in chapter 5. 
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4.1.2 Analysis on Shuffler Form of Three Loudspeakers 

Arrangement 

Also, we take the same analysis on shuffler form of three loudspeakers arrangement 

and derive the modeling error vector for comparison. In the same way, we derive the 

relation between Y and X in the shuffler form crosstalk canceller of three loudspeakers 

arrangement as follows: 

( ) ( )

( ) ( )

2 2 2 2
1

1
2 2 2

2
3

2 2 2 2

1 1
2 2

1 1
2 2

Y
X

Y C C
X

Y

⎡ ⎤∑ +Δ ∑ −Δ⎢ ⎥⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥ = ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦ ∑ −Δ ∑ +Δ⎢ ⎥
⎣ ⎦

                (4.20) 

After modeling, the filters 2∑ , 2C  and 2Δ  will be changed to be ,2+∑ , ,2C+  and 

,2+Δ  with modeling error ,2se , ,2ce  and ,2de , respectively, so that the relation 

between Y+  and X can be written as follows: 

( ) ( )

( ) ( )

,2 ,2 ,2 ,2
,1

1
,2 ,2 ,2

2
,3

,2 ,2 ,2 ,2

1 1
2 2

1 1
2 2

Y
X

Y C C
X

Y

+ + + +
+

+ + +

+
+ + + +

⎡ ⎤∑ +Δ ∑ −Δ⎢ ⎥⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥ = ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦ ∑ −Δ ∑ +Δ⎢ ⎥
⎣ ⎦
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2 ,2 2 ,2 2 ,2 2 ,2

1
2 ,2 2 ,2

2

2 ,2 2 ,2 2 ,2 2 ,2

1 1
2 2

1 1
2 2

s d s d

c c

s d s d

e e e e
X

C e C e
X

e e e e

⎡ ⎤∑ + + Δ + ∑ + −Δ −⎢ ⎥
⎢ ⎥ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥
⎣ ⎦⎢ ⎥

∑ + −Δ − ∑ + + Δ +⎢ ⎥
⎣ ⎦

 (4.21) 

where ,1Y+ , ,2Y+  and ,3Y+  represent the perturbed signals sent to the loudspeakers. 

Then the modeling error after crosstalk cancellation can be expressed as follows: 

 



 39

1y

2y

3y

1x

2x

1/ 2

1/ 2

1g

2g

3g 1s

2s

1
1 F+

1
1 F+

1
1 F−

1

1
g

1

1
g

1

1
g

1H

2H

 

 

 

 

( ) ( )

( ) ( )

1,2 ,2 ,2 ,2 ,2

3, 3

,2 ,2 ,2 ,2 ,2 2

1 1
2 2
1 1
2 2

s d c s d

shuffler

s d c s d

ge e e e e
E g

e e e e e g

⎡ ⎤ ⎡ ⎤+ −⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥− + ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

        (4.22) 

Now, we begin the analysis. First, we factorize the filters 2∑ , 2C  and 2Δ  as 

follows: 

( )
1 2

2 2 22
11 2 3 3

1 2

1 1 1
12

1 2

g g
g Fg g g g

g g

+
∑ = = ⋅ ⋅

++ + ⎛ ⎞
+ ⎜ ⎟+⎝ ⎠

        (4.23) 

( )
( )

( )
1 2 33

2 2 22 2
11 2 3 1 2 3

1 1
12 2

g g ggC
g Fg g g g g g

+
= = ⋅ ⋅

++ + + +
        (4.24) 

2
1 2 1

1 1 1
1g g g F

Δ = = ⋅
− −

                             (4.25) 

where F is described in section 4.1.1. Thus, we can obtain the structure as shown in 

Figure 4.3. The filters 1H  and 2H  in Figure 4.3 are shown below 

Figure 4.3 The factorized three loudspeakers shuffler form. 
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1 2 3
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1 2 3
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H

g g g

⎧ =⎪ ⎛ ⎞⎪ + ⎜ ⎟⎪ +⎝ ⎠⎨
⎪ +⎪ =
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                      (4.26) 

By utilizing Taylor series, we have 

( )2 2
11 3

1 2

1 1 1

1 2

n

n
F

g g
g g

∞

=

⎡ ⎤∑ = ⋅ ⋅ + −⎢ ⎥⎣ ⎦⎛ ⎞
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∑                 (4.27) 
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( )1 2 3
2 2 2

11 1 2 3

1 1
2

n

n

g g g
C F

g g g g

∞

=

+ ⎡ ⎤= ⋅ ⋅ + −⎢ ⎥+ + ⎣ ⎦
∑                (4.28) 

2
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1 1 n

n
F

g

∞

=

⎡ ⎤Δ = ⋅ +⎢ ⎥⎣ ⎦
∑                                 (4.29) 

After low order filter design, F becomes F+  with filter modeling error e as described 

in Eq. (4.9) so that we have 

,2 2
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1 2

1 1 1
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g Fg
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∑               (4.30) 

Using binomial series, we can obtain 
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1 1 11 3
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1 1 1 1
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∞ ∞
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Similarly, 
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∑ ∑∑                        (4.33) 

We then have 

,2 ,2 2se += ∑ −∑  
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Assume ( ) ( )2 2 2 32 3 3eF e e eF e F e− − + − +� "  so that 
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Similarly 

,2 ,2 2ce C C+= −  
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                         (4.36) 

,2 ,2 2de += Δ −Δ  
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⎛ ⎞
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⎝ ⎠
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( )
1

1 2 1F e
g

≅ ⋅ +                                        (4.37) 

To further simplify this analysis, we will assume 1 1g = , 2g r=  and 3g α=  where 

1r α< < . Hence, the modeling error vector can be rewritten as 
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          (4.38) 

From the first element of Eq. (4.37), that is, the equalized error: 

( ) ( ) ( ) ( )( )2 2

2 11 1 1 1. 1 2 1 1 1 2
2 1 2

1 2 1 2
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r e
eq r r e r r e
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+⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

                                                                (4.39) 

Assume 2 1 0r − >  so that the coefficients of common modeling error e are positive. 

Thus, the norm of equalized error can be rewritten as 
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r e
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.eq e r< ⋅                        (4.41) 

Also, the second element of Eq. (4.37), that is, the crosstalk error: 

( ) ( ) ( ) ( )( )2 2

2 11 1 1 1. 1 2 1 1 1 2
2 1 2

1 2 1 2
1 1

r
cr r r e e r r e

r
r r

α
α

α α

−
≅ + − + ⋅ − − +

+⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
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Assume 2 1 0r − >  and r closes to α . Thus, the norm of crosstalk error can be 

rewritten as 
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If ( ) ( )2 2

0

2 1 2 1 i

i

r r rα
∞

=

− − −∑� , then 

2. 2 1cr e r≅ ⋅ −                    (4.44) 

The result in Eq. (4.40) indicates that the norm of equalized error is smaller than that 
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of Eq. (4.17). It means that three loudspeakers shuffler form is not sensitive to 

equalized error. Eq. (4.43) denotes that the norm of crosstalk error is similar to that of 

Eq. (4.17) which means three loudspeakers shuffler has the same immunity as two 

loudspeakers shuffler to crosstalk error. Thus, we can see that three loudspeakers 

shuffler form has better immunity of filter modeling than two loudspeakers shuffler 

form. But, the filters of three loudspeakers shuffler form is more complex. 

 

 

4.1.3 Analysis on Simplified Shuffler Form  

In this section, we will take the perturbation analysis on filter modeling of the 

simplified shuffler form. From Figure 3.6, we can derive the relation between Y and X 

as shown below 

1 3 3
1

2 3 3
2

3 3 3

1
2

Y
X

Y H H
X

Y

Δ −Δ⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥−Δ Δ⎣ ⎦ ⎣ ⎦

                  (4.45) 

After modeling, the filters 3H  and 3Δ  will be changed to be ,3H+  and ,3+Δ  with 

modeling error ,3He  and ,3de , respectively, so that the relation between Y+  and X 

can be written as follows: 
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,2 ,3 ,3
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,3 ,3 ,3
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Y H H
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+ + +

+ + +

+ + +

⎡ ⎤ ⎡ ⎤Δ −Δ
⎡ ⎤⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥−Δ Δ⎣ ⎦ ⎣ ⎦
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        (4.46) 

It should be mentioned that the filter 3H  includes the information of 3g  only and 

the filter 3Δ  does not include 3g  as depicted in Eq. (3.45) and Eq. (3.46). Therefore, 

the modeling error ,3He  and ,3de  are uncorrelated. Then the modeling error after 

crosstalk cancellation can be expressed as follows: 
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              (4.47) 

Now, we begin the analysis. Since the filter 3H  without the information of 1g  and 

2g  so that we factorize filter 3Δ  as follows 

3
1 2 1

1 1 1
1g g g F

Δ = = ⋅
− −

                    (4.48) 

where F is described in section 4.1.1. Thus, we can obtain the structure as shown in 

Figure 4.4. By utilizing Taylor series, we can obtain 
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∑                        (4.49) 

After low order filter design, F becomes F+  with filter modeling error e as described 

in Eq. (4.9) so that we have 
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As before, using binomial series so that 
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We than have 

,3 ,3 3de += Δ −Δ  
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1

1 2 1F e
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In addition, the modeling error of 3H  is 

,3 ,3 3He H H+= −                            (4.53) 

and the modeling error vector can be written as follows 

Figure 4.4 The factorized three loudspeakers simplified shuffler form. 
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To further simplify this analysis, we will assume 1 1g = , 2g r=  and 3g α=  where 

1r α< < . Hence, the error vector can be rewritten as 
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                   (4.55) 

From the above result, it is difficult to make theoretical comparison between Eq. (4.55) 

and Eq. (4.18) or Eq. (4.38). Since the modeling error ,3He  is uncorrelated with e  

in Eq. (4.55). In chapter 5, we will discuss which structure is more robust for filter 

modeling error from simulated results. 

 

 

4.2 Perturbation Analysis for Head movement 

In this section, we will investigate the robustness of crosstalk canceller due to head 

movement. In addition, we are interested in which loudspeaker positions can result in 

a robust crosstalk canceller. Head movement, changes the default acoustic matrix G  

to a perturbed acoustic matrix +G  as shown in Figure 4.5. Thus, the product of C  

and +G  is no longer an identity matrix. The perturbation analysis of head movement 
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will be shown in following sections. 
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  First, we consider the shuffler form of two loudspeakers arrangement as shown in 

Figure 3.2. The crosstalk canceller of this structure is shown in Eq. (3.3). Ideally, 

=GC I . If the head moves, G  becomes +G  so that + ≠G C I . It is because the 

error exists between G  and +G . By defining the acoustic channel error 2δG  as 

11 12
2

21 22

g g
g g

δ δ
δ

δ δ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

G                      (4.56) 

The acoustic channel error after crosstalk cancellation can be written as 

2, 2 2,Shuffler Shufflerδ=E G C  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

11 12 11 12 11 12 11 12

21 22 21 22 21 22 21 22

1
2

g g g g g g g g
g g g g g g g g

δ δ δ δ δ δ δ δ
δ δ δ δ δ δ δ δ

∑ + + Δ − ∑ + −Δ −⎡ ⎤
= ⎢ ⎥∑ + + Δ − ∑ + −Δ −⎣ ⎦

    (4.57) 

Figure 4.5 The geometry of crosstalk cancellation system for multiple loudspeakers 
due to head movement. 
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The diagonal elements of this error matrix denote the equalization error and the 

off-diagonal elements represent the crosstalk error.  

  Now, we consider the simplified shuffler form of three loudspeakers arrangement 

as shown in Figure 3.6. The crosstalk canceller of this structure is shown in Eq. (3.46). 

If the acoustic channel error 3δG  is 

11 12 13
3

21 22 23

g g g
g g g

δ δ δ
δ

δ δ δ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

G                 (4.58) 

then the acoustic channel error after crosstalk cancellation can be written as 

3, 3 3,simplified simplifiedδ=E G C  

( ) ( )
( ) ( )

3 12 3 11 13 3 12 3 11 13

3 22 3 21 23 3 22 3 21 23

1
2
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H g g g H g g g

δ δ δ δ δ δ
δ δ δ δ δ δ

+ Δ − −Δ −⎡ ⎤
= ⎢ ⎥+ Δ − −Δ −⎣ ⎦

       (4.59) 

  Next, we consider the simplified shuffler form of four loudspeakers arrangement as 

shown in Figure 3.8.. The crosstalk canceller of this structure is shown in Eq. (3.62). 

Denote the acoustic channel error 4δG  as 

11 12 13 14
4

21 22 23 24

g g g g
g g g g

δ δ δ δ
δ

δ δ δ δ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

G              (4.60) 

then the acoustic channel error after crosstalk cancellation can be written as 

4, 4 4,simplified simplifiedδ=E G C  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

4 12 13 4 11 14 4 12 13 4 11 14

4 22 23 4 21 24 4 22 23 4 21 24

1
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g g g g g g g g
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δ δ δ δ δ δ δ δ

∑ + + Δ − ∑ + −Δ −⎡ ⎤
= ⎢ ⎥∑ + + Δ − ∑ + −Δ −⎣ ⎦

(4.61) 

It should be mentioned that the above analysis is not complete yet. Since we can’t find 
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a common channel error exists so that there is no relationship between these 

acoustic channel errors. Therefore, it is difficult to compare which structure is more 

robust for channel error from Eq. (4.57), Eq. (4.59) and Eq. (4.61). Therefore, we 

will discuss how the changed channel affects the performance of crosstalk 

cancellation by calculating the condition number of G. 

 

 

4.3 Optimum Loudspeakers Position for Robust 

Crosstalk Canceller 

  As shown in Figure 4.5, +G  indicates the perturbed acoustic transmission path 

which can be represented as  

δ+ = +G G G                        (4.62) 

where δG  denotes the channel error, thus 

( )δ+ ×= + ≠ 2 2G C G G C I                   (4.63) 

If C can be adjusted by δC  so that 

( )( )δ δ ×+ + = 2 2G G C C I                  (4.64) 

From linear systems theory in [26], we can obtain that 

1δ
δ−≤ ⋅

C
G G

C
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1 δ−= ⋅
G

G G
G

 

{ }cond
δ

= ⋅
G

G
G

                  (4.65) 

Eq. (4.65) shows that the adjustment of C can be bounded by the condition number of 

G. The larger condition number of G indicates that crosstalk canceller C is sensitive 

to the channel error δG . Thus, we can call such C is nonrobust for channel error. 

Conversely, the smaller condition number of G represents the crosstalk canceller C 

has better immunity to channel error so that we call such C is robust for channel error. 

Here, the condition number of G is defined as 

{ }
( )
( )

max

min

H

H
cond

σ

σ
=

GG
G

GG
                   (4.66) 

where ( )minσ ⋅  and ( )maxσ ⋅  represent the smallest and largest singular values, 

respectively. When G  is ill-conditioned, the crosstalk canceller designed according 

to 1−=C G  or +=C G  is inherently nonrobust. Thus, Eq. (4.66) serves as a useful 

robustness measure for the crosstalk canceller. In following section, we will use Eq. 

(4.66) to calculate the condition of multiple loudspeakers arrangement. 
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4.3.1 Two Loudspeakers Arrangement 

  In the analysis in [3, 4, 5], the author let the acoustic transmission functions 

between loudspeakers and the listener’s ears be 

1 2

2 1
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g g
⎡ ⎤
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⎣ ⎦

2G  

1 1
1 2

1 1
2 1

2 2

2 2

j d j d

j d j d

e e

e e

πλ πλ

πλ πλ

− −

− −

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

                 (4.67) 

where λ  is the wavelength, and id  is the distance from the ith loudspeaker to the 

ear. Then the condition number of matrix 2G  as shown below 

{ }
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max 2 2

2

min 2 2
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G G
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G G
 

1

1

1 cos 2
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πλ β

−

−

+
=

−
                  (4.68) 

where 1 2d dβ = −  indicates the interaural path difference which can be used to 

determine the angle of the loudspeakers. In [3], the interaural difference is given by 

2 sinHrβ θ=                          (4.69) 

where Hr  is the radius of the head. Usually, Hr  is 0.0875 m. Since our goal is to 

find the optimum β  so that { }2cond G  approaches 1. It means that under such 

loudspeaker arrangement the crosstalk canceller is more robust for perturbation of 

head movement. The result in [3, 4, 5] as follows 

{ }2

1,
,

robust
cond

nonrobust
⎧

= ⎨∞⎩
G                  (4.70) 
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so that 
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where ,i k ∈] , then 
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               (4.72) 

Figure 4.6 The condition numbers of 2G  with different loudspeakers position. The 
solid line indicates the loudspeakers position of the side loudspeakers for condition 
number equals to 1 and the dotted line indicates condition numbers close to 
infinitity. 
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The loudspeaker positions obtained from Eq. (4.72) are shown in Figure 4.6. The 

solid curve indicates the condition number is 1 and results in a robust crosstalk 

canceller while loudspeakers pair located at these positions for different frequencies. 

The dotted line should be avoided since they produce a nonrobust crosstalk canceller. 

Ideally, the loudspeaker spacing should vary with frequency so that a more robust 

crosstalk canceller is possible. In following sections, we can take the similar analysis 

to derive the optimum loudspeakers position for multi-loudspeakers arrangement. 

 

 

4.3.2 Three Loudspeakers Arrangement 

  Different from two loudspeakers arrangement, there is an additional loudspeaker 

located at 0°  between the side loudspeakers in the case of three loudspeakers. Also, 

we can let the acoustic transmission functions between loudspeakers and the listener’s 

ears as shown in Eq. (4.73) to simplify analysis. 

1 3 2
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g g g
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j dj d j d
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e e e

πλπλ πλ

πλπλ πλ

−− −
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= ⎢ ⎥
⎢ ⎥⎣ ⎦

              (4.73) 

We then can derive the condition number of matrix 3G  as shown below 
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G             (4.74) 

so that we can obtain the result as shown below 
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where ,i k ∈] , then 

Figure 4.7 The condition numbers of 3G  with different loudspeakers position. The 
solid line indicates the loudspeakers position of the side loudspeakers for condition 
number equals to 1 and the dotted line indicates condition numbers close to 
infinitity. 
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The loudspeaker positions obtained from Eq. (4.76) are shown in Figure 4.7. The 

solid curve indicates the optimum positions and the dotted line should be avoided 

since they produce a nonrobust crosstalk canceller.  

 

 

4.3.3 Four Loudspeakers Arrangement 

  In this section, we will discuss the robustness of four loudspeakers arrangement due 

to head movement. In this case, there are additional closer loudspeakers pair between 

wider loudspeakers pair. Thus, there are two loudspeaker positions should be 

considered. To simplify the analysis, we let the acoustic transmission functions 

between loudspeakers and the listener’s ears be 
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We then can derive the condition number of matrix 4G  as shown below 
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where 1 1 4d dβ = −  and 2 2 3d dβ = −  indicates the interaural path difference of 
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wider loudspeakers pair and closer loudspeakers pair, respectively. To be robust, the 

4G  is well conditioned and we can obtain that 

{ }
1

4 2arg min
2
kcond

β
β λ= +G                  (4.79) 

so that 

( )1 2sin sin 2 1
0.35

k λθ θ= + +                   (4.80) 

As to nonrobustness, we can obtain that 
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                       (4.81) 

and 

1

2

sin ( 1)
0.175

sin
0.175

i

i

λθ

λθ

⎧ = +⎪⎪
⎨
⎪ =
⎪⎩

                              (4.82) 

From the results in Eq. (4.80) and Eq. (4.82), angle between two loudspeakers should 

be considered. As shown in Eq. (4.80), the position of wider loudspeaker can be 

obtained while the position of closer loudspeaker is determined for fixed frequency. 

For 2f KHz= , we let the closer loudspeaker locate at 5± °  then we can obtain the 

position of wider loudspeaker is located at 35± °  and results in a robust crosstalk 

canceller.  

  Here, we defined the parameter, that is, the robust bandwidth to indicate that the 

condition number is below a specified value in the lowest continuous frequency range. 

Figure 4.8 has shown that the robust bandwidth of different numbers of loudspeakers 
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while the condition number is under a specified value, say 3. The robust bandwidth of 

four loudspeakers is wider than three and two loudspeakers in this figure. It means 

that four loudspeakers arrangement can result in a more robust crosstalk canceller 

than less loudspeakers arrangement. With the result as described above, we make a 

conclusion about crosstalk canceller of multi-loudspeakers arrangement. 
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Figure 4.8 The robust bandwidth of different number of loudspeakers with the side 
loudspeakers located at 30± ° . 
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4.4 Conclusions 

From the description in section 4.1, with the common filter modeling error e, the 

three loudspeakers shuffler form has better immunity of the perturbation than the two 

loudspeakers shuffler form. From analysis on head movement, the result shows that 

three loudspeakers arrangement for fixed position of the side loudspeakers has wider 

robust bandwidth than two loudspeakers arrangement. In addition, four loudspeakers 

can result in a more robust crosstalk canceller than fewer loudspeakers arrangement. 

In chapter 5, the simulation results will demonstrate that the multiple loudspeakers 

setup is more robust. 
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Chapter 5 

Computer Simulations 
 

  In this chapter, we will simulate different crosstalk cancellers to see their 

performance. Numerous simulations were conducted to compare the performances of 

different implementations of the crosstalk canceller. Our simulations will focus on 

delivering the binaural signals via three loudspeakers as shown in Figure 2.3. with 

2N = , 3M =  and 2L = . An impulse signal is used as input of 1X  and a zero 

signal as input of 2X . The listener will receive no crosstalk and distortionless desired 

signal if perfect crosstalk cancellation is achieved. 

 

5.1 Assumptions 

  In our simulation, we have the following assumptions: 

1. The structure of the crosstalk canceller is based on the symmetric loudspeaker 
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arrangement so that the system performance is shown for one side only. 

2. We use the HRTFs from MIT Media Lab as the acoustic channel data of the 

simulation. 

In order to evaluate the performance of crosstalk cancellers, we will define some 

parameters. First, as described in Chapter 2, Eq. (2.7) has shown 

=GC D  

0
0

d

d

z
z

−

−

⎡ ⎤
≅ ⎢ ⎥
⎣ ⎦

                      (5.1) 

where G is an L M×  matrix, the acoustic matrix, C is an M N×  matrix, the 

crosstalk canceller matrix and D is an L N×  matrix of desired transfer functions. In 

time domain, the errors between the desired and the actual transfer function can be 

shown below 

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
1 1

d
e Hc

0
                        (5.2) 

2 2
⎡ ⎤

= − ⎢ ⎥
⎣ ⎦

0
e Hc

d
                        (5.3) 

where H represents the convolution matrix of the acoustic matrix G, then we define 

the total error as 

2 2
1 2 2

ε = + 2e e                       (5.4) 

which denotes the sum of the distance of two received vector and desired vector. The 

better performance of crosstalk cancellers, the smaller of ε . 

Next, we define another parameter, that is, the crosstalk suppression factor (CSF) 
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2 2

' '
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x x
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h hCSF
h h

= −           (5.5) 

Now, we illustrate how to define the CSF. The product of GC as 

o x

x o

h h
h h
⎡ ⎤
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⎣ ⎦

GC                          (5.6) 

where the diagonal elements of this matrix are equalization part and the off-diagonal 

are crosstalk part. Therefore, the first term of Eq. (5.5) is the signal power ratio of 

equalization part and crosstalk part after crosstalk cancellation, denote as 

2

'

10 log o
c

x
withC s

hR
h

= , and the second term is the one without crosstalk cancellation. 

To justify the performance of the crosstalk canceller, we not only consider the 

crosstalk suppression, but also the equalization result. Here, we use the equalization 

factor (EQ) to see the equalization performance in frequency domain. First, we define 

the average deviation δ  of [ ]1S n  as 

( )( )
1

1 22

1
0

1 20log
M

m

S m AV
M

δ
−

=

⎡ ⎤
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∑                (5.7) 

where 

( )
1

1
0

1 20log
M

m

AV S m
M

−

=

= ∑                    (5.8) 

and ( )1S m  is the M-point DFT of [ ]1S n , then the equalization factor can be defined 

as the average deviation with crosstalk cancellation subtracted by that without 

crosstalk cancellation. 
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'withC sEQ δ δ= −                         (5.9) 

 In the simulation, the larger the CSF and EQ be, the better performance crosstalk 

cancellers achieve. 

It should be mentioned that without crosstalk cancellation, in such case the C might 

be an identity matrix for 2M = . For 3M =  (i.e. three loudspeakers), the problem 

exists that the degree of freedom of the center loudspeaker can be used. Thus, we can 

let the matrix C be 

1 0

0 1

q
q q

q

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

C                       (5.10) 

where 0 1q< < . If 0q = , the center loudspeaker is turned off. For 1q = , the 

binaural signals are delivered by the center loudspeaker only. In following section, we 

will use ε , CSF and EQ to compare the performance of different structures of 

crosstalk cancellers. 

 

5.2 Two Loudspeakers Geometric 

  The typical crosstalk canceller of two loudspeakers setup is shown in Eq. (3.2). In 

order to achieve economical realizations, we factorize the crosstalk canceller matrix C 

in Eq. (3.2) and results in shuffler form as described in Eq. (3.3). 

  From Eq. (3.3), it requires only two filters, that is, ( )z∑  and ( )zΔ . First, we 
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implement these two FIR filters by using least square error method. In our simulation, 

we will try different number of filter taps to examine the performance of crosstalk 

canceller.  

Figure 5.1 and Figure 5.2 show the results of crosstalk cancellation with 

loudspeaker pair located at 30± D . In this example, the order of FIR filter is 200 taps 

with 100 samples modeling delays. Since the maximum delay between [ ]1g n  and 

[ ]2g n  is 40 samples, therefore we choose the extra delay as 140 samples. In this 

scheme, the crosstalk cancellation performance can reach 15.499CSF dB=  and 

13.046EQ dB= . From Figure 5.1, the equalization is worst at very low and high 

frequencies and almost 8 kHz. Since the HRTFs have deep notches at very low and 

high frequencies. 

Table 5.1 lists the result that the performance of crosstalk canceller versus different 

length of FIR filters. Obviously, the CSF and EQ is smaller while the order of FIR 

filters decreases. In addition, ε  is smaller with increased filter order. Thus, the larger 

order of FIR filters, the performance of crosstalk canceller can be better. 
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    Parameter 

FIR 

Filter  

Order 

( )EQ dB  ( )CSF dB  ε  

50 9.9652 9.6569 0.47646 

100 12.369 13.274 0.26971 

200 13.046 15.499 0.17652 

500 13.372 20.381 0.12575 

 

 

Figure 5.1 The crosstalk cancellation results in frequency domain by using least square 
error method with loudspeaker located at 30± D . 

Table 5.1 The performance of shuffler form for two loudspeakers setup with 
different order of FIR filters. 
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5.3 Three Loudspeakers Geometric 

5.3.1 Least Square Forward Type 

  In this section, we will design the crosstalk canceller generated by the least square 

method. Using the least square method can avoid the stability problem. In our 

simulation, the side loudspeakers are located at 30± D  and the center one is located at 

0D . The FIR filter order is 200 taps with 140 modeling delay and the simulation 

Figure 5.2 The crosstalk cancellation results in time domain by using least square 
method with loudspeaker located at 30± D . 
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results are shown in Figure 5.3 and Figure 5.4. In this scheme, the crosstalk 

cancellation performance can reach 22.021CSF dB=  and 11.722EQ dB=  as 

shown in Table 5.3. As described in section 5.1, the degree of freedom of using the 

third loudspeaker should be considered. We will examine the different q as described 

in Eq. (5.10) versus CSF and the result is listed in Table 5.2. This table shows that the 

CSF is larger while only using the center loudspeaker (i.e. 1q = ) to deliver the 

binaural signals without crosstalk cancellation. In the following simulation, we will 

select q as 0.5. 

Also, we can using least square method to find the crosstalk canceller of four 

loudspeakers arrangement. Table 5.4 lists the performance comparison of different 

number of loudspeakers by using least square method to realize crosstalk canceller. 

 Next, we summarize the results of simulations for two, three and four 

loudspeakers arrangements. From Table 5.4, we can obtain that the performance of 

crosstalk cancellation with the same FIR filter order can be improved and the total 

error is smaller while the number of loudspeakers is increased. Figure 5.5 and Figure 

5.6 has shown the results from Table 5.4. 

 

q 0 0.5 0.8 1 

( )CSF dB  18.474 22.021 26.403 26.583 

 Table 5.2 The CSF with different degree of freedom of the center loudspeaker. 
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    Parameter 

FIR 

Filter  

Order 

( )EQ dB  ( )CSF dB  ε  

50 9.9411 11.426 0.36601 

100 10.933 18.078 0.19728 

200 11.722 22.021 0.13812 

500 12.589 22.435 0.089119 

 

 

Figure 5.3 The crosstalk cancellation results in frequency domain of least square 
forward type with the side loudspeakers located at 30± D  and the center one located at 
0D . 

Table 5.3 The performance of least forward type crosstalk canceller for three 
loudspeakers setup with different order of FIR filters. 
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Two Three Four Parameter 

FIR 

Filter 

order 

cR  (dB) ε  cR  (dB) ε  cR  (dB) ε  

50 16.1686 0.47646 18.9882 0.36601 21.3454 0.25154 

100 20.3828 0.26971 22.6403 0.19728 25.2167 0.14184 

200 22.6076 0.17652 26.5829 0.13812 27.5995 0.093848

500 27.4901 0.12575 26.9977 0.089119 42.187 0.01562 

 

 

Figure 5.4 The crosstalk cancellation results in time domain of least square forward 
type with the side loudspeakers located at 30± D  and the center one located at 0D . 

Table 5.4 The performance comparison of crosstalk cancellation by using least 
square method for different numbers of loudspeakers arrangement. 
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Figure 5.5 The signal power ratio cR  of different numbers of loudspeakers with 
different filter orders. 

Figure 5.6 The total errorε  of different number of loudspeakers with different filter orders. 
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5.3.2 Shuffler Structure 

  The shuffler form crosstalk canceller can be obtained by factorizing Eq. (3.18) and 

results in Eq. (3.32). In this case, the side loudspeakers are located at 30± D  and the 

center one is located at 0D . Obviously, it requires only three filters to form crosstalk 

canceller and has less computational complexity than direct forward type. In our 

simulation, we approximate these crosstalk cancellation filters by using FIR filter. 

Figure 5.7 and Figure 5.8 show the results of crosstalk cancellation in frequency and 

time domain; the FIR filter order is 200 taps with 140 modeling delays. 

Table 5.5 lists the performance of crosstalk canceller with different FIR filter order. 

This table has shown that the performance of crosstalk cancellation is better while 

filter order is increasing. It should be mentioned that CSF is negative when filter order 

was under 100 taps. It is because that the main part of impulse response of ideal 

( )2 z∑ and ( )2 zΔ is behind 100 taps so that the approximated FIR filter is not precise 

enough. Therefore, the performance of crosstalk cancellation is worst. Next, we make 

the comparison between shuffler form and least forward type crosstalk canceller. The 

shuffler structure requires fewer filters than directly implement, but the performance 

of shuffler form is worst. Thus, the tradeoff between the performance and the number 

of the filter order must be considered while realizing the crosstalk canceller. 
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    Parameter 

FIR 

Filter  

Order 

( )EQ dB  ( )CSF dB  ε  

50 8.3822 -0.7878 1.5602 

100 10.6386   -0.74746 1.4318 

200 11.3793 9.3135 0.42041 

500 11.8342 11.635 0.32014 

 

Figure 5.7 The crosstalk cancellation results in frequency domain of shuffler structure 
with the side loudspeakers located at 30± D  and the center one located at 0D . 

Table 5.5 The performance of shuffler form for three loudspeakers setup with 
different FIR filter order. 
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5.3.3 A Simplified Shuffler Form 

  As described in section 3.2.4, the crosstalk canceller of this structure is shown in 

Eq. (3.46). It requires only two filters for implementation and has less computation 

than the other structures introduced in previous section. In our simulation, we will use 

the first 200 taps of these two filters for realization since the later terms of them are 

smaller and can be ignored.  

In addition, our case states that the side loudspeakers are located at 30± D  and the 

Figure 5.8 The crosstalk cancellation results in time domain of shuffler structure 
with the side loudspeakers located at 30± D  and the center one located at 0D . 
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center one is located at 0D . Figure 5.9 and Figure 5.10 show the results of crosstalk 

cancellation in frequency and time domain, respectively. Table 5.6 lists the 

performance of crosstalk canceller with different filter orders. Same as previous 

structures, which performance is better while the filter order increasing. It can be seen 

that the CSF, EQ and ε  of this structure are close to that of direct forward type and 

only requires two filters so that the economical realization is achievable. 

Figure 5.11 and Figure 5.12 have shown the performance comparison of least 

square forward type, shuffler form and simplified shuffler form crosstalk canceller. It 

can be seen that CSF and EQ of simplified shuffler form is close to least square 

forward type and is better than shuffler form in Figure 5.11 and Figure 5.12. Also, we 

can obtain the same result for total error as shown in Figure 5.13. In summary, the 

shuffler form has less computation than least square forward type but its error 

performance is worse. Our proposed structure, the simplified shuffler form, which 

requires two filters ( 2 200×  multiplications) than shuffler form ( 3 200×  

multiplications) and least square forward type ( 6 200×  multiplications) to realize 

crosstalk cancellation and its performance is close to least square forward type. 
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    Parameter 

FIR 

Filter  

Order 

( )EQ dB  ( )CSF dB  ε  

50 9.7496 10.196 0.41702 

100 11.277 16.534 0.2152 

200 11.709 20.969 0.14937 

500 11.937 24.138 0.11537 

 

Figure 5.9 The crosstalk cancellation results in frequency domain of simplified 
shuffler form with the side loudspeakers located at 30± D  and the center one located 
at 0D . 

Table 5.6 The performance of simplified shuffler form for three loudspeakers setup 
with different orders of FIR filters. 
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Figure 5.10 The crosstalk cancellation results in time domain of simplified shuffler 
form. 

Figure 5.11 The CSF of different structure crosstalk canceller of three 
loudspeakers arrangement. 
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 Figure 5.13 The total error of different structure crosstalk canceller of three 
loudspeakers arrangement. 

Figure 5.12 The EQ of different structure crosstalk canceller of three loudspeakers 
arrangement. 
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5.3.4 A Simplified Shuffler Form of Four Loudspeakers 

Arrangement 

  In this section, we will discuss the crosstalk cancellation of four loudspeakers 

arrangement. In our simulation, the wider loudspeakers pair are located at 30± °  and 

the closer loudspeakers pair are located at 15± ° . A simplified shuffler form crosstalk 

canceller is considered here. The structure of this type crosstalk canceller is shown in 

Eq. (3.62). Also, it requires only two filters to realize crosstalk canceller, that is,  

( )4 z∑  and ( )4 zΔ . In this case, we will use FIR filter with 200 taps and 140 

modeling delays to form these two filters. 

Figure 5.14 and Figure 5.15 show the results of crosstalk cancellation in frequency 

and time domain, respectively. Table 5.7 lists the performance of crosstalk canceller 

with different filter orders. We can obtain that the performance of this type crosstalk 

canceller is better while the filter order increasing. In addition, this structure has less 

computation ( 2 200× multiplications) than directly implementation ( 8 200×  

multiplications) for four loudspeakers arrangement. 

Figure 5.16 and Figure 5.17 show the performance comparison between two 

loudspeakers shuffler form and three and four simplified shuffler form. It can be seen 

the signal power ratio after crosstalk cancellation cR  of three and four loudspeakers 

simplified shuffler form is similar and is larger then two loudspeakers shuffler form. 
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Also, the total error of four loudspeakers simplified shuffler is smaller then the other 

two structures. From the results described above, we can obtain a good performance 

crosstalk canceller while using multi-loudspeakers. 
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Figure 5.14 The crosstalk cancellation results in frequency domain of simplified 
shuffler form of four loudspeakers setup with the wider loudspeakers pair located at 

30± D  and the closer loudspeakers pair located at 15± ° . 
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    Parameter 

FIR 

Filter  

Order 

( )EQ dB  ( )CSF dB  ε  

50 8.8797 21.369 0.37428 

100 10.577 26.049 0.17729 

200 10.982 29.515 0.11532 

500 11.264 32.733 0.075 

 

Figure 5.15 The crosstalk cancellation results in time domain of simplified shuffler form 
of four loudspeakers setup with the wider loudspeakers pair located at 30± D  and the 
closer loudspeakers pair located at 15± ° . 

Table 5.7 The performance of simplified shuffler form for four loudspeakers setup 
with different orders of FIR filters. 
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Figure 5.16 The signal power ratio after crosstalk cancellation cR  of two loudspeakers 
shuffler form and three and four loudspeakers simplified shuffler form with different 
FIR filter orders. 

Figure 5.17 The total error of two loudspeakers shuffler form and three and four 
loudspeakers simplified shuffler form with different FIR filter orders. 
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5.4 Perturbation Analysis 

The previous works realize the crosstalk canceller for fixed position of listener’s 

head. In this section, we will investigate the robustness of crosstalk canceller after 

filter modeling and listener’s head movement. As shown in Figure 5.18 and Figure 

5.19, the performance of crosstalk canceller is degrades due to perturbation. In our 

case, the CSF reduces from 15.499 dB to 11.159 dB and the EQ from 13.046 dB to 

9.601 dB and the total error from 0.17652 to 0.96565. 

In addition, we will compare two loudspeakers arrangement with multiple 

loudspeakers arrangement. From the simulation results, it can be demonstrated that 

multiple loudspeakers setup is more robust than two loudspeakers setup after 

perturbation. Let’s begin the analysis on filter modeling. 
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Figure 5.18 The crosstalk cancellation result in frequency domain due to perturbation. 

Figure 5.19 The crosstalk cancellation result in time domain due to perturbation. 
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5.4.1 Simulations on Filter Modeling 

  In our simulation, we will approximate the FIR filter by using pole-zero modeling 

such as prony approximation method. We will discuss how the filter modeling error 

affects the performance of crosstalk cancellation. First, we consider the two 

loudspeakers shuffler form. As described in section 4.3.1, the modeling error vector 

after crosstalk cancellation can be written as follows 

( ) ( )
( ) ( )

,1 1 2 ,1 1 2
2,

,1 1 2 ,1 1 2

1
2

s d
Shuffler

s d

e g g e g g
E

e g g e g g
+ + −⎡ ⎤

= ⎢ ⎥+ − −⎣ ⎦
 

       
.
.

Eq
Cr
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                                 (5.11) 

where ,1se  and ,1de  represent the error after perturbation of modeling filter ∑  and 

Δ , respectively. The first element of Eq. (5.11) indicates the equalized error and the 

second element represents the crosstalk error. The theoretical ,1se  and ,1de  are 

described in Eq.(4.14) and Eq. (4.16) so that the theoretical modeling error vector of 

Eq. (5.11) is 

( )2, 22 1Shuffler

eF
E

F e
⎡ ⎤

≅ ⎢ ⎥
−⎢ ⎥⎣ ⎦

                   (5.12) 

in which 2 1F g g=  with modeling error e. In our simulation, the theoretical 

equalized and crosstalk error are obtained from Eq. (5.12). 

Next, we illustrate how to obtain the experimental modeling error. Here we model 

the FIR filters ∑  and Δ  by using Prony approximation method and results in the 
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IIR filters +∑  and +Δ . Thus, the modeling error ,1se  and ,1de  are 

,1se += ∑ −∑                             (5.13) 

,1de += Δ −Δ                             (5.14) 

We then can obtain the simulated equalized and crosstalk error from Eq. (5.11), Eq. 

(5.13) and Eq. (5.14). 

Table 5.8 lists the result of theoretical and simulated error norm of Eq. (5.11).  In 

this table, the filter tap n pN N  indicate the IIR filter with the tap of numerator and 

denumerator, respectively. In addition, .Eq  and .Cr  denote the modeling error 

norm of equalization and crosstalk part which means that the degree of modeling error 

affects the performance of equalization and crosstalk. In this table, there are lots of 

differences between the theoretical and the experimental error norm as shown in 

Figure 5.20 and Figure 5.21. The actual ,1se  and ,1de  is found by approximating the 

filter ∑  and Δ  directly. The theoretical ,1se  and ,1de  is derived by extracting the 

common part of ∑  and Δ  so that there is a common modeling error exists ,1se  and 

,1de . But we can obtain the same result that the modeling error norm is larger while 

IIR modeling from theoretical analysis and numerical simulation. It is because the 

modeling error is introduced and the performance of crosstalk cancellation is worse. 

In addition, the error vector of direct forward type 2 derived in [20] is shown below 

21
2 2 2

11 2

g egE
g eg g
⎡ ⎤

= ⎢ ⎥− ⎣ ⎦
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2

1
1

eF
eF

⎡ ⎤
= ⎢ ⎥− ⎣ ⎦

                          (5.15) 

where F is as same as above. Figure 5.22 and Figure 5.23 show the equalized error 

and the crosstalk error of shuffler structure and direct forward type 2. From Figure 

5.22 and Figure 5.23, direct forward type 2 has better immunity of the perturbation 

than shuffler form. But shuffler structure has less computation than direct forward 

type two. In our case, the shuffler form only requires two FIR filters (i.e. 400 

multiplications) and direct forward type two requires four FIR filters (i.e. 800 

multiplications). 
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Figure 5.20 The norm of equalized error of two loudspeakers shuffler form with 
different orders of IIR filter. The solid line indicates the theoretical value and the 
doted line denotes the experiment result. 
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Theoretical Experimental Filter 

order .Eq  .Cr  .Eq  .Cr  

200 0  189.8410 10−×  173.9690 10−× 154.8783 10−× 155.1821 10−×  

120 50  0.7692 4.8939 0.1639 0.0746 

80 50  0.7764 5.1283 0.9722 0.0805 

50 50  3.037 20.5832 0.9879 0.5094 
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Figure 5.21 The norm of crosstalk error of two loudspeakers shuffler form with 
different orders of IIR filter. The solid line indicates the theoretical value and the 
doted line denotes the experiment result. 

Table 5.8 The error norm of equalization and crosstalk part for two loudspeakers 
shuffler form crosstalk canceller. 
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Figure 5.22 The equalized error of shuffler form versus direct forward type 2. 

Figure 5.23 The crosstalk error of shuffler form versus direct forward type 2. 
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Next, we consider the three loudspeakers arrangement. The filter modeling error 

vector of shuffler form as described in Eq. (4.22) and that of simplified shuffler form 

as described in Eq. (4.47). Also, we can derive the modeling error vector of four 

loudspeakers simplified shuffler form and can be written as 

( ) ( )
( ) ( )

,4 1 4 ,4 2 3
4,

,4 1 4 ,4 2 3

1
2

d s
simplified

d s

e g g e g g
E

e g g e g g
− + +⎡ ⎤

= ⎢ ⎥− − + +⎣ ⎦
         (5.16) 

where ,4se  and ,4de  represent the filter modeling error of the summed filter 4∑  

and the differenced filter 4Δ .  

Figure 5.24 and Figure 5.25 show the equalized error norm and the crosstalk error 

norm of different structures of crosstalk canceller. In Figure 5.24, it can be seen that 

equalized error norm of four loudspeakers simplified shuffler form is smaller then the 

other structures which means four loudspeakers simplified shuffler form has better 

immunity of modeling error for equalization. From Figure 5.25, the crosstalk error 

norm of three and four loudspeakers simplified shuffler form is smaller then the other 

two structures. But the crosstalk error norm of three loudspeakers shuffler form is 

worse than two loudspeakers shuffler form. 
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Figure 5.24 The equalized error of different structures of crosstalk canceller with 
different IIR filter orders. 

Figure 5.25 The crosstalk error of different structures of crosstalk canceller with 
different IIR filter orders. 



 91

5.4.2 Simulations on Head movement 

  Since the head movement will change the acoustic transmission path and worsen 

the performance of crosstalk canceller for the default position. In this section, we will 

discuss how the head movement affects the performance of crosstalk canceller for 

difference numbers of loudspeakers. 

  In literature [2], it has shown that crosstalk canceller is sensitive for lateral 

movement. Thus, the lateral head movement is our focus in the simulation. First, we 

consider the shuffler structure of two loudspeakers arrangement. In our simulation, 

the default position of loudspeaker pair are located at 30± D . Table 5.9 lists the 

performance of crosstalk canceller after head moving. It can be seen the performance 

is worse while head moving. In Table 5.9, R and L represent the right side loudspeaker 

and the left side loudspeaker, respectively. The first two rows of this table indicate the 

head move to right and the last two rows indicate the head move to left. 

Now, we consider the three loudspeakers arrangement. The structure of crosstalk 

canceller we discuss here is the simplified shuffler form. In this case, we insert the 

center loudspeaker at 0°  facing the listener and the side loudspeakers are located at 

30± D  for default position. The simulated results are listed in Table 5.10. In Table 5.10, 

R and L as described above and C represent the center loudspeaker. Also, the 

performance of crosstalk canceller is worst while head moving in this case. 
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Next, we discuss the robustness of head movement for four loudspeakers 

arrangement. We let the wider loudspeaker pair located at 30± °  and the closer 

loudspeaker pair located at 15± °  for default position. The simulated results are listed 

in Table 5.11. Also, we can obtain the same result as described in Table 5.9 and Table 

5.10. To compare these three tables. Same as analysis on filter modeling, it can be 

shown that the crosstalk canceller of multiple loudspeakers is more robust while 

listener’s head moving as shown in Figure 5.26 and Figure 5.27. In Figure 5.26, 

where A indicates the default position of the side loudspeakers pair, B, C represent the 

position corresponding to the listener’s head movement to right and D, E represent the 

listener movement to left. 

 

          

Parameter 

Position 

( )cR dB  ( )EQ dB  Total errorε  

: 30R °  : 30L °  22.6076 13.046 0.17652 

: 25R °  : 35L °  12.224 11.06 1.7705 

: 20R °  : 40L °  8.577 9.9881 2.4567 

: 35R °  : 25L °  10.478 11.371 1.7705 

: 40R °  : 20L °  6.1287 11.279 2.4567 

 

 

 

Table 5.9 The performance of crosstalk cancellation for two loudspeakers 
shuffler form after head movement. 
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          Parameter 

Position 
( )cR dB  ( )EQ dB  Total errorε  

: 30R °  : 0C °  : 30L ° 25.532 11.709 0.14937 

: 25R °  : 5C − °  : 35L ° 12.489 11.124 1.826 

: 20R °  : 10C − °  : 40L ° 6.9758 10.347 2.328 

: 35R °  : 5C °  : 25L ° 13.582 10.436 1.826 

: 40R °  :10C °  : 20L ° 9.1144 9.5206 2.328 

 

 

 

 Parameter 

Position 

Wider Closer 

( )cR dB  ( )EQ dB  Total errorε  

: 30 , : 30R L° ° :15 , :15R L° °  24.8598 10.982 0.11532 

: 25 , : 35R L° ° :10 , : 20R L° ° 14.629 10.633 1.769 

: 20 , : 40R L° °  : 5 , : 25R L° °  9.7383 9.9711 2.3139 

: 35 , : 25R L° ° : 20 , :10R L° ° 14.417 10.56 1.769 

: 40 , : 20R L° °  : 25 , : 5R L° °  10.396 9.697 2.3139 

 

 

 

Table 5.11 The performance of crosstalk cancellation for four loudspeakers 
simplified shuffler form after head movement. 

Table 5.10 The performance of crosstalk cancellation for three loudspeakers 
simplified shuffler form after head movement. 
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Figure 5.26 The signal power ratio cR  of crosstalk cancellation after head moving 
for different numbers of loudspeakers. 

Figure 5.27 The total error of crosstalk cancellation after head moving for different 
numbers of loudspeakers. 
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Chapter 6 

Conclusions 
 

  In this thesis, we investigate the different structures of crosstalk canceller of three 

loudspeakers arrangement and we make the performance comparison such as the 

signal power ratio after crosstalk cancellation cR , EQ and total error between 

conventional two loudspeakers and multiple loudspeakers arrangement. From the 

computer simulated results, we can see that cR  and total error of crosstalk 

cancellation is better while using multiple loudspeakers for 3D sound reproduction. 

  In addition, we develop a simplified shuffler form which only requires 2 200×  

multiplications and is less then least square forward type ( 6 200×  multiplications) 

and shuffler form (3 200×  multiplications). In addition, simplified shuffler form is 

easer to realize than the other structures of three loudspeakers setup such structure can 

achieve the performance as well as least square forward type crosstalk canceller. Also, 
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we can use the same procedure as described in section 3.2.4 to find the simplified 

shuffler form of four loudspeakers arrangement. 

  In chapter 4, we have discussed how the perturbation of filter modeling and head 

movement affects the performance of crosstalk canceller. The theoretical analysis 

results that the crosstalk canceller of multiple loudspeakers arrangement is more 

robust for perturbation. We can demonstrate this fact from the computer simulations 

as described in chapter 5. In addition, we derive the optimum loudspeakers position 

for different loudspeakers arrangement. 

  Summarily, our proposed structure can reduce the cost of required filters to realize 

crosstalk canceller for 3D sound reproduction while using multiple loudspeakers 

which has better performance of crosstalk cancellation and better immunity for 

perturbation. 
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