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擴展式二重濾波器及三階橫斷式濾波器 
 

學生：紀佩綾                           指導教授：張志揚 博士 

 
 

國立交通大學電信工程學系 

 

摘     要 

 

本論文基於解析濾波器的結構及針對合成、診斷濾波器的電子參數（也就是

耦合矩陣）之電腦輔助設計提出了一套快速實現濾波器的方法。這種設計過程可

以避免花費大量的時間在電路的調整上。 

在擴展式二重濾波器(extended doublet filter)的架構下，我們實現了二種不同

需求的濾波器電路。其中一個是為了擁有高度選擇性，而另一個則是針對在通帶

具有平坦的群延遲響應。群延遲已經被證明和訊號的失真有關。如同展示在論文

中的數據，我們成功地消除了將會使群延遲表現變差的非預期耦合，而量測的結

果更證實了讓通帶的群延遲變化小於 0.5 奈秒的可行性。 

對於三階的橫斷式濾波器(transversal filter)，我們建立一套快速估計相關電

路參數的法則。我們定義了一個新參數-特性阻抗的比例，並且發現了它在實現

濾波器的重要性。這個方法只需少次數的疊代計算，此歸因於它的快速收斂特

性。在數值分析及量測結果高度一致下，更驗證了這個方法的實用及有益性。 

為了要配合現今通訊系統的需求，我們讓這些濾波器都設計在中心頻 2.4 千

兆赫，以便可以容易的整合在 IEEE 802.11 b/g、ISM 和藍芽的系統中。 
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Abstract 

 

This thesis presents the fast realization of filter configurations based on 
analytical analysis of the proposed structures and CAD method for synthesis and 
diagnosis of the electrical parameters of the filter, i.e., the coupling matrix. The design 
procedures avoid consuming large amount of time in circuit tuning. 

 
 In the extended doublet coupling scheme, we realize two categories of filter 
requirements. One is for high skirt selectivity. The other is for in-band flat group delay, 
which has been demonstrated in association with the signal distortion. As exhibited in 
the thesis, we successfully eliminate the unwanted coupling that would degrade the 
performance of in-band group delay. The measured data validate the possibility with 
the variation of in-band group delay less than 0.5 ns. 
 
 As for the 3rd-order transversal filter, we establish an algorithm for quick 
estimation of the related electrical parameters to be determined. We define a new 
parameter, the impedance ratio r , and observe its importance in realization of the 
filter. This algorithm only involves a few of iterations due to its fast convergence. 
Good agreement between analytical computation and measured results indicates that 
such approach is practical and useful. 
 
 In order to meet the requirement in nowadays communication systems, we 
design these filters with center frequency at 2.4 GHz for easy integration in the 
environments of IEEE 802.11 b/g, ISM, and Bluetooth standards. 
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Chapter 1   Introduction 
 

 

 Although filter design theory has been well established, one systematic approach 

based on numerical computation, which aids to accelerate the implementation of the 

desired filter structure, is still far to complete. Over the last decades, many scholars 

and researchers have intended to diagnose the filter with numerical analysis from the 

coupling matrix [1]-[6]. By developing the relationship between the electrical 

parameters (each element in the coupling matrix) and the physical parameters in the 

configuration [7], it is simple to realize the filter in no time. In this thesis, we devise 

filter structures with the help from numerical syntheses and diagnoses, and the design 

flow based on that method would be described in detail. 

 High performance microstrip filters with high selectivity and linear in-band 

phase response has been investigated extensively for the demanding requirement in 

communication systems. Some well-known topologies such as cascade quadruplet 

 
Figure 1.1   (a) Typical coupling structure of CQ filters. (b) Typical coupling 
structure of CT filters. 
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(CQ) and cascade trisection (CT) have been successfully realized using microstrip. 

Figure 1.1 illustrates typical coupling structures of CQ and CT filters, where each 

node represents a resonator, the solid lines indicate the main coupling path, and the 

broken lines denote the cross coupling. ijM  is the coupling coefficient between the 

resonators i  and j , and 1eQ and enQ  are the external quality factors in association 

with the input and output coupling, respectively. However, compared with the 

conventional CQ topology, the coupling scheme of the extended doublet proposed in 

this paper has the superior properties to that one [8]. 

 

 
Figure 1.2   The coupling and routing scheme of the extended doublet. 

 

 Traditional quadruplet section is restricted to generate two symmetric 

transmission zeros (TZs) either in the real or imaginary axis [9]. The extended doublet 

has the flexibility of exhibiting both symmetric and asymmetric responses. Another 

important feature is the fact that when moving the TZs in the complex plane, the signs 
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of all coupling coefficients in the matrix remain unchanged. It implies that we can 

realize filter specification with skirt selectivity (TZs at the real frequency axis) or 

linear phase response (TZs at the real axis of the complex plane) [10] in the same 

structure by only adjusting the relative magnitudes in the corresponding coupling 

coefficients. In this thesis, we demonstrate that the extended doublet has better 

in-band phase response than that of the quadruplet. Furthermore, the extended doublet 

is only a 3rd-order filter and thus may result in less loss with the same number of TZs 

as a CQ filter. Figure 1.2 shows the coupling and routing scheme of the extended 

doublet. 

 Transversal filters are one of the simplest building blocks for generating the 

finite TZs, especially for the second-order case (i.e., doublet). Many papers have used 

these coupling schemes for filter implementations [11], [12], but not yet developed 

any analytical approach to systematically practice the transversal filters. We have 

attempted to establish one algorithm contributing to the fast realization of the 

3rd-order transversal filter and successfully validate the possibility of such method 

from the simulation solver and experiment. Also, sensitivity analysis has been 

incorporated in the design procedure and that issue has attracted some researchers to 

pay attention to [13], [14]. Sensitivity determination is an important step regarding the 

manufacturing tolerance. From these sensitivities, acceptable bounds on the errors in 

the entries of the coupling matrix can be determined before an attempt is made to 

implement the network. Based on these results, the actual implementation can be 

either pursued or abandoned. 

 The operating frequency of the proposed filter configurations is chosen at 2.4 

GHz for accommodating these devices to the frequency usage of nowadays 

communication standards, such as the ISM band, IEEE 802.11 b/g, and Bluetooth 

wireless technology. In consideration of the ease of fabrication and low cost, the 
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entire circuits were fabricated on the printed circuit board (PCB) with dielectric 

constant rε  of 10.2 and thickness of 25 mil. 
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Chapter 2   Theory 
 

 

2.1 General Coupling Matrix for Coupled-Resonator Filters 

 

2.1.1 Loop Equation Formulation [1] 

 

 
Figure 2.1.1   Equivalent circuit of n-coupled resonators for loop-equation 
formulation. 

 

Shown in Figure 2.1.1 is an equivalent circuit of n-coupled resonators, which 

includes the inductors, resistors, and capacitors. se  represents the voltage source and 

ijM  (as will be explained clearly later) denotes the coupling coefficient between 

resonators i  and j . Using the voltage law, which is one of Kirchhoff’s two circuit 

laws and states that the algebraic sum of the voltage drops around any closed path in a 

network is zero, we can write down the loop equations for the circuit of Figure 2.1.1 
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in which ij jiL L=  represents the mutual inductance between resonators i  and j , 

and the all loop currents are supposed to be in the clockwise direction. This set of 

equations can be represented in the matrix form 
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 (2.2) 

or 

 

where [Z] is an n n×  impedance matrix. 

 For simplicity, let us first consider a synchronously tuned filter. In this case, all 

resonators resonate at the same frequency, namely the mid-band frequency of filter 

0
1

LC
ω = , where 1 2 nL L L L= = =L and 1 2 nC C C C= = =L . The impedance 

matrix in (2.2) can be expressed by 

[ ] [ ]0Z L FBW Zω
−

= ⋅ ⋅                       (2.3) 

where 
0

FBW ω
ω= Δ  is the fractional bandwidth of the filter, and [ ]Z

−

 is the 

normalized impedance matrix, which in the case of synchronously tuned filter is given 

by 
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FBW

ωω
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the complex lowpass frequency variable. It should be noticed that 

0
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1eQ  and 2eQ  are the external quality factors of the input and output resonators, 

respectively. Define the coupling coefficient as 

ij
ij

L
M

L
=                            (2.6) 

and assuming 
0

1ω
ω ≈  for a narrow-band approximation, we can simplify (2.6) as 
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where 2eq  and 2eq  are the scaled external quality factors 

         for  1, 2ei eiq Q FBW i= ⋅ =                 (2.8) 

and ijm  denotes the so-called normalized coupling coefficient 

ij
ij

M
m

FBW
=                           (2.9) 

In the case that the coupled-resonator circuit of Figure 2.1.1 is asynchronously tuned, 

and the resonant frequency of each resonator, which may be different, is given by 
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0
1

i
i iL C

ω = , the coupling coefficient of asynchronously tuned filter is defined as 

           for  ij
ij

i j

L
M i j

L L
= ≠                 (2.10) 

It can be shown that (2.7) becomes 
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       (2.11) 

The normalized impedance matrix of (2.11) is almost identical to (2.7) except that it 

has the extra entries iim  to account for asynchronous tuning. Finally, we could have 

a unified formulation for a n -coupled resonator filter regardless of whether the 

couplings are magnetic or electric or even the combination of both. The normalized 

impedance matrix [ ]Z
−

 (or the normalized admittance matrix [ ]Y
−

) may be expressed 

as a general one: 

[ ] [ ] [ ] [ ]A q p U j m= + −                     (2.12) 

where [ ]U  is the n n×  identity matrix, [ ]q  is an n n×  matrix with all entries 

zero, except for 11
1

1
e

q q=  and 
2

1
nn

e
q q= , [ ]m  is the so-called general coupling 

matrix, which is an n n×  reciprocal matrix (i.e., ij jim m= ) and is allowed to have 

nonzero diagonal entries iim  for an asynchronously tuned filter. 

 

2.1.2 Mathematical Definition of the Coupling Coefficient and Its 

Physical Explanation [1] 

 

 In general, the coupling coefficient of coupled RF/microwave resonators, which 
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can be different in structure and can have different self-resonant frequencies (see 

Figure 2.1.2), may be defined on the basis of the ratio of coupled energy to stored 

energy, i.e., 

1 2 1 2

2 2 2 2

1 2 1 2

E E dv H H dv
k

E dv E dv H dv H dv

ε μ

ε ε μ μ

− − − −

− − − −

• •
= +

× ×

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫
     (2.13) 

where E
−

 and H
−

 represent the electric and magnetic field vectors, respectively, and 

we now use the more traditional notation k  instead of M  for the coupling 

coefficient. Note that all fields are determined at resonance, and the volume integrals 

are over all affected regions with permittivity of ε  and permeability of μ . The first 

 
Figure 2.1.2   General coupled RF/microwave resonators where resonator 1 and 2 
can be different in structure and have different resonant frequencies. 

 

term on the right-hand side represents the electric coupling and the second term the 

magnetic coupling. It should be remarked that the interaction of the coupled 

resonators is mathematically described by the dot operation of their space vector 

fields, which allows the coupling to have either positive or negative sign. A positive 

sign would imply that the coupling enhances the stored energy of uncoupled 

resonators, whereas a negative sign would indicate a reduction. Therefore, the electric 
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and magnetic coupling could either have the same effect if they have the same sign, or 

have the opposite effect if their signs are opposite. Obviously, the direct evaluation of 

the coupling coefficient from (2.13) requires knowledge of the field distributions and 

performance of the space integrals. 

 

2.2 Lowpass Prototype Filters and Frequency/Element 

Transformation 

 

2.2.1 Lowpass Prototype Filters and Elements [1], [15], [16] 

 

 A lowpass prototype filter is in general defined as the lowpass filter whose 

element values are normalized to make the source resistance or conductance equal to 

one, denoted by 0 1g = , and the cutoff angular frequency to be unity, denoted by 

1cΩ =  (rad/s). For example, Figure 2.2.1 demonstrates two possible forms of an 

n-pole lowpass prototype for realizing an all-pole filter response, including 

Butterworth, Chebyshev, and Gaussian responses. Either form may be used because 

both are dual from each other and give the same response. It should be noted that in 

Figure 2.2.1, ig  for i  to n  represent either the inductance of a series inductor or 

the capacitance of a shunt capacitor; therefore, n  is also the number of reactive 

elements. If 1g  is the shunt capacitance or the series inductance, then 0g  is defined 

as the source resistance or the source conductance. Similarly, if ng  is the shunt 

capacitance or the series inductance, 1ng +  becomes the load resistance or the load 

conductance. Unless otherwise specified these g-values are supposed to be the 

inductance in henries, capacitance in farads, resistance in ohms, and conductance in 

mhos. 
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Figure 2.2.1   Lowpass prototype filters for all-pole filters with a ladder network 
structure and its dual. 

 

This type of lowpass filter can be served as a prototype for designing many 

practical filters with frequency and element transformations. This will be addressed in 

the next section. 

 

2.2.2 Immittance Inverters [1], [15], [16] 

 

 Immittance inverters are either impedance or admittance inverters. An idealized 

impedance inverter is a two-port network that has a unique property at all frequencies, 

i.e., if it is terminated in an impedance 2Z  on one port, the impedance 1Z  seen 

looking in at the other port is 
2

1
2

KZ
Z

=                           (2.14) 

where K  is real and defined as the characteristic impedance of the inverter. As can 

be seen, if 2Z  is inductive/conductive, 1Z  will become conductive/inductive. 
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Impedance inverters are also known as K -inverters. The ABCD matrix of ideal 

impedance inverters may generally be expressed as 

    0        
   

1         0   

jK
A B
C D

jK

⎡ ⎤
⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥±⎣ ⎦ ⎢ ⎥⎣ ⎦

m

                    (2.15) 

Likewise, an ideal admittance inverter is a two-port network that exhibits such a 

property at all frequency that if an admittance 2Y  is connected at one port, the 

admittance 1Y  seen looking in the other port is 
2

1
2

JY
Y

=                           (2.16) 

where J  is real and called the characteristic admittance of the inverter. Admittance 

inverters are also referred as J -inverters. In general, ideal admittance inverters have 

the ABCD matrix 

10         
   

    0

A B
jJ

C D
jJ

⎡ ⎤±⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦m

                    (2.17) 

 An ideal immittance inverter is a lossless, reciprocal, frequency-independent, 

two-port network. As indicated, inverters have the ability to shift impedance or 

admittance levels depending on the choice of K  or J  parameters. Making use of 

these properties enables us to convert a filter circuit composed of the ladder network 

to an equivalent form with immittance inverters incorporated that would be more 

convenient for implementation. 

 For example, the two common lowpass prototype structures in Figure 2.2.1 may 

be converted into the forms shown in Figure 2.2.2. 
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Figure 2.2.2   Lowpass prototype filters modified to include immittance inverters. 

 

2.2.3 Frequency and Element Transformations [1], [15], [16] 

 

 So far, we have only considered the lowpass prototype filters, which have a 

normalized source resistance/conductance 0g =1 and cutoff frequency cΩ =1. To 

obtain frequency characteristic and element values for practical filters based on the 

lowpass prototype, one may apply frequency and element transformation, which will 

be addressed in this section. 

 The frequency transformation, which is referred to as frequency mapping, is 

required to map a response such as Chebyshev response in the lowpass prototype 

frequency domain Ω  to that in the frequency domain ω  in which a practical filters 

response such as lowpass, highpass, bandpass, and bandstop. The frequency 

transformation will have an effect on all the reactive elements accordingly, but no 

effect on the resistive elements. 

 In addition to the frequency mapping, impedance scaling is also required to 

accomplish the element transformation. The impedance scaling will remove the 0g =1 
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normalization and adjust the filter to work for any value of the source impedance 

denoted by 0Z . For our formulation, it is convenient to define an impedance scaling 

factor 0γ  as 

0
0

0

0
0

0
0

being  the resistance

being  the conductance

        for g

        for g

Z
g

g
Y

γ
⎧
⎪
⎨
⎪
⎩

=              (2.18) 

where 0
0

1Y Z=  is the source admittance. In principle, applying the impedance 

scaling upon a filter network in such a way that 

0

0

0

0

L L
CC

R R
GG

γ

γ
γ

γ

→

→

→

→

                           (2.19) 

has no effect on the response shape. 

 Assume that a lowpass prototype response is to be transformed to a bandpass 

response having a passband 2 1ω ω− , where 1ω  and 2ω  indicate the passband-edge 

angular frequency. The required frequency transformation is 

0

0

c

FBW
ωω

ω ω
⎛ ⎞Ω

Ω = −⎜ ⎟
⎝ ⎠

                      (2.20a) 

with 

2 1

0

0 1 2

FBW
ω ω
ω

ω ω ω

−
=

=

                        (2.20b) 

where 0ω  denotes the center angular frequency and FBW  is defined as the 

fractional bandwidth. If we apply this frequency transformation to a reactive element 

g  of the lowpass prototype, we have 

0

0

1c cg g
j g j

FBW j FBW
ω

ω
ω ω

Ω Ω
Ω → +                  (2.21) 
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which implies that an inductive/capacitive element g  in the lowpass prototype will 

transform to a series/parallel LC  resonant circuit in the bandpass filter. The 

elements for series LC  resonator in the bandpass filter are 

0
0

0 0

1

c
s

s
c

L g
FBW

FBWC
g

γ
ω

ω γ

⎛ ⎞Ω
= ⎜ ⎟
⎝ ⎠
⎛ ⎞

= ⎜ ⎟Ω⎝ ⎠

 for g representing the inductance    (2.22a) 

where the impedance scaling has been taken into account as well. Similarly, the 

element for parallel LC  resonator in the bandpass filter are 

0 0

0

0

c
p

p
c

gC
FBW

FBWL
g

ω γ

γ
ω

⎛ ⎞Ω
= ⎜ ⎟
⎝ ⎠
⎛ ⎞

= ⎜ ⎟Ω⎝ ⎠

 for g representing the capacitance    (2.22b) 

The frequency/element transformation in this case is shown in Figure 2.2.3. 

 

 
Figure 2.2.3   Lowpass prototype to bandpass transformation: basic element 
transformation. 

 

 Since, ideally, immittance inverter parameters are frequency invariable, the 
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lowpass filter networks in Figure 2.2.2 can easily be transformed to the bandpass filter 

networks by applying the element transformations described in this section. For 

instance, Figure 2.2.4 illustrates two bandpass filters using immittance inverters. 

 
Figure 2.2.4   Bandpass filters using immittance inverters. 

 

 Two important generalizations, shown in Figure 2.2.5, are obtained by replacing 

the lumped LC  resonators by distributed circuits [17]. Distributed circuits can be 

microwave cavities, microstrip resonators, or any other suitable resonant structures. In 

the ideal case, the reactances or susceptances of the distributed circuits should equal 

those of the lumped resonators at all frequencies. In practice, they approximate the 

reactances or susceptances of the lumped resonators only near resonance. 

Nevertheless, this is sufficient for narrow band filter. For convenience, the distributed 

resonator reactance/susceptance and reactance/susceptance slope are made equal to 

their corresponding lumped-resonator values at band center. For this, two quantities, 

called the reactance slope parameter and susceptance slope parameter, respectively, 

are introduced. The reactance slope parameter for resonators having zero reactance at 

center frequency 0ω  is defined by 



 17

( )0
02

dX
x

d ω ω
ωω
ω ==                       (2.23) 

where ( )X ω  is the reactance of the distributed resonator. In the ideal case, the 

susceptance slope parameter for resonators having zero susceptance at center 

frequency 0ω  is defined by 

( )0
02

dB
b

d ω ω
ωω
ω ==                       (2.24) 

where ( )B ω  is the susceptance of the distributed resonator. It can be shown that the 

reactance slope parameter of a lumped LC  series resonator is 0 Lω , and the 

susceptance slope parameter of a lumped LC  parallel resonator is 0Cω . Thus, 

replacing 0 siLω  and 0 piCω  with the general terms ix  and ib , as defined by (2.23) 

and (2.24), respectively, results in the corresponding values for the distributed circuits 

shown in Figure 2.2.5. 

 
Figure 2.2.5   Generalized bandpass filters (including distributed elements) using 
immittance inverters. 

 

2.3 The Governing Equations of the Two-Port Network, and 

the Relationship between Coupling Coefficients and 
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Resonant Frequencies/External Quality Factors 

 

2.3.1 The 2N +  Extended Coupling Matrix, Network 

Representation, and Governing Equations of the Network Circuit 

with N  Coupled Lossless Resonators [1], [2], [4] 

 

 It was mentioned in [3] that, although the polynomial synthesis procedure was 

capable of generating N  TZs for an N th-degree network, that a maximum of only 

2N −  finite-position zeros could be realized by the N N×  coupling matrix. This 

excluded some useful filtering characteristics, including those that required multiple 

input/output couplings, which have been finding applications recently [18]. 

 In this section, we introduce the 2N +  folded coupling matrix, which 

overcomes some of the shortcomings of the conventional N N×  coupling matrix. 

The 2N +  or “extended” coupling matrix has an pair of extra rows at top and 

bottom and an pair of extra columns at left and right. The extra rows and columns 

surround the “core” N N×  coupling matrix, which carry the input and output 

couplings from the source and load terminations to resonator nodes in the core matrix. 

The 2N +  matrix has two significant advantages, as compared with the 

conventional coupling matrix. 

 Multiple input/output couplings may be accommodated, i.e., couplings may 

be made directly from the source/load to internal resonators, in addition to 

the main input/output couplings to the first/last resonator in the filter circuit. 

 Fully canonical filtering functions, i.e., N th- degree characteristics with 

N  finite-position TZs may be synthesized. 

In the extended coupling matrix, [ ]A  in (2.12) can be expressed as 
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[ ] [ ]A U jR M= Ω − +                      (2.25) 

where [ ]R  is an ( 2) ( 2)N N+ × +  matrix whose nonzero entries are 

11 ( 2),( 2) 1N NR R + += = , [ ]U  is similar to the ( 2) ( 2)N N+ × +  identity matrix except 

11 ( 2),( 2) 0N NU U + += = , and [ ]M  is the ( 2) ( 2)N N+ × +  symmetric coupling 

matrix. 

A network representation of two-port n-coupled resonator filter is shown in 

Figure 2.3.1, where 1V , 2V  and 1I , 2I  are the voltage and current variables at the 

filter ports, and the wave variables are denoted by 1a , 2a , 1b , and 2b . After simple 

calculation, it can be shown that the scattering parameters are given by 

( )

( )

1
21 ( 2),1

1
11 11

2

1 2
N

S j A

S j A

−

+

−

⎡ ⎤Ω = − ⎣ ⎦

⎡ ⎤Ω = + ⎣ ⎦
                   (2.26) 

 
Figure 2.3.1   The network representation of the two-port n-coupled resonator filter. 

 

Now, we further relate the TZs in lowpass prototype to the 2N +  coupling 

matrix [19]. Since the transmission coefficient 21S  is directly proportional to 1A−⎡ ⎤⎣ ⎦ , 

the TZs can be found by letting 1

( 2),1N
A−

+
⎡ ⎤⎣ ⎦  equal to zero. From Linear Algebra, we 

know 

1 1 ( )
det( )

TA cof A
A

−⎡ ⎤ =⎣ ⎦                     (2.27) 
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where ( )cof A  is the matrix of cofactors from [ ]A . Therefore, the finite-position 

TZs are the roots of cofactor 1,( 2)NC +  of [ ]A . 

 

Design Example 

 
Figure 2.3.2   The coupling and routing scheme of the extended doublet. 

 

Table 2.3.1   Coupling matrix for the extended doublet. 

 S 1 2 3 L 

S  1SM  2SM    

1 1SM  Ω    1LM  

2 2SM   Ω  23M  2LM  

3   32M  Ω   

L  1LM  2LM    

(Only main coupling path included and in the synchronously tuned case) 



 21

 Since 23M = 32M , we can derive the TZs in the lowpass prototype that are 

located in the square roots of 
2

2 1 1 23

1 1 2 2

S L

S L S L

M M M
M M M M

Ω =
+

                   (2.28) 

From (2.28), it is easy to realize that by controlling the values of coupling coefficients 

between resonators or source/load and resonators, the TZs could be placed as desired. 

 

2.3.2 The Relationship between Coupling Coefficients and Resonant 

Frequencies/External Quality Factors [1], [7] 

 

The individual resonant frequency of each resonator in the circuit can also be 

established in association with the diagonal elements in the coupling matrix as 

follows: 

0 (1 )    for 1, ,
2

ii
i

M FBWf f i n•
= − = L                 (2.29) 

where FBW  and 0f  are the fractional bandwidth and center frequency of the filter, 

respectively. 

 Before developing the formulation for the normalized quality factor, we first 

introduce the typical input/output (I/O) coupling structures used for coupled resonator 

filter. Two common I/O coupling structures for coupled microstrip resonator filters, 

namely the tapped line and the coupled line structures, are shown with the microstrip 

open-loop resonator, though other types of resonators may be used (see Figure 2.3.3). 

For the tapped line coupling, usually a 50 ohm feed line is directly tapped onto the I/O 

resonator, and the coupling or the external quality factor is controlled by the tapping 

position t , as indicated in the left part of Figure 2.3.3. For example, the smaller is the 

t , the closer is the tapped line to a virtual grounding of the resonator, which results in 

a weaker coupling or a larger external quality factor. The coupling of the coupled line 
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structure in the right part of Figure 2.3.3 can be found from the coupling gap g  and 

the line width w . Normally, a smaller gap and a narrower line result in a stronger I/O 

coupling or a smaller external quality factor of the resonator. 

 

 
Figure 2.3.3   Typical I/O coupling structures for coupled resonator filters. Left part: 
tapped-line coupling. Right part: coupled-line coupling. 

 

For the quality factor of interest, we can derive that such formulae exist in the 

lowpass prototype 

, 2

, 2

1

1

ext S
Si

ext L
iL

q
M

q
M

=

=
 for resonator i  coupled with source or load  (2.30) 

 

2.4 Equivalent Expressions for Parallel Coupled-Lines Using 

Inverter [20] 

 

 Figure 2.4.1 shows the distributed coupling circuit applied to a stripline 

parallel-coupled BPF. The electric parameters of this circuit are expressed by even- 

and odd-mode impedance 0 0,e oZ Z , and electric coupling angle θ . In the case of a 

microstrip line configuration, the phase velocity differs for both modes, thus making it 
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necessary to distinguish the coupling angles as 0eθ  and 0oθ  to obtain a strict 

analysis. However, this difference has little difference on the coupling strength, and 

thus here we consider 0 0e o cθ θ θ= =  for simplicity. 

 
Figure 2.4.1   Parallel coupled striplines and their electric parameters. 

 

 For easy to directly synthesize the BPF, we introduce an equivalent circuit 

composed of two single lines and an admittance inverter, which we treated as an ideal 

coupling circuit without frequency dependency, as shown in Figure 2.4.2. 

 
Figure 2.4.2   An equivalent circuit of parallel coupled lines using a J-inverter. 

 

 By equalizing the ABCD matrices of the parallel striplines and its equivalent 

circuit, we can obtain the following equations for 0eZ  and 0oZ , 
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2

0 00
2

20

0

1 csc

1 cot

c
e

c

J J
Y YZ

Z J
Y

θ

θ

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

⎛ ⎞− ⎜ ⎟
⎝ ⎠

                 (2.31) 

2

0 00
2

20

0

1 csc

1 cot

c
o

c

J J
Y YZ

Z J
Y

θ

θ

⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

⎛ ⎞− ⎜ ⎟
⎝ ⎠

                 (2.32) 

These equations are generalized expressions for parallel-coupled lines with arbitrary 

coupling length. For the case of a quarter-wavelength coupling, substituting 2c
πθ =  

into (2.31) and (2.32) gives 

2

0

0 0 0

1eZ J J
Z Y Y

⎛ ⎞
= + + ⎜ ⎟

⎝ ⎠
                     (2.33) 

2

0

0 0 0

1oZ J J
Z Y Y

⎛ ⎞
= − + ⎜ ⎟

⎝ ⎠
                     (2.34) 

Equations (2.31) and (2.32) will be largely employed in the practical filter 

implementation in next chapters. 

 

2.5 The Provision of Design Flow Based on the Numerical 

Computation [1]-[6] 

 

 As mentioned in the beginning of chapter one, we have utilized the method of 

numerical analysis to help implement the filter circuits with optimization on the 

coupling matrix synthesis and diagnosis, it is better to provide the readers with the 

design flow based on this well-developed and systematic approach for clarity and 

further research investigation. The design flow is illustrated in the Figure 2.5.1 as 

following: 
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Figure 2.5.1   The methodology of filter implementation in our thesis. 
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Chapter 3   Extended Doublet 
 

 

3.1 Introduction of the Extended Doublet [8] 

 

 As illustrated in Figure 3.1.1 (only direct coupling shown), the extended doublet 

is a third order filter with the capability of realizing skirt selectivity or in-band linear 

phase response (shifting the finite-position TZs) only by adjusting the relative 

coupling magnitude between the corresponding resonators without sign alteration. 

This property can be concluded by observing the governing equation of the extended 

doublet, as described in section 2.3.1 
2

2 1 1 23

1 1 2 2

S L

S L S L

M M M
M M M M

Ω =
+

                     (3.1) 

 
Figure 3.1.1   The coupling and routing scheme of the extended doublet with 
coupling coefficients indicated for different filter applications. 
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 Figure 3.1.1 also indicates the magnitude and sign of each main coupling path to 

express the following issue. In [10], it describes two classes of filters that have quite 

distinct applications. They are distinguished by the location of their TZs (attenuation 

poles), which, in the case of the first class, are at real frequencies, and in the case of 

the second class are at imaginary frequencies (i.e., on the real axis of the complex 

frequency plane). The TZs may be realized by cross coupling a pair of nonadjacent 

elements of the filter, negatively to give real-frequency TZs, positively to give 

real-axis zeros. The first type of filter gives improved skirt attenuation performance, 

and the second gives improved passband delay characteristics compared with the 

ordinary Chebyshev filter. Therefore, in this chapter, we will pay attention to 

implementing these two filter performances. 

 
Figure 3.1.2   An ideal distortionless system. 

 

 Before we progress to the next step, it is necessary to point out the definition of 

the group delay and the importance of it to give the flat group delay (or linear phase 

response) in the communication systems. From communication theory, an ideal 

distortionless system is described as 

( ) ( )0y t A x t t= • −                        (3.2) 

where ( )x t  is the input signal to the channel and ( )y t is the output signal from the 

channel. A  and 0t  are the channel gain and delay, respectively. After performing 

the Fourier transform on equation (3.2), we get 
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( ) ( ) 02j ftY f A X f e π−= • •                      (3.3) 

Thus, for an ideal distortionless communication channel, the output signal differs 

from the input signal in the magnitude with scale A  and the phase delay 02 ftπ  in 

the frequency domain. The transfer function ( )H f  in the frequency domain of the 

ideal distortionless system is 

( ) 02j ftH f Ae π−=                         (3.4) 

With the definition of group delay, 

( ) ( )1
2

f
f

f
δϕ

τ
π δ

= −                        (3.5) 

where ( )fϕ  is the phase of the transfer function. Using (3.5), the group delay of the 

distortionless system is equal to 0t , which is a constant. Therefore, it is important to 

keep the in-band frequency response of the filter with flat (constant) group delay or 

linear phase response for minimizing the unwanted channel distortion. 

 

3.2 Introduction of an Analytical Approach for Synthesis 

Based on the Chosen Layout 

 

 After given the specification and determining the filter order, coupling routine, 

and positions of finite-position TZs, we have to choose the suitable filter structure for 

implementation. For the doublet subcircuit of the extended doublet, we take 

advantage of the configuration proposed in [11] with the even- and odd-mode analysis 

to fast realize the doublet. This structure is shown in Figure 3.2.1. 

 If a network is symmetrical, it is convenient for network analysis to bisect the 

symmetrical network into two identical halves with respect to its symmetrical 

interface. In this stage, the design procedure for the doublet based on the even- and 
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odd-mode analysis is ready to be addressed in detail. 

 
Figure 3.2.1   The doublet with even- and odd-mode analysis. 

 

Design Procedure for Doublet 

Assuming that the resonant frequencies of the odd- and even-modes are at 1 2,f f , 

respectively. Please refer to Figure 3.2.2 and Figure 3.2.3 for structures and notations 

in discussion. 

Step 1. 

Given the coupling matrix M in the low-pass prototype, center frequency 0f  and 
fractional bandwidth FBW . 

Step 2. 

At 

11
1 0 1

2
M FBW

f f
•⎛ ⎞= −⎜ ⎟

⎝ ⎠
                    (3.6) 

Specify cθ . 

Step 3. 

Calculate 

1
1

0 2
S

S
J FBWM
Y

π •
=                        (3.7) 
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with 
2

1 1

0 00
2

20 1

0

1 csc

1 cot
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e
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c

J J
Y YZ

Z J
Y

θ

θ

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=
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                   (3.8) 
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0 00
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1 csc

1 cot

S S
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o

S
c

J J
Y YZ

Z J
Y

θ

θ

⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

⎛ ⎞− ⎜ ⎟
⎝ ⎠

                   (3.9) 

for the values of 0eZ  and 0oZ . 
Step 4. 
Then 

2u c
πθ θ= −                           (3.10) 

 
Figure 3.2.2   Configuration under odd-mode analysis for the doublet. 

 

Step 5. 

At 

22
2 0 1

2
M FBW

f f
•⎛ ⎞= −⎜ ⎟

⎝ ⎠
                    (3.11) 

Find out 2

0

SJ
Y

 

2
2 2

0 0
0S SJ Ja b cY Y

⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                  (3.12) 

with 

2 '0

0

1 cote
c

Z
a

Z
θ= +                            
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'csc cb θ=                           (3.13) 

0

0

1 eZ
c

Z
= −                                

where 

' 2

1
c c

f
f

θ θ= •                          (3.14) 

 
Figure 3.2.3   Configuration under even-mode analysis for the doublet. 

 

Step 6. 

Calculate 02θ  

01
02 2

2
01 2

0 2

sin(2 )
sinc(2 )

12 S

S

J
Y FBW M

θ
θ

θ

=
⎛ ⎞⎛ ⎞
⎜ ⎟− ⎜ ⎟⎜ ⎟×⎝ ⎠⎝ ⎠

            (3.15) 

with 

2
01

12
f
f

πθ =                          (3.16) 

Step 7. 

Find out 2Z  
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02 012

0

tan( ) cot( )
2

Z
Z

θ θ
= −                    (3.17) 

After these steps, we have roughly obtained the physical parameters for the doublet, 

which will be shown later that such estimation is quite accurate. 

 

3.3 Simulation and Implementation for the Extended 

Doublet 

 

3.3.1 The Extended Doublet for Selectivity Requirement 

 

 After numerical synthesis, we have the coupling matrix M with specification and 

finite-position TZs in the lowpass prototype as following: 

 

Table 3.3.1 Specification and positions of finite TZs in lowpass prototype of the 
extended doublet for selectivity requirement. 

 Center Frequency 

( 0f ) 

Fractional Bandwidth 

( FBW ) 

In-band  

Return Loss 

( RL ) 

TZs      

in lowpass 

prototype 

Specification 2.4 GHz 5﹪ 20 dB @ ± 2.0 

 

Table 3.3.2 Coupling matrix of the extended doublet for selectivity requirement. 

 S 1 2 3 L 

S  0.8613 0.6202   

1 0.8613    -0.8613 

2 0.6202   1.3878 0.6202 
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3   1.3878   

L  -0.8613 0.6202   

 

As expressed in 3.2, we utilize those derived formulae for realizing the doublet 

section first. After letting the 5th row and column blank, which corresponds to the 

doublet section as we attempt to design right now, we find that the frequency response 

of the S parameters is like a notch filter in the center frequency. With the commercial 

simulation solver Advanced Design System (ADS) of the Agilent Inc., we have the 

circuit, layout, and frequency response shown in Figure 3.3.1 and Figure 3.3.2. 

 
Figure 3.3.1   Circuit and layout of the doublet for selectivity requirement. 

 

 Following, attach the 3rd resonator to the aforementioned circuit and simulate the 

complete structure in the EM software Sonnet of Sonnet Inc. After fine tune, the 

physical dimensions of the extended doublet for selectivity requirement are acquired. 

Figure 3.3.3 indicates the final layout and simulation results under lossless condition. 
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Figure 3.3.2   Frequency response of the doublet for selectivity requirement. 

 

 
Figure 3.3.3   The final layout and simulation results (under lossless condition) of 
the extended doublet for selectivity requirement. Dimension (in mils) Lc=278, gap=7, 
Ls=454, Ws=71. 

 

 Figure 3.3.4 illustrates the photograph of the device. The entire circuit was 

manufactured on a Rogers RO6010 substrate with rε =10.2 and thickness of 25 mil. 

Both numerical and experimental results of the frequency responses of the extended 
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doublet for selectivity requirement are shown in Figure 3.3.5. 

 
Figure 3.3.4   The photograph of the extended doublet for selectivity requirement. 
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Figure 3.3.5   Measured and simulated S parameters of the extended doublet for 
selectivity requirement. 
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3.3.2 The Extended Doublet for Flat-Group-Delay Requirement 

 

After numerical synthesis, we have the coupling matrix M with specification and 

finite-position TZs in the lowpass prototype as following: 

 

Table 3.3.3 Specification and positions of finite TZs in lowpass prototype of the 
extended doublet for flat-group-delay requirement. 

 Center Frequency 

( 0f ) 

Fractional Bandwidth 

( FBW ) 

In-band  

Return Loss 

( RL ) 

TZs      

in lowpass 

prototype 

Specification 2.4 GHz 5﹪ 20 dB @ 3.0 j±  

 

Table 3.3.4 Coupling matrix of the extended doublet for flat-group-delay 
requirement. 

 S 1 2 3 L 

S  0.7347 0.8190   

1 0.7347    -0.7347 

2 0.8190   1.4781 0.8190 

3   1.4781   

L  -0.7347 0.8190   

 

Proposed structure 1 

 In this configuration, we use the structure proposed in last section with some 

modification. Follow the same design procedure as in the case of requirement for 

selectivity, the extended doublet for flat-group-delay requirement is realized with ease. 
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Figure 3.3.6 indicates the layout and simulation results under lossless condition. 

 

 

Figure 3.3.6   The layout and simulation results (under lossless condition) of the 1st 
proposed extended doublet for flat-group-delay requirement. Dimension (in mils) 
Lc=455, gap=6, Ls=288, Ws=71. 

 

Figure 3.3.7 illustrates the photograph of the device. The entire circuit was 

manufactured on substrate with rε =10.2 and of thickness 25 mil. Both numerical and 

experimental results of the frequency responses of the extended doublet for 

flat-group-delay requirement are shown in Figures 3.3.8 and 3.3.9. 

 
Figure 3.3.7   The photograph of the 1st proposed extended doublet for 
flat-group-delay requirement. 
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Figure 3.3.8   Measured and simulated S parameters of the 1st proposed extended 
doublet for flat-group-delay requirement. 
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Figure 3.3.9   Measured and simulated group delay of the 1st proposed extended 
doublet for flat-group-delay requirement. 
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 As shown in the graphs, they are in good agreement. But this configuration 

utilized for implementing the flat-group-delay requirement has the inherent limitation 

of the performance on the linear phase response due to its natural property of the 

relative magnitude limitation in external quality factors of the odd/even modes. 

 Therefore, we propose the 2nd structure: 

Proposed structure 2 

 Figure 3.3.10 shows the layout and simulation results under lossless condition. 

 

Figure 3.3.10   The layout and simulation results (under lossless condition) of the 
2nd proposed extended doublet for flat-group-delay requirement. Dimension (in mils) 
gap_1=3, gap_2=5. 

 

 
Figure 3.3.11   The photograph of the 2nd proposed extended doublet for 
flat-group-delay requirement. 
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Figure 3.3.11 illustrates the photograph of the device. The entire circuit was 

manufactured on substrate with rε =10.2 and of thickness 25 mil. Both numerical and 

experimental results of the frequency responses of the extended doublet for 

flat-group-delay requirement are shown in Figures 3.3.12 and 3.3.13. 
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Figure 3.3.12   Measured and simulated S parameters of the 2nd proposed extended 
doublet for flat-group-delay requirement. 
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Figure 3.3.13   Measured and simulated group delay of the 2nd proposed extended 
doublet for flat-group-delay requirement. 
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 As shown in Figure 3.3.13, the new proposed configuration exhibits good 

in-band group delay as desired. The variation of the group-delay in the passband is 

less than 0.5 ns in the measurement. Figure 3.3.14 shows the measured data. 

Furthermore, as an excellent improvement for flat group delay requirement, the 2nd 

proposed structure doesn’t exist the unwanted cross-coupling between resonators 1 

and 2, which has been found to severely degrade the in-band linear phase response in 

paper [7]. 
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Figure 3.3.14   The measured data of the 2nd proposed extended doublet for 
flat-group-delay requirement. 
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Chapter 4   Third-Order Transversal Filter 
 
 

4.1 Introduction of the 3rd-Order Transversal Filter 
 

Second-order transversal filters (i.e., doublet) are the simplest building blocks for 

generating the finite-position TZ. In paper [11], authors have used this coupling 

scheme for implementing the finite-position TZ, but the T-shaped resonator was not 

modeled as a dual-mode resonator. Instead, the circuit was modeled as two 

quarter-wavelength resonators with a tapped open stub in the center plane. The open 

stub is considered both as a K-inverter between two quarter-wavelength resonators to 

control the coupling strength and as a quarter-wave open stub to generate transmission 

zero at desired frequency. A 3rd–order transversal filter is synthesized in [12], but not 

yet developed any analytical approach to systematically design the transversal filters. 

 

 
Figure 4.1.1   The coupling and routing scheme of the 3rd-order transversal filter. 
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 In this chapter, we will establish one algorithm contributing to the fast realization 

of the 3rd-order transversal filter and successfully verify the possibility of such method 

from the simulation solver and experiment results. Figure 4.1.1 describes the routing 

and coupling scheme of the 3rd-order transversal filter. 

As an aid for circuit tuning and investigation of the feasibility of the proposed 

structure, sensitivity analysis has been incorporated in the design procedure and that 

issue has attracted some researchers to pay attention to [13], [14]. Sensitivity 

determination is an important step regarding the manufacturing tolerance. From these 

sensitivities, acceptable bounds on the errors in the entries of the coupling matrix can 

be determined before an attempt is made to implement the network. Based on these 

results, the actual implementation can be either pursued or abandoned. 

 

4.2 Introduction of an Analytical Approach for Synthesis 

Based on the Chosen Layout 
 

 After given the specification and determining the filter order, coupling routine, 

and positions of finite-position TZs, we have to choose the suitable filter structure for 

implementation. For the 3rd-order transversal filter, we take advantage of the 

configuration proposed in [12] with the even- and odd-mode analysis to accelerate the 

synthesis of this filter. The structure is shown in Figure 4.2.1. 

 If a network is symmetrical, it is convenient for network analysis to bisect the 

symmetrical network into two identical halves with respect to its symmetrical 

interface. In this stage, the design procedure for the 3rd-order transversal filter based 

on the even- and odd-mode analysis is ready to be addressed in detail. 

 

Design Procedure for 3rd-Order Transversal Filter 
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Assuming that the resonant frequency of the odd-mode is at 1f , and the 

individual resonant frequencies of the even-modes are at 2f , for upper stub, 3f  for 

lower stub, respectively. Please refer to Figure 4.2.2 and Figure 4.2.3 for structures 

and notations in discussion. 

 
Figure 4.2.1   The 3rd-order transversal filter with even- and odd-mode analysis. 

 

Step 1. 

Given the coupling matrix M in the low-pass prototype, center frequency 0f  and 
fractional bandwidth FBW . 

Step 2. 

At 

11
1 0 1

2
M FBW

f f
•⎛ ⎞= −⎜ ⎟

⎝ ⎠
                    (4.1) 

Specify cθ . 

Step 3. 

Calculate 
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for the values of 0eZ  and 0oZ . 
Step 4. 
Then 

2u c
πθ θ= −                           (4.5) 

 
Figure 4.2.2   Configuration under odd-mode analysis for the 3rd-order transversal 
filter. 
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with 

2 '0
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Z
a

Z
θ= +                            

'csc cb θ=                            (4.8) 

0

0

1 eZ
c

Z
= −                                

where 

' 2

1
c c
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Figure 4.2.3   Configuration under even-mode analysis for the 3rd-order transversal 
filter. 

 

Step 6. 

Define the impedance ratio r  

3

2

Z
r

Z
=                             (4.10) 

Calculate 02θ  (initially assume the impedance ratio 1r = ) 
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After gaining the updated value r , we iteratively execute steps from 6 to 9 until 

the convergence of the impedance ratio r  is achieved. Although the absolute values 

of the characteristic impedances for the upper/lower stubs are not acquired, we will 

demonstrate later that such calculation isn’t necessary and the determination of the 

impedance ratio r  is sufficient to implement the 3rd-order transversal filter. 

 

4.3 Sensitivity Analysis of the 3rd-Order Transversal Filter 

 

 In this section, we will build up the sensitivities of the individual coupling 

coefficient with respect to the variations of dimensions in the physical parameters. 

This analysis is not only as verification for the accuracy of the proposed topology 

corresponding to the structure but also helpful for later tuning. Table 4.3.1 lists the 

relationships after investigation 

 

4.4 Simulation and Implementation for the 3rd-Order 

Transversal Filter 
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Table 4.3.1 Sensitivity investigation on the coupling coefficients with respect to 
the variations of dimensions in the physical parameters. 

Geometrical 
Parameter 
( kX ) 

Variation 
( LΔ , 

WΔ  or 
GΔ ) 

(mil) 

Extraction Matrix ijM  Sensitivity 

( ij

k

M
X

∂

∂
) 

Length of 
upper stub 

LΔ = 0 
(Model) 

 S 1 2 3 L 
S  -0.9541 -0.3187 -0.6028  
1 -0.9541 0.3733   -0.9525 
2 -0.3187  1.2266  0.3205 
3 -0.6028   -1.9651 0.6043 
L  -0.9525 0.3205 0.6043  

 
 LΔ =-3  S 1 2 3 L 

S  -0.9400 -0.3212 -0.6000  
1 -0.9400 0.3369   -0.9382 
2 -0.3212  1.0098  0.3235 
3 -0.6000   -1.9433 0.6015 
L  -0.9382 0.3235 0.6015  

 

22

us

M
L

∂
∂

= 

7.2﹪ 

 
Width of 
upper stub 

WΔ = 0 
(Model) 

 S 1 2 3 L 
S  -0.9541 -0.3187 -0.6028  
1 -0.9541 0.3733   -0.9525 
2 -0.3187  1.2266  0.3205 
3 -0.6028   -1.9651 0.6043 
L  -0.9525 0.3205 0.6043  

 
 WΔ =-2  S 1 2 3 L 

S  -0.9406 -0.3208 -0.5986  
1 -0.9406 0.3521   -0.9406 
2 -0.3208  1.1181  0.3209 
3 -0.5986   -1.9461 0.5987 
L  -0.9406 0.3209 0.5987  

 

22

us

M
W

∂
∂

= 

5.4﹪ 
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Length of 
lower stub 

LΔ = 0 
(Model) 

 S 1 2 3 L 
S  -0.9541 -0.3187 -0.6028  
1 -0.9541 0.3733   -0.9525 
2 -0.3187  1.2266  0.3205 
3 -0.6028   -1.9651 0.6043 
L  -0.9525 0.3205 0.6043  

 
 LΔ =-3  S 1 2 3 L 

S  -0.9421 -0.3434 -0.6904  
1 -0.9421 0.3260   -0.9406 
2 -0.3434  1.1761  0.3449 
3 -0.5904   -2.1302 0.5918 
L  -0.9406 0.3449 0.5918  

 

33

ls

M
L

∂
∂

= 

5.5﹪ 

 
Width of 
lower stub 

WΔ = 0 
(Model) 

 S 1 2 3 L 
S  -0.9541 -0.3187 -0.6028  
1 -0.9541 0.3733   -0.9525 
2 -0.3187  1.2266  0.3205 
3 -0.6028   -1.9651 0.6043 
L  -0.9525 0.3205 0.6043  

 
 WΔ =-2  S 1 2 3 L 

S  -0.9449 -0.3465 -0.5874  
1 -0.9449 0.3397   -0.9458 
2 -0.3465  1.1653  0.3453 
3 -0.5874   -2.0749 0.5865 
L  -0.9458 0.3453 0.5865  

 

33

ls

M
W

∂
∂

= 

5.49﹪ 

 
Gap 
(source/load 
to 
resonators) 

GΔ = 0 
(Model) 

 S 1 2 3 L 
S  -0.9541 -0.3187 -0.6028  
1 -0.9541 0.3733   -0.9525 
2 -0.3187  1.2266  0.3205 
3 -0.6028   -1.9651 0.6043 
L  -0.9525 0.3205 0.6043  

 

1SM
G

∂
∂

= 

6.62﹪ 

2SM
G

∂
∂

= 

2.88﹪ 
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 GΔ =-1  S 1 2 3 L 
S  -0.8839 -0.2870 -0.5657  
1 -0.8839 0.1105   -0.8817 
2 -0.2870  1.1978  0.2906 
3 -0.5657   -2.0605 0.5645 
L  -0.8817 0.2906 0.5645  

 
 GΔ =-2  S 1 2 3 L 

S  -0.8217 -0.2611 -0.5285  
1 -0.8217 -0.0965   -0.8204 
2 -0.2611  1.1730  0.2623 
3 -0.5285   -2.1444 0.5300 
L  -0.8204 0.2623 0.5300  

 

3SM
G

∂
∂

= 

3.72﹪ 
 

11M
G

∂
∂

= 

23.49﹪ 
 

22M
G

∂
∂

= 

2.68﹪ 
 

33M
G

∂
∂

= 

8.965﹪ 

After numerical synthesis, we have the coupling matrix M with specification and 

finite-position TZs in the lowpass prototype listed in Table 4.4.1 and Table 4.4.2. 

Based on the derivations addressed in section 4.2, we embark on getting the 

converged impedance ratio r  first. 

Table 4.4.3 shows the iterations of numerical calculation and Figure 4.4.1 

outlines the flow of iteration. From the table, we obtain a converged value 4.5r ≈ . 

The reason why we utilize the impedance ratio of the lower to upper stubs instead of 

finding the absolute values of characteristic impedance is that the impedances of them 

is too sensitive to electrical length θ  calculated from the formulae. Therefore, a 

small estimation error would result in the impractical values generated. 

 

Table 4.4.1 Specification and positions of finite TZs in lowpass prototype of the 
3rd-order transversal filter. 

 Center Frequency 

( 0f ) 

Fractional Bandwidth 

( FBW ) 

In-band  

Return Loss 

TZs      in 

lowpass 
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( RL ) prototype 

Specification 2.4 GHz 5﹪ 20 dB @ ( )1.5,  4−  

 

Table 4.4.2 Coupling matrix of the 3rd-order transversal filter. 

 S 1 2 3 L 

S  -0.8322 -0.3385 -0.5802  

1 -0.8322 0.4510   -0.8322 

2 -0.3385  1.2908  0.3385 

3 -0.5802   -1.4868 0.5802 

L  -0.8322 0.3385 0.5802  

 

Table 4.4.3 The iteration process for the impedance ratio r . 

Iteration Assumed 
impedance ratio 

( 3

2

Z
r

Z
= ) 

Calculated impedance ratio 

(

( )2 3
3

3 1

32
2

2
1

tan tan
tan_

tantan
tan

r
Zr updated
Z

r

θ θ ω ωθ
θθ

ω ωθ

• + =
= =

⎛ ⎞+⎜ ⎟
⎝ ⎠ =

) 

1. 1Initial guess 5.684 
2. 5.684 4.1838 
3. 4.1838 4.5826 
4. 4.5826 4.4768 
5. 4.4768 4.5048 
6. 4.5048 4.4974Completed 

 

However, gaining the information about 0eZ , 0oZ  (for the coupled section), 2θ  

(the electrical length of upper stub), 3θ  (the electrical length of lower stub), and r  

is sufficient for us to design the 3rd-order transversal filter. With the commercial 
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simulation solver Advanced Design System (ADS), we successfully synthesize two 

cases with distinct characteristic impedances of the upper/lower stubs but let the 

impedance ratio remain unchanged in either case. Figure 4.4.2 and Figure 4.4.3 

indicate the circuit, layout, and frequency response for case 1 while Figure 4.4.4 and 

Figure 4.4.5 describe the case 2. 

 

 

 

 
Figure 4.4.1   The iteration flow of the impedance ratio r  acquisition. 
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Figure 4.4.2   Circuit and layout of the 3rd-order transversal filter in case 1. 
 
 
 
 

 
Figure 4.4.3   Frequency response of the 3rd-order transversal filter for case 1. 
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Figure 4.4.4   Circuit and layout of the 3rd-order transversal filter for case 2. 

 

 
Figure 4.4.5   Frequency response of the 3rd-order transversal filter for case 2. 

 

 Figure 4.4.6 shows the layout (choosing case 1) and simulation results under 

lossless condition. Figure 4.4.7 illustrates the photograph of the device. The entire 
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circuit was manufactured on substrate with rε =10.2 and of thickness 25 mil. Both 

numerical and experimental results of the frequency responses of the 3rd-order 

transversal filter are shown in Figure 4.4.8. As a result of the fact, we could realize the 

3rd-order transversal filter easily with the introduction of analytical analysis described 

in this chapter. 

 

 

Figure 4.4.6   The layout and simulation results (under lossless condition) of the 
3rd-oredr transversal filter. Dimension (in mils) Lus=448, Lls=395, Lc=231, gap=6, 
Wus=242, Wls=32. 
 

 
Figure 4.4.7   The photograph of the 3rd-order transversal filter. 
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3rd-Order Transversal Filter(Analytic approach introduced)
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Figure 4.4.8   Measured and simulated S parameters of the 3rd-order transversal 
filter. 
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Chapter 5   Conclusions 
 

 

 This thesis emphasizes the fast realization of filter configurations based on 

analytical analysis of the proposed structures and CAD method for synthesis and 

diagnosis of the electrical parameters of the filter, i.e., the coupling matrix. Two filter 

topologies have been implemented: one is the extended doublet and the other is the 

3rd-order transversal filter. In either example, we have systematically designed the 

device with the aids from analytical analysis of the filter in advance and numerical 

diagnosis of the established structure for circuit fine-tune following. The design 

procedures avoid consuming large amount of time in circuit tuning. 

 In the extended doublet, we have utilized this topology to realize two categories 

of filter requirements. One is for high skirt selectivity and the other is for in-band flat 

group delay. The filter’s group delay has been demonstrated in association with the 

signal distortion. Based on this topology, we have successfully eliminated the 

unwanted coupling that would degrade the performance of in-band group delay. The 

measurement data has validated the possibility with the variation of in-band group 

delay less than 0.5 ns. 

 As for the 3rd-order transversal filter, we have established one algorithm for 

quick estimation of the related electrical parameters to be determined. Instead of 

finding out the absolute characteristic impedances for upper/lower stubs (please refer 

to chapter 4 for detail) because of their high sensitivity to the electrical lengths, we 

have defined a new parameter, the impedance ratio r  of the lower to upper stubs, 

and have observed its importance in manufacturing the filter. This algorithm only 

involves a few of iterations due to its fast convergence. Finally, we have exhibited 
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such approach is practical and useful. 

 In order to meet the demand in nowadays communication systems, we have 

designed all filters proposed in this thesis with center frequency at 2.4 GHz for easily 

incorporating these devices into the environments of IEEE 802.11 b/g, ISM, and 

Bluetooth standards. 
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