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Abstract

In order to compensate the .ionlinear distortion in the hands -free telephones or
teleconferencing system, a memoryless polynomials NLMS adaptive filter can be
used to cancel nonlinear acoustic echo. Cenventional polynomials model employs a
power-series expansion. In this thesis wepropose an orthogonal polynomials adaptive
filter and perform theoretical convergence analysis of residual echo power which
proves its faster convergence rate owing to the reduced eigen spread of the input
signal. Computer simulations justify our analysis and show the improved performance
of the proposed nonlinear acoustic echo canceller.

In addition to the adaptive method, the training sequence (TS) can be used to
estimate the coefficients of the nonlinear acoustic echo cancellation. The convergence
rate of the training method is derived analytically. Computer simulations show that

the TS method performs better than the NLMS method at low SNR.
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Chapter 1
Introduction

Hands-free telephone or teleconferencing usually suffers from the annoying
acoustic echo problem [1], which is the far end speech transmitted back to the far end
user as a result of the coupling of the loudspeaker and microphone at the near end. A
simplified diagram of hands-free telephone system is shown in Fig. 1.1. The main
object of acoustic echo cancellation (AEC) is to estimate the unknown echo path and
subtract the estimated echo components from the microphone output. Since the echo
path may be time-variant due to objects moving around the room, an adaptive filter is
commonly used for tracking the echo path. to provide satisfactory speech

communication quality [1]-[6].

Far-end room Near-end room
Microphone Loudspeaker
Far-end Di]
. —>
signal '
v echo
AEC
v <
D:} ‘ -« Near-end
Microphone signal
Loudspeaker P &

Fig. 1.1 The simplified diagram of hands-free telephone system

The performance of AEC relies on its tracking capability. There are many

recursive algorithms that have been proposed [6]. The least-mean-square (LMS)



algorithm is famous for its low computational cost and the recursive least-squares
(RLS) algorithm has its advantage of fast convergence rate. Beside the tracking
capability, the performance of AEC is restricted by noise, finite precision, truncation
effects, under-model of the echo path and loudspeaker nonlinearities [7].

In this thesis, the issue of nonlinearities is our main focus. In [8], the
nonlinearities of loudspeaker can be classified as nonlinearities with and without
memory. Dynamic loudspeakers cause nonlinearity with memory when the power
amplifier is not driven into saturation. The other is nonlinearity without memory when
the power amplifier is overdriven. To compensate these kinds of nonlinearities
distortions, several nonlinear AECs have been proposed recently [9]-[20]. The
nonlinear AEC system is shown in Fig.1.2. The signal from the far end is passing
through the nonlinear loudspeakerand the room impulse response and then is picked
up by the microphone. The nonlinear AEC is.supposed to cancel the echo signal. The
echo can be cancelled perfectly 1f the:nonlinear AEC filter is identical to the nonlinear
loudspeaker and room impulse response. Different nonlinear structure has its own

computation complexity, convergence speed and robustness.

Nonlinear

Loudspeaker
Far end signal
v

] el
Nonlinear Room
AEC
Echo
—_ < .
Near end signal
Residual echo  + Microphone

Fig.1.2 Nonlinear acoustic echo canceller



We summary some important nonlinear adaptive structures.
® Volterra model, which is attractive because it is a straightforward
generalization of the linear system description and the behavior of many
physical systems can be described with a Volterra filter. The Volterra series
based filters have been proposed [10]-[12] etc. for line echo canceling. It
can represent a large of class of nonlinear system. However, due to their
high computational complexity they are limited use in practical systems.
® Bilinear model, which is a parametric model that contains cross terms; it
corresponds to a subclass of the NARMAX structure [13]. The NARMAX
structure is a general parametric model but needs a pre-identification
procedure.
® (Cascade model, which.can be considered as a particular subclass of a
Volterra series filter and its main advantage-is to introduce fewer parameters
for estimation. The neural:neétwork-f14] 'with a cascade structure offers a
new perspective but needs an extra-reference microphone. Others cascade
models include:
B Hammerstein model [15], cascade of a memoryless polynomials filter
and a FIR filter.
B Wiener model [4], cascade of a FIR filter and a memoryless
polynomials filter.
B Wiener-Hammerstein model [26], cascade of a FIR filter, a
memoryless polynomials filter and a FIR filter.
Among these nonlinear structures, the Hammerstein model will be used in this
thesis for following reasons. First, the nonlinearity with memory only occurs in
application of high quality loudspeakers [8]; so that for hands-free or power limited

low cost application, the compensation for nonlinearity with memory is not necessary.
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Second, considering that the far end signal passes through the loudspeaker first and
then the room impulse response, the cascade model of a nonlinear processor and a
FIR filter is a natural choice. Third, the Hammerstein model is widely used in
nonlinear system identification such as nonlinear AEC, neural networks [15-17] etc.
Its joint NLMS-type adaptation algorithm is well known [18].

Besides the polynomial function, a sigmoid function [6, 9] can also be used to
model the nonlinear saturation. Similarly, a raised cosine function can also be used for
nonlinear compensation [19]. The objective in [19] is to achieve a low computational
complexity in implementing a nonlinear AEC. Both these two nonlinear models can
use the NLMS adaptive algorithm to update its coefficients, except that its nonlinear
component is generated by an exponential function. It only uses one parameter to
control the nonlinearity therefore it'has less freedom. By contrast, the polynomial type
has more freedom in that each nenlinear order-can.be-controlled with one coefficient.

The power series polynomials are simple-to implement but its high correlation
among different polynomials orders leads to low convergence rate. To overcome this
problem, recently some orthogonal structures have been developed. In [10], Mathews
suggested to perform an orthogonalization procedure on the nonlinear bases outputs
when the input signal is Gaussian distributed. Jenkins et al. in [25] proposed an
orthogonal basis to represent the Volterra series thus orthogonalization procedure is
not required but the input signal is also assumed to be have a Gaussian distribution
and unity variance. Similarly, in [26] the Wiener-Hammerstein model is used and its
nonlinearities is assumed to be expandable in a series of fixed orthogonal Hermite
polynomials. The Hermite polynomials are a set of orthogonal polynomials on the
infinite interval with respect to the e weight function therefore the works in [25, 26]
are limited to the unit-variance Gaussian input signal only. In [20] Kuech et al.

proposed an adaptive orthogonalized power filter to improve the convergence rate for
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the input signal with any distribution, stationary or time-variant. The orthogonal basis
is updated online at each iteration and the Gram Schmidt procedure is employed to
find out the orthogonalization coefficients, as a result, computational complexity is
increased. In this thesis we use fixed orthogonal polynomials to produce the nonlinear
components. Its low computational complexity and fast convergence rate makes the
orthogonal polynomials filter very promising for nonlinear AEC. For practical
applications, the influence of the probability distribution of the input signal is
insignificant because the performance of the fixed orthogonal polynomials remains
relatively well. Unlike the previous researches, we perform the convergence analysis
of the nonlinear AEC, from which we examine the effects of orthogonality due to
various input probability distributions and conclude the superiority of the orthogonal
polynomials.

In addition to the orthogonal polynomial-basis, sending a white sequence to train
the coefficients of nonlinear AEC in.advance-of speech communication can also be
used for speeding up the convergence.rate. The training sequence, used in channel
estimation, adaptive equalizer applications or echo path estimation, have been well
studied in [21]-[24]. During the training mode, we can fast start up the adaptive filter,
especially in noisy environments. The training sequence is generated by a training
sequence generator. The estimation is done with the correlation method, where a
portion of the training sequence is correlated with shifted versions of the received
signal. Based on the difference between this known sequence and the received
sequence, the coefficients of the unknown can be determined. Although the training
method is to solve the Wiener-Hopf solution directly and often involves a matrix
inverse, the solution is simple because the matrix is only a function of the known
training sequence, and a pre-computed inverse of the matrix can be stored. For some

special training sequences, an inverse matrix is not even required.
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The other chapters of the thesis are organized as follows.

® Chapter 2, we perform convergence analyses of coefficients and residual
echo power and we compare the convergence rates of orthogonal and
non-orthogonal basis. Eigenvalue spread analysis is introduced for better
illustration.

® Chapter 3, we perform the linear coefficients convergence analysis based on
the training sequence method. The recursive analytical form will also be
introduced. We also show the analysis of dual loudspeakers system.

® Chapter 4, we include many computer simulations that have been developed
to illustrate the analyses in chapter 2 and 3. These simulations help us to
compare the performances of different nonlinear AEC structure. Finally, for
practical use, a true echopath experiment is performed.

® Chapter 5, we give a eonclusion of our work.

The main efforts in this thesis are:

(1) For NLMS nonlinear algorithm, we derive individual convergence analyses of
the linear and nonlinear coefficients and its residual echo power.

(2) An orthogonal basis for Gaussian and nonGaussian input signal is used to
accelerate the nonlinear coefficients convergence rate.

(3) A training sequence algorithm is proposed for a nonlinear Hammerstein model.

(4) Convergence analyses of linear coefficients based on training sequence algorithm

1s derived.



Chapter 2
Nonlinear Adaptive filter

In Chapter 2 we will introduce the nonlinear AEC with cascade nonlinear
processor and describe the joint NLMS-type adaptation algorithm to adaptive the both
linear and nonlinear coefficients. In Section 2.2 we will analyses the nonlinear
coefficients and residual echo power convergence rates under the assumption of linear
coefficients have perfectly known. In Section 2.3 we will analyses the linear
coefficients and its residual echo power when nonlinear coefficients have perfectly
known. In Section 2.4, we discuss the eigenvalue spread of signal dependent
orthogonal bases. Finally, in Section 2.5, we extend the analysis for dual loudspeakers

system.

2.1 Adaptive nonlinear NMS AEC

Nonlinear
Loudspeaker
Far end signal X[ n] Di]
|
v v
(.)1 ()2 ...... ()N
p[n] p,[n] pyln]
> lau[n]| |a=[n]||an[n]| Room
H v i TETTITTITY T . h[n]
»De :
s[n]
NLMS Y :
algorithm > FIR h[n] EChO..’
yin] | _ - <«
) 4 .
N 1v[n
« D ear end signal V[ n]
Residual echo €[N] —+ Microphone

Fig.2.1 Polynomial nonlinear acoustic echo canceller



As shown in Fig 2.1, the signal x[n] from the far end is assumed to be nonlinearly
distorted only in the power amplifier of loudspeaker. It is then passing through a room
impulse response h[n]. Hence, the nonlinear processor is modeled as the loudspeaker
and linear filter is modeled as a room impulse. The cascade filter structure is the same

as the loudspeaker and the room impulse response. Let d[n] denote the desired

signal. The nonlinear AEC output signal §/[n] can be written as

h[n]=[ho[n], hu[N],...,Awa[n]T
where ﬁ[n] represents the estimated coefficients vector of the linear FIR filter, M

denotes the length of the FIR filter. §[n] is'the output vector of the nonlinear filter

s[n]=[s(n], Sn1],...sfnEMt i}
For each %[n] is given by

s[nl =[x [n]>e[n]--x"[n]Ifa[n] a,[n]---a,[n]]"
= x[n]"a[n]

therefore, §[n] is given by

s[n]=[ x[nJ a[n], x[n-1T a[n-1],..., x[n-M +1] a[n-M +1] T".

p is the polynomial basis of order i, for example p[n]=Xn]and p,[n]=X’[n] in

A

case of a power series expansion basis. N is the order of the polynomials, and a[n] is

the estimated coefficients vector of the nonlinear processor. The estimated error is

gn]=d[n]-y{n]
—d[n]-h [n]s[n]

The gradient of the error power €’[n], as derived for linear transversal filter in [18]



can be calculated according to:

0e’[n] ~
v =2N_5
Py e[n]s[n]
v = %M _ P i
* a[n]

where P[n] is nonlinear expanded matrix is defined by

pl[n] pz[n] pN[n]
p1[n'1] pz[n'l] pN[n-l]

pIN-M +1]p,[n-M +1] -+ p,[n-M +1]
The definition of error signal is different from [18], here, we only calculate the scalar

%[n] of the vector §[n] at each iteration. If the coefficients vectors are updated with

step size 4, and g, ajoint NLMS-typejadaptiveralgorithm is given by

h[n+1]= h[n]+—2t s[m]en] 2.1.1)
=

a[n+1]=a[n]+ e PT[nIh[nEn] (2.1.2)
‘PT[n]h[n] 40

At each iteration, the echo signal €n] is the same for coefficients update in both
(2.1.1) and (2.1.2).

For computational complexity, we examine the number of multiplications
required to make one complete iteration of the algorithm (2.1.1) and (2.1.2). §[n] in
(2.1.1) and its 2-norm need N and M multiplications respectively thus the total
requirement of (2.1.1) is about 2M + N. For (2.1.2), PT[n]ﬁ[n] and its 2-norm need

MN and N multiplications respectively thus the total requirement of (2.1.2) is about
MN-+2N. It needs MN+2M-+3N multiplications to find out the coefficients at each

iteration. In addition to the adaptation algorithm, the nonlinear components need N-1

9



multiplications for power-series basis, X°[n] =x[n]x[n], x°[n] =[N]x[n], -, X[n]
=nIx[n]. When an orthogonal basis is used it needs more multiplications to

produce the nonlinear components. According to Gram-Schmidt orthogonalization

procedure it needs 1(N?+N-2). In Table 2.1, we show the total requirement of

multiplication at each iteration when Gram-Schmidt is used or not. The computational

complexity only increases slightly when an orthogonal basis is used.

Table 2.1 Comparison of computational cost, no. multiplication per iteration

Number of multiplication

Without Gram-Schmidt procedure MN+2M+4N-1

With Gram-Schmidt procedure MN#2M+3.5N-1+0.5 N

In the following sections,-we assume: that the nonlinear loudspeaker and room

impulse response are time invariant*The near end signalv[n] only contains a white

Gaussian noise (WGN) and double talk is not present.

10



2.2 Convergence analysis of nonlinear NLMS algorithm

2.2.1 Variance of nonlinear coefficients error

In this section we will derive the convergence rate of nonlinear coefficients

under the assumption of perfect linear coefficients i.e., ﬁ[n]zh. The following

analysis is similarly to [6]. First, the estimation error produced by the nonlinear AEC

filter is expressed as
eln]=d[n]-a [nP"[n]h[n]
=a'P'[nJh+V(n]-[a+g,[n]]"PT[n][h+¢,[n]]. (2.2.1)
Because the cascade structure we have more estimated error terms than [6], the joint

error term produced by linear and nonlinear is difficult to perform its convergence

analysis. For this reason, we assume that the. linear coefficients are perfectly

known, g,[Nn] is equal to zeros. We express the estimated error as follows.

gn]=Vv{n]+e¢.[n]P [Nk (2.2.2)

In (2.2.2) P'[n]h contains not only linear but also nonlinear order of input signal,
this is different from [6] but the analyses procedures in [6] can still be used for here.

We denote the nonlinear coefficients weight error by

e [n+1]=a-a[n+1]
Using (2.1.2), (2.2.2) and let T denoteHPT[n]th +J, we may rewrite g,[Nn+1]as
— - /ua T
g [n+1]= a-a[n]-? P [n]h[n]en]

¢ [n]-%PT[n]h[nKv[n]+eI[n]PT[n]h)

_| _HMapt T My pT
{I T P [n]hh P[n]}sa[n] T P [n]hv[n].

According to the direct averaging method [6], when u, <1, g,[n+1]can be

approximated as follows:

11



- _Ha
aa[n+l]~[l -?RPT[n]h}aa[n]ﬁLfa[n] (2.2.3)
where

fa[n]=-%PT[n]hV[n]

andRPT[ .is the correlation matrix of P'[n]h. By applying the unitary similarity

n]

transformation, RPT[n]h is transformed into a simpler form:

T —
QaRPT[n]hQa - Da
where Q_is a unitary matrix and D, is a diagonal matrix consisting of the

eigenvalues A . Let K_[n]=Qlg,[n] then we may transform (2.2.3) into the form
Qle [n+1]=Q] [| -%RPT[n]h}aa[nHQ;fa[n]
Ka[n+1]:{l -%Da}Ka[n]HI)a[n]

where ®_[n] = Q.f,[Nn]. The naturalmodek., [n], isthentry of K_[n], is stochastic with

a mean and mean square value of iits own:Let 'K [0] denote the initial value of

k,;[n] and®_[n] is denoted i-th entry of ®_[n]. We may rewrite k,[n] as follows.
— .M
Ky = (1- 22 2 kg [n-11+ @ -1

% ST Figy 1
=(1- 2 2,) Ky [0]+ D [1- 2 24,1 @[ j]
T = T
Hence, the first moment of k [n] is given by

Elk, [n]]=( -%@)” Elk, [0]]+ Y 1 -%ﬂm ™ E[@,[ 1]

j=0

=(1—%ﬂaj)”ka-[0]

where
E[@,[n]]= Q;ELf,[n]]
=22 QIRE[P[NMn]]
=0.
Since P[n] only contains the input signal and is independent of noise, we further

12



assume that the initial value of k,[0] is independent of @, therefore the second

moment of k;[n] is given by

Eflk,[n]’]1= (1-%ﬂm)2"|ka [0

n-1 n-1

£ (1L AL A B (g0 [, (224)

9=0 j=0

The |kaj [0]|2 in the right-hand side of (2.2.4) is equal to the nonlinear coefficients
vector square 2-norm.The second term in right-hand side of (2.2.4) is zero when

summation index g is not equal to j otherwise we can express E[®,[n]®][n]] as
E[®, [n®,'[n]]= (%)2QETJIE[P[n]V[”]V[ﬂ]l’T [nh'Q,
_(May2 2T
- ( T ) O-anRPT[n]hQa

=y, (2.2.5)
T
From (2.2.5), (2.2.4) can be written as

n-l _
E[|ka-[n]|2]:(1-%ﬁa- )l +a§(%)zﬂa- (1-%@)2“'220-%4& )2
j=0

Ha 2 o
S 2 T 7 yqiHa gy 2.2.6
2_/_f_a,16i+(“a”2 ﬂaﬂaj)( T o) (2.2.6)

In (2.2.6) the error variance of nonlinear coefficients is given. Again, that (2.2.6) is

under the assumption of perfect linear coefficients. The error variance of nonlinear
coefficients can be determined with the knowledge of step size 4, , noise power o, ,

square 2-norm of nonlinear coefficients vector, eigenvalues A of correlation matrix
of s[n] and the sum of all eigenvalues. Because the step size and the eigenvalues are

both positive, the second term of (2.2.6) will disappear when the iteration number
approaches to infinity. The steady state of E[| kai[n]|2]is given in the first term of

(2.2.6).

13



2.2.2 Residual echo power analysis
From (2.2.2), the mean square error (i.e., residual echo) due to an estimated error

of nonlinear coefficients is given by
31 =E| e |

= E{n]+ &L []PT[nh)(Mn] + h" P[]z, [n)]

=0, +E[ £, [nP"[n]hh"P[nje,[n] ]. (22.7)
Assume the variation of £,[n] is slow compared with PT[n]h, hence

E[ e3P [ Pirle, ]

~ E[ ] [nIE[ P [n}hh"P[n] Je, 1]

= E[][nIR,, e, [N

= E[K, NIQ'R ;- QK [nl]

= E[K[n]D,K,[n]]
N 2
=>4, B[ lnl |. (2.2.8)
i=1
From (2.2.6) and (2.2.8), the mean square error can be written as
:ua 2
U O- ;u 2n
JJn=0o; +22 Z +Z/1 [||a|| ——11-2 4" (2:2.9)
T gt =V}
T T

From (2.2.8) and (2.2.9), when the nonlinear coefficients error variance has been

known the residual echo power can also be obtained. The nonlinear convergence rate
depends on the values A, of P'[n]h, we may change the basis of P to have a faster

convergence rate.
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2.3 Convergence analysis of linear NLMS algorithm
2.3.1 Variance of linear coefficients error

In this section we assume that the nonlinear coefficients are perfectly known, i.e.

gl[n] =a or g,[n]=0. The estimation error produced by the nonlinear AEC filter is

similar to (2.2.1) but here €,[n]=0 and g,[n]#0
en]=d[n]-a [n]P"[n]A[n]
=a'P'[nlh+Vn]-[a+g,[n]]"P'[n][h+¢g,[n]]

=v[n]+&;[nJs[n] (2.3.1)

where s[n]=P[n]a. We denote the linear coefficients weight error by
g.[n+1]=h-h[n+1].

The following analysis procedures.are similar to, Section 2.2 thus we will omit the

details. Using (2.1.1) and (2.3.1), wemay rewrite g,n+1] as

g [n+1]=|1-—_R_ e[}, [n] (2.3.2)
[strl;
where
f,[n]=-—2s[njvn].
[strl;
Ry, is the correlation matrix of s[n]. The convergence of linear coefficients error

variance can be obtained by using the same procedures as before in Section 2.2.1, the

linear coefficients error variance is given by

My, o2 My o>

ek, 1= ”[ I (b L T
2- st
||s r‘]|| ||S[”]||2

15



where QIR.Q,=D,_, Q. is a unitary matrix andD, is a diagonal matrix consisting

of the eigenvalues A;, K,[n]=Qlg [n] and K [n] isi-th entry of K,[n].

In (2.3.3) the error variance of linear coefficients is given under assumption of

perfect nonlinear coefficients. It can be determined with the knowledge of step size 4.,
noise power o, , square 2- norm of room impulse response, eigenvalues of correlation
matrix of s[n] and the sum of all eigenvalues. Similarly, the steady state of

Ef|k,[n] Tis given in the first term of (2.3.3).

2.3.2 Residual echo power analysis

From (2.3.1), the mean square error (i.e., residual echo) due to estimated error of

linear coefficients is given by
31 =E| |en] |
= o, +E| g/ [n]s[nis[n]"&,[n]]. (2.3.4)
Assume the variation of €,[n] is‘slow compared:with s[n], hence the residual echo

power can be obtained similarly by

My, x Ag

J.[n]=0; + o,
M= ;2-” -
NEL 5
:uh 0_2
v s[nf; u
+> A[|n[’ - st 1(1-—2 ) (2.3.5)
2 A
[stril,

Unlike Section 2.2, the nonlinear basis has no effect upon the eigenvalue in (2.3.5)
when nonlinear coefficients are perfectly known. Therefore, in next section, we
discuss the eigenvalues and nonlinear basis relationship only when linear coefficients

are error free and nonlinear coefficients are not known.
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2.4 Nonlinear processor with orthogonal polynomials
2.4.1 Signal dependent orthogonal polynomials

In this section, we discuss the orthogonal and non-orthogonal basis of nonlinear
processor. The nonlinear processor is shown in Fig. 2.2. To accelerate the convergence

rate, we define a set of orthogonal sets {p[n],i=1, 2, ...} if their outputs are

uncorrelated with each other

E[ P[NP, [n11 £ pa[nIp,[X]f,[X]

=(q é[m-n] (2.4.1)
where f,[X] is the probability density function (pdf) of the input signal x[n]. If q is

equal to 1, then the polynomials are not only orthogonal but also orthonormal.

Far end signal X[ n]

p,[n] p,[N] pu[0]

.......................................

......................................

Fig.2.2 Nonlinear processor

The non-orthogonal polynomials set can be systematically modified to yield an
orthogonal set by using Gram Schmidt orthonormalization in any interval with the
weighting function f [X]. The weighting function depends on the probability
distribution of the input signal, therefore we derive the general form first and then
apply it to uniform, WGN, and Laplacian pdf’s. The orthogonal bases are described as
follow

p[n]=Xn]

p,[n]=x'[n]+ _jzilej’ixi[n] 1<j<N.

17



The orthogonalization coefficients C,; are chosen such that (2.4.1) is satisfactory,
i.e., the coefficients C, ; for the j-th order polynomial is obtained by solving
| [ m e
r@l @ . %;2QJ1
where m = E[X[n]] is i-th moment of the input signal Xn]. We can find out the

orthogonalization coefficients when the input signal pdf is known a priori. The
orthogonalization coefficients are constant for stationary input otherwise the
coefficients are time dependent. Here, we assume that the input signal is stationary
and its pdf is pre-known therefore the ensemble average is performed to find out the
orthogonalization coefficients. The ;mioment estimation is performed when the input
signal pdf is not known, in such case, ithe orthogonalization coefficients are time
dependent as described in [12]. Aften the orthogonalization procedures, the first six
orders of orthogonal polynomialS:ate provided ifi*Table 2.2. Here we have assumed

pdf’s are symmetric with zero mean and all the odd-ordered moments are zero,

m =0, for i: odd.

Table 2.2 Signal-dependent orthogonal polynomials

Polynomials Coefficients
p,[n]=xn]
p,[X]= )(Z[n]_Cz_l C,,=m,
m

p3[X]: X3[n]'c3,1x[n] C3.1 :i

_m-mm
p,[X]= X4[n]'C4,1X2[n]'C4,2 C4’1 - m, —m§4

C42 - 4,1mz +m,

18




ps[)(]z Xs[n]'CsJXS[n]'CS,zX[n] _ n.%'%rné

C5,1 =
M -2 m, + 7
m
Csz = 'C5,1_4+%
mlo 'C4,1ms 'C4,2mé

p[x]=X’[n]-C,x'[n]-C, ,X°[n]-C{ C;, =
6 6,1 6,2 q 6.1 r‘r&+Cilm4+Cf’2-2(C4JI’T'l6 +C4’2m4+C451C452mZ)

Next, we discuss three kinds of signal distribution models, uniform, Gaussian and
Laplacian.
A. Uniforminput

For uniform signal in the interval [-1;1};the moments are

Lo 1 SV mmia e, 1
m, 3 M 5:"15 7=ms 9amm i
According to Table 2.2, the orthogonal® polynomials for the uniformly distributed

input are listed in Table 2.3.

Table 2.3 Orthogonal polynomials for a uniformly distributed signal

Order polynomials Order polynomials
1 p.[n]=XnN] 4 1= 2emt S
P, [X]=Xx"[N] Z x°[n] 35
2 p,[X]= xz[n]-% 5 p,[X]= X’ [Nn]-1.11X’[n]+0.24X[n]
3 p[X]= x3[n]-§x[n] 6 p.[X] = X*[N]-0.07x*[Nn]-0.65%*[n]+0.09

In Table 2.3, these polynomials are not like Legendre polynomial form. Because we

donotset p[l]=1, n=1~6
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B. Gaussian input

For WGN input distribution signal we let m, be equal to 1/9=0.1111. The white

Gaussian signal X[n] with unit variance o, =1 is generated first and it is widely

distributed over [—eo,o0]. In practice we let the signal within the interval 130, be

normalized into[—1,1], the signal outside this interval can be ignored. Therefore, we

. 1 ) . . .
use the normalized Ex[n] as the Gaussian noise for comparison with other pdf’s. Its

2™ moment is m, =0.1111, the other moments are expressed as follows.

m, =0.1111,m, =3m;,m, =15m;,,m, =105m;,m, =945m, .

Using these moments and Table 2.2, the orthogonal polynomials are listed in Table

24.

Table 2.4 Orthogonal polynomials for a Gaussian-distributed input

Order polynomials Order polynomials
1 p.[n]=xn] 4 p,[X] = X*[n]-0.666X°[n] +0.030
2 — 32 5 S 3
p,[X]=x"[n]-0.111 p,[X]= X’ [n]-1.11X[n]+0.185xX[Nn]
3 6

p,[X] = X’[n]-0.333xN]

p[X] = X[N]-0.416X*[n]-0.277X*[Nn]+0.025

C. Laplacian input

For Laplacian input distribution signal, in practice, the same reason as WGN

signal we let my=0.1111 and the other moments are given by

m, =0.1111,m, =6m;, m =90m;, m, = 2520m;,m, = 113400m; .

The orthogonal polynomials for Laplacian distribution signal are listed in Table 2.5.

20




Table 2.5 Orthogonal polynomials for a Laplacian-distributed input

Order polynomials Order polynomials
1 p[n] = x[n] 4 p,[X] = x*[n]-1.8667x*[Nn]+0.1333
2 p,[X]=x[n]-0.1111 S p,[X] = X[N]-4.074X’[n]+1.605Xn]
6

3 p,[X] = X’[n]-0.6666XN]

P [X] = X°[N]-4.45X*[n]+ 2.307X°[n] +0.050

2.4.2 Eigenvalue spread analysis

In Section 2.2 we show that the convergence rate depends on the normalized

eigenvalues. Equivalently, the eigenvalue spread is commonly used for convergence

analysis, instead of normalized eigenvalues [6].'Here, we will examine the eigenvalue

spreads for different input pdf’sversus-different orthogonal polynomials.

For simplicity we normalize ||h|| 5 -to-be 1 and monlinear distortion only contains

odd order harmonics and even orders-—are ‘excluded, in case of a symmetric

input/output nonlinear characteristic curve.

A. Power-series nonorthogonal polynomials basis

|. Uniformly distributed input

The correlation matrix, RPT[n]

polynomials can be found in Table 2.3.

R

Tnlh

= E[PT[n]hhTP[n]]

21
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=0, I I (2.4.2)

with = E[( pnlhy + p[n-1]h +---+ p[n-M +1]hM'1)2]
=m, ;.
f = E[(pnIhy + -1 +---+ pn-M +1]h,,)° ]
= m, ;.
rye = E[(pylnh, + p[n-1I -+ pyn-M +11h,,)° ]

=m, [l

Unlike the orthogonal basis, the correlation term of RPT[ is not equal to zero as a

nlh

result of the basis is not orthogonal

s =15
= E[( p1[n]rb + pl[n-l]hl Ll pl[n' M +1]h|v|-1)
(ps[n]ho + p3[n'1]h| +oeet p3[n' M +1]hrv|-1)]
= E{z pl[n-i]p3[n-i]h2}+ E{zz pl[n‘i]pz.[n‘ j]hhj
i=0 i=0 j#i
=m,[n[;.
s =15
= E[(pl[n]rb + pl[n'l]hl +oeet pl[n' M +l]h|v|-1)
(ps[n]ho + ps[n‘l]h oot ps[n‘M +1]hM—1)]
=m,[h[;.
I I

35

=E[( p3[n]ho + p3[n'1]hl oot p3[n' M +1]h|v|-1)

53
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(ps[n]ho + ps[n‘l]h oot ps[n‘M +1]hM—1)]

2
= myh.
Therefore, the correlation matrix becomes

0.3333 0.2  0.1428
R, =/ 02 0.1428 0.1111],
0.1428 0.1111 0.0909

which is no more diagonal. Its three eigenvalues are 0.0006, 0.0334, 0.5331 and its
eigenvalue spread is as large as 888.5.
I1. Gaussian input

The non-diagonal correlation matrix is

0.1111 0.0370 0.0206
=] 0:0370 0.0206" 0.0160:|.
0.0206 0:0160¢0:0160

RPT[

Three eigenvalues are 0.0008,20.0170, .0.1297, thus' the large eigenvalue spread is

162.1.

[11. Laplacian input

The correlation matrix for the Laplacian input is

0.1111 0.0741 0.1235
nh 0.0741 0.2344 0.3841].
0.1235 0.3841 1.9204

RPT[

Three eigenvalues are 0.0177, 0.1285, 2.0088, and its eigenvalue spread is 113.5.

B. Uniform orthogonal polynomials basis

I. Uniforminput

In the first discussion, we use uniformly orthogonal polynomials which are found
under uniform input distribution. When the input signal is uniformly
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distributed(matched to the polynomial bases), the nonlinear components between

different orders have perfect orthogonality. The correlation matrix, RPT[n]h is

expressed the same as (2.4.2) with

= E[(pInih, + pIn-1I ++ pIn-M +11h,)°]

:E{ _ plz[n'i]hz}+E|:Zz— pl[n'i]pl[n'j]hhj .

i=0 i=0 j=i
Because the Input signal is zero mean and uncorrelated between different time index,

(2.4.2) can be expressed as

iy =m, ||h||§

Similarly, r;; and ry; can be written as
r =E[(pInIh, £B,[n-Th+ %pn-M +1h, )’ ]
6 = 2
= -——met = hij.
(m, -~ m+ - =m,) i
re = E[(Pnlh, #pyfn- 1T+ P [n-M +1]h, )]

= (m, -2.22m, +1.71m, -0.53m, +0.057m,) || .

The other terms of the correlation matrix are zeros as a result of orthogonal property.

Therefore, we can write the correlation matrix as

0.3333 0 0
R, =l 0 00029 0 [
0 0 0.0015

whose eigenvalue spread is 222.22.

I1. Gaussian input

The correlation matrix becomes
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0.1111  -0.0296 0.0061
R..=[-0.0296 0.0161 —0.0016
0.0061 —0.0016  0.0024

with an eigenvalue spread of 59.1.

[11. Laplacian input

The correlation matrix becomes

0.1111 0.0074 0.0679
nh 0.0074 0.0746 0.2241
0.0679 0.2241 1.2461

RPT[

with an eigenvalue spread of 39.3.

C. Gaussian orthogonal polynomials basis
|. Gaussian input

For its matched input signal with, Gaussian distribution, the correlation matrix

can be found by the same procedure with the orthogonal polynomials given in Table

2.4,
0.0020 0 0
R, =l 0 00082 0 |
0 0 01111

Three eigenvalues are 0.0020, 0.0082, 0.1111, thus the eigenvalue spread is 55.6.
[1. Uniformly distributed input

The correlation matrix becomes

0.3333  0.0889 —0.0175
R ; nh 0.0889  0.0466 —0.0046
-0.0175 -0.0046 0.0024

with an eigenvalue spread of 246.

[11. Laplacian input

The correlation matrix becomes
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0.1111 0.0370 0.0618
nh 0.0370 0.0864 0.2402
0.0618 0.2402 1.2389

RPT[

with an eigenvalue spread of 42.

D. Laplacian orthogonal polynomials basis

I. Uniformly distributed input

The correlation matrix becomes

0.3333  —-0.0222 -0.1369
R =[-0.0222 0.0243 -0.0586

Piinth |

-0.1369 -0.0586 0.2584

with three eigenvalues of 0.0001, 0.1773, and 0.4386, and an eigenvalue spread of
3000.

I1. Gaussian input

The correlation matrix becomes

0.1111  —0.0370,-0:0480
R..=[-0.0370 0.0206 —0.0404
0.0480  —0.0404  0.0950

with three eigenvalues of 0.0002, 0.05512, and 0.1714, and an eigenvalue spread of
871.4.

[11. Laplacian input.

The correlation matrix becomes

0.1111 0 0
R, .= 0 00741 0
0 0 0.5538

which has a small eigenvalue spread of 7.5.
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E. General comparison

Finally, we discuss the eigenvalue spread under non-perfect orthogonality, a case
of mismatch between the pdf of the input signal and the nonlinear polynomial basis.
Table 2.6 compares the eigenvalue spreads for different input pdf’s versus different
orthogonal polynomial bases. If the nonlinear components have perfect orthogonality,
the minimum eigenvalue spread can be achieved, as can be seen from the diagonal
entries in Table 2.6. When the input signal’s pdf is unknown, according to Table 2.6

the uniformly orthogonal polynomial basis is recommended.

Table 2.6 Eigenvalue spread comparison

Basis Uniform Gaussian Laplacian Power-series
PDF

Uniform 2222 246 3000* 888.5

Gaussian 59.1 55.5 871.4* 162

Laplacian 39.3 42 7.473 113.5
* eigenvalues are 0.0001, 0.17728:0.43863
* cigenvalues are 0.00019671, 0.05511%,:0.17141
We recall the residual echo power in (2.2.9)

/Ja
J,[n]=07+ ‘; L EE 2/1 [||a|| ](1 “a A"
i=0 2- ﬂi jﬂ
T T

The convergence rate is dependent on the eigenvalue spread; a smaller eigenvalue has
faster convergence rate. The Laplacian polynomial basis has larger eigenvalue spread
than the others because it has an eigenvalue closely to zero. But, it is worthy to note
that a smaller eigenvalue has less contribution to the residual echo power. Therefore,
we may calculate the eigenvalue spread excluding zero eigenvalue in such case the

Laplacian type basis has a smaller eigenvalue than the power series basis.

27



2.5 Application of dual loudspeakers system

In this section we consider the hands-free system with dual loudspeakers. 3D
sound is an essential element of the new services (mobile, multimedia, etc.). It
enriches sound playback more vividly. In fact the 3D sound effect can be generated by
dual loudspeakers. The AEC is also essential to achieve satisfactory speech quality in
such system. We use two nonlinear AEC with a cascade structure to cancel the left
and right channel echo signal. The nonlinear AEC structure for dual loudspeakers
system is shown in Fig. 2.3. Let X [n], X3[n] denote the left-channel and
right-channel signal and uncorrelated with each other. Nonlinear AEC1 and AEC2 are

used to cancel the echo components from the left and right loudspeaker, respectively.

SP1

q
SP2

X [] ]:]

v " v ”
Nonlinear Nonlinear
AEC1 AEC2
he[n] | /h [n]
yl[n] yz[n] Near-end
& X d[n‘ signal v[n]
< T NZp) D
e[n] + +

Microphone

Fig. 2.3 Nonlinear AEC structure for dual loudspeakers system

The signals, passing through the echo path h [n]and hy[n], respectively, are picked

up by the microphone. The microphone output signal is expressed as
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h

LO

d[n] ~[aa,] XL,1[n] XL,1[n'1] "'XL,1[n' M +1] h,_l
X s[NI X 5[n-1] -+ % 5[N-M +1]
hLM—l
hRO
XR,l[n] XR,I[n'l] "'XR,1[n'M +1] th
+ X +v[n].
[bIbB]{XR,s[n] XR,3[n'1] "'XR,s[n‘M +1J vl
hRM—l
We rewrite d[n] as vector inner products:
d[n]=vin]+a'P; [n]h_+b"P, [n]h. (2.5.1)

In this section we derive the residual echo power under the assumption of perfect
linear coefficients. We derive the nonlinear coefficients convergence rate first. It is
easy to see that (2.5.1) is not the same with the ¢ase of a single loudspeaker, here, we
have two kinds of nonlinear ceefficients'in.the right-hand side of (2.5.1). We can

cascade up the nonlinear coefficients, a.and-b_together into a new vector c¢. By the

same procedure, we merge P; [n] “and-P;[n]"into a block-diagonal matrix P."[n].

The desired signal can be rewritten as

[P, |
d[n]=v[n]+[a' b ]{PTL[n]h }

_ PIfn] 0 |[h
=V almatma b {h}

=v{n]+c'[n]P."[nh, (2.5.2)
where h denotes [h, hg]

(2.5.2) is almost the same as the single loudspeaker case. The nonlinear AEC output

and residual echo become
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yinl=¢ [n]p] [n]h,
e[n] = d[n]- y[n]

= d[n]-¢ [P [n]h,.

The NLMS adaptation algorithm becomes

oe’[n] T
v =Z W ognp [nh
© = aan] enJP [n]hg
en+1]=cfnl+p, e lMMs gy (2.5.3)
P[nh | +6

The residual echo convergence rate can be found following the same procedures in
Section 2.2.2. The nonlinear coefficients error variance and residual echo power are

described in (2.5.4) and (2.5.5).

1L e P A
1= - A (2.5.4)
“ =) 2—M
T T
N ‘Lla
J[n=0’+% 07 +Z/1[||c|| T - ”aﬂ,)” (2.5.5)
Toma y 84

where

. {P: o ] H
P [nlh =] ™ .
0 PxR[n] hR

Jef, =lta b
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2.6 Summary

In this chapter we show a nonlinear AEC with a signal dependent orthogonal
basis to decrease the correlation among different polynomial orders and increase the
convergence rate. We have presented convergence analyses of linear and nonlinear
NLMS algorithm, under the assumption of the other part of coefficients are perfectly
known. Because the linear and nonlinear coefficients errors affect each other in the
cascade structure, it is difficult to perform the joint error analysis theoretically. For an
input with unknown pdf, the orthogonality of the polynomial bases may not be perfect,
the eigenvalue spread analyses in Section 2.4 shows that we also have faster
convergence rate than conventional power series basis. For dual loudspeakers case,
we cascade the coefficients together therefore the analyses in single loudspeaker case

can be easily extended to the dual loudspeakers case.
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Chapter 3
Training Sequence and Coefficients
Estimation

The training sequence (TS) can also be used in adaptive equalizer or echo path
estimation. Here we will apply it to nonlinear AEC with a cascade structure. There are
applications where it is necessary to compare one reference signal with one or more
signals to determine the similarity between these two and to determine additional
information based on the similarity. For example, in digital communications, a set of
data symbols are represented by a set, of,unique discrete time sequences. If one of
these sequences is transmitted,™ the réceiver. has to determine which particular
sequence has been received by-comparing.the received signal with every member of
possible sequences from the set.. Similarly,~in radar and sonar applications, the
received signal reflected from the target is' the delayed version of the transmitted
signal and by measuring the delay; one can determine the location of the target.

In Section 3.2, we will derive the TS algorithm under expectation operator. In
practice, we replace expectation with sample mean. We will show the recursive form
of TS algorithm in Section 3.3. In Section 3.4, we will perform the convergence
analysis of linear TS coefficients and nonlinear convergence analysis in Section 3.5.
In Section 3.6, we extend applications to dual loudspeakers system where the linear

convergence will be given.
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3.1 Correlation based nonlinear AEC

In Chapter 2 we have known that the NLMS adaptive algorithm is based on a
simple stochastic gradient. The kind of adaptive algorithm has good performance
when the background noise or double talk is not present. In Fig. 2.1 the error signal
gn] is used to update both the linear filter and the nonlinear processor. However,
when the background noise is present and/or larger than the echo signal y[n], the
desired signal contains not only the echo signal but also the background noise. The
coefficients may diverge when the error signal includes a significant near-end speech
signal.

In this chapter we use a white sequence (non polar signal) to train both linear and
nonlinear coefficients to overcome the problem of adaptive filter under low SNR
condition. Because of the cascade structure we:have to modify the Wiener-Hopf
equation to fulfill our requirement..In the case of our structure, the TS runs through a
multipath nonlinear processor and weighted.-by nonlinear coefficients, the sum of
multipath signals passes through a'linear filter. Therefore, the vector direction of the
estimated coefficients is parallel to the vector of the room impulse response and its
vector length is composed of nonlinear coefficients. The other problem is how to
separate each nonlinear coefficient from the length of estimated coefficients. Here we
only have one cross correlation length between the input and the microphone signal,
in order to get more information we can use the nonlinear order of input signal and the
microphone output signal to generate the other information about the nonlinear
loudspeaker. The nonlinear coefficients can be found by solving these equation sets.
According to this concept, the structure of a nonlinear AEC based on TS is shown in

Fig. 3.1.
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Nonlinear

o Loudspeaker
non polar white signal X[n] Di]
|
v .
...... OV
PNl p.[nll  pyIn]
...... ) TN RTINS A .
I < ~ : Room
ai[n]| [az[n]||an[N] ’4-— v : h{n]
............... # ;i —IErrﬁlator
] ;
Y Echo ¢
FIR h[Nn]
Ay d «Near end signal
< D [n] ear end signal V[n]
Residual echo dn] ~ —+ Microphone

Fig.3.1 Structure of a nonlinear AEC based on training sequence

In Fig. 3.1, the correlator produges the correlation between p,[n]and d[n]. To find
the nonlinear coefficients, the" correlator will also-create the correlation between

p,(nJandd[n] ,for 2<j<N
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3.2 Training sequence estimation algorithm
In this section we will derive the linear TS coefficients algorithm first in Section
3.2.1. In Section 3.2.2 we find the nonlinear TS coefficients algorithm. We also give

the TS algorithm for nonlinear coefficients when an orthogonal basis is used.

3.2.1 Linear TS coefficients estimation algorithm

In the section we will derive how to use the TS to find out the linear coefficients.
First, we generate a white and zero mean sequence x[Nn]by TS generator at the near
end. This sequence cannot be a polar signal in order to have nontrivial higher order
moments, which will be explained later. The sequence is injected to the loudspeaker
and through the near end room it is picked up by the microphone. The desired signal

is expressed as follows:

M-1
a Y hx{n=i]+vn]
i=0
-1

=a » hxn- |]+a22hx n-ij+: +aNth n-i]+v[n].(3.2.1)

i=0

Mz

§

M is the length of the linear filter, N is the nonlinear order. We multiply (3.2.1) by

X[n-k] and take the expectation value to get

M-1

a, Y NE[XNn-KIX[n-i]]

=1 i=0

" hE[Xn-K]Xn-i]] +aZZhE[x[n K]X[N-i]]+ -

E[X{n-k]d[n]] =

I

<

=a,

g

<

-1

hE[XNn-KIX"[n-i]]+ E[Xn-kMn]] , k=0,1..-- (3.2.2)

+
é

The two expectations in (3.2.2) may be written as

M -1

a't hrxxt[i 'k]

1 i=0

Mz

xd[ k

§

-1 M-1

=a, hr [i- k]+a22hr2[| +--~+aNZhrN[i-k] (3.2.3)

Iy
=}
Il
=}

where
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hal-kK]= E[X{n-k]d[n]]
is defined as the cross correlation function between the input signal X[n] and the

microphone output signal d[n] for a lag of -k ; and
rli-K1= E[X{n-K]x[n-i]],
r.[i-K] is defined as the autocorrelation function of the input signal for a lag of

i -k . The last term of (3.2.2), E[X[n-K]v[Nn]], is equal to zero due to the input signal is
independent of the background noise. We define
r, =[r,[0-K],r,[1-K],---,r [M-1-K]]

and

h=[h,h.-.hy, T,

then we rewrite (3.2.3) into the form of inner products:

N

ral-kI=Y ar h

t=1
=ar,h+ar Shtvstagr (h. (3.2.4)
According to (3.2.4), it is similar to the Wiener-Hopf equation. The left-hand side of
(3.2.4) contains the cross correlation, but its right-hand side contains not only linear
but also nonlinear coefficients. Therefore, we need to take some procedures to
estimate the linear and nonlinear coefficients. Before the procedure, we extend (3.2.4)

into matrix form. The impulse response is defined by the finite set of tap weights,
ie,h=[h,h,---,h, 1", hence we let the lag index k go from 0 to M-1. We extend

(3.2.4) in matrix form as follows:

rxd [0]
R, = E[x[n]d[n]]= rx“:['l]

rxd[l'M]
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N
:ZatRxx‘h
t=1
=aR,h+aR h+---+aR .h (3.2.5)
x[n]denotes the M-by-1 vector of the tap inputsXn],xn-1],...,Xxn-M +1]. R,

denotes the M-by-1 cross correlation vector between the input signal and the

microphone output signal. R, denotes the M-by-M correlation matrix of x[n]

X[ nIx[n] Xn]x(n-1] -+ X[nx[n-M +1]
X[n-1]x[n]
R, =E
X[n-M +1]x[n] - X[N-M +1]X[n-M +1]
=m0 -
RXX3 =ml,,

R =m,l, for 1st<Nandt.isodd

where the moment is defined asm =Ejx{nj}z We note that R.,R ., ,R  are

zero matrices for 2<t< N, t is even’, since the input signal is white zero mean, a
symmetric pdf, and uncorrelated between different orders, E[Xn]x’[n]]=0. Here we

let N be an odd integer and rewrite (3.2.5) as

=amh+amh+---+a,mh. (3.2.6)

We may then pre-multiply both sides of (am, +a,m, +---+a,my,,)"'I,,,,, and solve

(3.2.6) for h, but the nonlinear coefficients are unknown yet. We assume that ||h||§

equals to 1 thus the direction of R, ; is equal to h, then the room impulse can be

found by
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__ Ry (3.2.7)
”Rxd

2

3.2.2 Nonlinear TS coefficients estimation algorithm

We have to solve the nonlinear coefficients but we only have one equation in
(3.2.6). Because the input signal pdf is symmetric, the odd-order moments are zeros.
We divide the nonlinear TS algorithm into two groups, odd and even-ordered. First,
we solve the odd-ordered nonlinear coefficients. Again, we multiply (3.2.1)
by X’[n-K],...,X'[n-k] for ISt<N,tisodd, respectively and take the expectation

value. Similar to (3.2.6), we can get the other equations:

R, =(@m +am+--+a,m;)h (3.2.8)

Ry =@My, +amy,; hertagm, h. (3.2.9)

We multiply (3.2.6), (3.2.8), and:(3.2.9) by -h".respectively and then we can solve the

following equations to find the edd-ordered nonlinear'coefficients a,, a;,---,ay

h'R
T
h'R .,

m, e My 1 e
my o My || &

"45 =

hTR N ‘ rﬂNJrl r‘nNJrS rrEN aN

x'd _|

Goga

Hence, the odd-ordered nonlinear coefficients can be found as

a ] [ m, o my, T [W R |
a | | m, My, | |W'R,,

(3.2.10)

03 4;3

v My My o My | h'R ,

Goga

We note that the matrix G in (3.2.10) has to be nonsingular in order to have a
unique solution for the nonlinear coefficients a, , a, ,...,8, . As mentioned earlier, the

input training sequence X[N] cannot be a polar 1 signal. Up to now, we have found
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the linear coefficients h and odd-ordered nonlinear coefficients a, for
I<t<N, tisodd. Next we derive the even-ordered nonlinear coefficients. Similarly,
we start with (3.2.2) but there are some differences from previous procedure.
Although the input signal is white and zero mean but the even-ordered moments are

not equal to zero. In order to get a diagonal correlation matrix we multiply (3.2.1) by

x’[n-k]-m, and take expectation to get
R i mpa = 3(M, - m)h+a,(m,-mmp)h+---+a,(m,,-mm)h  (3.2.11)

Again, we multiply (3.2.1) by x*'[n-k]-m,,---,x""'[n-k]-m,_, and take expectation

value

R(xN"-mN.l)d =a,(my, -mmyJh+a, (M s=mmy_)h+---+ay (M, - mﬁl—l)h'

(3.2.12)

By multiplying (3.2.11) and (3.2:12) by "h respectively, we can find out the nonlinear

coefficients @, for 1<t <N, t is even, by solving the following equations

R :
0 -m) m, - m; m-mm, - me,-mm | &
)
h'R e || ™-mm, m-m e my-mm ||,
hTR(XN,l_m d My MMy My -MMy, e My, - mriu Ay

Geven

Hence, the even-ordered nonlinear coefficients can be found as

1[h'R
a, m, - m; m-mm, - Mg, -mm, 0¢-m)d
a -mm -ny e My, -M h'R
4y |_| M-mm, m, -m, s~ MMy, (x*-m,)d
ay., ‘mN+1'msz-1 My -MMy, - mZN-z'nﬁl-l | hTR(Xm_m d
Gown - o
(3.2.13)
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Again, we have assumed that the training white sequence X[N] is non polar signal to

avoid the singularity of the matrix G,,,. Finally, in Chapter 2 we mentioned a

nonlinear processor with orthogonal basis. When the orthogonal basis is used the
same procedure can also be used to find out the coefficients. The desired signal can be

written as

N

d[n]= achpt[n-i]

M-1

a » hpln-i] +a22hpz[n i]+--+a thN[n i]+vn]

i=0

where p; becomes the nonlinear orthogonal polynomial. Following the same

procedure from (3.2.8) to (3.2.13) , we can find the linear and nonlinear coefficients

— EEF ¢
a]l [m 0 -0 TR,
0 ¥ =0 h'R
a? = m" , , % 1P (3.2.14)
a ] | 0 0T m] _hTRde_
Gorthogoa.nl

(3.2.14) shows the nonlinear coefficients, where My is equal to the second moment

of the basis, p;. The matrix inversion in (3.2.14) is simpler than that of non-orthogonal
basis because it is a diagonal matrix. Because of the orthogonality (3.2.16) can

represent the odd and even-ordered coefficients simultaneously.
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3.3 Recursive Training Sequence algorithm

In order to compute the linear and nonlinear coefficients in (3.2.7), (3.2.10), and
(3.2.13), we need to compute the autocorrelation function and cross correlation
function. In practical system, we replace the expectation operation with sample mean.

The sample mean of a set X[1], X[2],...,X[n] of n observations is defined by

sample mean le X[i]
i=1

In Section 3.2, the expectation operator is performed to compute coefficients
thus the true coefficients notation his used. In this section the sample mean method
is used, therefore we use the estimation’s notation as that in Chapter 2. At first, we use

the sample mean as follows

ﬁxd[n]=lix[i]d[ ]

{ nz x[i ] y[i J+=x{n] y[n]}

i=l

=nTlﬁxd[n 1]+= x[n]d[n] (3.3.1)

According to (3.3.1), we can rewrite (3.2.7) as follows

Rua[N]

h{n]=—
R

:;(—Rxd[n 1]+= x[n]d[n])

Rxd[n]H
M e — xinidpn. (3.3.2)
0 e,

In (3.3.2), |[Ra[n]| is equal to (a[n-1]m +aj[n-1]m, +---+an[n-1]m..,) , the
) mz 4 rnN+1

nonlinear coefficients can be obtained from the last iteration of (3.3.4). (3.3.2) is

similar to (2.1.1), the second term on the right hand side of (3.3.2) represents the
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adjustment that is applied to the current estimate of linear coefficients. But the error
signal does not appear in (3.3.2), it is different from the NLMS-type adaptation
algorithm with an error feedback structure.

The TS estimation of nonlinear coefficients in (3.2.10) can be written as a
recursive form too. First, we have to replace the correlation matrix of (3.2.10) with the

sample mean. We can rewrite the cross correlation as

Rya[n] Rea[n-11]  [x [nyd[n] |
Ryea[n] |_N-1| Rea[n-1] |, 1{x’[n]d[n] (333)
: : n : o
 Ryea[n] | Rea[n-1]]  [x"[nld[n]
According to (3.3.3), (3.2.10) can be written into a recursive form
A ]| [WRws), [ ]|
és.[n] _¢l, nTl ﬁT[nJﬁxsd[n-l] +%d[n] ﬁT[p]yf[n]
an([n]] B[R eain-i]; x|
[a[n-1] | B [nx [n] |
A AT 3
_nelrain-i i, Ly, | (] (3.3.4)
n n
_éN[n-l]_ _ﬁT[n]xN[n]_

The matrix inverse G, in the right-hand side of (3.3.4) can be pre-computed so

long as each moment of input signal in (3.2.10) are known. The same procedure can

be applied to (3.2.13); the recursive form of (3.2.13) becomes

] [anen ] B i -my)

aqnl |_n-tjadn-1 | 1y |l mg-m,) (33.5)
: ni: n o : o

lawanl]  [ava(n-1]] B[] n]-my).

where the moment matrix G, are given in (3.2.13).
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The steady state of linear and nonlinear TS coefficients will achieve the optimum
Wiener solution, when the iteration numbers approaches to infinity. By contrast, the
coefficients computed by the NLMS-type algorithm might not achieve the optimum
solution. It has excess mean square error resulting from gradient noise at small step
size.

In view of computational complexity, it needs about 2M-+N and
MN+2N+ N? multiplications per iteration to find the linear and nonlinear TS

coefficients, respectively. Here, we do not take into account the computational cost of
the matrix inverse G™', since it can be computed a priori. To generate the nonlinear
components, it needs about N-1 multiplications. Table 3.1 compares the computational
complexities between the TS method and, NLMS adaptive filter. The computational
complexity of the TS method is.almost the same as the NLMS adaptive filter. Both

methods can be used to find theeAEC coefficients. In case of a noisy environment, the

TS method is more attractive.

Table 3.1 Comparison of complexity computational

Number of multiplication

Training method MN+2M+4N-1+ N?

NLMS-adaptive filter MN+2M+4N-1
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3.4 Linear convergence analysis

The linear filter dominates the overall system convergence rate because it has
more coefficients than the nonlinear processor order. Through analysis, the linear
coefficients convergence rate can be used to estimate the whole system performance.
In this section we will perform the convergence analysis of linear TS coefficients and
residual echo power under the assumptions of perfect nonlinear coefficients with 5"
nonlinear order. The nonlinear TS coefficients estimation is performed on a system of

equation sets. Theoretical analysis is difficult because of the moment matrices inverse

in (3.3.4) and (3.3.5).

3.4.1 Variance of linear coefficients error

Because the input signal is independent of the background noise we divide the
analysis into two parts by the law.of superpesition.-In the first part, we discuss the
effect of the background noise underithe.assumption of perfect linear coefficients. The
other part deals with the error due to.sample mean estimation method under the
assumption of no background noise. In the first discussion, the estimated error vector

due to noise can be written as follows

1 noooo
Sdm_Em'mwm+%w+%mJ;kmqm
- Elh- 1 R, - 1 " x{iMi ]
@m+am+am) * n@m+am +am)S
-1 nooo
~ram < am v am) &M

The mean square estimation error is given by

n(am, +a,m, +am) 5
_ 1
n’(am, +a,m, +a,m,)

H#WWNFEH 1 iﬂWMj]

-(Mm,g; + Mm,o; +---+ Mm,o;)

44



1
 n(am, +am, +am,)’

The steady state of (3.4.1) is equal to zero asn— . It means the estimation has no

Mm,o. . (3.4.1)

excess mean square error resulting from the background noise. Next, we assume that

the noise is not present and we focus on the sample mean estimation error, which is

equal to the variance of ﬁxd[n]. When the variance of ﬁxd[n] is equal to zero an
unbiased estimation of the ﬁ[n] can be obtained. Hence, the mean square estimation

error of ﬁ[n] can be written as follows

E[¢ [nle. [n]]=E y i1d[i
[en[N]e,[N]] Kn(amazm +m>;x[] []j ]

_ (EIx[1Jd[1])* + E[x[2]d[2]]" +---+ E[x[n]d[n]]")
n’(am, +a,m;+a,m,)’

— 1 2 2
- nz(almz +a,my+ asm6)2 NG ”h”z (3.4.2)

where

E[(x[n]d[n])*] = E[((ax[n]x"[n]+axiajx? [n]+ax[n]x* [n]

] ; (3.4.3)
+a,x[n]x* [n]+ax[n]x’ [n)h)*].

Usually, the characteristic of nonlinear distortion of a power amplifier can be modeled

as a saturation curve. Therefore, we assume that the nonlinear coefficients

a, and a, .are both much less thana, . For this reason, we rewrite (3.4.3) as

E[(x[n]d[n])*]=h" {E[a’x[n]x [n]x[n]x [n]]+ E[a’x[n]x’ [n]x[n]x’ [n]]
+ E[ax[n]x’ [n]x[n]x" [n]]+2E[aax[n]x" [n]x[n]x’ [n]]
+2E[aax[n]x"[nx[n]x° [n]]+2E[a,ax[n]x’ [n]x[n]x’ [n]]}h

=h"{a’(m, +(M -DHm)I +2aa,(m, +(M -1)mm,)I
+a;(m +(M -Dm)I +2aa,(m, +(M -1)mm)I
+a;(m, +(M -DmpH)I +2a,a,(m, +(M -)m,m,)! }h
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=0y [,

where
= (M-D(@m, +am, +am)’ +a'm, +am +am,
+2a,8,m, + 2a,a,m, +2a,a,m,
=M (am, +a,m, +am)’
2o, (3.4.4)
According to (3.4.4), (3.4.2) becomes
1

T _ 2 I
Ele,[nle,[n]]= nam, +am, +85W16)2 Oy ||h||2

M
= T”h”j' (3.4.5)

By the law of superposition, we cafn sum up (3.4.1) and (3.4.5) to get the mean square

estimation error of linear coefficients

LR WL
n(agm, +a,m, +asms)

M mo,
-+ |

[Sh nle,[n]]l=—

(am, +a,m, +am)’

ML Moy 2}, (3.4.6)
Nl (@m +am +am)

Once the noise power, the nonlinear coefficients, and the length of the linear
filter are known, we can get the convergence rate of linear coefficients. It is different
from the NLMS-type adaptation, the effect of the noise will disappear asymptotically
asn—oo. According to (3.4.6), there is no excess mean square estimation error
because the coefficients is found directly by the Wiener-Hopf equations, which is the

optimum solution for such systems. For a NLMS algorithm, (2.3.3) will never achieve
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the optimum solution even whenn — counless there is no background noise. But in

the general, a background noise always exists in hands-free environment.

3.4.2 Residual echo power analysis
In this section we focus on the residual echo power, with similar analysis to that

in Section 2.3.2. Therefore, the residual echo power can be written as

3,[n) = E jen]
= E[(Mn]+ &, [nis(n])(Mn] +s[n]" &,[n])]

= o, +E[ ) [nls{ns[n]"&,[n] ]

= o, + E|[ & [N]ELS[ns[n]" Je, [ ]
=0, +E| & [0R gealnl |- (3.4.7)

The non-diagonal term of R can 'be .ignored under the assumption that

s[n]
even-ordered nonlinear coefficientS+are much-less than those of the odd-ordered. The
diagonal terms of R, are given by
El(ax{n]+a,x’[n]+a,x’[n]+a,x"[n]+a,x’[n])’]
=a'm, +am +am, +2aam, +2aam +2a,am
=0y -

Thus Ry, is approximate to a diagonal matrix O'SZ[n]IMxM. Using (3.4.6) andR,,

(3.4.7) can be written as

2
3nl=0? +0% M 14 M0, 2] (3.4.8)
Nl (am+am, +am)
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3.5 Nonlinear convergence analysis

Up to now, we have introduced the analyses of linear coefficients convergence,

which shows that the convergence rate depends on the estimated error of ﬁxd[n].
Similarly, the nonlinear coefficients convergence depends not only on ﬁxd[n] but

also iix3d[n] al’ldﬁxsd[n] as shown in (3.2.10). For each nonlinear coefficient, its

convergence rate depends on all the cross correlation  vectors

(ﬁxd[n],ﬁx3d[n],ﬁx5d[n]) because a moment matrix is performed on the nonlinear

coefficients vector, therefore it has more complex mathematical procedure than the

analysis of linear coefficients.

3.5.1 Variance of nonlinear coefficients'érror

First, we define the covariance matrix of €,[n] ‘s

E[gil[n]] E[ga,l[n]gaﬁ[n]] E[ga,l[n]ga,s[n]]
E[Sa[n]al[n]] = E[Ea,l[n]gas[n]] E[‘g;,s[n]] E[£a,3[n]5a,5[n]]
E[‘Sa,l [n]ga,s[n]] E[‘Sa,s[n]ga,s [n]] E[€§,s[n]]

hTﬁxthﬁxd hTﬁxthﬁx3d hTf{xthf{x‘d
=G,y '|h' Rech"Rw h"Rech'Rys  h'Rygh” Ry G, '
h"Rech" R h'Ruch"Rea  h'Ryeh’ Ryq

Again, for the same reason in Section 3.4, we divide the analysis into two parts by the

law of superposition, one is sample mean estimation (SME) error and the other is the
noise effect (NE).  Therefore, we can rewrite E[g [n]eL[n]] as

Ele.[nle;[N]]= Gy ' [SME+NE|G ' (3.5.1)
In order to keep the main object of this section, the detailed mathematical procedures

about (3.5.1) will be given in Appendix. Thus, the variance of nonlinear coefficients
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error can be found as
tr(E[e,[nles[N]]) =tr(Goy ' [SME+NE|G ')
where tr( ) denotes the trace operator. The same result is found that the nonlinear

coefficients error variance can also achieve zero, the optimum nonlinear coefficients

can be found asn — oo

3.5.2 Residual echo power analysis
Once the nonlinear coefficients convergence is given, its residual echo power can

also be found as

3. =E| |dn]’ |
= E[(Mn] + e} (NIRRTl " P, [n])]

= o, + E[¢] E[P![n]hh" P[n}]e,[n]]

mmm,
=0, +E|e;|m, “mgpmyfe.n]
m m m,

= o, +mE[e; [n]]+ mE[e;,[n]]+m,Ele; 5[N]
+2(m,E[e,,[n]e, ;[n]]+ mE[e, ,[N]e, s[N]]

+mEle, s[N]e,s[N]D) (3.5.2)

The covariance terms of nonlinear coefficients in (3.5.2) can be obtained form (3.5.1).
In addition to the background noise, there is no residual echo power when the

nonlinear coefficients error is equal to zero.
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3.6 TS for dual loudspeakers system

We have introduced the dual loudspeakers system in Section 2.5 as shown in Fig.
2.3. In this section we will use the white TS to train the linear and nonlinear
coefficients of two nonlinear AEC’s. If we use two uncorrelated white noises to train
the coefficients, (3.4.8) can be used here with some modifications. From the nonlinear

AECI (as showed in Fig. 2.3) viewpoint, the desired signal is

din]=a"P; [n]h_ +(v[n]+b P [n]hg). (3.6.1)
Bothv{n] and b"P [n]h, in the right-hand side of (3.6.1) are viewed as noises.

Therefore, the power of noise can be expressed as

2
Oric=0. +0'bTPT[ o,

From (3.4.8), the residual echo power of AECI can be expressed as

n ‘o Yeg2 Ay P40 + Oy om) 3.6.2
Tnse [N = (0, + Oy, s (@m,+am, +am)’ | 62

Similarly, the residual echo power 0f AEC2 is

mz(0'3+0'; T )
JnaecaNl = (0] + 0%y h)+a§[n]M 1+ BRI (3.6.3)
Pt n|  (am+am+am)

The total residual echo power is given by
31 =E| |dn]’ |

2 2
= Jazci [N+ Jhaeca[N] - (0 +O-aTF’xTL[n]fL + O-prT[ ]hR)

. M, (07 + Oy )
=0,+04,— 1+
n (am, +am, +am)’
M (Oy + 0 )
+02, My P [ (3.6.4)

— 1+
ni (am+am,+am)’

When n — o, the residual echo power only contains the background noise. Compared
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with the single loudspeaker case, AEC with dual loudspeakers has slower
convergence rate. The convergence rate for dual loudspeakers is similar to single
loudspeaker with 0 dB SNR, if we use two white sequences of equal powers to train

the coefficients.

3.6 Summary

In this chapter we proposed the coefficients estimation based on a TS. We
showed that the nonlinear AEC with a cascade structure can also use this TS to find
out both linear and nonlinear coefficients. Although the TS algorithm only performs
under a white sequence input and can not use a step size to control its convergence
rate but its non-error-feedback structure makes the coefficients achieve the optimum
solution and more robust to the ;background neise. Compared with a popular and
computational efficient NLMS .algorithms the -training method has similar
computational cost. If we modify ithe_noise, variance, the analysis for a single

loudspeaker system can be readily extended to-dual loudspeakers system.
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Chapter 4
Computer Simulations

In this chapter we will show the simulation results of the nonlinear AEC to verify
previous analyses in Chapter 2 and Chapter 3. In Section 4.1, we will define some
parameters used in following simulations. In Section 4.2 and 4.3, we will compare
simulations results and theoretical analyses. In Section 4.4, an experiment with real

echo path is made.

4.1 Parameters of simulations

The room impulse response shown in'Fig..4.1 is measured in a typical office.

In Fig. 4.1, the length of the room impulse is-1000;.which is 125 msec long, at a § K
Hz sampling rate. For simplicity, we use a-128-tap room impulse response as shown
in Fig.4.2. It is generated by a random number-generator with an exponential damping
factor. Fig. 4.2 is also used as the left'room impulse response for dual loudspeakers
simulation, and the right room impulse response is shown in Fig. 4.3.

The sigmoid function, commonly used in neural network community [6], is
shown in Fig. 4.4. In this thesis a polynomial type nonlinear processor is used. The

sigmoid function is

AX1= (e - D
The nonlinear coefficients are found by using power-series polynomials to fit the
sigmoid curve. Whena = 6 and 3 =1, the nonlinear coefficients a,~as corresponding

to pi[N]~ps[n] are given by

a, =2.5967 a,=-3.3283 a =1.7833 a,=a, =0.

Again, for dual loudspeakers system (right-loudspeaker) we find the other nonlinear

52



coefficients set by using the power series polynomials to fit the other sigmoid curve as
show in Fig. 4.5. Whena =3 and =1 the nonlinear coefficients for the right
nonlinear loudspeaker are

a =1.4775 a,=-0.8928 a,=0.3259 a,=a,=0
We also use the speech signal as the input signal to examine the performance. The
speech signal in Fig 4.6 is sampled with 8 KHz sampling rate.

In simulation, we add a background noise. The signal to noise ration is defined as

NR=10log,, %

v

where P, is the power of the input signal to the microphone output signal and P, is
the power of the background noise. Setting the SNR we can observe the AEC
performance under different environment conditions. The linear coefficients
misalignment is defined as the notmalizedmor of the coefficients error

i

I, Dol

Finally, in the following simulations, unless”otherwise stated, we let the step size

g,[N] &

Uy =01 1,=0.25, &=I1; the length of the room impulse response is set to be 128,
which is identical to the number of taps of the room impulse response; the highest

nonlinear order is equal to 5 (excluding the even order) and SNR = 20 dB.
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Fig. 4.1 Room impulse response of a typieal office
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4.2 Coefficients estimation based on NLMS adaptive algorithm
4.2.1 Individual coefficients and residual echo power convergence

This section corresponds to Section 2.2 and 2.3. We use the simulations to verify
our convergent analyses in (2.2.6), (2.2.9), (2.3.3), and (2.3.5). We let the input signal
be uniformly distributed over £1 and the basis is given in Table 2.3. First, we examine
(2.2.6) and (2.2.9) by assuming that the linear coefficients are perfectly known. The
assumption is reasonable, since linear coefficients can be found first when transmit
the low power signal, nonlinearity of the power amplifier has not been excited yet.
The nonlinear coefficients misalignments and residual echo powers are shown in Fig.
4.7 and 4.8. The simulation results match very well with the theoretical curve.

Next, we verify (2.3.3) and (2.3.5) with perfectly known nonlinear coefficients.
This assumption is reasonable, since the characteristic of loudspeaker can be
considered to be time invariant. The linear coefficients misalignments and its residual
echo power are plotted in Fig.74.9 and 4.10. From Fig. 4.7 to 4.10, we can see that

simulated and theoretical curves dre consistent.
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4.2.2 Convergence rate using orthogonal bases

We compare the residual echo convergence rates of the nonlinear processor using
orthogonal and non-orthogonal basis as given in Section 2.4. Convergence rate
improvement using the orthogonal basis is considered, and simulations are performed
under perfect linear coefficients. The residual echo powers for a uniformly distributed

input to 4 different polynomial bases nonlinear processors are shown in Fig. 4.11.

Residual echo power for uniform input
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Fig. 4.11 Residual echo powers for uniform input (perfect h)
As for a Gaussian and Laplacian input signal, the simulations are shown in Fig.4.12
and Fig. 4.13, respectively.
According to Fig. 4.11, 4.12 and 4.13, the AEC with orthogonal polynomials
indeed converges faster due to its smaller eigenvalue spread. The simulation results

agree well with the eigenvalue spread analyses in Section 2.4.
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At last, we observe the convergence rate when the nonlinear components do not
have perfect orthogonality as discussed in Section 2.4.2. When the input signal is
uniformly distributed, the convergence rates between four types of bases are shown in
Fig. 4.11. In Table 2.6, the eigenvalue spreads are almost the same for uniform and
Gaussian nonlinear polynomial bases; and the Laplacian one has the slowest
convergence rate.

Fig. 4.12 and 4.13 show the convergence rates using four types of polynomial
bases when the input signal is Gaussian and Laplacian, respectively. From Fig. 4.11 to
4.13, we can see that the orthogonal bases have faster convergence rate than
non-orthogonal bases because of its reduced eigenvalue spread. The simulation results
validate the theoretical analyses in Table 2.6. When the orthogonality is not perfectly
matched between the input signal’s'pdf and the noenlinear orthogonal polynomial basis,
uniform and Gaussian orthogonal bases are effective for either uniform, Gaussian, and

Laplacian input signals.

4.2.3 Joint convergence rate using orthogonal bases

The word joint means that the NLMS algorithm updates both linear and
nonlinear coefficients without either assumption of perfect linear or nonlinear
coefficients. T joint convergence rates of residual echo powers are plotted from Fig.
4.14 to Fig. 4.16.

The joint residual echo power for uniformly distributed input signal is shown in
Fig. 4.14. The nonlinear AEC with orthogonal basis has faster convergence rate. For a
Gaussian and Laplacian input signal, the simulation results are shown in Fig. 4.15 and
4.16, respectively.

Comparing Fig. 4.11 and Fig. 4.14, we can see the joint residual echo power has

slower convergence because its linear coefficients are unknown. Although joint
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NLMS update algorithm has a slower convergence rate, the proposed nonlinear
orthogonal AEC improves the convergence among these simulations without

increased computation cost.
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Fig. 4.14 Joint-residual echo power for uniform input
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4.2.4 Convergence rate of a speech input
In this section we compare the performance between orthogonal bases and power
series polynomials when the input signal is a real speech. The performance is

measured by echo return loss enhancement (ERLE), defined as

ERLE(dB) = 10 logm%

The comparisons of ERLE are shown in Fig. 4.17 when linear coefficients are error
free. In Fig. 4.17, the Laplacian type orthogonal basis is used and it has better
performance than power series even the input is a real speech signal.

In the case of joint adaptation, the average joint-ERLE using different orthogonal
bases are given in Table 4.1. We can see that the Laplacian type orthogonal basis has
slightly better performance than the others. This is well known fact a speech signal

has a Laplacian probability distribution as'shown in'Fig. 4.18.
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Fig. 4.17 ERLE for a true speech input signal with perfect linear coeff.
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Table 4.1 Average joint-ERLE(dB) comparison for a speech input signal

AEC type Linear Nonlinear
Non orthogonal Orthogonal
Nonlinear basis
Power series | Uniform WGN Laplacian
Average ERLE 10.2 10.5 10.7 10.6 10.9

Distribution of input speech
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Fig. 4.18 Histogram of input speech

4.2.5 Convergence rate of dual loudspeakers system

In this section we examine the theoretical analyses in Section 2.5 and compare its
convergence rate with that of one loudspeaker system. Two echo paths corresponding
to loudspeaker 1 and 2 are plotted in Fig. 4.2 and 4.3 respectively. The I/O nonlinear
characteristics of two loudspeakers are given in Fig 4.4 and 4.5. The parameters of

adaptive filter are the same as earlier.
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First, we examine (2.5.4) in Section 2.5 with uniform input and perfect linear
coefficients. The uniform type orthogonal basis is used for nonlinear processor. The
simulation results of nonlinear coefficients and its residual echo power convergence
rates are shown in Fig. 4.19 and 4.20. According to the simulations, we confirm that
the convergence analysis in one loudspeaker can be easily extended to dual
loudspeakers case.

Compared with Fig. 4.7 and 4.8, the system with dual loudspeakers has slower
convergence rate and worse steady state. From the nonlinear AEC1 viewpoint, the
microphone signal picked up from the 2™ echo path can be viewed as a background
noise source. Therefore, each nonlinear AEC in dual loudspeakers system has more
noise sources than single loudspeaker system; consequently, the convergence rate
becomes slower.

Next, we examine the joint residual echo for-orthogonal and non-orthogonal
bases. As show in Fig. 4.21, the nonlinear processor with uniform orthogonal basis
has faster convergence rate. According.to Section 4.2, the proposed orthogonal basis

can be used in either single or dual loudspeaker to enhance the convergence rate.
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Fig. 4.21 Joint residual echo power.for dual loudspeakers
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4.3 TS-based coefficients estimation

In this section the coefficients are estimated by using training sequences. In
Section 4.3.1, we examine the theoretical analyses. In Section 4.3.2, we show the
simulation results in case of joint estimation. In Section 4.3.3, we compare the
training method with NLMS adaptive filter. In Section 4.3.4, we use two TS’s to
train the coefficients for dual loudspeakers. In the following simulation the power

series basis is used in the nonlinear processor. The orthogonal basis has similar result.

4.3.1 Convergences of linear TS coefficients and residual TS echo power

In this section we use the white uniformly distributed sequence to train the linear
coefficients. With 5 dB SNR and the assumption of perfectly known nonlinear
coefficients, the linear coefficients «convergenece is shown in Fig. 4.22 where the

theoretical curve is plotted from(3.4.6).

Linear coefficients misalignment
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Fig. 4.22 Comparison of linear TS coeff. misal. (SNR=5 dB, perfect nonlinear coeff.)
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In Fig. 4.22, we do not show the steady states which can be achieved only
whenn — oo . The convergence curve is inversely proportional of the iteration number.
The residual echo power is only a scaled version of Fig. 4.22 as plotted in Fig. 4.23,
we only show that residual echo term in error signal e[n] therefore the performance is
not bounded by the background noise. Both curves show that our theoretical analyses
are valid.

Residual echo power
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Fig. 4.23 Comparison of residual linear TS echo power (SNR=5 dB)

Next, we show the simulation result of nonlinear coefficients and its residual echo
power in Fig. 4.24 and Fig. 4.25, respectively. In Fig. 4.25, we have faster
convergence rate than Fig. 4.23 due to the assumption of perfect linear coefficients.
Both show that our analyses are correct and optimum solution can be achieved

whenn — oo.
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Fig. 4.24 Comparison of nonlinear, TS coeff. misal. (SNR=5 dB, perfect linear coeff.)
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Fig. 4.25 Comparison of residual nonlinear TS echo power (SNR=5 dB)
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4.3.2 Joint TS convergence rate

Now the assumption of perfectly known nonlinear coefficients is discarded. The
joint linear coefficient and residual echo power convergences are given in Fig. 4.26
and 4.27. By comparing Fig. 4.26 and Fig. 4.22; the simulation results are almost
identical. In Fig. 4.27, the joint residual echo power is slightly inferior to the case of
perfect nonlinear coefficients. According to both simulations, the nonlinear

coefficients estimation error has less effect on linear coefficients and residual echo

power.
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Fig. 4.26 Joint linear coefficients misalignment for training method (SNR=5 dB)

73



Residual echo power
5 H T T T T T

Perfect nonlinear (theoretical)
""""" Joint (simulation)

1 1
0.5 1 1.5 2 2.5 3 3.5 4

Number of iterations X 104

Fig. 4.27 Joint residual echo power for training method (SNR=5 dB)

4.3.3 Joint residual echo comparison of TS and NLMS algorithms

In this section we compare the training method with NLMS-adaptive filter. The
joint residual echo is shown in Fig. 4.28 when SNR is equal to 10 dB. The
convergence rate of the NLMS adaptive filter is dependent on the step size, thus we

use two sets of step size, 1, = 0.05, p,, =0.05, and p, =0.25, 1, =0.1.
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Fig. 4.28 Joint residual echo power comparisoni.of NLMS and TS (SNR=10 dB)

The training method has better steady state performance than the NLMS method
since its convergence rate is in inversely-proportional to the iteration number as
indicated in (3.4.8). As for NLMS, its'performance is bounded by the background
noise. Although the adaptive filter has faster convergence rate at the beginning of
iteration, but its steady state performance is poorer as a tradeoft.

Next in Fig. 4.29 and 4.30, comparisons are made when SNR is equal to 5 dB
and 0 dB, respectively. TS convergence rate is relatively insensitive to SNR variations,
except for a bias due to the noise. This is the main advantage of the training method.

Again, the training is preferable than NLMS adaptive filter at low SNRs.
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Fig. 4.29 Joint residual echo power comparison of NLMS and TS (SNR=5 dB)
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Fig. 4.30 Joint residual echo power comparison of NLMS and TS (SNR=0 dB)
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4.3.4 Training Sequences for dual loudspeakers system

We will examine the analyses in Section 3.6 and compare the joint residual echo
powers of TS and NLMS algorithms. First, in Fig. 4.31, the simulated residual echo
power is plotted and compared with the theoretical curve from (3.6.4). It shows that
the modification of one loudspeaker theoretical curve is correct, which can be

extended to dual loudspeakers case.

Residual echo power (SNR=5dB)

Theoretical
Simulation

Number of iterations X 104

Fig. 4.31 Comparison of residual echo powers for dual loudspeakers and training

method (SNR=5 dB)

Next, the joint residual echo power comparison for TS and NLMS are shown in
Fig. 4.32. Compared with one loudspeaker case, the performance is worse at same

SNR condition since two echoes signals can affect each other as noise sources.
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Joint residual echo power (SNR=5dB)
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Fig. 4.32 Comparison of joint residual echo powers for dual loudspeakers for TS and

NLMS (SNR=5 dB)

4.4 Experiments with a real echo path

So far, for simplicity, we only consider that the nonlinear AEC with an artificial
room impulse response and nonlinear loudspeaker. For practice use, we pass the
signal through a real nonlinear loudspeaker, a room impulse response, and then pick
up the signal from a microphone. The equipment includes a personal computer with a
low-cost 2.5 inch diameter desktop loudspeaker and a Creative-MC1000 microphone.
We put the loudspeaker above the microphone about 4 inches, to emulate the set-up of
a cell phone. Both the loudspeaker and microphone are positioned toward the wall 3.3
feet away. We show the performances of different AEC structures, which are linear

AEC, power series type nonlinear AEC, Laplacian type nonlinear AEC, and the
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sigmoid type nonlinear AEC. The far-end speech input signal and the microphone

output signal are shown in Fig. 4.33.
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Fig. 4.33 The speech input and its microphone output signal
The speech signal is sampled with 8 KHz sampling rate and 16 bits/samples.
Here, we choose 3 different lengths of linear filter, which are1024, 512 and 256, and

the nonlinear filter order is equal to 5, with the even order excluded. The step sizes

p,, and p, of linear and nonlinear filter are equal to 0.5. The sigmoid function is given
by

AX1 = (e - D
We use the NLMS algorithm to update « and 5 in the sigmoid function which has
been introduced in [6, Ch 17]. The step sizes are 0.5 which are chosen to keep the

system stable.

As seen from the input signal, the nonlinear distortion arises between 25K and
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30K samples. Thus, the nonlinear AEC has better performance than the linear AEC
during this period. We show the ERLE between linear and nonlinear AECs in Fig.4.34
when linear filter order is equal to 1024 and the Laplacian type basis is used in the
nonlinear AEC. The nonlinear AEC has about 3 to 5 dB ERLE gain over the linear
AEC. The ERLE using different linear filter lengths are shown in Table 4.2 and the

nonlinear coefficients for each AEC are listed in Table 4.3.

ERLE
25 | |
Nonlinear AEC
.......... Linear AEC
20+ i
15+ . il
! L

5+ §
Or H |

_5 | | | | | | |
0 0.5 1 1.5 2 25 3 3.5 4
Number of iterations X 104

Fig. 4.34 ERLE comparison between linear and nonlinear AEC for a true echo path
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Table 4.2 Average ERLE comparison between different linear filter lengths for true

echo path

14

Average ERLE
(dB)

= R

—_
\S)

256 512 1024
O Linear 8.1 8.4 7.9
&2 Nonlinear Sigmoid 8.8 9.5 9.5
B Nonlinear Power series 9.8 112 11.5
B Nonlinear Laplacian 10.7 12.1 12.4

Table 4.3 Nonlinear coefficients for each AEC'with different linear orders

AEC Linear Nonlinear Nonlinear Nonlinear
M (Sigmoid) (Power series) (Laplacian type)
[al] [o 8] [al a3 a5] [al a3 a5]
1024 [0.9] [2.53 -1.57] [1.23-1.33-0.5] | [1.3-2.190.52]
512 [0.96] [2.53-1.52] | [1.24-1.57-0.59] | [1.3-2.250.54]
256 [0.9] [2.57 -1.54] | [1.06-1.76 -0.63] | [1.14 -2.21 0.55]

In Fig. 4.35 we examine the performance of different nonlinear orders for a

h . . . .
1024" order linear FIR and power series basis nonlinear processor.
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Fig. 4.35 Average ERLE comparison of different nonlinear orders

Next, we compare the performances of TS:and NLMS algorithms for a real echo
path. In this experiment, 5™ power series basis is.used and the number of FIR is equal
to 256. We show the average ERLE in Table 4.3. The steady state of training method
is about 7dB, which is different from the theoretical analysis. One possible
explanation is as follows. The optimum coefficients can be achieved for training
method only for a perfect white signal. In this simulation, the loudspeaker may not be

memoryless thus the optimum coefficients can not be achieved.

Table 4.4 Average ERLE comparison of NLMS and TS methods for a true echo path

NLMS adaptive filter Training method

Average ERLE 14.9dB 7.7dB

Finally, we check the performance in a noisy environment such as the car cabin. Now
we add a background interference speech (i.e., double talk) to the microphone output
signal. The performances at different SNRs (signal to interference ration) are shown

in Fig. 4.36. The NLMS algorithm heavily depends on the SNR conditions; its
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adaptive filter will diverge when SNR is below 3 dB. By contrast, the training method

1s more robust to noise and/or double talk.
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Fig. 4.36 Average ERLE comparison at different SNRs
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Chapter 5
Conclusions

In this thesis we have proposed the orthogonal basis polynomials for nonlinear
AEC. For either uniform, Gaussian and Laplacian inputs, the simulation results agree
well with theoretical curves. Convergence rate analysis indicates that a smaller
eigenvalue spread is closely related to the correlation between polynomials bases. The
proposed orthogonal basis does not incur more computation cost and has better
performance (smaller eigenvalue spread) than conventional power-series basis, even
in case of imperfect orthogonality. The proposed basis can also improve the
convergence rate for dual loudspeakers system.

We also proposed and analyzed the coefficients estimation based on a training
sequence. It can achieve the-optimum-solution thus it has better steady state
performance than the NLMS adaptation algorithm under the same computational
complexity. Although the TS algorithm can not use the step size to control its
convergence rate, but its non-error feedback structure has more resistance against
noise, especially at low SNR. Finally, the training method can also be used in dual
loudspeakers case.

From the experiment of a real speech into a real echo path, we know that the
proposed nonlinear processor structure has better performance than a linear AEC. In
case of a large noise or double talk, the NLMS adaptive filter diverges; the training
method has its advantage in such noisy environment.

The future work includes study on a computation-effective AEC structure for
dual loudspeakers, one AEC to cancel two echo path echoes signals and its

convergence rate.
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Appendix

In this appendix, we will give the detailed the mathematical derivation in (3.5.1)

The covariance matrix of €,[n] can be written as
T
Ele.[Nn]e,[n]]

Elel,[n]]  Ele, [Nleaslnl]  Ele,, [nle,s[nl]
=|E[e,,[Nes[Nl]  E[e25[n]]  Ele,s[nle,sn]]
E[ga,l[n]ga,s[n]] E[£a,3[n]5a,5[n]] E[gis[n]]

hT iixd
th/ix3d th/ixd th/ix3d th/ixsd GoddiT

—_

=Gy
hTiixsd

hTﬁxthﬁxd th/ixthl/ix*d th/ixthf{x*d

—G,, '|h"Rxch"Rw  H Rsgah"Ryg~h"Rah" Ry |Gy, " (A.1)
hTﬁXSthﬁxd th/iXSthl/ix‘d hTﬁXSthﬁxsd

=G,y [SME+NE|G ' (A.2)

where
Ru = thTx[i]d[i],
n+=
dlil=ah'x[i]+ah"x’[i]+ah"x’[i]+ Vi].
First, by the law of superposition we let the noise termV{i]= 0, noise effect NE in
(A.2), is equal to a zero matrix. First, the sample mean estimation error term, SME .

h"Rwh"Raw in SME is given by

[zn:alth[i]xT[i]h +ah"x[i[x* [ilh +ah"x[i]x"[i]h ]

i=1

hT ﬁxth l/ixd - Lz E
n

~ #afElZ(th[i]xT [ ]h)2]+%a§ElZ(th[i]xf [i]h)zl
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+#a§ElZn:(th[i]x5T [iTh)’

+—E Zn:(th[i]xT[i]h)(th[i]x3T[i]h)]

i=1

+—E zn:(th[i]xT[i]h)(th[i]xsT[i]h)}

_|_

3N| () 3N| () 3N| ()

EZ@Mﬂfmwmeﬁm} (A3)

where the first term in (A.3) is

#dEmemmmz
= %‘Elz (hTX[i])“%‘ E ZZZ(hTX[i])Z(hTXH])z‘ ] (A.4)
- =
where E zn:(th[i])4 in (A.4) is

E[(hox[i]Jrh, Xi — 1]+ .. £ Ry Xi = M +1])4}

M—1 M—-1M-1
=l S
i=0 i=0 j=0
j=i
M—1
~nm,» K (A.5)
i=0
where E 22:2:(th[i])2(th[j])2 in (A.4) is approximately as
=2
M—-1M-1
nm, h'hy (A.6)
=0 =0
] =1
Therefore (A.4) is found as sum of (A.5) and (A.6),
NaIZm M—-IM-1 -
~ 2N Y oheh (A7)

Similarly, the other terms in (A.3) is
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1 2 : Toli1e3 1 2 2”‘8M71M71 2142
FaSE > (XX [iTh)? |~ a - hh; (A.8)
i=1 i=0 j=0
1 2 : Toli1od T 2 2"7"12'\”7“\/'7l 2142
FaSE > (XX [iTh)? |~ a3 e hh (A.9)
i=1 i=0 j=0
2 n R o T rnéMflel -
FE > (X[ X [iTh)(h"x[i]x" [iTh) :2a1a3n— hh (A.10)
i=1 i=0 j=0
I L o m, ¥V
FE > (X[ X [iTh)(h"x[i]x" [iTh) :2a1a5n— hh’ (A.11)
i=1 i=0 j=0
2 T T m M—-1M-1 5
FE Z(h XX [iTh)(h X[ 1% [iTh) |~ 2a,a, °ZZH h; (A.12)
i=0 j=0
According to the equations from (A.4) to (A.12),
th/ixthl/ixd
1 = 2112 2 . 2
=) )t (a'm, + @mptaim, H2@am +aam +aam,)) (A.13)

Il
o

i j=0

Similarly, the other term in (A.1) can be found by the same procedures are

PN 1
h'Roeoh” Rea =3 55 Wh (am +amy, +am, +2(a am, +aam, +aam,))

o 1
h'Rocch” Rica =3 25 IYh] (am, +am +aimy, +2(8 am, +a am, +aam,))

h" Reh” Rys = hh; (am, +aimy, +aim, +2(aam +aam,+aam,))

h" Ruh” Rya = hhi (a'm, +aim, +aim, +2(a, a,m, +aam, +aam,))

1M—

~ ~ 1 M-
h" Ryoh” Ra = n—ZZ h(a'm, +aim, +aim, +2(aam, +aam, +aam,))
i=0 j=0

Thus, SME in (A.2) is given as
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[ aPm,+alm+aZm, aimy+agmy,+asmy, aimy+agm, +asmy
+2(3 &M+ asmy+a;asmy) H +2(a &My +3 asmy+aasm;) H +2(a &M +a asm,+a;asmy) H
n n n
almy+a;m,+asm, almy+agm, +asmg a/m+am,+aimy
+2(q M+ asmy+asasm,) H +2(a amy+a asmy+a;asmy) H +2(a asmy +a asmy+aasMg) H
n n n
aimy+agm, +asmy aimy+agmy,+asmy aymy, +a5myg+a5my,
+2(a 3M+3 am,+a;amy) H +2(a &M, +3 aMmy,+a;amy) H +2(a &My, +3 aMe+a;amg) H
n n n
(A.14)
M—-1M-1
where H = h'hy .
i=0 j=0

Next we discuss the effect of the noise term, NE . In this case the desired signal d[i]

only contains the background noise V[i], thus, h' R.ch" Ry in (A.1) can be found by

[%Zth[i]v[i]][%Zth[j]d[j]]

h' l/ixth l/ixd = Lz E
n

_lg (th[l]v[l] +hTx[2]V[2] 4t th[n]v[n])z}

I,]2

Similarly, the other terms in (A.1) are
~ ~ 1 M—1
hTRycsh Rig = —mo) Y1y
i=0
~ - 1 M—1
R
i=0
~ Y 1 M—1
h'Rxch'Rxa =—m,o) > K
n i=0
~ Y 1 M—1
h"Ryxch'Ryg = Hméafz h’
i=0
1

~ ~ 1 M-
hTRycsh R =m0} Yo hy
i=0

therefore, in case of d[i] =Vi], the noise term NE is
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M—1 M-—1 M—1
2 2 2 2 2 2
nbgnoiseZh m40noiseZh n'l’»UnoiseZh
i=0 i=0 i=0
n n n
M-1 M-1 M-1
2 2 2 2 2 2
nho'noiseZh m(s”noiseZh m&”noisez h
— i=0 i=0 i=0
NE = n n n
M-1 M-1 M-1
2 2 2 2 2 2
n%”noisezr\ mBUnoiseZh mloonoiseZh
i=0 i=0 i=0
n n n

(A.15)

(A.15) is simpler than (A.14), therefore, when SME =0 (A.2) can be written as

Ele,[nJel[N]] = Gy ' [NE|Gogq '

thus, the coefficients error due to background noise is

O-ﬁoise ”h”z tr (Godd;r )

tr(Efe,[nle;[n]]) =
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