

國 立 交 通 大 學

電信工程學系碩士班
碩士論文

具最佳硬體資源利用之 MIMO-OFDM 系統

之 FPGA 之實現

FPGA Realization of a MIMO-OFDM System with

Optimized Hardware Resource Utilization

 研 究 生：陳彥宇 Student: Yen-Yu Chen

 指導教授：李大嵩 博士 Advisor: Dr. Ta-Sung Lee

中 華 民 國 九 十 五 年 六 月

具最佳硬體資源利用之 MIMO-OFDM 系統

之 FPGA 之實現

FPGA Realization of a MIMO-OFDM System with

Optimized Hardware Resource Utilization

研 究 生：陳彥宇 Student: Yen-Yu Chen

指導教授：李大嵩 博士 Advisor: Dr. Ta-Sung Lee

國立交通大學

電信工程學系碩士班

碩士論文

A Thesis

Submitted to Department of Communication Engineering
College of Electrical and Computer Engineering

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master of Science

in
Communication Engineering

June 2006
Hsinchu, Taiwan, Republic of China

 中 華 民 國 九 十 五 年 六 月

 - I -

具最佳硬體資源利用之 MIMO-OFDM 系統

之 FPGA 之實現

學生：陳彥宇 指導教授：李大嵩 博士

國立交通大學電信工程學系碩士班

摘要

正交分頻多工(OFDM)技術在新一代無線通訊系統佔有相當關鍵性的地位，

它可提供高速數據傳輸，且適合操作在多重路徑所引起之頻率選擇性通道下;另一

方面，多輸入多輸出(MIMO)技術可提升傳輸率及鏈路品質。因此，在新一代通訊

系統中，MIMO-OFDM 將成為極具有潛力之關鍵技術之一。在本論文中，吾人將

使用快速雛形發展平台 Aptix® MP3C，以及自行研發之平台，實現一 2×2

MIMO-OFDM 系統，其中基頻演算法部分將實現於平台之 FPGA 模組。在此系統

中，吾人採用了兩種不同之時空演算法，分別為 STBC 及 VBLAST。其餘演算法

包括通道估計器，相位追蹤器，迴旋碼解碼器等，也將完整的實現於系統中。此

外，吾人更進一步提出一套有系統的量化演算法，能在浮點數轉定點數時有效的

壓抑量化誤差(quantization error)，並且同時最佳化所需之硬體資源利用。

 - II -

FPGA Realization of a MIMO-OFDM System with

Optimized Hardware Resource Utilization

Student: Yen-Yu Chen Advisor: Dr. Ta-Sung Lee

Department of Communication Engineering

National Chiao Tung University

Abstract

In recent years, orthogonal frequency division multiplexing (OFDM) becomes a

key technology in the development of new wireless communication systems, enabling

high data rate transmission, and is suitable for frequency selective channels caused by

multipath propagation. On the other hand, multiple-input multiple-output (MIMO)

technique has a great potential of delivering either a dramatic increase of throughput or

improvement of link quality. Combined with the MIMO technique, OFDM systems

become more suited to next generation wireless communications. In this thesis, we

propose a total solution for building up a 2×2 MIMO-OFDM system on two

FPGA-based platforms: a fast prototyping platform Aptix® MP3CF and a self-designed

platform. There are two space-time algorithms adopted in our system, including

Space-Time Block Coding (STBC) and Vertical Bell Labs Layered Space-Time

(VBLAST). Furthermore, since fixed-point computation is adopted in our system due

to the cost and complexity of floating-point hardware, we also propose a quantization

algorithm which can not only minimize the hardware resource requirement but also

constrain the quantization error within a specified limit when converting floating-point

arithmetic to fixed-point arithmetic.

 - III -

Acknowledgement

First, I am very grateful to my advisor, Dr. Ta-Sung Lee, for his enthusiastic

guidance and great patience, especially the training of oral presentation and being

earnest in our works. Then I would also thanks to Chung-Ta Ku, Po-Tien Lee, and Dr.

Juinn-Horng Deng who spend lots of time for my consultation. Special thanks to Jeff

Tsai for the technical support on the circuit design of self-designed platform. Heartfelt

thanks are also offered to all members in the Communication Signal Processing and

System Design (CSPSD) Lab for their constant encouragement and help.

Finally, I would like to express my deepest gratitude to my family for their

endless love, especially my mom for her tender encouragement, and my dad as a

constant reminder of health.

 - IV -

Contents

Chinese Abstract..I

English Abstract .. II

Acknowledgement.. III

Contents.. IV

List of Figures ... VIII

List of Tables ..XI

Acronym Glossary...XII

1 Introduction ... 1

2 MIMO-OFDM Baseband Transceiver Architecture 4

2.1 Overview of MIMO-OFDM System ... 4

2.2 Transmitter Architecture .. 6

2.2.1 Convolutional Encoder ... 7

2.2.2 Interleaver / De-interleaver... 8

2.2.3 Mapper / De-mapper... 9

2.2.4 Preamble Channel and Frame Structure ... 9

2.2.5 Root Raised Cosine Filter ... 10

2.3 Receiver Architecture .. 11

2.3.1 Timing Synchronizer... 12

 - V -

2.3.2 Frequency Synchronizer ... 12

2.3.3 Channel Estimator... 13

2.3.4 Phase Estimator... 14

2.3.5 Viterbi Decoder... 15

2.4 MIMO Techniques ... 18

2.4.1 Spatial Diversity Technique.. 18

2.4.2 Spatial Multiplexing Technique.. 20

2.5 Summary.. 22

3 MIMO-OFDM System Platforms.. 23

3.1 Fast Prototyping Platform.. 23

3.1.1 Aptix® System Explorer... 24

3.1.2 FPGA Module ... 28

3.1.2.1 FPGA Overview.. 28

3.1.2.2 FPGA Design Flow ... 29

3.1.3 ‘C6701 DSP EVM .. 31

3.1.3.1 TMS320C6701 DSP Overview ... 32

3.1.3.2 DSP Design Flow.. 34

3.1.4 USB 2.0 Module ... 35

3.1.5 AD and DA Modules... 36

3.1.6 Debugging Tools ... 37

3.2 Self-designed Platform .. 38

3.2.1 RF Module .. 39

3.2.2 AD and DA Modules... 40

3.2.3 MAC/BB Platform.. 42

3.2.4 USB Interface ... 42

 - VI -

3.2.5 Debugging Tools ... 43

3.3 Summary.. 45

4 MIMO-OFDM System Realization... 46

4.1 Design Flow... 46

4.2 MATLAB Verification ... 47

4.2.1 Floating-Point Verification ... 48

4.2.2 Fixed-Point Verification.. 51

4.3 FPGA Realization .. 53

4.3.1 Design Principles .. 53

4.3.2 Circuit Design ... 55

4.3.2.1 Circuit Design of Transmitter .. 55

4.3.2.2 Circuit Design of Receiver .. 62

4.4 ModelSim simulation... 71

4.5 Experimental Results ... 72

4.5.1 Fast Prototyping Platform... 73

4.5.2 Self-designed Platform ... 74

4.6 Summary.. 76

5 Proposed Quantization Algorithm with Minimum Hardware

Requirement .. 77

5.1 Introduction of Quantization.. 78

5.2 Previous work .. 80

5.3 Proposed Quantization Algorithm ... 81

5.3.1 Pre-quantization Works... 81

5.3.2 Determine Hardware Resource Weightings.. 85

5.3.3 Determine Integer Lengths ... 87

 - VII -

5.3.4 Determine Fraction Lengths ... 88

5.3.4.1 Coarse Modification.. 89

5.3.4.2 Fine Modification.. 90

5.4 Simulation Results ... 91

5.5 Summary.. 95

6 Conclusion... 96

Bibliography... 98

 - VIII -

List of Figures

Figure 2.1: (a) Conventional multicarrier technique (b) Orthogonal multicarrier

modulation technique... 6

Figure 2.2: Transmitter architecture of MIMO-OFDM system....................................... 7

Figure 2.3: Convolutional encoder with code rate 1/3 and constraint length 5 7

Figure 2.4: Interleaver and de-interleaver schemes ... 8

Figure 2.5: QPSK, 16-QAM, and 64-QAM constellations.. 9

Figure 2.6: Training sequence and frame structure of IEEE 802.11a standard 10

Figure 2.7: Receiver architecture of MIMO-OFDM system ... 11

Figure 2.8: Trellis diagram part 1 .. 17

Figure 2.9: Trellis diagram part 2 .. 17

Figure 3.1: Development environment of fast prototyping system 24

Figure 3.2: Modules installed on Aptix MP3CF platform... 24

Figure 3.3: Aptix® MP3CF platform.. 25

Figure 3.4: Explorer flow... 26

Figure 3.5: FPGA design flow ... 30

Figure 3.6: ‘C6701 DSP EVM... 32

Figure 3.7: Architecture of ‘C6701 DSP EVM.. 33

Figure 3.8: USB 2.0 module .. 35

Figure 3.9: USB 2.0 module and its neighborhood ... 35

Figure 3.10: AD and DA modules on fast prototyping platform 36

Figure 3.11: Development environment of self-designed platform............................... 38

Figure 3.12: Main board of self-designed platform... 39

Figure 3.13: RF module on self-designed platform... 40

Figure 3.14: Measured carrier spectrum form RF module .. 40

Figure 3.15: AD/DA module on self-designed platform.. 41

 - IX -

Figure 3.16: Measured data waveform from AD/DA module 42

Figure 3.17: MAC/BB platform... 42

Figure 3.18: USB module on self-designed platform.. 43

Figure 3.19: Spectrum analyzer block diagram... 44

Figure 3.20: Vector signal analyzer block diagram ... 44

Figure 4.1: FPGA design flow ... 47

Figure 4.2: Impulse and frequency response of RRC filter with β=0.22 48

Figure 4.3: (a) Original waveform (b) RRC shaped waveform on transmitter (c) RRC

shaped waveform on receiver .. 49

Figure 4.4: Eye diagram of RRC shaped waveform.. 49

Figure 4.5: Coarse timing synchronization output... 50

Figure 4.6: Real and estimated channel frequency response ... 50

Figure 4.7: Floating-point system performance... 51

Figure 4.8: Fixed-point system performance... 52

Figure 4.9: Circuit design of transmitter.. 55

Figure 4.10: Circuit design of convolutional encoder ... 56

Figure 4.11: Circuit design of interleaver .. 57

Figure 4.12: Circuit design of mapper ... 58

Figure 4.13: Circuit design of STBC encoder with pilot zero tones adder.................... 58

Figure 4.14: Circuit design of de-multiplexer with pilot zero tones adder.................... 59

Figure 4.15: Circuit design of fast Fourier transform.. 60

Figure 4.16: Circuit design of oversampler and CP adder... 60

Figure 4.17: Circuit design of first and second preamble stream generators 61

Figure 4.18: Circuit design of RRC filter .. 61

Figure 4.19: Circuit design of receiver side... 62

Figure 4.20: Circuit design of timing synchronizer... 63

Figure 4.21: Circuit design of oversample and CP remover.. 63

Figure 4.22: Circuit design of pilot zero tone mover... 64

Figure 4.23: Circuit design of channel estimator... 65

Figure 4.24: Circuit design of phase estimator .. 65

 - X -

Figure 4.25: Circuit design of STBC decoder ... 66

Figure 4.26: Original real number calculating strategy in VBLAST............................. 67

Figure 4.27: Modified real number calculating strategy in VBLAST........................... 68

Figure 4.28: Circuit design of VBLAST detector.. 68

Figure 4.29: Circuit design of Viterbi decoder .. 69

Figure 4.30: Circuit design of branch metric generator... 69

Figure 4.31: Circuit design of add, compare, and select block...................................... 70

Figure 4.32: STBC ModelSim simulation result ... 71

Figure 4.33: VBLAST ModelSim simulation result.. 71

Figure 4.34: Transmitted waveform of MIMO-OFDM system..................................... 72

Figure 4.35: Prototyping platform experimental result ... 73

Figure 4.36: Self-designed platform development environment 74

Figure 4.37: Self-designed platform experimental result: received spectrum and

waveforms on PSA and VSA... 75

Figure 4.38: Self-designed platform experimental result: timing synchronization

waveform on LA.. 75

Figure 4.39: Self-designed platform experimental result: source data and detected data

waveform on LA.. 76

Figure 5.1: Quantization example 1: truncation and rounding 78

Figure 5.2: Quantization example 2: saturation and wrapping...................................... 79

Figure 5.3: Data flow paths and distribution of quantization-related blocks and

quantization-irrelevant blocks in MIMO-OFDM system 83

Figure 5.4: Influenced circuit blocks by qifft and qRRC.. 86

Figure 5.5: Influenced circuit blocks by qRRC, qrxRRC, qfft, qlnpmb, qch and qph 87

Figure 5.6: Detected constellation under floating-point case .. 91

Figure 5.7: Detected constellation under EMtarget = 1.. 92

Figure 5.8: Detected constellation under EMtarget = 5.. 92

Figure 5.9: Detected constellation under EMtarget = 10.. 92

Figure 5.10: System performance under different EMs as qifft uses saturation.............. 93

Figure 5.11: System performance under different EMs as qifft uses wrapping............... 94

 - XI -

List of Tables

Table 2.1: Specification of MIMO-OFDM baseband transceiver 6

Table 2.2: State transition table.. 16

Table 4.1: Word lengths under different EMs.. 52

Table 4.2: Synthesis and P&R information.. 72

Table 5.1: Quantizers and their settings in MIMO-OFDM system 85

Table 5.2: Experimental results of hardware resource weightings 87

Table 5.3: Experimental results of integer lengths... 88

Table 5.4: Experimental results of coarse modification... 90

Table 5.5: Experimental results of fine modification... 91

Table 5.6: Experimental results of final word lengths and EMs 95

 - XII -

Acronym Glossary

4G the fourth generation

ACS add, compare, and select

AD analog to digital converter

AMPS advanced mobile phone services

ASIC application specific integrated circuit

AWGN additive white Gaussian noise

BER bit error rate

BMG branch metric generator

BPF bandpass filter

BPSK binary phase shift keying

CCS code composer studio

CDMA code division multiple access

CP cyclic prefix

CPLD complex programmable logic device

CPU central processing unit

DA digital to analog converter

DAB digital audio brocasting

D-AMPS digital AMPS

DBLAST diagonal Bell laboratory layered space-time

DFT discrete Fourier transform

DSP digital signal processor

DVB-T terrestrial digital video broadcasting

EDA electronic desing automation

EDIF electronic design interface format

EM error metric

 - XIII -

EVM evaluation module

FDA filter design and analysis

FFT fast Fourier transform

FIFO first in, first out

FIR finite impulse response

FPCB field programmable circuit board

FPGA field programmable gate array

FPIC field programmable interconnect component

FSM finite state machine

GSM global system for mobile communications

HDL hardware description language

I/O input/output

ICI inter-carrier interference

IDE integrated development encironment

IEEE institute of electrical and electronics engineers

IF intermediate frequency

ISI inter-symbol interference

JTAG joint test action group

LA logic analyzer

LUT look up table

MF match filter

MFLOPS mega floating-point operations per second

MIMO multiple-input multiple-output

MMSE minimum mean square error

OBW occupied bandwidth

OFDM orthogonal frequency division multiplexing

OTP one time programmable

PC personal computer

PIC parallel interference cancellation

PLD programmable logic device

PLL phase-locked loop

 - XIV -

QAM quadrature amplitude modulation

QoS quality of service

QPSK quaternary phase shift keying

RAM random access memory

RBW resolution bandwidth

ROM read-only memory

RRC root raised cosine

RTL register transfer level

SBSRAM synchronous burst SRAM

SIC successive interference cancellation

SNR signal to noise ratio

SoC system on a chip

SRAM static random access memory

STBC space time block code

TBU trace back unit

UART universal asynchronous receiver/transmitter

USB universal serial bus

VBLAST vertical Bell laboratory layered space-time

VCO voltage-controlled oscillator

VHDL very high speed integrated circuit hardware description language

VLIW very long instruction word

WCDMA wideband CDMA

WLAN wireless local area network

ZF zero forcing

 - 1 -

Chapter 1

Introduction

Communication technologies have been developed rapidly in recent decades of

years. The first-generation (1G) radio systems transmit voice over radio by using

analog communication techniques, such as Advanced Mobile Phone Services (AMPS),

which were developed in the 1970s and 1980s. The 2G systems were built in the 1980s

and 1990s, and featured the adoption of digital technology, such as Global System for

Mobile Communications (GSM), Digital-AMPS (D-AMPS), and code division

multiple access (CDMA); among them GSM is the most successful and widely used

2G system. 3G mobile technologies provide users with high-data-rate mobile access,

which developed rapidly in the 1990s and is still developing today. The major radio air

interface standard for 3G is wideband CDMA (WCDMA), whose transmission data

rate can be up to 2 Mbps in good conditions. However, there are some limitations with

3G, such as the difficulty in extending to very high data rates due to excessive

interference between services, and the difficulty in providing multi-rate services with

different quality of service (QoS) due to the restrictions imposed on the core network

by the air interference standard. Therefore, the future mobile communication system

having the features of high-data-rate transmission and open network architecture,

called 4G, is desired to meet the increasing demand for broadband wireless access. In

fact, the combination of multiple-input multiple-output (MIMO) signal processing with

orthogonal frequency division multiplexing (OFDM) has been regarded as a promising

solution for enhancing the data rates of next-generation wireless communication

systems [1].

 - 2 -

 OFDM has become a popular technique for transmission of signals over wireless

channels, and its most well known advantage is the capability of converting a

frequency-selective channel into a parallel collection of frequency flat sub-channels,

which makes the receiver simpler. Therefore, OFDM has been adopted in several

wireless standards such as digital audio broadcasting (DAB), terrestrial digital video

broadcasting (DVB-T), the IEEE 802.11a/g wireless local area network (WLAN)

standard, and the IEEE 802.16-2005 standard. These show its potential of being a

candidate for future-generation (4G) mobile wireless systems.

 MIMO techniques are also popular recently; it can basically be categorized into

two groups. The first one aims to improve the power efficiency and transmission

reliability by maximizing spatial diversity; one popular example is the space-time

block codes (STBC) [2]. The second type uses a layered approach to increase capacity;

one popular example of such a system is the vertical-Bell Laboratories layered

space-time (VBLAST) architecture [3] [4], in where independent data signals are

transmitted over antennas to increase the data rate.

 The goal of this thesis is to realize a 2×2 MIMO-OFDM system on FPGA-based

platforms, where we intend to verify the above-mentioned space-time algorithms on

both fast prototyping platform and self-designed platform. The complete functional

blocks in both the transmitter and receiver are provided, and the associated algorithms

applied in each functional block are also presented. After giving an overview of system

architecture, we propose a total solution to build up FPGA-based platforms for

realizing the MIMO-OFDM system, including MATLAB verification, and FPGA

realization. The developed system contains a baseband transmitter, a digital-analog

converter, an analog-digital converter, and a baseband receiver.

 Furthermore, owing to the cost and complexity of floating-point hardware, the

proposed MIMO-OFDM system on FPGA is limited to fixed-point arithmetic.

Therefore the floating-point to fixed-point conversion becomes an inevitable procedure.

To determine word lengths of all input, intermediate, and output signals, we propose a

quantization algorithm which can minimize the hardware resources while constraining

the quantization error within a specific limit. Moreover, the concept of hardware

resource weighting is introduced, and some communication characteristics are also

 - 3 -

taken into account.

The organization of this thesis is as follows. Chapter 2 describes the proposed

MIMO-OFDM transceiver architecture and its corresponding schemes. In Chapter 3,

the development environments of the proposed fast prototyping platform and

self-designed platform are introduced. In Chapter 4, the overall system realization is

presented, and the performance evaluation is also included. Later, a systematical

quantization algorithm is provided in Chapter 5. Finally, we make our concluding

remarks in Chapter 6.

 - 4 -

Chapter 2

MIMO-OFDM Baseband Transceiver
Architecture

This chapter focuses on the MIMO-OFDM baseband transceiver architecture. An

overview of the MIMO-OFDM system will first be given. Then we divide the

developed architecture into transmitter and receiver, and provide functional

descriptions and associated algorithms for each block. Finally, the MIMO techniques

adopted on the system will be described.

2.1 Overview of MIMO-OFDM System

OFDM has long been regarded as an efficient approach to combat the adverse

effects of multipath spread, and is the main solution to many wireless systems. It

converts a frequency-selective channel into a parallel collection of frequency flat

subchannels, which makes the receiver simpler. The time domain waveforms of the

subcarriers are orthogonal, yet the signal spectrum corresponding to the different

subcarriers overlap in frequency domain. Therefore, the available bandwidth is used

very efficiently, especially compared with those systems having intercarrier guard

bands, as shown in Figure 2.1 [5]. In order to eliminate inter-symbol interference (ISI)

almost completely, a guard time is introduced for each OFDM symbol. Moreover, to

eliminate inter-carrier interference (ICI), the OFDM symbol is further cyclically

extended in the guard time, resulting in the cyclic prefix (CP). Otherwise, multipath

 - 5 -

remains an advantage for an OFDM system since the frequency selectivity caused by

multipaths can improve the rank distribution of the channel matrices across those

subcarriers, thereby increasing system capacity. We summarize the advantages of

OFDM as follows [1]:

 High spectral efficiency

 Simple implementation by FFT

 Robustness against narrowband interference

 High flexibility in terms of link adaptation for having many subcarriers

 Suitability for high-data-rate transmission over a multipath fading channel

MIMO systems where multiple antennas are used at both the transmitter and

receiver have been also acknowledged as one of the most promising techniques to

achieve dramatic improvement in physical-layer performance [6], [7]. Moreover, the

use of multiple antennas enables space-division multiple access (SDMA), which

allows intracell bandwidth reuse by multiplexing spatially separable users [8], [9].

Channel variation in the spatial domain also provides an inherent degree of freedom

for adaptive transmission. To sum up, after OFDM is combined with MIMO

techniques, MIMO-OFDM can be a potential candidate for the next generation

wireless communication systems.

In our system, we refer to the IEEE 802.11a standard [10], and further extend the

SISO-OFDM system to MIMO-OFDM system with two transmitted antennas and two

received antennas. Six OFDM symbols modulated by 64-tap IFFT are attached after

ten short preambles and two long preambles, where the detailed structure of preamble

will be discussed in Section 2.2.4. Furthermore, twelve zero tones are inserted on

predefined subcarriers into every OFDM symbol so as to diminish the interference

caused by adjacent signals, and four pilot tones are also inserted in a symmetric way

for the sake of tracking the phase drift at the receiver. Data tones are transmitted in the

remaining forty-eight subcarriers. Specification of MIMO-OFDM baseband transceiver

is shown in Table 2.1.

 - 6 -

Figure 2.1: (a) Conventional multicarrier technique

(b) Orthogonal multicarrier modulation technique

Table 2.1: Specification of MIMO-OFDM baseband transceiver

{-21, -7, 7, 21}Locations of Pilot Tones

{-32:-27, 0, 27:31}Locations of Zero Tones

{-26:-22, -20:-8, -6:-1,1:6, 8:20, 22:26}Locations of Data Tones

16Short Preamble Size

64+16 (CP)Long Preamble Size

64 {-32:31}FFT Size

4Number of Pilot Tones / Symbol

12Number of Zero Tones / Symbol

48Number of Data Tones / Symbol

6Number of OFDM Symbols / Packet

10Number of Short Preambles / Packet

2Number of Long Preambles / Packet

2Number of Receive Antennas

2Number of Transmit Antennas

{-21, -7, 7, 21}Locations of Pilot Tones

{-32:-27, 0, 27:31}Locations of Zero Tones

{-26:-22, -20:-8, -6:-1,1:6, 8:20, 22:26}Locations of Data Tones

16Short Preamble Size

64+16 (CP)Long Preamble Size

64 {-32:31}FFT Size

4Number of Pilot Tones / Symbol

12Number of Zero Tones / Symbol

48Number of Data Tones / Symbol

6Number of OFDM Symbols / Packet

10Number of Short Preambles / Packet

2Number of Long Preambles / Packet

2Number of Receive Antennas

2Number of Transmit Antennas

2.2 Transmitter Architecture

The baseband MIMO-OFDM transmitter architecture is shown in Figure 2.2 [11].

The source data is first fed into the channel encoder, e.g., using the convolution code

for error correction at the receiver. The encoded output is then interleaved by

distributing the same coded bits into different positions in the packet so that the

transmitted information is better resistant to the channel distortion. A MIMO system is

 - 7 -

typically designed to meet two different, yet opposite, targets: either to achieve high

spectral efficiency, e.g., the VBLAST scheme suggested by Foschini et al. [3] [4], or to

improve the transmission reliability against channel fading, e.g., the space-time block

codes (STBC) [2] first discovered by Alamouti for two transmit antennas. The

preamble channels, coded by the rule of STBC, will be attached in front of the data

channel modulated by IFFT. Finally, all traffic data composed of the preamble part and

data channels are sent to individual DA modules to convert the baseband signals onto

the desired frequency band.

Preamble
Channel

IFFTS/P P/S MUX/
RRCIFFTS/P P/S MUX/
RRC

S：STBC
L：STBC

Encoder Inter-
leaver MapperData

Channel

ST-
Block

Coding

De-
MUX

Figure 2.2: Transmitter architecture of MIMO-OFDM system

2.2.1 Convolutional Encoder

A convolutional encoder typically will generate two or three output bits for each

input bit. The output bits are dependent on the current input bit, as well as the state of

the encoder. The state of the encoder is represented by several bits which precede the

current bit. Figure 2.3 shows a convolutional encoder adopted in our system with code

rate equal to 1/3 and constraint length equal to 5. Convolutional coding adds redundant

bits in such a way that the decoder can, within limits, detect errors and correct them.

+

+

+

S0 S1 S2 S3Din

g0

g1

g2

+

+

+

S0 S1 S2 S3Din

g0

g1

g2
Figure 2.3: Convolutional encoder with code rate 1/3 and constraint length 5

 - 8 -

2.2.2 Interleaver / De-interleaver

In real life, bit errors often occur in bursts due to the fact that linear-fading dips

affect several consecutive bits. Unfortunately, the convolutional encoder is most

effective in detecting and correcting single random errors and is not effective when

errors occur in bursts. Interleaving is the reordering of data coming out of a

convolutional encoder prior to transmission so that consecutive bits of data are

distributed over a larger sequence of data to reduce the effect of burst errors. At the

receiver, the reverse permutation is performed before decoding. A commonly used

interleaving scheme is the block interleaving, where the input bits are written in a

matrix column by column and read out row by row.

Referring to institute of electrical and electronics engineers IEEE 802.11a

standard [10], we use a block interleaver as shown in Figure 2.4. In the standard, the

interleaving depth is suggested being the length of an OFDM symbol. Each coded data

symbol after convolutional encoder contains 96 bits. Therefore the interleaving depth

we adopt is 96, as illustrated in the figure. The interleaver satisfies the following

expression
6 (mod 16) /16j v v⎢ ⎥= × + ⎣ ⎦ (2.1)

where v is the index of input coded data, and v = 0,1,...,95; j is the index of output

interleaved data; ⎣ ⎦m is the greatest integer smaller than m.

959486858483828180

797870696867666564

636254535251504948

474638373635343332

313022212019181716

15146543210

959486858483828180

797870696867666564

636254535251504948

474638373635343332

313022212019181716

15146543210

Interleaving

De-interleaving

Figure 2.4: Interleaver and de-interleaver schemes

 - 9 -

2.2.3 Mapper / De-mapper

Quadrature amplitude modulation (QAM) is the most popular type of modulation

using in the OFDM system. The rectangular constellations are especially easy to

implement as they can be split into independent in-phase and quadrature parts. A

mapper is used to map a small group of bits into a symbol according to the rectangular

constellation adopted. Figure 2.5 shows the rectangular constellations of Quadrature

Phase Shift Keying (QPSK), 16-QAM, and 64 QAM. The higher modulation order the

mapper adopts, the more information a symbol can carry, yet higher modulation order

always suffers from interference more severely. In our system, we only adopt QPSK as

our modulation scheme.

QPSK

16-QAM

64-QAM

I

Q

2 4 6-6 -4 -2

2

4

6

-6

-4

-2

QPSK

16-QAM

64-QAM

I

Q

2 4 6-6 -4 -2

2

4

6

-6

-4

-2

Figure 2.5: QPSK, 16-QAM, and 64-QAM constellations

2.2.4 Preamble Channel and Frame Structure

Referring IEEE 802.11a standard [10], we attach the training sequence, also

called preamble, in front of every packet. At the receiver, preambles can be utilized to

do a number of tasks, such as timing synchronization, frequency synchronization, and

channel estimation. The format of preamble channel and frame structure is shown in

Figure 2.6 [10]. Preambles can further be separated into short preamble and long

 - 10 -

preamble, and both short and long preamble are modulated by BPSK and encoded by

STBC scheme. Short preamble, as implied by the name, has a shorter length compared

with long preamble. Each short preamble symbol contains 16 bits with time-span 0.8

µs, and ten symbols form a complete short preamble with a total time-span of 8 µs. The

following parts are two long preamble symbols, and each one is protected by a guard

interval filled with its cyclic extension, which have a total time-span of 8 µs. After

preamble channel, data symbols with cyclic extension follow. There are four pilot

tones embedded symmetrically in every data symbol. Note that the first non-preamble

symbol is designed for signaling in the standard, such as code rate and modulation

order.

Figure 2.6: Training sequence and frame structure of IEEE 802.11a standard

2.2.5 Root Raised Cosine Filter

Root raised cosine (RRC) filter is commonly used in digital communication

systems to limit ISI. The ideal root raised cosine filter, frequency response consists of

unity gain at low frequencies, the square root of raised cosine function in the middle,

and total attenuation at thigh frequencies. The width of the middle frequencies is

defined by the roll off factor constant β (0<β<1). The root raised cosine filter is

generally used in series pairs, so that the total filtering effect is that of a raised cosine

filter. The advantage is that if the transmit side filter is stimulated by an impulse, then

the receive side filter is forced to filter an input pulse shape that is identical to its own

impulse response, thereby setting up a matched filter and maximizing signal to noise

ratio (SNR) while at the same time minimizing ISI.

 - 11 -

Mathematically, the frequency response ()rrcF ω may be written as

1 For (1)

0 For (1)
()

((1))1 cos
2

 For (1) (1)
2

c

c

rrc
c

c
c c

F

ω ω β

ω ω β
ω π ω ω β

βω
ω β ω ω β

⎧ ≤ −⎪⎪⎪⎪ ≥ +⎪⎪⎪⎪⎪= ⎨ ⎛ ⎞− −⎪ ⎟⎜⎪ ⎟+ ⎜⎪ ⎟⎜ ⎟⎜⎪ ⎝ ⎠⎪ − < < +⎪⎪⎪⎩⎪

 (2.2)

where cω is half the data rate.

2.3 Receiver Architecture

The baseband function diagram of the proposed MIMO-OFDM receiver is shown

in Figure 2.9 [11]. The received signal is first down-converted to the baseband. After

passing through RRC, data streams are processed by FFT so as to demodulate the

OFDM symbol. A space-time detector is used for separating the multi-antenna signals.

Since the transmitted signals can be space-time block encoded or spatially multiplexed,

the corresponding decoding scheme such as space-time block detector or VBLAST

detector has to be performed. The detected symbol streams are then de-interleaved,

followed by a Viterbi decoder to recover the source bits. To acquire the channel

information, long preamble is used to do frequency domain channel estimation. We

will also include pilot subcarriers inserted in data channel to estimate the phase shift in

a symbol to further improve the performance.

VBLAST

ST-
Block

Decoder

RRC FFT

Preamble

Time
Synchronization

Channel
Estimation

Phase
Estimation

De-
Mapper

De-
Inter

leaver

Viterbi
Decoder

Output
Data

Frequency
Estimation

Pilot Subcarrier

Figure 2.7: Receiver architecture of MIMO-OFDM system

 - 12 -

2.3.1 Timing Synchronizer

Before an OFDM receiver can demodulate the subcarriers, it has to find out where

the symbol boundaries are and what the optimal timing instants are to minimize the

effects of ICI and ISI. Moreover, timing synchronization can be divided into coarse

timing synchronization and fine timing synchronization [11] - [13].

The task of the coarse timing synchronization is to identify the preamble in order

to detect a packet arrival. Here we discuss the coarse timing synchronization algorithm

adopted in our system. First, short preamble is chosen to do our coarse timing

synchronization, and a matched filter (MF) which can match a short preamble symbol

is designed. After passing the received signal through MF, we can obtain ten peak

values where two adjacent peaks are at the interval of 16. To acquire a more accurate

frame position, data after MF is further passed to a finite impulse response (FIR) filter

so that we can obtain a succession of increasing peaks and finally choose the time

instant a deterministic delay away from the maximum value as the frame start.

The fine timing synchronization in an OFDM system decides where to place the

start of the FFT window within the OFDM symbol. Although an OFDM system

exhibits a guard interval, making it somewhat robust against timing offsets,

non-optimal symbol timing will cause more ISI and ICI in delay spread environments.

This will result in performance degradation. To eliminate timing offset induced by

different path delays, fine timing synchronization will be performed after coarse timing

synchronization.

2.3.2 Frequency Synchronizer

The purpose of frequency synchronization is to correct the frequency offset,

which is caused by the difference of oscillator frequencies at the transmitter and the

receiver. Frequency offset may result in the loss of the orthogonality between

subcarriers and degrade the system performance. Therefore, we try to estimate the

frequency offset and compensate the received signals.

Assuming that the absolute value of the frequency offset does not exceed 1
2 dDT

,

 - 13 -

where D is the delay between the identical samples of the two symbols; Td denotes the

sampling period, then the estimated frequency offset f̂ can be shown by

ˆˆ
2 d

f
DT
φ

π
= (2.3)

where φ̂ denotes the estimated phase shift through two adjacent symbols, which can

be computed by an arc tangent of the summation of conjugate multiplications between

two identical samples of the two repeated symbols. To do the above task, the preamble

channel becomes the most proper candidate.

The 802.11a standard specifies a maximum oscillator error of 20 ppm, therefore

the total maximum error is 40 ppm. Supposing that the carrier frequency is 5.3 GHz,

the maximum possible frequency error is about 212 kHz. Owing to the inherent

structures of short preamble and long preamble, the maximum unambiguous estimated

frequency offset is 625 kHz for short preamble and 156.25 kHz for long preamble.

Therefore, both short preamble and long preamble are required to estimate frequency

offset so as to cover the probable frequency offset specified by the standard.

2.3.3 Channel Estimator

The channel can be estimated using the known training symbols within the

preamble. In our system, owing to the same symbol structure as data symbols, long

preamble becomes the best candidate for performing this job. Moreover, since

preamble channel is BPSK modulated and two long preambles are identical, the

space-time block encoded signal model can be denoted as

t t
t t

−⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.4)

where t denotes the time domain long preamble sequence.

Supposing that Tk denotes the long preamble chips (in frequency domain); pqH

is the channel frequency response from the pth transmit antenna to the qth receive

antenna; Z denotes the received signal after passing FFT, then the noise free post-FFT

received signal at the kth subcarrier can be shown as follows

 - 14 -

1 1 11 21

2 2 12 22

11 21 11 21

12 22 12 22

() (1)

() (1)

k k k k k k

k k k k k k

k k k k k k k k

k k k k k k k k

Z n Z n H H T T

Z n Z n H H T T

T H T H T H T H

T H T H T H T H

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤+ − +⎢ ⎥= ⎢ ⎥
⎢ ⎥+ − +⎣ ⎦

 (2.5)

where the superscript k denotes the kth subcarrier; suffix 1 or 2 denotes received

antenna 1 or 2, and n or (n+1) represents the nth or (n+1)th symbol.

Based on the structure of the received signal shown above, the estimated channel

frequency response ˆk
pqH can be obtained simply by the following equations

()

()

()

()

11 1 1 11

21 1 1 21

12 2 2 12

22 2 2 22

1ˆ () (1)
2
1ˆ () (1)

2
1ˆ () (1)

2
1ˆ () (1)

2

k k k k
k

k k k k
k

k k k k
k

k k k k
k

H Z n Z n H
T

H Z n Z n H
T

H Z n Z n H
T

H Z n Z n H
T

= − + =

= + + =

= − + =

= + + =

 (2.6)

2.3.4 Phase Estimator

The processing of the preamble takes care of the initial synchronization of the

MIMO-OFDM receiver. It is, however, likely that the frequency offset will vary during

the reception of the packet, making solely initial frequency synchronization insufficient.

Furthermore, the system will experience phase noise invoked by the combination of

the RF oscillator and the phase-locked loop (PLL). It is, therefore, necessary to

estimate and correct the rotation of the received constellation points by using pilots

which are embedded in data symbols.

Recalling that there are four pilot tones Pk, k∈±7, ±21, in every data symbol,

and pilot tones in successive symbols are encoded in STBC scheme. First we get the

post-FFT received signal without phase noise at the kth pilot subcarriers (k=±7, ±21)

of nth and (n+1)th symbols on antenna 1 and antenna 2 by

 - 15 -

()
()

() ()
() ()

*

1 1 11 21 1 2

*
2 2 12 22 2 1

* *

1 11 2 21 2 11 1 21

* *

1 12 2 22 2 12 1 22

() (1)

() (1)

k k k k k k

k k k k k k

k k k k k k k k

k k k k k k k k

Z n Z n H H P P

Z n Z n H H P P

P H P H P H P H

P H P H P H P H

⎡ ⎤⎡ ⎤ ⎡ ⎤+ −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤+ − +⎢ ⎥
⎢ ⎥= ⎢ ⎥

+ − +⎢ ⎥⎣ ⎦

 (2.7)

Then, adding the effects of phase noise φ by multiplying a ()j ne φ term, the original

equation will lead to the following form

{ } () (){ }
{ } () (){ }

1 1

2 2

* *() (1)
1 11 2 21 2 11 1 21

* *() (1)
1 12 2 22 2 12 1 22

k k k k j n k k k k j n

k k k k j n k k k k j n

P H P H e P H P H e

P H P H e P H P H e

φ φ

φ φ

+

+

⎡ ⎤+ − +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ − +⎢ ⎥⎢ ⎥⎣ ⎦

 (2.8)

Therefore, the estimated phase shift (̂)nφ can be obtained by

{ }

() (){ }
{ }

() (){ }

*

1 1 11 2 21 1
7, 21

** *

1 2 11 1 21 1
7, 21

*

2 1 12 2 22 1
7, 21

** *

2 2 12 1 22 1

ˆ () ()

ˆ (1) ()

ˆ () ()

ˆ (1)

k k k k k

k

k k k k k

k

k k k k k

k

k k k k k

n P H P H Z n

n P H P H Z n

n P H P H Z n

n P H P H Z

φ

φ

φ

φ

=± ±

=± ±

=± ±

⎧ ⎫⎪ ⎪⎪ ⎪= + ⋅⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪⎪ ⎪+ = − + ⋅⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

⎧ ⎫⎪ ⎪⎪ ⎪= + ⋅⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

+ = − + ⋅

∑

∑

∑

7, 21
()

k
n

=± ±

⎧ ⎫⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑

 (2.9)

Instead of doing correlation between adjacent samples and averaging all the

symbols, the scheme used by the phase estimator only averages the phase residue

among four pilot tones in each symbol.

2.3.5 Viterbi Decoder

Decoding of convolutional codes is most often performed by the Viterbi decoder,

which is an efficient way to obtain the optimal maximum likelihood estimate of the

encoded sequence. Viterbi decoder can be further divided into hard-decision and

soft-decision decoding, where hard-decision is adopted in out system. According to the

design of the convolutional encoder in transmitter, we can derive the state transition

table in Table 2.2 and then further illustrate the trellis diagram as shown in Figure 2.8

 ̂ ̂

 ̂ ̂

 ̂ ̂

 ̂ ̂

 - 16 -

and Figure 2.9.

The Viterbi algorithm is a recursive sequential minimization algorithm that can be

used to find the least expensive way to route symbols from one edge of a state diagram

to another. To do this, the algorithm uses a cost analysis mechanism to calculate the

distance between the received symbol and the symbol associated to that edge.

The distance between the received symbol s and the symbol associated to that

edge in the state diagram is often referred to as the branch metric. If BM [i, j](s), is the

metric of the branch from state i to state j, the problem is finding the path for which the

metric, i.e. the sum of the branch metrics of the path edges, is at a minimum. The

Viterbi algorithm solves this problem by applying the following recursive equation for

each state transition

PM [j](t) = min (PM [i](t-1) + BM [i, j](s)) (2.10)

where PM [j](t) is the path metric associated to the (minimum cost path leading to)

state j at time t. At the end of the decoding, it is possible to reconstruct the maximum

likelihood sequence through a trace back starting from the possible decoder states.

Normally for decoders using non-punctured codes, the trace back depth equals

five-times constraint length, which is sufficient to decode the correct output in the

presence of noise. In our system, constraint length equals 5; therefore an appropriate

trace back depth is 25.

Table 2.2: State transition table

din s0 s1 s2 s3 state g2 g1 g0 s0' s1' s2' s3' state' din s0 s1 s2 s3 state g2 g1 g0 s0' s1' s2' s3' state'
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 8

0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 8

0 0 0 1 0 2 1 1 0 0 0 0 1 1 1 0 0 1 0 2 0 0 1 1 0 0 1 9

0 0 0 1 1 3 0 0 1 0 0 0 1 1 1 0 0 1 1 3 1 1 0 1 0 0 1 9

0 0 1 0 0 4 1 0 1 0 0 1 0 2 1 0 1 0 0 4 0 1 0 1 0 1 0 10

0 0 1 0 1 5 0 1 0 0 0 1 0 2 1 0 1 0 1 5 1 0 1 1 0 1 0 10

0 0 1 1 0 6 0 1 1 0 0 1 1 3 1 0 1 1 0 6 1 0 0 1 0 1 1 11

0 0 1 1 1 7 1 0 0 0 0 1 1 3 1 0 1 1 1 7 0 1 1 1 0 1 1 11

0 1 0 0 0 8 1 1 0 0 1 0 0 4 1 1 0 0 0 8 0 0 1 1 1 0 0 12

0 1 0 0 1 9 0 0 1 0 1 0 0 4 1 1 0 0 1 9 1 1 0 1 1 0 0 12

0 1 0 1 0 10 0 0 0 0 1 0 1 5 1 1 0 1 0 10 1 1 1 1 1 0 1 13

0 1 0 1 1 11 1 1 1 0 1 0 1 5 1 1 0 1 1 11 0 0 0 1 1 0 1 13

0 1 1 0 0 12 0 1 1 0 1 1 0 6 1 1 1 0 0 12 1 0 0 1 1 1 0 14

0 1 1 0 1 13 1 0 0 0 1 1 0 6 1 1 1 0 1 13 0 1 1 1 1 1 0 14

0 1 1 1 0 14 1 0 1 0 1 1 1 7 1 1 1 1 0 14 0 1 0 1 1 1 1 15

0 1 1 1 1 15 0 1 0 0 1 1 1 7 1 1 1 1 1 15 1 0 1 1 1 1 1 15

din s0 s1 s2 s3 state g2 g1 g0 s0' s1' s2' s3' state' din s0 s1 s2 s3 state g2 g1 g0 s0' s1' s2' s3' state'
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 8

0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 8

0 0 0 1 0 2 1 1 0 0 0 0 1 1 1 0 0 1 0 2 0 0 1 1 0 0 1 9

0 0 0 1 1 3 0 0 1 0 0 0 1 1 1 0 0 1 1 3 1 1 0 1 0 0 1 9

0 0 1 0 0 4 1 0 1 0 0 1 0 2 1 0 1 0 0 4 0 1 0 1 0 1 0 10

0 0 1 0 1 5 0 1 0 0 0 1 0 2 1 0 1 0 1 5 1 0 1 1 0 1 0 10

0 0 1 1 0 6 0 1 1 0 0 1 1 3 1 0 1 1 0 6 1 0 0 1 0 1 1 11

0 0 1 1 1 7 1 0 0 0 0 1 1 3 1 0 1 1 1 7 0 1 1 1 0 1 1 11

0 1 0 0 0 8 1 1 0 0 1 0 0 4 1 1 0 0 0 8 0 0 1 1 1 0 0 12

0 1 0 0 1 9 0 0 1 0 1 0 0 4 1 1 0 0 1 9 1 1 0 1 1 0 0 12

0 1 0 1 0 10 0 0 0 0 1 0 1 5 1 1 0 1 0 10 1 1 1 1 1 0 1 13

0 1 0 1 1 11 1 1 1 0 1 0 1 5 1 1 0 1 1 11 0 0 0 1 1 0 1 13

0 1 1 0 0 12 0 1 1 0 1 1 0 6 1 1 1 0 0 12 1 0 0 1 1 1 0 14

0 1 1 0 1 13 1 0 0 0 1 1 0 6 1 1 1 0 1 13 0 1 1 1 1 1 0 14

0 1 1 1 0 14 1 0 1 0 1 1 1 7 1 1 1 1 0 14 0 1 0 1 1 1 1 15

0 1 1 1 1 15 0 1 0 0 1 1 1 7 1 1 1 1 1 15 1 0 1 1 1 1 1 15

 - 17 -

S0 S0

S8

S0

S8

S0

S8

S4

S12

S0

S8

S4

S12

S0

S8

S4

S12

S2

S10

S6

S14

S0

S8

S4

S12

S2

S10

S6

S14

S0

S8

S4

S12

S2

S10

S6

S14

S1

S9

S5

S13

S3

S11

S7

S15

S0

S8

S4

S12

S2

S10

S6

S14

S1

S9

S5

S13

S3

S11

S7

S15

S0

S8

S4

S12

S2

S10

S6

S14

S1

S9

S5

S13

S3

S11

S7

S15

S0

S8

S4

S12

S2

S10

S6

S14

S1

S9

S5

S13

S3

S11

S7

S15

0/000

1/111

0/000

1/111

0/110

1/001

0/000

1/111

0/000

1/111

0/000
1/111

0/110

1/001

0/101

1/010

0/011

1/100

0/110

1/001

0/101

1/010

0/011

1/100

0/110

1/001

0/000

1/111

0/011

1/100

0/101

1/010

1/001
0/110

1/010
0/101

1/100
0/011

1/001
0/110

1/111
0/000

1/100
0/011

1/010
0/101

1/000
0/111

1/110
0/001

1/101
0/010

1/011
0/100

1/110
0/001

1/000
0/111

1/011
0/100

1/101

0/010

Figure 2.8: Trellis diagram part 1

S0

S8

S4

S12

S2

S10

S6

S14

S1

S9

S5

S13

S3

S11

S7

S15

S0

S8

S4

S12

S2

S10

S6

S14

S1

S9

S5

S13

S3

S11

S7

S15

S0

S8

S4

S12

S2

S10

S6

S14

S1

S9

S5

S13

S3

S11

S7

S15

S0

S8

S4

S12

S2

S10

S6

S14

S1

S9

S5

S13

S3

S11

S7

S15

0/000
1/111

1/001
0/110

1/010
0/101

1/100
0/011

1/001
0/110

1/111
0/000

1/100
0/011

1/010
0/101

1/000
0/111

1/110
0/001

1/101
0/010

1/011
0/100

1/110
0/001

1/000
0/111

1/011
0/100

1/101

0/010

S0

S4

S2

S6

S1

S5

S3

S7

S0

S4

S2

S6

S1

S5

S3

S7

S0

S2

S1

S3

S0

S2

S1

S3

S0

S1

S0

S1

S0

0/010

0/100

0/111

0/001

0/100

0/010

0/001

0/111

0/101

0/011

0/000

0/110

0/011

0/101

0/110

0/000 0/000 0/000 0/000

0/100

0/001

0/010

0/111

0/011

0/110

0/101

0/001

0/111

0/110

0/111

Figure 2.9: Trellis diagram part 2

 - 18 -

2.4 MIMO Techniques

The MIMO techniques for wireless communication improve the signal quality of

the receiver on one side of the link by simple processing across two antennas on the

opposite side. These schemes could be very attractive in wireless communication

applications where the performance of the system is limited by multipath fading.

MIMO techniques can basically be split into two groups: spatial diversity technique

[14] and spatial multiplexing technique [7] [15] [16]. Spatial diversity technique

increases the performance of the communication system by coding over the different

transmitter branches, whereas spatial multiplexing technique achieves a higher

throughput by transmitting independent data streams on the different transmit branches

simultaneously and at the same carrier frequency. In the following sections, we will

explain the MIMO techniques adopted in our system in detail.

2.4.1 Spatial Diversity Technique

In wireless communication systems, diversity techniques are widely used to

reduce the effects of multipath fading and improve the reliability of transmission

without increasing the transmitted power or sacrificing the bandwidth. Diversity

techniques are classified into time, frequency, and space diversity. Space diversity, also

called antenna diversity, can be further classified into two categories, transmit diversity

and receive diversity. Among various transmit diversity schemes, STBC is the most

popular scheme with the feature of open loop (i.e., no feedback signaling is required)

as channel information is not requireed at the transmitter. Therefore we will focus on

the scheme of STBC in this section.

The space-time block coding scheme was first discovered by Alamouti [2] for two

transmit antennas. Symbols transmitted from those antennas are encoded in both space

and time in a simple manner to ensure that transmissions from both the antennas are

orthogonal to each other. This would allow the receiver to decode the transmitted

information with a slight increment in the computational complexity. In the following

discussion, we will give an overview of Alamouti’s scheme.

 - 19 -

Considering about the adopted 2×2 MIMO-OFDM system, the input symbols to

the space-time block encoder are divided into groups of two symbols. At a given

symbol period, the encoder takes a block of two modulated symbols 1
kX and 2

kX in

each encoding operation and maps them to the transmit antennas according to a code

matrix given by

()
()

*

1 2

*

2 1

k k

k k

X X

X X

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.11)

The encoded outputs are transmitted in two consecutive transmission periods from

two transmit antennas. Let k
pqH be the channel frequency response from the pth

transmitted antenna to the qth received antenna on subcarrier k, then the noise free

post-FFT received signal, 1
kZ and 2

kZ , can be expressed as

()
()

() ()
() ()

*

1 1 11 21 1 2

*
2 2 12 22 2 1

* *

1 11 2 21 2 11 1 21

* *

1 12 2 22 2 12 1 22

() (1)

() (1)

k k k k k k

k k k k k k

k k k k k k k k

k k k k k k k k

Z n Z n H H X X

Z n Z n H H X X

X H X H X H X H

X H X H X H X H

⎡ ⎤⎡ ⎤ ⎡ ⎤+ −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤+ − +⎢ ⎥
⎢ ⎥= ⎢ ⎥

+ − +⎢ ⎥⎣ ⎦

 (2.12)

Here we advanced take phase noise effects into consideration, and then the original

equation will lead to

{ } () (){ }
{ } () (){ }

1 1

2 2

* *() (1)
1 11 2 21 2 11 1 21

* *() (1)
1 12 2 22 2 12 1 22

k k k k j n k k k k j n

k k k k j n k k k k j n

X H X H e X H X H e

X H X H e X H X H e

φ φ

φ φ

+

+

⎡ ⎤+ − +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ − +⎢ ⎥⎢ ⎥⎣ ⎦

 (2.13)

Since we have obtained the estimated channel Ĥ and the estimated phase φ̂ before

this stage, we can easily calculate the detected signals 1
ˆkD and 1

ˆkD by Eq. 2.14

1
ˆkD = 1

ˆ* ()
11 1

ˆ() ()k k j nH Z n e φ−⋅ ⋅ + () 1
* ˆ (1)

21 1
ˆ (1)k k j nH Z n e φ +⋅ + ⋅ +

2
ˆ* ()

12 2
ˆ() ()k k j nH Z n e φ−⋅ ⋅ + () 2

* ˆ (1)
22 2

ˆ (1)k k j nH Z n e φ +⋅ + ⋅

2
ˆkD = 1

ˆ* ()
21 1

ˆ() ()k k j nH Z n e φ−⋅ ⋅ − () 1
* ˆ (1)

11 1
ˆ (1)k k j nH Z n e φ +⋅ + ⋅ + (2.14)

2
ˆ* ()

22 2
ˆ() ()k k j nH Z n e φ−⋅ ⋅ − () 2

* ˆ (1)
12 2

ˆ (1)k k j nH Z n e φ +⋅ + ⋅

 - 20 -

Moreover, assuming that the estimated channel Ĥ and the estimated phase φ̂ are

accurate, that is, Ĥ H= and φ̂ φ= , the results of Eq. 2.14 will turn as follows

1
ˆkD = ()2 2 2 2

11 21 12 22 1
k k k k kH H H H X+ + + ⋅

2
ˆkD = ()2 2 2 2

11 21 12 22 2
k k k k kH H H H X+ + + ⋅ (2.15)

where ()2 2 2 2

11 21 12 22
k k k kH H H H+ + + is a diversity gain.

2.4.2 Spatial Multiplexing Technique

Spatial multiplexing technique multiplexes multiple spatial channels to send as

many independent data as possible over different antennas for a specific error rate.

There are four spatial multiplexing schemes: diagonal BLAST (DBLAST), horizontal

BLAST, VBLAST, and turbo BLAST [17]. Of them, VBLAST is the most promising

for its implementation simplicity, which is adopted in our system. Hereafter the

equation derivations are held under the hypothesis of VBLAST scheme being used.

In transmitter side, the encoding process is simply a multiplex operation followed

by independent substreams. No inter-substream coding, or coding of any kind, is

required. The transmitted signal in frequency domain is given by

1

2

k

k

X

X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.16)

In the receiver side, the signals after effects of MIMO channel and procedure of

FFT, denoted as 1
kZ and 2

kZ , can be expressed as follows:

1 11 21 1 11 1 21 2

2 12 22 2 12 1 22 2

()

()

k k k k k k k k

k k k k k k k k

Z n H H X H X H X

Z n H H X H X H X

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.17)

After adding phase noise, the equation becomes

{ }
{ }

1

2

ˆ ()
1 11 1 21 2

ˆ ()
2 12 1 22 2

()

()

k k k k k j n

k k k k k j n

Z n H X H X e

Z n H X H X e

φ

φ

⎡ ⎤⎡ ⎤ +⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2.18)

Furthermore, the estimated channel matrix Ĥ can be obtained in channel estimation

stage, where Ĥ plays an important roll in the VBLAST decoding.

 - 21 -

11 21

2212

ˆ ˆ
ˆ

ˆ

k k
k

kk

H H

HH

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

H (2.19)

VBLAST decoding can be separated into two steps. The first step is interference

nulling, and the second step is interference cancellation. Nulling is done by linearly

weighting the received signals by kW so as to satisfy some performance-related

criterion, such as minimum mean-square error (MMSE) or zero-forcing (ZF). The

detected signals after nulling, denoted as 1
ˆkD and 2

ˆkD , can be shown as follows

1

2

ˆ ()
1 1

ˆ ()
2 2

ˆ () ()

ˆ () ()

k k j n
k

k k j n

D n Z n e

D n Z n e

φ

φ

−

−

⎡ ⎤⎡ ⎤ ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥ ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

W (2.20)

where kW can be calculated by the following equation when ZF criterion is adopted

()ˆk k +=W H ˆ k= H (ˆ()k HH) 1ˆ k −
H (2.21)

Otherwise, kW is given by Eq. 2.21 when MMSE criterion is adopted
12

1

2
2

0
ˆ()

0
k k k H k

σ

σ

−⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥⎪ ⎪= +⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭
W H H H (2.22)

where 2σ is the noise power. In our proposed system, only ZF is adopted.

After nulling, interference from already-detected components 1
ˆkD and 2

ˆkD is

subtracted out from the received signal, resulting in a modified received vector where

less interferences are present, which is called interference cancellation. The most

general interference cancellation skills are successive interference cancellation (SIC)

and parallel interference cancellation (PIC). In our 2×2 MIMO system, SIC is adopted.

Assuming that both Ĥ and φ̂ are estimated correctly, then the detected signals after

interference cancellation, denote as 1
ˆ̂kD and 2

ˆ̂kD , can be shown to be

() ()

()
() ()

1

2

1

2

ˆ ()
* * 1 21 2

1 11 12 ˆ ()
1 22 2

2 2

11 12 1

ˆ ()
* * 1 11 1

2 21 22 ˆ ()
1 12 1

ˆ() ()ˆ̂ ()
ˆ() ()

ˆ() ()ˆ̂ ()
ˆ() ()

k j n k k
k k k

k j n k k

k k k

k j n k k
k k k

k j n k k

Z n e H D n
D n H H

Z n e H D n

H H X

Z n e H D n
D n H H

Z n e H D n

φ

φ

φ

φ

−

−

−

−

⎡ ⎤−⎢ ⎥⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦

= + ⋅

⎡ ⎤−⎢⎡ ⎤ ⎢= ⎢ ⎥ ⎢⎣ ⎦ −⎢⎣

()2 2

21 22 2 k k kH H X

⎥
⎥
⎥
⎥⎦

= + ⋅

 (2.23)

 ̂ ̂
 ̂

 ̂

 ̂ ̂

 ̂

 ̂ ̂
 ̂

 ̂

 - 22 -

Therefore after we divide the scaling ()2 2

11 12
k kH H+ and ()2 2

21 22
k kH H+ , the

original signal 1
kX and 2

kX can then be recovered.

2.5 Summary

In this chapter, we first introduce the MIMO-OFDM system, and propose our

system architecture including the transmitter and receiver. We also give the description

of all functional blocks in the order of data passing through a system. At the transmitter,

convolutional encoder, interleaver, mapper, adding preamble channel, and frame

structure are gone through. At the receiver, synchronization is first mentioned, which

consists of coarse timing, fine timing, frequency, and phase synchronizations. Then,

channel estimation, de-mapper, de-interleaver, and Viterbi decoder are described in the

rest part of the receiver. Finally, we highlight the space-time coding techniques, also

called space diversity technique and spatial multiplexing technique, implemented on

the system as an independent section to give a detailed introduction. More detailed

experimental results and performance analysis will be given in Chapter 4.

 - 23 -

Chapter 3

MIMO-OFDM System Platforms

In Chapter 3, we will introduce the development environment, including fast

prototyping platform and self-designed platform. The fast prototyping platform is

chosen to be our initial verification platform of MIMO-OFDM baseband algorithms,

since the debugging interface is much more convenient for designers and the system is

much simpler than another platform. On the other hand, the self-designed platform is

used to perform the final verification of whole MIMO-OFDM system including

baseband and RF parts, where transmitter and receiver are implemented on two

separated boards with their own RF modules each. The self-designed platform is much

closer to a real wireless communication system and therefore can take all phenomena

and effects of the wireless system into account. In the following sections, hardware

modules, software design flows, and the corresponding debugging tools of these two

platforms are detailed explained.

3.1 Fast Prototyping Platform

Figure 3.1 shows the development environment of the fast prototyping platform,

including Aptix® System Explorer with several specific modules, a high speed work

station, a digital to analog converter (DA), an analog to digital converter (AD), a logic

analyzer (LA), an oscilloscope, and some PCs. A close-up shot of Aptix MP3C is given

in Figure 3.2 where the modules installed on Aptix MP3C are highlighted, including

three Xilinx FPGA modules, one DSP module, and one USB module.

 - 24 -

Figure 3.1: Development environment of fast prototyping system

Figure 3.2: Modules installed on Aptix MP3CF platform

3.1.1 Aptix® System Explorer

Under the trend of System on Chip (SoC) and the concept of time-to-market,

Aptix® corporation has developed a series of fast prototyping system named MPx,

which provides a total solution of real-time verification and integration for industry

and high-performance functional simulation for application specific integrated circuit

 - 25 -

(ASIC) designer so as to achieve the goal of time-to-market. In our laboratory, we

choose Aptix® System Explorer MP3CF as our fast prototyping system.

The Aptix® MP3CF System ExplorerTM contains two parts, hardware platform

called MP3CF FPCB and software called Explorer, on which we will give more

introduction in later sections.

3.1.1.1 Hardware: MP3CF Platform

Aptix® MP3CF Platform consists of several functional units, such as the onboard

micro-controller, the clock generator, some re-programmable inter-connect chips called

field programmable interconnect components (FPIC), the main motherboard called

field programmable circuit board (FPCB), and some flexible input/output (I/O) buses

[18] as illustrated in Figure 3.3.

Figure 3.3: Aptix® MP3CF platform

Micro-controller mainly takes charge of the operation of the whole platform, such

as the control of booting sequence and storing or loading the design of circuit through

flash memory; clock generator provides system clock, and supports eight different

clock sources from outside; FPIC is responsible for the inter-connect of all modules;

FPCB is the place where modules can be installed; I/O bus is the bridge between

Aptix® platform and devices outside.

 - 26 -

Aptix® MP3CF is powerful and capable of easy expansion and high integration. It

not only supports modules produced by Xilinx Corporation and Altera Corporation, but

also those fitting the definition of freehole pins. By the right definition, we can install

modules developed by other companies on Aptix® MP3CF through an adapter. For

example, we developed a DSP C6701 EVM by using the core chip TMS320C6701

DSP of Taxas Instruments (TI) and also a CYPRESS USB 2.0 module by using the

core chip of CYPRESS CY7C68013, both of them being not the products from Xilinx

or Altera. Therefore, by the usage of the adapter, we can integrate different modules on

Aptix® MP3CF and make the system more flexible and powerful.

3.1.1.2 Software: Explorer

The software (called Explorer) provides an easy-to-use, consistent user interface

which displays commands through a series of pull-down menus. The main design flow

is described as follows and illustrated in Figure 3.4.

(1) Import Design into Explorer

Explorer requires to be informed

about the netlist files that we are using in

the design including top-level netlist,

component netlist, and pinmap file.

Top-level netlist is an electronic design

interchange format (EDIF) file containing

connectivity information between the

different components that will be mounted

on the MP3CF FPCB. Component netlists

are EDIF files containing major design

information in each component. All EDIF

files can be generated by electronic design

automation (EDA) tools that can support

synthesis, such as Synplify Pro we adopt.
Figure 3.4: Explorer flow

Import Netlist

Setup FPCB
Parameters

FF
LL
OO
WW

EE
XX
PP
LL
OO
RR
EE
RR

Import Pin Map

Assign Power
and Ground

Place Parts
On Board

Compile Design

Setup
Communication

Program FPCB
and Logic Analyzer

Import Netlist

Setup FPCB
Parameters

FF
LL
OO
WW

EE
XX
PP
LL
OO
RR
EE
RR

Import Pin Map

Assign Power
and Ground

Place Parts
On Board

Compile Design

Setup
Communication

Program FPCB
and Logic Analyzer

 - 27 -

Finally, we have to identify the pinmap file used in the design to assign

packages, pins, and other information to those parts.

(2) Setup FPCB Parameters

Explorer can support several different FPCBs. We require specifying

which FPCB we are using to develop.

(3) Assign Power and Ground

Some physical parameters of the design need to be set up, such as power

and ground nets.

(4) Place Parts on Board

We need to place our design components in their correct positions on the

coordinate system. There will be a board view window helping us move a

component onto the right place of FPCB by dragging the component to the

desired place with a mouse.

(5) Compile Design

The compilation process first maps the FPCB and then maps the existing

I/O, clock, bus and FPGA nets to MP3CF hardware. Using the result of FPCB

mapping, compilation continues with FPGA place-and-route which will run for

all FPGAs in the design. Once the FPGA place and route has been completed

successfully, compilation conducts the FPCB routing. The FPCB router routes

the FPICs with all nets in the design mapped to the FPGAs. In general,

place-and-route is the most time-consuming process of all.

(6) Setup Communication

In this process, we need to do some configurations about communication

to program the board and devices. For hardware (FPCB board), we need to

specify communication method, address for the method, and whether the flash

is to be programmed or not when downloading. For debug (LA), we need to

identify communication method, address for the method, and which probing

pod of the LA is to be connected with.

 - 28 -

(7) Program FPCB and LA

Finally, we can download our design onto FPCB and probing information

to the LA, and start to verify our system design.

3.1.2 FPGA Module

In our fast-prototyping system, we use several FPGA modules mounted on Aptix®

MP3CF platform to implement our communication system. In the following sections,

we will give an overview of our FPGA modules. Then we will show the design flow of

FPGA.

3.1.2.1 FPGA Overview

The demand for more complex programmable hardware is constantly growing to

meet the formidable industry requirement. The major categories of programmable

hardware are programmable logic device (PLD) and FPGA. A PLD consists of

micro-cells and a central inter-connection logic. Typical PLD applications are “glue

logic” for connecting other ASICs. On the other hand, FPGAs consist of even more

complex logic block on one chip. Typical applications are central control units (CPU)

and DSPs up to very complex SoC design. Therefore, we adopt some FPGA modules

to realize our communication system. Generally, FPGA can be categorized into three

types by its structure:

1. Look-up-table (LUT): Xilinx, Altera, AT&T

2. Multiplexer: Actel, Quicklogic

3. Transistor array: Cross point

If we focus on its programming architecture, there are two major types:

1. SRAM: Xilinx, Altera, AT&T, Atmel

2. Anti-fuse: Actel, Cypress, Quicklogic

Static random access memory (SRAM) type has a merit of being able to program

repeatedly while Anti-fuse type has the feature of one time programmable (OTP).

 - 29 -

Anti-fuse type can offer security for design but cannot be modified further.

Compared to ASIC, FPGA has lower performance apparently, especially on power

consumption and maximum supportable speed. However, as the technique of

semiconductor industry grows, FPGA becomes more and more competitive to ASIC.

Actually, FPGA has more integration ability and flexibility than ASIC, and

undoubtedly, is the best candidate component for a fast-prototyping system.

3.1.2.2 FPGA Design Flow

In our design, we choose Xilinx ISE 7.1 and Synplify Pro 8.2 as the development

tool for the first half of the design flow. The second half is done on a workstation with

Explorer. Figure 3.5 is the main FPGA design flow and later we will give more

information about the flow.

(1) Design Entry

In general, EDA tools are required to develop register transfer level (RTL)

codes by appropriate methodologies. In Xilinx ISE 7.1, it supports three

methods: HDL (hardware description language) Editor, Schematic Flow, and

FSM (finite state machine) Editor. HDL Editor allows us to edit source files

directly like VHDL (very high speed integrated circuit hardware description

language) [19]-[22] and Verilog [23], which are the most common HDLs in use

today. Schematic Flow is another choice to create our source files by drawing

the scheme with underlying HDL macros. FSM Editor allows us to edit by

timing state diagram, which is suitable for realization controller, such as

memory access controller.

 - 30 -

Figure 3.5: FPGA design flow

 (2) Synthesis

After completing editing RTL source files, we need to translate them into

gate level called netlist files, which only contains information of logic gates and

inter-connections. We choose to use Synplify Pro 8.2 for synthesis.

(3) Simulation

Design verification is an important aspect of each project design. Before

implementing our circuit in the target device, it is a good idea to simulate and

verify the circuit. The most common verifications are functional simulation and

timing simulation.

A. Functional Simulation

Functional simulation can be done after the schematic has been

entered or a HDL file has been created and synthesized. Functional

simulation gives information about the logic operation of the circuit, but it

does not provide any information about timing delays.

B. Timing Simulation

The timing simulation will give us detailed information about the time

it takes for a signal to pass from one gate to the other (gate delay) and

FPGA FPGA FPGA

FPGA Prototyping Modules

FPGAFPGA FPGAFPGA FPGAFPGA

FPGA Prototyping Modules

System Explorer

4. Implementation
P&RMapping

Download

3. Synthesis
2. Simulation

Xilinx Foundation
1. Design Entry

System Explorer

4. Implementation
P&RMapping

Download

3. Synthesis
2. Simulation

Xilinx Foundation
1. Design Entry

3. Synthesis
2. Simulation

Xilinx Foundation
1. Design Entry

 - 31 -

gives information on the circuit’s worst-case conditions. The total delay of

a complete circuit will depend on the number of gates the signal sees and

on the way the gates have been placed in the FPGA.

One of the most popular simulation tools is ModelSim, which is

completely integrated into Xilinx ISE 7.1, and can perform functional

simulation and timing simulation very well. Thus, we choose ModelSim SE

5.5e as the simulation tool in our design flow.

(4) Implementation

The implementation is typically done after the design has been verified by

functional simulation. The implementation tools will translate the netlist

(schematic, HDL), place and route the design in the target device and generate a

bitstream that can be downloaded into the device.

(5) Download to Aptix® Explorer MP3CF

After the process of implementation, we can download our design into

hardware platform. To verify that signals are really working properly in circuit,

we can use the LA to debug. Once the result does not match what we expect, we

need to come back to modify our design and go through the whole design flow

again. That is to say, iterative tests are required until we obtain the results we

want.

3.1.3 ‘C6701 DSP EVM

Digital signal processors, such as TMS320 family of processors, are used in a

wide range of applications, from communications and controls to image and speech

processing. They are found in cellular phones, fax/modems, disk drivers, radio, and so

on. Texas Instrument recently introduced the TM320C6x processor, based on the

very-long-instruction-word (VLIW) architecture. This newer architecture supports

features that facilitate the development of efficient high-level language compilers. The

TMS320C67x DSPs are the floating-point DSP family in the TMS320C6000E DSP

platform. We choose TMS320C6701 as our core chip on DSP EVM to implement our

 - 32 -

MIMO-OFDM system. Later, we will give an overview of the core chip on DSP EVM.

Then we will introduce the architecture of EVM. Finally, we will show the design flow

about DSP.

3.1.3.1 TMS320C6701 DSP Overview

‘C6701 DSP EVM shown in Figure 3.6 is developed to integrate with other

modules on Aptix® platform so that we can come to the realization of MIMO-OFDM

system. The EVM is applicable for Aptix® MPx series platform; it uses TMS320C6701

DSP as its core chip. The system clock is 132 MHz, and can be upgraded up to 167

MHz. Owing to having eight functional units in CPU, the DSP can perform 1056 mega

floating-point operations per second (MFLOPS).

Figure 3.6: ‘C6701 DSP EVM

The architecture of ‘C6701 DSP EVM is shown in Figure 3.7, including

TMS320C6701 DSP, flash memory, SBSRAM, universal asynchronous

receiver/transmitter (UART), joint test action group (JTAG), and other interface

circuits like transceiver and complex programmable logic device (CPLD). Later, we

will give more information to what have not been mentioned.

(1) Flash Memory:

It is a nonvolatile read-only memory that is electronically erasable and

programmable, and it has a capacity of 128 Kbytes. When completing our

 - 33 -

development, we can program the design into the flash memory. On the other

hand, when we reset the DSP, it will automatically load the design from flash

memory into internal program memory.

(2) SBSRAM:

SBSRAM works on the frequency of 132 MHz and has a capacity of 512

Kbytes. There are two working modes determine what it is used for, called Map

0 and Map 1. When Map 0 mode is set, it plays the role of program memory.

When Map 1 mode is set, it is taken as general memory.

(3) JTAG and UART:

Both of them are interfaces of data transmission. JTAG is an interface

compliant with IEEE 1149.1 standard interface, and it also connects with

Innovate Integration Code Hammer PCI interface on PC to load the program

from the software, Code Composer Studio (CCS). We can even stop the

program and catch the values in memory through JTAG while debugging;

UART is the other choice to connect with PC through RS-232 port.

(4) Other Interface Circuit:

CPLD offers four control signals to handle the connection with FPGA or

other modules.

Figure 3.7: Architecture of ‘C6701 DSP EVM

 - 34 -

3.1.3.2 DSP Design Flow

The Code Composer Studio (CCS) [24] provides an integrated development

environment (IDE) to incorporate the software tools. CCS includes tools for code

generation, such as a C compiler, an assembler, and a linker. It also has graphical

capabilities and supports real-time debugging, which enables us to develop our design

efficiently. The DSP design flow with CCS can be separated into the following parts.

(1) Create Project:

First of all, we need to create a project, and add the necessary files for

building the project. The most important files are source files, which can either

be C source files (.c) or assembly source file (.asm). Then we also require

Linker Command File (.cmd) and a run-time support library file (.lib). Last, we

may require some header files (.h) to be included.

(2) Code Generation and Options:

Various options are associated with code generation tools, such as C

compiler and linker. We can set up Compiler Option and Linker Option to do

further configuration if we require, or we can just use the default setting in most

cases.

(3) Building and Running the project:

After finishing code generation, we can build and run the project. In this

process, it compiles and assembles all C files using c16x and assembles the

assembly files using asm6x. The resulting object files are then linked with

run-time library support file using lnk6x. This generates an executable file that

can be loaded into ‘C6701 processor and run. Then, we can load the program

after a build.

(4) Monitoring the Watch Window:

Before monitoring the watch window, we need to verify that the processor

is still running. After that, monitoring watch window allows us to change the

value of a parameter or to monitor a variable we desire. Through monitoring,

we can do debugging and regressive test until it works as we expect.

 - 35 -

(5) Correcting Program Errors:

Once an error occurs, the error message will be listed and being a link

directly to the line where the error occurs. After making the appropriate

correction, we have to build, load, and run the program to verify our results.

3.1.4 USB 2.0 Module

USB 2.0 Module uses CYPRESS CY7C68013 [25] as its core chip as shown in

Figure 3.8, which includes a 24 MHz 8051 and a 4 Kbytes FIFO. The maximum data

rate can be up to 480 Mbps. The FIFO provides the interface between USB 2.0 module

and C6701 EVM. Figure 3.9 shows a diagram of the USB 2.0 module and its

neighborhood. Through USB 2.0 module, we can transfer data, which comes from PC

and will come to USB FIFO first, to DSP EVM. Also, USB 2.0 module can transmit

data coming from DSP EVM to PC. We can connect PC with a web camera to generate

video stream as our data source.

Figure 3.8: USB 2.0 module

DSPEVM
Module

FPGA

USB

PC Terminal

Cable

Web-Cam

USB

Aptix MP3CF

DSPEVM
Module

FPGA

USB

PC Terminal

Cable

Web-Cam

USB

Aptix MP3CF

Figure 3.9: USB 2.0 module and its neighborhood

 - 36 -

3.1.5 AD and DA Modules

In our MIMO-OFDM system, we use the dedicated AD and DA modules to do the

conversion between digital and analog signals as illustrated in Figure 3.10. The major

components of each module include eight AD/DA chips, clock source, four databuses,

and eight I/O ports, and are descript as follows.

1. AD/DA Chips: DAS825E and ADC900u are used as core chip respectively.

2. Clock Source: It can be setup by the combination of JP1, JP2, and JP10

jumpers.

3. Databus: Through the configuration of virtual pins in Aptix® Explorer,

databus can receive and sent signals from and to FPGA modules by specific

cables.

In addition, the output of DA contains eight resistors numbered from R219 to

R226. When DA is connected to AD, we need to use 0.1 Ω resistors. But if we attempt

to connect with the instrument that has 50 Ω input resistant, we must change resistors

to 50 Ω to avoid the impedance mismatch problem, which will make signals decay.

ADC

Specific Cables

DAC

Transmitter 1~4

Receiver 1~4

ADC

Specific Cables

DAC

Transmitter 1~4

Receiver 1~4

Figure 3.10: AD and DA modules on fast prototyping platform

 - 37 -

3.1.6 Debugging Tools

As an old saying goes, “What is a workman without his tools.” In our fast

prototyping system, we do have some useful tools for debugging as follows.

1. Logic Analyzer: We use Agilent 16702B LA to perform the major task of

debugging. There are two modules installed on it. One is 16522A Pattern

Generator Module, and the other is 16711A Measurement Module. The former

is mainly used for generating desired signals, such as the reset signal or some

selection signals for model selection; the latter is used for probing signals in

FPGA on Aptix® MP3CF platform by connecting specific pods to the slots on

Aptix®.

2. Oscilloscope: It is usually used when transmitted signals are prepared by

FPGA and sent to the DA module by specific cables. Therefore, we can verify

the waveform shown in the oscilloscope. For OFDM signals following IEEE

802.11a, we may expect to see the waveform containing preambles in the form

of square wave in the head part and OFDM symbols follow behind those

preambles.

 - 38 -

3.2 Self-designed Platform

In order to approach a real wireless communication system, the multi-

synchronous and high-speed bus FPGA design, combined with our module-based RF,

AD/DA, and MAC/BB hardware system, becomes the best solution. Our laboratory

has finished and successfully tested RF, AD/DA and MAC/BB boards. The

development environment is shown in Figure 3.11, and the close-up shot of main board

is shown in Figure 3.12, where four Xilinx Virtex II 6000 FPGAs are mounted in

MAC/BB board, and each MAC/BB board is able to connect with at most two AD/DA

and two RF modules.

In order to avoid the interference between high speed digital bus, those layouts

and interconnections of different modules shall be handled very carefully. Our

measurements show that directly connected modules did achieve feasible solution

which reduces the risk of facing interconnection problems.

Further analysis and evaluation during development are given in the following

sections.

Figure 3.11: Development environment of self-designed platform

 - 39 -

Figure 3.12: Main board of self-designed platform

3.2.1 RF Module

The RF module, as shown in Figure 3.13, consists of MAX2828, which is

specifically designed for single-band IEEE 802.11a applications covering world-band

frequencies of 4.9 GHz to 5.875 GHz. MAX2828 includes all circuitry required to

implement the RF transceiver function, providing a fully integrated receive path,

transmit path, voltage-controlled oscillator (VCO), frequency synthesizer, and

baseband control interface. Only the RF switches, RF bandpass filters (BPF), RF

baluns, and a small number of passive components are required to form the complete

RF front-end solution. Because the balance of I/Q signals will impact on the waveform

of RF output, the RLC components had been fine tuned. Besides, we also tested the

frequency accuracy and power level of transmitted carriers in our interested band from

5.15 GHz to 5.875 GHz. One of those measurements is shown in Figure 3.14; the

power level shall be further improved with fine tuning of matching circuits. We used

3-wires (Clock, Data and Latch) to control the RF module from PC currently, and then

the control mechanism will be integrated into MAC/BB after verification.

 - 40 -

Figure 3.13: RF module on self-designed platform

1 AP
CL RW R

 A

R e f 2 0 d B m A t t 5 0 d B

C e n t e r 5 . 4 G H z S p a n 2 M H z2 0 0 k H z /

R B W 1 0 0 k H z

V B W 3 0 0 k H z

S W T 2 . 5 m s

0 6 . N o v 0 5 2 0 : 1 4

PR N

- 8 0

- 7 0

- 6 0

- 5 0

- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

2 0 D e l t a 2 [T 1]

 0 . 0 0 d B

 0 . 0 0 0 0 0 0 0 0 0 H z

M a r k e r 1 [T 1]

 - 5 0 . 8 0 d B m

 5 . 3 9 9 0 0 0 0 0 0 G H z

21

D a t e : 6 . N O V . 2 0 0 5 2 0 : 1 4 : 2 4

Figure 3.14: Measured carrier spectrum form RF module

3.2.2 AD and DA Modules

The AD/DA module, as shown in Figure 3.15, consists of ADS2807 and

DAC2900. ADS2807 is an analog to digital converter which provides a high

 - 41 -

bandwidth track-and-hold and gives excellent spurious performance up to and beyond

the Nyquist rate. The measured timing diagram is shown in Figure 3.16, which

indicates the valid data during the high clock period. In addition, it is recommended

that data hold time is 3.5 ns for saving data from bus to SRAM, which had been

verified on our AD/DA boards too. DAC2900 is a digital to analog converter which

offers exceptional dynamic performance, and enables to generate very-high output

frequencies suitable for “Direct IF” applications. It has been optimized for

communications applications in which separate I and Q data are processed while

maintaining tight offset matching.

Figure 3.15: AD/DA module on self-designed platform

Clock

Valid Data

Clock

Valid Data

 - 42 -

Figure 3.16: Measured data waveform from AD/DA module

3.2.3 MAC/BB Platform

The MAC/BB is an FPGA-based module which is composed of four Xilinx

Virtex-II 6000 modules, as shown in Figure 3.17. It outperforms conventional DSP

processors on a board-for-board comparison, resulting in significant improvements in

processing speed, size, weight, power, and costs. Combining a wide variety of flexible

features and a large range of densities up to 6 million system gates, the Virtex-II 6000

enhances programmable logic design capabilities and is a powerful alternative to

mask-programmed gates arrays. With its advantages of very fast data rate, it can

achieve full duplex and real time operating for wireless communication. The VHDL

codes had been used to drive LEDs by differential clock rate from oscillator to verify

its functionality.

Figure 3.17: MAC/BB platform

3.2.4 USB Interface

In order to have a convenient input for the audio/video signal in the future, USB

interface was designed into the platform, which is shown in Figure 3.18. It will comply

 - 43 -

with the USB specification revision 1.1, and be upgraded to USB 2.0 if necessary. The

compatibility test is conducted with compliance software run at PC equipped with PCI

to UTMI compliant interface card during test stage. This will make sure we can easily

connect our platform with any signal source with USB port. The built-in USB interface

codes for FPGA was defined and implemented.

Figure 3.18: USB module on self-designed platform

3.2.5 Debugging Tools

Besides the logic analyzer and oscilloscope mentioned before, two additional

instruments, spectrum analyzer and vector signal analyzer, are adopted to capture and

analyze RF signals.

1. Spectrum Analyzer: Agilent PSA Series Spectrum Analyzer E4443A is

chosen. It offers high-performance spectrum analysis up to 6.7 GHz and

beyond with swept-tuned measurements with digital Resolution-BandWidths

(RBW) filters. In our debugging flow, E4443A capture the transmitted 5.2GHz

signals, down convert them to 70MHz intermediate frequency (IF), and then

fed out to vector signal analyzer to perform advanced analysis. Its block

diagram is shown in Figure 3.19.

2. Vector Signal Analyzer: Instead of swept-tuned measurements, vector signal

analyzer 89600S performs fast Fourier transform (FFT) measurements with

 - 44 -

digital FFT filters, which can measure all signal characteristics (i.e. phase) and

avoid very long sweeps times required for narrow RBW. Figure 3.20 shows the

block diagram of vector signal analyzer, notice that it is PC-based and

therefore machines only capture the RF signal accurately and feeds to PC,

where final analysis are performed on PC.

Figure 3.19: Spectrum analyzer block diagram

Figure 3.20: Vector signal analyzer block diagram

 - 45 -

3.3 Summary

In this chapter, we introduce two adopted platforms, e.g., fast prototyping

platform and self-designed platform. These two platforms both are equipped with

FPGA, USB, and AD/DA modules; moreover the self-designed platform provides RF

modules by which realistic wireless channel characteristics can be generated. Finally,

corresponding debugging tools are mentioned; in particular the logic analyzer and

oscilloscope are used to measure baseband signals, and spectrum analyzer and vector

signal analyzer are used to capture and analyze RF signals.

 - 46 -

Chapter 4

MIMO-OFDM System Realization

The 5 GHz MIMO-OFDM system is implemented on the FPGA-based hardware

introduced in Chapter 3. It demonstrates both diversity and multiplexing schemes that

use MIMO technique in conjunction with OFDM. In this chapter, a complete design

flow including MATLAB verification, FPGA realization, ModelSim simulation, and

experimental results will be presented, where the principles and concepts of circuit

design on FPGA will specially be emphasized.

4.1 Design Flow

Digital Signal Processing (DSP) design has traditionally been divided into two

types of activities — systems/algorithm development and hardware/software

implementation. The majority of DSP system designers and algorithm developers use

the MATLAB language for prototyping their DSP algorithm. Hardware designers take

the specifications created by the DSP engineers and create a physical implementation

of the DSP design by creating a register transfer level (RTL) model in a hardware

description language (HDL) such as VHDL and Verilog. Our MIMO-OFDM system

can be regarded as a DSP system, and Figure 4.1 shows the design flow we adopt.

First, we have to program a floating-point MATLAB code in order to not only

verify the algorithms mentioned in Chapter 2 but to evaluate the system performance.

Then, the floating-point MATLAB code is required to be manually converted into a

fthe ixed-point MATLAB code. Subsequently, RTL model is established, where we

 - 47 -

choose VHDL as our hardware description language and Xilinx ISE 6.1 as our

development tool. Next, this RTL implementation is simulated by ModelSim SE 5.5e

and synthesized onto a netlist of gates using Synplify Pro 8.2. Finally, the netlist of

gates is placed and routed onto Xilinx FPGAs using Xilinx ISE 6.1. The detailed

design flow will be discussed in the following sections

Quantization

Coding

RTL Simulation
Logic Synthesis

Place & Route

Floating point MATLAB .m

Fixed point MATLAB .m

Bit true VHDL/Verilog .vhd/.v

Netlist of gates .edf

FPGA bit stream .bit

DSP Designer
(Manual)

Hardware Designer
(Manual)

Automatic

Automatic

Figure 4.1: FPGA design flow

4.2 MATLAB Verification

As developing a communication system, MATLAB is one of the best candidates

for us to model and simulate the system by means of its powerful matrix computation

ability and well-defined communication functions. In addition, its 2D or 3D graphic

interface also makes designers easily illustrate the system performance with the effects

of simulated channel and quantization error and so on. In this section, both

floating-point and fixed-point verifications will be mentioned. In the floating-point

verification stage, we attempt to verify the accuracy of communication algorithms and

sketch out the performance of the system, which is considered as the basis in

comparison with fixed-point cases. On the other hand, in the fixed-point verification

stage, we need to establish a fixed-point system model by using a quantization

algorithm first, and then perform advanced fixed-point analysis.

 - 48 -

4.2.1 Floating-Point Verification

In this section, the function blocks and adopted algorithms mentioned in Chapter

2 will be verified first, and then the whole system will be constructed and the system

performance will be expressed.

1. RRC:

 In our system, a 25-tap root raised cosine filter with roll off factor β=0.22

is designed, and its impulse response and frequency response is shown in

Figure 4.2. It can be clearly observed in the frequency response that signals

with frequency higher than approximately 12 MHz are filtered (the sample rate

equals 40 MHz), that is, the waveform in time domain will become much

smoother, and therefore can effectively combat the aliasing in AD/DA

conversion and the ISI problem. Figure 4.3 shows the waveforms before and

after RRC pulse shaping. Waveform in part (a) is a series of BPSK modulated

signals. After the pulse shaping in transmitter side RRC, the smoother

waveform will look like part (b). Next the waveform passing through RRC in

the receiver side is shown in part (c). Finally, the eye diagram after RRC

shaping is illustrated in Figure 4.4.

Figure 4.2: Impulse and frequency response of RRC filter with β=0.22

 - 49 -

Figure 4.3: (a) Original waveform (b) RRC shaped waveform on transmitter

(c) RRC shaped waveform on receiver

Figure 4.4: Eye diagram of RRC shaped waveform

2. Timing synchronization:

 As we have mentioned in Section 2.3.1, a data-aided timing

synchronization algorithm is adopted in our system. Here we pass our

transmitted signal through a Rayleigh fading, multipath channel, and then

process the post-RRC received signal by timing synchronization block. The

output waveform is shown in Figure 4.5. It can be observed that there is a main

hill, whose summit is our reference frame start position. Because of multipath

 - 50 -

effect, there are also many smaller hills hidden inside the main hill; however

they will all be neglected because our algorithm will only choose the most

reliable, e.g., the most highest peak, as our reference start position.

Figure 4.5: Coarse timing synchronization output

3. Channel estimation:

 The channel estimation result is shown in Figure 4.6, where the above one

is the real channel frequency response, and another one is the estimated

channel frequency response. We can see these two curves are almost the same

except the amplitude of the below one is one-time bigger than another, which

is caused by the space-time structure in long preamble.

Figure 4.6: Real and estimated channel frequency response

 - 51 -

4. System performance:

 The floating-point BER to SNR system performance is shown in Figure

4.7, where a Rayleigh fading channel with AWGN noise is generated, and the

total path number is four, including one main path and three multipaths. We

can see that under the same SNR, the BER in the STBC case is much smaller

than the BER in the VBLAST case, and the gap becomes bigger and bigger as

SNR increases.

Figure 4.7: Floating-point system performance

4.2.2 Fixed-Point Verification

Before fixed-point verification, we need to convert the floating-point MATLAB

code to the fixed-point MATLAB code by the quantization algorithm first. Since a

quantization procedure is very complicated and time-consuming due to its nonlinear

characteristics, we leave the detailed descriptions of this part to Chapter 5. In this

chapter we will only show the results available in the quantization algorithm.

 Table 4.1 shows the result word lengths available in the quantization algorithm,

where EM means error metrics, which can represent the level of the quantization error.

The bigger the EM is, the more serious quantization error we get. Otherwise, R means

the required hardware resources; m and p indicate the integer and fractional lengths.

The detailed definitions of these parameters will be detailed explained in Chapter 5.

 - 52 -

 Based on the word lengths shown in Table 4.1, we then construct the fixed-point

system model on MATLAB, and perform the fixed-point verification. Figure 4.8 shows

a fixed-point BER to SNR system performance. We observe that no matter in the

STBC or VBLAST case, the curves drift to right-upper side when the number of EM

increases, which indicates the system performs worse as the level of quantization error

increases. Furthermore, we also observe that in low SNR, channel noise dominates the

system performance, therefore the differences between EMs are not obvious. On the

other hand, in high SNR, the quantization error noise dominates the system

performance, therefore the gap between different EMs becomes bigger and bigger.

Table 4.1: Word lengths under different EMs

8.7564.17910.9402EMfine_STBC

92681033813808R

8812mph+pph

7912mch+pch

8810mlnfft+plnfft

111114mfft+pfft

7811mrxRRC+prxRRC

91213mRRC+pRRC

6710mifft+pifft

9.6264.4960.9622EMfine_VBLAST

1051EMtarget

8.7564.17910.9402EMfine_STBC

92681033813808R

8812mph+pph

7912mch+pch

8810mlnfft+plnfft

111114mfft+pfft

7811mrxRRC+prxRRC

91213mRRC+pRRC

6710mifft+pifft

9.6264.4960.9622EMfine_VBLAST

1051EMtarget

Figure 4.8: Fixed-point system performance

 - 53 -

4.3 FPGA Realization

With the introduction of advanced Field-Programmable Gate Array (FPGA)

architectures which provide built-in DSP support such as embedded multipliers and

block RAMs on the Xilinx Virtex-II and the multiply-accumulators, DSP Blocks, and

MegaRAMs on the Altera Stratix, a new hardware alternative is available for designers

who can get even higher levels of performances than those achievable on general

purpose DSP processors.

In our implementation, we adopt Xilinx Virtex-II series as our FPFA and VHDL

as our hardware description language. The programming concepts that deserved to be

mentioned in high level language like MATLAB and in hardware description language

like VHDL are quite different. In general, high level language keeps its temporary data

in a form of variables, and simply assigns the stored variable to another one which is

used to be the input of next stage or functions if necessary, whereas hardware

description language may need extra data buffer and related components to perform the

same task. Since we have no choice but to add RAMs, register, as data buffers, some

index-related jobs can be performed in the same time, such as zero padding, bit

reversing, or adding cyclic prefix and so forth. The following sections will give readers

more concepts and clear description about how we design in FPGA.

4.3.1 Design Principles

Before going through the circuit design of our components in the MIMO-OFDM

system, some important design principles need to be mentioned first.

1. Parallel processing:

 Since FPGA has a highly flexible architecture, and can support any level

of parallelism, we can significantly enhance the data throughput by parallel

processing. Taking a generally used function, FIR filter, for example, an FIR

filter consists of many multiply-and-accumulate operations, and it will be

time-consuming if only a single, fixed multiply-and-accumulate unit is used.

Hence sufficient multiply-and-accumulate units are always realized.

 - 54 -

 The STBC encoder in the transmitter is another good example of parallel

processing, since data of two successive symbols are required to do STBC

encoding, we then can transfer them simultaneously form the previous block to

the STBC encoding block. By doing so, we don’t need to buffer the first

symbol and start to do STBC encoding until another symbol serially arrives.

2. Avoid critical path problem:

 Critical path problem is often faced by designers. When the delay of a

circuit is determined by the delay of its longest sensitizable paths (such paths

are called critical paths), the problem of dealing with the delay of a circuit is

called critical path problem. Sometimes a complicated numerical computation

is carried out in a block, and thus many summations and multiplications are

serially executed in a path within a single clock period. Although high speed

multiply-accumulators are embedded inside Xilinx FPGAs, these operations

cannot be completely executed in time within a single clock period; therefore

error results will be fed out. In order to avoid this kind of problem, registers

will be inserted in the path and therefore the whole computation will be

separated into few sections and can be executed within few clock periods

depending on how many registers are inserted.

3. Reuse RAMs or ROMs:

 In our design, RAMs and ROMs are widely used, and most of FPGA

resources are occupied by them. Under this circumstance, to save or reuse

RAMs and ROMs becomes the most crucial key to save total circuit area.

Therefore in some proposed circuit blocks, alternatively reusing of few

small-sized RAMs is adopted instead of only one-time using a single

huge-sized RAM.

4. Substitute real number computation for complex number computation:

 Inevitably, large amount of complex number computations are included in

our MIMO-OFDM system. In MATLAB, these complex number computations

can be easily computed, whereas become inconvenient in VHDL since

complex number operations cannot be carried our directly in VHDL. Hence, in

 - 55 -

order to deal with complex number computations, the original complex

number arithmetic is separated into many real number segments. For example,

one simple complex number computation, (X+Y)/Z, will become

(ae+ce+bf+df)/(e2+f2)+(-af-cf+be+de)i/(e2+f2) after the rearrangement,

where X=a+bi, Y=c+di, Z=e+fi, and a, b, c, d, e, and f are real numbers.

4.3.2 Circuit Design

In the following paragraphs, components are roughly divided into transmitter

components and receiver components, and all circuits follow the principles introduced

in the previous section. Additionally, every component is hierarchically designed.

4.3.2.1 Circuit Design of Transmitter

Figure 4.9 shows the overview of the circuit design of the transmitter. All circuits

are synchronous, and a pipelined architecture is adopted where the clock is used to

control the data transfer simultaneously. All delay blocks make use of components

SRL16 to implement a progressive delay line, where SRL16 is an exclusive feature of

Virtex architecture that allows users to save a lot of room and increase tremendously

the performance. Detailed circuit designs of function blocks are described as follows.

clk

data_in

RST

data_out

wen

clk
data_in

RST

data_i_1
data_i_2

data_q_1
data_q_2

wen

mapper
clk
mod_even_i
mod_odd_i
mod_even_q
mod_odd_q
RST

ant1_i
ant1_q
ant2_i

ant2_q
wen

delay_1clk

2222

delay_1clk

22

clk
DI_in
DQ_in
RST

ifft_i_out
ifft_q_out

clk
data_i_in
data_q_in
RST

os_cp

data_i_out
data_q_out

wen

clk
RST

pmb_gen_tx1
pmb_i

pmb_q

sel

w2_i
w2_q

w1_i
w1_q

f_i

f_q

pmb_data_mux

D_in
RST

RRC
RRC_out

D_in
RST RRC_out

22 10 10

10

10

10

1010

1010

clk
DI_in
DQ_in
RST

ifft_i_out
ifft_q_out

clk
data_i_in
data_q_in
RST

data_i_out
data_q_out

wen

clk
RST

pmb_gen_tx2
pmb_i

pmb_q

sel

w2_i
w2_q

w1_i
w1_q

f_i

f_q

D_in
RST

RRC
RRC_out

D_in
RST RRC_out

22 10
10

10

10

10

1010

1010

delay_1clk
delay_90clk

TX1

TX2

clk

data_in

RST
encode

wen

interleaver
STBC(demux)

+pt_ztconv

delay_1clk

IFFT

os_cp pmb_data_muxIFFT

Figure 4.9: Circuit design of transmitter

 - 56 -

(1) Convolutional encoder:

Figure 4.10 shows our circuit design of the convolutional encoder, named

conv. First the source data are fed into an encoder, conv_encoder, which

encoding rule follows what has been discussed in Section 2.2.1. Then three

parallelly generated bits da, db, and dc are passed into the next circuit –

conv_ram_ctrl. The main function of conv_ram_ctrl is to generate control

signals, such as write enable signal (wen), and writing or reading addresses

(address_1-3). Besides control signals, da, db, and dc are buffered for one clock

period for the sake of the synchronization of data and control signals. Finally, a

particular RAM is used, where it allows three input signals simultaneously to be

written into three different allocations according to respective addresses in

writing stage, and output only one signal in reading stage. RAM size depends

on which MIMO technique is adopted in the system. When spatial diversity

scheme is chosen, it requires at least 48×6×3=576 memories to store, therefore a

1024×1 RAM is realized. On the other hand, a 2048×1 RAM is chosen in spatial

multiplexing scheme. In addition, the write enable signal wen is fed out so that

the next stage can know when to read by recognizing wen changing form high

to low (form writing mode to reading mode).
conv

conv_ram_1024x1

di_1
di_2
di_3
ADDR_1
ADDR_2
ADDR_3
we

do1024

1

conv_ram_ctrl

buf_in_1
buf_in_2
buf_in_3

clk
RST

conv_encoder

din
da
db
dc

buf_out_1
buf_out_2
buf_out_3
address_1
address_2
address_3

wen
clk
RST

10

clk
RST

Figure 4.10: Circuit design of convolutional encoder

(2) Interleaver / de-interleaver:

The circuit designs of the interleaver and de-interleaver are similar;

therefore here we just explain the design concept of the interleaver. As we

mentioned in Section 2.2.2, a block interleaving scheme is adopted. Hence the

 - 57 -

interleaving will take place repeatedly in every symbol, which contains 96 bits

through totally 576 bits (take the signal length of the spatial diversity scheme

for example). By this reason, there are only two 128×1 RAM instead of a 1024×

1 RAM embedded inside, which can dramatically save FPGA resources.

Inter_ram_ctrl will generate a writing address with a interleaved order, and

simultaneously generate sequential reading address. Then, by scheduling of

multiplexer and de-multiplexer, the two 128 × 1 RAMs will alternately

interleaved store and then sequentially fed out the data from one RAM to

another. In this way, the input signals are successfully interleaved.

w1

w2

f

s

mux

data1
A_w1

data2
A_w2

data
A_w

s

demux

di
A_w
A_r
we

do

di
A_w
A_r
we

do

ram_128x1

77

ram1_wen
ram2_wen

data_buffer_out
address_write
address_read

mux_sel
demux_sel

inter_ram_ctrl

data_buffer_in
clk
RST

delay_1clk

interleaver

77

77

77

Figure 4.11: Circuit design of interleaver

(3) Mapper / de-mapper:

In our design, the de-mapper block is integrated with another block, which

will be discussed in the following paragraphs. Here we see the circuit design of

mapper first. In mapping stage, two successive input bits are going to be

modulated into in-phase and quadrature parts, hence a adopted QPSK

modulation scheme is carried out in mapper_ram_ctrl, and then the modulated

signals, including I part and Q part, are fed into adopted 512×2 RAMs along

with control signals. Here word lengths are chosen to be 2 in order to represent

+1 and -1 in 2’s complement method. For the sake of convenience in the next

stage, the successive mapped data symbols are fed out simultaneously by

arranging the order of reading addresses deliberately.

 - 58 -

mapper

clk

rst

data_in

ADDR_1

we

do_1

di
512

2
ram_512x2_q

ADDR_1

we

do_1
di 512

2
ram_512x2_i

data_i_out

data_q_out

wen

address_q_1

address_i_1 9

9

2

2

2

2

01 1101 11

mapping_ram_ctrl

address_i_2

ADDR_2

ADDR_2
9

address_q_2
9

do_2 2

do_2
2

01 1101 11

01 1101 11

01 1101 11

Figure 4.12: Circuit design of mapper

(4) STBC encoder with pilot zero tones adder:

This circuit is suitable for the spatial diversity scheme, and the structure is

very similar to what we have introduced in previous paragraphs. After feeding

in successive mapped data symbols, the STBC scheme is executed in

stc_ram_ctrl and then separate data into two streams, which are respectively

stored into four 512×2 RAMs. These RAMs are designed to allow two signals

written in the writing stage and one signal read in the reading stage. Moreover

pilot tones and zero tones are also imbedded into the output signals of this stage.

stc_ram_ctrl ram_stc1_i
di_1
di_2
ADDR_1
ADDR_2

do
512

2

ram_stc1_q
di_1
di_2
ADDR_1
ADDR_2

do
512

2

ram_stc2_i
di_1
di_2
ADDR_1
ADDR_2

do
512

2

ram_stc2_q
di_1
di_2
ADDR_1
ADDR_2

do
512

2

mod_even_i_in
mod_even_q_in
mod_odd_i_in
mod_odd_q_in

stc1_even_i_out
stc1_odd_i_out

address_even

stc1_even_q_out
stc1_odd_q_out

stc2_even_i_out
stc2_odd_i_out

address_odd

stc2_even_q_out
stc2_odd_q_out

22

9

9

22

22

22

22

22

22

22

2

2
2

2

2

2

2

2

STBC+pt_zt

clk
RST

01 1101 11

01 1101 11

01 1101 11

01 1101 11

01 1101 11

Figure 4.13: Circuit design of STBC encoder with pilot zero tones adder

 - 59 -

(5) De-multiplexer with pilot zero tones adder:

Opposite to the previous circuit, this circuit is designed for the spatial

multiplexing strategy. Since it just separates the input signal into two

independent streams without advanced space-time coding, the circuit design is

much simpler than the previous circuit.

mux_ram_ctrl ram_ant1_i

di_1
ADDR_1
we

do
512

2

ram_ant1_q

di_1
ADDR_1
we

do
512

2

ram_ant2_i

di_1
ADDR_1
we

do
512

2

ram_ant2_q

di_1
ADDR_1
we

do
512

2

mod_even_i_in
mod_even_q_in
mod_odd_i_in
mod_odd_q_in

ant1_i_out

address_even

ant1_q_out

ant2_i_out

address_odd

ant2_i_out

9

9

22

22

22

22

demux+pt_zt

clk
RST

2

2
2

2

01 1101 11

2

2

2

2

01 1101 11

01 1101 11

01 1101 11

01 1101 11

Figure 4.14: Circuit design of de-multiplexer with pilot zero tones adder

(6) FFT / IFFT:

Fast Fourier transform (FFT) is a type of discrete Fourier transform (DFT),

but only faster with fewer computations (summations and multiplications). A

DFT takes N2 computations to calculate a transform for N points, whereas the

FFT takes around Nlog2N computations to complete the same thing. Here we

adopt a 64-tap FFT which is provided by Xilinx and can operate 20-bit complex

(20-bit real, 20-bit imaginary) samples, and a rough design concept is illustrated

in Figure 4.15.

A pipelined implementation of a 64-point FFT requires a simple pipeline

consisting of 6 butterfly computation modules. This method operates on two

data points per clock cycle, yielding an effective data rate that is twice the clock

rate, but requires customized butterfly computation modules for each stage of

the FFT computation. Since a butterfly computation is carried out, the output

signal will be in bit-reverse order.

 - 60 -

Finally, according to the results available in the quantization algorithm, the

word length of IFFT (FFT) outputs should be truncated from 20 bits to 10 bits

(14 bits) Furthermore, an additional saturation circuit is attached behind IFFT to

mitigate PAPR problem.

Butterfly
computation Delay Butterfly

computation Delay Butterfly
computation Delay

Butterfly
computation Delay Butterfly

computation Delay Butterfly
computation

20

FFT
xin
yin

20 Xout
Yout

Figure 4.15: Circuit design of fast Fourier transform

(7) Oversampler and cyclic prefix adder:

Signals must be not only oversampled but also cyclic prefix added in this

circuit. Moreover, the post-IFFT bit-reverse ordered signal need to be sorted to

be sequential order. We achieve these three purposes by merely arranging the

order of address when data is written into and read out from 1024×10 RAMs.

The arrangement of address order in writing mode will not only sort signal to

sequential order but lead to zero padding between every signal, also called

oversampling; whereas the arrangement in reading mode will let output signal

look like that a copy of the last 1/4 part of OFDM symbol is attached to the

front of itself, that is, cyclic prefix.

os_cp
os+cp_ram_ctrl ram_i

buffer_i_in

buffer_q_in

wen
ADDR

clk
rst

ADDR
we

dodi 1024

10

clk
rst

ram_q
clk
rst

ADDR
we

dodi 1024

10

10

10

10

buffer_i_out

buffer_q_out

10

10

10

10

Figure 4.16: Circuit design of oversampler and CP adder

 - 61 -

(8) Preamble generator:

As we described in Chapter 2, preambles are BPSK modulated and consist

of ten short preambles and two long preambles. In our design, one oversampled

short preamble and one oversampled long preamble are stored in 256×2 ROMs.

We repeatedly read out the short preamble ten times and the long preamble two

times, then total series of data form a complete preamble channel. Since

preambles are also STBC encoded, a pmb_gen_stbc block is equipped in first

antenna preamble generator.
pmb_gen_tx1

clk
RST

pmb_gen_rom_ctrl

pmb_count_out

ADDR

sel

rom_256x2_i

A SPO

rom_256x2_i

A SPO

rom_256x2_q

A SPO

rom_256x2_q

A SPO

pmb_gen_stbc

88

22

22

44

2

2

pmb_count

pmb_buf_q_in

pmb_buf_i_in

pmb_buf_i_out

pmb_buf_q_out

pmb_gen_tx2

clk
RST

pmb_gen_rom_ctrl

ADDR

sel

rom_256x2_i

A SPO

rom_256x2_i

A SPO

rom_256x2_q

A SPO

rom_256x2_q

A SPO

88

2

2

Figure 4.17: Circuit design of first and second preamble stream generators

(9) Root raised cosine filter:

Figure 4.18 shows the circuit design of the 25-tap RRC filter, and we can

see that all 25 multiply-and-accumulate operations are executed in one clock

cycle; such parallel processing can maximize data throughput. Furthermore,

basing on the results available in the quantization algorithm, coefficients

embedded inside are truncated to 13 bits and the output word lengths in the

transmitter RRC and receiver RRC are also truncated to be 10 bits and 11 bits.

Reg0 Reg1 Reg2 Reg24
10

Data in

13 13 13 13

10 10 10

C0 C1 C2 C24

Data out23

RRC

Figure 4.18: Circuit design of RRC filter

 - 62 -

4.3.2.2 Circuit Design of Receiver

Figure 4.19 shows the overview of the circuit design in the receiver. Certainly, a

pipelined architecture is adopted and more delay blocks are adopted than in transmitter.

The circuit designs of function blocks are given as follows.

RX1

RX2

D_in
RST

rx_rrc

RRC_out

D_in
RST RRC_out

D_in
RST RRC_out

D_in
RST RRC_out

clk
rx1_i_in

rx1_q_in

rx2_i_in

rx1_q_in
RST

frm_str

time_sync

RST
data_i_in
data_q_in
clk

rm_os+rm_cp

data_i_out
data_q_out

wen

clk
DI_in
DQ_in
RST

FFT

ifft_i_out
ifft_q_out

clk
data_i_in
data_q_in
RST

mv_pt_zt
data_even_i_out

data_even_q_out
data_odd_i_out

data_odd_q_out
wen

10

10

11

11 14

RST
data_i_in
data_q_in
clk

rm_os+rm_cp

data_i_out
data_q_out

wen

clk
DI_in
DQ_in
RST

FFT

ifft_i_out
ifft_q_out

clk
data_i_in
data_q_in
RST

mv_pt_zt
11 14

14

11

11

delay_90clk

data_delay_43clk

data_even_i_out
data_even_q_out

data_odd_i_out
data_odd_q_out

wen

14

rx1_data_even_i
rx1_data_even_q
rx1_data_odd_i
rx1_data_odd_q
rx2_data_even_i
rx2_data_even_q
rx2_data_odd_i
rx2_data_odd_q

rst

ch_est
H11_i

H11_q
H21_i

H21_q
H12_i

H12_q
H22_i

H22_q

ph_est
rx1_phi_even_i

rx1_phi_even_q
rx1_phi_odd_i

rx1_phi_odd_q
rx2_phi_even_i

rx2_phi_even_q
rx2_phi_odd_i

rx2_phi_odd_q

H11_i
H11_q
H21_i
H21_q
H12_i
H12_q
H22_i
H22_q
rx1_data_even_i
rx1_data_even_q
rx1_data_odd_i
rx1_data_odd_q
rx2_data_even_i
rx2_data_even_q
rx2_data_odd_i
rx2_data_odd_q
rst

14

12

14

12

lnpmb_fft_rom

z1_even_i
z1_even_q
z1_odd_i
z1_odd_q

z2_even_i
z2_even_q
z2_odd_i
z2_odd_q

H phi

data_delay_22clk

delay_53clk

rst

delay_4clk

de_map

wen

delay_1clk

data_in

rst

data_out

wen rst

delay_1clk

data_in
data_out

wen

de_STBC
(VBLAST)
de_map

de_leav viterbi
decoder

Figure 4.19: Circuit design of receiver side

(1) Timing synchronizer:

The timing synchronization block diagram is shown in Figure 4.20. First,

in order to do two-time downsampling, the switch block is designed to generate

two times period clock sources. After that, the following matched filter blocks

(sp_match) are designed to match short preambles. After every matched filter

successfully matches short preambles and generates ten impulses, the

successive series of comparators (s_comp) are processed to find out the

maximum absolute value among 8 paths, e.g., to find out the most reliable

reference. Next, this maximum sequence is delayed by 16 clocks and sum up to

enhance the peak values by the delay_sum block. Finally, an FIR filter (FIR)

with response of some repeated {0,0,0,…,0,1} is applied to rake the values of

 - 63 -

each impulse, and then generates a hill-like output waveform, where the time

index of the summit of this hill can be regarded as a start time of the packet. The

circuit design of the matched filter and the FIR filter is similar to the RRC filter,

where a maximum data throughput is achieved by parallel processing.

time_sync
sp_match

D_in
ENB

MF_out

D_in
ENB

MF_out

D_in
ENB MF_out

D_in
ENB MF_out

MF_out

MF_out

MF_out

MF_out

8

D_in
ENB

D_in
ENB

D_in
ENB

D_in
ENB

8

switch
ENB_1
ENB_2

clk

s_comp

A Y

B S

12

s_comp

A Y

B S

A Y

B S

A Y

B S

A Y

B S

A Y

B S

Di_in

DS_out

Dq_in

12

12

delay_sum

Di_in FIR

FIR sel_max

EVENT
Di_in

Di_in
frm_str

frm_str

16 16

Rx1_i_in

Rx1_q_in

Rx2_i_in

Rx2_q_in

Figure 4.20: Circuit design of timing synchronizer

(2) Oversample and cyclic prefix remover:

Based on the timing information available in the time_sync block,

oversample and CP are removed by arranging the address order in this block.
rm_os_cp

os+cp_ram_ctrl ram_1024x11_i

buf_i_in

buf_q_in

wen
ADDR

clk
rst

ADDR
we

dodi 1024

11

clk
rst

ram_1024x11_q
clk
rst

ADDR
we

dodi 1024

11

11

11

10

buffer_i_out

buffer_q_out

11

11

11

11

Figure 4.21: Circuit design of oversample and CP remover

 - 64 -

(3) Pilot zero tones mover:

In this stage, we reserve all data tones, remove zero tones, and gather pilot

tones together for convenience of the following procedures. Remembering that

these post-FFT data are in bit-reverse order, therefore the order of writing

address will be extremely complicated. Here we store our address order in a

ROM named index_rom in advance, and sequentially read out the data to be the

writing address. Furthermore, to achieve a higher data rate, the stored data are

parallelly fed out symbol by symbol from RAMs, therefore the following stages,

such as channel estimator, phase estimator, STBC detector, or VBLAST

detector, can easily process succeeding symbols at the same time.

mv_pt_zt

clk
rst

buf_i_in
buf_q_in

ADDR_a

we

do_1

di
512

14
ram_512x14_q

ADDR_a

we

do_1

di 512

14
ram_512x14_i

ADDR_a
ADDR_b

wen

9

14

14

14

14

mv_pt_zt_ram_ctrl

ADDR_b

ADDR_b
9

do_2
14

do_2
14

index_rom

64

6

14

buf_i_out

buf_i_out
9
9

Figure 4.22: Circuit design of pilot zero tone mover

(4) Channel estimator:

Long preambles are used to carry out the major task of channel estimation.

As shown in Figure 4.23, the frequency domain chips of the original long

preambles is stored in ROMs, where the FFT output of the received long

preamble is also fed into this stage and decoupled by the rule of STBC in

accumulator. Therefore, the channel frequency response can be obtained simply

by dividing these two outputs in ch_est_div blocks. Finally, the successive

blocks truncate, modify the output of dividers and then store them in RAMs.

 - 65 -

ch_est

counter_64

clk
rst X

rom_lnpmb_fft_i

A SPO6464

10

rom_lnpmb_fft_q

6 10

Accumulator ch_est_div_H1_i
dividend
divisor
c

quot
remd

ch_est_div_H1_i
dividend
divisor
c

quot
remd

ch_est_div_H1_q
dividend
divisor
c

quot
remd

ch_est_div_H1_q
dividend
divisor
c

quot
remd

ch_est_div_H2_i
dividend
divisor
c

quot
remd

ch_est_div_H2_i
dividend
divisor
c

quot
remd

ch_est_div_H2_q
dividend
divisor
c

quot
remd

ch_est_div_H2_q
dividend
divisor
c

quot
remd

divisor

dividend_H1_i

dividend_H1_q

dividend_H2_i

dividend_H2_q

modifier
24

20

24

7
H1_i

H1_q

H2_i

H2_q

SPO6464

10

A

ram_ctrl

SPO64

12

64

12A
D
WE

H1_i_ram

SPO64

12

64

12A
D
WE

H1_q_ram

SPO64

12

64

12A
D
WE

H2_i_ram

SPO64

12

64

12A
D
WE

H2_q_ram

H1_i

H1_q

H2_i

H2_q

H1_i

H1_q

H2_i

H2_q

12
12

A
WE

6

H1_i

H1_q

H2_i

H2_q

data_even_i
data_even_q
data_odd_i
data_odd_q

14

Figure 4.23: Circuit design of channel estimator

(5) Phase estimator:

In Section 2.3.4, we have discussed the phase estimation algorithm, and the

estimated phase can be figured out by Eq. 2.8 with an arc tangent operation .

However, when it turns to FPGA realization, we care about the relative

amplitude between real and image parts of the estimated phase but not the exact

angle value, since we can compensate phase shift by multiplying the conjugate

estimated complex phase and the received data. Therefore, no arc tangent circuit

is implemented in the phase estimation block shown below, and no sine or

cosine circuits are required to be implemented in the STBC detector or

VBLAST detector, either. That can save a lot of hardware resources.
ph_est

Accumulator
H11_i
H11_q
H21_i
H21_q
H12_i
H12_q
H22_i
H22_q
z1_even_i
z1_even_q
z1_odd_i
z1_odd_q
z2_even_i
z2_even_q
z2_odd_i
z2_odd_q
clk
rst

ph1_even_i
ph1_even_q

ph1_odd_i
ph1_odd_q
ph2_even_i

ph2_even_q
ph2_odd_i

ph2_odd_q

12

14

12

Figure 4.24: Circuit design of phase estimator

 - 66 -

(6) STBC decoder:

The STBC decoder and the de-mapper are integrated in a single block in

order to save additional RAMs. The estimated channel information, estimated

phase information, and post-FFT data are first fed into Accumulator block,

where complicated complex number computations are executed inside. Here we

do not divide the diversity gain
2 2 2 2

11 21 12 22()k k k kH H H H+ + + as shown in

Eq. 2.14 since only a signed bit is required to be checked in the following

QPSK de-mapping block. The detected results are transferred to the next block

ram_ctrl where de-mapping is executed inside. Because the estimated channel,

phase, and received data are parallelly sent into this stage, the de-mapped data

are parallelly figured out and then stored into a 1024×1 RAM.

de_stbc_map
Accumulator

ram_ctrl de_stbc_map_ram_1024x1

H11_i
H11_q
H21_i
H21_q
H12_i
H12_q
H22_i
H22_q
ph1_even_i
ph1_even_q
ph1_odd_i
ph1_odd_q
ph2_even_i
ph2_even_q
ph2_odd_i
ph2_odd_q
z1_even_i
z1_even_q
z1_odd_i
z1_odd_q
z2_even_i
z2_even_q
z2_odd_i
z2_odd_q

dt1_i
dt1_q
dt2_i

dt2_q

dt1_i
dt1_q
dt2_i
dt2_q

clk
rst

12

12

14

38
wen

ADDR_even_1
ADDR_even_2
ADDR_odd_1
ADDR_odd_2

de_map_even_1
de_map_even_2
de_map_odd_1
de_map_odd_2

1024

1
wen
ADDR_even_1
ADDR_even_2
ADDR_odd_1
ADDR_odd_2
de_map_even_1
de_map_even_2
de_map_odd_1
de_map_odd_2

10

do

Figure 4.25: Circuit design of STBC decoder

(7) VBLAST detector:

The computations in the VBLAST detector is much more complicated than

what in the STBC detector, therefore the critical path problem is much severer

too. In order to explain how we deal with this problem, we must first introduce

how we separate the original complex number computations. Figure 4.25 shows

our separating strategy, where whole complex number arithmetic is separated

into 7 blocks and detailed real calculating tasks in every block are shown in

Table 4.2.

 - 67 -

1

a,b

e,f w

ztmp

a,b
H

z

phi

2
4

dt_1st
5

ztmp

d

a,b

6
g,h

7

a,b

dt_final

Accumulator

clk

3

Figure 4.26: Original real number calculating strategy in VBLAST

Do first time QPSK decisionDo first time QPSK decision

1a,b e,f

3

2

4

6

7

e,f w

z
ztmp

dt_1st

g,h

dt_final

phi

w

ztmp

a,b

ztmp

a,b

g,h

d

5
dt_1st

e1=a11*a22-b11*b22-a12*a21+b12*b21;
f1=a11*b22+a22*b11-a12*b21-a21*b12;

w11_i=(a22*e1+b22*f1)/(e1*e1+f1*f1); w11_q=(-a22*f1+b22*e1)/(e1*e1+f1*f1);
w21_i=(-a21*e1-b21*f1)/(e1*e1+f1*f1); w21_q=(a21*f1-b21*e1)/(e1*e1+f1*f1);
w12_i=(-a12*e1-b12*f1)/(e1*e1+f1*f1); w12_q=(a12*f1-b12*e1)/(e1*e1+f1*f1);
w22_i=(a11*e1+b11*f1)/(e1*e1+f1*f1); w22_q=(-a11*f1+b11*e1)/(e1*e1+f1*f1);

z1tmp_i=z1_i*ph1_i+z1_q*ph1_q; z1tmp_q=-z1_i*ph1_q+z1_q*ph1_i;
z2tmp_i=z2_i*ph2_i+z2_q*ph2_q; z2tmp_q=-z2_i*ph2_q+z2_q*ph2_i;

dt1_1st_i=w11_i*z1tmp_i-w11_q*z1tmp_q+w21_i*z2tmp_i-w21_q*z2tmp_q;
dt1_1st_q=w11_i*z1tmp_q+w11_q*z1tmp_i+w21_i*z2tmp_q+w21_q*z2tmp_i;
dt2_1st_i=w12_i*z1tmp_i-w12_q*z1tmp_q+w22_i*z2tmp_i-w22_q*z2tmp_q;
dt2_1st_q=w12_i*z1tmp_q+w12_q*z1tmp_i+w22_i*z2tmp_q+w22_q*z2tmp_i;

g1=z1tmp_i-a21*d2_i+b21*d2_q; h1=z1tmp_q-a21*d2_q-b21*d2_i;
g2=z2tmp_i-a22*d2_i+b22*d2_q; h2=z2tmp_q-a22*d2_q-b22*d2_i;
g3=z1tmp_i-a11*d1_i+b11*d1_q; h3=z1tmp_q-a11*d1_q-b11*d1_i;
g4=z2tmp_i-a12*d1_i+b12*d1_q; h4=z2tmp_q-a12*d1_q-b12*d1_i;

dt1_final_i=a11*g1+b11*h1+a12*g2+b12*h2;
dt1_final_q=a11*h1-b11*g1+a12*h2-b12*g2;
dt2_final_i=a21*g3+b21*h3+a22*g4+b22*h4;
dt2_final_q=a21*h3-b21*g3+a22*h4-b22*g4;

d

Table 4.2: Tasks in VBLAST accumulator

However, by experimenting, these seven tasks cannot be completely

executed in a single clock period. Therefore, the original dividing strategy is

modified as shown in Figure 4.27. We can see that two accumulators are

realized, and only three to four real calculating tasks are required to be executed

in a clock period, thus the accurate results can be figured out in time. By this

kind of rearrangement, critical path problem is resolved. Final circuit design of

the VBLAST detector with integration of de-mapper is shown in Figure 4.28.

 - 68 -

Accumulator_0

1

a,b

e,f w

ztmp

a,b
H

z

phi

2

3
4

w

ztmp

dt_1st
5

ztmp

d

a,b

6
g,h

7

a,b

dt_final

Accumulator_1

clk clk

Figure 4.27: Modified real number calculating strategy in VBLAST

VBLAST
Accumulator_0

VBLAST_ram_ctrl VBLAST_ram_2048x1

H11_i
H11_q
H21_i
H21_q
H12_i
H12_q
H22_i
H22_q
ph1_even_i
ph1_even_q
ph1_odd_i
ph1_odd_q
ph2_even_i
ph2_even_q
ph2_odd_i
ph2_odd_q
z1_even_i
z1_even_q
z1_odd_i
z1_odd_q
z2_even_i
z2_even_q
z2_odd_i
z2_odd_q

dt1_even_i
dt1_even_q
dt2_even_i

dt2_even_q
dt1_odd_i

dt1_odd_q
dt2_odd_i

dt2_odd_q

12

12

14

16

wen
ADDR1_even_i

ADDR1_even_q
ADDR2_even_i

ADDR2_even_q
ADDR1_odd_i

ADDR1_odd_q
ADDR2_odd_i

ADDR2_odd_q

de_map1_even_i
de_map1_even_q
de_map2_even_i

de_map2_even_q
de_map1_odd_i

de_map1_odd_q
de_map2_odd_i

de_map2_odd_q

2048

1

11

do

dt1_even_i
dt1_even_q
dt2_even_i
dt2_even_q
dt1_odd_i
dt1_odd_q
dt2_odd_i
dt2_odd_q

11

wen
ADDR1_even_i
ADDR1_even_q
ADDR2_even_i
ADDR2_even_q
ADDR1_odd_i
ADDR1_odd_q
ADDR2_odd_i
ADDR2_odd_q

de_map1_even_i
de_map1_even_q
de_map2_even_i
de_map2_even_q
de_map1_odd_i
de_map1_odd_q
de_map2_odd_i
de_map2_odd_q

a11
a21
a12
a22
b11
b21
b12
b22

w11_i
w11_q
w21_i

w21_q
w12_i

w12_q
w22_i

w22_q
z1tmp_even_i

z1tmp_even_q
z2tmp_even_i

z2tmp_even_q
z1tmp_odd_i

z1tmp_odd_q
z2tmp_odd_i

z2tmp_odd_q

8

16

16

Accumulator_1

Figure 4.28: Circuit design of VBLAST detector

(8) Viterbi decoder:

The circuit design of the Viterbi decoder is shown in Figure 4.29. Three

main blocks are included: branch metric generator (BMG); add, compare, and

select (ACS) block; and the trace back unit (TBU). The BMG unit generates the

branch metrics for each symbol of the input sequence by comparing the

received code symbol with the expected code symbol for each connection of the

trellis (state) and counts the number of different bits. For a 1/3 rate code

adopted in our system, there are eight possible symbol combinations in the

encoded sequence: 000, 001, 010, 011, 100, 101, 110, and 111; therefore eight

BMG units are implemented in BMG block as shown in Figure 4.30.

 - 69 -

Branch metric
generator (BMG)

Add, compare,
and select (ACS)

Trace back
unit (TBU)

3

viterbi
Received

de-mapped
data symbol

16

1

Path metric

16

32

Data array

Figure 4.29: Circuit design of Viterbi decoder
BMG

BMG unit 1

BMG unit 2

BMG unit 3

BMG unit 4

BMG unit 5

BMG unit 6

BMG unit 7

BMG unit 8

Received data

3

BM1

BM2

BM3

BM4

BM5

BM6

BM7

BM8

BMG unit

XOR

Count
the

number
of 1s

Received data (0)

Expected symbol (0)

XOR
Received data (1)

Expected symbol (1)

XOR
Received data (2)

Expected symbol (2)

BM

Figure 4.30: Circuit design of branch metric generator

The ACS unit is the heart of the Viterbi decoder. Each node in the trellis

diagram corresponds to an ACS unit in the corresponding Viterbi decoder.

Therefore, referring to the trellis diagram shown in Figure 2.8, there should be

totally 16 ACS units in the ACS block as shown in Figure 4.31. The ACS unit

has 4 inputs (two branch metrics and two path metrics) and two outputs (the

new path metric and the survivor bit). The survivor bit is the most important

information generated by the ACS unit. It indicates which sum between an input

path metric and a branch metric generated the smallest result and was selected

as the output path metric or local winner.

 - 70 -

ACS unit 15

ACS unit 7

ACS unit 11

ACS unit 3

ACS unit 13

ACS unit 5

ACS unit 9

ACS unit 1

ACS unit 14

ACS unit 6

ACS unit 10

ACS unit 2

ACS unit 12

ACS unit 4

ACS unit 8

ACS unit 0

PM15

PM7

PM11

PM3

PM13

PM5

PM9

PM1

PM14

PM6

PM10

PM2

PM12

PM4

PM8

PM0

Feedback
PM

PM15
PM14

PM15
PM14

BM1~8

PM7
PM6

PM7
PM6

PM11
PM10

PM10
PM11

PM2
PM3

PM2
PM3

PM12
PM13

PM12
PM13

PM4
PM5

PM4
PM5

PM8
PM9

PM8
PM9

PM0
PM1

PM0
PM1

ACSACS unit

Adder

Adder

comparator MUX

BM1
PM1

BM2
PM2

Survivor bit

New PM

Figure 4.31: Circuit design of add, compare, and select block

The ACS block assigns the measurement functions to each state, but the

actual Viterbi decisions on encoder states are based on the trace back operation

to find the path of the states. Using the trace back operation, every state from a

current time is followed backwards through its maximum likelihood path. The

point at which the corrected bit streams starts is called the merger point (also

called the trace back depth). The performance of Viterbi decoder largely

depends upon the trace back depth. The increase in trace back depth increases

the complexity and hardware exponentially so one has to trade off between the

performance level and the complexity and hardware.

Normally for decoders using non-punctured codes, the trace back depth

equals five-times constraint length, which is sufficient to decode the correct

output in the presence of noise. In our system, the constraint length is 5,

therefore twenty-five trace back depth is required. We adopt a 16×32 register

array to store the path of the states. Comparing with original 16×192 (STBC) or

16×384 (VBLAST) register array, a large amount of FPGA resources are saved.

 - 71 -

4.4 ModelSim simulation

When developing an FPGA system, ModelSim simulation can help designers

developing efficiently and accurately. It can pull out all signals and simulate how they

work simultaneously without the limitation of the number of debugging pins, therefore,

designers can save a lot of time downloading to FPGA and directly examine the

changes and interactions between signals. Figure 4.32 and 4.33 shows the data flows in

STBC and VBLAST system. In STBC case, total flow spends approximately 110 us.

On the other hand, VBLAST case spends approximately 150 us. VBLAST spends

more time than STBC because that two times source data are required to be dealt with.

Figure 4.32: STBC ModelSim simulation result

Figure 4.33: VBLAST ModelSim simulation result

 - 72 -

In addition to total data flow period, some design concepts such as parallel

processing and overlapped processing also can be observed through above two figures.

Figure 4.34 shows the transmitted waveform. Signal in first 16 us is preamble channel,

which is BPSK modulated; the rest of data are OFDM symbols.

Figure 4.34: Transmitted waveform of MIMO-OFDM system

4.5 Experimental Results

There are two platforms for us to download our baseband codes and perform the

advanced verification. In order to take account of interaction between other modules

such as DSP, USB, and AD/DA on these two platforms, modification needs to be

executed frequently. Therefore to synthesis, map, and place and route iteratively seems

to be unavoidable and always waste a lot of time. Besides time consuming, the

insufficiency of FPGA gate count becomes another problem, especially on the

VBLAST receiver side. Therefore we must try our best to save gate count, and that is

an important reason why we try to find out a quantization algorithm that can minimize

the hardware resource requirement. Table 4.3 shows time and area consumption in our

developing flow, where whole design flow including developing transmitter and

receiver takes 2 to 4 hours. Therefore to test a system is quite time consuming.

Table 4.2: Synthesis and P&R information

59717 (88%)35035 (91%)45228 (66%)32925 (85%)Total LUTs

VBLASTSTBC

132 (91%)

45mins

30mins

Rx (Virtex2 6000)

NA

40mins

42mins

Tx (VirtexE 2000)

1hr 30mins20minsSynthesis Time

144 (100%)NABlock Multipliers

50mins30minsPlace and Route Time

Rx (Virtex2 6000)Tx (VirtexE 2000)

59717 (88%)35035 (91%)45228 (66%)32925 (85%)Total LUTs

VBLASTSTBC

132 (91%)

45mins

30mins

Rx (Virtex2 6000)

NA

40mins

42mins

Tx (VirtexE 2000)

1hr 30mins20minsSynthesis Time

144 (100%)NABlock Multipliers

50mins30minsPlace and Route Time

Rx (Virtex2 6000)Tx (VirtexE 2000)

 - 73 -

4.5.1 Fast Prototyping Platform

In the fast prototyping platform, we successfully integrate FPGA, DSP, USB, and

AD/DA modules. First the web camera catches the real time images continuously as

the data source, and then passes it to DSP module. DSP, without any processing,

directly pass the data to FPGA, and FPGA performs MIMO-OFDM transmitter

algorithm. After the processing of transmitter, data are passed through DA and received

by AD. Subsequently AD passes data to receiver FPGA, and start to decode the

received data. Finally, the decoded data are sent back to PC through DSP and USB

module, and shows through the self-developed application software in PC. We can

provide an user interface to demonstrate the real time transmitted and received images,

as shown in Figure 4.35. In this figure, a 3×3 images set is located. The three columns

represent transmit images, receive images, and error images respectively, whereas the

three rows represent the synthesized images of all antennas, first antenna, and second

antennas respectively. The real time bit error rate is also calculated and shown in the

right hand side.

Figure 4.35: Prototyping platform experimental result

 - 74 -

4.5.2 Self-designed Platform

In the self-designed platform, we attempt to establish a real wireless environment,

under which the adopted algorithm can be tested. Figure 4.36 shows the experimental

environment which has been shown in Chapter 3. First, source data are stored in a

ROM in FPGA, and passed to DA after processing by transmitter algorithm on FPGA.

Next, data are transmitted on the 5.2 GHz frequency band by the RF module, and a

receive antenna is allocated near the RF module. Subsequently data are received by the

receive antenna and passed to spectrum analyzer E4443A and vector signal analyzer

89600S. Finally, received data are analyzed and shown on PC. Figure 4.37 shows the

analyzed result, which can represent the effects of a real wireless channel. We can see

that in frequency domain, the measured center frequency is 5.200152 GHz, and the

occupied bandwidth (OBW) is approximately 20 MHz. In time domain, due to the

mismatch between mixers in transmitter and receiver, preamble data (only transmitted

in real part) is distributed into real and image parts in the receiver. Otherwise, owing to

the effect of frequency offset, the slight swing in envelop of received data also can be

observed.

Figure 4.36: Self-designed platform development environment

 - 75 -

Figure 4.37: Self-designed platform experimental result: received spectrum and

waveforms on PSA and VSA

After the received data pass through AD converter, all signals are digitalized and

therefore can be measured by the logic analyzer easily. Figure 4.38 shows the

waveform of timing synchronizer measured by the logic analyzer. As simulated in

MATLAB and ModelSim, timing synchronization output forms a hill and the peak

time index is regarded as the packet start time.

Frame start

offset frame time - offset
PeakFrame start

offset frame time - offset
Peak

Figure 4.38: Self-designed platform experimental result: timing synchronization

waveform on LA

 - 76 -

Figure 4.39 shows the source data stream in transmitter, transmitted data stream,

and detected data stream in the receiver, where the source data stream and the detected

data stream are specially expanded below. By comparing the source data stream with

detected data stream we can find out that they are exactly the same, which confirms

that our algorithm does work successfully.

Figure 4.39: Self-designed platform experimental result: source data and detected data

waveform on LA

4.6 Summary

In this chapter, a complete communication system design flow is proposed,

including MATLAB verification, FPGA realization, ModelSim simulation, and

experimental results. Through this design flow, we finish developing a 2 × 2

MIMO-OFDM system on two FPGA-based platforms, e.g., fast prototyping platform

and self-designed platform. On the fast prototyping platform, we integrate our

communication algorithm with web camera, and demonstrate real time video on the

self-developed software interface. On the self-designed platform, real wireless channel

effects can be generated by means of RF module, and some RF debugging instruments,

which makes our system become much closer to real communication system.

 - 77 -

Chapter 5

Proposed Quantization Algorithm
with Minimum Hardware
Requirement

The algorithms used by DSP systems are typically specified as floating-point DSP

operations. On the other hand, most digital FPGA implementations of these algorithms

rely solely on fixed-point approximations to reduce the cost of hardware while

increasing throughput rates. The essential design step of floating-point to fixed-point

conversion is not only time consuming, but also complicated due to the nonlinear

characteristics and the massive design optimization space. In a bid to achieve short

product cycles, the execution of floating to fixed-point conversion is often left to

hardware designers, who are familiar with VLSI constraints. Comparing with the

algorithm designers, this group often has less insight into the algorithm and depends on

ad hoc approaches to evaluate the implications of fixed-point representations. The gap

between algorithm and hardware design is even aggravated as algorithms continue to

become more complex. Thus, a systematical method for floating to fixed-point

conversion is urgently called for.

In this chapter, a quantization algorithm which is especially suitable for

communication systems is proposed, where hardware resources are minimized, and the

equivalent quantization error is constrained within a specified limit.

 - 78 -

5.1 Introduction of Quantization

Numeric representation in digital hardware may be either fixed or floating-point.

In fixed-point representation, the available bit-width is divided and allocated to the

integer part and the fractional part, with the extreme left bit reserved for the sign (2’s

complement). In contrast, a floating-point representation allocates one sign bit and a

fixed number of bits to an exponent and a mantissa. In fixed-point, relatively efficient

implementations of arithmetic operations are possible in hardware. In contrast, the

floating-point representation needs to normalize the exponents of the operands for

addition and subtraction. Synthesizing customized hardware for fixed-point arithmetic

operations is obviously more efficient than their floating-point counterparts, both in

terms of performance as well as resource usage. In the following paragraphs, some

fixed-point quantization examples will be introduced.

The first quantization example is shown in Figure 5.1, which illustrates two

different fractional quantization methods. The full precision number

“00110111101010000” represents 28496, and once we take the position of decimal

point into account, the original number needs to divide 214 and therefore becomes

1.7392578125. If we want to quantize the fractional part of this number from 14 bits to

be 9 bits, two methods can be alternated, e.g., truncation and rounding. Truncation

means to discard bits to the right of the least significant bit, that is, to remove right side

“10000” directly, and the original number will lead to 1.73828125. Otherwise,

rounding denotes to round the original number to the nearest representable value or the

value farthest from zero if there are two equidistant nearest representable values. In

rounding case, the quantized number will becomes 1.740234375, which is closer to full

precision number than truncation case. Obviously, rounding performs better than

truncation, yet will complicate the circuit and occupy more hardware resources.

00001010111101100 00001010111101100

010111101100 010111101100
110111101100 110111101100

Full Precision

FIX_12_9_floor

FIX_12_9_round

28496/214 = 1.7392578125

1.73828125

1.740234375

Figure 5.1: Quantization example 1: truncation and rounding

 - 79 -

Besides fractional part quantization, truncating the integer part is also feasible.

Figure 5.2 figures out the second example about how to truncate the integer part. Full

precision number is 13.6875, and there are 5 bits including 1 sign bit to represent

integer part. If we want to truncate integer part to 3 bits, saturation or wrapping can

be alternatively adopted. In saturation case, the original number is saturated to the

largest positive (or maximum negative) value; whereas wrapping case discards any

significant bits beyond the most significant bit. In this example, saturated number is

3.9375, and wrapped number is -2.3425, where wrapping causes a significant

quantization error. In communication system, especially in OFDM system, designers

will face serious PAPR problem, where dealing with overflow problem becomes an

important issue. As the results of saturation and wrapping shown in this example,

wasting a little circuit complexity and hardware resources to realize a saturation circuit

instead of wrapping circuit after IFFT in order to mitigate PAPR effects is intensely

recommended.

110110110 110110110Full Precision

FIX_7_4_sat

FIX_7_4_wrap

13.6875

3.9375

-2.3425

1111110 1111110
1101101 1101101

219/24 =

Figure 5.2: Quantization example 2: saturation and wrapping

MATLAB provides some functions that can translate floating-point values into

fixed-point values, which enable designer to design, model, and simulate the system

and to carry out the arithmetic in fixed-point domain. Fixed-point support is provided

using the MATLAB quantization functionality that comes with the Filter Design and

Analysis (FDA) Toolbox. This support is provided in the form of a quantizer object

and two methods or functions that come with this object, namely, “quantizer()” and

“quantize().” The “quantizer()” function is used to define the quantizer object, which

allocates the bit-widths to be used along with whether the number is signed or

unsigned, what kind of rounding is to be used, and whether overflows saturate or wrap.

The “quantize()” function applies the quantizer object to numbers, which are inputs to

 - 80 -

and outputs from arithmetic operations. For example, a quantization model of type

signed fixed-point, with 40 total bits with one sign bit, 8 integer bits, and 32 fractional

bits, handling overflow with saturation is defined as follows in MATLAB:

This quantizer object is used to quantize an arbitrary numerical value “X” (which

may be a scalar or a multidimensional vector) as shown above. The resulting number

“Xq” has a double floating-point representation in MATLAB, but can be exactly

represented by a 40-bit fixed-point signed number with 8 integer and 32 fractional bits.

5.2 Previous Work

The strategies for floating-point to fixed-point conversion can be roughly

categorized into two groups [31]. The first one is basically an analytical approach

coming from those algorithm designers who analyze the finite word length effects due

to fixed-point arithmetic. The other approach is based on bit-true simulation

originating from the hardware designers. The analytical approach started from attempts

to model quantization error statistically; then it was expanded to specific linear time

invariant (LTI) systems such as digital filters, FFT, etc. In the past three decades,

numerous papers have been devoted to this approach [26]-[31]. The bit-true simulation

method has been extensively used recently [32]-[35]. Its potential benefits lie in its

ability to handle non-LTI systems as well as LTI systems.

Our proposed approach is very closely related to the approach of Roy and

Banerjee [35], where the authors have developed a simulation-based method to

determine the optimum word lengths for DSP algorithms. Although the authors claim

that [35] the proposed approach can minimize the hardware resources while

constraining the quantization error, the way they adopt to estimate the hardware

resources (regard the bit precision of all quantizers as hardware resources) is too rough,

therefore the final experimental result is not precise enough. Moreover, only few

quantization methods are adopted in the approach, that is, truncation and wrapping,

q1 = quantizer(‘fixed’,’floor’,’saturate’,[40,32]);
Xq = quantize(q1,X);

 - 81 -

which are insufficient to satisfy the characteristics such as PAPR in communication

systems. To modify these two defects, the concept of hardware resource weighting is

introduced in our quantization algorithm, which makes hardware resources estimation

much more accurate; moreover in order to fit our special purposed system, e.g.,

communication system, not only truncation and wrapping but also saturation are

adopted in our quantization algorithm.

5.3 Proposed Quantization Algorithm

Our algorithm attempts to minimize the hardware resource requirement while

constraining quantization error within a specified limit, depending on the requirement

of the user or application. Especially, the concept of hardware resource weighting is

introduced therefore our algorithm can accurately estimate the hardware resources

requirement. The quantization algorithm consists of the following passes, which are

explained in detail in the next paragraphs:

 Pre-quantization works

 Determine hardware resource weightings

 Determine integer lengths

 Determine fraction lengths

5.3.1 Pre-quantization Works

Before executing the proposed quantization algorithm on our MIMO-OFDM

system, some pre-quantization works need to be operated first.

1. Separate all blocks into quantization-related and quantization-irrelevant

blocks, and find out the performance-dominated data flow path

 In order to convert floating-point MATLAB code into fixed-point MATLAB

code, first we need to separate all MIMO-OFDM function blocks into two groups,

e.g., quantization-related blocks and quantization-irrelevant blocks:

 Quantization-related blocks:

Function blocks are called quantization-related as long as there are DSP

 - 82 -

operations, such as the four fundamental operations of arithmetic, FFT/IFFT

and so on, between input signals and output signals. When we are dealing

with fixed-point variables without truncation, these DSP operations will

always make variable’s word length become longer and longer, and therefore

we must face quantization issues. In our MIMO-OFDM system, the

following function blocks are distributed into the quantization-related group:

 IFFT/FFT

 RRC filter

 Timing synchronizer

 Channel estimator

 Phase estimator

 STBC detector

 VBLAST detector

 Quantization-irrelevant blocks:

The definition of quantization-irrelevant blocks is right opposite to

quantization-related blocks. Besides the quantization-related blocks shown

above, the rest of blocks in our MIMO-OFDM system are categorized into

quantization-irrelevant blocks. When we are dealing with the floating-point

to fixed-point conversion, these blocks will remain the same because they

will suffer neither rounding nor truncation issues.

 Figure 5.3 shows the distribution of quantization-related and

quantization-irrelevant blocks in our system, and shows two data flow paths in the

system. The first data flow path, named major data flow path, starts from

convolutional encoder and ends to Viterbi decoder; the second data flow path,

named minor data flow path, starts from convolutional encoder and ends to timing

synchronizer. Since quantization will cause additional error, called quantization

error, it can be easily observed that the quantization errors along major data flow

path will dominate the system performance much more severely than what along

the minor data flow path; therefore our further works will focus on determining

the word lengths of the coefficients or variables in the quantization-related

function blocks along the major data flow path.

 - 83 -

BER

CHANNEL

STBC
(VBLAST)
detector

Convo-
lutional

encoder
Inter-
leaver Mapper

STBC
(de-
mux)

IFFT

RRC DA

ADRRCFFT

Channel
estimator

Phase
estimator

Preamble
generator

De-
mapper

De-
inter-
leaver

Viterbi
decoder

Source
data

Source
data

Output
data

Output
data

timing
synchronizer

: Quantization-related blocks

: Quantization-irrelevant blocks

: Major data flow path

: Minor data flow path

Figure 5.3: Data flow paths and distribution of quantization-related blocks

and quantization-irrelevant blocks in MIMO-OFDM system

2. Find out the variables which need to be quantized in quantization-related

blocks along the main data flow path

 Here we list the variables whose word lengths are required to be determined

in the function blocks along the major data flow path:

 IFFT output data

 RRC coefficients

 AD/DA length

 Word length of RRC output data in receiver side

 FFT output data

 Post-FFT long preamble chips embedded in channel estimator block

 Channel estimator output data

 Phase estimator output data

 Note that although AD and DA are not quantization-related blocks, there

available word lengths are inherently limited by hardware circuit design to be 10

bits therefore AD and DA’s word length also needs to be taken into consideration

as we convert floating-point codes into fixed-point codes.

 - 84 -

3. Parameters settings and definitions

 To concentrate on dealing with quantization issues purely, channel effects

such as multipath, AWGN noise, Rayleigh fading and so on are all neglected.

Furthermore, the detected constellation of floating-point case is regard as the basis,

where the difference between the output vectors for the original floating-point and

the fixed-point MATLAB code is regarded as error vector, denoted by e.

 e = outdatafloat – outdatafixed (5.1)

We next define an error metric (EM) using the following definition:

EM = norm(e)/norm(outdatafloat)×100 (5.2)

where the vector norm is defined by

1/2
2

() i
i

norm e
⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠∑e (5.3)

After that, we define the following terms that are used in the algorithm

 fl_dt: floating-point detected constellation

 fx_dt: fixed-point detected constellation

 maxi: range of the ith variable

 pi: the ith precision (fraction length)

 mi: the ith integer length (including sign bit)

 qi: the ith quantizer

 wi: the ith hardware resource weighting

 R: total hardware resource requirement

 Additionally, in spite of some special variables, signed fixed-point value with

truncation and wrapping quantization methods are carried out. However, since we

try to operate this quantization algorithm on our MIMO-OFDM system, some

communication characteristics require to be taken into account and therefore the

following quantization settings should be modified:

 IFFT: In order to mitigate PAPR problem, we choose saturation method to

quantize the output signals of IFFT.

 - 85 -

 AD/DA: With limit of the circuit design of AD/DA module, the available

bit-widths is constrained, e.g., ten bits in our system. Moreover, the signals

fed into DA and fed out from AD are limited to unsigned values, therefore

quantization method must be unsigned too. Furthermore, quantization

methods are also constrained, where truncation and wrapping are adopted by

DA; truncation and saturation are adopted by AD.

Here we list all quantizers and their quantization settings in Table 5.1.

Table 5.1: Quantizers and their settings in MIMO-OFDM system

Parameters and QuantizersVariables

qDA = quantizer(‘ufixed’, ‘floor’, ‘wrap’,[mDA+pDA, pDA])DA output data

qph = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mph+pph, pph])Phase estimator output data

qch = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mch+pch, pch])Channel estimator output data

qlnfft = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mlnfft+plnfft, plnfft])Post-FFT long preamble chips

qfft = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mfft+pfft, pfft])FFT output data

qrxRRC = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mrxRRC+prxRRC, prxRRC])RRC output data in receiver

qAD = quantizer(‘ufixed’, ‘floor’, ‘sat’,[mAD+pAD, pAD])AD output data

qRRC = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mRRC+pRRC, pRRC])RRC coefficients

qifft = quantizer(‘fixed’, ‘floor’, ‘sat’,[mifft+pifft, pifft])IFFT output data

Parameters and QuantizersVariables

qDA = quantizer(‘ufixed’, ‘floor’, ‘wrap’,[mDA+pDA, pDA])DA output data

qph = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mph+pph, pph])Phase estimator output data

qch = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mch+pch, pch])Channel estimator output data

qlnfft = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mlnfft+plnfft, plnfft])Post-FFT long preamble chips

qfft = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mfft+pfft, pfft])FFT output data

qrxRRC = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mrxRRC+prxRRC, prxRRC])RRC output data in receiver

qAD = quantizer(‘ufixed’, ‘floor’, ‘sat’,[mAD+pAD, pAD])AD output data

qRRC = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mRRC+pRRC, pRRC])RRC coefficients

qifft = quantizer(‘fixed’, ‘floor’, ‘sat’,[mifft+pifft, pifft])IFFT output data

5.3.2 Determine Hardware Resource Weightings

Hardware resources weightings (wi) can help our proposed algorithm estimating

hardware resources requirement accurately, where it indicates the corresponding

hardware overhead as one additional bit is added. To acquire weighting factors

correctly, designers must know circuit design very well. Otherwise, synthesis tools

such as Synplify Pro or Synopsis is also needed to count corresponding hardware

resources. However, too much hardware resources usage information such as

embedded RAMs, block multipliers, registers, and LUTs is included in a single

synthesis report therefore to define a equivalent weighting factor to represent total

hardware resources usage is very difficult. Based on experimental experience, we find

that the usage of LUTs can represent hardware resource most properly, therefore we

 - 86 -

adopt the usage of LUTs as our hardware resource weighting factor directly in our

quantization algorithm.

There are two ways to get additional usage of LUTs as certain word length of

system is changed: first method is to design and synthesis another system, where there

are only certain word length and corresponding circuits different from original one;

then, comparing the difference between the LUT usage of these two systems, and view

the quotient of this difference and additional bit-widths as weighting factor. Another

method is to find out the influenced circuits such as subsequent data buffers or

calculators when certain word length increase 1 bit, and then synthesize them

respectively. Subsequently, sum up their additional LUTs and regard it as weighting

factor of certain variable.

Obviously, the first method can calculate weighting factor more accurately than

another, however will waste extremely large amount of time on designing and

synthesizing new systems. Therefore method two seems to be much more feasible than

method one thus is adopted in our algorithm.

Here we illustrate the influenced circuit blocks in Figure 5.4 and Figure 5.5, and

show final experimental results in Table 5.2. Notice that our synthesis tool is Synplify

Pro 8.2, and target FPGA is Xilinx Virtex2 series.

clk

data_in

RST

data_out

wen

clk
data_in

RST

data_i_1
data_i_2

data_q_1
data_q_2

wen

mapper
clk
mod_even_i
mod_odd_i
mod_even_q
mod_odd_q
RST

ant1_i
ant1_q
ant2_i

ant2_q
wen

delay_1clk

2222

delay_1clk

22

clk
DI_in
DQ_in
RST

ifft_i_out
ifft_q_out

clk
data_i_in
data_q_in
RST

os_cp

data_i_out
data_q_out

wen

clk
RST

pmb_gen_tx1
pmb_i

pmb_q

sel

w2_i
w2_q

w1_i
w1_q

f_i

f_q

pmb_data_mux
22 10 10

10

10

10

1010

1010

clk
DI_in
DQ_in
RST

ifft_i_out
ifft_q_out

clk
data_i_in
data_q_in
RST

data_i_out
data_q_out

wen

w2_i
w2_q

w1_i
w1_q

f_i

f_q

22 10
10

10

10

10

1010

1010

delay_1clk
delay_90clk

TX1

TX2

clk

data_in

RST
encode

wen

interleaver
STBC(VBLAST)

+pt_ztconv

delay_1clk

IFFT

os_cp pmb_data_muxIFFT

clk
RST

pmb_gen_tx2
pmb_i

pmb_q

sel

: Influenced circuit blocks by qifft

D_in
RST

RRC
RRC_out

D_in
RST RRC_out

D_in
RST

RRC
RRC_out

D_in
RST RRC_out

: Influenced circuit blocks by qRRC

Figure 5.4: Influenced circuit blocks by qifft and qRRC

 - 87 -

RX1

RX2

D_in
RST

rx_rrc

RRC_out

D_in
RST RRC_out

D_in
RST RRC_out

D_in
RST RRC_out

clk
rx1_i_in

rx1_q_in

rx2_i_in

rx1_q_in
RST

frm_str

time_sync

RST
data_i_in
data_q_in
clk

rm_os+rm_cp

data_i_out
data_q_out

wen

clk
DI_in
DQ_in
RST

FFT

ifft_i_out
ifft_q_out

clk
data_i_in
data_q_in
RST

mv_pt_zt
data_even_i_out

data_even_q_out
data_odd_i_out

data_odd_q_out
wen

10

10

11

11 14

RST
data_i_in
data_q_in
clk

rm_os+rm_cp

data_i_out
data_q_out

wen

clk
DI_in
DQ_in
RST

FFT

ifft_i_out
ifft_q_out

clk
data_i_in
data_q_in
RST

mv_pt_zt
11 14

14

11

11

delay_90clk

data_delay_43clk

data_even_i_out
data_even_q_out

data_odd_i_out
data_odd_q_out

wen

14

rx1_data_even_i
rx1_data_even_q
rx1_data_odd_i
rx1_data_odd_q
rx2_data_even_i
rx2_data_even_q
rx2_data_odd_i
rx2_data_odd_q

rst

ch_est
H11_i

H11_q
H21_i

H21_q
H12_i

H12_q
H22_i

H22_q

ph_est
rx1_phi_even_i

rx1_phi_even_q
rx1_phi_odd_i

rx1_phi_odd_q
rx2_phi_even_i

rx2_phi_even_q
rx2_phi_odd_i

rx2_phi_odd_q

H11_i
H11_q
H21_i
H21_q
H12_i
H12_q
H22_i
H22_q
rx1_data_even_i
rx1_data_even_q
rx1_data_odd_i
rx1_data_odd_q
rx2_data_even_i
rx2_data_even_q
rx2_data_odd_i
rx2_data_odd_q
rst

14

12

14

12

lnpmb_fft_rom

data_delay_22clk

delay_53clk

delay_4clk

de_map data_in

rst

data_out

wen rst

data_in
data_out

wen

de_leav viterbi
decoder

: Influenced circuit blocks by qrxRRC

: Influenced circuit blocks by qfft

: Influenced circuit blocks by qlnfft

: Influenced circuit blocks by qch

: Influenced circuit blocks by qph

z1_even_i
z1_even_q
z1_odd_i
z1_odd_q

z2_even_i
z2_even_q
z2_odd_i
z2_odd_q

H phirst

wen

de_STBC
(VBLAST)
de_map

: Influenced circuit blocks by qRRC

Figure 5.5: Influenced circuit blocks by qRRC, qrxRRC, qfft, qlnpmb, qch and qph

Table 5.2: Experimental results of hardware resource weightings

wph

wch

wlnfft

wfft

wrxRRC

wRRC

wifft

Parameter Experimental ResultsVariables

35Phase estimator output data

184Channel estimator output data

416Post-FFT long preamble chips

20FFT output data

240RRC output data in receiver

20RRC coefficients

402IFFT output data

wph

wch

wlnfft

wfft

wrxRRC

wRRC

wifft

Parameter Experimental ResultsVariables

35Phase estimator output data

184Channel estimator output data

416Post-FFT long preamble chips

20FFT output data

240RRC output data in receiver

20RRC coefficients

402IFFT output data

5.3.3 Determine Integer Lengths

The determined integer lengths must be able to cover all possible maximum and

minimum signed values of variables, that is, avoid overflow efficiently. To achieve this

 - 88 -

goal, the usage of training sets is necessary. The more training sequences we test, the

more reliable variables ranges we obtained. In communication system, we train the

system and obtain the ranges of variables by generating various source data sets.

 First, floating-point MATLAB code are executed, and then we obtain

floating-point detected constellation fl_dt and ranges of every variables maxi, where

() ()()=max max ,i i iabs Max abs Min (5.4)

Next, by using the information of maxi, we can easily determine the integer length mi

by the following equation:

mi = floor(log2(maxi))+2 (5.5)

where one additional bit is used to represent sign bit.

 Our experimental results of integer lengths are shown as follows.

Table 5.3: Experimental results of integer lengths

mph

mch

mlnfft

mfft

mrxRRC

mRRC

mifft

Parameter Experimental ResultsVariables

6Phase estimator output data

1Channel estimator output data

8Post-FFT long preamble chips

7FFT output data

7RRC output data in receiver

2RRC coefficients

5IFFT output data

mph

mch

mlnfft

mfft

mrxRRC

mRRC

mifft

Parameter Experimental ResultsVariables

6Phase estimator output data

1Channel estimator output data

8Post-FFT long preamble chips

7FFT output data

7RRC output data in receiver

2RRC coefficients

5IFFT output data

5.3.4 Determine Fraction Lengths

Since the integer word lengths are already decided and all variables are able to be

covered by corresponding ranges, the rest of work is to decide the precision, that is, the

fraction word lengths of every variable. To do so, we propose two modification

methods, e.g., coarse modification and fine modification. Both of these two methods

are able to find out a set of fraction lengths that can constrain quantization error within

target error metric (EMtarget) with minimized hardware resources usage. Coarse

modification only roughly scales down all fraction lengths from a maximum precision

 - 89 -

simultaneously to match the proposed EMtarget without consideration to hardware

resource weighting. On the other hand, fine modification scales fraction lengths each

by each and calculates corresponding error metrics, and eventually finds out a set of

fraction lengths, which system error metric is smaller than EMtarget and can minimize

the hardware resources with consideration to resource weightings. Usually, we run

coarse modification first, and then set up the scaling ranges of variables in fine

modification based on the results available in coarse modification. In the following

sections, the ideas of these two methods will be detailed explained.

5.3.4.1 Coarse Modification

The purpose of coarse modification is to find out a set of fraction lengths which

can be regarded as the reference when we deal with fine modification. First at all, the

target error metric (EMtarget) is decided, which is chosen to be 1, 5, and 10 in our

experiment. Then, we start coarse modification, which criterion is to find out a set of

minimum identical fraction lengths that corresponding error metric (EMcoarse) is smaller

than the target error metric.

∀ = ≤ arg, , min subject to coarse t etii p p p EM EM (5.6)

 STEP 1: For all is, set fraction lengths (pi) to be maximum precision (pmax),

say 20 bits, in our experiment.

 STEP 2: Run fixed-point MATLAB code, and then obtain fixed-point

detected constellation (fx_dt).

 STEP 3: Calculate coarse error metric (EMcoarse) by comparing floating-point

detected constellation (fl_dt) with fixed-point constellation (fx_dt).

 STEP 4: If EMcoarse < EMtarget, for all is, set pi = pi -1, and then redo step 2~4.

 STEP 5: If EMcoarse > EMtarget, stop coarse modification.

Table 5.4 shows experimental results of fraction lengths available in coarse

modification.

 - 90 -

Table 5.4: Experimental results of coarse modification

9.834.75530.953EMcoarse_STBC

6710pph

153141661620522R

6710pch

6710plnfft

6710pfft

6710prxRRC

6710pRRC

6710pifft

9.9184.65610.9871EMcoarse_VBLAST

1051EMtarget

Coarse modification

9.834.75530.953EMcoarse_STBC

6710pph

153141661620522R

6710pch

6710plnfft

6710pfft

6710prxRRC

6710pRRC

6710pifft

9.9184.65610.9871EMcoarse_VBLAST

1051EMtarget

Coarse modification

5.3.4.2 Fine Modification

In fine modification, we attempt to take the hardware resource weighting (wi) into

consideration, and minimize the total hardware resource requirement (R). As shown in

Eq. 5.7, we regard the product of the total word length (mi+pi) and the weighting

factor (wi) as the total hardware resource requirement.

()= + ×∑ ()i i i
i

R m p w (5.7)

The criterion of fine modification is shown as follows, where a set of fraction

length which can minimize hardware resource requirement R and ensure the result

error metric EMfine being smaller than the target error metric EMtarget is found.

()+ × ≤∑
144424443

argargmin () subject to
i

t eti i i fine
p i

R

m p w EM EM (5.8)

 STEP 1: Start from the result fraction length (pi) of coarse modification.

 STEP 2: Decide proper precision variances of these variables.

 STEP 3: Run fixed-point MATLAB code through these precision ranges, and

then obtain fine error metric (EMfine) and the total resource requirement (R).

 STEP 4: Find out a minimum R which satisfies EMfine < EMtarget.

 - 91 -

Eventually, we can obtain final fraction lengths shown in Table 5.5. Notice that

setting proper precision ranges is empirical, and it becomes more time-consuming

however is able to reach global minimum of R more accurately as ranges are wider.

The principle of setting ranges is giving the variables with larger wis wider ranges, and

giving the variables with smaller wis narrower ones.

Table 5.5: Experimental results of fine modification

8.75684.17910.94021EMfine_STBC

92681033813808R

226pph

6811pch

002plnfft

447pfft

014prxRRC

71011pRRC

125pifft

9.6264.4960.9622EMfine_VBLAST

1051EMtarget

Fine modification

8.75684.17910.94021EMfine_STBC

92681033813808R

226pph

6811pch

002plnfft

447pfft

014prxRRC

71011pRRC

125pifft

9.6264.4960.9622EMfine_VBLAST

1051EMtarget

Fine modification

5.4 Simulation Results

Figure 5.6 shows the STBC and VBLAST detected constellations under

floating-point case, where no channel effects are involved.

Figure 5.6: Detected constellation under floating-point case

 - 92 -

Figure 5.7~5.9 show the other fixed-point detected constellations under different

EMtargets.

Figure 5.7: Detected constellation under EMtarget = 1

Figure 5.8: Detected constellation under EMtarget = 5

Figure 5.9: Detected constellation under EMtarget = 10

 - 93 -

Comparing with the above figures, it can be clearly observed that the quantization

error does affect the detected constellations for both STBC and VBLAST cases. The

constellations spread out more severely from the original four points in floating-point

case as EMtarget increases, which will cause detection error as channel effects are taken

into consideration. To verify the effects of quantization error to system performance,

we illustrate a BER to SNR plot under different EMtargets in Figure 5.10, where all

system settings remain the same to floating-point case except the fixed-point value

variables are carried out instead of the floating-point values. Notice that saturation is

performed in IFFT output values and all the other quantizers follow Table 5.1.

Figure 5.10: System performance under different EMs as qifft uses saturation

We can easily observe that for both STBC and VBLAST cases, the curves drift to

right-upper side when the number of EM increases. It indicates that system performs

worse as the level of quantization error increases. Furthermore, we can also observe

that in low SNR, channel noise dominates the system performance, therefore the

differences between EMs are not obvious. On the other hand, in high SNR, the

quantization error noise dominates the system performance, therefore the gap between

different EMs becomes bigger and bigger.

Additionally, in order to emphasize the importance of adopting saturation method

to fight PAPR problem in IFFT, we perform another case in Figure 5.11, where original

IFFT quantizer “q
ifft

=quantizer(‘fixed’, ‘floor’, ‘sat’,[m
ifft

+p
ifft

, p
ifft

]” shown in Table

 - 94 -

5.1 is changed to be “q
ifft

=quantizer(‘fixed’, ‘floor’, ‘wrap’,[m
ifft

+p
ifft

, p
ifft

]”. That is,

wrapping is applied instead of saturation. Clearly, both curves in Figure 5.11 drift to

right-upper side much more severely comparing with Figure 5.10, and BER is

saturated to about 10-5 as SNR increases. The reason is that wrapping is probable to let

an extremely large positive value be a negative value or vise versa, which will cause

severe quantization error comparing with saturation; that is why we intensively

recommend using saturation instead of wrapping when dealing with PAPR problem in

IFFT output data.

Figure 5.11: System performance under different EMs as qifft uses wrapping

Finally, total word lengths of variables and error metrics and hardware resource

requirements under different EMtargets are categorized in Table 5.6. We can detect a

trend from this table: additional 1070 LUTs are required as error metric is improved

form 10 to 5, however more additional 3470 LUTs are required as error metric is

improved form 5 to 1. That is, to achieve a zero quantization error system, the increase

of additional hardware resource requirement will grow exponentially.

 - 95 -

Table 5.6: Experimental results of final word lengths and EMs

8.7564.17910.9402EMfine_STBC

92681033813808R

8812mph+pph

7912mch+pch

8810mlnfft+plnfft

111114mfft+pfft

7811mrxRRC+prxRRC

91213mRRC+pRRC

6710mifft+pifft

9.6264.4960.9622EMfine_VBLAST

1051EMtarget

8.7564.17910.9402EMfine_STBC

92681033813808R

8812mph+pph

7912mch+pch

8810mlnfft+plnfft

111114mfft+pfft

7811mrxRRC+prxRRC

91213mRRC+pRRC

6710mifft+pifft

9.6264.4960.9622EMfine_VBLAST

1051EMtarget

5.5 Summary

Since most practical FPGA designs are limited to finite precision signal

processing using fixed-point arithmetic because of the cost and complexity of

floating-point hardware, a systematical quantization algorithm is important for

designers to map original floating-point code into fixed-point code. This chapter

describes how the floating-point arithmetic in MATLAB are converted into fixed-point

of specific precision for hardware design based on profiling the inputs, intermediate,

and output signals. Especially, the idea of hardware resource weighting is inserted and

the characteristics of communication system are also considered. Experimental results

including integer lengths, fraction length, and total resource requirements under error

metric equals 1, 5, and 10 are reported, and fixed-point system BER to SNR

performances are also illustrated in this chapter.

 - 96 -

Chapter 6

Conclusion

In future wireless communication systems, the demand of higher throughput and

higher link quality is urgently called for, since various multimedia or home

applications will be provided and thus reliable and affordable technologies are required

to realize those contents. Coupled with a robust and efficient OFDM air interface,

MIMO technologies can lead to a very attractive high-speed data transmission solution

for future wireless systems. Recent years, researches on the topic of MIMO-OFDM

system have been exploited greatly, and the MIMO-OFDM based standard, IEEE

802.11n, is just on the stage of competition for two proposals from TGn Sync and

WWiSE, respectively. This encourages us to build up a hardware system based on

MIMO-OFDM instead of the theoretical analysis only.

This thesis had described the signal processing concepts and algorithms of a 2×2

MIMO-OFDM system in physical layer, including STBC and VBLAST MIMO

techniques. Furthermore, two FPGA based platforms are adopted to implement our 2×2

MIMO-OFDM system, e.g., fast prototyping platform and self-designed platform. In

the fast prototyping platform, three FPGA modules, one DSP chip, and one USB

module are installed; on the other hand, four FPGA modules, USB interface, and RF

modules are equipped in the self-designed platform. A complete dataflow including

software application interface, web camera, USB transmission, and baseband

algorithms on DSP and FPGA are constructed in the fast prototyping platform; whereas

a real wireless communication environment containing RF mismatch, multipath effects,

and so on are generated through real indoor experimental environment and RF modules

 - 97 -

on the self-designed platform. Finally, due to the complexity and time-consuming

procedure of floating-point to fixed-point conversion, we have proposed a systematical

quantization algorithm which can not only minimize the hardware resource

requirement but also constrain quantization error within a specified limit.

To summarize, hardware implementation is highly complicated. Therefore, the

avalailability of MATLAB simulation, proper quantization algorithms, useful HDL

simulation software, and powerful debugging tools becomes especially significant.

Nevertheless, some future works still remain. For example, higher modulation order

such as 16QAM, 64 QAM and so on can be realized; furthermore, total power

consuming issues ought to be taken into consideration, too. Finally, although there is a

lot of room for improvment, we believe that the MIMO-OFDM system implemented

on the FPGA-based platform we proposed is still highly advanced nowadays.

 - 98 -

Bibliography

[1] H. Yang, “A road to future broadband wireless access: MIMO-OFDM-based air
interface,” Bell Labs Syst. Tech. J., vol. 1, pp. 41-59, Autumn 1996.

[2] S. M. Alamouti, “A simple transmit diversity technique for wireless
communication,” IEEE JSAC, vol. 16, no. 8, pp. 1451–1458, Oct. 1998.

[3] G. J. Foschini, “Layered space-time architecture for wireless communication in a
fading environment when using multiple antennas,” Bell Labs Syst. Tech. J., vol. 1,
pp. 41-59, Autumn 1996.

[4] P. W. Wolnainsky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, "Detection
algorithm and initial laboratory results using V-BLAST space-time
communication architecture," Electronics Letters, vol. 35, pp. 14-16, Jan. 1999.

[5] R. van Nee and R. Prasad, OFDM for wireless multimedia communications,
Boston: Artech House, 2000.

[6] R. D. Murch and K. B. Letaief, “Antenna systems for broadband wireless access,”
IEEE Commun. Mag., vol. 40, pp. 76–83, Apr. 2002.

[7] G.. G.. Raleigh and J. M. Cioffi, “Spatio–temporal coding for wireless
communications,” IEEE Trans. Commun., vol. 46, pp. 357–366, Mar. 1998.

[8] P. Vandenameele, L. V. D. Perre, M. G. E. Engels, and H. J. D. Man, “A combined
OFDM/SDMA approach,” IEEE J. Sel. Areas Commun., vol. 18, pp. 2312–2321,
Nov. 2000.

[9] J. Kim and J. Cioffi, “Spatial multiuser access with antenna diversity using
singular value decomposition,” in Proc. IEEE ICC, vol. 3, pp. 1253–1257 2000.

[10] “Wireless LAN medium access control (MAC) and physical layer (PHY)
specifications: High-speed physical layer in the 5 GHZ Band,” IEEE Std. 802.11a,
Sept. 1999.

[11] A. van Zelst and T.C.W. Schenk, “Implementation of a MIMO OFDM-based
wireless LAN system,” IEEE Trans. Signal Processing, vol. 52, Issue 2, pp. 483 –
494, Feb. 2004.

 - 99 -

[12] A. N. Mody and G. L. Stüber, “Synchronization for MIMO OFDM systems,” in
Proc. IEEE Global Commun. Conf., vol. 1, pp. 509–513, Nov. 2001.

[13] Y. Hara and Y. Kamio, “Initial synchronization techniques for antenna arrays in
the presence of interference signals,” IEEE Conf. Vehicular Technology, vol. 4, pp.
1953-1957, Sept. 2002.

[14] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data
rate wireless communication: Performance criterion and code construction,” IEEE
Trans. Inform Theory, vol. 44, pp. 744–756, Mar. 1998.

[15] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading
environment when using multiple antennas,” Wireless Pers. Commun., vol. 6, no.
3, pp. 311–335, Mar. 1998.

[16] A. van Zelst, “Space division multiplexing algorithms,” in Proc. 10th
Mediterranean Electrotech. Conf., vol. 3, 2000, pp. 1218–1221.

[17] M. Sellathurai and S. Haykin, “A nonlinear iterative beamforming technique for
wireless communications,” in 33rd Asilomar Conf. on Signals, Syst., and Comput.,
vol. 2, pp. 957–961, Pacific Grove, CA, Oct. 1999.

[18] D. Lashin and B. Cisneros, “System explorer MP3C reference guide,” Aptix Inc.,
August 1999.

[19] J. Bhasker, A VHDL Primer, Englewood Cliffs, NJ: Prentice-Hall, 1998.

[20] 林傳生，使用VHDL電路設計語言之數位電路設計，儒林，2000.

[21] 國家晶片系統設計中心, Xilinx (PC), July 2004.

[22] 國家晶片系統設計中心, VHDL, July 2004.

[23] 鄭信源，Verilog硬體描述語言數位電路設計實務，儒林，2000.

[24] Taxes Instrument, “Code composer studio getting started guide,” spru509, May
2001.

[25] Cypress Semiconductor Corporation, “CY768013 / EZ-USB FX2 USB micro-
controller / High-speed USB peripheral controller,” June 2002.

[26] L.B. Jackson, “On the interaction of roundoff noise and dynamic range in digital
filters,” Bell System Technical J., pp. 159-183, Feb. 1970.

[27] A.V. Oppenheim, R.W. Schafer, and J.R. Buck, Discrete-Time Signal Processing,
second ed. Prentice Hall, 1999.

 - 100 -

[28] K.H. Chang and W.G. Bliss, “Finite word-length effects of pipelined recursive
digital filters,” IEEE Trans. Signal Processing, vol. 42, no. 8, pp. 1983-1995, Aug.
1994.

[29] L.B. Jackson, K.H. Chang, and W.G. Bliss, “Comments on ’Finite word-length
effects of pipelined recursive digital filters,” IEEE Trans. Signal Processing, vol.
43, no. 12, pp. 3031-3032, Dec. 1995.

[30] R.M. Gray and D.L. Neuhoff, “Quantization,” IEEE Trans. Information Theory,
vol. 44, no. 6, pp. 2325-2383, Oct. 1998.

[31] C. Shi, “Statistical method for floating-point to fixed-point conversion,” MS thesis,
Electrical Eng. and Computer Science Dept., Univ. of California, Berkeley, 2002.

[32] W. Sung and K.I. Kum, “Simulation-based word-length optimization method for
fixed-point digital signal processing systems,” IEEE Trans. Signal Processing, vol.
43, no. 12, Dec. 1995.

[33] S. Kim and W. Sung, “Fixed-point error analysis and wordlength optimization of a
distributed arithmetic based 8X8 2D-IDCT architecture,” Proc. Workshop VLSI
Signal Processing, IX, pp. 398-407, 1996.

[34] H. Keding, M. Willems, M. Coors, and H. Meyr, “FRIDGE: A fixed-point design
and simulation environment,” Proc. Design, Automation, and Test in Europe, pp.
429-435, 1998.

[35] S. Roy, and P. Banerjee, “An algorithm for trading off quantization error with
hardware resources for MATLAB-based FPGA design,” IEEE Trans. Computers,
vol. 54, Issue 7, pp. 886 – 896, July. 2005.

