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Student: Pei-Ling Chi Advisor: Dr. Chi-Yang Chang
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National Chiao Tung University

Abstract

This thesis presents the fast_realization of filter configurations based on
analytical analysis of the proposed structures and CAD method for synthesis and
diagnosis of the electrical parameters of the filter;.i.e:, the coupling matrix. The design
procedures avoid consuming large amount of time in circuit tuning.

In the extended doublet coupling scheme; we realize two categories of filter
requirements. One is for high skirt selectivity. The other is for in-band flat group delay,
which has been demonstrated in association with the signal distortion. As exhibited in
the thesis, we successfully eliminate the unwanted coupling that would degrade the
performance of in-band group delay. The measured data validate the possibility with
the variation of in-band group delay less than 0.5 ns.

As for the 3"-order transversal filter, we establish an algorithm for quick
estimation of the related electrical parameters to be determined. We define a new
parameter, the impedance ratio r, and observe its importance in realization of the
filter. This algorithm only involves a few of iterations due to its fast convergence.
Good agreement between analytical computation and measured results indicates that
such approach is practical and useful.

In order to meet the requirement in nowadays communication systems, we
design these filters with center frequency at 2.4 GHz for easy integration in the
environments of IEEE 802.11 b/g, ISM, and Bluetooth standards.
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Chapter1  Introduction

Although filter design theory has been well established, one systematic approach
based on numerical computation, which aids to accelerate the implementation of the
desired filter structure, is still far to complete. Over the last decades, many scholars
and researchers have intended to diagnose the filter with numerical analysis from the
coupling matrix [1]-[6]. By developing the relationship between the electrical
parameters (each element in the coupling matrix) and the physical parameters in the
configuration [7], it is simple to realize the filter in no time. In this thesis, we devise
filter structures with the help from numerical syntheses and diagnoses, and the design
flow based on that method wouldbe described in detail.

High performance microstrip filters with high selectivity and linear in-band
phase response has been investigated extensively for the demanding requirement in

communication systems. Some well-knewn' topologies such as cascade quadruplet

(a)

(b)
Figure 1.1  (a) Typical coupling structure of CQ filters. (b) Typical coupling
structure of CT filters.



(CQ) and cascade trisection (CT) have been successfully realized using microstrip.
Figure 1.1 illustrates typical coupling structures of CQ and CT filters, where each

node represents a resonator, the solid lines indicate the main coupling path, and the

broken lines denote the cross coupling. M, is the coupling coefficient between the

resonators i and j,and Q,and Q, are the external quality factors in association
with the input and output coupling, respectively. However, compared with the
conventional CQ topology, the coupling scheme of the extended doublet proposed in

this paper has the superior properties to that one [8].

@ Eesonator node
Source/Load
node

Figure 1.2 The coupling and routing scheme of the extended doublet.

Traditional quadruplet section is restricted to generate two symmetric
transmission zeros (TZs) either in the real or imaginary axis [9]. The extended doublet
has the flexibility of exhibiting both symmetric and asymmetric responses. Another

important feature is the fact that when moving the TZs in the complex plane, the signs



of all coupling coefficients in the matrix remain unchanged. It implies that we can
realize filter specification with skirt selectivity (TZs at the real frequency axis) or
linear phase response (TZs at the real axis of the complex plane) [10] in the same
structure by only adjusting the relative magnitudes in the corresponding coupling
coefficients. In this thesis, we demonstrate that the extended doublet has better
in-band phase response than that of the quadruplet. Furthermore, the extended doublet
is only a 3"-order filter and thus may result in less loss with the same number of TZs
as a CQ filter. Figure 1.2 shows the coupling and routing scheme of the extended
doublet.

Transversal filters are one of the simplest building blocks for generating the
finite TZs, especially for the second-order case (i.e., doublet). Many papers have used
these coupling schemes for filter.implementations [11], [12], but not yet developed
any analytical approach to systematically practice the transversal filters. We have
attempted to establish one algorithm’contributing to the fast realization of the
3"-order transversal filter and suceessfully. validate the possibility of such method
from the simulation solver and experiment. Also, sensitivity analysis has been
incorporated in the design procedure and that issue has attracted some researchers to
pay attention to [13], [14]. Sensitivity determination is an important step regarding the
manufacturing tolerance. From these sensitivities, acceptable bounds on the errors in
the entries of the coupling matrix can be determined before an attempt is made to
implement the network. Based on these results, the actual implementation can be
either pursued or abandoned.

The operating frequency of the proposed filter configurations is chosen at 2.4
GHz for accommodating these devices to the frequency usage of nowadays
communication standards, such as the ISM band, IEEE 802.11 b/g, and Bluetooth

wireless technology. In consideration of the ease of fabrication and low cost, the

3



entire circuits were fabricated on the printed circuit board (PCB) with dielectric

constant &, of 10.2 and thickness of 25 mil.




Chapter 2  Theory

2.1 General Coupling Matrix for Coupled-Resonator Filters

2.1.1 Loop Equation Formulation [1]

M,

R " N N N

M

=
=
=

el

L
A A
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m
CYETYTY

T
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=

W

Figure 2.1.1 Equivalent circuit’ of Tn=coupled resonators for loop-equation
formulation.

Shown in Figure 2.1.1 is an equivalent circuit of n-coupled resonators, which

includes the inductors, resistors, and capacitors. e, represents the voltage source and
M, (as will be explained clearly later) denotes the coupling coefficient between

resonators i and j. Using the voltage law, which is one of Kirchhoff’s two circuit
laws and states that the algebraic sum of the voltage drops around any closed path in a

network is zero, we can write down the loop equations for the circuit of Figure 2.1.1



(R1+ oL +- : jil_ joLyi, = joLi, =¢,
joC

1

_joLi +(ij2 . jwlc ]iz ol =0

2

2.1)

—ja)Lnlil—ja)LZHiz---+[R2+ joL, +— jin _0
JoC,

in which L; =L; represents the mutual inductance between resonators i and j,

and the all loop currents are supposed to be in the clockwise direction. This set of

equations can be represented in the matrix form

[ . 1 . .
R+ job, +- —Job, - ol
JoC,
Il eS
— jol, joL, + joC, - jol,, I2 _ O 2.2)
: i | |o
i - jol, - jolg R; +jol, + ijn_
or
[Z]®]i] = [2]

where [Z] isan nxn impedance matrix.
For simplicity, let us first consider a synchronously tuned filter. In this case, all

resonators resonate at the same frequency, namely the mid-band frequency of filter

w, :}/'—LC’ where L=L =L,=---L,and C=C,=C, =---C,. The impedance

matrix in (2.2) can be expressed by

[2]= w,L-FBW -[Z] (2.3)

where FBW =A% is the fractional bandwidth of the filter, and [Z] is the
0

normalized impedance matrix, which in the case of synchronously tuned filter is given

by



_Lﬂo _ja)_'-lz.i oo, 1
o,L - FBW o,L FBW o,L FBW
col, 1 .ol,, 1
[Z]= o,L FBW o,L  FBW (2.4)
oL, 1 oL, 1 . R,
—_— — - —_ J—.— : 4 p
w,L  FBW o,L  FBW w,L-FBW |
with
1 0 0,
P=l=s| — —
FBW\w, o
the complex lowpass frequency variable. It should be noticed that
R .
' :i fori=1 2 (2.5)
oL Qy

Q. and Q,, are the external quality factors of the input and output resonators,

respectively. Define the coupling coefficient as
Mt (2.6)

and assuming % ~1 for a narrow-band-approximation, we can simplify (2.6) as
0

1 : :
—+p —-ym, e - M,
el
- —im —im
z]=| T P : IMer 2.7
_jm — jm i.{. p
I nl n2 qez
where q,, and q,, are the scaled external quality factors
0s =Q, - FBW fori= 1,2 (2.8)
and m; denotes the so-called normalized coupling coefficient
M; (2.9)
m. = .
" FBW

In the case that the coupled-resonator circuit of Figure 2.1.1 is asynchronously tuned,

and the resonant frequency of each resonator, which may be different, is given by



o= , the coupling coefficient of asynchronously tuned filter is defined as
oy %/E pling y y

L.
M. =—2 fori= j 2.10
"L J (2.10)
It can be shown that (2.7) becomes
1 . . . i
—+p-]m, — Jmg, - jm,
el
- — jm — jm —jm
[Z]= e b M M 2.11)
. . 1 .
—Jmy —Jjm,, —+p—-Jm,
L Q> i

The normalized impedance matrix of (2.11) is almost identical to (2.7) except that it

has the extra entries m, to account for asynchronous tuning. Finally, we could have
a unified formulation for a n-coupled, resonator filter regardless of whether the

couplings are magnetic or electric or even the.combination of both. The normalized

impedance matrix [i] (or the‘normalized admittance matrix [\?]) may be expressed

as a general one:
[A]=[a]+ p[U]-i[m] (2.12)

where [U] is the nxn identity matrix, [q] is an nxn matrix with all entries

zero, except for q, :}/1 and q,, :%2, [m] is the so-called general coupling

matrix, which is an nxn reciprocal matrix (i.e., m; =m;) and is allowed to have

nonzero diagonal entries m, for an asynchronously tuned filter.

2.1.2 Mathematical Definition of the Coupling Coefficient and Its

Physical Explanation [1]

In general, the coupling coefficient of coupled RF/microwave resonators, which

8



can be different in structure and can have different self-resonant frequencies (see
Figure 2.1.2), may be defined on the basis of the ratio of coupled energy to stored

energy, i.e.,

[l

el o e[ o017

El
where E and H represent the electric and magnetic field vectors, respectively, and

([, o h, av

i ave [

Hl

- (2.13)
EZ Hz dv

we now use the more traditional notation k instead of M for the coupling
coefficient. Note that all fields are determined at resonance, and the volume integrals

are over all affected regions with permittivity of ¢ and permeability of . The first

FeE  Coupling __F*H,

E,, F

Resonator 2

Figure 2.1.2  General coupled RF/microwave resonators where resonator 1 and 2
can be different in structure and have different resonant frequencies.

term on the right-hand side represents the electric coupling and the second term the
magnetic coupling. It should be remarked that the interaction of the coupled
resonators is mathematically described by the dot operation of their space vector
fields, which allows the coupling to have either positive or negative sign. A positive
sign would imply that the coupling enhances the stored energy of uncoupled

resonators, whereas a negative sign would indicate a reduction. Therefore, the electric



and magnetic coupling could either have the same effect if they have the same sign, or
have the opposite effect if their signs are opposite. Obviously, the direct evaluation of
the coupling coefficient from (2.13) requires knowledge of the field distributions and

performance of the space integrals.

2.2 Lowpass Prototype Filters and Frequency/Element

Transformation

2.2.1 Lowpass Prototype Filters and Elements [1], [15], [16]

A lowpass prototype filter is.in general .defined as the lowpass filter whose
element values are normalized to make the source resistance or conductance equal to
one, denoted by g, =1, and the cutoff angular frequency to be unity, denoted by
Q. =1 (rad/s). For example, Figure 2.2.1 demonstrates two possible forms of an
n-pole lowpass prototype for realizing an all-pole filter response, including
Butterworth, Chebyshev, and Gaussian responses. Either form may be used because
both are dual from each other and give the same response. It should be noted that in
Figure 2.2.1, g, for i to n represent either the inductance of a series inductor or
the capacitance of a shunt capacitor; therefore, n is also the number of reactive
elements. If g, is the shunt capacitance or the series inductance, then g, is defined
as the source resistance or the source conductance. Similarly, if g, is the shunt
capacitance or the series inductance, g,,, becomes the load resistance or the load
conductance. Unless otherwise specified these g-values are supposed to be the
inductance in henries, capacitance in farads, resistance in ohms, and conductance in

mhos.

10
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Figure 2.2.1  Lowpass prototype filters for all-pole filters with a ladder network
structure and its dual.

This type of lowpass filter can be served as a prototype for designing many
practical filters with frequency and element-transformations. This will be addressed in

the next section.

2.2.2 Immittance Inverters [1], [15], [16]

Immittance inverters are either impedance or admittance inverters. An idealized
impedance inverter is a two-port network that has a unique property at all frequencies,
i.e., if it is terminated in an impedance Z, on one port, the impedance Z, seen

looking in at the other port is

KZ

VA
1 Z,

(2.14)

where K is real and defined as the characteristic impedance of the inverter. As can

be seen, if Z, is inductive/conductive, Z, will become conductive/inductive.

11



Impedance inverters are also known as K -inverters. The ABCD matrix of ideal

impedance inverters may generally be expressed as

ABY_ 2 o (2.15)
C D| |+— 0 '
jK

Likewise, an ideal admittance inverter is a two-port network that exhibits such a

property at all frequency that if an admittance Y, is connected at one port, the

admittance Y, seen looking in the other port is

.J2

Y,
1 Y,

(2.16)

where J is real and called the characteristic admittance of the inverter. Admittance
inverters are also referred as J -inverters. In general, ideal admittance inverters have

the ABCD matrix

C:D

{A B}: : 50 (2.17)
+ijJ

An ideal immittance inverter. is a lossless, reciprocal, frequency-independent,
two-port network. As indicated, inverters have the ability to shift impedance or
admittance levels depending on the choice of K or J parameters. Making use of
these properties enables us to convert a filter circuit composed of the ladder network
to an equivalent form with immittance inverters incorporated that would be more
convenient for implementation.

For example, the two common lowpass prototype structures in Figure 2.2.1 may

be converted into the forms shown in Figure 2.2.2.

12



Z{ K, K, K, | 3%
}B{

0,1 $C1 1,2 ECH S Ta

Figure 2.2.2  Lowpass prototype filters modified to include immittance inverters.

2.2.3 Frequency and Element Transfarmations [1], [15], [16]

So far, we have only considered the lowpass prototype filters, which have a
normalized source resistance/conductance g,=1-and cutoff frequency Q. =1. To
obtain frequency characteristic and element values for practical filters based on the
lowpass prototype, one may apply frequency and element transformation, which will
be addressed in this section.

The frequency transformation, which is referred to as frequency mapping, is
required to map a response such as Chebyshev response in the lowpass prototype
frequency domain Q to that in the frequency domain @ in which a practical filters
response such as lowpass, highpass, bandpass, and bandstop. The frequency
transformation will have an effect on all the reactive elements accordingly, but no
effect on the resistive elements.

In addition to the frequency mapping, impedance scaling is also required to

accomplish the element transformation. The impedance scaling will remove the g,=1

13



normalization and adjust the filter to work for any value of the source impedance

denoted by Z,. For our formulation, it is convenient to define an impedance scaling

factor y, as

Z . .
0
B AO for g, being the resistance

= 2.18
Yo g}é for g, being the conductance ( )
0

where Y, =% is the source admittance. In principle, applying the impedance
0

scaling upon a filter network in such a way that

L—yL

c—C
Yo

R— 7R

GG
7o

(2.19)

has no effect on the response shape.
Assume that a lowpass prototype response is to be transformed to a bandpass

response having a passhand ,=@,; Where-i@w, and o, indicate the passband-edge

angular frequency. The required frequency transformation is

_ X fo o (2.20a)
FBW\w, o
with
FBW = 2%
@ (2.20b)

W, = 0,0,
where @, denotes the center angular frequency and FBW is defined as the

fractional bandwidth. If we apply this frequency transformation to a reactive element

g of the lowpass prototype, we have

Q9 189

. (2.21)
FBWw, jo FBW

199 = jo

14



which implies that an inductive/capacitive element g in the lowpass prototype will
transform to a series/parallel LC resonant circuit in the bandpass filter. The

elements for series LC resonator in the bandpass filter are

L=

* | FBWa, 709

csz(FBWJL
a)OQc 7/Og

where the impedance scaling has been taken into account as well. Similarly, the

for g representing the inductance (2.22a)

element for parallel LC resonator in the bandpass filter are
Q
C,=|—2— 9
FBWa, )y,
{ FBW j %6
L, = =
a)OQc g

The frequency/element transformation in this case is'shown in Figure 2.2.3.

1

Figure 2.2.3 Lowpass prototype to bandpass transformation: basic element
transformation.

for g representing the capacitance (2.22b)

g
-
R,

D}
5

Since, ideally, immittance inverter parameters are frequency invariable, the

15



lowpass filter networks in Figure 2.2.2 can easily be transformed to the bandpass filter
networks by applying the element transformations described in this section. For

instance, Figure 2.2.4 illustrates two bandpass filters using immittance inverters.

L.Sl C.Sl L.m C.m
HE G VAN IS A VT2
2| Ky K, K| 2™
JEP rl - m
i Juy J\ 2 it T

Figure 2.2.4  Bandpass filters using immittance‘inverters.

Two important generalizations, shown-in-Eigure 2.2.5, are obtained by replacing
the lumped LC resonators by distributed. circuits [17]. Distributed circuits can be
microwave cavities, microstrip resonators, or any other suitable resonant structures. In
the ideal case, the reactances or susceptances of the distributed circuits should equal
those of the lumped resonators at all frequencies. In practice, they approximate the
reactances or susceptances of the lumped resonators only near resonance.
Nevertheless, this is sufficient for narrow band filter. For convenience, the distributed
resonator reactance/susceptance and reactance/susceptance slope are made equal to
their corresponding lumped-resonator values at band center. For this, two quantities,
called the reactance slope parameter and susceptance slope parameter, respectively,

are introduced. The reactance slope parameter for resonators having zero reactance at

center frequency w, is defined by
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X:&dX(a))‘
2 do 177

(2.23)
where X (@) is the reactance of the distributed resonator. In the ideal case, the

susceptance slope parameter for resonators having zero susceptance at center
frequency w, is defined by

=&dB(w)‘
2 do 177%

b

(2.24)

where B(w) is the susceptance of the distributed resonator. It can be shown that the

reactance slope parameter of a lumped LC series resonator is o,L, and the

susceptance slope parameter of a lumped LC parallel resonator is @,C. Thus,

replacing o,L; and @,C, with the general terms x and b, as defined by (2.23)

and (2.24), respectively, results in the corresponding values for the distributed circuits

shown in Figure 2.2.5.

Jn,1 B (@) J1,2 AL Jmm Ya

- x,(o)H Lo H
Z{ K, K, K,| ™

Figure 2.2.5  Generalized bandpass filters (including distributed elements) using
immittance inverters.

2.3 The Governing Equations of the Two-Port Network, and
the Relationship between Coupling Coefficients and
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Resonant Frequencies/External Quality Factors

231 The N+2 Extended Coupling Matrix, Network
Representation, and Governing Equations of the Network Circuit

with N Coupled Lossless Resonators [1], [2], [4]

It was mentioned in [3] that, although the polynomial synthesis procedure was
capable of generating N TZs for an N th-degree network, that a maximum of only
N —2 finite-position zeros could be realized by the N x N coupling matrix. This
excluded some useful filtering characteristics, including those that required multiple
input/output couplings, which have been finding applications recently [18].

In this section, we introduce the N+ 2 '.folded coupling matrix, which
overcomes some of the shortcomings of the ‘conventional N x N coupling matrix.
The N +2 or “extended” coupling-matrix-has an pair of extra rows at top and
bottom and an pair of extra columns atleft'and right. The extra rows and columns
surround the “core” N x N coupling matrix, which carry the input and output
couplings from the source and load terminations to resonator nodes in the core matrix.
The N+2 matrix has two significant advantages, as compared with the
conventional coupling matrix.

® Multiple input/output couplings may be accommodated, i.e., couplings may

be made directly from the source/load to internal resonators, in addition to
the main input/output couplings to the first/last resonator in the filter circuit.
® Fully canonical filtering functions, i.e., N th- degree characteristics with

N finite-position TZs may be synthesized.

In the extended coupling matrix, [A] in (2.12) can be expressed as
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[A]=[QU - jR+M] (2.25)
where [R] is an (N+2)x(N+2) matrix whose nonzero entries are
Ry =Ry.onez =1, [U] is similar to the (N +2)x(N +2) identity matrix except
Uy =Upamep =0, and [M] is the (N+2)x(N+2) symmetric coupling

matrix.
A network representation of two-port n-coupled resonator filter is shown in
Figure 2.3.1, where V,, V, and 1, |, are the voltage and current variables at the

filter ports, and the wave variables are denoted by &, a,, b, and b,. After simple

calculation, it can be shown that the scattering parameters are given by

$1(Q)= _Zj[A_l}(mzm (2.26)
Sll(Q):1+2j[A_l:| |

11

L \=a,

|
Two-port n-coupled I | >y
resonator filter 2 | =
I""'bg

Figure 2.3.1  The network representation of the two-port n-coupled resonator filter.

Now, we further relate the TZs in lowpass prototype to the N +2 coupling

matrix [19]. Since the transmission coefficient S,, is directly proportional to [A’l},

the TZs can be found by letting [A’l](w)l equal to zero. From Linear Algebra, we
know
[A]= L cofT (A (2.27)
det(A)
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where cof (A) is the matrix of cofactors from [A]. Therefore, the finite-position

TZs are the roots of cofactor C, ., of [A].

Design Example

@ Eesonator node
Source/Load
node

Figure 2.3.2  The coupling and routing scheme of the extended doublet.

Table 2.3.1  Coupling matrix for the extended doublet.

(Only main coupling path included and in the synchronously tuned case)
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Since M,,=M,,, we can derive the TZs in the lowpass prototype that are

located in the square roots of

0? - M51M1LM223

= (2.28)
MSlMlL + MSZMZL
From (2.28), it is easy to realize that by controlling the values of coupling coefficients

between resonators or source/load and resonators, the TZs could be placed as desired.

2.3.2 The Relationship between Coupling Coefficients and Resonant

Frequencies/External Quality Factors [1], [7]

The individual resonant frequency of each resonator in the circuit can also be
established in association with the diagonal elements in the coupling matrix as
follows:

M, ¢ FBW

f=f,(1- )y fori=1--n (2.29)

where FBW and f, are the fractional bandwidth and center frequency of the filter,
respectively.

Before developing the formulation for the normalized quality factor, we first
introduce the typical input/output (1/0) coupling structures used for coupled resonator
filter. Two common 1/O coupling structures for coupled microstrip resonator filters,
namely the tapped line and the coupled line structures, are shown with the microstrip
open-loop resonator, though other types of resonators may be used (see Figure 2.3.3).
For the tapped line coupling, usually a 50 ohm feed line is directly tapped onto the 1/0
resonator, and the coupling or the external quality factor is controlled by the tapping
position t, as indicated in the left part of Figure 2.3.3. For example, the smaller is the
t, the closer is the tapped line to a virtual grounding of the resonator, which results in

a weaker coupling or a larger external quality factor. The coupling of the coupled line
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structure in the right part of Figure 2.3.3 can be found from the coupling gap g and
the line width w. Normally, a smaller gap and a narrower line result in a stronger 1/O

coupling or a smaller external quality factor of the resonator.

W
Feed line

Feed line

Figure 2.3.3  Typical 1/0 coupling structures for coupled resonator filters. Left part:
tapped-line coupling. Right part: coupled-line:coupling.

For the quality factor of interest, we can derive that such formulae exist in the

lowpass prototype
1

qext,S = 2

" for resonator i coupled with source or load (2.30)

qext L — 2
MiL

2.4 Equivalent Expressions for Parallel Coupled-Lines Using

Inverter [20]

Figure 2.4.1 shows the distributed coupling circuit applied to a stripline

parallel-coupled BPF. The electric parameters of this circuit are expressed by even-

and odd-mode impedance Z,,Z,,, and electric coupling angle &. In the case of a

microstrip line configuration, the phase velocity differs for both modes, thus making it
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necessary to distinguish the coupling angles as ¢,, and 6, to obtain a strict

analysis. However, this difference has little difference on the coupling strength, and

thus here we consider 6,, =6,, =6,

c

for simplicity.

Zﬂe » Zﬂa

Figure 2.4.1  Parallel coupled striplines and their electric parameters.

For easy to directly synthesize the,BPF, we introduce an equivalent circuit
composed of two single lines and an admittance inverter, which we treated as an ideal

coupling circuit without frequency dependency, as shown in Figure 2.4.2.

-
Single line Inverter Single line

Figure 2.4.2  An equivalent circuit of parallel coupled lines using a J-inverter.

By equalizing the ABCD matrices of the parallel striplines and its equivalent

circuit, we can obtain the following equations for Z,, and Z,,
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2 (% o ()

_ : (2.31)
Z, 1_(%0) cot? 6,
Zyo _ 1_(%0)CSC9° +(%o)2 (2.32)

Z 2
0 1—(%) cot’ 6,
0

These equations are generalized expressions for parallel-coupled lines with arbitrary

coupling length. For the case of a quarter-wavelength coupling, substituting 6, = %

into (2.31) and (2.32) gives

2
ﬁ:l+i+ J (2.33)
ZO YO YO
z T
oo g~ P (2.34)
ZO YO YO

Equations (2.31) and (2.32) zwill be “largely employed in the practical filter

implementation in next chapters.

2.5 The Provision of Design Flow Based on the Numerical

Computation [1]-[6]

As mentioned in the beginning of chapter one, we have utilized the method of
numerical analysis to help implement the filter circuits with optimization on the
coupling matrix synthesis and diagnosis, it is better to provide the readers with the
design flow based on this well-developed and systematic approach for clarity and
further research investigation. The design flow is illustrated in the Figure 2.5.1 as

following:
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Determine the filter order,
coupling routine, and
positions of the finite

transmission zeros

Synthesize
¢ the corresponding coupling matrix
and frequency response

Utilize EM-simulator to help
determine the shape of resonators and
the distances between resonators
by a schematic method

Tune a filter ith the help of
 diagnosis method to optimize the
response of the filter

Figure 2.5.1  The methodology of filterimplementation in our thesis.
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Chapter 3  Extended Doublet

3.1 Introduction of the Extended Doublet [8]

As illustrated in Figure 3.1.1 (only direct coupling shown), the extended doublet
is a third order filter with the capability of realizing skirt selectivity or in-band linear
phase response (shifting the finite-position TZs) only by adjusting the relative
coupling magnitude between the corresponding resonators without sign alteration.
This property can be concluded by observing the governing equation of the extended
doublet, as described in section 2.3.1

0Z= MSlMlLM223 (3.1)

MSlMlL o MSZMZL

Resonator node
Source/Load
node

Figure 3.1.1  The coupling and routing scheme of the extended doublet with
coupling coefficients indicated for different filter applications.
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Figure 3.1.1 also indicates the magnitude and sign of each main coupling path to
express the following issue. In [10], it describes two classes of filters that have quite
distinct applications. They are distinguished by the location of their TZs (attenuation
poles), which, in the case of the first class, are at real frequencies, and in the case of
the second class are at imaginary frequencies (i.e., on the real axis of the complex
frequency plane). The TZs may be realized by cross coupling a pair of nonadjacent
elements of the filter, negatively to give real-frequency TZs, positively to give
real-axis zeros. The first type of filter gives improved skirt attenuation performance,
and the second gives improved passband delay characteristics compared with the
ordinary Chebyshev filter. Therefore, in this chapter, we will pay attention to

implementing these two filter performances.

— H{jo) |—

Figure 3.1.2  An ideal distortionless system.

Before we progress to the next step, it is necessary to point out the definition of
the group delay and the importance of it to give the flat group delay (or linear phase
response) in the communication systems. From communication theory, an ideal

distortionless system is described as
y(t)=Aex(t—t,) (3.2)
where x(t) is the input signal to the channel and y(t)is the output signal from the

channel. A and t, are the channel gain and delay, respectively. After performing

the Fourier transform on equation (3.2), we get
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Y(f)=AeX(f)ee 12 (3.3)
Thus, for an ideal distortionless communication channel, the output signal differs
from the input signal in the magnitude with scale A and the phase delay 2z ft, in
the frequency domain. The transfer function H(f) in the frequency domain of the

ideal distortionless system is
H(f)=Ae ™ (3.4)
With the definition of group delay,

So(f
r(f):—i%) (3.5)

where (p( f) is the phase of the transfer function. Using (3.5), the group delay of the

distortionless system is equal to t,, which is a constant. Therefore, it is important to
keep the in-band frequency response of ithe filter with flat (constant) group delay or

linear phase response for minimizing the unwanted channel distortion.

3.2 Introduction of an Analytical Approach for Synthesis

Based on the Chosen Layout

After given the specification and determining the filter order, coupling routine,
and positions of finite-position TZs, we have to choose the suitable filter structure for
implementation. For the doublet subcircuit of the extended doublet, we take
advantage of the configuration proposed in [11] with the even- and odd-mode analysis
to fast realize the doublet. This structure is shown in Figure 3.2.1.

If a network is symmetrical, it is convenient for network analysis to bisect the
symmetrical network into two identical halves with respect to its symmetrical

interface. In this stage, the design procedure for the doublet based on the even- and
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odd-mode analysis is ready to be addressed in detail.

Odd=-mode

I
I
I
I
I
I
I
I
I
I
I
I
I
I
f
0
I
I
I
I

G Lo,
— =z —
I —1 % |
| &
S}'lnmLtrlcal
plane

Figure 3.2.1  The doublet with even- and odd-mode analysis.

Assuming that the resonant frequencigs of the odd- and even-modes are at  f, f,,
respectively. Please refer to Figure 3.2.2 and Figufe 3.2.3 for structures and notations
in discussion.

Step 1.
Given the coupling matrix M in the low-pass prototype, center frequency f, and
fractional bandwidth FBW .

Step 2.
At
f=f, (1—@) (3.6)
Specify 6, .
Step 3.
Calculate

Jg; /ﬂ e FBW
YO S1 2 ( )



with

J 3o/ Y
1+[ 5/jcscec+( s j
Zoe _ % Y (3.8)

Z, 3o/ Y o2
1—( %)j cot” 6,
1- JV csco, + Isy 2
ZOo YO ¢ YO
= (3.9

Z 2
0 1—(‘]%j cot* 4,
0

for the values of Z,, and Z,,.

Step 4.
Then
T
0 =—-6 3.10
L =50 (3.10)
|||— ZD ZJE Zﬂtl |
| Zn
-
%) .

Figure 3.2.2  Configuration under odd-mode analysis for the doublet.

Step 5.
At

(t [1— My * FBWJ (3.11)

2
Find out 3%
YO
o,/ Y (3
a( %j +b( S%))+c:0 (3.12)

with

YA .
a=1+—2cot* 6,
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where

Figure 3.2.3

Step 6.

Calculate 4,

with

Step 7.

Find out Z,

b = cscé, (3.13)
c=1--"
0
f2
0, =0, 0—= (3.14)
fl
6'2 2Z2
28z}
Zy I
I Z,
- Hu Lol Hﬂ -
- 7 .
Configuration under even-mode analysis for the doublet.
sinc(26,,) = S'"(fe‘”) (3.15)
2| 6, — Js L 5
Y, ) FBW x Mg,
7z f
Oy ==—% 3.16
n=3T (3.16)
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2 .

After these steps, we have roughly obtained the physical parameters for the doublet,

which will be shown later that such estimation is quite accurate.

3.3 Simulation and Implementation for the Extended

Doublet

3.3.1 The Extended Doublet for Selectivity Requirement

After numerical synthesis, we have the coupling matrix M with specification and

finite-position TZs in the lowpass prototype as following:

Table 3.3.1 Specification and ‘positions-of finite TZs in lowpass prototype of the
extended doublet for selectivity.requirement.

Table 3.3.2 Coupling matrix of the extended doublet for selectivity requirement.

32




-0.8613 0.6202

As expressed in 3.2, we utilize those derived formulae for realizing the doublet

section first. After letting the 5™ row and column blank, which corresponds to the
doublet section as we attempt to design right now, we find that the frequency response
of the S parameters is like a notch filter in the center frequency. With the commercial
simulation solver Advanced Design System (ADS) of the Agilent Inc., we have the
circuit, layout, and frequency response shown in Figure 3.3.1 and Figure 3.3.2.
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Figure 3.3.1  Circuit and layout of the doublet for selectivity requirement.

Following, attach the 3™ resonator to the aforementioned circuit and simulate the
complete structure in the EM software Sonnet of Sonnet Inc. After fine tune, the
physical dimensions of the extended doublet for selectivity requirement are acquired.

Figure 3.3.3 indicates the final layout and simulation results under lossless condition.
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Verification for Doublet

0
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Frequency (GHz)

Figure 3.3.2  Frequency response of the doublet for selectivity requirement.
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Figure 3.3.3  The final layout and simulation results (under lossless condition) of
the extended doublet for selectivity requirement. Dimension (in mils) Lc=278, gap=7,
Ls=454, Ws=71.

Figure 3.3.4 illustrates the photograph of the device. The entire circuit was

manufactured on a Rogers RO6010 substrate with &,=10.2 and thickness of 25 mil.

Both numerical and experimental results of the frequency responses of the extended
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doublet for selectivity requirement are shown in Figure 3.3.5.
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Figure 3.3.4  The photograph of the extended doublet for selectivity requirement.

Extended Doublet for Selectivity Requirement

——— Simulation result-|S11]|
-30 ——— Simulation result-|Soq]|
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—— Measured result-|Sq ]|
—— Measured result-|So1]|

'40 T T T T |I
2.0 2.2 2.4 2.6 2.8 3.0

Frequency (GHz)

Figure 3.3.5 Measured and simulated S parameters of the extended doublet for
selectivity requirement.
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3.3.2 The Extended Doublet for Flat-Group-Delay Requirement

After numerical synthesis, we have the coupling matrix M with specification and

finite-position TZs in the lowpass prototype as following:

Table 3.3.3 Specification and positions of finite TZs in lowpass prototype of the
extended doublet for flat-group-delay requirement.

Table 3.3.4 Coupling matrix of the: extended: doublet for flat-group-delay
requirement

£ i e
B

Proposed structure 1

-
|
.|

In this configuration, we use the structure proposed in last section with some
modification. Follow the same design procedure as in the case of requirement for

selectivity, the extended doublet for flat-group-delay requirement is realized with ease.
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Figure 3.3.6 indicates the layout and simulation results under lossless condition.
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Figure 3.3.6  The layout and simulation results (under lossless condition) of the 1%
proposed extended doublet for flat-group-delay requirement. Dimension (in mils)
Lc=455, gap=6, Ls=288, Ws=71.

Figure 3.3.7 illustrates the photograph of the:device. The entire circuit was

manufactured on substrate with “¢.=10:2"and-of thickness 25 mil. Both numerical and
experimental results of the frequency "responses of the extended doublet for

flat-group-delay requirement are shown in Figures 3.3.8 and 3.3.9.
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Figure 3.3.7 The photograph of the 1% proposed extended doublet for
flat-group-delay requirement.
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Extended Doublet for Flat_Group_Delay Requirement
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Figure 3.3.8  Measured and simulated:S:parameters of the 1% proposed extended
doublet for flat-group-delay requirement.
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Figure 3.3.9 Measured and simulated group delay of the 1% proposed extended
doublet for flat-group-delay requirement.
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As shown in the graphs, they are in good agreement. But this configuration
utilized for implementing the flat-group-delay requirement has the inherent limitation
of the performance on the linear phase response due to its natural property of the
relative magnitude limitation in external quality factors of the odd/even modes.

Therefore, we propose the 2™ structure:

Figure 3.3.10 shows the layout and simulation results under lossless condition.
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Figure 3.3.10  The layout and-simulation results (under lossless condition) of the
2" proposed extended doublet for flat-grotp-delay requirement. Dimension (in mils)
gap_1=3, gap_2=5.
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Figure 3.3.11 The photograph of the 2™ proposed extended doublet for
flat-group-delay requirement.
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Figure 3.3.11 illustrates the photograph of the device. The entire circuit was

manufactured on substrate with ¢, =10.2 and of thickness 25 mil. Both numerical and

experimental results of the frequency responses of the extended doublet for

flat-group-delay requirement are shown in Figures 3.3.12 and 3.3.13.

Extended Doublet for Flat_Group_Delay Requirement
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Figure 3.3.12  Measured and simulated Stparameters of the 2" proposed extended

doublet for flat-group-delay requirement.
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Measured and simulated group delay of the 2™ proposed extended
doublet for flat-group-delay requirement.
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As shown in Figure 3.3.13, the new proposed configuration exhibits good
in-band group delay as desired. The variation of the group-delay in the passband is
less than 0.5 ns in the measurement. Figure 3.3.14 shows the measured data.
Furthermore, as an excellent improvement for flat group delay requirement, the 2"
proposed structure doesn’t exist the unwanted cross-coupling between resonators 1

and 2, which has been found to severely degrade the in-band linear phase response in

paper [7].

Extended Doublet for Flat_Group_Delay Requirement
(Modified Version)
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Figure 3.3.14  The measured data of the 2" proposed extended doublet for
flat-group-delay requirement.
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Chapter 4  Third-Order Transversal Filter

4.1 Introduction of the 3"-Order Transversal Filter

Second-order transversal filters (i.e., doublet) are the simplest building blocks for
generating the finite-position TZ. In paper [11], authors have used this coupling
scheme for implementing the finite-position TZ, but the T-shaped resonator was not
modeled as a dual-mode resonator. Instead, the circuit was modeled as two
quarter-wavelength resonators with a tapped open stub in the center plane. The open
stub is considered both as a K-inverter between two quarter-wavelength resonators to
control the coupling strength and as.a.gquarter-wave open stub to generate transmission
zero at desired frequency. A 3"=ordér transversal filter is synthesized in [12], but not

yet developed any analytical approach to-systematically design the transversal filters.

Source/Load _
Resonator node
node

Figure 4.1.1  The coupling and routing scheme of the 3"-order transversal filter.
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In this chapter, we will establish one algorithm contributing to the fast realization
of the 3"-order transversal filter and successfully verify the possibility of such method
from the simulation solver and experiment results. Figure 4.1.1 describes the routing
and coupling scheme of the 3™-order transversal filter.

As an aid for circuit tuning and investigation of the feasibility of the proposed
structure, sensitivity analysis has been incorporated in the design procedure and that
issue has attracted some researchers to pay attention to [13], [14]. Sensitivity
determination is an important step regarding the manufacturing tolerance. From these
sensitivities, acceptable bounds on the errors in the entries of the coupling matrix can
be determined before an attempt is made to implement the network. Based on these

results, the actual implementation can be either pursued or abandoned.

4.2 Introduction of an Analytical Approach for Synthesis

Based on the Chosen L:ayout

After given the specification and determining the filter order, coupling routine,
and positions of finite-position TZs, we have to choose the suitable filter structure for
implementation. For the 3“-order transversal filter, we take advantage of the
configuration proposed in [12] with the even- and odd-mode analysis to accelerate the
synthesis of this filter. The structure is shown in Figure 4.2.1.

If a network is symmetrical, it is convenient for network analysis to bisect the
symmetrical network into two identical halves with respect to its symmetrical
interface. In this stage, the design procedure for the 3™-order transversal filter based

on the even- and odd-mode analysis is ready to be addressed in detail.
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Assuming that the resonant frequency of the odd-mode is at f, and the
individual resonant frequencies of the even-modes are at f,, for upper stub, f, for
lower stub, respectively. Please refer to Figure 4.2.2 and Figure 4.2.3 for structures

and notations in discussion.

. Even-mnde

I
|
I
I
I
I
I
I
I
I
I
;
t Z: E0-:-
A
I
I
I
I
I
I
I
I
I

Odd-mode
I — % |
Z %
e
Symmetrical
plane

Figure 4.2.1  The 3"-order transversal filter with even- and odd-mode analysis.

Step 1.

Given the coupling matrix M in the low-pass prototype, center frequency f, and
fractional bandwidth FBW .

Step 2.
At
f, =1, (1-@) (4.1)
Specify 6, .
Step 3.
Calculate
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a1 _ M /ﬂ (4.2)
Y, - 2
2
1+ JS/ csco, + Isy
Zy Y, c Y, 4.3)

Z, 3o/ Y o2
1—( %)j cot” 6,
1- JV csco, + Isy 2
Zo YO ¢ YO
2 = (4.4)

Z 2
0 1—(‘]%j cot® 6,
0

for the values of Z,, and Z,,.

with

Step 4.
Then
0; = % — 0, (4.5)
7 %
| Z,
a. 6

Figure 4.2.2  Configuration under odd-mode analysis for the 3"-order transversal
filter.

Step 5.
At

f, =1, (1-@) (4.6)
Find out Jso
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with

b =csco, (4.8)
ZO
where
. f,
0.=0_e N (4.9)

Figure 4.2.3  Configuration under even-mode analysis for the 3™-order transversal
filter.

Step 6.

Define the impedance ratio r

r=—2 (4.10)

Calculate 6,, (initially assume the impedance ratio r =1)
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0 secze/ 2
6, sec’ g, + 03 03
e r___Z {901—[‘151 L } (4.11)

tan<902+tan Hf% _Sin(2°‘901) Yo M522°FBW
where
r f
0. =——=2 4.12
) (4.12)
Ops = 72'0%—901 (4.13)
3
and
f-t, (1——“" @ FBW j (4.14)
2
Step 7.
At
f,=f (1— My, © FBWJ
2
Find out Jss
0
2
a( Y5 | ki dssd ) £ =0 (4.15)
YO YO '
with
a'=1+—=cot’ 4.
0
b’ =csco, (4.16)
c' :1—ﬁ
Z0
where
gc' =0, .k (4.17)
fl
Step 8.

Calculate 6,, (initially assume the impedance ratio r=1)

@Gy, SeC” O, + G55 5€C” Gy _ 2 g _[3ss ’ 1 (4.18)
retan 6, +tan 6, sin(2¢6,,)| " | Y, ) MZ e FBW
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where

m f

g, =—-—= 4.19

=5 4.19)
f3

and 002 =T Of——l901 (420)
2

Step 9.
Update r with

(retand, +tané,) B
Z, tan 6, |a) = s
r _updated =—== (4.21)

Z, (tan g, + tan 19%)

tan 6, = e,

After gaining the updated value r, we iteratively execute steps from 6 to 9 until
the convergence of the impedance ratio r is achieved. Although the absolute values
of the characteristic impedances for the upper/lower stubs are not acquired, we will
demonstrate later that such calculation isn’t.necessary and the determination of the

impedance ratio r is sufficient to‘implement the 3"%order transversal filter.

4.3 Sensitivity Analysis of the'3™-Order Transversal Filter

In this section, we will build up the sensitivities of the individual coupling
coefficient with respect to the variations of dimensions in the physical parameters.
This analysis is not only as verification for the accuracy of the proposed topology
corresponding to the structure but also helpful for later tuning. Table 4.3.1 lists the

relationships after investigation

4.4 Simulation and Implementation for the 3"-Order

Transversal Filter
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Table 4.3.1 Sensitivity investigation on the coupling coefficients with respect to
the variations of dimensions in the physical parameters.

Geometrical Variation Extraction Matrix M, Sensitivity
Parameter (AL,
(Xy) AW or (
AG)
(mil)
Length of AL=0

oM,

X, )

oM,
upper stub  (Model) g -0.9541 -0.3187 -0.6028 ‘—GLU

1 -0.9541 0.3733

7.2%

1 -0.9400,0:3369 -0.9382
. 1.0098 0.3235

-1.9433 0.6015
-0.9382 0.3235 0.6015

Width of

upper stub S -0.9541 -0.3187 -0.6028
1 -0.9541 0.3733

-0.9406 0.3521

-0.3208

-0.5986 -1.9461 0.5987
-0.9406 0.3209 0.5987
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Length of AL=0
lower stub  (Model)

Width of
lower stub

Gap AG = 0
(source/load (Model)
to

resonators)

-0.9541 -0.3187 -0.6028
-0.9541 0.3733 -0.9525
-0.3187 1.2266 0.3205

-0.6028 .6043
-0.9525 0.3205 U507

-0.9421 -0.3434 -0.%
-0.9421 0.3260
-0.3434 1.1761
-0.5904

-0.9406 0.3449 0.

-0.9541 -0.3187 -0.6028
-0.9541 0.3733 -0.9525
-0.3187 1.2266 0.3205
-0.6028

-0.9449 0.3397 -0.9458

-0.3465 1.1653 0.3453
-0.5874 .5865

-0.9458 0.3453 0.5865

-0.9541 -0.3187 -0.6028
-0.9541 0.3733
-0.3187 1.2266 0.3205
-0.6028 -1.9651 0.6043
-0.9525 0.3205 0.6043
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AG=-1 s3| —
G
-0.8839 -0.2870 -0.5657 2721
-0.8839 0.1105 -0.8817
-0.2870 1.1978 02006 | .
-0.5657 -2.0605 0.5645 ‘a—en =
-0.8817 0.2906 0.5645 23,49
AG =-2
S -0.8217 -0.2611 -0.5285 ‘alvl_22 ~
1 -0.8217 -0.0965 0.82041 | oG |
1.1730 0.2623 | 2.68%
-2.1444 0.5300
-0.8204 0.2623 0.5300 M|
=
8.965%

After numerical synthesis, we have the coupling matrix M with specification and
finite-position TZs in the lowpass prototype listed in Table 4.4.1 and Table 4.4.2.
Based on the derivations addressed In section 4.2, we embark on getting the
converged impedance ratio r first.

Table 4.4.3 shows the iterationsof ‘numerical calculation and Figure 4.4.1
outlines the flow of iteration. From the table, we obtain a converged value r ~4.5.
The reason why we utilize the impedance ratio of the lower to upper stubs instead of
finding the absolute values of characteristic impedance is that the impedances of them
is too sensitive to electrical length & calculated from the formulae. Therefore, a

small estimation error would result in the impractical values generated.

Table 4.4.1 Specification and positions of finite TZs in lowpass prototype of the
3"order transversal filter.

Center Frequency]lFractional Bandwidthflin-band

(o)
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Table 4.4.2 Coupling matrix of the 3"%-order transversal filter.

—F T F T T
S 2 2
S o
S T I (T T
S I I N T

Table 4.4.3 The iteration process for'the‘impedance ratio r.

Iteration Assumed Calculated impedanee ratio

impedance ratio (retané, +tand,) o=
\ tan 6,1 = “s

Z
(r=2%) (r_updated:Z =

Z, (tan g, + &N H%j

INEUES 5.684

5.684 4.1838
4.1838 4.5826
4.5826 4.4768
4.4768 4.5048

4.5048 iwier\Completed

However, gaining the information about Z,,, Z,, (for the coupled section), 6,
(the electrical length of upper stub), &, (the electrical length of lower stub), and r

is sufficient for us to design the 3" -order transversal filter. With the commercial
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simulation solver Advanced Design System (ADS), we successfully synthesize two
cases with distinct characteristic impedances of the upper/lower stubs but let the
impedance ratio remain unchanged in either case. Figure 4.4.2 and Figure 4.4.3
indicate the circuit, layout, and frequency response for case 1 while Figure 4.4.4 and

Figure 4.4.5 describe the case 2.

impedance ratio
r(£3EN =1

Use the given impedance ratio,
s calculate the newly ratio with
the derived formulae

Update impedance ratio r
= with this newly obtained
value

umpﬂm\

2. newly value with
The old cstimaggs

Unegual

Figure 4.4.1  The iteration flow of the impedance ratio r acquisition.
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Figure 4.4.2  Circuit and layout of the 3"-order transversal filter in case 1.

)
)

Verification for 3rd-Order Transversal Filter

1
1

2
SP.S(1
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dB{FinalAnalysis1.SP1.
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Figure 4.4.3  Frequency response of the 3"-order transversal filter for case 1.
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Figure 4.4.4  Circuit and layout of the 3"-order transversal filter for case 2.

Another Version of 3rd-Order Transversal Filter
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Figure 4.4.5  Frequency response of the 3"-order transversal filter for case 2.

Figure 4.4.6 shows the layout (choosing case 1) and simulation results under

lossless condition. Figure 4.4.7 illustrates the photograph of the device. The entire
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circuit was manufactured on substrate with &, =10.2 and of thickness 25 mil. Both
numerical and experimental results of the frequency responses of the 3"-order
transversal filter are shown in Figure 4.4.8. As a result of the fact, we could realize the
3"-order transversal filter easily with the introduction of analytical analysis described

in this chapter.

Cartesian Plot

=—%us ] 20=500 5
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transversal filter 3rd-order ve
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a DB[321] Ol a
E‘ Jap Lus \—\—dé_'] -20
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Lc [empty] i 04
4l \f\. t
u 40
d
€ -504
Lis
(dB) -80
D '70 T T T T
2 22 24 2.6 28 3
—== [1W¥Is
[Sonnet Software e FrEqUEnCy (GHZ)

Figure 4.4.6  The layout and smu]a;tmn_res.ults (Under lossless condition) of the
3"-oredr transversal filter. Dlmen,smn"(' n mlls) Lms 448, LIs=395, Lc=231, gap=6,
Wus=242, WIs=32. I

Figure 4.4.7  The photograph of the 3"-order transversal filter.
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Brd-Order Transversal Filter(Analytic approach introduced)
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Figure 4.4.8  Measured and:simulated S parameters of the 3™-order transversal
filter.

57



Chapter 5 Conclusions

This thesis emphasizes the fast realization of filter configurations based on
analytical analysis of the proposed structures and CAD method for synthesis and
diagnosis of the electrical parameters of the filter, i.e., the coupling matrix. Two filter
topologies have been implemented: one is the extended doublet and the other is the
3" order transversal filter. In either example, we have systematically designed the
device with the aids from analytical analysis of the filter in advance and numerical
diagnosis of the established structure for circuit fine-tune following. The design
procedures avoid consuming large amount,of time in circuit tuning.

In the extended doublet, we have utilized'this'topology to realize two categories
of filter requirements. One is far high skirt selectivity and the other is for in-band flat
group delay. The filter’s group ‘delay has-been demonstrated in association with the
signal distortion. Based on this topology, ‘we have successfully eliminated the
unwanted coupling that would degrade the performance of in-band group delay. The
measurement data has validated the possibility with the variation of in-band group
delay less than 0.5 ns.

As for the 3"-order transversal filter, we have established one algorithm for
quick estimation of the related electrical parameters to be determined. Instead of
finding out the absolute characteristic impedances for upper/lower stubs (please refer
to chapter 4 for detail) because of their high sensitivity to the electrical lengths, we
have defined a new parameter, the impedance ratio r of the lower to upper stubs,
and have observed its importance in manufacturing the filter. This algorithm only

involves a few of iterations due to its fast convergence. Finally, we have exhibited
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such approach is practical and useful.
In order to meet the demand in nowadays communication systems, we have
designed all filters proposed in this thesis with center frequency at 2.4 GHz for easily

incorporating these devices into the environments of IEEE 802.11 b/g, ISM, and

Bluetooth standards.
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