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具最佳硬體資源利用之 MIMO-OFDM 系統 

之 FPGA 之實現 

 

學生：陳彥宇        指導教授：李大嵩 博士 

 

國立交通大學電信工程學系碩士班 

 

摘要 

 

正交分頻多工(OFDM)技術在新一代無線通訊系統佔有相當關鍵性的地位，

它可提供高速數據傳輸，且適合操作在多重路徑所引起之頻率選擇性通道下;另一

方面，多輸入多輸出(MIMO)技術可提升傳輸率及鏈路品質。因此，在新一代通訊

系統中，MIMO-OFDM 將成為極具有潛力之關鍵技術之一。在本論文中，吾人將

使用快速雛形發展平台 Aptix® MP3C，以及自行研發之平台，實現一 2×2 

MIMO-OFDM 系統，其中基頻演算法部分將實現於平台之 FPGA 模組。在此系統

中，吾人採用了兩種不同之時空演算法，分別為 STBC 及 VBLAST。其餘演算法

包括通道估計器，相位追蹤器，迴旋碼解碼器等，也將完整的實現於系統中。此

外，吾人更進一步提出一套有系統的量化演算法，能在浮點數轉定點數時有效的

壓抑量化誤差(quantization error)，並且同時最佳化所需之硬體資源利用。 
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FPGA Realization of a MIMO-OFDM System with 

Optimized Hardware Resource Utilization 
 

Student: Yen-Yu Chen     Advisor: Dr. Ta-Sung Lee 
 

Department of Communication Engineering 

National Chiao Tung University 
 

Abstract 

 

In recent years, orthogonal frequency division multiplexing (OFDM) becomes a 

key technology in the development of new wireless communication systems, enabling 

high data rate transmission, and is suitable for frequency selective channels caused by 

multipath propagation. On the other hand, multiple-input multiple-output (MIMO) 

technique has a great potential of delivering either a dramatic increase of throughput or 

improvement of link quality. Combined with the MIMO technique, OFDM systems 

become more suited to next generation wireless communications. In this thesis, we 

propose a total solution for building up a 2×2 MIMO-OFDM system on two 

FPGA-based platforms: a fast prototyping platform Aptix® MP3CF and a self-designed 

platform. There are two space-time algorithms adopted in our system, including 

Space-Time Block Coding (STBC) and Vertical Bell Labs Layered Space-Time 

(VBLAST). Furthermore, since fixed-point computation is adopted in our system due 

to the cost and complexity of floating-point hardware, we also propose a quantization 

algorithm which can not only minimize the hardware resource requirement but also 

constrain the quantization error within a specified limit when converting floating-point 

arithmetic to fixed-point arithmetic. 



 

 - III - 

Acknowledgement 

 

First, I am very grateful to my advisor, Dr. Ta-Sung Lee, for his enthusiastic 

guidance and great patience, especially the training of oral presentation and being 

earnest in our works. Then I would also thanks to Chung-Ta Ku, Po-Tien Lee, and Dr. 

Juinn-Horng Deng who spend lots of time for my consultation. Special thanks to Jeff 

Tsai for the technical support on the circuit design of self-designed platform. Heartfelt 

thanks are also offered to all members in the Communication Signal Processing and 

System Design (CSPSD) Lab for their constant encouragement and help. 

Finally, I would like to express my deepest gratitude to my family for their 

endless love, especially my mom for her tender encouragement, and my dad as a 

constant reminder of health. 



 

 - IV - 

 

Contents 
 

Chinese Abstract............................................................................I 

English Abstract .......................................................................... II 

Acknowledgement...................................................................... III 

Contents...................................................................................... IV 

List of Figures ......................................................................... VIII 

List of Tables ..............................................................................XI 

Acronym Glossary.....................................................................XII 

1 Introduction ............................................................................... 1 

2 MIMO-OFDM Baseband Transceiver Architecture .................. 4 

2.1 Overview of MIMO-OFDM System ..................................................................... 4 

2.2 Transmitter Architecture ........................................................................................ 6 

2.2.1 Convolutional Encoder ................................................................................... 7 

2.2.2 Interleaver / De-interleaver............................................................................. 8 

2.2.3 Mapper / De-mapper....................................................................................... 9 

2.2.4 Preamble Channel and Frame Structure ......................................................... 9 

2.2.5 Root Raised Cosine Filter ............................................................................. 10 

2.3 Receiver Architecture .......................................................................................... 11 

2.3.1 Timing Synchronizer..................................................................................... 12 



 

 - V - 

2.3.2 Frequency Synchronizer ............................................................................... 12 

2.3.3 Channel Estimator......................................................................................... 13 

2.3.4 Phase Estimator............................................................................................. 14 

2.3.5 Viterbi Decoder............................................................................................. 15 

2.4 MIMO Techniques ............................................................................................... 18 

2.4.1 Spatial Diversity Technique.......................................................................... 18 

2.4.2 Spatial Multiplexing Technique.................................................................... 20 

2.5 Summary.............................................................................................................. 22 

3 MIMO-OFDM System Platforms............................................ 23 

3.1 Fast Prototyping Platform.................................................................................... 23 

3.1.1 Aptix® System Explorer............................................................................... 24 

3.1.2 FPGA Module ............................................................................................... 28 

3.1.2.1 FPGA Overview.............................................................................................................................. 28 

3.1.2.2 FPGA Design Flow ......................................................................................................................... 29 

3.1.3 ‘C6701 DSP EVM ........................................................................................ 31 

3.1.3.1 TMS320C6701 DSP Overview ....................................................................................................... 32 

3.1.3.2 DSP Design Flow............................................................................................................................ 34 

3.1.4 USB 2.0 Module ........................................................................................... 35 

3.1.5 AD and DA Modules..................................................................................... 36 

3.1.6 Debugging Tools ........................................................................................... 37 

3.2 Self-designed Platform ........................................................................................ 38 

3.2.1 RF Module .................................................................................................... 39 

3.2.2 AD and DA Modules..................................................................................... 40 

3.2.3 MAC/BB Platform........................................................................................ 42 

3.2.4 USB Interface ............................................................................................... 42 



 

 - VI - 

3.2.5 Debugging Tools ........................................................................................... 43 

3.3 Summary.............................................................................................................. 45 

4 MIMO-OFDM System Realization......................................... 46 

4.1 Design Flow......................................................................................................... 46 

4.2 MATLAB Verification ......................................................................................... 47 

4.2.1 Floating-Point Verification ........................................................................... 48 

4.2.2 Fixed-Point Verification................................................................................ 51 

4.3 FPGA Realization ................................................................................................ 53 

4.3.1 Design Principles .......................................................................................... 53 

4.3.2 Circuit Design ............................................................................................... 55 

4.3.2.1 Circuit Design of Transmitter ................................................................ 55 

4.3.2.2 Circuit Design of Receiver .................................................................... 62 

4.4 ModelSim simulation........................................................................................... 71 

4.5 Experimental Results ........................................................................................... 72 

4.5.1 Fast Prototyping Platform............................................................................. 73 

4.5.2 Self-designed Platform ................................................................................. 74 

4.6 Summary.............................................................................................................. 76 

5 Proposed Quantization Algorithm with Minimum Hardware 

Requirement ............................................................................ 77 

5.1 Introduction of Quantization................................................................................ 78 

5.2 Previous work ...................................................................................................... 80 

5.3 Proposed Quantization Algorithm ....................................................................... 81 

5.3.1 Pre-quantization Works................................................................................. 81 

5.3.2 Determine Hardware Resource Weightings.................................................. 85 

5.3.3 Determine Integer Lengths ........................................................................... 87 



 

 - VII - 

5.3.4 Determine Fraction Lengths ......................................................................... 88 

5.3.4.1 Coarse Modification........................................................................................................................ 89 

5.3.4.2 Fine Modification............................................................................................................................ 90 

5.4 Simulation Results ............................................................................................... 91 

5.5 Summary.............................................................................................................. 95 

6 Conclusion............................................................................... 96 

 

Bibliography............................................................................... 98 



 

 - VIII - 

 

List of Figures 
 

Figure 2.1: (a) Conventional multicarrier technique (b) Orthogonal multicarrier 

modulation technique................................................................................... 6 

Figure 2.2: Transmitter architecture of MIMO-OFDM system....................................... 7 

Figure 2.3: Convolutional encoder with code rate 1/3 and constraint length 5 ............... 7 

Figure 2.4: Interleaver and de-interleaver schemes ......................................................... 8 

Figure 2.5: QPSK, 16-QAM, and 64-QAM constellations.............................................. 9 

Figure 2.6: Training sequence and frame structure of IEEE 802.11a standard ............. 10 

Figure 2.7: Receiver architecture of MIMO-OFDM system ......................................... 11 

Figure 2.8: Trellis diagram part 1 .................................................................................. 17 

Figure 2.9: Trellis diagram part 2 .................................................................................. 17 
 

Figure 3.1: Development environment of fast prototyping system ............................... 24 

Figure 3.2: Modules installed on Aptix MP3CF platform............................................. 24 

Figure 3.3: Aptix® MP3CF platform.............................................................................. 25 

Figure 3.4: Explorer flow............................................................................................... 26 

Figure 3.5: FPGA design flow ....................................................................................... 30 

Figure 3.6: ‘C6701 DSP EVM....................................................................................... 32 

Figure 3.7: Architecture of ‘C6701 DSP EVM.............................................................. 33 

Figure 3.8: USB 2.0 module .......................................................................................... 35 

Figure 3.9: USB 2.0 module and its neighborhood ....................................................... 35 

Figure 3.10: AD and DA modules on fast prototyping platform ................................... 36 

Figure 3.11: Development environment of self-designed platform............................... 38 

Figure 3.12: Main board of self-designed platform....................................................... 39 

Figure 3.13: RF module on self-designed platform....................................................... 40 

Figure 3.14: Measured carrier spectrum form RF module ............................................ 40 

Figure 3.15: AD/DA module on self-designed platform................................................ 41 



 

 - IX - 

Figure 3.16: Measured data waveform from AD/DA module ....................................... 42 

Figure 3.17: MAC/BB platform..................................................................................... 42 

Figure 3.18: USB module on self-designed platform.................................................... 43 

Figure 3.19: Spectrum analyzer block diagram............................................................. 44 

Figure 3.20: Vector signal analyzer block diagram ....................................................... 44 
 

Figure 4.1: FPGA design flow ....................................................................................... 47 

Figure 4.2: Impulse and frequency response of RRC filter with β=0.22 ...................... 48 

Figure 4.3: (a) Original waveform (b) RRC shaped waveform on transmitter (c) RRC 

shaped waveform on receiver .................................................................... 49 

Figure 4.4: Eye diagram of RRC shaped waveform...................................................... 49 

Figure 4.5: Coarse timing synchronization output......................................................... 50 

Figure 4.6: Real and estimated channel frequency response ......................................... 50 

Figure 4.7: Floating-point system performance............................................................. 51 

Figure 4.8: Fixed-point system performance................................................................. 52 

Figure 4.9: Circuit design of transmitter........................................................................ 55 

Figure 4.10: Circuit design of convolutional encoder ................................................... 56 

Figure 4.11: Circuit design of interleaver ...................................................................... 57 

Figure 4.12: Circuit design of mapper ........................................................................... 58 

Figure 4.13: Circuit design of STBC encoder with pilot zero tones adder.................... 58 

Figure 4.14: Circuit design of de-multiplexer with pilot zero tones adder.................... 59 

Figure 4.15: Circuit design of fast Fourier transform.................................................... 60 

Figure 4.16: Circuit design of oversampler and CP adder............................................. 60 

Figure 4.17: Circuit design of first and second preamble stream generators ................ 61 

Figure 4.18: Circuit design of RRC filter ...................................................................... 61 

Figure 4.19: Circuit design of receiver side................................................................... 62 

Figure 4.20: Circuit design of timing synchronizer....................................................... 63 

Figure 4.21: Circuit design of oversample and CP remover.......................................... 63 

Figure 4.22: Circuit design of pilot zero tone mover..................................................... 64 

Figure 4.23: Circuit design of channel estimator........................................................... 65 

Figure 4.24: Circuit design of phase estimator .............................................................. 65 



 

 - X - 

Figure 4.25: Circuit design of STBC decoder ............................................................... 66 

Figure 4.26: Original real number calculating strategy in VBLAST............................. 67 

Figure 4.27: Modified real number calculating strategy in VBLAST........................... 68 

Figure 4.28: Circuit design of VBLAST detector.......................................................... 68 

Figure 4.29: Circuit design of Viterbi decoder .............................................................. 69 

Figure 4.30: Circuit design of branch metric generator................................................. 69 

Figure 4.31: Circuit design of add, compare, and select block...................................... 70 

Figure 4.32: STBC ModelSim simulation result ........................................................... 71 

Figure 4.33: VBLAST ModelSim simulation result...................................................... 71 

Figure 4.34: Transmitted waveform of MIMO-OFDM system..................................... 72 

Figure 4.35: Prototyping platform experimental result ................................................. 73 

Figure 4.36: Self-designed platform development environment ................................... 74 

Figure 4.37: Self-designed platform experimental result: received spectrum and 

waveforms on PSA and VSA..................................................................... 75 

Figure 4.38: Self-designed platform experimental result: timing synchronization 

waveform on LA.......................................................................................................... 75 

Figure 4.39: Self-designed platform experimental result: source data and detected data 

waveform on LA.......................................................................................................... 76 
 

Figure 5.1: Quantization example 1: truncation and rounding ...................................... 78 

Figure 5.2: Quantization example 2: saturation and wrapping...................................... 79 

Figure 5.3: Data flow paths and distribution of quantization-related blocks  and 

quantization-irrelevant blocks in MIMO-OFDM system .......................... 83 

Figure 5.4: Influenced circuit blocks by qifft and qRRC.................................................... 86 

Figure 5.5: Influenced circuit blocks by qRRC, qrxRRC, qfft, qlnpmb, qch and qph ................... 87 

Figure 5.6: Detected constellation under floating-point case ........................................ 91 

Figure 5.7: Detected constellation under EMtarget = 1.................................................... 92 

Figure 5.8: Detected constellation under EMtarget = 5.................................................... 92 

Figure 5.9: Detected constellation under EMtarget = 10.................................................. 92 

Figure 5.10: System performance under different EMs as qifft uses saturation.............. 93 

Figure 5.11: System performance under different EMs as qifft uses wrapping............... 94 



 

 - XI - 

 

List of Tables 
 

Table 2.1: Specification of MIMO-OFDM baseband transceiver ................................... 6 

Table 2.2: State transition table...................................................................................... 16 

Table 4.1: Word lengths under different EMs................................................................ 52 

Table 4.2: Synthesis and P&R information.................................................................... 72 

Table 5.1: Quantizers and their settings in MIMO-OFDM system ............................... 85 

Table 5.2: Experimental results of hardware resource weightings ................................ 87 

Table 5.3: Experimental results of integer lengths......................................................... 88 

Table 5.4: Experimental results of coarse modification................................................. 90 

Table 5.5: Experimental results of fine modification..................................................... 91 

Table 5.6: Experimental results of final word lengths and EMs ................................... 95 

 



 

 - XII - 

 

Acronym Glossary 
 

4G the fourth generation 

ACS add, compare, and select 

AD analog to digital converter 

AMPS advanced mobile phone services 

ASIC application specific integrated circuit 

AWGN additive white Gaussian noise 

BER bit error rate 

BMG branch metric generator 

BPF bandpass filter 

BPSK binary phase shift keying 

CCS code composer studio 

CDMA code division multiple access 

CP cyclic prefix 

CPLD complex programmable logic device 

CPU central processing unit 

DA digital to analog converter 

DAB digital audio brocasting 

D-AMPS digital AMPS 

DBLAST diagonal Bell laboratory layered space-time 

DFT discrete Fourier transform 

DSP digital signal processor 

DVB-T terrestrial digital video broadcasting 

EDA electronic desing automation 

EDIF electronic design interface format 

EM error metric 



 

 - XIII - 

EVM evaluation module 

FDA filter design and analysis 

FFT fast Fourier transform 

FIFO first in, first out 

FIR finite impulse response 

FPCB field programmable circuit board 

FPGA field programmable gate array 

FPIC field programmable interconnect component 

FSM finite state machine 

GSM global system for mobile communications 

HDL hardware description language 

I/O input/output 

ICI inter-carrier interference 

IDE integrated development encironment 

IEEE institute of electrical and electronics engineers 

IF intermediate frequency 

ISI inter-symbol interference 

JTAG joint test action group 

LA logic analyzer 

LUT look up table 

MF match filter 

MFLOPS mega floating-point operations per second 

MIMO multiple-input multiple-output 

MMSE minimum mean square error 

OBW occupied bandwidth 

OFDM orthogonal frequency division multiplexing 

OTP one time programmable 

PC personal computer 

PIC parallel interference cancellation 

PLD programmable logic device 

PLL phase-locked loop 



 

 - XIV - 

QAM quadrature amplitude modulation 

QoS quality of service 

QPSK quaternary phase shift keying 

RAM random access memory 

RBW resolution bandwidth 

ROM read-only memory 

RRC root raised cosine 

RTL register transfer level 

SBSRAM synchronous burst SRAM 

SIC successive interference cancellation 

SNR signal to noise ratio 

SoC system on a chip 

SRAM static random access memory 

STBC space time block code 

TBU trace back unit 

UART universal asynchronous receiver/transmitter 

USB universal serial bus 

VBLAST vertical Bell laboratory layered space-time 

VCO voltage-controlled oscillator 

VHDL very high speed integrated circuit hardware description language 

VLIW very long instruction word 

WCDMA wideband CDMA 

WLAN wireless local area network 

ZF zero forcing 
 



 

 - 1 - 

 
 

Chapter 1  
 
Introduction 
 

Communication technologies have been developed rapidly in recent decades of 

years. The first-generation (1G) radio systems transmit voice over radio by using 

analog communication techniques, such as Advanced Mobile Phone Services (AMPS), 

which were developed in the 1970s and 1980s. The 2G systems were built in the 1980s 

and 1990s, and featured the adoption of digital technology, such as Global System for 

Mobile Communications (GSM), Digital-AMPS (D-AMPS), and code division 

multiple access (CDMA); among them GSM is the most successful and widely used 

2G system. 3G mobile technologies provide users with high-data-rate mobile access, 

which developed rapidly in the 1990s and is still developing today. The major radio air 

interface standard for 3G is wideband CDMA (WCDMA), whose transmission data 

rate can be up to 2 Mbps in good conditions. However, there are some limitations with 

3G, such as the difficulty in extending to very high data rates due to excessive 

interference between services, and the difficulty in providing multi-rate services with 

different quality of service (QoS) due to the restrictions imposed on the core network 

by the air interference standard. Therefore, the future mobile communication system 

having the features of high-data-rate transmission and open network architecture, 

called 4G, is desired to meet the increasing demand for broadband wireless access. In 

fact, the combination of multiple-input multiple-output (MIMO) signal processing with 

orthogonal frequency division multiplexing (OFDM) has been regarded as a promising 

solution for enhancing the data rates of next-generation wireless communication 

systems [1]. 
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 OFDM has become a popular technique for transmission of signals over wireless 

channels, and its most well known advantage is the capability of converting a 

frequency-selective channel into a parallel collection of frequency flat sub-channels, 

which makes the receiver simpler. Therefore, OFDM has been adopted in several 

wireless standards such as digital audio broadcasting (DAB), terrestrial digital video 

broadcasting (DVB-T), the IEEE 802.11a/g wireless local area network (WLAN) 

standard, and the IEEE 802.16-2005 standard. These show its potential of being a 

candidate for future-generation (4G) mobile wireless systems. 

 MIMO techniques are also popular recently; it can basically be categorized into 

two groups. The first one aims to improve the power efficiency and transmission 

reliability by maximizing spatial diversity; one popular example is the space-time 

block codes (STBC) [2]. The second type uses a layered approach to increase capacity; 

one popular example of such a system is the vertical-Bell Laboratories layered 

space-time (VBLAST) architecture [3] [4], in where independent data signals are 

transmitted over antennas to increase the data rate. 

 The goal of this thesis is to realize a 2×2 MIMO-OFDM system on FPGA-based 

platforms, where we intend to verify the above-mentioned space-time algorithms on 

both fast prototyping platform and self-designed platform. The complete functional 

blocks in both the transmitter and receiver are provided, and the associated algorithms 

applied in each functional block are also presented. After giving an overview of system 

architecture, we propose a total solution to build up FPGA-based platforms for 

realizing the MIMO-OFDM system, including MATLAB verification, and FPGA 

realization. The developed system contains a baseband transmitter, a digital-analog 

converter, an analog-digital converter, and a baseband receiver.  

 Furthermore, owing to the cost and complexity of floating-point hardware, the 

proposed MIMO-OFDM system on FPGA is limited to fixed-point arithmetic. 

Therefore the floating-point to fixed-point conversion becomes an inevitable procedure. 

To determine word lengths of all input, intermediate, and output signals, we propose a 

quantization algorithm which can minimize the hardware resources while constraining 

the quantization error within a specific limit. Moreover, the concept of hardware 

resource weighting is introduced, and some communication characteristics are also 
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taken into account. 

The organization of this thesis is as follows. Chapter 2 describes the proposed 

MIMO-OFDM transceiver architecture and its corresponding schemes. In Chapter 3, 

the development environments of the proposed fast prototyping platform and 

self-designed platform are introduced. In Chapter 4, the overall system realization is 

presented, and the performance evaluation is also included. Later, a systematical 

quantization algorithm is provided in Chapter 5. Finally, we make our concluding 

remarks in Chapter 6. 
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Chapter 2  
 
MIMO-OFDM Baseband Transceiver 
Architecture 
 

This chapter focuses on the MIMO-OFDM baseband transceiver architecture. An 

overview of the MIMO-OFDM system will first be given. Then we divide the 

developed architecture into transmitter and receiver, and provide functional 

descriptions and associated algorithms for each block. Finally, the MIMO techniques 

adopted on the system will be described. 

 

2.1 Overview of MIMO-OFDM System 

OFDM has long been regarded as an efficient approach to combat the adverse 

effects of multipath spread, and is the main solution to many wireless systems. It 

converts a frequency-selective channel into a parallel collection of frequency flat 

subchannels, which makes the receiver simpler. The time domain waveforms of the 

subcarriers are orthogonal, yet the signal spectrum corresponding to the different 

subcarriers overlap in frequency domain. Therefore, the available bandwidth is used 

very efficiently, especially compared with those systems having intercarrier guard 

bands, as shown in Figure 2.1 [5]. In order to eliminate inter-symbol interference (ISI) 

almost completely, a guard time is introduced for each OFDM symbol. Moreover, to 

eliminate inter-carrier interference (ICI), the OFDM symbol is further cyclically 

extended in the guard time, resulting in the cyclic prefix (CP). Otherwise, multipath 
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remains an advantage for an OFDM system since the frequency selectivity caused by 

multipaths can improve the rank distribution of the channel matrices across those 

subcarriers, thereby increasing system capacity. We summarize the advantages of 

OFDM as follows [1]:  

 High spectral efficiency 

 Simple implementation by FFT 

 Robustness against narrowband interference 

 High flexibility in terms of link adaptation for having many subcarriers 

 Suitability for high-data-rate transmission over a multipath fading channel 

MIMO systems where multiple antennas are used at both the transmitter and 

receiver have been also acknowledged as one of the most promising techniques to 

achieve dramatic improvement in physical-layer performance [6], [7]. Moreover, the 

use of multiple antennas enables space-division multiple access (SDMA), which 

allows intracell bandwidth reuse by multiplexing spatially separable users [8], [9]. 

Channel variation in the spatial domain also provides an inherent degree of freedom 

for adaptive transmission. To sum up, after OFDM is combined with MIMO 

techniques, MIMO-OFDM can be a potential candidate for the next generation 

wireless communication systems.  

In our system, we refer to the IEEE 802.11a standard [10], and further extend the 

SISO-OFDM system to MIMO-OFDM system with two transmitted antennas and two 

received antennas. Six OFDM symbols modulated by 64-tap IFFT are attached after 

ten short preambles and two long preambles, where the detailed structure of preamble 

will be discussed in Section 2.2.4. Furthermore, twelve zero tones are inserted on 

predefined subcarriers into every OFDM symbol so as to diminish the interference 

caused by adjacent signals, and four pilot tones are also inserted in a symmetric way 

for the sake of tracking the phase drift at the receiver. Data tones are transmitted in the 

remaining forty-eight subcarriers. Specification of MIMO-OFDM baseband transceiver 

is shown in Table 2.1.  
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Figure 2.1: (a) Conventional multicarrier technique 

(b) Orthogonal multicarrier modulation technique 

Table 2.1: Specification of MIMO-OFDM baseband transceiver 

{-21, -7, 7, 21}Locations of Pilot Tones

{-32:-27, 0, 27:31}Locations of Zero Tones

{-26:-22, -20:-8, -6:-1,1:6, 8:20, 22:26}Locations of Data Tones

16Short Preamble Size

64+16 (CP)Long Preamble Size

64 {-32:31}FFT Size

4Number of Pilot Tones / Symbol

12Number of Zero Tones / Symbol

48Number of Data Tones / Symbol

6Number of OFDM Symbols / Packet

10Number of Short Preambles / Packet

2Number of  Long Preambles / Packet

2Number of  Receive Antennas

2Number of Transmit Antennas

{-21, -7, 7, 21}Locations of Pilot Tones

{-32:-27, 0, 27:31}Locations of Zero Tones

{-26:-22, -20:-8, -6:-1,1:6, 8:20, 22:26}Locations of Data Tones

16Short Preamble Size

64+16 (CP)Long Preamble Size

64 {-32:31}FFT Size

4Number of Pilot Tones / Symbol

12Number of Zero Tones / Symbol

48Number of Data Tones / Symbol

6Number of OFDM Symbols / Packet

10Number of Short Preambles / Packet

2Number of  Long Preambles / Packet

2Number of  Receive Antennas

2Number of Transmit Antennas

 
 

2.2 Transmitter Architecture 

The baseband MIMO-OFDM transmitter architecture is shown in Figure 2.2 [11]. 

The source data is first fed into the channel encoder, e.g., using the convolution code 

for error correction at the receiver. The encoded output is then interleaved by 

distributing the same coded bits into different positions in the packet so that the 

transmitted information is better resistant to the channel distortion. A MIMO system is 
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typically designed to meet two different, yet opposite, targets: either to achieve high 

spectral efficiency, e.g., the VBLAST scheme suggested by Foschini et al. [3] [4], or to 

improve the transmission reliability against channel fading, e.g., the space-time block 

codes (STBC) [2] first discovered by Alamouti for two transmit antennas. The 

preamble channels, coded by the rule of STBC, will be attached in front of the data 

channel modulated by IFFT. Finally, all traffic data composed of the preamble part and 

data channels are sent to individual DA modules to convert the baseband signals onto 

the desired frequency band.  

Preamble
Channel

IFFTS/P P/S MUX/
RRCIFFTS/P P/S MUX/
RRC

S：STBC
L：STBC

Encoder Inter-
leaver MapperData

Channel

ST-
Block

Coding

De-
MUX

 
Figure 2.2: Transmitter architecture of MIMO-OFDM system 

 

2.2.1 Convolutional Encoder  

A convolutional encoder typically will generate two or three output bits for each 

input bit. The output bits are dependent on the current input bit, as well as the state of 

the encoder. The state of the encoder is represented by several bits which precede the 

current bit. Figure 2.3 shows a convolutional encoder adopted in our system with code 

rate equal to 1/3 and constraint length equal to 5. Convolutional coding adds redundant 

bits in such a way that the decoder can, within limits, detect errors and correct them.  

+

+

+

S0 S1 S2 S3Din

g0

g1

g2

+

+

+

S0 S1 S2 S3Din

g0

g1

g2  
Figure 2.3: Convolutional encoder with code rate 1/3 and constraint length 5 
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2.2.2 Interleaver / De-interleaver  

In real life, bit errors often occur in bursts due to the fact that linear-fading dips 

affect several consecutive bits. Unfortunately, the convolutional encoder is most 

effective in detecting and correcting single random errors and is not effective when 

errors occur in bursts. Interleaving is the reordering of data coming out of a 

convolutional encoder prior to transmission so that consecutive bits of data are 

distributed over a larger sequence of data to reduce the effect of burst errors. At the 

receiver, the reverse permutation is performed before decoding. A commonly used 

interleaving scheme is the block interleaving, where the input bits are written in a 

matrix column by column and read out row by row. 

Referring to institute of electrical and electronics engineers IEEE 802.11a 

standard [10], we use a block interleaver as shown in Figure 2.4. In the standard, the 

interleaving depth is suggested being the length of an OFDM symbol. Each coded data 

symbol after convolutional encoder contains 96 bits. Therefore the interleaving depth 

we adopt is 96, as illustrated in the figure. The interleaver satisfies the following 

expression 
6 (  mod 16) /16j v v⎢ ⎥= × + ⎣ ⎦                  (2.1) 

where v is the index of input coded data, and v = 0,1,...,95; j is the index of output 

interleaved data; ⎣ ⎦m  is the greatest integer smaller than m. 

959486858483828180

797870696867666564

636254535251504948

474638373635343332

313022212019181716

15146543210

959486858483828180

797870696867666564

636254535251504948

474638373635343332

313022212019181716

15146543210

Interleaving

De-interleaving

 
Figure 2.4: Interleaver and de-interleaver schemes 
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2.2.3 Mapper / De-mapper  

Quadrature amplitude modulation (QAM) is the most popular type of modulation 

using in the OFDM system. The rectangular constellations are especially easy to 

implement as they can be split into independent in-phase and quadrature parts. A 

mapper is used to map a small group of bits into a symbol according to the rectangular 

constellation adopted. Figure 2.5 shows the rectangular constellations of Quadrature 

Phase Shift Keying (QPSK), 16-QAM, and 64 QAM. The higher modulation order the 

mapper adopts, the more information a symbol can carry, yet higher modulation order 

always suffers from interference more severely. In our system, we only adopt QPSK as 

our modulation scheme. 

QPSK

16-QAM

64-QAM

I

Q

2 4 6-6 -4 -2

2

4

6

-6

-4

-2

QPSK

16-QAM

64-QAM

I

Q

2 4 6-6 -4 -2

2

4

6

-6

-4

-2

 

Figure 2.5: QPSK, 16-QAM, and 64-QAM constellations 

 

2.2.4 Preamble Channel and Frame Structure  

Referring IEEE 802.11a standard [10], we attach the training sequence, also 

called preamble, in front of every packet. At the receiver, preambles can be utilized to 

do a number of tasks, such as timing synchronization, frequency synchronization, and 

channel estimation. The format of preamble channel and frame structure is shown in 

Figure 2.6 [10]. Preambles can further be separated into short preamble and long 
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preamble, and both short and long preamble are modulated by BPSK and encoded by 

STBC scheme. Short preamble, as implied by the name, has a shorter length compared 

with long preamble. Each short preamble symbol contains 16 bits with time-span 0.8 

µs, and ten symbols form a complete short preamble with a total time-span of 8 µs. The 

following parts are two long preamble symbols, and each one is protected by a guard 

interval filled with its cyclic extension, which have a total time-span of 8 µs. After 

preamble channel, data symbols with cyclic extension follow. There are four pilot 

tones embedded symmetrically in every data symbol. Note that the first non-preamble 

symbol is designed for signaling in the standard, such as code rate and modulation 

order. 

 

Figure 2.6: Training sequence and frame structure of IEEE 802.11a standard 

 

2.2.5 Root Raised Cosine Filter  

Root raised cosine (RRC) filter is commonly used in digital communication 

systems to limit ISI. The ideal root raised cosine filter, frequency response consists of 

unity gain at low frequencies, the square root of raised cosine function in the middle, 

and total attenuation at thigh frequencies. The width of the middle frequencies is 

defined by the roll off factor constant β (0<β<1). The root raised cosine filter is 

generally used in series pairs, so that the total filtering effect is that of a raised cosine 

filter. The advantage is that if the transmit side filter is stimulated by an impulse, then 

the receive side filter is forced to filter an input pulse shape that is identical to its own 

impulse response, thereby setting up a matched filter and maximizing signal to noise 

ratio (SNR) while at the same time minimizing ISI. 
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Mathematically, the frequency response ( )rrcF ω  may be written as 

1                                    For (1 )

0                                    For (1 )              
( )

( (1 ))1 cos
2

   For (1 ) (1 )
2

c

c

rrc
c

c
c c

F

ω ω β

ω ω β
ω π ω ω β

βω
ω β ω ω β

⎧ ≤ −⎪⎪⎪⎪ ≥ +⎪⎪⎪⎪⎪= ⎨ ⎛ ⎞− −⎪ ⎟⎜⎪ ⎟+ ⎜⎪ ⎟⎜ ⎟⎜⎪ ⎝ ⎠⎪ − < < +⎪⎪⎪⎩⎪

 (2.2) 

where cω  is half the data rate. 

 

2.3 Receiver Architecture  

The baseband function diagram of the proposed MIMO-OFDM receiver is shown 

in Figure 2.9 [11]. The received signal is first down-converted to the baseband. After 

passing through RRC, data streams are processed by FFT so as to demodulate the 

OFDM symbol. A space-time detector is used for separating the multi-antenna signals. 

Since the transmitted signals can be space-time block encoded or spatially multiplexed, 

the corresponding decoding scheme such as space-time block detector or VBLAST 

detector has to be performed. The detected symbol streams are then de-interleaved, 

followed by a Viterbi decoder to recover the source bits. To acquire the channel 

information, long preamble is used to do frequency domain channel estimation. We 

will also include pilot subcarriers inserted in data channel to estimate the phase shift in 

a symbol to further improve the performance. 
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Figure 2.7: Receiver architecture of MIMO-OFDM system 
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2.3.1 Timing Synchronizer  

Before an OFDM receiver can demodulate the subcarriers, it has to find out where 

the symbol boundaries are and what the optimal timing instants are to minimize the 

effects of ICI and ISI. Moreover, timing synchronization can be divided into coarse 

timing synchronization and fine timing synchronization [11] - [13].  

The task of the coarse timing synchronization is to identify the preamble in order 

to detect a packet arrival. Here we discuss the coarse timing synchronization algorithm 

adopted in our system. First, short preamble is chosen to do our coarse timing 

synchronization, and a matched filter (MF) which can match a short preamble symbol 

is designed. After passing the received signal through MF, we can obtain ten peak 

values where two adjacent peaks are at the interval of 16. To acquire a more accurate 

frame position, data after MF is further passed to a finite impulse response (FIR) filter 

so that we can obtain a succession of increasing peaks and finally choose the time 

instant a deterministic delay away from the maximum value as the frame start. 

The fine timing synchronization in an OFDM system decides where to place the 

start of the FFT window within the OFDM symbol. Although an OFDM system 

exhibits a guard interval, making it somewhat robust against timing offsets, 

non-optimal symbol timing will cause more ISI and ICI in delay spread environments. 

This will result in performance degradation. To eliminate timing offset induced by 

different path delays, fine timing synchronization will be performed after coarse timing 

synchronization.  

 

2.3.2 Frequency Synchronizer  

The purpose of frequency synchronization is to correct the frequency offset, 

which is caused by the difference of oscillator frequencies at the transmitter and the 

receiver. Frequency offset may result in the loss of the orthogonality between 

subcarriers and degrade the system performance. Therefore, we try to estimate the 

frequency offset and compensate the received signals. 

Assuming that the absolute value of the frequency offset does not exceed 1
2 dDT

, 
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where D is the delay between the identical samples of the two symbols; Td denotes the 

sampling period, then the estimated frequency offset f̂  can be shown by 

ˆˆ
2 d

f
DT
φ

π
=                                                   (2.3) 

where φ̂  denotes the estimated phase shift through two adjacent symbols, which can 

be computed by an arc tangent of the summation of conjugate multiplications between 

two identical samples of the two repeated symbols. To do the above task, the preamble 

channel becomes the most proper candidate. 

The 802.11a standard specifies a maximum oscillator error of 20 ppm, therefore 

the total maximum error is 40 ppm. Supposing that the carrier frequency is 5.3 GHz, 

the maximum possible frequency error is about 212 kHz. Owing to the inherent 

structures of short preamble and long preamble, the maximum unambiguous estimated 

frequency offset is 625 kHz for short preamble and 156.25 kHz for long preamble. 

Therefore, both short preamble and long preamble are required to estimate frequency 

offset so as to cover the probable frequency offset specified by the standard. 

 

2.3.3 Channel Estimator  

The channel can be estimated using the known training symbols within the 

preamble. In our system, owing to the same symbol structure as data symbols, long 

preamble becomes the best candidate for performing this job. Moreover, since 

preamble channel is BPSK modulated and two long preambles are identical, the 

space-time block encoded signal model can be denoted as 

t t
t t

−⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

                         (2.4) 

where t denotes the time domain long preamble sequence. 

Supposing that Tk denotes the long preamble chips (in frequency domain); pqH  

is the channel frequency response from the pth transmit antenna to the qth receive 

antenna; Z denotes the received signal after passing FFT, then the noise free post-FFT 

received signal at the kth subcarrier can be shown as follows 
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            (2.5) 

where the superscript k denotes the kth subcarrier; suffix 1 or 2 denotes received 

antenna 1 or 2, and n or (n+1) represents the nth or (n+1)th symbol. 

Based on the structure of the received signal shown above, the estimated channel 

frequency response ˆk
pqH  can be obtained simply by the following equations 
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( )

( )

( )

11 1 1 11

21 1 1 21

12 2 2 12

22 2 2 22

1ˆ ( ) ( 1)
2
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2
1ˆ ( ) ( 1)

2
1ˆ ( ) ( 1)

2

k k k k
k

k k k k
k

k k k k
k

k k k k
k

H Z n Z n H
T

H Z n Z n H
T

H Z n Z n H
T

H Z n Z n H
T

= − + =

= + + =

= − + =

= + + =

                     (2.6) 

 

2.3.4 Phase Estimator  

The processing of the preamble takes care of the initial synchronization of the 

MIMO-OFDM receiver. It is, however, likely that the frequency offset will vary during 

the reception of the packet, making solely initial frequency synchronization insufficient. 

Furthermore, the system will experience phase noise invoked by the combination of 

the RF oscillator and the phase-locked loop (PLL). It is, therefore, necessary to 

estimate and correct the rotation of the received constellation points by using pilots 

which are embedded in data symbols. 

Recalling that there are four pilot tones Pk, k∈±7, ±21, in every data symbol, 

and pilot tones in successive symbols are encoded in STBC scheme. First we get the 

post-FFT received signal without phase noise at the kth pilot subcarriers (k=±7, ±21) 

of nth and (n+1)th symbols on antenna 1 and antenna 2 by 
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                     (2.7) 

Then, adding the effects of phase noise φ  by multiplying a ( )j ne φ  term, the original 

equation will lead to the following form 

{ } ( ) ( ){ }
{ } ( ) ( ){ }
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          (2.8)  

Therefore, the estimated phase shift (̂ )nφ  can be obtained by 
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            (2.9) 

Instead of doing correlation between adjacent samples and averaging all the 

symbols, the scheme used by the phase estimator only averages the phase residue 

among four pilot tones in each symbol.  

 

2.3.5 Viterbi Decoder  

Decoding of convolutional codes is most often performed by the Viterbi decoder, 

which is an efficient way to obtain the optimal maximum likelihood estimate of the 

encoded sequence. Viterbi decoder can be further divided into hard-decision and 

soft-decision decoding, where hard-decision is adopted in out system. According to the 

design of the convolutional encoder in transmitter, we can derive the state transition 

table in Table 2.2 and then further illustrate the trellis diagram as shown in Figure 2.8 

 ̂  ̂

 ̂  ̂

 ̂  ̂

 ̂  ̂
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and Figure 2.9. 

The Viterbi algorithm is a recursive sequential minimization algorithm that can be 

used to find the least expensive way to route symbols from one edge of a state diagram 

to another. To do this, the algorithm uses a cost analysis mechanism to calculate the 

distance between the received symbol and the symbol associated to that edge. 

The distance between the received symbol s and the symbol associated to that 

edge in the state diagram is often referred to as the branch metric. If BM [i, j](s), is the 

metric of the branch from state i to state j, the problem is finding the path for which the 

metric, i.e. the sum of the branch metrics of the path edges, is at a minimum. The 

Viterbi algorithm solves this problem by applying the following recursive equation for 

each state transition 

PM [j](t) = min (PM [i](t-1) + BM [i, j](s))                       (2.10) 

where PM [j](t) is the path metric associated to the (minimum cost path leading to) 

state j at time t. At the end of the decoding, it is possible to reconstruct the maximum 

likelihood sequence through a trace back starting from the possible decoder states. 

Normally for decoders using non-punctured codes, the trace back depth equals 

five-times constraint length, which is sufficient to decode the correct output in the 

presence of noise. In our system, constraint length equals 5; therefore an appropriate 

trace back depth is 25. 

Table 2.2: State transition table 

din s0 s1 s2 s3 state g2 g1 g0 s0' s1' s2' s3' state' din s0 s1 s2 s3 state g2 g1 g0 s0' s1' s2' s3' state'
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 8

0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 8

0 0 0 1 0 2 1 1 0 0 0 0 1 1 1 0 0 1 0 2 0 0 1 1 0 0 1 9

0 0 0 1 1 3 0 0 1 0 0 0 1 1 1 0 0 1 1 3 1 1 0 1 0 0 1 9

0 0 1 0 0 4 1 0 1 0 0 1 0 2 1 0 1 0 0 4 0 1 0 1 0 1 0 10

0 0 1 0 1 5 0 1 0 0 0 1 0 2 1 0 1 0 1 5 1 0 1 1 0 1 0 10

0 0 1 1 0 6 0 1 1 0 0 1 1 3 1 0 1 1 0 6 1 0 0 1 0 1 1 11

0 0 1 1 1 7 1 0 0 0 0 1 1 3 1 0 1 1 1 7 0 1 1 1 0 1 1 11

0 1 0 0 0 8 1 1 0 0 1 0 0 4 1 1 0 0 0 8 0 0 1 1 1 0 0 12

0 1 0 0 1 9 0 0 1 0 1 0 0 4 1 1 0 0 1 9 1 1 0 1 1 0 0 12

0 1 0 1 0 10 0 0 0 0 1 0 1 5 1 1 0 1 0 10 1 1 1 1 1 0 1 13

0 1 0 1 1 11 1 1 1 0 1 0 1 5 1 1 0 1 1 11 0 0 0 1 1 0 1 13

0 1 1 0 0 12 0 1 1 0 1 1 0 6 1 1 1 0 0 12 1 0 0 1 1 1 0 14

0 1 1 0 1 13 1 0 0 0 1 1 0 6 1 1 1 0 1 13 0 1 1 1 1 1 0 14

0 1 1 1 0 14 1 0 1 0 1 1 1 7 1 1 1 1 0 14 0 1 0 1 1 1 1 15

0 1 1 1 1 15 0 1 0 0 1 1 1 7 1 1 1 1 1 15 1 0 1 1 1 1 1 15

din s0 s1 s2 s3 state g2 g1 g0 s0' s1' s2' s3' state' din s0 s1 s2 s3 state g2 g1 g0 s0' s1' s2' s3' state'
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 8

0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 8

0 0 0 1 0 2 1 1 0 0 0 0 1 1 1 0 0 1 0 2 0 0 1 1 0 0 1 9

0 0 0 1 1 3 0 0 1 0 0 0 1 1 1 0 0 1 1 3 1 1 0 1 0 0 1 9

0 0 1 0 0 4 1 0 1 0 0 1 0 2 1 0 1 0 0 4 0 1 0 1 0 1 0 10

0 0 1 0 1 5 0 1 0 0 0 1 0 2 1 0 1 0 1 5 1 0 1 1 0 1 0 10

0 0 1 1 0 6 0 1 1 0 0 1 1 3 1 0 1 1 0 6 1 0 0 1 0 1 1 11

0 0 1 1 1 7 1 0 0 0 0 1 1 3 1 0 1 1 1 7 0 1 1 1 0 1 1 11

0 1 0 0 0 8 1 1 0 0 1 0 0 4 1 1 0 0 0 8 0 0 1 1 1 0 0 12

0 1 0 0 1 9 0 0 1 0 1 0 0 4 1 1 0 0 1 9 1 1 0 1 1 0 0 12

0 1 0 1 0 10 0 0 0 0 1 0 1 5 1 1 0 1 0 10 1 1 1 1 1 0 1 13

0 1 0 1 1 11 1 1 1 0 1 0 1 5 1 1 0 1 1 11 0 0 0 1 1 0 1 13

0 1 1 0 0 12 0 1 1 0 1 1 0 6 1 1 1 0 0 12 1 0 0 1 1 1 0 14

0 1 1 0 1 13 1 0 0 0 1 1 0 6 1 1 1 0 1 13 0 1 1 1 1 1 0 14

0 1 1 1 0 14 1 0 1 0 1 1 1 7 1 1 1 1 0 14 0 1 0 1 1 1 1 15

0 1 1 1 1 15 0 1 0 0 1 1 1 7 1 1 1 1 1 15 1 0 1 1 1 1 1 15  
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Figure 2.8: Trellis diagram part 1 
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Figure 2.9: Trellis diagram part 2 
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2.4 MIMO Techniques  

The MIMO techniques for wireless communication improve the signal quality of 

the receiver on one side of the link by simple processing across two antennas on the 

opposite side. These schemes could be very attractive in wireless communication 

applications where the performance of the system is limited by multipath fading. 

MIMO techniques can basically be split into two groups: spatial diversity technique 

[14] and spatial multiplexing technique [7] [15] [16]. Spatial diversity technique 

increases the performance of the communication system by coding over the different 

transmitter branches, whereas spatial multiplexing technique achieves a higher 

throughput by transmitting independent data streams on the different transmit branches 

simultaneously and at the same carrier frequency. In the following sections, we will 

explain the MIMO techniques adopted in our system in detail. 

 

2.4.1 Spatial Diversity Technique 

In wireless communication systems, diversity techniques are widely used to 

reduce the effects of multipath fading and improve the reliability of transmission 

without increasing the transmitted power or sacrificing the bandwidth. Diversity 

techniques are classified into time, frequency, and space diversity. Space diversity, also 

called antenna diversity, can be further classified into two categories, transmit diversity 

and receive diversity. Among various transmit diversity schemes, STBC is the most 

popular scheme with the feature of open loop (i.e., no feedback signaling is required) 

as channel information is not requireed at the transmitter. Therefore we will focus on 

the scheme of STBC in this section.  

The space-time block coding scheme was first discovered by Alamouti [2] for two 

transmit antennas. Symbols transmitted from those antennas are encoded in both space 

and time in a simple manner to ensure that transmissions from both the antennas are 

orthogonal to each other. This would allow the receiver to decode the transmitted 

information with a slight increment in the computational complexity. In the following 

discussion, we will give an overview of Alamouti’s scheme.  
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Considering about the adopted 2×2 MIMO-OFDM system, the input symbols to 

the space-time block encoder are divided into groups of two symbols. At a given 

symbol period, the encoder takes a block of two modulated symbols 1
kX  and 2

kX  in 

each encoding operation and maps them to the transmit antennas according to a code 

matrix given by 

( )
( )

*

1 2

*

2 1

k k

k k

X X

X X

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                                (2.11)  

The encoded outputs are transmitted in two consecutive transmission periods from 

two transmit antennas. Let k
pqH  be the channel frequency response from the pth 

transmitted antenna to the qth received antenna on subcarrier k, then the noise free 

post-FFT received signal, 1
kZ  and 2

kZ , can be expressed as 
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Here we advanced take phase noise effects into consideration, and then the original 

equation will lead to 
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        (2.13) 

Since we have obtained the estimated channel Ĥ  and the estimated phase φ̂  before 

this stage, we can easily calculate the detected signals 1
ˆkD  and 1

ˆkD  by Eq. 2.14 
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Moreover, assuming that the estimated channel Ĥ  and the estimated phase φ̂  are 

accurate, that is, Ĥ H=  and φ̂ φ= , the results of Eq. 2.14 will turn as follows 

1
ˆkD = ( )2 2 2 2

11 21 12 22 1
k k k k kH H H H X+ + + ⋅  

2
ˆkD = ( )2 2 2 2

11 21 12 22 2
k k k k kH H H H X+ + + ⋅                         (2.15) 

where ( )2 2 2 2

11 21 12 22
k k k kH H H H+ + +  is a diversity gain. 

 

2.4.2 Spatial Multiplexing Technique 

Spatial multiplexing technique multiplexes multiple spatial channels to send as 

many independent data as possible over different antennas for a specific error rate. 

There are four spatial multiplexing schemes: diagonal BLAST (DBLAST), horizontal 

BLAST, VBLAST, and turbo BLAST [17]. Of them, VBLAST is the most promising 

for its implementation simplicity, which is adopted in our system. Hereafter the 

equation derivations are held under the hypothesis of VBLAST scheme being used.  

In transmitter side, the encoding process is simply a multiplex operation followed 

by independent substreams. No inter-substream coding, or coding of any kind, is 

required. The transmitted signal in frequency domain is given by 
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X
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                (2.16) 

In the receiver side, the signals after effects of MIMO channel and procedure of 

FFT, denoted as 1
kZ  and 2

kZ , can be expressed as follows: 
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After adding phase noise, the equation becomes 
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Furthermore, the estimated channel matrix Ĥ  can be obtained in channel estimation 

stage, where Ĥ  plays an important roll in the VBLAST decoding. 
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VBLAST decoding can be separated into two steps. The first step is interference 

nulling, and the second step is interference cancellation. Nulling is done by linearly 

weighting the received signals by kW  so as to satisfy some performance-related 

criterion, such as minimum mean-square error (MMSE) or zero-forcing (ZF). The 

detected signals after nulling, denoted as 1
ˆkD  and 2

ˆkD , can be shown as follows 
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where kW  can be calculated by the following equation when ZF criterion is adopted 

( )ˆk k +=W H ˆ k= H ( ˆ( )k HH ) 1ˆ k −
H                                  (2.21) 

Otherwise, kW  is given by Eq. 2.21 when MMSE criterion is adopted 
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where 2σ  is the noise power. In our proposed system, only ZF is adopted. 

After nulling, interference from already-detected components 1
ˆkD  and 2

ˆkD  is 

subtracted out from the received signal, resulting in a modified received vector where 

less interferences are present, which is called interference cancellation. The most 

general interference cancellation skills are successive interference cancellation (SIC) 

and parallel interference cancellation (PIC). In our 2×2 MIMO system, SIC is adopted. 

Assuming that both Ĥ  and φ̂  are estimated correctly, then the detected signals after 

interference cancellation, denote as 1
ˆ̂kD  and 2

ˆ̂kD , can be shown to be 
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Therefore after we divide the scaling ( )2 2

11 12
k kH H+  and ( )2 2

21 22
k kH H+ , the 

original signal 1
kX  and 2

kX  can then be recovered. 
 

2.5 Summary  

In this chapter, we first introduce the MIMO-OFDM system, and propose our 

system architecture including the transmitter and receiver. We also give the description 

of all functional blocks in the order of data passing through a system. At the transmitter, 

convolutional encoder, interleaver, mapper, adding preamble channel, and frame 

structure are gone through. At the receiver, synchronization is first mentioned, which 

consists of coarse timing, fine timing, frequency, and phase synchronizations. Then, 

channel estimation, de-mapper, de-interleaver, and Viterbi decoder are described in the 

rest part of the receiver. Finally, we highlight the space-time coding techniques, also 

called space diversity technique and spatial multiplexing technique, implemented on 

the system as an independent section to give a detailed introduction. More detailed 

experimental results and performance analysis will be given in Chapter 4. 
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Chapter 3  
 
MIMO-OFDM System Platforms  
 

In Chapter 3, we will introduce the development environment, including fast 

prototyping platform and self-designed platform. The fast prototyping platform is 

chosen to be our initial verification platform of MIMO-OFDM baseband algorithms, 

since the debugging interface is much more convenient for designers and the system is 

much simpler than another platform. On the other hand, the self-designed platform is 

used to perform the final verification of whole MIMO-OFDM system including 

baseband and RF parts, where transmitter and receiver are implemented on two 

separated boards with their own RF modules each. The self-designed platform is much 

closer to a real wireless communication system and therefore can take all phenomena 

and effects of the wireless system into account. In the following sections, hardware 

modules, software design flows, and the corresponding debugging tools of these two 

platforms are detailed explained. 

 

3.1 Fast Prototyping Platform  

Figure 3.1 shows the development environment of the fast prototyping platform, 

including Aptix® System Explorer with several specific modules, a high speed work 

station, a digital to analog converter (DA), an analog to digital converter (AD), a logic 

analyzer (LA), an oscilloscope, and some PCs. A close-up shot of Aptix MP3C is given 

in Figure 3.2 where the modules installed on Aptix MP3C are highlighted, including 

three Xilinx FPGA modules, one DSP module, and one USB module. 
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Figure 3.1: Development environment of fast prototyping system 

 
Figure 3.2: Modules installed on Aptix MP3CF platform 

 

3.1.1 Aptix® System Explorer  

Under the trend of System on Chip (SoC) and the concept of time-to-market, 

Aptix® corporation has developed a series of fast prototyping system named MPx, 

which provides a total solution of real-time verification and integration for industry 

and high-performance functional simulation for application specific integrated circuit 
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(ASIC) designer so as to achieve the goal of time-to-market. In our laboratory, we 

choose Aptix® System Explorer MP3CF as our fast prototyping system.  

The Aptix® MP3CF System ExplorerTM contains two parts, hardware platform 

called MP3CF FPCB and software called Explorer, on which we will give more 

introduction in later sections. 

 

3.1.1.1 Hardware: MP3CF Platform  

Aptix® MP3CF Platform consists of several functional units, such as the onboard 

micro-controller, the clock generator, some re-programmable inter-connect chips called 

field programmable interconnect components (FPIC), the main motherboard called 

field programmable circuit board (FPCB), and some flexible input/output (I/O) buses 

[18] as illustrated in Figure 3.3. 

 
Figure 3.3: Aptix® MP3CF platform 

 

Micro-controller mainly takes charge of the operation of the whole platform, such 

as the control of booting sequence and storing or loading the design of circuit through 

flash memory; clock generator provides system clock, and supports eight different 

clock sources from outside; FPIC is responsible for the inter-connect of all modules; 

FPCB is the place where modules can be installed; I/O bus is the bridge between 

Aptix® platform and devices outside. 
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Aptix® MP3CF is powerful and capable of easy expansion and high integration. It 

not only supports modules produced by Xilinx Corporation and Altera Corporation, but 

also those fitting the definition of freehole pins. By the right definition, we can install 

modules developed by other companies on Aptix® MP3CF through an adapter. For 

example, we developed a DSP C6701 EVM by using the core chip TMS320C6701 

DSP of Taxas Instruments (TI) and also a CYPRESS USB 2.0 module by using the 

core chip of CYPRESS CY7C68013, both of them being not the products from Xilinx 

or Altera. Therefore, by the usage of the adapter, we can integrate different modules on 

Aptix® MP3CF and make the system more flexible and powerful. 

 

3.1.1.2 Software: Explorer  

The software (called Explorer) provides an easy-to-use, consistent user interface 

which displays commands through a series of pull-down menus. The main design flow 

is described as follows and illustrated in Figure 3.4. 

(1) Import Design into Explorer 

Explorer requires to be informed 

about the netlist files that we are using in 

the design including top-level netlist, 

component netlist, and pinmap file. 

Top-level netlist is an electronic design 

interchange format (EDIF) file containing 

connectivity information between the 

different components that will be mounted 

on the MP3CF FPCB. Component netlists 

are EDIF files containing major design 

information in each component. All EDIF 

files can be generated by electronic design 

automation (EDA) tools that can support 

synthesis, such as Synplify Pro we adopt. 
Figure 3.4: Explorer flow  

Import Netlist

Setup FPCB 
Parameters

FF
LL
OO
WW

EE
XX
PP
LL
OO
RR
EE
RR

Import Pin Map

Assign Power
and Ground

Place Parts
On Board

Compile Design

Setup 
Communication

Program FPCB
and Logic Analyzer

Import Netlist

Setup FPCB 
Parameters

FF
LL
OO
WW

EE
XX
PP
LL
OO
RR
EE
RR

Import Pin Map

Assign Power
and Ground

Place Parts
On Board

Compile Design

Setup 
Communication

Program FPCB
and Logic Analyzer

 



 

 - 27 - 

Finally, we have to identify the pinmap file used in the design to assign 

packages, pins, and other information to those parts. 

(2) Setup FPCB Parameters 

Explorer can support several different FPCBs. We require specifying 

which FPCB we are using to develop. 

(3) Assign Power and Ground 

Some physical parameters of the design need to be set up, such as power 

and ground nets.  

(4) Place Parts on Board 

We need to place our design components in their correct positions on the 

coordinate system. There will be a board view window helping us move a 

component onto the right place of FPCB by dragging the component to the 

desired place with a mouse. 

(5) Compile Design 

The compilation process first maps the FPCB and then maps the existing 

I/O, clock, bus and FPGA nets to MP3CF hardware. Using the result of FPCB 

mapping, compilation continues with FPGA place-and-route which will run for 

all FPGAs in the design. Once the FPGA place and route has been completed 

successfully, compilation conducts the FPCB routing. The FPCB router routes 

the FPICs with all nets in the design mapped to the FPGAs. In general, 

place-and-route is the most time-consuming process of all. 

(6) Setup Communication 

In this process, we need to do some configurations about communication 

to program the board and devices. For hardware (FPCB board), we need to 

specify communication method, address for the method, and whether the flash 

is to be programmed or not when downloading. For debug (LA), we need to 

identify communication method, address for the method, and which probing 

pod of the LA is to be connected with. 
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(7) Program FPCB and LA 

Finally, we can download our design onto FPCB and probing information 

to the LA, and start to verify our system design. 

 

3.1.2 FPGA Module  

In our fast-prototyping system, we use several FPGA modules mounted on Aptix® 

MP3CF platform to implement our communication system. In the following sections, 

we will give an overview of our FPGA modules. Then we will show the design flow of 

FPGA. 

 

3.1.2.1 FPGA Overview  

The demand for more complex programmable hardware is constantly growing to 

meet the formidable industry requirement. The major categories of programmable 

hardware are programmable logic device (PLD) and FPGA. A PLD consists of 

micro-cells and a central inter-connection logic. Typical PLD applications are “glue 

logic” for connecting other ASICs. On the other hand, FPGAs consist of even more 

complex logic block on one chip. Typical applications are central control units (CPU) 

and DSPs up to very complex SoC design. Therefore, we adopt some FPGA modules 

to realize our communication system. Generally, FPGA can be categorized into three 

types by its structure: 

1. Look-up-table (LUT): Xilinx, Altera, AT&T 

2. Multiplexer: Actel, Quicklogic 

3. Transistor array: Cross point 

If we focus on its programming architecture, there are two major types: 

1. SRAM: Xilinx, Altera, AT&T, Atmel 

2. Anti-fuse: Actel, Cypress, Quicklogic 

Static random access memory (SRAM) type has a merit of being able to program 

repeatedly while Anti-fuse type has the feature of one time programmable (OTP). 



 

 - 29 - 

Anti-fuse type can offer security for design but cannot be modified further. 

Compared to ASIC, FPGA has lower performance apparently, especially on power 

consumption and maximum supportable speed. However, as the technique of 

semiconductor industry grows, FPGA becomes more and more competitive to ASIC. 

Actually, FPGA has more integration ability and flexibility than ASIC, and 

undoubtedly, is the best candidate component for a fast-prototyping system. 

 

3.1.2.2 FPGA Design Flow  

In our design, we choose Xilinx ISE 7.1 and Synplify Pro 8.2 as the development 

tool for the first half of the design flow. The second half is done on a workstation with 

Explorer. Figure 3.5 is the main FPGA design flow and later we will give more 

information about the flow. 

(1) Design Entry 

In general, EDA tools are required to develop register transfer level (RTL) 

codes by appropriate methodologies. In Xilinx ISE 7.1, it supports three 

methods: HDL (hardware description language) Editor, Schematic Flow, and 

FSM (finite state machine) Editor. HDL Editor allows us to edit source files 

directly like VHDL (very high speed integrated circuit hardware description 

language) [19]-[22] and Verilog [23], which are the most common HDLs in use 

today. Schematic Flow is another choice to create our source files by drawing 

the scheme with underlying HDL macros. FSM Editor allows us to edit by 

timing state diagram, which is suitable for realization controller, such as 

memory access controller. 
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Figure 3.5: FPGA design flow 

 (2) Synthesis 

After completing editing RTL source files, we need to translate them into 

gate level called netlist files, which only contains information of logic gates and 

inter-connections. We choose to use Synplify Pro 8.2 for synthesis. 

(3) Simulation 

Design verification is an important aspect of each project design. Before 

implementing our circuit in the target device, it is a good idea to simulate and 

verify the circuit. The most common verifications are functional simulation and 

timing simulation. 

A. Functional Simulation 

Functional simulation can be done after the schematic has been 

entered or a HDL file has been created and synthesized. Functional 

simulation gives information about the logic operation of the circuit, but it 

does not provide any information about timing delays. 

B. Timing Simulation 

The timing simulation will give us detailed information about the time 

it takes for a signal to pass from one gate to the other (gate delay) and 
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gives information on the circuit’s worst-case conditions. The total delay of 

a complete circuit will depend on the number of gates the signal sees and 

on the way the gates have been placed in the FPGA. 

One of the most popular simulation tools is ModelSim, which is 

completely integrated into Xilinx ISE 7.1, and can perform functional 

simulation and timing simulation very well. Thus, we choose ModelSim SE 

5.5e as the simulation tool in our design flow. 

(4) Implementation 

The implementation is typically done after the design has been verified by 

functional simulation. The implementation tools will translate the netlist 

(schematic, HDL), place and route the design in the target device and generate a 

bitstream that can be downloaded into the device.  

(5) Download to Aptix® Explorer MP3CF 

After the process of implementation, we can download our design into 

hardware platform. To verify that signals are really working properly in circuit, 

we can use the LA to debug. Once the result does not match what we expect, we 

need to come back to modify our design and go through the whole design flow 

again. That is to say, iterative tests are required until we obtain the results we 

want.  

 

3.1.3 ‘C6701 DSP EVM  

Digital signal processors, such as TMS320 family of processors, are used in a 

wide range of applications, from communications and controls to image and speech 

processing. They are found in cellular phones, fax/modems, disk drivers, radio, and so 

on. Texas Instrument recently introduced the TM320C6x processor, based on the 

very-long-instruction-word (VLIW) architecture. This newer architecture supports 

features that facilitate the development of efficient high-level language compilers. The 

TMS320C67x DSPs are the floating-point DSP family in the TMS320C6000E DSP 

platform. We choose TMS320C6701 as our core chip on DSP EVM to implement our 
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MIMO-OFDM system. Later, we will give an overview of the core chip on DSP EVM. 

Then we will introduce the architecture of EVM. Finally, we will show the design flow 

about DSP. 

 

3.1.3.1 TMS320C6701 DSP Overview  

‘C6701 DSP EVM shown in Figure 3.6 is developed to integrate with other 

modules on Aptix® platform so that we can come to the realization of MIMO-OFDM 

system. The EVM is applicable for Aptix® MPx series platform; it uses TMS320C6701 

DSP as its core chip. The system clock is 132 MHz, and can be upgraded up to 167 

MHz. Owing to having eight functional units in CPU, the DSP can perform 1056 mega 

floating-point operations per second (MFLOPS).  

 

Figure 3.6: ‘C6701 DSP EVM 

 

The architecture of ‘C6701 DSP EVM is shown in Figure 3.7, including 

TMS320C6701 DSP, flash memory, SBSRAM, universal asynchronous 

receiver/transmitter (UART), joint test action group (JTAG), and other interface 

circuits like transceiver and complex programmable logic device (CPLD). Later, we 

will give more information to what have not been mentioned.  

(1) Flash Memory: 

It is a nonvolatile read-only memory that is electronically erasable and 

programmable, and it has a capacity of 128 Kbytes. When completing our 
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development, we can program the design into the flash memory. On the other 

hand, when we reset the DSP, it will automatically load the design from flash 

memory into internal program memory.  

(2) SBSRAM: 

SBSRAM works on the frequency of 132 MHz and has a capacity of 512 

Kbytes. There are two working modes determine what it is used for, called Map 

0 and Map 1. When Map 0 mode is set, it plays the role of program memory. 

When Map 1 mode is set, it is taken as general memory. 

(3) JTAG and UART: 

Both of them are interfaces of data transmission. JTAG is an interface 

compliant with IEEE 1149.1 standard interface, and it also connects with 

Innovate Integration Code Hammer PCI interface on PC to load the program 

from the software, Code Composer Studio (CCS). We can even stop the 

program and catch the values in memory through JTAG while debugging; 

UART is the other choice to connect with PC through RS-232 port. 

(4) Other Interface Circuit: 

CPLD offers four control signals to handle the connection with FPGA or 

other modules. 

 
Figure 3.7: Architecture of ‘C6701 DSP EVM 
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3.1.3.2 DSP Design Flow 

The Code Composer Studio (CCS) [24] provides an integrated development 

environment (IDE) to incorporate the software tools. CCS includes tools for code 

generation, such as a C compiler, an assembler, and a linker. It also has graphical 

capabilities and supports real-time debugging, which enables us to develop our design 

efficiently. The DSP design flow with CCS can be separated into the following parts. 

(1) Create Project: 

First of all, we need to create a project, and add the necessary files for 

building the project. The most important files are source files, which can either 

be C source files (.c) or assembly source file (.asm). Then we also require 

Linker Command File (.cmd) and a run-time support library file (.lib). Last, we 

may require some header files (.h) to be included. 

(2) Code Generation and Options: 

Various options are associated with code generation tools, such as C 

compiler and linker. We can set up Compiler Option and Linker Option to do 

further configuration if we require, or we can just use the default setting in most 

cases. 

(3) Building and Running the project: 

After finishing code generation, we can build and run the project. In this 

process, it compiles and assembles all C files using c16x and assembles the 

assembly files using asm6x. The resulting object files are then linked with 

run-time library support file using lnk6x. This generates an executable file that 

can be loaded into ‘C6701 processor and run. Then, we can load the program 

after a build. 

(4) Monitoring the Watch Window: 

Before monitoring the watch window, we need to verify that the processor 

is still running. After that, monitoring watch window allows us to change the 

value of a parameter or to monitor a variable we desire. Through monitoring, 

we can do debugging and regressive test until it works as we expect. 
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(5) Correcting Program Errors: 

Once an error occurs, the error message will be listed and being a link 

directly to the line where the error occurs. After making the appropriate 

correction, we have to build, load, and run the program to verify our results. 

 

3.1.4 USB 2.0 Module  

USB 2.0 Module uses CYPRESS CY7C68013 [25] as its core chip as shown in 

Figure 3.8, which includes a 24 MHz 8051 and a 4 Kbytes FIFO. The maximum data 

rate can be up to 480 Mbps. The FIFO provides the interface between USB 2.0 module 

and C6701 EVM. Figure 3.9 shows a diagram of the USB 2.0 module and its 

neighborhood. Through USB 2.0 module, we can transfer data, which comes from PC 

and will come to USB FIFO first, to DSP EVM. Also, USB 2.0 module can transmit 

data coming from DSP EVM to PC. We can connect PC with a web camera to generate 

video stream as our data source. 

  
Figure 3.8: USB 2.0 module 

DSPEVM
Module

FPGA

USB

PC Terminal

Cable

Web-Cam

USB

Aptix MP3CF

DSPEVM
Module

FPGA

USB

PC Terminal

Cable

Web-Cam

USB

Aptix MP3CF

 
Figure 3.9: USB 2.0 module and its neighborhood 
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3.1.5 AD and DA Modules  

In our MIMO-OFDM system, we use the dedicated AD and DA modules to do the 

conversion between digital and analog signals as illustrated in Figure 3.10. The major 

components of each module include eight AD/DA chips, clock source, four databuses, 

and eight I/O ports, and are descript as follows. 

1. AD/DA Chips: DAS825E and ADC900u are used as core chip respectively. 

2. Clock Source: It can be setup by the combination of JP1, JP2, and JP10 

jumpers. 

3. Databus: Through the configuration of virtual pins in Aptix® Explorer, 

databus can receive and sent signals from and to FPGA modules by specific 

cables. 

In addition, the output of DA contains eight resistors numbered from R219 to 

R226. When DA is connected to AD, we need to use 0.1 Ω resistors. But if we attempt 

to connect with the instrument that has 50 Ω input resistant, we must change resistors 

to 50 Ω to avoid the impedance mismatch problem, which will make signals decay. 
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Figure 3.10: AD and DA modules on fast prototyping platform 
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3.1.6 Debugging Tools  

As an old saying goes, “What is a workman without his tools.” In our fast 

prototyping system, we do have some useful tools for debugging as follows.  

1. Logic Analyzer: We use Agilent 16702B LA to perform the major task of 

debugging. There are two modules installed on it. One is 16522A Pattern 

Generator Module, and the other is 16711A Measurement Module. The former 

is mainly used for generating desired signals, such as the reset signal or some 

selection signals for model selection; the latter is used for probing signals in 

FPGA on Aptix® MP3CF platform by connecting specific pods to the slots on 

Aptix®. 

2. Oscilloscope: It is usually used when transmitted signals are prepared by 

FPGA and sent to the DA module by specific cables. Therefore, we can verify 

the waveform shown in the oscilloscope. For OFDM signals following IEEE 

802.11a, we may expect to see the waveform containing preambles in the form 

of square wave in the head part and OFDM symbols follow behind those 

preambles. 
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3.2 Self-designed Platform  

In order to approach a real wireless communication system, the multi- 

synchronous and high-speed bus FPGA design, combined with our module-based RF, 

AD/DA, and MAC/BB hardware system, becomes the best solution. Our laboratory 

has finished and successfully tested RF, AD/DA and MAC/BB boards. The 

development environment is shown in Figure 3.11, and the close-up shot of main board 

is shown in Figure 3.12, where four Xilinx Virtex II 6000 FPGAs are mounted in 

MAC/BB board, and each MAC/BB board is able to connect with at most two AD/DA 

and two RF modules. 

In order to avoid the interference between high speed digital bus, those layouts 

and interconnections of different modules shall be handled very carefully. Our 

measurements show that directly connected modules did achieve feasible solution 

which reduces the risk of facing interconnection problems.  

Further analysis and evaluation during development are given in the following 

sections. 

 

 
Figure 3.11: Development environment of self-designed platform 
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Figure 3.12: Main board of self-designed platform 

 

3.2.1 RF Module  

The RF module, as shown in Figure 3.13, consists of MAX2828, which is 

specifically designed for single-band IEEE 802.11a applications covering world-band 

frequencies of 4.9 GHz to 5.875 GHz. MAX2828 includes all circuitry required to 

implement the RF transceiver function, providing a fully integrated receive path, 

transmit path, voltage-controlled oscillator (VCO), frequency synthesizer, and 

baseband control interface. Only the RF switches, RF bandpass filters (BPF), RF 

baluns, and a small number of passive components are required to form the complete 

RF front-end solution. Because the balance of I/Q signals will impact on the waveform 

of RF output, the RLC components had been fine tuned. Besides, we also tested the 

frequency accuracy and power level of transmitted carriers in our interested band from 

5.15 GHz to 5.875 GHz. One of those measurements is shown in Figure 3.14; the 

power level shall be further improved with fine tuning of matching circuits. We used 

3-wires (Clock, Data and Latch) to control the RF module from PC currently, and then 

the control mechanism will be integrated into MAC/BB after verification. 
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Figure 3.13: RF module on self-designed platform 
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Figure 3.14: Measured carrier spectrum form RF module 

 

3.2.2 AD and DA Modules  

The AD/DA module, as shown in Figure 3.15, consists of ADS2807 and 

DAC2900. ADS2807 is an analog to digital converter which provides a high 
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bandwidth track-and-hold and gives excellent spurious performance up to and beyond 

the Nyquist rate. The measured timing diagram is shown in Figure 3.16, which 

indicates the valid data during the high clock period. In addition, it is recommended 

that data hold time is 3.5 ns for saving data from bus to SRAM, which had been 

verified on our AD/DA boards too. DAC2900 is a digital to analog converter which 

offers exceptional dynamic performance, and enables to generate very-high output 

frequencies suitable for “Direct IF” applications. It has been optimized for 

communications applications in which separate I and Q data are processed while 

maintaining tight offset matching. 

 
Figure 3.15: AD/DA module on self-designed platform 
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Figure 3.16: Measured data waveform from AD/DA module 

3.2.3 MAC/BB Platform  

The MAC/BB is an FPGA-based module which is composed of four Xilinx 

Virtex-II 6000 modules, as shown in Figure 3.17. It outperforms conventional DSP 

processors on a board-for-board comparison, resulting in significant improvements in 

processing speed, size, weight, power, and costs. Combining a wide variety of flexible 

features and a large range of densities up to 6 million system gates, the Virtex-II 6000 

enhances programmable logic design capabilities and is a powerful alternative to 

mask-programmed gates arrays. With its advantages of very fast data rate, it can 

achieve full duplex and real time operating for wireless communication. The VHDL 

codes had been used to drive LEDs by differential clock rate from oscillator to verify 

its functionality. 

 
Figure 3.17: MAC/BB platform 

 

3.2.4 USB Interface  

In order to have a convenient input for the audio/video signal in the future, USB 

interface was designed into the platform, which is shown in Figure 3.18. It will comply 
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with the USB specification revision 1.1, and be upgraded to USB 2.0 if necessary. The 

compatibility test is conducted with compliance software run at PC equipped with PCI 

to UTMI compliant interface card during test stage. This will make sure we can easily 

connect our platform with any signal source with USB port. The built-in USB interface 

codes for FPGA was defined and implemented. 

 

Figure 3.18: USB module on self-designed platform 

 

3.2.5 Debugging Tools  

Besides the logic analyzer and oscilloscope mentioned before, two additional 

instruments, spectrum analyzer and vector signal analyzer, are adopted to capture and 

analyze RF signals. 

1. Spectrum Analyzer: Agilent PSA Series Spectrum Analyzer E4443A is 

chosen. It offers high-performance spectrum analysis up to 6.7 GHz and 

beyond with swept-tuned measurements with digital Resolution-BandWidths 

(RBW) filters. In our debugging flow, E4443A capture the transmitted 5.2GHz 

signals, down convert them to 70MHz intermediate frequency (IF), and then 

fed out to vector signal analyzer to perform advanced analysis. Its block 

diagram is shown in Figure 3.19. 

2. Vector Signal Analyzer: Instead of swept-tuned measurements, vector signal 

analyzer 89600S performs fast Fourier transform (FFT) measurements with 
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digital FFT filters, which can measure all signal characteristics (i.e. phase) and 

avoid very long sweeps times required for narrow RBW. Figure 3.20 shows the 

block diagram of vector signal analyzer, notice that it is PC-based and 

therefore machines only capture the RF signal accurately and feeds to PC, 

where final analysis are performed on PC. 

 

  

Figure 3.19: Spectrum analyzer block diagram 

 

Figure 3.20: Vector signal analyzer block diagram 
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3.3 Summary  

In this chapter, we introduce two adopted platforms, e.g., fast prototyping 

platform and self-designed platform. These two platforms both are equipped with 

FPGA, USB, and AD/DA modules; moreover the self-designed platform provides RF 

modules by which realistic wireless channel characteristics can be generated. Finally, 

corresponding debugging tools are mentioned; in particular the logic analyzer and 

oscilloscope are used to measure baseband signals, and spectrum analyzer and vector 

signal analyzer are used to capture and analyze RF signals. 
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Chapter 4  
 
MIMO-OFDM System Realization    
 

The 5 GHz MIMO-OFDM system is implemented on the FPGA-based hardware 

introduced in Chapter 3. It demonstrates both diversity and multiplexing schemes that 

use MIMO technique in conjunction with OFDM. In this chapter, a complete design 

flow including MATLAB verification, FPGA realization, ModelSim simulation, and 

experimental results will be presented, where the principles and concepts of circuit 

design on FPGA will specially be emphasized. 

 

4.1 Design Flow  

Digital Signal Processing (DSP) design has traditionally been divided into two 

types of activities — systems/algorithm development and hardware/software 

implementation. The majority of DSP system designers and algorithm developers use 

the MATLAB language for prototyping their DSP algorithm. Hardware designers take 

the specifications created by the DSP engineers and create a physical implementation 

of the DSP design by creating a register transfer level (RTL) model in a hardware 

description language (HDL) such as VHDL and Verilog. Our MIMO-OFDM system 

can be regarded as a DSP system, and Figure 4.1 shows the design flow we adopt. 

First, we have to program a floating-point MATLAB code in order to not only 

verify the algorithms mentioned in Chapter 2 but to evaluate the system performance. 

Then, the floating-point MATLAB code is required to be manually converted into a 

fthe ixed-point MATLAB code. Subsequently, RTL model is established, where we 
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choose VHDL as our hardware description language and Xilinx ISE 6.1 as our 

development tool. Next, this RTL implementation is simulated by ModelSim SE 5.5e 

and synthesized onto a netlist of gates using Synplify Pro 8.2. Finally, the netlist of 

gates is placed and routed onto Xilinx FPGAs using Xilinx ISE 6.1. The detailed 

design flow will be discussed in the following sections 

Quantization

Coding

RTL Simulation
Logic Synthesis

Place & Route

Floating point MATLAB .m

Fixed point MATLAB .m

Bit true VHDL/Verilog .vhd/.v

Netlist of gates .edf

FPGA bit stream .bit

DSP Designer
(Manual)

Hardware Designer
(Manual)

Automatic

Automatic

 

Figure 4.1: FPGA design flow 

 

4.2 MATLAB Verification  

As developing a communication system, MATLAB is one of the best candidates 

for us to model and simulate the system by means of its powerful matrix computation 

ability and well-defined communication functions. In addition, its 2D or 3D graphic 

interface also makes designers easily illustrate the system performance with the effects 

of simulated channel and quantization error and so on. In this section, both 

floating-point and fixed-point verifications will be mentioned. In the floating-point 

verification stage, we attempt to verify the accuracy of communication algorithms and 

sketch out the performance of the system, which is considered as the basis in 

comparison with fixed-point cases. On the other hand, in the fixed-point verification 

stage, we need to establish a fixed-point system model by using a quantization 

algorithm first, and then perform advanced fixed-point analysis. 
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4.2.1 Floating-Point Verification  

In this section, the function blocks and adopted algorithms mentioned in Chapter 

2 will be verified first, and then the whole system will be constructed and the system 

performance will be expressed. 

1. RRC: 

    In our system, a 25-tap root raised cosine filter with roll off factor β=0.22 

is designed, and its impulse response and frequency response is shown in 

Figure 4.2. It can be clearly observed in the frequency response that signals 

with frequency higher than approximately 12 MHz are filtered (the sample rate 

equals 40 MHz), that is, the waveform in time domain will become much 

smoother, and therefore can effectively combat the aliasing in AD/DA 

conversion and the ISI problem. Figure 4.3 shows the waveforms before and 

after RRC pulse shaping. Waveform in part (a) is a series of BPSK modulated 

signals. After the pulse shaping in transmitter side RRC, the smoother 

waveform will look like part (b). Next the waveform passing through RRC in 

the receiver side is shown in part (c). Finally, the eye diagram after RRC 

shaping is illustrated in Figure 4.4.  

 

Figure 4.2: Impulse and frequency response of RRC filter with β=0.22 
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Figure 4.3: (a) Original waveform (b) RRC shaped waveform on transmitter 

(c) RRC shaped waveform on receiver 

 

Figure 4.4: Eye diagram of RRC shaped waveform 

2. Timing synchronization: 

    As we have mentioned in Section 2.3.1, a data-aided timing 

synchronization algorithm is adopted in our system. Here we pass our 

transmitted signal through a Rayleigh fading, multipath channel, and then 

process the post-RRC received signal by timing synchronization block. The 

output waveform is shown in Figure 4.5. It can be observed that there is a main 

hill, whose summit is our reference frame start position. Because of multipath 
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effect, there are also many smaller hills hidden inside the main hill; however 

they will all be neglected because our algorithm will only choose the most 

reliable, e.g., the most highest peak, as our reference start position.  

 
Figure 4.5: Coarse timing synchronization output 

3. Channel estimation: 

    The channel estimation result is shown in Figure 4.6, where the above one 

is the real channel frequency response, and another one is the estimated 

channel frequency response. We can see these two curves are almost the same 

except the amplitude of the below one is one-time bigger than another, which 

is caused by the space-time structure in long preamble. 

 
Figure 4.6: Real and estimated channel frequency response 
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4. System performance: 

    The floating-point BER to SNR system performance is shown in Figure 

4.7, where a Rayleigh fading channel with AWGN noise is generated, and the 

total path number is four, including one main path and three multipaths. We 

can see that under the same SNR, the BER in the STBC case is much smaller 

than the BER in the VBLAST case, and the gap becomes bigger and bigger as 

SNR increases. 

 

Figure 4.7: Floating-point system performance 

 

4.2.2 Fixed-Point Verification  

Before fixed-point verification, we need to convert the floating-point MATLAB 

code to the fixed-point MATLAB code by the quantization algorithm first. Since a 

quantization procedure is very complicated and time-consuming due to its nonlinear 

characteristics, we leave the detailed descriptions of this part to Chapter 5. In this 

chapter we will only show the results available in the quantization algorithm. 

 Table 4.1 shows the result word lengths available in the quantization algorithm, 

where EM means error metrics, which can represent the level of the quantization error. 

The bigger the EM is, the more serious quantization error we get. Otherwise, R means 

the required hardware resources; m and p indicate the integer and fractional lengths. 

The detailed definitions of these parameters will be detailed explained in Chapter 5. 
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 Based on the word lengths shown in Table 4.1, we then construct the fixed-point 

system model on MATLAB, and perform the fixed-point verification. Figure 4.8 shows 

a fixed-point BER to SNR system performance. We observe that no matter in the 

STBC or VBLAST case, the curves drift to right-upper side when the number of EM 

increases, which indicates the system performs worse as the level of quantization error 

increases. Furthermore, we also observe that in low SNR, channel noise dominates the 

system performance, therefore the differences between EMs are not obvious. On the 

other hand, in high SNR, the quantization error noise dominates the system 

performance, therefore the gap between different EMs becomes bigger and bigger. 

Table 4.1: Word lengths under different EMs 
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Figure 4.8: Fixed-point system performance 
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4.3 FPGA Realization  

With the introduction of advanced Field-Programmable Gate Array (FPGA) 

architectures which provide built-in DSP support such as embedded multipliers and 

block RAMs on the Xilinx Virtex-II and the multiply-accumulators, DSP Blocks, and 

MegaRAMs on the Altera Stratix, a new hardware alternative is available for designers 

who can get even higher levels of performances than those achievable on general 

purpose DSP processors. 

In our implementation, we adopt Xilinx Virtex-II series as our FPFA and VHDL 

as our hardware description language. The programming concepts that deserved to be 

mentioned in high level language like MATLAB and in hardware description language 

like VHDL are quite different. In general, high level language keeps its temporary data 

in a form of variables, and simply assigns the stored variable to another one which is 

used to be the input of next stage or functions if necessary, whereas hardware 

description language may need extra data buffer and related components to perform the 

same task. Since we have no choice but to add RAMs, register, as data buffers, some 

index-related jobs can be performed in the same time, such as zero padding, bit 

reversing, or adding cyclic prefix and so forth. The following sections will give readers 

more concepts and clear description about how we design in FPGA.  

 

4.3.1 Design Principles 

Before going through the circuit design of our components in the MIMO-OFDM 

system, some important design principles need to be mentioned first. 

1. Parallel processing:  

    Since FPGA has a highly flexible architecture, and can support any level 

of parallelism, we can significantly enhance the data throughput by parallel 

processing. Taking a generally used function, FIR filter, for example, an FIR 

filter consists of many multiply-and-accumulate operations, and it will be 

time-consuming if only a single, fixed multiply-and-accumulate unit is used. 

Hence sufficient multiply-and-accumulate units are always realized. 
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    The STBC encoder in the transmitter is another good example of parallel 

processing, since data of two successive symbols are required to do STBC 

encoding, we then can transfer them simultaneously form the previous block to 

the STBC encoding block. By doing so, we don’t need to buffer the first 

symbol and start to do STBC encoding until another symbol serially arrives. 

2. Avoid critical path problem:  

    Critical path problem is often faced by designers. When the delay of a 

circuit is determined by the delay of its longest sensitizable paths (such paths 

are called critical paths), the problem of dealing with the delay of a circuit is 

called critical path problem. Sometimes a complicated numerical computation 

is carried out in a block, and thus many summations and multiplications are 

serially executed in a path within a single clock period. Although high speed 

multiply-accumulators are embedded inside Xilinx FPGAs, these operations 

cannot be completely executed in time within a single clock period; therefore 

error results will be fed out. In order to avoid this kind of problem, registers 

will be inserted in the path and therefore the whole computation will be 

separated into few sections and can be executed within few clock periods 

depending on how many registers are inserted. 

3. Reuse RAMs or ROMs: 

    In our design, RAMs and ROMs are widely used, and most of FPGA 

resources are occupied by them. Under this circumstance, to save or reuse 

RAMs and ROMs becomes the most crucial key to save total circuit area. 

Therefore in some proposed circuit blocks, alternatively reusing of few 

small-sized RAMs is adopted instead of only one-time using a single 

huge-sized RAM. 

4. Substitute real number computation for complex number computation: 

    Inevitably, large amount of complex number computations are included in 

our MIMO-OFDM system. In MATLAB, these complex number computations 

can be easily computed, whereas become inconvenient in VHDL since 

complex number operations cannot be carried our directly in VHDL. Hence, in 
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order to deal with complex number computations, the original complex 

number arithmetic is separated into many real number segments. For example, 

one simple complex number computation, (X+Y)/Z, will become 

(ae+ce+bf+df)/(e2+f2)+(-af-cf+be+de)i/(e2+f2) after the rearrangement, 

where X=a+bi, Y=c+di, Z=e+fi, and a, b, c, d, e, and f are real numbers. 

 

4.3.2 Circuit Design  

In the following paragraphs, components are roughly divided into transmitter 

components and receiver components, and all circuits follow the principles introduced 

in the previous section. Additionally, every component is hierarchically designed. 

 

4.3.2.1 Circuit Design of Transmitter 

Figure 4.9 shows the overview of the circuit design of the transmitter. All circuits 

are synchronous, and a pipelined architecture is adopted where the clock is used to 

control the data transfer simultaneously. All delay blocks make use of components 

SRL16 to implement a progressive delay line, where SRL16 is an exclusive feature of 

Virtex architecture that allows users to save a lot of room and increase tremendously 

the performance. Detailed circuit designs of function blocks are described as follows. 
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Figure 4.9: Circuit design of transmitter 
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(1) Convolutional encoder: 

Figure 4.10 shows our circuit design of the convolutional encoder, named 

conv. First the source data are fed into an encoder, conv_encoder, which 

encoding rule follows what has been discussed in Section 2.2.1. Then three 

parallelly generated bits da, db, and dc are passed into the next circuit – 

conv_ram_ctrl. The main function of conv_ram_ctrl is to generate control 

signals, such as write enable signal (wen), and writing or reading addresses 

(address_1-3). Besides control signals, da, db, and dc are buffered for one clock 

period for the sake of the synchronization of data and control signals. Finally, a 

particular RAM is used, where it allows three input signals simultaneously to be 

written into three different allocations according to respective addresses in 

writing stage, and output only one signal in reading stage. RAM size depends 

on which MIMO technique is adopted in the system. When spatial diversity 

scheme is chosen, it requires at least 48×6×3=576 memories to store, therefore a 

1024×1 RAM is realized. On the other hand, a 2048×1 RAM is chosen in spatial 

multiplexing scheme. In addition, the write enable signal wen is fed out so that 

the next stage can know when to read by recognizing wen changing form high 

to low (form writing mode to reading mode). 
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Figure 4.10: Circuit design of convolutional encoder 

 

(2) Interleaver / de-interleaver: 

The circuit designs of the interleaver and de-interleaver are similar; 

therefore here we just explain the design concept of the interleaver. As we 

mentioned in Section 2.2.2, a block interleaving scheme is adopted. Hence the 
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interleaving will take place repeatedly in every symbol, which contains 96 bits 

through totally 576 bits (take the signal length of the spatial diversity scheme 

for example). By this reason, there are only two 128×1 RAM instead of a 1024×

1 RAM embedded inside, which can dramatically save FPGA resources. 

Inter_ram_ctrl will generate a writing address with a interleaved order, and 

simultaneously generate sequential reading address. Then, by scheduling of 

multiplexer and de-multiplexer, the two 128 × 1 RAMs will alternately 

interleaved store and then sequentially fed out the data from one RAM to 

another. In this way, the input signals are successfully interleaved. 
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Figure 4.11: Circuit design of interleaver 

 

(3) Mapper / de-mapper: 

In our design, the de-mapper block is integrated with another block, which 

will be discussed in the following paragraphs. Here we see the circuit design of 

mapper first. In mapping stage, two successive input bits are going to be 

modulated into in-phase and quadrature parts, hence a adopted QPSK 

modulation scheme is carried out in mapper_ram_ctrl, and then the modulated 

signals, including I part and Q part, are fed into adopted 512×2 RAMs along 

with control signals. Here word lengths are chosen to be 2 in order to represent 

+1 and -1 in 2’s complement method. For the sake of convenience in the next 

stage, the successive mapped data symbols are fed out simultaneously by 

arranging the order of reading addresses deliberately. 
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Figure 4.12: Circuit design of mapper 

 

(4) STBC encoder with pilot zero tones adder: 

This circuit is suitable for the spatial diversity scheme, and the structure is 

very similar to what we have introduced in previous paragraphs. After feeding 

in successive mapped data symbols, the STBC scheme is executed in 

stc_ram_ctrl and then separate data into two streams, which are respectively 

stored into four 512×2 RAMs. These RAMs are designed to allow two signals 

written in the writing stage and one signal read in the reading stage. Moreover 

pilot tones and zero tones are also imbedded into the output signals of this stage. 

stc_ram_ctrl ram_stc1_i
di_1
di_2
ADDR_1
ADDR_2

do
512

2

ram_stc1_q
di_1
di_2
ADDR_1
ADDR_2

do
512

2

ram_stc2_i
di_1
di_2
ADDR_1
ADDR_2

do
512

2

ram_stc2_q
di_1
di_2
ADDR_1
ADDR_2

do
512

2

mod_even_i_in
mod_even_q_in
mod_odd_i_in
mod_odd_q_in

stc1_even_i_out
stc1_odd_i_out

address_even

stc1_even_q_out
stc1_odd_q_out

stc2_even_i_out
stc2_odd_i_out

address_odd

stc2_even_q_out
stc2_odd_q_out

22

9

9

22

22

22

22

22

22

22

2

2
2

2

2

2

2

2

STBC+pt_zt

clk
RST

01 1101 11

01 1101 11

01 1101 11

01 1101 11

01 1101 11

 
Figure 4.13: Circuit design of STBC encoder with pilot zero tones adder 
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(5) De-multiplexer with pilot zero tones adder: 

Opposite to the previous circuit, this circuit is designed for the spatial 

multiplexing strategy. Since it just separates the input signal into two 

independent streams without advanced space-time coding, the circuit design is 

much simpler than the previous circuit. 
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Figure 4.14: Circuit design of de-multiplexer with pilot zero tones adder 

 

(6) FFT / IFFT: 

Fast Fourier transform (FFT) is a type of discrete Fourier transform (DFT), 

but only faster with fewer computations (summations and multiplications). A 

DFT takes N2 computations to calculate a transform for N points, whereas the 

FFT takes around Nlog2N computations to complete the same thing. Here we 

adopt a 64-tap FFT which is provided by Xilinx and can operate 20-bit complex 

(20-bit real, 20-bit imaginary) samples, and a rough design concept is illustrated 

in Figure 4.15. 

A pipelined implementation of a 64-point FFT requires a simple pipeline 

consisting of 6 butterfly computation modules. This method operates on two 

data points per clock cycle, yielding an effective data rate that is twice the clock 

rate, but requires customized butterfly computation modules for each stage of 

the FFT computation. Since a butterfly computation is carried out, the output 

signal will be in bit-reverse order. 
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Finally, according to the results available in the quantization algorithm, the 

word length of IFFT (FFT) outputs should be truncated from 20 bits to 10 bits 

(14 bits) Furthermore, an additional saturation circuit is attached behind IFFT to 

mitigate PAPR problem. 

Butterfly
computation Delay Butterfly

computation Delay Butterfly
computation Delay

Butterfly
computation Delay Butterfly

computation Delay Butterfly
computation

20

FFT
xin
yin

20 Xout
Yout

 

Figure 4.15: Circuit design of fast Fourier transform 

 

(7) Oversampler and cyclic prefix adder: 

Signals must be not only oversampled but also cyclic prefix added in this 

circuit. Moreover, the post-IFFT bit-reverse ordered signal need to be sorted to 

be sequential order. We achieve these three purposes by merely arranging the 

order of address when data is written into and read out from 1024×10 RAMs. 

The arrangement of address order in writing mode will not only sort signal to 

sequential order but lead to zero padding between every signal, also called 

oversampling; whereas the arrangement in reading mode will let output signal 

look like that a copy of the last 1/4 part of OFDM symbol is attached to the 

front of itself, that is, cyclic prefix. 
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Figure 4.16: Circuit design of oversampler and CP adder 
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(8) Preamble generator: 

As we described in Chapter 2, preambles are BPSK modulated and consist 

of ten short preambles and two long preambles. In our design, one oversampled 

short preamble and one oversampled long preamble are stored in 256×2 ROMs. 

We repeatedly read out the short preamble ten times and the long preamble two 

times, then total series of data form a complete preamble channel. Since 

preambles are also STBC encoded, a pmb_gen_stbc block is equipped in first 

antenna preamble generator. 
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Figure 4.17: Circuit design of first and second preamble stream generators 

 

(9) Root raised cosine filter: 

Figure 4.18 shows the circuit design of the 25-tap RRC filter, and we can 

see that all 25 multiply-and-accumulate operations are executed in one clock 

cycle; such parallel processing can maximize data throughput. Furthermore, 

basing on the results available in the quantization algorithm, coefficients 

embedded inside are truncated to 13 bits and the output word lengths in the 

transmitter RRC and receiver RRC are also truncated to be 10 bits and 11 bits. 
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Figure 4.18: Circuit design of RRC filter 
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4.3.2.2 Circuit Design of Receiver 

Figure 4.19 shows the overview of the circuit design in the receiver. Certainly, a 

pipelined architecture is adopted and more delay blocks are adopted than in transmitter. 

The circuit designs of function blocks are given as follows. 
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Figure 4.19: Circuit design of receiver side 

 

(1) Timing synchronizer: 

The timing synchronization block diagram is shown in Figure 4.20. First, 

in order to do two-time downsampling, the switch block is designed to generate 

two times period clock sources. After that, the following matched filter blocks 

(sp_match) are designed to match short preambles. After every matched filter 

successfully matches short preambles and generates ten impulses, the 

successive series of comparators (s_comp) are processed to find out the 

maximum absolute value among 8 paths, e.g., to find out the most reliable 

reference. Next, this maximum sequence is delayed by 16 clocks and sum up to 

enhance the peak values by the delay_sum block. Finally, an FIR filter (FIR) 

with response of some repeated {0,0,0,…,0,1} is applied to rake the values of 
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each impulse, and then generates a hill-like output waveform, where the time 

index of the summit of this hill can be regarded as a start time of the packet. The 

circuit design of the matched filter and the FIR filter is similar to the RRC filter, 

where a maximum data throughput is achieved by parallel processing.  
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Figure 4.20: Circuit design of timing synchronizer 

 

(2) Oversample and cyclic prefix remover: 

Based on the timing information available in the time_sync block, 

oversample and CP are removed by arranging the address order in this block. 
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Figure 4.21: Circuit design of oversample and CP remover 
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(3) Pilot zero tones mover: 

In this stage, we reserve all data tones, remove zero tones, and gather pilot 

tones together for convenience of the following procedures. Remembering that 

these post-FFT data are in bit-reverse order, therefore the order of writing 

address will be extremely complicated. Here we store our address order in a 

ROM named index_rom in advance, and sequentially read out the data to be the 

writing address. Furthermore, to achieve a higher data rate, the stored data are 

parallelly fed out symbol by symbol from RAMs, therefore the following stages, 

such as channel estimator, phase estimator, STBC detector, or VBLAST 

detector, can easily process succeeding symbols at the same time. 
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Figure 4.22: Circuit design of pilot zero tone mover 

 

(4) Channel estimator: 

Long preambles are used to carry out the major task of channel estimation. 

As shown in Figure 4.23, the frequency domain chips of the original long 

preambles is stored in ROMs, where the FFT output of the received long 

preamble is also fed into this stage and decoupled by the rule of STBC in 

accumulator. Therefore, the channel frequency response can be obtained simply 

by dividing these two outputs in ch_est_div blocks. Finally, the successive 

blocks truncate, modify the output of dividers and then store them in RAMs. 
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Figure 4.23: Circuit design of channel estimator 

 

(5) Phase estimator: 

In Section 2.3.4, we have discussed the phase estimation algorithm, and the 

estimated phase can be figured out by Eq. 2.8 with an arc tangent operation . 

However, when it turns to FPGA realization, we care about the relative 

amplitude between real and image parts of the estimated phase but not the exact 

angle value, since we can compensate phase shift by multiplying the conjugate 

estimated complex phase and the received data. Therefore, no arc tangent circuit 

is implemented in the phase estimation block shown below, and no sine or 

cosine circuits are required to be implemented in the STBC detector or 

VBLAST detector, either. That can save a lot of hardware resources. 
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Figure 4.24: Circuit design of phase estimator 
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(6) STBC decoder: 

The STBC decoder and the de-mapper are integrated in a single block in 

order to save additional RAMs. The estimated channel information, estimated 

phase information, and post-FFT data are first fed into Accumulator block, 

where complicated complex number computations are executed inside. Here we 

do not divide the diversity gain 
2 2 2 2

11 21 12 22( )k k k kH H H H+ + +  as shown in 

Eq. 2.14 since only a signed bit is required to be checked in the following 

QPSK de-mapping block. The detected results are transferred to the next block 

ram_ctrl where de-mapping is executed inside. Because the estimated channel, 

phase, and received data are parallelly sent into this stage, the de-mapped data 

are parallelly figured out and then stored into a 1024×1 RAM. 
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Figure 4.25: Circuit design of STBC decoder 

 

(7) VBLAST detector: 

The computations in the VBLAST detector is much more complicated than 

what in the STBC detector, therefore the critical path problem is much severer 

too. In order to explain how we deal with this problem, we must first introduce 

how we separate the original complex number computations. Figure 4.25 shows 

our separating strategy, where whole complex number arithmetic is separated 

into 7 blocks and detailed real calculating tasks in every block are shown in 

Table 4.2. 



 

 - 67 - 

1

a,b

e,f w

ztmp

a,b
H

z

phi

2
4

dt_1st
5

ztmp

d

a,b

6
g,h

7

a,b

dt_final

Accumulator

clk

3

 
Figure 4.26: Original real number calculating strategy in VBLAST 
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dt2_1st_q=w12_i*z1tmp_q+w12_q*z1tmp_i+w22_i*z2tmp_q+w22_q*z2tmp_i;

g1=z1tmp_i-a21*d2_i+b21*d2_q;   h1=z1tmp_q-a21*d2_q-b21*d2_i;
g2=z2tmp_i-a22*d2_i+b22*d2_q;   h2=z2tmp_q-a22*d2_q-b22*d2_i;
g3=z1tmp_i-a11*d1_i+b11*d1_q;   h3=z1tmp_q-a11*d1_q-b11*d1_i;
g4=z2tmp_i-a12*d1_i+b12*d1_q;   h4=z2tmp_q-a12*d1_q-b12*d1_i;

dt1_final_i=a11*g1+b11*h1+a12*g2+b12*h2;
dt1_final_q=a11*h1-b11*g1+a12*h2-b12*g2;
dt2_final_i=a21*g3+b21*h3+a22*g4+b22*h4; 
dt2_final_q=a21*h3-b21*g3+a22*h4-b22*g4; 

d

 

Table 4.2: Tasks in VBLAST accumulator 

 

However, by experimenting, these seven tasks cannot be completely 

executed in a single clock period. Therefore, the original dividing strategy is 

modified as shown in Figure 4.27. We can see that two accumulators are 

realized, and only three to four real calculating tasks are required to be executed 

in a clock period, thus the accurate results can be figured out in time. By this 

kind of rearrangement, critical path problem is resolved. Final circuit design of  

the VBLAST detector with integration of de-mapper is shown in Figure 4.28. 
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Figure 4.27: Modified real number calculating strategy in VBLAST 
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Figure 4.28: Circuit design of VBLAST detector 

 

(8) Viterbi decoder: 

The circuit design of the Viterbi decoder is shown in Figure 4.29. Three 

main blocks are included: branch metric generator (BMG); add, compare, and 

select (ACS) block; and the trace back unit (TBU). The BMG unit generates the 

branch metrics for each symbol of the input sequence by comparing the 

received code symbol with the expected code symbol for each connection of the 

trellis (state) and counts the number of different bits. For a 1/3 rate code 

adopted in our system, there are eight possible symbol combinations in the 

encoded sequence: 000, 001, 010, 011, 100, 101, 110, and 111; therefore eight 

BMG units are implemented in BMG block as shown in Figure 4.30. 
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Figure 4.29: Circuit design of Viterbi decoder 
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Figure 4.30: Circuit design of branch metric generator 

 

The ACS unit is the heart of the Viterbi decoder. Each node in the trellis 

diagram corresponds to an ACS unit in the corresponding Viterbi decoder. 

Therefore, referring to the trellis diagram shown in Figure 2.8, there should be 

totally 16 ACS units in the ACS block as shown in Figure 4.31. The ACS unit 

has 4 inputs (two branch metrics and two path metrics) and two outputs (the 

new path metric and the survivor bit). The survivor bit is the most important 

information generated by the ACS unit. It indicates which sum between an input 

path metric and a branch metric generated the smallest result and was selected 

as the output path metric or local winner. 
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Figure 4.31: Circuit design of add, compare, and select block 

 

The ACS block assigns the measurement functions to each state, but the 

actual Viterbi decisions on encoder states are based on the trace back operation 

to find the path of the states. Using the trace back operation, every state from a 

current time is followed backwards through its maximum likelihood path. The 

point at which the corrected bit streams starts is called the merger point (also 

called the trace back depth). The performance of Viterbi decoder largely 

depends upon the trace back depth. The increase in trace back depth increases 

the complexity and hardware exponentially so one has to trade off between the 

performance level and the complexity and hardware. 

Normally for decoders using non-punctured codes, the trace back depth 

equals five-times constraint length, which is sufficient to decode the correct 

output in the presence of noise. In our system, the constraint length is 5, 

therefore twenty-five trace back depth is required. We adopt a 16×32 register 

array to store the path of the states. Comparing with original 16×192 (STBC) or 

16×384 (VBLAST) register array, a large amount of FPGA resources are saved. 
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4.4 ModelSim simulation 

When developing an FPGA system, ModelSim simulation can help designers 

developing efficiently and accurately. It can pull out all signals and simulate how they 

work simultaneously without the limitation of the number of debugging pins, therefore, 

designers can save a lot of time downloading to FPGA and directly examine the 

changes and interactions between signals. Figure 4.32 and 4.33 shows the data flows in 

STBC and VBLAST system. In STBC case, total flow spends approximately 110 us. 

On the other hand, VBLAST case spends approximately 150 us. VBLAST spends 

more time than STBC because that two times source data are required to be dealt with. 

 

Figure 4.32: STBC ModelSim simulation result 

 

Figure 4.33: VBLAST ModelSim simulation result 
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In addition to total data flow period, some design concepts such as parallel 

processing and overlapped processing also can be observed through above two figures. 

Figure 4.34 shows the transmitted waveform. Signal in first 16 us is preamble channel, 

which is BPSK modulated; the rest of data are OFDM symbols. 

 

Figure 4.34: Transmitted waveform of MIMO-OFDM system 

 

4.5 Experimental Results  

There are two platforms for us to download our baseband codes and perform the 

advanced verification. In order to take account of interaction between other modules 

such as DSP, USB, and AD/DA on these two platforms, modification needs to be 

executed frequently. Therefore to synthesis, map, and place and route iteratively seems 

to be unavoidable and always waste a lot of time. Besides time consuming, the 

insufficiency of FPGA gate count becomes another problem, especially on the 

VBLAST receiver side. Therefore we must try our best to save gate count, and that is 

an important reason why we try to find out a quantization algorithm that can minimize 

the hardware resource requirement. Table 4.3 shows time and area consumption in our 

developing flow, where whole design flow including developing transmitter and 

receiver takes 2 to 4 hours. Therefore to test a system is quite time consuming. 

Table 4.2: Synthesis and P&R information 
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4.5.1 Fast Prototyping Platform  

In the fast prototyping platform, we successfully integrate FPGA, DSP, USB, and 

AD/DA modules. First the web camera catches the real time images continuously as 

the data source, and then passes it to DSP module. DSP, without any processing, 

directly pass the data to FPGA, and FPGA performs MIMO-OFDM transmitter 

algorithm. After the processing of transmitter, data are passed through DA and received 

by AD. Subsequently AD passes data to receiver FPGA, and start to decode the 

received data. Finally, the decoded data are sent back to PC through DSP and USB 

module, and shows through the self-developed application software in PC. We can 

provide an user interface to demonstrate the real time transmitted and received images, 

as shown in Figure 4.35. In this figure, a 3×3 images set is located. The three columns 

represent transmit images, receive images, and error images respectively, whereas the 

three rows represent the synthesized images of all antennas, first antenna, and second 

antennas respectively. The real time bit error rate is also calculated and shown in the 

right hand side. 

 

 

Figure 4.35: Prototyping platform experimental result 
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4.5.2 Self-designed Platform  

In the self-designed platform, we attempt to establish a real wireless environment, 

under which the adopted algorithm can be tested. Figure 4.36 shows the experimental 

environment which has been shown in Chapter 3. First, source data are stored in a 

ROM in FPGA, and passed to DA after processing by transmitter algorithm on FPGA. 

Next, data are transmitted on the 5.2 GHz frequency band by the RF module, and a 

receive antenna is allocated near the RF module. Subsequently data are received by the 

receive antenna and passed to spectrum analyzer E4443A and vector signal analyzer 

89600S. Finally, received data are analyzed and shown on PC. Figure 4.37 shows the 

analyzed result, which can represent the effects of a real wireless channel. We can see 

that in frequency domain, the measured center frequency is 5.200152 GHz, and the 

occupied bandwidth (OBW) is approximately 20 MHz. In time domain, due to the 

mismatch between mixers in transmitter and receiver, preamble data (only transmitted 

in real part) is distributed into real and image parts in the receiver. Otherwise, owing to 

the effect of frequency offset, the slight swing in envelop of received data also can be 

observed.  

 

 
Figure 4.36: Self-designed platform development environment 
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Figure 4.37: Self-designed platform experimental result: received spectrum and 

waveforms on PSA and VSA 

 

After the received data pass through AD converter, all signals are digitalized and 

therefore can be measured by the logic analyzer easily. Figure 4.38 shows the 

waveform of timing synchronizer measured by the logic analyzer. As simulated in 

MATLAB and ModelSim, timing synchronization output forms a hill and the peak 

time index is regarded as the packet start time. 

 

Frame start

offset frame time - offset
PeakFrame start

offset frame time - offset
Peak

 

Figure 4.38: Self-designed platform experimental result: timing synchronization 

waveform on LA 
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Figure 4.39 shows the source data stream in transmitter, transmitted data stream, 

and detected data stream in the receiver, where the source data stream and the detected 

data stream are specially expanded below. By comparing the source data stream with 

detected data stream we can find out that they are exactly the same, which confirms 

that our algorithm does work successfully. 

 

 

Figure 4.39: Self-designed platform experimental result: source data and detected data 

waveform on LA 

 

4.6 Summary  

In this chapter, a complete communication system design flow is proposed, 

including MATLAB verification, FPGA realization, ModelSim simulation, and 

experimental results. Through this design flow, we finish developing a 2 × 2 

MIMO-OFDM system on two FPGA-based platforms, e.g., fast prototyping platform 

and self-designed platform. On the fast prototyping platform, we integrate our 

communication algorithm with web camera, and demonstrate real time video on the 

self-developed software interface. On the self-designed platform, real wireless channel 

effects can be generated by means of RF module, and some RF debugging instruments, 

which makes our system become much closer to real communication system. 
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Chapter 5  
 
Proposed Quantization Algorithm 
with Minimum Hardware 
Requirement 
 

The algorithms used by DSP systems are typically specified as floating-point DSP 

operations. On the other hand, most digital FPGA implementations of these algorithms 

rely solely on fixed-point approximations to reduce the cost of hardware while 

increasing throughput rates. The essential design step of floating-point to fixed-point 

conversion is not only time consuming, but also complicated due to the nonlinear 

characteristics and the massive design optimization space. In a bid to achieve short 

product cycles, the execution of floating to fixed-point conversion is often left to 

hardware designers, who are familiar with VLSI constraints. Comparing with the 

algorithm designers, this group often has less insight into the algorithm and depends on 

ad hoc approaches to evaluate the implications of fixed-point representations. The gap 

between algorithm and hardware design is even aggravated as algorithms continue to 

become more complex. Thus, a systematical method for floating to fixed-point 

conversion is urgently called for. 

In this chapter, a quantization algorithm which is especially suitable for 

communication systems is proposed, where hardware resources are minimized, and the 

equivalent quantization error is constrained within a specified limit. 
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5.1 Introduction of Quantization 

Numeric representation in digital hardware may be either fixed or floating-point. 

In fixed-point representation, the available bit-width is divided and allocated to the 

integer part and the fractional part, with the extreme left bit reserved for the sign (2’s 

complement). In contrast, a floating-point representation allocates one sign bit and a 

fixed number of bits to an exponent and a mantissa. In fixed-point, relatively efficient 

implementations of arithmetic operations are possible in hardware. In contrast, the 

floating-point representation needs to normalize the exponents of the operands for 

addition and subtraction. Synthesizing customized hardware for fixed-point arithmetic 

operations is obviously more efficient than their floating-point counterparts, both in 

terms of performance as well as resource usage. In the following paragraphs, some 

fixed-point quantization examples will be introduced. 

The first quantization example is shown in Figure 5.1, which illustrates two 

different fractional quantization methods. The full precision number 

“00110111101010000” represents 28496, and once we take the position of decimal 

point into account, the original number needs to divide 214 and therefore becomes 

1.7392578125. If we want to quantize the fractional part of this number from 14 bits to 

be 9 bits, two methods can be alternated, e.g., truncation and rounding. Truncation 

means to discard bits to the right of the least significant bit, that is, to remove right side 

“10000” directly, and the original number will lead to 1.73828125. Otherwise, 

rounding denotes to round the original number to the nearest representable value or the 

value farthest from zero if there are two equidistant nearest representable values. In 

rounding case, the quantized number will becomes 1.740234375, which is closer to full 

precision number than truncation case. Obviously, rounding performs better than 

truncation, yet will complicate the circuit and occupy more hardware resources. 

00001010111101100 00001010111101100

010111101100 010111101100
110111101100 110111101100

Full Precision

FIX_12_9_floor

FIX_12_9_round

28496/214 = 1.7392578125

1.73828125

1.740234375
 

Figure 5.1: Quantization example 1: truncation and rounding 
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Besides fractional part quantization, truncating the integer part is also feasible. 

Figure 5.2 figures out the second example about how to truncate the integer part. Full 

precision number is 13.6875, and there are 5 bits including 1 sign bit to represent 

integer part. If we want to truncate integer part to 3 bits, saturation or wrapping can 

be alternatively adopted. In saturation case, the original number is saturated to the 

largest positive (or maximum negative) value; whereas wrapping case discards any 

significant bits beyond the most significant bit. In this example, saturated number is 

3.9375, and wrapped number is -2.3425, where wrapping causes a significant 

quantization error. In communication system, especially in OFDM system, designers 

will face serious PAPR problem, where dealing with overflow problem becomes an 

important issue. As the results of saturation and wrapping shown in this example, 

wasting a little circuit complexity and hardware resources to realize a saturation circuit 

instead of wrapping circuit after IFFT in order to mitigate PAPR effects is intensely 

recommended. 

110110110 110110110Full Precision

FIX_7_4_sat

FIX_7_4_wrap

13.6875

3.9375

-2.3425

1111110 1111110
1101101 1101101

219/24 =

 

Figure 5.2: Quantization example 2: saturation and wrapping 

 

MATLAB provides some functions that can translate floating-point values into 

fixed-point values, which enable designer to design, model, and simulate the system 

and to carry out the arithmetic in fixed-point domain. Fixed-point support is provided 

using the MATLAB quantization functionality that comes with the Filter Design and 

Analysis (FDA) Toolbox. This support is provided in the form of a quantizer object 

and two methods or functions that come with this object, namely, “quantizer()” and 

“quantize().” The “quantizer()” function is used to define the quantizer object, which 

allocates the bit-widths to be used along with whether the number is signed or 

unsigned, what kind of rounding is to be used, and whether overflows saturate or wrap. 

The “quantize()” function applies the quantizer object to numbers, which are inputs to 
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and outputs from arithmetic operations. For example, a quantization model of type 

signed fixed-point, with 40 total bits with one sign bit, 8 integer bits, and 32 fractional 

bits, handling overflow with saturation is defined as follows in MATLAB:  

 

 

 

This quantizer object is used to quantize an arbitrary numerical value “X” (which 

may be a scalar or a multidimensional vector) as shown above. The resulting number 

“Xq” has a double floating-point representation in MATLAB, but can be exactly 

represented by a 40-bit fixed-point signed number with 8 integer and 32 fractional bits. 

 

5.2 Previous Work 

The strategies for floating-point to fixed-point conversion can be roughly 

categorized into two groups [31]. The first one is basically an analytical approach 

coming from those algorithm designers who analyze the finite word length effects due 

to fixed-point arithmetic. The other approach is based on bit-true simulation 

originating from the hardware designers. The analytical approach started from attempts 

to model quantization error statistically; then it was expanded to specific linear time 

invariant (LTI) systems such as digital filters, FFT, etc. In the past three decades, 

numerous papers have been devoted to this approach [26]-[31]. The bit-true simulation 

method has been extensively used recently [32]-[35]. Its potential benefits lie in its 

ability to handle non-LTI systems as well as LTI systems. 

Our proposed approach is very closely related to the approach of Roy and 

Banerjee [35], where the authors have developed a simulation-based method to 

determine the optimum word lengths for DSP algorithms. Although the authors claim 

that [35] the proposed approach can minimize the hardware resources while 

constraining the quantization error, the way they adopt to estimate the hardware 

resources (regard the bit precision of all quantizers as hardware resources) is too rough, 

therefore the final experimental result is not precise enough. Moreover, only few 

quantization methods are adopted in the approach, that is, truncation and wrapping, 

q1 = quantizer(‘fixed’,’floor’,’saturate’,[40,32]); 
Xq = quantize(q1,X); 
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which are insufficient to satisfy the characteristics such as PAPR in communication 

systems. To modify these two defects, the concept of hardware resource weighting is 

introduced in our quantization algorithm, which makes hardware resources estimation 

much more accurate; moreover in order to fit our special purposed system, e.g., 

communication system, not only truncation and wrapping but also saturation are 

adopted in our quantization algorithm. 

 

5.3 Proposed Quantization Algorithm  

Our algorithm attempts to minimize the hardware resource requirement while 

constraining quantization error within a specified limit, depending on the requirement 

of the user or application. Especially, the concept of hardware resource weighting is 

introduced therefore our algorithm can accurately estimate the hardware resources 

requirement. The quantization algorithm consists of the following passes, which are 

explained in detail in the next paragraphs: 

 Pre-quantization works 

 Determine hardware resource weightings 

 Determine integer lengths 

 Determine fraction lengths 

 

5.3.1 Pre-quantization Works 

Before executing the proposed quantization algorithm on our MIMO-OFDM 

system, some pre-quantization works need to be operated first. 

1. Separate all blocks into quantization-related and quantization-irrelevant 

blocks, and find out the performance-dominated data flow path 

 In order to convert floating-point MATLAB code into fixed-point MATLAB 

code, first we need to separate all MIMO-OFDM function blocks into two groups, 

e.g., quantization-related blocks and quantization-irrelevant blocks: 

 Quantization-related blocks:  

Function blocks are called quantization-related as long as there are DSP 
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operations, such as the four fundamental operations of arithmetic, FFT/IFFT 

and so on, between input signals and output signals. When we are dealing 

with fixed-point variables without truncation, these DSP operations will 

always make variable’s word length become longer and longer, and therefore 

we must face quantization issues. In our MIMO-OFDM system, the 

following function blocks are distributed into the quantization-related group:  

 IFFT/FFT 

 RRC filter 

 Timing synchronizer 

 Channel estimator 

 Phase estimator 

 STBC detector 

 VBLAST detector 

 Quantization-irrelevant blocks:  

The definition of quantization-irrelevant blocks is right opposite to 

quantization-related blocks. Besides the quantization-related blocks shown 

above, the rest of blocks in our MIMO-OFDM system are categorized into 

quantization-irrelevant blocks. When we are dealing with the floating-point 

to fixed-point conversion, these blocks will remain the same because they 

will suffer neither rounding nor truncation issues.  

 Figure 5.3 shows the distribution of quantization-related and 

quantization-irrelevant blocks in our system, and shows two data flow paths in the 

system. The first data flow path, named major data flow path, starts from 

convolutional encoder and ends to Viterbi decoder; the second data flow path, 

named minor data flow path, starts from convolutional encoder and ends to timing 

synchronizer. Since quantization will cause additional error, called quantization 

error, it can be easily observed that the quantization errors along major data flow 

path will dominate the system performance much more severely than what along 

the minor data flow path; therefore our further works will focus on determining 

the word lengths of the coefficients or variables in the quantization-related 

function blocks along the major data flow path. 
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Figure 5.3: Data flow paths and distribution of quantization-related blocks  

and quantization-irrelevant blocks in MIMO-OFDM system 

 

2. Find out the variables which need to be quantized in quantization-related 

blocks along the main data flow path 

 Here we list the variables whose word lengths are required to be determined 

in the function blocks along the major data flow path: 

 IFFT output data 

 RRC coefficients 

 AD/DA length 

 Word length of RRC output data in receiver side 

 FFT output data 

 Post-FFT long preamble chips embedded in channel estimator block 

 Channel estimator output data 

 Phase estimator output data 

 Note that although AD and DA are not quantization-related blocks, there 

available word lengths are inherently limited by hardware circuit design to be 10 

bits therefore AD and DA’s word length also needs to be taken into consideration 

as we convert floating-point codes into fixed-point codes. 
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3. Parameters settings and definitions 

 To concentrate on dealing with quantization issues purely, channel effects 

such as multipath, AWGN noise, Rayleigh fading and so on are all neglected. 

Furthermore, the detected constellation of floating-point case is regard as the basis, 

where the difference between the output vectors for the original floating-point and 

the fixed-point MATLAB code is regarded as error vector, denoted by e. 

  e = outdatafloat – outdatafixed                   (5.1) 

We next define an error metric (EM) using the following definition: 

EM = norm(e)/norm(outdatafloat)×100             (5.2) 

where the vector norm is defined by 

1/2
2

( ) i
i

norm e
⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠∑e                     (5.3) 

After that, we define the following terms that are used in the algorithm 

 fl_dt: floating-point detected constellation 

 fx_dt: fixed-point detected constellation 

 maxi: range of the ith variable 

 pi: the ith precision (fraction length) 

 mi: the ith integer length (including sign bit) 

 qi: the ith quantizer  

 wi: the ith hardware resource weighting 

 R: total hardware resource requirement 

  

 Additionally, in spite of some special variables, signed fixed-point value with 

truncation and wrapping quantization methods are carried out. However, since we 

try to operate this quantization algorithm on our MIMO-OFDM system, some 

communication characteristics require to be taken into account and therefore the 

following quantization settings should be modified: 

 IFFT: In order to mitigate PAPR problem, we choose saturation method to 

quantize the output signals of IFFT. 
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 AD/DA: With limit of the circuit design of AD/DA module, the available 

bit-widths is constrained, e.g., ten bits in our system. Moreover, the signals 

fed into DA and fed out from AD are limited to unsigned values, therefore 

quantization method must be unsigned too. Furthermore, quantization 

methods are also constrained, where truncation and wrapping are adopted by 

DA; truncation and saturation are adopted by AD. 

 

Here we list all quantizers and their quantization settings in Table 5.1. 

Table 5.1: Quantizers and their settings in MIMO-OFDM system 

Parameters and QuantizersVariables

qDA = quantizer(‘ufixed’, ‘floor’, ‘wrap’,[mDA+pDA, pDA])DA output data

qph = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mph+pph, pph])Phase estimator output data

qch = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mch+pch, pch])Channel estimator output data

qlnfft = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mlnfft+plnfft, plnfft])Post-FFT long preamble chips

qfft = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mfft+pfft, pfft])FFT output data

qrxRRC = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mrxRRC+prxRRC, prxRRC])RRC output data in receiver

qAD = quantizer(‘ufixed’, ‘floor’, ‘sat’,[mAD+pAD, pAD])AD output data

qRRC = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mRRC+pRRC, pRRC])RRC coefficients

qifft = quantizer(‘fixed’, ‘floor’, ‘sat’,[mifft+pifft, pifft])IFFT output data

Parameters and QuantizersVariables

qDA = quantizer(‘ufixed’, ‘floor’, ‘wrap’,[mDA+pDA, pDA])DA output data

qph = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mph+pph, pph])Phase estimator output data

qch = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mch+pch, pch])Channel estimator output data

qlnfft = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mlnfft+plnfft, plnfft])Post-FFT long preamble chips

qfft = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mfft+pfft, pfft])FFT output data

qrxRRC = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mrxRRC+prxRRC, prxRRC])RRC output data in receiver

qAD = quantizer(‘ufixed’, ‘floor’, ‘sat’,[mAD+pAD, pAD])AD output data

qRRC = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mRRC+pRRC, pRRC])RRC coefficients

qifft = quantizer(‘fixed’, ‘floor’, ‘sat’,[mifft+pifft, pifft])IFFT output data

 

 

5.3.2 Determine Hardware Resource Weightings 

Hardware resources weightings (wi) can help our proposed algorithm estimating 

hardware resources requirement accurately, where it indicates the corresponding 

hardware overhead as one additional bit is added. To acquire weighting factors 

correctly, designers must know circuit design very well. Otherwise, synthesis tools 

such as Synplify Pro or Synopsis is also needed to count corresponding hardware 

resources. However, too much hardware resources usage information such as 

embedded RAMs, block multipliers, registers, and LUTs is included in a single 

synthesis report therefore to define a equivalent weighting factor to represent total 

hardware resources usage is very difficult. Based on experimental experience, we find 

that the usage of LUTs can represent hardware resource most properly, therefore we 
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adopt the usage of LUTs as our hardware resource weighting factor directly in our 

quantization algorithm. 

There are two ways to get additional usage of LUTs as certain word length of 

system is changed: first method is to design and synthesis another system, where there 

are only certain word length and corresponding circuits different from original one; 

then, comparing the difference between the LUT usage of these two systems, and view 

the quotient of this difference and additional bit-widths as weighting factor. Another 

method is to find out the influenced circuits such as subsequent data buffers or 

calculators when certain word length increase 1 bit, and then synthesize them 

respectively. Subsequently, sum up their additional LUTs and regard it as weighting 

factor of certain variable.  

Obviously, the first method can calculate weighting factor more accurately than 

another, however will waste extremely large amount of time on designing and 

synthesizing new systems. Therefore method two seems to be much more feasible than 

method one thus is adopted in our algorithm. 

Here we illustrate the influenced circuit blocks in Figure 5.4 and Figure 5.5, and 

show final experimental results in Table 5.2. Notice that our synthesis tool is Synplify 

Pro 8.2, and target FPGA is Xilinx Virtex2 series. 
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Figure 5.4: Influenced circuit blocks by qifft and qRRC 
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Figure 5.5: Influenced circuit blocks by qRRC, qrxRRC, qfft, qlnpmb, qch and qph 

 

Table 5.2: Experimental results of hardware resource weightings 

wph

wch

wlnfft

wfft

wrxRRC

wRRC

wifft

Parameter Experimental ResultsVariables

35Phase estimator output data

184Channel estimator output data

416Post-FFT long preamble chips

20FFT output data

240RRC output data in receiver

20RRC coefficients

402IFFT output data

wph

wch

wlnfft

wfft

wrxRRC

wRRC

wifft

Parameter Experimental ResultsVariables

35Phase estimator output data

184Channel estimator output data

416Post-FFT long preamble chips

20FFT output data

240RRC output data in receiver

20RRC coefficients

402IFFT output data

 

 

5.3.3 Determine Integer Lengths 

The determined integer lengths must be able to cover all possible maximum and 

minimum signed values of variables, that is, avoid overflow efficiently. To achieve this 
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goal, the usage of training sets is necessary. The more training sequences we test, the 

more reliable variables ranges we obtained. In communication system, we train the 

system and obtain the ranges of variables by generating various source data sets. 

 First, floating-point MATLAB code are executed, and then we obtain 

floating-point detected constellation fl_dt and ranges of every variables maxi, where 

( ) ( )( )=max max ,i i iabs Max abs Min            (5.4) 

Next, by using the information of maxi, we can easily determine the integer length mi 

by the following equation: 

mi = floor(log2(maxi))+2              (5.5) 

where one additional bit is used to represent sign bit. 

 Our experimental results of integer lengths are shown as follows. 

Table 5.3: Experimental results of integer lengths 

mph

mch

mlnfft

mfft

mrxRRC

mRRC

mifft

Parameter Experimental ResultsVariables

6Phase estimator output data

1Channel estimator output data

8Post-FFT long preamble chips

7FFT output data

7RRC output data in receiver

2RRC coefficients

5IFFT output data

mph

mch

mlnfft

mfft

mrxRRC

mRRC

mifft

Parameter Experimental ResultsVariables

6Phase estimator output data

1Channel estimator output data

8Post-FFT long preamble chips

7FFT output data

7RRC output data in receiver

2RRC coefficients

5IFFT output data

 

 

5.3.4 Determine Fraction Lengths 

Since the integer word lengths are already decided and all variables are able to be 

covered by corresponding ranges, the rest of work is to decide the precision, that is, the 

fraction word lengths of every variable. To do so, we propose two modification 

methods, e.g., coarse modification and fine modification. Both of these two methods 

are able to find out a set of fraction lengths that can constrain quantization error within 

target error metric (EMtarget) with minimized hardware resources usage. Coarse 

modification only roughly scales down all fraction lengths from a maximum precision 
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simultaneously to match the proposed EMtarget without consideration to hardware 

resource weighting. On the other hand, fine modification scales fraction lengths each 

by each and calculates corresponding error metrics, and eventually finds out a set of 

fraction lengths, which system error metric is smaller than EMtarget and can minimize 

the hardware resources with consideration to resource weightings. Usually, we run 

coarse modification first, and then set up the scaling ranges of variables in fine 

modification based on the results available in coarse modification. In the following 

sections, the ideas of these two methods will be detailed explained. 

 

5.3.4.1 Coarse Modification 

The purpose of coarse modification is to find out a set of fraction lengths which 

can be regarded as the reference when we deal with fine modification. First at all, the 

target error metric (EMtarget) is decided, which is chosen to be 1, 5, and 10 in our 

experiment. Then, we start coarse modification, which criterion is to find out a set of 

minimum identical fraction lengths that corresponding error metric (EMcoarse) is smaller 

than the target error metric. 

∀ = ≤ arg, , min   subject to coarse t etii p p p EM EM        (5.6) 

 STEP 1: For all is, set fraction lengths (pi) to be maximum precision (pmax), 

say 20 bits, in our experiment.  

 STEP 2: Run fixed-point MATLAB code, and then obtain fixed-point 

detected constellation (fx_dt). 

 STEP 3: Calculate coarse error metric (EMcoarse) by comparing floating-point 

detected constellation (fl_dt) with fixed-point constellation (fx_dt). 

 STEP 4: If EMcoarse < EMtarget, for all is, set pi = pi -1, and then redo step 2~4. 

 STEP 5: If EMcoarse > EMtarget, stop coarse modification. 

 

Table 5.4 shows experimental results of fraction lengths available in coarse 

modification. 
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Table 5.4: Experimental results of coarse modification 

9.834.75530.953EMcoarse_STBC

6710pph

153141661620522R

6710pch

6710plnfft

6710pfft

6710prxRRC

6710pRRC

6710pifft

9.9184.65610.9871EMcoarse_VBLAST

1051EMtarget

Coarse modification

9.834.75530.953EMcoarse_STBC

6710pph

153141661620522R

6710pch

6710plnfft

6710pfft

6710prxRRC

6710pRRC

6710pifft

9.9184.65610.9871EMcoarse_VBLAST

1051EMtarget

Coarse modification

 

 

5.3.4.2 Fine Modification 

In fine modification, we attempt to take the hardware resource weighting (wi) into 

consideration, and minimize the total hardware resource requirement (R). As shown in 

Eq. 5.7, we regard the product of the total word length (mi+pi) and the weighting 

factor (wi) as the total hardware resource requirement. 

( )= + ×∑ ( )i i i
i

R m p w              (5.7) 

The criterion of fine modification is shown as follows, where a set of fraction 

length which can minimize hardware resource requirement R and ensure the result 

error metric EMfine being smaller than the target error metric EMtarget is found. 

( )+ × ≤∑
144424443

argargmin ( )   subject to 
i

t eti i i fine
p i

R

m p w EM EM      (5.8) 

 STEP 1: Start from the result fraction length (pi) of coarse modification. 

 STEP 2: Decide proper precision variances of these variables. 

 STEP 3: Run fixed-point MATLAB code through these precision ranges, and 

then obtain fine error metric (EMfine) and the total resource requirement (R). 

 STEP 4: Find out a minimum R which satisfies EMfine < EMtarget. 
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Eventually, we can obtain final fraction lengths shown in Table 5.5. Notice that 

setting proper precision ranges is empirical, and it becomes more time-consuming 

however is able to reach global minimum of R more accurately as ranges are wider. 

The principle of setting ranges is giving the variables with larger wis wider ranges, and 

giving the variables with smaller wis narrower ones. 

Table 5.5: Experimental results of fine modification 

8.75684.17910.94021EMfine_STBC

92681033813808R

226pph

6811pch

002plnfft

447pfft

014prxRRC

71011pRRC

125pifft

9.6264.4960.9622EMfine_VBLAST

1051EMtarget

Fine modification

8.75684.17910.94021EMfine_STBC

92681033813808R

226pph

6811pch

002plnfft

447pfft

014prxRRC

71011pRRC

125pifft

9.6264.4960.9622EMfine_VBLAST

1051EMtarget

Fine modification

 
 

5.4 Simulation Results  

Figure 5.6 shows the STBC and VBLAST detected constellations under 

floating-point case, where no channel effects are involved. 

 

Figure 5.6: Detected constellation under floating-point case 
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Figure 5.7~5.9 show the other fixed-point detected constellations under different 

EMtargets. 

  

Figure 5.7: Detected constellation under EMtarget = 1 

 

  

Figure 5.8: Detected constellation under EMtarget = 5 

 

 

Figure 5.9: Detected constellation under EMtarget = 10 
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Comparing with the above figures, it can be clearly observed that the quantization 

error does affect the detected constellations for both STBC and VBLAST cases. The 

constellations spread out more severely from the original four points in floating-point 

case as EMtarget increases, which will cause detection error as channel effects are taken 

into consideration. To verify the effects of quantization error to system performance, 

we illustrate a BER to SNR plot under different EMtargets in Figure 5.10, where all 

system settings remain the same to floating-point case except the fixed-point value 

variables are carried out instead of the floating-point values. Notice that saturation is 

performed in IFFT output values and all the other quantizers follow Table 5.1. 

 

Figure 5.10: System performance under different EMs as qifft uses saturation 
 

We can easily observe that for both STBC and VBLAST cases, the curves drift to 

right-upper side when the number of EM increases. It indicates that system performs 

worse as the level of quantization error increases. Furthermore, we can also observe 

that in low SNR, channel noise dominates the system performance, therefore the 

differences between EMs are not obvious. On the other hand, in high SNR, the 

quantization error noise dominates the system performance, therefore the gap between 

different EMs becomes bigger and bigger. 

Additionally, in order to emphasize the importance of adopting saturation method 

to fight PAPR problem in IFFT, we perform another case in Figure 5.11, where original 

IFFT quantizer “q
ifft

=quantizer(‘fixed’, ‘floor’, ‘sat’,[m
ifft

+p
ifft

, p
ifft

]” shown in Table 
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5.1 is changed to be “q
ifft

=quantizer(‘fixed’, ‘floor’, ‘wrap’,[m
ifft

+p
ifft

, p
ifft

]”. That is, 

wrapping is applied instead of saturation. Clearly, both curves in Figure 5.11 drift to 

right-upper side much more severely comparing with Figure 5.10, and BER is 

saturated to about 10-5 as SNR increases. The reason is that wrapping is probable to let 

an extremely large positive value be a negative value or vise versa, which will cause 

severe quantization error comparing with saturation; that is why we intensively 

recommend using saturation instead of wrapping when dealing with PAPR problem in 

IFFT output data. 

 

Figure 5.11: System performance under different EMs as qifft uses wrapping 

 

Finally, total word lengths of variables and error metrics and hardware resource 

requirements under different EMtargets are categorized in Table 5.6. We can detect a 

trend from this table: additional 1070 LUTs are required as error metric is improved 

form 10 to 5, however more additional 3470 LUTs are required as error metric is 

improved form 5 to 1. That is, to achieve a zero quantization error system, the increase 

of additional hardware resource requirement will grow exponentially. 
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Table 5.6: Experimental results of final word lengths and EMs 

8.7564.17910.9402EMfine_STBC

92681033813808R

8812mph+pph

7912mch+pch

8810mlnfft+plnfft

111114mfft+pfft

7811mrxRRC+prxRRC

91213mRRC+pRRC

6710mifft+pifft

9.6264.4960.9622EMfine_VBLAST

1051EMtarget

8.7564.17910.9402EMfine_STBC

92681033813808R

8812mph+pph

7912mch+pch

8810mlnfft+plnfft

111114mfft+pfft

7811mrxRRC+prxRRC

91213mRRC+pRRC

6710mifft+pifft

9.6264.4960.9622EMfine_VBLAST

1051EMtarget

 

 

5.5 Summary  

Since most practical FPGA designs are limited to finite precision signal 

processing using fixed-point arithmetic because of the cost and complexity of 

floating-point hardware, a systematical quantization algorithm is important for 

designers to map original floating-point code into fixed-point code. This chapter 

describes how the floating-point arithmetic in MATLAB are converted into fixed-point 

of specific precision for hardware design based on profiling the inputs, intermediate, 

and output signals. Especially, the idea of hardware resource weighting is inserted and 

the characteristics of communication system are also considered. Experimental results 

including integer lengths, fraction length, and total resource requirements under error 

metric equals 1, 5, and 10 are reported, and fixed-point system BER to SNR 

performances are also illustrated in this chapter. 
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Chapter 6  
 
Conclusion  
 

In future wireless communication systems, the demand of higher throughput and 

higher link quality is urgently called for, since various multimedia or home 

applications will be provided and thus reliable and affordable technologies are required 

to realize those contents. Coupled with a robust and efficient OFDM air interface, 

MIMO technologies can lead to a very attractive high-speed data transmission solution 

for future wireless systems. Recent years, researches on the topic of MIMO-OFDM 

system have been exploited greatly, and the MIMO-OFDM based standard, IEEE 

802.11n, is just on the stage of competition for two proposals from TGn Sync and 

WWiSE, respectively. This encourages us to build up a hardware system based on 

MIMO-OFDM instead of the theoretical analysis only. 

This thesis had described the signal processing concepts and algorithms of a 2×2 

MIMO-OFDM system in physical layer, including STBC and VBLAST MIMO 

techniques. Furthermore, two FPGA based platforms are adopted to implement our 2×2 

MIMO-OFDM system, e.g., fast prototyping platform and self-designed platform. In 

the fast prototyping platform, three FPGA modules, one DSP chip, and one USB 

module are installed; on the other hand, four FPGA modules, USB interface, and RF 

modules are equipped in the self-designed platform. A complete dataflow including 

software application interface, web camera, USB transmission, and baseband 

algorithms on DSP and FPGA are constructed in the fast prototyping platform; whereas 

a real wireless communication environment containing RF mismatch, multipath effects, 

and so on are generated through real indoor experimental environment and RF modules 
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on the self-designed platform. Finally, due to the complexity and time-consuming 

procedure of floating-point to fixed-point conversion, we have proposed a systematical 

quantization algorithm which can not only minimize the hardware resource 

requirement but also constrain quantization error within a specified limit. 

To summarize, hardware implementation is highly complicated. Therefore, the 

avalailability of MATLAB simulation, proper quantization algorithms, useful HDL 

simulation software, and powerful debugging tools becomes especially significant. 

Nevertheless, some future works still remain. For example, higher modulation order 

such as 16QAM, 64 QAM and so on can be realized; furthermore, total power 

consuming issues ought to be taken into consideration, too. Finally, although there is a 

lot of room for improvment, we believe that the MIMO-OFDM system implemented 

on the FPGA-based platform we proposed is still highly advanced nowadays. 
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