
 

 i

 
非線性回音消除之收斂性分析 
 

 

學生：江冠諭           指導教授：謝世福 

 

國立交通大學電信工程學系碩士班 

 

摘要 

 

為了補償非線性失真在免持聽筒或是視訊會議系統，回音的消除，通常使用

一個無記憶性的多項式結合 NLMS 演算法的適應性濾波器。在傳統上，多項式

採用次方級數展開的形式；而在本篇論文中，為了提昇非線性適應性濾波器的收

斂速度我們使用正交多項式的非線性適應性濾波器。不論是級數型多項式或是正

交多項式，我們都分析出它們的收斂理論值，並且從電腦模擬結果得知和我們的

理論值是符合的，而模擬的結果也說明了我們提出的方式的確有較好的收斂性。 

除了使用適應性的方式之外，在實際的語音傳送之前，我們使用了訓練序列

信號的方式來評估非線性濾波器的係數。我們分析它們的收斂理論值，並且由電

腦模擬得到驗證，而且在訊雜比不佳的情況下，它的收斂值會比適應性濾波器來

得佳。 
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Abstract 
In order to compensate the nonlinear distortion in the hands -free telephones or 

teleconferencing system, a memoryless polynomials NLMS adaptive filter can be 

used to cancel nonlinear acoustic echo. Conventional polynomials model employs a 

power-series expansion. In this thesis we propose an orthogonal polynomials adaptive 

filter and perform theoretical convergence analysis of residual echo power which 

proves its faster convergence rate owing to the reduced eigen spread of the input 

signal. Computer simulations justify our analysis and show the improved performance 

of the proposed nonlinear acoustic echo canceller.  

In addition to the adaptive method, the training sequence (TS) can be used to 

estimate the coefficients of the nonlinear acoustic echo cancellation. The convergence 

rate of the training method is derived analytically. Computer simulations show that 

the TS method performs better than the NLMS method at low SNR. 
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Chapter 1 
Introduction  
 

Hands-free telephone or teleconferencing usually suffers from the annoying 

acoustic echo problem [1], which is the far end speech transmitted back to the far end 

user as a result of the coupling of the loudspeaker and microphone at the near end. A 

simplified diagram of hands-free telephone system is shown in Fig. 1.1. The main 

object of acoustic echo cancellation (AEC) is to estimate the unknown echo path and 

subtract the estimated echo components from the microphone output. Since the echo 

path may be time-variant due to objects moving around the room, an adaptive filter is 

commonly used for tracking the echo path to provide satisfactory speech 

communication quality [1]-[6]. 

Microphone

Loudspeaker

echo

Near-end room

Microphone

Loudspeaker

Far-end room

Near-end 
signal

Far-end 
signal

AEC

 

Fig. 1.1 The simplified diagram of hands-free telephone system 

 

The performance of AEC relies on its tracking capability. There are many 

recursive algorithms that have been proposed [6]. The least-mean-square (LMS) 
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algorithm is famous for its low computational cost and the recursive least-squares 

(RLS) algorithm has its advantage of fast convergence rate. Beside the tracking 

capability, the performance of AEC is restricted by noise, finite precision, truncation 

effects, under-model of the echo path and loudspeaker nonlinearities [7].  

In this thesis, the issue of nonlinearities is our main focus. In [8], the 

nonlinearities of loudspeaker can be classified as nonlinearities with and without 

memory. Dynamic loudspeakers cause nonlinearity with memory when the power 

amplifier is not driven into saturation. The other is nonlinearity without memory when 

the power amplifier is overdriven. To compensate these kinds of nonlinearities 

distortions, several nonlinear AECs have been proposed recently [9]-[20]. The 

nonlinear AEC system is shown in Fig.1.2. The signal from the far end is passing 

through the nonlinear loudspeaker and the room impulse response and then is picked 

up by the microphone. The nonlinear AEC is supposed to cancel the echo signal. The 

echo can be cancelled perfectly if the nonlinear AEC filter is identical to the nonlinear 

loudspeaker and room impulse response. Different nonlinear structure has its own 

computation complexity, convergence speed and robustness. 

Nonlinear 
AEC

MicrophoneResidual echo

Far end signal

Near end signal

Echo

Room

Nonlinear
Loudspeaker

 

Fig.1.2 Nonlinear acoustic echo canceller 
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We summary some important nonlinear adaptive structures.  

 Volterra model, which is attractive because it is a straightforward 

generalization of the linear system description and the behavior of many 

physical systems can be described with a Volterra filter. The Volterra series 

based filters have been proposed [10]-[12] etc. for line echo canceling. It 

can represent a large of class of nonlinear system. However, due to their 

high computational complexity they are limited use in practical systems.  

 Bilinear model, which is a parametric model that contains cross terms; it 

corresponds to a subclass of the NARMAX structure [13]. The NARMAX 

structure is a general parametric model but needs a pre-identification 

procedure.  

 Cascade model, which can be considered as a particular subclass of a 

Volterra series filter and its main advantage is to introduce fewer parameters 

for estimation. The neural network [14] with a cascade structure offers a 

new perspective but needs an extra reference microphone. Others cascade 

models include: 

 Hammerstein model [15], cascade of a memoryless polynomials filter 

and a FIR filter.  

 Wiener model [4], cascade of a FIR filter and a memoryless 

polynomials filter. 

 Wiener-Hammerstein model [26], cascade of a FIR filter, a 

memoryless polynomials filter and a FIR filter. 

Among these nonlinear structures, the Hammerstein model will be used in this 

thesis for following reasons. First, the nonlinearity with memory only occurs in 

application of high quality loudspeakers [8]; so that for hands-free or power limited 

low cost application, the compensation for nonlinearity with memory is not necessary. 
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Second, considering that the far end signal passes through the loudspeaker first and 

then the room impulse response, the cascade model of a nonlinear processor and a 

FIR filter is a natural choice. Third, the Hammerstein model is widely used in 

nonlinear system identification such as nonlinear AEC, neural networks [15-17] etc. 

Its joint NLMS-type adaptation algorithm is well known [18]. 

 Besides the polynomial function, a sigmoid function [6, 9] can also be used to 

model the nonlinear saturation. Similarly, a raised cosine function can also be used for 

nonlinear compensation [19]. The objective in [19] is to achieve a low computational 

complexity in implementing a nonlinear AEC. Both these two nonlinear models can 

use the NLMS adaptive algorithm to update its coefficients, except that its nonlinear 

component is generated by an exponential function. It only uses one parameter to 

control the nonlinearity therefore it has less freedom. By contrast, the polynomial type 

has more freedom in that each nonlinear order can be controlled with one coefficient. 

The power series polynomials are simple to implement but its high correlation 

among different polynomials orders leads to low convergence rate. To overcome this 

problem, recently some orthogonal structures have been developed. In [10], Mathews 

suggested to perform an orthogonalization procedure on the nonlinear bases outputs 

when the input signal is Gaussian distributed. Jenkins et al. in [25] proposed an 

orthogonal basis to represent the Volterra series thus orthogonalization procedure is 

not required but the input signal is also assumed to be have a Gaussian distribution 

and unity variance. Similarly, in [26] the Wiener-Hammerstein model is used and its 

nonlinearities is assumed to be expandable in a series of fixed orthogonal Hermite 

polynomials. The Hermite polynomials are a set of orthogonal polynomials on the 

infinite interval with respect to the 
2xe weight function therefore the works in [25, 26] 

are limited to the unit-variance Gaussian input signal only. In [20] Kuech et al. 

proposed an adaptive orthogonalized power filter to improve the convergence rate for 
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the input signal with any distribution, stationary or time-variant. The orthogonal basis 

is updated online at each iteration and the Gram Schmidt procedure is employed to 

find out the orthogonalization coefficients, as a result, computational complexity is 

increased. In this thesis we use fixed orthogonal polynomials to produce the nonlinear 

components. Its low computational complexity and fast convergence rate makes the 

orthogonal polynomials filter very promising for nonlinear AEC. For practical 

applications, the influence of the probability distribution of the input signal is 

insignificant because the performance of the fixed orthogonal polynomials remains 

relatively well. Unlike the previous researches, we perform the convergence analysis 

of the nonlinear AEC, from which we examine the effects of orthogonality due to 

various input probability distributions and conclude the superiority of the orthogonal 

polynomials. 

In addition to the orthogonal polynomial basis, sending a white sequence to train 

the coefficients of nonlinear AEC in advance of speech communication can also be 

used for speeding up the convergence rate. The training sequence, used in channel 

estimation, adaptive equalizer applications or echo path estimation, have been well 

studied in [21]-[24]. During the training mode, we can fast start up the adaptive filter, 

especially in noisy environments. The training sequence is generated by a training 

sequence generator. The estimation is done with the correlation method, where a 

portion of the training sequence is correlated with shifted versions of the received 

signal. Based on the difference between this known sequence and the received 

sequence, the coefficients of the unknown can be determined. Although the training 

method is to solve the Wiener-Hopf solution directly and often involves a matrix 

inverse, the solution is simple because the matrix is only a function of the known 

training sequence, and a pre-computed inverse of the matrix can be stored. For some 

special training sequences, an inverse matrix is not even required. 
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 The other chapters of the thesis are organized as follows. 

 Chapter 2, we perform convergence analyses of coefficients and residual 

echo power and we compare the convergence rates of orthogonal and 

non-orthogonal basis. Eigenvalue spread analysis is introduced for better 

illustration. 

 Chapter 3, we perform the linear coefficients convergence analysis based on 

the training sequence method. The recursive analytical form will also be 

introduced. We also show the analysis of dual loudspeakers system. 

 Chapter 4, we include many computer simulations that have been developed 

to illustrate the analyses in chapter 2 and 3. These simulations help us to 

compare the performances of different nonlinear AEC structure. Finally, for 

practical use, a true echo path experiment is performed. 

 Chapter 5, we give a conclusion of our work. 

 

The main efforts in this thesis are: 

(1) For NLMS nonlinear algorithm, we derive individual convergence analyses of 

the linear and nonlinear coefficients and its residual echo power. 

(2) An orthogonal basis for Gaussian and nonGaussian input signal is used to 

accelerate the nonlinear coefficients convergence rate. 

(3) A training sequence algorithm is proposed for a nonlinear Hammerstein model. 

(4) Convergence analyses of linear coefficients based on training sequence algorithm 

is derived. 
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Chapter 2 
Nonlinear Adaptive filter 
  

In Chapter 2 we will introduce the nonlinear AEC with cascade nonlinear 

processor and describe the joint NLMS-type adaptation algorithm to adaptive the both 

linear and nonlinear coefficients. In Section 2.2 we will analyses the nonlinear 

coefficients and residual echo power convergence rates under the assumption of linear 

coefficients have perfectly known. In Section 2.3 we will analyses the linear 

coefficients and its residual echo power when nonlinear coefficients have perfectly 

known. In Section 2.4, we discuss the eigenvalue spread of signal dependent 

orthogonal bases. Finally, in Section 2.5, we extend the analysis for dual loudspeakers 

system. 

 
2.1 Adaptive nonlinear NLMS AEC 

FIR

y[ ]n

Nonlinear 
Loudspeaker

s[ ]n

[ ]d n
[ ]e n

Echo

Room
[ ]nh

NLMS
algorithm

Near end signal [ ]v n

Far end signal [ ]x n

1( )⋅ 2( )⋅ ...... ( )N⋅

1[ ]a n 2[ ]a n [ ]Na n

MicrophoneResidual echo

[ ]nh

1[ ]p n 2[ ]p n [ ]Np n

 
Fig.2.1 Polynomial nonlinear acoustic echo canceller 
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As shown in Fig 2.1, the signal x[n] from the far end is assumed to be nonlinearly 

distorted only in the power amplifier of loudspeaker. It is then passing through a room 

impulse response h[n]. Hence, the nonlinear processor is modeled as the loudspeaker 

and linear filter is modeled as a room impulse. The cascade filter structure is the same 

as the loudspeaker and the room impulse response. Let [ ]d n  denote the desired 

signal. The nonlinear AEC output signal [ ]y n  can be written as 

[ ] [ ] [ ]h s
T

y n n n=                                              

0 1 -1[ ] [ [ ],  [ ],..., [ ]]h T
Mn h n h n h n=  

where [ ]h n  represents the estimated coefficients vector of the linear FIR filter, M 

denotes the length of the FIR filter. [ ]s n  is the output vector of the nonlinear filter   

            [ ] [ [ ],  [ -1],..., [ - 1]]s Tn s n s n s n M= + . 

For each [ ]s n  is given by  

2
1 2[ ] [ [ ] [ ] [ ]][ [ ] [ ] [ ]]

      [ ] [ ]

s

x a

N T
N

T

n x n x n x n a n a n a n

n n

=

=
 

therefore, [ ]s n  is given by 

[ ] [ [ ] [ ],  [ -1] [ -1],...,  [ - 1] [ - 1] ]s x a x a x aT T T Tn n n n n n M n M= + + . 

ip  is the polynomial basis of order i , for example 2
1 2[ ] [ ] and [ ] [ ]p n x n p n x n= =  in 

case of a power series expansion basis. N is the order of the polynomials, and [ ]a n  is 

the estimated coefficients vector of the nonlinear processor. The estimated error is 

[ ] [ ] - [ ]

      [ ] - [ ] [ ]h s
T

e n d n y n

d n n n

=

=
 

The gradient of the error power 2[ ]e n , as derived for linear transversal filter in [18] 
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can be calculated according to: 

2[ ] -2 [ ] [ ]
[ ]

s
hh
e n e n n

n
∂∇ = =
∂

                              

2[ ] -2 [ ] [ ] [ ]
[ ]

P h
a

T
a

e n e n n n
n

∂∇ = =
∂

                        

where [ ]P n  is nonlinear expanded matrix is defined by 

1 2

1 2

1 2

[ ]        [ ]          [ ]   
[ -1]     [ -1]      [ -1]

                                        
[ - 1] [ - 1]  [ - 1]

N

N

N

p n p n p n
p n p n p n

p n M p n M p n M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

+ + +⎣ ⎦

 

The definition of error signal is different from [18], here, we only calculate the scalar 

[ ]s n  of the vector [ ]s n  at each iteration. If the coefficients vectors are updated with 

step size hμ  and aμ , a joint NLMS-type adaptive algorithm is given by 

2

2

[ 1] [ ] [ ] [ ]
[ ]

h h s
s

hn n n e n
n

μ+ = +                              (2.1.1) 

2
T

2

[ 1] [ ] [ ] [ ] [ ]
[ ] [ ]

a a P h
P h

Tan n n n e n
n n

μ

δ
+ = +

+
                 (2.1.2) 

At each iteration, the echo signal [ ]e n  is the same for coefficients update in both 

(2.1.1) and (2.1.2). 

For computational complexity, we examine the number of multiplications 

required to make one complete iteration of the algorithm (2.1.1) and (2.1.2). [ ]s n  in 

(2.1.1) and its 2-norm need N and M multiplications respectively thus the total 

requirement of (2.1.1) is about 2M + N. For (2.1.2), [ ] [ ]P hT n n  and its 2-norm need 

MN and N multiplications respectively thus the total requirement of (2.1.2) is about 

MN+2N. It needs MN+2M+3N multiplications to find out the coefficients at each 

iteration. In addition to the adaptation algorithm, the nonlinear components need N-1 
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multiplications for power-series basis, x2[n] =x[n]x[n], x3[n] =x2[n]x[n], …, xN[n] 

=xN-1[n]x[n]. When an orthogonal basis is used it needs more multiplications to 

produce the nonlinear components. According to Gram-Schmidt orthogonalization 

procedure it needs 21
2 ( + -2)N N . In Table 2.1, we show the total requirement of 

multiplication at each iteration when Gram-Schmidt is used or not. The computational 

complexity only increases slightly when an orthogonal basis is used. 

  

Table 2.1 Comparison of computational cost, no. multiplication per iteration 

 Number of multiplication 

Without Gram-Schmidt procedure MN+2M+4N-1 

With Gram-Schmidt procedure MN+2M+3.5N-1+0.5 N2 

 

In the following sections, we assume that the nonlinear loudspeaker and room 

impulse response are time invariant. The near end signal [ ]v n  only contains a white 

Gaussian noise (WGN) and double talk is not present. 
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2.2 Convergence analysis of nonlinear NLMS algorithm 
 
2.2.1 Variance of nonlinear coefficients error 

In this section we will derive the convergence rate of nonlinear coefficients 

under the assumption of perfect linear coefficients i.e., [ ]h n = h . The following 

analysis is similarly to [6]. First, the estimation error produced by the nonlinear AEC 

filter is expressed as         

[ ] [ ] - [ ] [ ] [ ]
T Te n d n n n na P h=  

a h[ ] [ ] -[ [ ]] [ ][ [ ]]T T T Tn v n n n na P h a ε P h ε= + + + .          (2.2.1) 

Because the cascade structure we have more estimated error terms than [6], the joint 

error term produced by linear and nonlinear is difficult to perform its convergence 

analysis. For this reason, we assume that the linear coefficients are perfectly 

known, h[ ]ε n  is equal to zeros. We express the estimated error as follows. 

[ ] [ ] [ ] [ ]ε P hT T
ae n v n n n= + .                               (2.2.2) 

In (2.2.2) [ ]P hT n  contains not only linear but also nonlinear order of input signal, 

this is different from [6] but the analyses procedures in [6] can still be used for here. 

We denote the nonlinear coefficients weight error by 

a[ 1] - [ 1]ε a an n+ = +      

Using (2.1.2), (2.2.2) and let T denote
2

2
[ ]P hT n δ+ , we may rewrite a[ 1]ε n + as 

a[ 1] - [ ]- [ ] [ ] [ ]ε a a P hTan n n n e n
T
μ+ =  

               a a[ ] - [ ] [ ]( [ ] [ ] [ ] )ε P h ε P hT T Tan n n v n n n
T
μ= +   

               = - [ ] [ ] [ ] - [ ] [ ]P hh P ε P hT T Ta a
aI n n n n v n

T T
μ μ⎡ ⎤

⎢ ⎥⎣ ⎦
. 

According to the direct averaging method [6], when 1aμ , [ 1]εa n + can be 
approximated as follows: 
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[ ]
[ 1] - [ ]+ [ ]T

a
a a aP n h

n I n n
T

ε R ε fμ⎡ ⎤+ ≈ ⎢ ⎥⎣ ⎦
                         (2.2.3) 

where  

[ ] - [ ] [ ]f P hTa
a n n v n

T
μ=  

and
[ ]

R TP n h
is the correlation matrix of [ ]P hT n . By applying the unitary similarity 

transformation, 
[ ]TP n h

R is transformed into a simpler form: 

[ ]T
T
a a aP n h

Q R Q D=  

where Qa is a unitary matrix and Da  is a diagonal matrix consisting of the 

eigenvalues aiλ . Let [ ] [ ]K Q εT
a a an n=  then we may transform (2.2.3) into the form  

[ ]
[ 1] - [ ] [ ]T

T T Ta
a a a a a aP n h

n I n n
T

Q ε Q R ε Q fμ⎡ ⎤+ = +⎢ ⎥⎣ ⎦
 

[ 1] - [ ] [ ]K D K Φa
a a a an I n n

T
μ⎡ ⎤+ = +⎢ ⎥⎣ ⎦

                             

where [ ] [ ]Φ Q fT
a a an n= . The natural mode [ ]aik n , i-th entry of [ ]Ka n , is stochastic with 

a mean and mean square value of its own. Let [0]aik  denote the initial value of 

[ ]aik n  andΦ [ ]ai n  is denoted i-th entry of [ ]Φa n . We may rewrite [ ]aik n  as follows. 

[ ] (1- ) [ -1] [ -1]a
ai ai ai aik n k n n

T
μ λ= +Φ  

-1
-1-

0
(1- ) [0] [1- ] [ ]

n
n n ja a

ai ai ai ai
j

k j
T T
μ μλ λ

=

= + Φ∑                   

Hence, the first moment of [ ]aik n  is given by 
-1

-1-

0
[ [ ]] (1- ) [ [0]] [1- ] [ [ ]]

n
n n ja a

ai ai ai ai ai
j

E k n E k E j
T T
μ μλ λ

=

= + Φ∑  

(1- ) [0]na
ai aik

T
μ λ=  

where  

[ [ ]] [ [ ]]

               - [ [ ] [ ]]

               0.

T
a a a

Ta
a

E n E n

E n v n
T

Φ Q f

Q h Pμ
=

=

=

 

Since [ ]P n  only contains the input signal and is independent of noise, we further 
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assume that the initial value of [0]aik  is independent of aiΦ , therefore the second 

moment of [ ]aik n  is given by 

2 22[ [ ] ] (1- ) [0]na
ai ai aiE k n k

T
μ λ=  

-1 -1
-1- -1-

0 0
(1- ) (1- )  [ [ ] [ ]]

n n
n g n ja a

ai ai ai ai
g j

E g j
T T
μ μλ λ

= =

+ Φ Φ∑∑ .      (2.2.4) 

The 2[0]aik  in the right-hand side of (2.2.4) is equal to the nonlinear coefficients 

vector square 2-norm.The second term in right-hand side of (2.2.4) is zero when 

summation index g is not equal to j otherwise we can express [ [ ] [ ]]Φ ΦT
a aE n n  as  

2[ [ ] [ ]] ( ) [ [ ] [ ] [ ] [ ]]Φ Φ Q h P P h QT T T Ta
a a a aE n n E n v n v n n

T
μ=  

2 2
[ ]

( ) T
Ta

v a aP n hT
Q R Qμ σ=   

2 2( ) .Da
v aT

μ σ=                                      (2.2.5) 

From (2.2.5), (2.2.4) can be written as  
-1

2 22 2 2 2 -2 -2
2

0
[ [ ] ] (1- ) ( ) (1- ) (1- )a

n
n n ja a a a

ai ai v ai ai ai
j

E k n
T T T T
μ μ μ μλ σ λ λ λ

=

= + ∑  

2 2

2 2
2

( - )(1- )
2 2

a
a a

v v
na

ai
a a

ai ai

T T
T

T T

μ μσ σ μ λμ μλ λ
= +

− −
.             (2.2.6) 

In (2.2.6) the error variance of nonlinear coefficients is given. Again, that (2.2.6) is 

under the assumption of perfect linear coefficients. The error variance of nonlinear 

coefficients can be determined with the knowledge of step size aμ , noise power 2
vσ , 

square 2-norm of nonlinear coefficients vector, eigenvalues aiλ of correlation matrix 

of [ ]s n  and the sum of all eigenvalues. Because the step size and the eigenvalues are 

both positive, the second term of (2.2.6) will disappear when the iteration number 

approaches to infinity. The steady state of 2[ [ ] ]aiE k n is given in the first term of 

(2.2.6). 
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2.2.2 Residual echo power analysis 

From (2.2.2), the mean square error (i.e., residual echo) due to an estimated error 

of nonlinear coefficients is given by  

2[ ] [ ]aJ n E e n⎡ ⎤= ⎣ ⎦  

[( [ ] [ ] [ ] )( [ ] [ ] [ ])]ε P h h P εT T T
a aE v n n n v n n n= + +  

2 [ ] [ ] [ ] [ ]ε P hh P εT T T
v a aE n n n nσ ⎡ ⎤= + ⎣ ⎦ .                   (2.2.7) 

Assume the variation of [ ]εa n  is slow compared with [ ]P hT n , hence  

[ ] [ ] [ ] [ ]ε P hh P εT T T
a aE n n n n⎡ ⎤⎣ ⎦  

[ ] [ ] [ ] [ ]ε P hh P εT T T
a aE n E n n n⎡ ⎤⎡ ⎤≈ ⎣ ⎦⎣ ⎦  

[ ]
[ ] [ ]T

T
a aP n h

E n nε R ε⎡ ⎤= ⎣ ⎦  

[ ]
[ [ ] [ ]]T

T T
a aP n h

E n nK Q R QK=  

[ [ ] [ ]]K D KT
a a aE n n=  

2

1
 [ ]

N

ai ai
i

E k nλ
=

⎡ ⎤= ⎣ ⎦∑ .                                (2.2.8) 

From (2.2.6) and (2.2.8), the mean square error can be written as  

2

22 2 2
2

1 1
[ ] [ - ](1- ) .

2 - 2 -

a
N N v

na ai a
a v v ai ai

a ai i
ai ai

TJ n
T T

T T

a

μ σμ λ μσ σ λ λμ μλ λ= =

= + +∑ ∑  (2.2.9) 

From (2.2.8) and (2.2.9), when the nonlinear coefficients error variance has been 

known the residual echo power can also be obtained. The nonlinear convergence rate 

depends on the values aiλ of [ ]P hT n , we may change the basis of P  to have a faster 

convergence rate. 
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2.3 Convergence analysis of linear NLMS algorithm 

2.3.1 Variance of linear coefficients error 

In this section we assume that the nonlinear coefficients are perfectly known, i.e. 

[ ]a n =a  or [ ] 0εa n = . The estimation error produced by the nonlinear AEC filter is 

similar to (2.2.1) but here [ ] 0εa n =  and [ ] 0εh n ≠  

[ ] [ ] - [ ] [ ] [ ]a P h
T Te n d n n n n=  

[ ] [ ] -[ [ ]] [ ][ [ ]]T T T T
a hn v n n n na P h a ε P h ε= + + +  

      [ ] [ ] [ ]ε sT
hv n n n= +                                   (2.3.1) 

where [ ] [ ]s P an n= . We denote the linear coefficients weight error by 

[ 1] - [ 1]ε h hh n n+ = + .     

The following analysis procedures are similar to Section 2.2 thus we will omit the 

details. Using (2.1.1) and (2.3.1), we may rewrite [ 1]εh n +  as 

[ ]2

2

[ 1] - [ ]+ [ ]
[ ]

h
h s n h hn I n n

n
ε R ε f

s
μ⎡ ⎤

⎢ ⎥+ ≈
⎢ ⎥⎣ ⎦

                        (2.3.2) 

where  

2

2

[ ]= - [ ] [ ]
[ ]

f s
s

h
h n n v n

n
μ . 

[ ]s nR  is the correlation matrix of [ ]s n . The convergence of linear coefficients error 

variance can be obtained by using the same procedures as before in Section 2.2.1, the 

linear coefficients error variance is given by 

2 2
2 2

2 2 22 2
22
22 2

2 2

[ ] [n]
[ [ ] ] ( - )(1- )

[ ]2 2
[ ] [ ]

s s
h

s
s s

h h
v v

nh
hi si

h h
si si

n
E k n

n
n n

μ μσ σ
μ λμ μλ λ

= +
− −

     (2.3.3) 
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where Q R Q DT
s s s s= , Qs  is a unitary matrix and Ds  is a diagonal matrix consisting 

of the eigenvalues siλ , [ ] [ ]K Q εT
h s hn n=  and [ ]hik n  is i-th entry of [ ]Kh n . 

In (2.3.3) the error variance of linear coefficients is given under assumption of 

perfect nonlinear coefficients. It can be determined with the knowledge of step size hμ , 

noise power 2
vσ , square 2- norm of room impulse response, eigenvalues of correlation 

matrix of [ ]s n  and the sum of all eigenvalues. Similarly, the steady state of 

2[ [ ] ]hiE k n is given in the first term of (2.3.3). 

2.3.2 Residual echo power analysis 

From (2.3.1), the mean square error (i.e., residual echo) due to estimated error of 

linear coefficients is given by  

2[ ] [ ]hJ n E e n⎡ ⎤= ⎣ ⎦  

2 [ ] [ ] [ ] [ ]ε s s εT T
v h hE n n n nσ ⎡ ⎤= + ⎣ ⎦ .                       (2.3.4) 

Assume the variation of [ ]εh n  is slow compared with [ ]s n , hence the residual echo 

power can be obtained similarly by 

2 2
2

12 2

2

[ ]
[ ] 2 -

[ ]

M
h si

h v v
hi

si

J n
n

n
s

s

μ λσ σ μ λ=

= + ∑
 

2
2

2 22
22

1 22

2

[ ]
[ - ](1- )

[ ]2
[ ]

h
v

M
nh

si si
hi

si

n

n
n

s
h

s
s

μ σ
μλ λμ λ=

+
−

∑           (2.3.5) 

Unlike Section 2.2, the nonlinear basis has no effect upon the eigenvalue in (2.3.5) 

when nonlinear coefficients are perfectly known. Therefore, in next section, we 

discuss the eigenvalues and nonlinear basis relationship only when linear coefficients 

are error free and nonlinear coefficients are not known. 



 

 17

2.4 Nonlinear processor with orthogonal polynomials 

2.4.1 Signal dependent orthogonal polynomials 

In this section, we discuss the orthogonal and non-orthogonal basis of nonlinear 

processor. The nonlinear processor is shown in Fig. 2.2. To accelerate the convergence 

rate, we define a set of orthogonal sets { [ ], 1,  2,  ...}ip n i = if their outputs are 

uncorrelated with each other  

[ [ ] [ ]] [ ] [ ] [ ]∑m n m n x
x

E p n p n p n p x f x  

 [ - ]= q m nδ                                       (2.4.1) 

where [ ]xf x  is the probability density function (pdf) of the input signal x[n]. If q is 

equal to 1, then the polynomials are not only orthogonal but also orthonormal. 

[ ]s n

Far end signal [ ]x n

1( )⋅ 2( )⋅ ...... ( )N⋅

1[ ]a n 2[ ]a n [ ]Na n

1[ ]p n 2[ ]p n [ ]Np n

 
Fig.2.2 Nonlinear processor 
 

The non-orthogonal polynomials set can be systematically modified to yield an 

orthogonal set by using Gram Schmidt orthonormalization in any interval with the 

weighting function [ ]xf x . The weighting function depends on the probability 

distribution of the input signal, therefore we derive the general form first and then 

apply it to uniform, WGN, and Laplacian pdf’s. The orthogonal bases are described as 

follow 

1[ ] [ ]=p n x n  

1

,
1

[ ] [ ] [ ]
−

=
= +∑

j
j i

j j i
i

p n x n C x n  1< j ≤ N.  
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The orthogonalization coefficients ,j iC  are chosen such that (2.4.1) is satisfactory, 

i.e., the coefficients ,j iC for the j-th order polynomial is obtained by solving  

1 2 ,1

2 1 2 2 , 1

-
+

− − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

j j j

j j j j j

m m m C

m m m C
 

where [ [ ]]i
im E x n=  is i-th moment of the input signal [ ]x n . We can find out the 

orthogonalization coefficients when the input signal pdf is known a priori. The 

orthogonalization coefficients are constant for stationary input otherwise the 

coefficients are time dependent. Here, we assume that the input signal is stationary 

and its pdf is pre-known therefore the ensemble average is performed to find out the 

orthogonalization coefficients. The moment estimation is performed when the input 

signal pdf is not known, in such case, the orthogonalization coefficients are time 

dependent as described in [12]. After the orthogonalization procedures, the first six 

orders of orthogonal polynomials are provided in Table 2.2. Here we have assumed 

pdf’s are symmetric with zero mean and all the odd-ordered moments are zero, 

0im = , for i: odd. 

 

Table 2.2 Signal-dependent orthogonal polynomials 

Polynomials Coefficients 

1[ ] [ ]p n x n=   

2
2 2.1[ ] [ ] -p x x n C=  2.1 2C m=  

3
3 3.1[ ] [ ] - [ ]p x x n C x n=  4

3.1
2

mC
m

=  

4 2
4 4,1 4,2[ ] [ ] - [ ] -p x x n C x n C=  6 2 4

4,1 2
4 2

4,2 4,1 2 4

-

-

m m mC
m m

C C m m

=
−

= +
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5 3
5 5,1 5,2[ ] [ ] - [ ] - [ ]p x x n C x n C x n=  4

2
2

4 4

2 2

8 6
5,1

6 4

64
5,2 5,1

2 2

-

- 2

-

m
m

m m
m m

m m
C

m m

mmC C
m m

=
+

= +

 

6 4 2
6 6,1 6,2 6[ ] [ ] - [ ] - [ ] -p x x n C x n C x n C=

 

10 4,1 8 4,2 6
6,1 2 2

8 4,1 4 4,2 4,1 6 4,2 4 4,1 4,2 2

- -
- 2( )

m C m C m
C

m C m C C m C m C C m
=

+ + + +

8 2 6
6,2 6,1 4,1 2

4 2

--
-

m m mC C C
m m

= +

8 2 6
6,3 6,1 4,2 2 62

4 2

-- -
-

m m mC C C m m
m m

= +  

Next, we discuss three kinds of signal distribution models, uniform, Gaussian and 

Laplacian.  

A. Uniform input 

For uniform signal in the interval [-1,1], the moments are  

2 4 6 8 10
1 1 1 1 1, , , ,
3 5 7 9 11

m m m m m= = = = = . 

According to Table 2.2, the orthogonal polynomials for the uniformly distributed 

input are listed in Table 2.3. 

 

Table 2.3 Orthogonal polynomials for a uniformly distributed signal 

Order polynomials Order polynomials 

1 1[ ] [ ]p n x n=  4 4 2
4

6 3[ ] [ ] - [ ] -
7 35

p x x n x n=  

2 2
2

1[ ] [ ] -
3

p x x n=  5 5 3
5[ ] [ ] -1.11 [ ] 0.24 [ ]p x x n x n x n= +  

3 3
3

3[ ] [ ] - [ ]
5

p x x n x n=  6 6 4 2
6[ ] [ ] - 0.07 [ ]- 0.65 [ ] 0.09p x x n x n x n= +

In Table 2.3, these polynomials are not like Legendre polynomial form. Because we 

do not set [1] 1,  1 ~ 6np n= =  
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B. Gaussian input 

For WGN input distribution signal we let m2 be equal to 1/9=0.1111. The white 

Gaussian signal x[n] with unit variance 2 1xσ =  is generated first and it is widely 

distributed over [ , ]−∞ ∞ . In practice we let the signal within the interval 23 xσ±  be 

normalized into[ 1,1]− , the signal outside this interval can be ignored. Therefore, we 

use the normalized 1 [ ]
3

x n  as the Gaussian noise for comparison with other pdf’s. Its 

2nd moment is 2 0.1111m = , the other moments are expressed as follows.  

2 3 4 5
2 4 2 6 2 8 2 10 20.1111, 3 , 15 , 105 , 945m m m m m m m m m= = = = = . 

Using these moments and Table 2.2, the orthogonal polynomials are listed in Table 

2.4. 

 

Table 2.4 Orthogonal polynomials for a Gaussian-distributed input 

Order polynomials Order polynomials 

1 1[ ] [ ]p n x n=  4 4 2
4[ ] [ ] - 0.666 [ ] 0.030p x x n x n= +  

2 2
2[ ] [ ] - 0.111p x x n=  5 5 3

5[ ] [ ] -1.11 [ ] 0.185 [ ]p x x n x n x n= +  

3 3
3[ ] [ ] - 0.333 [ ]p x x n x n= 6 6 4 2

6[ ] [ ] - 0.416 [ ]- 0.277 [ ] 0.025p x x n x n x n= +

 

C. Laplacian input 

For Laplacian input distribution signal, in practice, the same reason as WGN 

signal we let m2=0.1111 and the other moments are given by 

2 3 4 5
2 4 2 6 2 8 2 10 20.1111, 6 , 90 , 2520 , 113400m m m m m m m m m= = = = = . 

The orthogonal polynomials for Laplacian distribution signal are listed in Table 2.5. 
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Table 2.5 Orthogonal polynomials for a Laplacian-distributed input 

Order polynomials Order polynomials 

1 1[ ] [ ]p n x n=  4 4 2
4[ ] [ ] -1.8667 [ ] 0.1333p x x n x n= +  

2 2
2[ ] [ ] - 0.1111p x x n=  5 5 3

5[ ] [ ] - 4.074 [ ] 1.605 [ ]p x x n x n x n= +  

3 3
3[ ] [ ] - 0.6666 [ ]p x x n x n=  6 6 4 2

6[ ] [ ] - 4.45 [ ] 2.307 [ ] 0.050p x x n x n x n= + +

 

 

2.4.2 Eigenvalue spread analysis  

 In Section 2.2 we show that the convergence rate depends on the normalized 

eigenvalues. Equivalently, the eigenvalue spread is commonly used for convergence 

analysis, instead of normalized eigenvalues [6]. Here, we will examine the eigenvalue 

spreads for different input pdf’s versus different orthogonal polynomials. 

For simplicity we normalize 
2

h  to be 1 and nonlinear distortion only contains 

odd order harmonics and even orders are excluded, in case of a symmetric 

input/output nonlinear characteristic curve.  

 

 

A. Power-series nonorthogonal polynomials basis 
 
I. Uniformly distributed input 

The correlation matrix,
[ ]TP n h

R , is expressed as follows and the orthogonal 

polynomials can be found in Table 2.3. 

[ ]
[ ] [ ]T

T T
P n h

E n nR P hh P⎡ ⎤= ⎣ ⎦  
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11 13 15

31 33 35

51 53 55

r r r
r r r
r r r

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                  (2.4.2) 

with        2
11 1 0 1 1 1 -1( [ ] [ -1] [ - 1] )Mr E p n h p n h p n M h⎡ ⎤= + + + +⎣ ⎦  

2
2 2

m h= . 

2
33 3 0 3 1 3 -1( [ ] [ -1] [ - 1] )Mr E p n h p n h p n M h⎡ ⎤= + + + +⎣ ⎦  

2
6 2

m h= . 

2
55 5 0 5 1 5 -1( [ ] [ -1] [ - 1] )Mr E p n h p n h p n M h⎡ ⎤= + + + +⎣ ⎦  

2
10 2

m h= . 

Unlike the orthogonal basis, the correlation term of 
[ ]TP n h

R  is not equal to zero as a 

result of the basis is not orthogonal 

             13 31r r=  

1 0 1 1 1 -1[( [ ] [ -1] [ - 1] )ME p n h p n h p n M h= + + + +  

3 0 3 1 3 -1( [ ] [ -1] [ - 1] )]Mp n h p n h p n M h+ + + +  

               
-1 -1 -1

2
1 3 1 3

0 0
[ - ] [ - ] [ - ] [ - ]

M M M

i i j
i i j i

E p n i p n i h E p n i p n j h h
= = ≠

⎡ ⎤⎡ ⎤= + ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦
∑ ∑∑  

               2
4 2

m h= . 

15 51r r=  

1 0 1 1 1 -1[( [ ] [ -1] [ - 1] )ME p n h p n h p n M h= + + + +   

5 0 5 1 5 -1( [ ] [ -1] [ - 1] )]Mp n h p n h p n M h+ + + +  

2
6 2

m h= . 

35 53r r=  

3 0 3 1 3 -1[( [ ] [ -1] [ - 1] )ME p n h p n h p n M h= + + + +   
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5 0 5 1 5 -1( [ ] [ -1] [ - 1] )]Mp n h p n h p n M h+ + + +  

2
8 2

m h= . 

Therefore, the correlation matrix becomes 

[ ]

0.3333 0.2 0.1428
0.2 0.1428 0.1111

0.1428 0.1111 0.0909
TP n h

R
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

which is no more diagonal. Its three eigenvalues are 0.0006, 0.0334, 0.5331 and its 

eigenvalue spread is as large as 888.5. 

II. Gaussian input 

The non-diagonal correlation matrix is  

[ ]

0.1111 0.0370 0.0206
= 0.0370 0.0206 0.0160

0.0206 0.0160 0.0160
TP n h

R
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Three eigenvalues are 0.0008, 0.0170, 0.1297, thus the large eigenvalue spread is 

162.1. 

 

III. Laplacian input 

The correlation matrix for the Laplacian input is  

[ ]

0.1111 0.0741 0.1235
= 0.0741 0.2344 0.3841

0.1235 0.3841 1.9204
TP n h

R
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Three eigenvalues are 0.0177, 0.1285, 2.0088, and its eigenvalue spread is 113.5. 

 

B. Uniform orthogonal polynomials basis 

I. Uniform input 

In the first discussion, we use uniformly orthogonal polynomials which are found 

under uniform input distribution. When the input signal is uniformly 
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distributed(matched to the polynomial bases), the nonlinear components between 

different orders have perfect orthogonality. The correlation matrix,
[ ]TP n h

R  is 

expressed the same as (2.4.2) with 

        2
11 1 0 1 1 1 -1( [ ] [ -1] [ - 1] )Mr E p n h p n h p n M h⎡ ⎤= + + + +⎣ ⎦  

-1 -1 -1
2 2
1 1 1

0 0
[ - ] [ - ] [ - ]

M M M

i i j
i i j i

E p n i h E p n i p n j h h
= = ≠

⎡ ⎤⎡ ⎤= + ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦
∑ ∑∑ .            

Because the Input signal is zero mean and uncorrelated between different time index, 

(2.4.2) can be expressed as 

2
11 2 2
r m h= . 

Similarly, 33r  and 55r  can be written as 

2
33 3 0 3 1 3 -1( [ ] [ -1] [ - 1] )Mr E p n h p n h p n M h⎡ ⎤= + + + +⎣ ⎦  

2
6 4 2 2

6 9( - )
5 25

m m m h= + . 

2
55 5 0 5 1 5 -1( [ ] [ -1] [ - 1] )Mr E p n h p n h p n M h⎡ ⎤= + + + +⎣ ⎦  

2
10 8 6 4 2 2

( - 2.22 1.71 - 0.53 0.057 )m m m m m h= + + . 

The other terms of the correlation matrix are zeros as a result of orthogonal property. 

Therefore, we can write the correlation matrix as  

[ ]

0.3333 0 0
0 0.0029 0
0 0 0.0015

TP n h
R

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

whose eigenvalue spread is 222.22. 

 

II. Gaussian input 
 The correlation matrix becomes 
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[ ]

0.1111 0.0296 0.0061
= 0.0296 0.0161 0.0016

0.0061 0.0016 0.0024
TP n h

R
−⎡ ⎤

⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

with an eigenvalue spread of 59.1. 
 
III. Laplacian input 
The correlation matrix becomes 

[ ]

0.1111 0.0074 0.0679
= 0.0074 0.0746 0.2241

0.0679 0.2241 1.2461
TP n h

R
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

with an eigenvalue spread of 39.3. 
 
 
C. Gaussian orthogonal polynomials basis 
I. Gaussian input 

For its matched input signal with Gaussian distribution, the correlation matrix 

can be found by the same procedure with the orthogonal polynomials given in Table 

2.4. 

[ ]

0.0020 0 0
= 0 0.0082 0

0 0 0.1111
TP n h

R
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

Three eigenvalues are 0.0020, 0.0082, 0.1111, thus the eigenvalue spread is 55.6. 

II. Uniformly distributed input 
The correlation matrix becomes 

[ ]

0.3333 0.0889 0.0175
= 0.0889 0.0466 0.0046

0.0175 0.0046 0.0024
TP n h

R
−⎡ ⎤

⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

with an eigenvalue spread of 246. 
 
III. Laplacian input 
The correlation matrix becomes 
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[ ]

0.1111 0.0370 0.0618
= 0.0370 0.0864 0.2402

0.0618 0.2402 1.2389
TP n h

R
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

with an eigenvalue spread of 42. 
 
 

D. Laplacian orthogonal polynomials basis 

I. Uniformly distributed input 

The correlation matrix becomes 

[ ]

0.3333 0.0222 0.1369
= 0.0222 0.0243 0.0586

0.1369 0.0586 0.2584
TP n h

R
− −⎡ ⎤

⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

with three eigenvalues of 0.0001, 0.1773, and 0.4386, and an eigenvalue spread of 
3000. 

 

II. Gaussian input 

The correlation matrix becomes 

[ ]

0.1111 0.0370 0.0480
= 0.0370 0.0206 0.0404

0.0480 0.0404 0.0950
TP n h

R
−⎡ ⎤

⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

with three eigenvalues of 0.0002, 0.05512, and 0.1714, and an eigenvalue spread of 
871.4. 

 

III. Laplacian input. 

The correlation matrix becomes 

[ ]

0.1111 0 0
= 0 0.0741 0

0 0 0.5538
TP n h

R
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

which has a small eigenvalue spread of 7.5. 
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E. General comparison 

Finally, we discuss the eigenvalue spread under non-perfect orthogonality, a case 

of mismatch between the pdf of the input signal and the nonlinear polynomial basis. 

Table 2.6 compares the eigenvalue spreads for different input pdf’s versus different 

orthogonal polynomial bases. If the nonlinear components have perfect orthogonality, 

the minimum eigenvalue spread can be achieved, as can be seen from the diagonal 

entries in Table 2.6. When the input signal’s pdf is unknown, according to Table 2.6 

the uniformly orthogonal polynomial basis is recommended.  

 

Table 2.6 Eigenvalue spread comparison 

PDF   
Basis Uniform Gaussian Laplacian Power-series 

Uniform 222.2 246 3000★ 888.5 
Gaussian 59.1 55.5 871.4◆ 162 
Laplacian 39.3 42 7.473 113.5 

★ eigenvalues are 0.0001, 0.17728, 0.43863 
◆ eigenvalues are 0.00019671, 0.055117, 0.17141 

We recall the residual echo power in (2.2.9) 

2

22 2 2
2

0 1
[ ] [ - ](1- ) .    

2 - 2 -

a
N N v

na i a
a v v i i

a ai i
i i

TJ n a
T T

T T

μ σμ λ μσ σ λ λμ μλ λ= =

= + +∑ ∑  

The convergence rate is dependent on the eigenvalue spread; a smaller eigenvalue has 

faster convergence rate. The Laplacian polynomial basis has larger eigenvalue spread 

than the others because it has an eigenvalue closely to zero. But, it is worthy to note 

that a smaller eigenvalue has less contribution to the residual echo power. Therefore, 

we may calculate the eigenvalue spread excluding zero eigenvalue in such case the 

Laplacian type basis has a smaller eigenvalue than the power series basis.  
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2.5 Application of dual loudspeakers system 
 

 In this section we consider the hands-free system with dual loudspeakers. 3D 

sound is an essential element of the new services (mobile, multimedia, etc.). It 

enriches sound playback more vividly. In fact the 3D sound effect can be generated by 

dual loudspeakers. The AEC is also essential to achieve satisfactory speech quality in 

such system. We use two nonlinear AEC with a cascade structure to cancel the left 

and right channel echo signal. The nonlinear AEC structure for dual loudspeakers 

system is shown in Fig. 2.3. Let [ ]Lx n , [ ]Rx n  denote the left-channel and 

right-channel signal and uncorrelated with each other. Nonlinear AEC1 and AEC2 are 

used to cancel the echo components from the left and right loudspeaker, respectively. 

Nonlinear

AEC1

1[ ]y n

Microphone

SP1
[ ]Lx n

[ ]d n

[ ]e n

[ ]R nh

N ear-end
signal [ ]v n

Nonlinear

AEC2

2[ ]y n

[ ]Rx n
SP2

[ ]L nh

 

Fig. 2.3 Nonlinear AEC structure for dual loudspeakers system 

 

The signals, passing through the echo path [ ]L nh and [ ]R nh , respectively, are picked 

up by the microphone. The microphone output signal is expressed as 
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0

,1 ,1 ,1 1
1 3

,3 ,3 ,3

-1

[ ] [ -1] [ - 1] 
[ ] [ ]

[ ] [ -1] [ - 1]  

L

L L L L

L L L

LM

h
x n x n x n M h

d n a a
x n x n x n M

h

⎡ ⎤
⎢ ⎥+⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎢ ⎥
⎣ ⎦

 

0

,1 ,1 ,1 1
1 3

,3 ,3 ,3

-1

[ ] [ -1] [ - 1]
[ ] [ ]

[ ] [ -1] [ - 1]  

R

R R R R

R R R

RM

h
x n x n x n M h

b b v n
x n x n x n M

h

⎡ ⎤
⎢ ⎥+⎡ ⎤ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎢ ⎥
⎣ ⎦

. 

We rewrite [ ]d n  as vector inner products: 

[ ] [ ] [ ] [ ]
L R

T T T T
x L x Rd n v n n na P h b P h= + + .                     (2.5.1) 

In this section we derive the residual echo power under the assumption of perfect 

linear coefficients. We derive the nonlinear coefficients convergence rate first. It is 

easy to see that (2.5.1) is not the same with the case of a single loudspeaker, here, we 

have two kinds of nonlinear coefficients in the right-hand side of (2.5.1). We can 

cascade up the nonlinear coefficients a and b  together into a new vector c . By the 

same procedure, we merge [ ]
L

T
x nP  and [ ]

R

T
x nP  into a block-diagonal matrix [ ]T

s nP . 

The desired signal can be rewritten as 

[ ]
[ ] [ ] [ ]

[ ]
L

R

TT
x LT T
T
x R

n
d n v n

n

P h
a b

P h

⎡ ⎤
= + ⎢ ⎥

⎢ ⎥⎣ ⎦
 

1 3 1 3

[ ]
[ ] [ [ ] [ ] [ ] [ ]]  

[ ]
L

R

TT
x L

T
Rx

n
v n a n a n b n b n

n

P 0 h
h0 P

⎡ ⎤ ⎡ ⎤
= + ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦
 

[ ] [ ] [ ]T T
s sv n n nc P h= +                                (2.5.2) 

where sh denotes [ ]TL Rh h  

(2.5.2) is almost the same as the single loudspeaker case. The nonlinear AEC output 

and residual echo become 
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[ ] [ ] [ ]
T T

s sy n n nc P h=  

[ ] [ ] - [ ]e n d n y n=  

[ ] - [ ] [ ]
T T

s sd n c n nP h= . 

The NLMS adaptation algorithm becomes  

2[ ] -2 [ ] [ ]
[ ]

T
c s s

e n e n n
n

P h
c

∂∇ = =
∂

 

2

2

[ ][ 1] [ ] [ ]
[ ]

T
s s

c T
s s

nn n e n
n

P hc c
P h

μ
δ

+ = +
+

.                      (2.5.3) 

The residual echo convergence rate can be found following the same procedures in 

Section 2.2.2. The nonlinear coefficients error variance and residual echo power are 

described in (2.5.4) and (2.5.5). 

2 2

2 2 2
2

[ [ ] ] ( - )(1- )
2 2

a a
v v

na
ai i

a a
i i

T TE k n
T

T T

c

μ μσ σ μ λμ μλ λ
= +

− −
                (2.5.4) 

2

22 2 2
2

0 1
[ ] [ - ](1- )

2 - 2 -

a
N N v

na i a
a v v i i

a ai i
i i

TJ n
T T

T T

c

μ σμ λ μσ σ λ λμ μλ λ= =
= + +∑ ∑  (2.5.5) 

where   

      
2

2
[ ]T

s sT nP h δ= +  

[ ]
[ ]

[ ]
L

R

TT
x LT

s s T
Rx

n
n

n

P 0 h
P h

h0 P

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 

2 2

2 2
[ ]c a b= . 
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2.6 Summary 

In this chapter we show a nonlinear AEC with a signal dependent orthogonal 

basis to decrease the correlation among different polynomial orders and increase the 

convergence rate. We have presented convergence analyses of linear and nonlinear 

NLMS algorithm, under the assumption of the other part of coefficients are perfectly 

known. Because the linear and nonlinear coefficients errors affect each other in the 

cascade structure, it is difficult to perform the joint error analysis theoretically. For an 

input with unknown pdf, the orthogonality of the polynomial bases may not be perfect, 

the eigenvalue spread analyses in Section 2.4 shows that we also have faster 

convergence rate than conventional power series basis. For dual loudspeakers case, 

we cascade the coefficients together therefore the analyses in single loudspeaker case 

can be easily extended to the dual loudspeakers case. 
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Chapter 3 
Training Sequence and Coefficients 
Estimation 
 

The training sequence (TS) can also be used in adaptive equalizer or echo path 

estimation. Here we will apply it to nonlinear AEC with a cascade structure. There are 

applications where it is necessary to compare one reference signal with one or more 

signals to determine the similarity between these two and to determine additional 

information based on the similarity. For example, in digital communications, a set of 

data symbols are represented by a set of unique discrete time sequences. If one of 

these sequences is transmitted, the receiver has to determine which particular 

sequence has been received by comparing the received signal with every member of 

possible sequences from the set. Similarly, in radar and sonar applications, the 

received signal reflected from the target is the delayed version of the transmitted 

signal and by measuring the delay; one can determine the location of the target.  

In Section 3.2, we will derive the TS algorithm under expectation operator. In 

practice, we replace expectation with sample mean. We will show the recursive form 

of TS algorithm in Section 3.3. In Section 3.4, we will perform the convergence 

analysis of linear TS coefficients and nonlinear convergence analysis in Section 3.5. 

In Section 3.6, we extend applications to dual loudspeakers system where the linear 

convergence will be given. 
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3.1 Correlation based nonlinear AEC 

In Chapter 2 we have known that the NLMS adaptive algorithm is based on a 

simple stochastic gradient. The kind of adaptive algorithm has good performance 

when the background noise or double talk is not present. In Fig. 2.1 the error signal 

[ ]e n  is used to update both the linear filter and the nonlinear processor. However, 

when the background noise is present and/or larger than the echo signal [ ]y n , the 

desired signal contains not only the echo signal but also the background noise. The 

coefficients may diverge when the error signal includes a significant near-end speech 

signal. 

In this chapter we use a white sequence (non polar signal) to train both linear and 

nonlinear coefficients to overcome the problem of adaptive filter under low SNR 

condition. Because of the cascade structure we have to modify the Wiener-Hopf 

equation to fulfill our requirement. In the case of our structure, the TS runs through a 

multipath nonlinear processor and weighted by nonlinear coefficients, the sum of 

multipath signals passes through a linear filter. Therefore, the vector direction of the 

estimated coefficients is parallel to the vector of the room impulse response and its 

vector length is composed of nonlinear coefficients. The other problem is how to 

separate each nonlinear coefficient from the length of estimated coefficients. Here we 

only have one cross correlation length between the input and the microphone signal, 

in order to get more information we can use the nonlinear order of input signal and the 

microphone output signal to generate the other information about the nonlinear 

loudspeaker. The nonlinear coefficients can be found by solving these equation sets. 

According to this concept, the structure of a nonlinear AEC based on TS is shown in 

Fig. 3.1.  
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FIR

[ ]y n

[ ]s n

[ ]d n
[ ]e n

Echo

Room
[ ]nh

Near end signal [ ]v n

non polar white signal [ ]x n

1( )⋅ 2( )⋅ ...... ( )N⋅

1[ ]a n 2[ ]a n [ ]Na n

MicrophoneResidual echo

[ ]nh

1[ ]p n 2[ ]p n [ ]Np n

Correlator

Nonlinear
Loudspeaker

 

Fig.3.1 Structure of a nonlinear AEC based on training sequence 
 

In Fig. 3.1, the correlator produces the correlation between 1[ ] and [ ]p n d n . To find 

the nonlinear coefficients, the correlator will also create the correlation between 

[ ] and [ ]jp n d n  , for 2 j N≤ ≤  
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3.2 Training sequence estimation algorithm 

 In this section we will derive the linear TS coefficients algorithm first in Section 

3.2.1. In Section 3.2.2 we find the nonlinear TS coefficients algorithm. We also give 

the TS algorithm for nonlinear coefficients when an orthogonal basis is used. 

 

3.2.1 Linear TS coefficients estimation algorithm 

 In the section we will derive how to use the TS to find out the linear coefficients. 

First, we generate a white and zero mean sequence [ ]nx by TS generator at the near 

end. This sequence cannot be a polar signal in order to have nontrivial higher order 

moments, which will be explained later. The sequence is injected to the loudspeaker 

and through the near end room it is picked up by the microphone. The desired signal 

is expressed as follows: 
-1

1 0
[ ] [ - ] [ ]

N M
t

t i
t i

d n a h x n i v n
= =

= +∑ ∑  

-1 -1 -1
2

1 2
0 0 0

[ - ] [ - ] [ - ] [ ]
M M M

N
i i N i

i i i

a h x n i a h x n i a h x n i v n
= = =

= + + + +∑ ∑ ∑ .(3.2.1) 

M is the length of the linear filter, N is the nonlinear order. We multiply (3.2.1) by 

[ - ]x n k  and take the expectation value to get 
-1

1 0
-1 -1

2
1 2

0 0

[ [ - ] [ ]] [ [ - ] [ - ]]

                       [ [ - ] [ - ]] [ [ - ] [ - ]]

N M
t

t i
t i

M M

i i
i i

E x n k d n a h E x n k x n i

a h E x n k x n i a h E x n k x n i

= =

= =

=

= + +

∑ ∑

∑ ∑
 

-1

0
[ [ - ] [ - ]] [ [ - ] [ ]]   ,  0,1.

M
N

N i
i

a h E x n k x n i E x n k v n k
=

+ + =∑   (3.2.2) 

The two expectations in (3.2.2) may be written as 
-1

1 0

[- ] [ - ]
N M

xd t i txx
t i

r k a h r i k
= =

=∑ ∑  

-1 -1 -1

1 2 2
0 0 0

[ - ] [ - ] [ - ]
M M M

i xx i N i Nxx xx
i i i

a h r i k a h r i k a h r i k
= = =

= + + +∑ ∑ ∑     (3.2.3) 

where  
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[- ] [ [ - ] [ ]]xdr k E x n k d n=  

is defined as the cross correlation function between the input signal [ ]x n  and the 

microphone output signal [ ]d n  for a lag of -k ; and 

[ - ] [ [ - ] [ - ]]t
t

xx
r i k E x n k x n i= , 

[ - ]txx
r i k  is defined as the autocorrelation function of the input signal for a lag of 

-i k . The last term of (3.2.2), [ [ - ] [ ]]E x n k v n , is equal to zero due to the input signal is 

independent of the background noise. We define  

[ [0 - ], [1- ], , [ -1- ]]xx xx xx xxr k r k r M kr =  

and  

0 1 -1[ , , , ]T
Mh h hh = , 

then we rewrite (3.2.3) into the form of inner products: 

t=1
[- ]= t

N

xd t xx
r k a r h∑  

     21 2a a Nxx Nxx xx
a r h r h r h= + + + .                       (3.2.4) 

According to (3.2.4), it is similar to the Wiener-Hopf equation. The left-hand side of 

(3.2.4) contains the cross correlation, but its right-hand side contains not only linear 

but also nonlinear coefficients. Therefore, we need to take some procedures to 

estimate the linear and nonlinear coefficients. Before the procedure, we extend (3.2.4) 

into matrix form. The impulse response is defined by the finite set of tap weights, 

i.e., 0 1 -1[ , , , ]T
Mh h hh = , hence we let the lag index k go from 0 to M-1. We extend 

(3.2.4) in matrix form as follows: 

[ ]

[0]
[-1]

[ ] [ ] =
   

[1- ]

xd

xd
xd

xd

r
r

E n d n

r M

R x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
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1
= t

N

t xx
t

a R h
=
∑  

21 2= Nxx Nxx xx
a a aR h R h R h+ + +                      (3.2.5) 

[ ]nx denotes the M-by-1 vector of the tap inputs [ ], [ -1],..., [ - 1]x n x n x n M + . xdR  

denotes the M-by-1 cross correlation vector between the input signal and the 

microphone output signal. xxR  denotes the M-by-M correlation matrix of [ ]nx  

[ ] [ ] [ ] [ - 1] [ ] [ - 1]

[ - 1] [ ]

[ - 1] [ ] [ - 1] [ - 1]

xx

x n x n x n x n x n x n M

x n x n
E

x n M x n x n M x n M

R

+

+ + +

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

 

2 M Mm I ×= . 

3 4 M Mxx
mR I ×=  

 

1  for  1  and  is oddt t M Mxx
m t N tR I+ ×= ≤ ≤  

where the moment is defined as [ [ ]]i
im E x n= . We note that 2 4,  , , txx xx xx

R R R are 

zero matrices  for 2  ,  is event N t≤ ≤ , since the input signal is white zero mean, a 

symmetric pdf, and uncorrelated between different orders, 2[ [ ] [ ]] 0E x n x n = . Here we 

let N be an odd integer and rewrite (3.2.5) as 

1
1

  

N

xd t t
t
t is odd

a mR h+
=

= ∑  

 1 2 3 4 1N Na m a m a mh h h+= + + + .                      (3.2.6) 

We may then pre-multiply both sides of -1
1 2 3 4 1( )N N M Ma m a m a m I+ ×+ + +  and solve 

(3.2.6) for h , but the nonlinear coefficients are unknown yet. We assume that 2

2
h  

equals to 1 thus the direction of xdR  is equal to h , then the room impulse can be 

found by 
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2

xd

xd

R

R
h = .                                        (3.2.7) 

3.2.2 Nonlinear TS coefficients estimation algorithm 

We have to solve the nonlinear coefficients but we only have one equation in 

(3.2.6). Because the input signal pdf is symmetric, the odd-order moments are zeros. 

We divide the nonlinear TS algorithm into two groups, odd and even-ordered. First, 

we solve the odd-ordered nonlinear coefficients. Again, we multiply (3.2.1) 

by 3[ - ]x n k ,…, [ - ] for  1  ,  is oddtx n k t N t≤ ≤ , respectively and take the expectation 

value. Similar to (3.2.6), we can get the other equations: 

3 1 4 3 6 3( )N Nx d
a m a m a mR h+= + + +                        (3.2.8) 

 

1 1 3 3 2( )N N N N Nx d
a m a m a mR h+ += + + + .                    (3.2.9) 

We multiply (3.2.6), (3.2.8), and (3.2.9) by Th respectively and then we can solve the 

following equations to find the odd-ordered nonlinear coefficients 1 3,  , , Na a a  

3

12 4 1

34 6 3

1 3 2

   

N

T
xd N

T
Nx d

T
N N N Nx d

odd

am m m
am m m

m m m a
G

h R

h R

h R

+

+

+ +

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

. 

Hence, the odd-ordered nonlinear coefficients can be found as 

3

-1
1 2 4 1

3 4 6 3

1 3 2

   

N

T
xdN

T
N x d

T
N N NN x d

odd

a m m m
a m m m

m m ma
G

h R

h R

h R

+

+

+ +

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

.              (3.2.10) 

We note that the matrix oddG  in (3.2.10) has to be nonsingular in order to have a 

unique solution for the nonlinear coefficients 1 2 ,  ,..., Na a a . As mentioned earlier, the 

input training sequence x[n] cannot be a polar ±1 signal. Up to now, we have found 
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the linear coefficients h  and odd-ordered nonlinear coefficients  forta  

1 ,   is oddt N t≤ ≤ . Next we derive the even-ordered nonlinear coefficients. Similarly, 

we start with (3.2.2) but there are some differences from previous procedure. 

Although the input signal is white and zero mean but the even-ordered moments are 

not equal to zero. In order to get a diagonal correlation matrix we multiply (3.2.1) by 

2
2[ - ] -x n k m  and take expectation to get  

2
2

2
2 4 2 4 6 2 4 4 2 2( - )
( - ) ( - ) ( - )N Nx m d

a m m a m m m a m m mR h h h+= + + +   (3.2.11) 

Again, we multiply (3.2.1) by 4 -1
4 1[ - ] - , , [ - ] -N

Nx n k m x n k m −  and take expectation 

value 

 

-1
-1

2
2 1 2 1 4 3 4 1 1 2 2 1( - )
( - ) ( - ) ( - ) .N

N
N N N N N N Nx m d

a m m m a m m m a m mR h h h+ − + − − − −= + + +

                                                              (3.2.12) 

By multiplying (3.2.11) and (3.2.12) by Th respectively, we can find out the nonlinear 

coefficients  for  1 ,   is eventa t N t≤ ≤ , by solving the following equations  

2
2

4
4

1
1

2( - ) 24 2 6 2 4 2 2
2

4( - ) 6 2 4 8 4 3 4 -1

2
-11 2 -1 3 4 -1 2 -2 -1

( - )

- - -
- - -

     
- - -

N
N

T
x m d

N N
T

x m d N N

T NN N N N N N
x m d

even

am m m m m m m m
am m m m m m m m

am m m m m m m m
G

h R

h R

h R −
−

+

+

+ +

⎡ ⎤ ⎡ ⎤ ⎡⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢=⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣⎣ ⎦⎢ ⎥⎣ ⎦

⎤
⎥
⎥
⎥

⎢ ⎥
⎦

. 

Hence, the even-ordered nonlinear coefficients can be found as 

2
2

4
4

1
1

-12 ( - )2 4 2 6 2 4 2 2
2

4 ( - )6 2 4 8 4 3 4 -1

2
-1 1 2 -1 3 4 -1 2 -2 -1

( - )

- - -
- - -

     
- - -

N
N

T
x m d

N N
T

x m dN N

TN N N N N N N
x m d

even

a m m m m m m m m
a m m m m m m m m

a m m m m m m m m
G

h R

h R

h R −
−

+

+

+ +

⎡⎡ ⎤⎡ ⎤ ⎢⎢ ⎥⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ = ⎢⎢ ⎥⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣

.

⎤
⎥
⎥
⎥
⎥
⎥

⎢ ⎥⎦

                                                              (3.2.13) 
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Again, we have assumed that the training white sequence x[n] is non polar signal to 

avoid the singularity of the matrix evenG . Finally, in Chapter 2 we mentioned a 

nonlinear processor with orthogonal basis. When the orthogonal basis is used the 

same procedure can also be used to find out the coefficients. The desired signal can be 

written as 
-1

1 0
[ ] [ - ]

N M

t i t
t i

d n a h p n i
= =

=∑ ∑  

-1 -1 -1

1 1 2 2
0 0 0

[ - ] [ - ] [ - ] [ ]
M M M

i i N i N
i i i

a h p n i a h p n i a h p n i v n
= = =

= + + + +∑ ∑ ∑  

 

where pi  becomes the nonlinear orthogonal polynomial. Following the same 

procedure from (3.2.8) to (3.2.13) , we can find the linear and nonlinear coefficients 

  

1 1

2 2

-1

1

2

0 0

0 0

0 0
N N

T
P p d

T
P p d

T
N P p d

orthogoanl

ma
ma

a m
G

h R

h R

h R

⎡ ⎤⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.                  (3.2.14) 

(3.2.14) shows the nonlinear coefficients, where 
ipm is equal to the second moment 

of the basis, pi. The matrix inversion in (3.2.14) is simpler than that of non-orthogonal 

basis because it is a diagonal matrix. Because of the orthogonality (3.2.16) can 

represent the odd and even-ordered coefficients simultaneously. 
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3.3 Recursive Training Sequence algorithm 

 

 In order to compute the linear and nonlinear coefficients in (3.2.7), (3.2.10), and 

(3.2.13), we need to compute the autocorrelation function and cross correlation 

function. In practical system, we replace the expectation operation with sample mean. 

The sample mean of a set [1], [2],..., [ ]x x x n  of n observations is defined by 

1

1sample mean = [ ]
n

i
x i

n =
∑  

In Section 3.2, the expectation operator is performed to compute coefficients 

thus the true coefficients notation h is used. In this section the sample mean method 

is used, therefore we use the estimation’s notation as that in Chapter 2. At first, we use 

the sample mean as follows 
n

i=1

1[ ] [ ] [ ]xd n i d i
n

R x= ∑  

-1

1

1 -1 [ ] [ ] [ ] [ ]
-1

n

i

n i y i n y n
n n

x x
=

⎡ ⎤= +⎢ ⎥
⎣ ⎦

∑  

-1 1[ -1] [ ] [ ]xd
n n n d n
n n

R x= + .                         (3.3.1) 

According to (3.3.1), we can rewrite (3.2.7) as follows 

2

[ ][ ]
[ ]

xd

xd

nn
n

Rh
R

=  

2

1 -1 1= ( [ -1] [ ] [ ])
[ ]xd

xd
n n n d n
n nn

R x
R

+  

2

1-1 [ -1] [ ] [ ]
[ ]xd

n n n d n
n n n

h x
R

= + .                    (3.3.2) 

In (3.3.2), 
2

[ ]xd nR is equal to 1 32 4 1( [ -1] [ -1] [ -1] )N Na n m a n m a n m ++ + + , the 

nonlinear coefficients can be obtained from the last iteration of (3.3.4). (3.3.2) is 

similar to (2.1.1), the second term on the right hand side of (3.3.2) represents the 
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adjustment that is applied to the current estimate of linear coefficients. But the error 

signal does not appear in (3.3.2), it is different from the NLMS-type adaptation 

algorithm with an error feedback structure. 

The TS estimation of nonlinear coefficients in (3.2.10) can be written as a 

recursive form too. First, we have to replace the correlation matrix of (3.2.10) with the 

sample mean. We can rewrite the cross correlation as 

3 3
3

[ ] [ -1] [ ] [ ]
[ ] [ ]-1 1[ ] [ -1]= +

            
[ ] [ ][ ] [ -1]N N

x d x d

x d x d

N
x d x d

n n n d n
n d nnn n

n n

n d nn n

R R x
xR R

xR R

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

.                   (3.3.3) 

According to (3.3.3), (3.2.10) can be written into a recursive form 

3

1

3
3 -1

[ ] [ -1] [ ] [ ][ ]

-1 1[ ] [ ] [ -1] [ ] [ ]+ [ ]
              

[ ] [ ] [ -1] [ ] [ ]N

T T
x d

T T
x d

odd

T T NN x d

n n n na n

na n n n n nd n
n n

a n n n n n

h R h x

h R h xG

h R h x

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 

1

3
3 -1

[ ] [ ][ -1]

-1 1[ -1] [ ] [ ][ ]
          

[ -1] [ ] [ ]

T

T

odd

T NN

n na n

n a n n nd n
n n

a n n n

h x

h xG

h x

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= + ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦

.             (3.3.4) 

The matrix inverse 1
oddG−  in the right-hand side of (3.3.4) can be pre-computed so 

long as each moment of input signal in (3.2.10) are known. The same procedure can 

be applied to (3.2.13); the recursive form of (3.2.13) becomes 

2
2 2 2

4
4 4 -1 4

-1-1 -1
-1

[ ]( [ ] - )[ ] [ -1]

-1 1[ ] [ -1] [ ]( [ ] - )[ ]
           

[ ] [ -1] [ ]( [ ] - )

T

T

even

T NN N
N

n n ma n a n

na n a n n n md n
n n

a n a n n n m

h x

h xG

h x

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

    (3.3.5) 

where the moment matrix evenG are given in (3.2.13). 
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The steady state of linear and nonlinear TS coefficients will achieve the optimum 

Wiener solution, when the iteration numbers approaches to infinity. By contrast, the 

coefficients computed by the NLMS-type algorithm might not achieve the optimum 

solution. It has excess mean square error resulting from gradient noise at small step 

size. 

In view of computational complexity, it needs about 2M+N and 

MN+2N+ 2N multiplications per iteration to find the linear and nonlinear TS 

coefficients, respectively. Here, we do not take into account the computational cost of 

the matrix inverse -1G , since it can be computed a priori. To generate the nonlinear 

components, it needs about N-1 multiplications. Table 3.1 compares the computational 

complexities between the TS method and NLMS adaptive filter. The computational 

complexity of the TS method is almost the same as the NLMS adaptive filter. Both 

methods can be used to find the AEC coefficients. In case of a noisy environment, the 

TS method is more attractive. 

 

Table 3.1 Comparison of complexity computational  

 Number of multiplication 

Training method     MN+2M+4N-1+ 2N  

NLMS-adaptive filter MN+2M+4N-1 
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3.4 Linear convergence analysis 

The linear filter dominates the overall system convergence rate because it has 

more coefficients than the nonlinear processor order. Through analysis, the linear 

coefficients convergence rate can be used to estimate the whole system performance. 

In this section we will perform the convergence analysis of linear TS coefficients and 

residual echo power under the assumptions of perfect nonlinear coefficients with 5th 

nonlinear order. The nonlinear TS coefficients estimation is performed on a system of 

equation sets. Theoretical analysis is difficult because of the moment matrices inverse 

in (3.3.4) and (3.3.5). 

 

3.4.1 Variance of linear coefficients error 

 Because the input signal is independent of the background noise we divide the 

analysis into two parts by the law of superposition. In the first part, we discuss the 

effect of the background noise under the assumption of perfect linear coefficients. The 

other part deals with the error due to sample mean estimation method under the 

assumption of no background noise. In the first discussion, the estimated error vector 

due to noise can be written as follows 

11 2 3 4 5 6

11 2 3 4 5 6 1 2 3 4 5 6

1[ ] [ - [ ] [ ]]
( )

1 1        [ - - [ ] [ ]]
( ) ( )

n

h
i

n

xd
i

n E i d i
n a m a m a m

E i v i
a m a m a m n a m a m a m

ε h x

h R x

=

=

=
+ +

=
+ + + +

∑

∑

                
11 2 3 4 5 6

-1 [ ] [ ]
( )

n

i
i v i

n a m a m a m
x

=
=

+ + ∑ . 

The mean square estimation error is given by 

2

11 2 3 4 5 6

1[ [ ] [ ]] [ ] [ ]
( )

n
T
h h

i
E n n E i v i

n a m a m a m
ε ε x

=

⎡ ⎤⎛ ⎞
⎢ ⎥= ⎜ ⎟+ +⎢ ⎥⎝ ⎠⎣ ⎦

∑  

2 2 2
2 2 22 2

1 2 3 4 5 6

1 ( )
( ) v v vMm Mm Mm

n a m a m a m
σ σ σ= + + +

+ +
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2
22

1 2 3 4 5 6

1 
( ) vMm

n a m a m a m
σ=

+ +
.                     (3.4.1) 

The steady state of (3.4.1) is equal to zero as n →∞ . It means the estimation has no 

excess mean square error resulting from the background noise. Next, we assume that 

the noise is not present and we focus on the sample mean estimation error, which is 

equal to the variance of [ ]xd nR . When the variance of [ ]xd nR  is equal to zero an 

unbiased estimation of the [ ]nh  can be obtained. Hence, the mean square estimation 

error of [ ]nh  can be written as follows 

2

11 2 3 4 5 6

1[ [ ] [ ]] [ ] [ ]
( )

n
T
h h

i
E n n E i d i

n a m a m a m
ε ε x

=
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2 2
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+ +
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2 2 2

1 2 3 4 5 6

1
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n a m a m a m
hσ=

+ +
                    (3.4.2) 

where  

2 2 3
1 2 3

4 5 2
4 5

[( [ ] [ ]) ] [(( [ ] [ ] [ ] [ ] [ ] [ ]

                            [ ] [ ] [ ] [ ]) ) ].
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x x x x h
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+ +
           (3.4.3) 

Usually, the characteristic of nonlinear distortion of a power amplifier can be modeled 

as a saturation curve. Therefore, we assume that the nonlinear coefficients 

2a and 4a .are both much less than 1a . For this reason, we rewrite (3.4.3) as  

2 2 2 3 3
1 3

2 5 5 3
5 1 3

1 5

[( [ ] [ ]) ] { [ [ ] [ ] [ ] [ ]]  [ [ ] [ ] [ ] [ ]]
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22
2xy hσ ′=  

where  

2 2 2 2 2
1 2 3 4 5 6 1 4 3 8 5 12 ( -1)( )xy M a m a m a m a m a m a mσ ′ = + + + + +  

1 3 6 1 5 8 3 5 102 2 2a a m a a m a a m+ + +  

2
1 2 3 4 5 6( )M a m a m a m+ +  

2
xyσ .                                           (3.4.4) 

According to (3.4.4), (3.4.2) becomes 

22
2 2

1 2 3 4 5 6

1[ [ ] [ ]]
( )

T
h h xyE n n

n a m a m a m
ε ε hσ=

+ +
 

2

2

M
n

h .                                        (3.4.5) 

By the law of superposition, we can sum up (3.4.1) and (3.4.5) to get the mean square 

estimation error of linear coefficients 
2

2 2
22

1 2 3 4 5 6

[ [ ] [ ]]=
( )

T v
h h

MmME n n
n n a m a m a m

ε ε h σ+
+ +
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22
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h σ⎡ ⎤
= +⎢ ⎥+ +⎣ ⎦

 

2
2

2
1 2 3 4 5 6

1
( )

vmM
n a m a m a m

σ⎡ ⎤
= +⎢ ⎥+ +⎣ ⎦

.                     (3.4.6) 

 

Once the noise power, the nonlinear coefficients, and the length of the linear 

filter are known, we can get the convergence rate of linear coefficients. It is different 

from the NLMS-type adaptation, the effect of the noise will disappear asymptotically 

as n →∞ . According to (3.4.6), there is no excess mean square estimation error 

because the coefficients is found directly by the Wiener-Hopf equations, which is the 

optimum solution for such systems. For a NLMS algorithm, (2.3.3) will never achieve 
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the optimum solution even when n →∞unless there is no background noise. But in 

the general, a background noise always exists in hands-free environment. 

 

3.4.2 Residual echo power analysis 

 In this section we focus on the residual echo power, with similar analysis to that 

in Section 2.3.2. Therefore, the residual echo power can be written as 

2[ ] [ ]hJ n E e n⎡ ⎤= ⎣ ⎦  

[( [ ] [ ] [ ])( [ ] [ ] [ ])]T T
h hE v n n n v n n nε s s ε= + +  

2 [ ] [ ] [ ] [ ]T T
v h hE n n n nε s s εσ ⎡ ⎤= + ⎣ ⎦  

2 [ ] [ [ ] [ ] ] [ ]T T
v h hE n E n n nε s s εσ ⎡ ⎤≅ + ⎣ ⎦  

2
[ ]= [ ]R [ ]T

v h s n hE n nε εσ ⎡ ⎤+ ⎣ ⎦ .                           (3.4.7) 

The non-diagonal term of [ ]s nR  can be ignored under the assumption that 

even-ordered nonlinear coefficients are much less than those of the odd-ordered. The 

diagonal terms of [ ]s nR  are given by 

2 3 4 5 2
1 2 3 4 5[( [ ] [ ] [ ] [ ] [ ]) ]E a x n a x n a x n a x n a x n+ + + +  

2 2 2
1 2 3 6 5 10 1 3 4 1 5 6 3 5 82 2 2a m a m a m a a m a a m a a m+ + + + +  

               2
s[ ]nσ= . 

Thus [ ]s nR  is approximate to a diagonal matrix 2
[ ]s n MxMIσ . Using (3.4.6) and [ ]s nR , 

(3.4.7) can be written as 

2
2 2 2

[ ] 2
1 2 3 4 5 6

[ ] 1
( )

v
h v s n

mMJ n
n a m a m a m

σσ σ
⎡ ⎤

= + +⎢ ⎥+ +⎣ ⎦
.              (3.4.8) 
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3.5 Nonlinear convergence analysis 

Up to now, we have introduced the analyses of linear coefficients convergence, 

which shows that the convergence rate depends on the estimated error of [ ]xd nR . 

Similarly, the nonlinear coefficients convergence depends not only on [ ]xd nR  but 

also 3 [ ]x d nR  and 5 [ ]x d nR as shown in (3.2.10). For each nonlinear coefficient, its 

convergence rate depends on all the cross correlation vectors 

( [ ]xd nR , 3 [ ]x d nR , 5 [ ]x d nR ) because a moment matrix is performed on the nonlinear 

coefficients vector, therefore it has more complex mathematical procedure than the 

analysis of linear coefficients. 

 

3.5.1 Variance of nonlinear coefficients error 

First, we define the covariance matrix of [ ]a nε  as  

2
,1 ,1 ,3 ,1 ,5

2
,1 ,3 ,3 ,3 ,5

2
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xd xd xd x d xd x d
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x d xd x d x d x d x dodd odd
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⎡ ⎤
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G h R h R h R h R h R h R G

h R h R h R h R h R h R

 

Again, for the same reason in Section 3.4, we divide the analysis into two parts by the 

law of superposition, one is sample mean estimation (SME) error and the other is the 

noise effect (NE).  Therefore, we can rewrite [ [ ] [ ]]T
a aE n nε ε  as  

[ ]1[ [ ] [ ]] ET T
a a odd oddE n n − −= +ε ε G SME N G                       (3.5.1) 

In order to keep the main object of this section, the detailed mathematical procedures 

about (3.5.1) will be given in Appendix. Thus, the variance of nonlinear coefficients 
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error can be found as  

[ ]1( [ [ ] [ ]]) ( E )T T
a a odd oddtr E n n tr − −= +ε ε G SME N G  

where ( )tr  denotes the trace operator. The same result is found that the nonlinear 

coefficients error variance can also achieve zero, the optimum nonlinear coefficients 

can be found as n →∞ . 

 

3.5.2 Residual echo power analysis 

 Once the nonlinear coefficients convergence is given, its residual echo power can 

also be found as 

2[ ] [ ]aJ n E e n⎡ ⎤= ⎣ ⎦  

[( [ ] [ ] [ ] )( [ ] [ ] [ ])]T T T
a aE v n n n v n n nε P h h P ε= + +  
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2 4 6
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σ

⎡ ⎤⎡ ⎤
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⎢ ⎥⎢ ⎥= + ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

ε ε  

2 2 2 2
2 ,1 6 ,3 10 ,5[ [ ]] [ [ ]] [ [ ]]v a a am E n m E n m E nσ ε ε ε= + + +  

4 ,1 ,3 6 ,1 ,52( [ [ ] [ ]] [ [ ] [ ]]a a a am E n n m E n nε ε ε ε+ +  

8 ,5 ,5[ [ ] [ ]])a am E n nε ε+                              (3.5.2) 

The covariance terms of nonlinear coefficients in (3.5.2) can be obtained form (3.5.1). 

In addition to the background noise, there is no residual echo power when the 

nonlinear coefficients error is equal to zero. 
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3.6 TS for dual loudspeakers system 

 We have introduced the dual loudspeakers system in Section 2.5 as shown in Fig. 

2.3. In this section we will use the white TS to train the linear and nonlinear 

coefficients of two nonlinear AEC’s. If we use two uncorrelated white noises to train 

the coefficients, (3.4.8) can be used here with some modifications. From the nonlinear 

AEC1 (as showed in Fig. 2.3) viewpoint, the desired signal is 

[ ] [ ] ( [ ] [ ] )
L R

T T T T
x L x Rd n n v n na P h b P h= + + .                    (3.6.1) 

Both [ ] and [ ]
R

T T
x Rv n nb P h  in the right-hand side of (3.6.1) are viewed as noises. 

Therefore, the power of noise can be expressed as 

2 2 2
[ ]  

= T T
x RR

noise v b P n h
σ σ σ+ . 

From (3.4.8), the residual echo power of AEC1 can be expressed as 

2 2
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Similarly, the residual echo power of AEC2 is 
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The total residual echo power is given by 
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When n →∞ , the residual echo power only contains the background noise. Compared 
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with the single loudspeaker case, AEC with dual loudspeakers has slower 

convergence rate. The convergence rate for dual loudspeakers is similar to single 

loudspeaker with 0 dB SNR, if we use two white sequences of equal powers to train 

the coefficients.  

 

3.6 Summary 

 In this chapter we proposed the coefficients estimation based on a TS. We 

showed that the nonlinear AEC with a cascade structure can also use this TS to find 

out both linear and nonlinear coefficients. Although the TS algorithm only performs 

under a white sequence input and can not use a step size to control its convergence 

rate but its non-error-feedback structure makes the coefficients achieve the optimum 

solution and more robust to the background noise. Compared with a popular and 

computational efficient NLMS algorithm, the training method has similar 

computational cost. If we modify the noise variance, the analysis for a single 

loudspeaker system can be readily extended to dual loudspeakers system. 
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Chapter 4 
Computer Simulations 
 

 In this chapter we will show the simulation results of the nonlinear AEC to verify 

previous analyses in Chapter 2 and Chapter 3. In Section 4.1, we will define some 

parameters used in following simulations. In Section 4.2 and 4.3, we will compare 

simulations results and theoretical analyses. In Section 4.4, an experiment with real 

echo path is made. 

 

4.1 Parameters of simulations 
 
 The room impulse response shown in Fig. 4.1 is measured in a typical office. 

In Fig. 4.1, the length of the room impulse is 1000, which is 125 msec long, at a 8 K 

Hz sampling rate. For simplicity, we use a 128-tap room impulse response as shown 

in Fig.4.2. It is generated by a random number generator with an exponential damping 

factor. Fig. 4.2 is also used as the left room impulse response for dual loudspeakers 

simulation, and the right room impulse response is shown in Fig. 4.3. 

The sigmoid function, commonly used in neural network community [6], is 

shown in Fig. 4.4. In this thesis a polynomial type nonlinear processor is used. The 

sigmoid function is  

2
1 exp( )[ ] ( -1)xx αϕ β+ −= . 

The nonlinear coefficients are found by using power-series polynomials to fit the 

sigmoid curve. When 6 and 1α β= = , the nonlinear coefficients a1~a5 corresponding 

to p1[n]~p5[n] are given by 

1 3 52.5967  -3.3283  1.7833a a a= = =  2 4 0a a= = .  

Again, for dual loudspeakers system (right-loudspeaker) we find the other nonlinear 



 

 53

coefficients set by using the power series polynomials to fit the other sigmoid curve as 

show in Fig. 4.5. When 3 and 1α β= =  the nonlinear coefficients for the right 

nonlinear loudspeaker are  

1 3 51.4775  -0.8928  0.3259a a a= = = 2 4 0a a= =  

We also use the speech signal as the input signal to examine the performance. The 

speech signal in Fig 4.6 is sampled with 8 KHz sampling rate. 

In simulation, we add a background noise. The signal to noise ration is defined as 

1010 log echo

v

PSNR
P

=  

where echoP is the power of the input signal to the microphone output signal and vP is 

the power of the background noise. Setting the SNR we can observe the AEC 

performance under different environment conditions. The linear coefficients 

misalignment is defined as the normalized norm of the coefficients error 

2

22

- [ ][ ]h
nn h hε

hh
 

Finally, in the following simulations, unless otherwise stated, we let the step size 

0.1hμ =  aμ =0.25, δ =1; the length of the room impulse response is set to be 128, 

which is identical to the number of taps of the room impulse response; the highest 

nonlinear order is equal to 5th (excluding the even order) and SNR = 20 dB. 
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Fig. 4.1 Room impulse response of a typical office 
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Fig. 4.2 Room impulse response from the left loudspeaker 
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Fig. 4.3 Room impulse response from the right loudspeaker 
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Fig. 4.4 I/O mapping characteristic of the left nonlinear loudspeaker 
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Fig. 4.5 I/O mapping characteristic of the right nonlinear loudspeaker 
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Fig. 4.6 The speech signal 
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4.2 Coefficients estimation based on NLMS adaptive algorithm 
4.2.1 Individual coefficients and residual echo power convergence   

 This section corresponds to Section 2.2 and 2.3. We use the simulations to verify 

our convergent analyses in (2.2.6), (2.2.9), (2.3.3), and (2.3.5). We let the input signal 

be uniformly distributed over ±1 and the basis is given in Table 2.3. First, we examine 

(2.2.6) and (2.2.9) by assuming that the linear coefficients are perfectly known. The 

assumption is reasonable, since linear coefficients can be found first when transmit 

the low power signal, nonlinearity of the power amplifier has not been excited yet. 

The nonlinear coefficients misalignments and residual echo powers are shown in Fig. 

4.7 and 4.8. The simulation results match very well with the theoretical curve. 

Next, we verify (2.3.3) and (2.3.5) with perfectly known nonlinear coefficients. 

This assumption is reasonable, since the characteristic of loudspeaker can be 

considered to be time invariant. The linear coefficients misalignments and its residual 

echo power are plotted in Fig. 4.9 and 4.10. From Fig. 4.7 to 4.10, we can see that 

simulated and theoretical curves are consistent.  
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Fig. 4.7 Comparison of nonlinear coefficients misalignments (perfect h) 
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Fig. 4.8 Comparison of residual echo power (perfect h) 
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Fig. 4.9 Comparison of linear coefficients misalignments (perfect a) 
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Fig. 4.10 Comparison of residual echo power (perfect a) 
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4.2.2 Convergence rate using orthogonal bases  

 We compare the residual echo convergence rates of the nonlinear processor using 

orthogonal and non-orthogonal basis as given in Section 2.4. Convergence rate 

improvement using the orthogonal basis is considered, and simulations are performed 

under perfect linear coefficients. The residual echo powers for a uniformly distributed 

input to 4 different polynomial bases nonlinear processors are shown in Fig. 4.11. 
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Fig. 4.11 Residual echo powers for uniform input (perfect h) 

As for a Gaussian and Laplacian input signal, the simulations are shown in Fig.4.12 

and Fig. 4.13, respectively. 

According to Fig. 4.11, 4.12 and 4.13, the AEC with orthogonal polynomials 

indeed converges faster due to its smaller eigenvalue spread. The simulation results 

agree well with the eigenvalue spread analyses in Section 2.4. 
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Fig. 4.12 Residual echo powers for WGN input (perfect h) 
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Fig. 4.13 Residual echo powers for Laplacian input (perfect h) 
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At last, we observe the convergence rate when the nonlinear components do not 

have perfect orthogonality as discussed in Section 2.4.2. When the input signal is 

uniformly distributed, the convergence rates between four types of bases are shown in 

Fig. 4.11. In Table 2.6, the eigenvalue spreads are almost the same for uniform and 

Gaussian nonlinear polynomial bases; and the Laplacian one has the slowest 

convergence rate. 

Fig. 4.12 and 4.13 show the convergence rates using four types of polynomial 

bases when the input signal is Gaussian and Laplacian, respectively. From Fig. 4.11 to 

4.13, we can see that the orthogonal bases have faster convergence rate than 

non-orthogonal bases because of its reduced eigenvalue spread. The simulation results 

validate the theoretical analyses in Table 2.6. When the orthogonality is not perfectly 

matched between the input signal’s pdf and the nonlinear orthogonal polynomial basis, 

uniform and Gaussian orthogonal bases are effective for either uniform, Gaussian, and 

Laplacian input signals.  

 

4.2.3 Joint convergence rate using orthogonal bases 

 The word joint means that the NLMS algorithm updates both linear and 

nonlinear coefficients without either assumption of perfect linear or nonlinear 

coefficients. T joint convergence rates of residual echo powers are plotted from Fig. 

4.14 to Fig. 4.16. 

The joint residual echo power for uniformly distributed input signal is shown in 

Fig. 4.14. The nonlinear AEC with orthogonal basis has faster convergence rate. For a 

Gaussian and Laplacian input signal, the simulation results are shown in Fig. 4.15 and 

4.16, respectively.  

Comparing Fig. 4.11 and Fig. 4.14, we can see the joint residual echo power has 

slower convergence because its linear coefficients are unknown. Although joint 
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NLMS update algorithm has a slower convergence rate, the proposed nonlinear 

orthogonal AEC improves the convergence among these simulations without 

increased computation cost. 
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Fig. 4.14 Joint-residual echo power for uniform input 
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Fig. 4.15 Joint-residual echo power for Gaussian input 
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Fig. 4.16 Joint-residual echo power for Laplacian input 
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4.2.4 Convergence rate of a speech input 

 In this section we compare the performance between orthogonal bases and power 

series polynomials when the input signal is a real speech. The performance is 

measured by echo return loss enhancement (ERLE), defined as  
2

10 2

[ [ ]]( )  10 log
[ [ ]]

E y nERLE dB
E e n

=  

The comparisons of ERLE are shown in Fig. 4.17 when linear coefficients are error 

free. In Fig. 4.17, the Laplacian type orthogonal basis is used and it has better 

performance than power series even the input is a real speech signal.  

In the case of joint adaptation, the average joint-ERLE using different orthogonal 

bases are given in Table 4.1. We can see that the Laplacian type orthogonal basis has 

slightly better performance than the others. This is well known fact a speech signal 

has a Laplacian probability distribution as shown in Fig. 4.18. 
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Fig. 4.17 ERLE for a true speech input signal with perfect linear coeff. 
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Table 4.1 Average joint-ERLE(dB) comparison for a speech input signal 

AEC type Linear Nonlinear 

Non orthogonal Orthogonal 
Nonlinear basis 

 

Power series Uniform WGN Laplacian 

Average ERLE 10.2 10.5 10.7 10.6 10.9 
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Fig. 4.18 Histogram of input speech 

 

4.2.5 Convergence rate of dual loudspeakers system 

In this section we examine the theoretical analyses in Section 2.5 and compare its 

convergence rate with that of one loudspeaker system. Two echo paths corresponding 

to loudspeaker 1 and 2 are plotted in Fig. 4.2 and 4.3 respectively. The I/O nonlinear 

characteristics of two loudspeakers are given in Fig 4.4 and 4.5. The parameters of 

adaptive filter are the same as earlier.  
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First, we examine (2.5.4) in Section 2.5 with uniform input and perfect linear 

coefficients. The uniform type orthogonal basis is used for nonlinear processor. The 

simulation results of nonlinear coefficients and its residual echo power convergence 

rates are shown in Fig. 4.19 and 4.20. According to the simulations, we confirm that 

the convergence analysis in one loudspeaker can be easily extended to dual 

loudspeakers case. 

Compared with Fig. 4.7 and 4.8, the system with dual loudspeakers has slower 

convergence rate and worse steady state. From the nonlinear AEC1 viewpoint, the 

microphone signal picked up from the 2nd echo path can be viewed as a background 

noise source. Therefore, each nonlinear AEC in dual loudspeakers system has more 

noise sources than single loudspeaker system; consequently, the convergence rate 

becomes slower. 

Next, we examine the joint residual echo for orthogonal and non-orthogonal 

bases. As show in Fig. 4.21, the nonlinear processor with uniform orthogonal basis 

has faster convergence rate. According to Section 4.2, the proposed orthogonal basis 

can be used in either single or dual loudspeaker to enhance the convergence rate. 
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Fig. 4.19 Nonlinear coefficients misalignments for dual loudspeakers 
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Fig. 4.20 Residual echo power for dual loudspeakers (perfect h’s) 



 

 69

0 1 2 3 4 5 6 7 8

x 104

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0
Joint residual echo power

Number of iterations 

dB
 

orthogonal basis power-series

 

Fig. 4.21 Joint residual echo power for dual loudspeakers 
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4.3 TS-based coefficients estimation 

 In this section the coefficients are estimated by using training sequences. In 

Section 4.3.1, we examine the theoretical analyses. In Section 4.3.2, we show the 

simulation results in case of joint estimation. In Section 4.3.3, we compare the 

training method with NLMS adaptive filter.  In Section 4.3.4, we use two TS’s to 

train the coefficients for dual loudspeakers. In the following simulation the power 

series basis is used in the nonlinear processor. The orthogonal basis has similar result. 

 

4.3.1 Convergences of linear TS coefficients and residual TS echo power 

 In this section we use the white uniformly distributed sequence to train the linear 

coefficients. With 5 dB SNR and the assumption of perfectly known nonlinear 

coefficients, the linear coefficients convergence is shown in Fig. 4.22 where the 

theoretical curve is plotted from (3.4.6). 
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Fig. 4.22 Comparison of linear TS coeff. misal. (SNR=5 dB, perfect nonlinear coeff.) 
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In Fig. 4.22, we do not show the steady states which can be achieved only 

when n →∞ . The convergence curve is inversely proportional of the iteration number. 

The residual echo power is only a scaled version of Fig. 4.22 as plotted in Fig. 4.23, 

we only show that residual echo term in error signal e[n] therefore the performance is 

not bounded by the background noise. Both curves show that our theoretical analyses 

are valid. 
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Fig. 4.23 Comparison of residual linear TS echo power (SNR=5 dB)  

 

Next, we show the simulation result of nonlinear coefficients and its residual echo 

power in Fig. 4.24 and Fig. 4.25, respectively. In Fig. 4.25, we have faster 

convergence rate than Fig. 4.23 due to the assumption of perfect linear coefficients. 

Both show that our analyses are correct and optimum solution can be achieved 

when n →∞ .  
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Fig. 4.24 Comparison of nonlinear TS coeff. misal. (SNR=5 dB, perfect linear coeff.) 
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Fig. 4.25 Comparison of residual nonlinear TS echo power (SNR=5 dB) 
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4.3.2 Joint TS convergence rate 

Now the assumption of perfectly known nonlinear coefficients is discarded. The 

joint linear coefficient and residual echo power convergences are given in Fig. 4.26 

and 4.27. By comparing Fig. 4.26 and Fig. 4.22; the simulation results are almost 

identical. In Fig. 4.27, the joint residual echo power is slightly inferior to the case of 

perfect nonlinear coefficients. According to both simulations, the nonlinear 

coefficients estimation error has less effect on linear coefficients and residual echo 

power. 

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

-25

-20

-15

-10

-5

0

5

Number of iterations 

 d
B

Joint linear coefficients misalignment

simulation

 

Fig. 4.26 Joint linear coefficients misalignment for training method (SNR=5 dB) 
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Fig. 4.27 Joint residual echo power for training method (SNR=5 dB) 

 

4.3.3 Joint residual echo comparison of TS and NLMS algorithms 

In this section we compare the training method with NLMS-adaptive filter. The 

joint residual echo is shown in Fig. 4.28 when SNR is equal to 10 dB. The 

convergence rate of the NLMS adaptive filter is dependent on the step size, thus we 

use two sets of step size, 0.05,  0.05,  and 0.25,  0.1.a h a hμ μ μ μ= = = =   
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Fig. 4.28 Joint residual echo power comparison of NLMS and TS (SNR=10 dB) 

The training method has better steady state performance than the NLMS method 

since its convergence rate is in inversely proportional to the iteration number as 

indicated in (3.4.8). As for NLMS, its performance is bounded by the background 

noise. Although the adaptive filter has faster convergence rate at the beginning of 

iteration, but its steady state performance is poorer as a tradeoff. 

Next in Fig. 4.29 and 4.30, comparisons are made when SNR is equal to 5 dB 

and 0 dB, respectively. TS convergence rate is relatively insensitive to SNR variations, 

except for a bias due to the noise. This is the main advantage of the training method. 

Again, the training is preferable than NLMS adaptive filter at low SNRs. 
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Fig. 4.29 Joint residual echo power comparison of NLMS and TS (SNR=5 dB) 
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Fig. 4.30 Joint residual echo power comparison of NLMS and TS (SNR=0 dB) 

 

 



 

 77

4.3.4 Training Sequences for dual loudspeakers system 

We will examine the analyses in Section 3.6 and compare the joint residual echo 

powers of TS and NLMS algorithms. First, in Fig. 4.31, the simulated residual echo 

power is plotted and compared with the theoretical curve from (3.6.4). It shows that 

the modification of one loudspeaker theoretical curve is correct, which can be 

extended to dual loudspeakers case.  
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Fig. 4.31 Comparison of residual echo powers for dual loudspeakers and training 

method (SNR=5 dB) 

 

Next, the joint residual echo power comparison for TS and NLMS are shown in 

Fig. 4.32. Compared with one loudspeaker case, the performance is worse at same 

SNR condition since two echoes signals can affect each other as noise sources.  
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Fig. 4.32 Comparison of joint residual echo powers for dual loudspeakers for TS and 

NLMS (SNR=5 dB) 

 

4.4 Experiments with a real echo path  

  

So far, for simplicity, we only consider that the nonlinear AEC with an artificial 

room impulse response and nonlinear loudspeaker. For practice use, we pass the 

signal through a real nonlinear loudspeaker, a room impulse response, and then pick 

up the signal from a microphone. The equipment includes a personal computer with a 

low-cost 2.5 inch diameter desktop loudspeaker and a Creative-MC1000 microphone. 

We put the loudspeaker above the microphone about 4 inches, to emulate the set-up of 

a cell phone. Both the loudspeaker and microphone are positioned toward the wall 3.3 

feet away. We show the performances of different AEC structures, which are linear 

AEC, power series type nonlinear AEC, Laplacian type nonlinear AEC, and the 
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sigmoid type nonlinear AEC. The far-end speech input signal and the microphone 

output signal are shown in Fig. 4.33. 
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Fig. 4.33 The speech input and its microphone output signal 

The speech signal is sampled with 8 KHz sampling rate and 16 bits/samples. 

Here, we choose 3 different lengths of linear filter, which are1024, 512 and 256, and 

the nonlinear filter order is equal to 5, with the even order excluded. The step sizes 

h a and μ μ of linear and nonlinear filter are equal to 0.5. The sigmoid function is given 

by 

2
1 exp( )[ ] ( -1)xx αϕ β+ −= . 

We use the NLMS algorithm to update and α β  in the sigmoid function which has 

been introduced in [6, Ch 17]. The step sizes are 0.5 which are chosen to keep the 

system stable. 

As seen from the input signal, the nonlinear distortion arises between 25K and 
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30K samples. Thus, the nonlinear AEC has better performance than the linear AEC 

during this period. We show the ERLE between linear and nonlinear AECs in Fig.4.34 

when linear filter order is equal to 1024 and the Laplacian type basis is used in the 

nonlinear AEC. The nonlinear AEC has about 3 to 5 dB ERLE gain over the linear 

AEC. The ERLE using different linear filter lengths are shown in Table 4.2 and the 

nonlinear coefficients for each AEC are listed in Table 4.3. 
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Fig. 4.34 ERLE comparison between linear and nonlinear AEC for a true echo path 
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Table 4.2 Average ERLE comparison between different linear filter lengths for true 

echo path 

0

2

4

6

8

10

12

14

Average ERLE

(dB)

256 512 1024
M

Linear 8.1 8.4 7.9

Nonlinear_Sigmoid 8.8 9.5 9.5

Nonlinear_Power series 9.8 11.2 11.5

Nonlinear_Laplacian 10.7 12.1 12.4

256 512 1024

 

 

Table 4.3 Nonlinear coefficients for each AEC with different linear orders 

 Linear 

[a1] 

Nonlinear 
(Sigmoid) 

[  ]α β  

Nonlinear 
(Power series) 

[a1 a3 a5] 

Nonlinear 
(Laplacian type)

[a1 a3 a5] 

1024 [0.9] [2.53 -1.57] [1.23 -1.33 -0.5] [1.3 -2.19 0.52] 

512 [0.96] [2.53 -1.52] [1.24 -1.57 -0.59] [1.3 -2.25 0.54] 

256 [0.9] [2.57 -1.54] [1.06 -1.76 -0.63] [1.14 -2.21 0.55]

 

In Fig. 4.35 we examine the performance of different nonlinear orders for a 

1024th order linear FIR and power series basis nonlinear processor. 

AEC 
M 
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Fig. 4.35 Average ERLE comparison of different nonlinear orders 

 

Next, we compare the performances of TS and NLMS algorithms for a real echo 

path. In this experiment, 5th power series basis is used and the number of FIR is equal 

to 256. We show the average ERLE in Table 4.3. The steady state of training method 

is about 7dB, which is different from the theoretical analysis. One possible 

explanation is as follows. The optimum coefficients can be achieved for training 

method only for a perfect white signal. In this simulation, the loudspeaker may not be 

memoryless thus the optimum coefficients can not be achieved.  

 

Table 4.4 Average ERLE comparison of NLMS and TS methods for a true echo path 

 NLMS adaptive filter Training method 
Average ERLE 14.9dB 7.7dB 

 

Finally, we check the performance in a noisy environment such as the car cabin. Now 

we add a background interference speech (i.e., double talk) to the microphone output 

signal. The performances at different SNRs (signal to interference ration) are shown 

in Fig. 4.36. The NLMS algorithm heavily depends on the SNR conditions; its 
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adaptive filter will diverge when SNR is below 3 dB. By contrast, the training method 

is more robust to noise and/or double talk.  
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Fig. 4.36 Average ERLE comparison at different SNRs 
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Chapter 5 
Conclusions 
 

In this thesis we have proposed the orthogonal basis polynomials for nonlinear 

AEC. For either uniform, Gaussian and Laplacian inputs, the simulation results agree 

well with theoretical curves. Convergence rate analysis indicates that a smaller 

eigenvalue spread is closely related to the correlation between polynomials bases. The 

proposed orthogonal basis does not incur more computation cost and has better 

performance (smaller eigenvalue spread) than conventional power-series basis, even 

in case of imperfect orthogonality. The proposed basis can also improve the 

convergence rate for dual loudspeakers system. 

 We also proposed and analyzed the coefficients estimation based on a training 

sequence. It can achieve the optimum solution thus it has better steady state 

performance than the NLMS adaptation algorithm under the same computational 

complexity. Although the TS algorithm can not use the step size to control its 

convergence rate, but its non-error feedback structure has more resistance against 

noise, especially at low SNR. Finally, the training method can also be used in dual 

loudspeakers case. 

 From the experiment of a real speech into a real echo path, we know that the 

proposed nonlinear processor structure has better performance than a linear AEC. In 

case of a large noise or double talk, the NLMS adaptive filter diverges; the training 

method has its advantage in such noisy environment. 

 The future work includes study on a computation-effective AEC structure for 

dual loudspeakers, one AEC to cancel two echo path echoes signals and its 

convergence rate.
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Appendix  
 
 In this appendix, we will give the detailed the mathematical derivation in (3.5.1) 

The covariance matrix of [ ]a nε  can be written as  

[ [ ] [ ]]T
a aE n nε ε  

2
,1 ,1 ,3 ,1 ,5

2
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a a a a a

a a a a a

a a a a a

E n E n n E n n
E n n E n E n n
E n n E n n E n

ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

3 3 5

5

1

T
xd

T T T T T
x d xd x d x dodd odd

T
x d

− −

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

h R

G h R h R h R h R G

h R

 

3 5

3 3 3 3 5

5 5 3 5 5

1

T T T T T T
xd xd xd x d xd x d

T T T T T T T
x d xd x d x d x d x dodd odd

T T T T T T
x d xd x d x d x d x d

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

h R h R h R h R h R h R

G h R h R h R h R h R h R G

h R h R h R h R h R h R

         (A.1) 

[ ]1 E T
odd odd

− −= +G SME N G                                      (A.2) 

where 

1
3 5

1 3 5

1 [ ] [ ],   

[ ] [ ] [ ] [ ] [ ].

n
T

xd
i

T T T

i d i
n

d i a i a i a i v i
=

=

= + + +

∑R h x

h x h x h x
 

 

First, by the law of superposition we let the noise term [ ] 0v i = , noise effect EN  in 

(A.2), is equal to a zero matrix. First, the sample mean estimation error term,SME . 

T T
xd xdh R h R  in SME  is given by  
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where the first term in (A.3) is 
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Therefore (A.4) is found as sum of (A.5) and (A.6), 
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Similarly, the other terms in (A.3) is 



 

 87

1 1
2 3 2 2 2 28
3 32

1 0 0

1 ( [ ] [ ] )
T

n M M
T

i j
i i j

ma E i i a h h
n n

− −

= = =

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑∑h x x h                      (A.8) 

1 1
2 5 2 2 2 212
5 52

1 0 0

1 ( [ ] [ ] )
T

n M M
T

i j
i i j

ma E i i a h h
n n

− −

= = =

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑∑h x x h                      (A.9) 

1 1
3 2 26

1 32
1 0 0

2 ( [ ] [ ] )( [ ] [ ] ) 2
T

n M M
T T T

i j
i i j

mE i i i i a a h h
n n

− −

= = =

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑∑h x x h h x x h          (A.10) 

1 1
5 2 28

1 52
1 0 0

2 ( [ ] [ ] )( [ ] [ ] ) 2
T

n M M
T T T

i j
i i j

mE i i i i a a h h
n n

− −

= = =

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑∑h x x h h x x h          (A.11) 

1 1
3 5 2 210

3 52
1 0 0

2 ( [ ] [ ] )( [ ] [ ] ) 2
T T

n M M
T T

i j
i i j

mE i i i i a a h h
n n

− −

= = =

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑∑h x x h h x x h         (A.12) 

According to the equations from (A.4) to (A.12),  
T T

xd xdh R h R  
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Similarly, the other term in (A.1) can be found by the same procedures are 
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Thus, SME  in (A.2) is given as 
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Next we discuss the effect of the noise term, EN . In this case the desired signal [ ]d i  

only contains the background noise [ ]v i , thus, T T
xd xdh R h R  in (A.1) can be found by  
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Similarly, the other terms in (A.1) are 
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therefore, in case of [ ]d i [ ]v i= , the noise term EN is  
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(A.15) is simpler than (A.14), therefore, when 0=SME  (A.2) can be written as 
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thus, the coefficients error due to background noise is  
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