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Abstract

In recent years, orthogonal frequency division multiplexing (OFDM) becomes a
key technology in the development of new wireless communication systems, enabling
high data rate transmission, and is suitable-for frequency selective channels caused by
multipath propagation. On the ‘other hand, multiple-input multiple-output (MIMO)
technique has a great potential of delivering either a dramatic increase of throughput or
improvement of link quality. Combined with the MIMO technique, OFDM systems
become more suited to next generation wireless communications. In this thesis, we
propose a total solution for building up a 2x2 MIMO-OFDM system on two
FPGA-based platforms: a fast prototyping platform Aptix" MP3CF and a self-designed
platform. There are two space-time algorithms adopted in our system, including
Space-Time Block Coding (STBC) and Vertical Bell Labs Layered Space-Time
(VBLAST). Furthermore, since fixed-point computation is adopted in our system due
to the cost and complexity of floating-point hardware, we also propose a quantization
algorithm which can not only minimize the hardware resource requirement but also
constrain the quantization error within a specified limit when converting floating-point

arithmetic to fixed-point arithmetic.
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Chapter 1

Introduction

Communication technologies have been developed rapidly in recent decades of
years. The first-generation (1G) radio systems transmit voice over radio by using
analog communication techniques, such as Advanced Mobile Phone Services (AMPS),
which were developed in the 1970s and 1980s.:The 2G systems were built in the 1980s
and 1990s, and featured the adoption of digital technology, such as Global System for
Mobile Communications (GSM), DigitallAMPS (D-AMPS), and code division
multiple access (CDMA); among them GSM is the most successful and widely used
2G system. 3G mobile technologies provide users with high-data-rate mobile access,
which developed rapidly in the 1990s and is still developing today. The major radio air
interface standard for 3G is wideband CDMA (WCDMA), whose transmission data
rate can be up to 2 Mbps in good conditions. However, there are some limitations with
3G, such as the difficulty in extending to very high data rates due to excessive
interference between services, and the difficulty in providing multi-rate services with
different quality of service (QoS) due to the restrictions imposed on the core network
by the air interference standard. Therefore, the future mobile communication system
having the features of high-data-rate transmission and open network architecture,
called 4G, is desired to meet the increasing demand for broadband wireless access. In
fact, the combination of multiple-input multiple-output (MIMO) signal processing with
orthogonal frequency division multiplexing (OFDM) has been regarded as a promising
solution for enhancing the data rates of next-generation wireless communication

systems [1].



OFDM has become a popular technique for transmission of signals over wireless
channels, and its most well known advantage is the capability of converting a
frequency-selective channel into a parallel collection of frequency flat sub-channels,
which makes the receiver simpler. Therefore, OFDM has been adopted in several
wireless standards such as digital audio broadcasting (DAB), terrestrial digital video
broadcasting (DVB-T), the IEEE 802.11a/g wireless local area network (WLAN)
standard, and the IEEE 802.16-2005 standard. These show its potential of being a
candidate for future-generation (4G) mobile wireless systems.

MIMO techniques are also popular recently; it can basically be categorized into
two groups. The first one aims to improve the power efficiency and transmission
reliability by maximizing spatial diversity; one popular example is the space-time
block codes (STBC) [2]. The second type uses a layered approach to increase capacity;
one popular example of such a system is the vertical-Bell Laboratories layered
space-time (VBLAST) architecture:[3] [4];.in where independent data signals are
transmitted over antennas to increase-the data rate.

The goal of this thesis is to realize a 2x2 MIMO-OFDM system on FPGA-based
platforms, where we intend to verify-the-abeve-mentioned space-time algorithms on
both fast prototyping platform “and self-designed platform. The complete functional
blocks in both the transmitter and receiver are provided, and the associated algorithms
applied in each functional block are also presented. After giving an overview of system
architecture, we propose a total solution to build up FPGA-based platforms for
realizing the MIMO-OFDM system, including MATLAB verification, and FPGA
realization. The developed system contains a baseband transmitter, a digital-analog
converter, an analog-digital converter, and a baseband receiver.

Furthermore, owing to the cost and complexity of floating-point hardware, the
proposed MIMO-OFDM system on FPGA is limited to fixed-point arithmetic.
Therefore the floating-point to fixed-point conversion becomes an inevitable procedure.
To determine word lengths of all input, intermediate, and output signals, we propose a
quantization algorithm which can minimize the hardware resources while constraining
the quantization error within a specific limit. Moreover, the concept of hardware

resource weighting is introduced, and some communication characteristics are also



taken into account.

The organization of this thesis is as follows. Chapter 2 describes the proposed
MIMO-OFDM transceiver architecture and its corresponding schemes. In Chapter 3,
the development environments of the proposed fast prototyping platform and
self-designed platform are introduced. In Chapter 4, the overall system realization is
presented, and the performance evaluation is also included. Later, a systematical
quantization algorithm is provided in Chapter 5. Finally, we make our concluding

remarks in Chapter 6.



Chapter 2

MIMO-OFDM Baseband Transceiver
Architecture

This chapter focuses on the MIMO-OFDM baseband transceiver architecture. An
overview of the MIMO-OFDM system swill first be given. Then we divide the
developed architecture into jtransmitter.<and receiver, and provide functional
descriptions and associated algorithms for-€ach-block. Finally, the MIMO techniques

adopted on the system will be'described.

2.1 Overview of MIMO-OFDM System

OFDM has long been regarded as an efficient approach to combat the adverse
effects of multipath spread, and is the main solution to many wireless systems. It
converts a frequency-selective channel into a parallel collection of frequency flat
subchannels, which makes the receiver simpler. The time domain waveforms of the
subcarriers are orthogonal, yet the signal spectrum corresponding to the different
subcarriers overlap in frequency domain. Therefore, the available bandwidth is used
very efficiently, especially compared with those systems having intercarrier guard
bands, as shown in Figure 2.1 [5]. In order to eliminate inter-symbol interference (ISI)
almost completely, a guard time is introduced for each OFDM symbol. Moreover, to
eliminate inter-carrier interference (ICI), the OFDM symbol is further cyclically

extended in the guard time, resulting in the cyclic prefix (CP). Otherwise, multipath



remains an advantage for an OFDM system since the frequency selectivity caused by
multipaths can improve the rank distribution of the channel matrices across those
subcarriers, thereby increasing system capacity. We summarize the advantages of

OFDM as follows [1]:

High spectral efficiency
Simple implementation by FFT
Robustness against narrowband interference

High flexibility in terms of link adaptation for having many subcarriers

vV V V V V¥V

Suitability for high-data-rate transmission over a multipath fading channel

MIMO systems where multiple antennas are used at both the transmitter and
receiver have been also acknowledged as one of the most promising techniques to
achieve dramatic improvement in physical-layer performance [6], [7]. Moreover, the
use of multiple antennas enables space-division multiple access (SDMA), which
allows intracell bandwidth reuse by multiplexing spatially separable users [8], [9].
Channel variation in the spatial,domain also provides an inherent degree of freedom
for adaptive transmission. To sumup, after /OFDM is combined with MIMO
techniques, MIMO-OFDM can be a potential candidate for the next generation
wireless communication systems.

In our system, we refer to the IEEE 802.11a standard [10], and further extend the
SISO-OFDM system to MIMO-OFDM system with two transmitted antennas and two
received antennas. Six OFDM symbols modulated by 64-tap IFFT are attached after
ten short preambles and two long preambles, where the detailed structure of preamble
will be discussed in Section 2.2.4. Furthermore, twelve zero tones are inserted on
predefined subcarriers into every OFDM symbol so as to diminish the interference
caused by adjacent signals, and four pilot tones are also inserted in a symmetric way
for the sake of tracking the phase drift at the receiver. Data tones are transmitted in the
remaining forty-eight subcarriers. Specification of MIMO-OFDM baseband transceiver

is shown in Table 2.1.
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Figure 2.1: (a) Conventional multicarrier technique

(b) Orthogonal multicarrier modulation technique

Table 2.1: Specification of MIMO-OFDM baseband transceiver

Number of Transmit Antennas 2
Number of Receive Antennas 2
Number of Long Preambles / Packet 2
Number of Short Preambles / Packet 10
Number of OFDM Symbols / Packet 6
Number of Data Tones / Symbol 48
Number of Zero Tones / Symbol 12
Number of Pilot Tones / Symbol 4

FFT Size 64 {-32:31}
Long Preamble Size 64+16 (CP)
Short Preamble Size 16
Locations of Data Tones {-26:-22, -20:-8, -6:-1,1:6, 8:20, 22:26}
Locations of Zero Tones {-32:-27, 0, 27:31}
Locations of Pilot Tones {-21,-7,7, 21}

2.2 Transmitter Architecture

The baseband MIMO-OFDM transmitter architecture is shown in Figure 2.2 [11].
The source data is first fed into the channel encoder, e.g., using the convolution code
for error correction at the receiver. The encoded output is then interleaved by
distributing the same coded bits into different positions in the packet so that the

transmitted information is better resistant to the channel distortion. A MIMO system is
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typically designed to meet two different, yet opposite, targets: either to achieve high
spectral efficiency, e.g., the VBLAST scheme suggested by Foschini et al. [3] [4], or to
improve the transmission reliability against channel fading, e.g., the space-time block
codes (STBC) [2] first discovered by Alamouti for two transmit antennas. The
preamble channels, coded by the rule of STBC, will be attached in front of the data
channel modulated by IFFT. Finally, all traffic data composed of the preamble part and
data channels are sent to individual DA modules to convert the baseband signals onto

the desired frequency band.

ST- ( N
Block h
Coding MUX/
5 SIP IFFT P/S —>
Data _,| encoder | M€ L) Mapper —» RRC
Channel leaver
De- Preamble__,| S : STBC
MUX Channel L : STBC B
J

Figure 2.2: Transmitterarchiteeture of MIMO-OFDM system

2.2.1 Convolutional Encoder

A convolutional encoder typically will generate two or three output bits for each
input bit. The output bits are dependent on the current input bit, as well as the state of
the encoder. The state of the encoder is represented by several bits which precede the
current bit. Figure 2.3 shows a convolutional encoder adopted in our system with code
rate equal to 1/3 and constraint length equal to 5. Convolutional coding adds redundant

bits in such a way that the decoder can, within limits, detect errors and correct them.

g0
®
Din So } S2 §39
T T
=
d_r
T .

Figure 2.3: Convolutional encoder with code rate 1/3 and constraint length 5
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2.2.2 Interleaver / De-interleaver

In real life, bit errors often occur in bursts due to the fact that linear-fading dips
affect several consecutive bits. Unfortunately, the convolutional encoder is most
effective in detecting and correcting single random errors and is not effective when
errors occur in bursts. Interleaving is the reordering of data coming out of a
convolutional encoder prior to transmission so that consecutive bits of data are
distributed over a larger sequence of data to reduce the effect of burst errors. At the
receiver, the reverse permutation is performed before decoding. A commonly used
interleaving scheme is the block interleaving, where the input bits are written in a
matrix column by column and read out row by row.

Referring to institute of electrical and electronics engineers IEEE 802.11a
standard [10], we use a block interleaver as shown in Figure 2.4. In the standard, the
interleaving depth is suggested being the length of an OFDM symbol. Each coded data
symbol after convolutional eneoder contains 96 bits. Therefore the interleaving depth
we adopt is 96, as illustrated in the figure. The interleaver satisfies the following

expression
j = 6x (v mod 16) + |v /16 (2.1)

where v is the index of input coded data, and v = 0,1,...,95; j is the index of output

interleaved data; [m] is the greatest integer smaller than m.

— Interleaving

ravarens De-interleaving

IR

wn o1 2|38 |4 |56 = |14]15
woo |18 |17]|18 19|20 |21 | 22| == |30|31
2 |32[33|34|35|36|37|38| = |46|47
|48 |49|50|51|52|53|54| == |62|63
o |64]|65|66|67 |68 |69 70| === [78]79
. |80|81|82|83 |84 85|86| === |04]095

Figure 2.4: Interleaver and de-interleaver schemes
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2.2.3 Mapper / De-mapper

Quadrature amplitude modulation (QAM) is the most popular type of modulation
using in the OFDM system. The rectangular constellations are especially easy to
implement as they can be split into independent in-phase and quadrature parts. A
mapper is used to map a small group of bits into a symbol according to the rectangular
constellation adopted. Figure 2.5 shows the rectangular constellations of Quadrature
Phase Shift Keying (QPSK), 16-QAM, and 64 QAM. The higher modulation order the
mapper adopts, the more information a symbol can carry, yet higher modulation order
always suffers from interference more severely. In our system, we only adopt QPSK as

our modulation scheme.

64-QAM
Te . . . . . . .
6_
. . . . . . . .
____________ [ .16:QAM
. . 25 . . . . .
ok
QPSK
. . . :r; _______ o . . .
I I el B L L |
6 4 L% 2 4 6
. . . pe ] e . . .
2
. . . . . . . .
AF
. . . . . . . .
6+
. . . . . . . .

Figure 2.5: QPSK, 16-QAM, and 64-QAM constellations

2.2.4 Preamble Channel and Frame Structure

Referring IEEE 802.11a standard [10], we attach the training sequence, also
called preamble, in front of every packet. At the receiver, preambles can be utilized to
do a number of tasks, such as timing synchronization, frequency synchronization, and
channel estimation. The format of preamble channel and frame structure is shown in

Figure 2.6 [10]. Preambles can further be separated into short preamble and long



preamble, and both short and long preamble are modulated by BPSK and encoded by
STBC scheme. Short preamble, as implied by the name, has a shorter length compared
with long preamble. Each short preamble symbol contains 16 bits with time-span 0.8
us, and ten symbols form a complete short preamble with a total time-span of 8 us. The
following parts are two long preamble symbols, and each one is protected by a guard
interval filled with its cyclic extension, which have a total time-span of 8 us. After
preamble channel, data symbols with cyclic extension follow. There are four pilot
tones embedded symmetrically in every data symbol. Note that the first non-preamble
symbol is designed for signaling in the standard, such as code rate and modulation

order.

G R
8+8=16ps

2x08+2x32=80pus 08+3.2 .u|u,;_| 08+32 JI'J_usJ 08+32=40pus
P, 1Sl ”

2
: _______ l
[ I I B B | [ T I N ] .
4 bty ty L5t by tg 1oty GI2 | Iy I T
1 1 1 1 1 1 1 1 1 1 1

L, J

I T T
\(il|S]('iN/\I, Gl| Datal | GI| Data2

S » “—r <
S]%".a S inet Coarse Freq.  Channel and Fine Frequency ~ RATE SERVICE + DATA  DATA
/7\(:(.. Diversity ,Q,"“,“ l-.:“umanonr Offset Estimation LENGTH
Selection Tming Synchronize
- 7

Figure 2.6: Training sequence and frame structure of IEEE 802.11a standard

2.2.5 Root Raised Cosine Filter

Root raised cosine (RRC) filter is commonly used in digital communication
systems to limit ISI. The ideal root raised cosine filter, frequency response consists of
unity gain at low frequencies, the square root of raised cosine function in the middle,
and total attenuation at thigh frequencies. The width of the middle frequencies is
defined by the roll off factor constant f (0<f<1). The root raised cosine filter is
generally used in series pairs, so that the total filtering effect is that of a raised cosine
filter. The advantage is that if the transmit side filter is stimulated by an impulse, then
the receive side filter is forced to filter an input pulse shape that is identical to its own
impulse response, thereby setting up a matched filter and maximizing signal to noise

ratio (SNR) while at the same time minimizing ISI.

-10 -



Mathematically, the frequency response F..(w) may be written as

1 For w < w,(1-0)
0 For w > w.(1+ B)
F (o) = 2.2
| o) @2
5 b, For w,(1-f)<w<w,(1+P)

where w, is half the data rate.

2.3 Receilver Architecture

The baseband function diagram of the proposed MIMO-OFDM receiver is shown
in Figure 2.9 [11]. The received signal is first down-converted to the baseband. After
passing through RRC, data streams are processed by FFT so as to demodulate the
OFDM symbol. A space-time detector'is used. for separating the multi-antenna signals.
Since the transmitted signals can be spacé-time block encoded or spatially multiplexed,
the corresponding decoding scheme such-as space-time block detector or VBLAST
detector has to be performed: The detected-symbol streams are then de-interleaved,
followed by a Viterbi decoder’to.recover. the:'source bits. To acquire the channel
information, long preamble is used to do frequency domain channel estimation. We
will also include pilot subcarriers inserted in data channel to estimate the phase shift in

a symbol to further improve the performance.

( N
e )
Preamble
ST-
Time Frequency| | Channel Block
Synchronization| |Estimation| |Estimation Decoder De- -
1 t _’MaD;;;er_’ lil'ss *D\Qéircg)ér»ogatl’t):t
| 4 | Phase leaver
Estimation
VBLAST
R =7y Pilot Subcarrier >
L/
N\ J

Figure 2.7: Receiver architecture of MIMO-OFDM system
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2.3.1 Timing Synchronizer

Before an OFDM receiver can demodulate the subcarriers, it has to find out where
the symbol boundaries are and what the optimal timing instants are to minimize the
effects of ICI and ISI. Moreover, timing synchronization can be divided into coarse
timing synchronization and fine timing synchronization [11] - [13].

The task of the coarse timing synchronization is to identify the preamble in order
to detect a packet arrival. Here we discuss the coarse timing synchronization algorithm
adopted in our system. First, short preamble is chosen to do our coarse timing
synchronization, and a matched filter (MF) which can match a short preamble symbol
is designed. After passing the received signal through MF, we can obtain ten peak
values where two adjacent peaks are at the interval of 16. To acquire a more accurate
frame position, data after MF is further passed to a finite impulse response (FIR) filter
so that we can obtain a succession ‘of incteasing peaks and finally choose the time
instant a deterministic delay away from the maximum value as the frame start.

The fine timing synchronization in an OFDM:system decides where to place the
start of the FFT window within ‘the-OQFDPM symbol. Although an OFDM system
exhibits a guard interval, making it somewhat robust against timing offsets,
non-optimal symbol timing will cause more ISI and ICI in delay spread environments.
This will result in performance degradation. To eliminate timing offset induced by
different path delays, fine timing synchronization will be performed after coarse timing

synchronization.

2.3.2 Frequency Synchronizer

The purpose of frequency synchronization is to correct the frequency offset,
which is caused by the difference of oscillator frequencies at the transmitter and the
receiver. Frequency offset may result in the loss of the orthogonality between
subcarriers and degrade the system performance. Therefore, we try to estimate the

frequency offset and compensate the received signals.

Assuming that the absolute value of the frequency offset does not exceed

5

DT,
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where D is the delay between the identical samples of the two symbols; 7', denotes the

sampling period, then the estimated frequency offset A f can be shown by
é

27 DT,

Af = (2.3)
where ¢? denotes the estimated phase shift through two adjacent symbols, which can
be computed by an arc tangent of the summation of conjugate multiplications between
two identical samples of the two repeated symbols. To do the above task, the preamble
channel becomes the most proper candidate.

The 802.11a standard specifies a maximum oscillator error of 20 ppm, therefore
the total maximum error is 40 ppm. Supposing that the carrier frequency is 5.3 GHz,
the maximum possible frequency error is about 212 kHz. Owing to the inherent
structures of short preamble and long preamble, the maximum unambiguous estimated
frequency offset is 625 kHz for short preamble and 156.25 kHz for long preamble.
Therefore, both short preamble and long preamble are required to estimate frequency

offset so as to cover the probable frequency offsct specified by the standard.

2.3.3 Channel Estimator

The channel can be estimated using the known training symbols within the
preamble. In our system, owing to the same symbol structure as data symbols, long
preamble becomes the best candidate for performing this job. Moreover, since
preamble channel is BPSK modulated and two long preambles are identical, the

space-time block encoded signal model can be denoted as

£ —t
L l (2.4)

where t denotes the time domain long preamble sequence.

Supposing that 7% denotes the long preamble chips (in frequency domain); H 4
is the channel frequency response from the pth transmit antenna to the gth receive
antenna; Z denotes the received signal after passing FFT, then the noise free post-FFT

received signal at the kth subcarrier can be shown as follows
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Ziw) Zin+v) [Hh mh] [Tt -
ZEn) ZEm+1)| |HY HL||T* T
(2.5)
T"HE + TPHS, T HF + T HY,

T*H!, + T HY, —T"H, + T"H),

where the superscript k£ denotes the kth subcarrier; suffix 1 or 2 denotes received
antenna 1 or 2, and n or (n+1) represents the nth or (n+1)th symbol.
Based on the structure of the received signal shown above, the estimated channel

frequency response H ;fq can be obtained simply by the following equations

L 1 !
HY, = W(ﬁ(”) —Zi(n+ 1)) = H}\

1
,jlzﬁ(z( +Z{ (n+1)) = Hj;
(2.6)
Tk 1 k k k
HE :W(ZQ( — Zy(n+1)) = Hf,
. 1
H;“QZW(Z( + 73 (n )= Hj

2.3.4 Phase Estimator

The processing of the preamble takes care of the initial synchronization of the
MIMO-OFDM receiver. It is, however, likely that the frequency offset will vary during
the reception of the packet, making solely initial frequency synchronization insufficient.
Furthermore, the system will experience phase noise invoked by the combination of
the RF oscillator and the phase-locked loop (PLL). It is, therefore, necessary to
estimate and correct the rotation of the received constellation points by using pilots
which are embedded in data symbols.

Recalling that there are four pilot tones P, k€ +7, +21, in every data symbol,
and pilot tones in successive symbols are encoded in STBC scheme. First we get the
post-FFT received signal without phase noise at the kth pilot subcarriers (k=-+7, +21)

of nth and (n+1)th symbols on antenna 1 and antenna 2 by

- 14 -



k k k k k k"
Z (n) A (n+1) B oy, H, | K _<P2 )

k k gk k| *
22 (n) Z2 (n —I—l) H12 H22 p?k <Plk)
) . 2.7)
kprk kprk k k k k
_ ]31H11—{—F’2H21 _(PQ> H11+(P1) H21

| ok ggk kork AT AT
P1 H12 +PQH22 _(PQ ) H12 +(P1 ) H22
Then, adding the effects of phase noise ¢ by multiplying a ™ term, the original
equation will lead to the following form

{BLrt + PR Yo (BE) o+ (P H e

) ) (2.8)
kork kprk iy (n ANy B\ gk | gy (n
{P1 o, + L, H22}6J02( ) {_(P2 ) , + (Pl ) H22}6J02( v
Therefore, the estimated phase shift qg(n) can be obtained by
) k 77k ke " ok
¢ (n) = A‘[ Z {P1 ), + F, H21} "2 (n)J’
k==7,%21
Ay(n+1) = 4{ DAL R el ~Zf’<n>}
h=+7,421
(2.9)

952(71) = K‘l > {]31ka2 + P2kH;§2 }* Zf(n)}

k=+7,+21

¢;2<n+1>:4 > (R H (R -Zf<n>}
k=+7,421
Instead of doing correlation between adjacent samples and averaging all the

symbols, the scheme used by the phase estimator only averages the phase residue

among four pilot tones in each symbol.

2.3.5 Viterbi Decoder

Decoding of convolutional codes is most often performed by the Viterbi decoder,
which is an efficient way to obtain the optimal maximum likelihood estimate of the
encoded sequence. Viterbi decoder can be further divided into hard-decision and
soft-decision decoding, where hard-decision is adopted in out system. According to the
design of the convolutional encoder in transmitter, we can derive the state transition

table in Table 2.2 and then further illustrate the trellis diagram as shown in Figure 2.8
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and Figure 2.9.

The Viterbi algorithm is a recursive sequential minimization algorithm that can be
used to find the least expensive way to route symbols from one edge of a state diagram
to another. To do this, the algorithm uses a cost analysis mechanism to calculate the
distance between the received symbol and the symbol associated to that edge.

The distance between the received symbol s and the symbol associated to that
edge in the state diagram is often referred to as the branch metric. If BM [i, j/(s), is the
metric of the branch from state ¢ to state j, the problem is finding the path for which the
metric, i.e. the sum of the branch metrics of the path edges, is at a minimum. The
Viterbi algorithm solves this problem by applying the following recursive equation for
each state transition

PM [j/(t) = min (PM [ij(t-1) + BM [i, j/(s)) (2.10)
where PM [j/(t) is the path metric associated to the (minimum cost path leading to)
state 7 at time ¢. At the end of the de¢oding; it is possible to reconstruct the maximum
likelihood sequence through a trace back starting from the possible decoder states.

Normally for decoders using non-punctured codes, the trace back depth equals
five-times constraint length, which-is-sufficient'to decode the correct output in the
presence of noise. In our system, constraint.length equals 5; therefore an appropriate

trace back depth is 25.

Table 2.2: State transition table
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2.4 MIMO Techniques

The MIMO techniques for wireless communication improve the signal quality of
the receiver on one side of the link by simple processing across two antennas on the
opposite side. These schemes could be very attractive in wireless communication
applications where the performance of the system is limited by multipath fading.
MIMO techniques can basically be split into two groups: spatial diversity technique
[14] and spatial multiplexing technique [7] [15] [16]. Spatial diversity technique
increases the performance of the communication system by coding over the different
transmitter branches, whereas spatial multiplexing technique achieves a higher
throughput by transmitting independent data streams on the different transmit branches
simultaneously and at the same carrier frequency. In the following sections, we will

explain the MIMO techniques adopted in our system in detail.

2.4.1 Spatial Diversity Technique

In wireless communication Systems;tdiversity techniques are widely used to
reduce the effects of multipath”fading and improve the reliability of transmission
without increasing the transmitted power or sacrificing the bandwidth. Diversity
techniques are classified into time, frequency, and space diversity. Space diversity, also
called antenna diversity, can be further classified into two categories, transmit diversity
and receive diversity. Among various transmit diversity schemes, STBC is the most
popular scheme with the feature of open loop (i.e., no feedback signaling is required)
as channel information is not requireed at the transmitter. Therefore we will focus on
the scheme of STBC in this section.

The space-time block coding scheme was first discovered by Alamouti [2] for two
transmit antennas. Symbols transmitted from those antennas are encoded in both space
and time in a simple manner to ensure that transmissions from both the antennas are
orthogonal to each other. This would allow the receiver to decode the transmitted
information with a slight increment in the computational complexity. In the following

discussion, we will give an overview of Alamouti’s scheme.
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Considering about the adopted 2x2 MIMO-OFDM system, the input symbols to
the space-time block encoder are divided into groups of two symbols. At a given
symbol period, the encoder takes a block of two modulated symbols Xlk and XQI“ in
each encoding operation and maps them to the transmit antennas according to a code
matrix given by
X ()

1

X;f (Xlk )* (2.11)

The encoded outputs are transmitted in two consecutive transmission periods from
two transmit antennas. Let H ;fq be the channel frequency response from the pth
transmitted antenna to the gth received antenna on subcarrier k, then the noise free

post-FFT received signal, Zf and ZQI“, can be expressed as

k k k k k B\
Z¥m) ZFm+1)| |H HEY||X] —(X2)

2 k |k kL x
Zz (n) Z2 (n+1) H12 H22 X; (Xf) 012
_ X1H11 +X2H21 _(X2) Hn +<X1) H21
krrk k 7k b\ h -
Xl H12 + X2H22 -(X2) H12 +<X1) H22

Here we advanced take phase noise effects into consideration, and then the original

equation will lead to

{octa, + s e (X0l + () e
(2.13)

*

R A R S LR C R AT

Since we have obtained the estimated channel H and the estimated phase ¢f before

this stage, we can easily calculate the detected signals Df’ and ﬁf by Eq. 2.14

ﬁlk _ (ﬁlkl)* .Zlk(n)_efjd;l(n) + ﬁQk:l (les(n +1)> _equl(nJrl) +
(ALY - ZE(n)- %) 4 7 (75 +1)) - el
B8 = () -2 ) — (280 + 1) -0 19

(Hy,) - Zy(n)- %" — Hy, - (Z(n +1)) -0

2
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Moreover, assuming that the estimated channel H and the estimated phase dS are

accurate, thatis, H = H and (ﬁ = ¢, the results of Eq. 2.14 will turn as follows

B = (s + s+ s+ ) x!

Df = (ft o[ + | + | ) 2.15)

where (175 -+ [HA [+ [HE[ +[f5[) is a diversity gain.

2.4.2 Spatial Multiplexing Technique

Spatial multiplexing technique multiplexes multiple spatial channels to send as
many independent data as possible over different antennas for a specific error rate.
There are four spatial multiplexing schemes: diagonal BLAST (DBLAST), horizontal
BLAST, VBLAST, and turbo BLAST;[17].,Of them, VBLAST is the most promising
for its implementation simplieity, which, is adopted in our system. Hereafter the
equation derivations are held under the hypothesis of VBLAST scheme being used.

In transmitter side, the encoding process-is simply a multiplex operation followed
by independent substreams. No inter-substream coding, or coding of any kind, is
required. The transmitted signal in frequency domain is given by

k

?k (2.16)
2

In the receiver side, the signals after effects of MIMO channel and procedure of

FFT, denoted as Zlk and ng , can be expressed as follows:

k k k[ vk k oyok koyk
Z; (n) B Hyy Hy || X B Hy Xy + 1,y X, 217
Zbm)| \HE HE||XF| O |HEXY 4+ HE XE @17
2 12 222 1241 2242
After adding phase noise, the equation becomes
Zl (n) B {H11X1 +H21X2}6J¢1( ) (2.18)
" B koyk koyk ), idy(n) :
Z,(n) {H12X1 + Hy, X, }ej ?

Furthermore, the estimated channel matrix H can be obtained in channel estimation

~

stage, where H plays an important roll in the VBLAST decoding.
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=|., . (2.19)
H, Hy,

VBLAST decoding can be separated into two steps. The first step is interference
nulling, and the second step is interference cancellation. Nulling is done by linearly
weighting the received signals by W" so as to satisfy some performance-related
criterion, such as minimum mean-square error (MMSE) or zero-forcing (ZF). The
detected signals after nulling, denoted as 151]‘ and ﬁ;‘ , can be shown as follows

Dim)|_ o |Z)- e

=W ) (2.20)
Dy (n) ZE(n)- &%)

where W" can be calculated by the following equation when ZF criterion is adopted
A e |
wh = (1Y) =1 (@H" A1) 2.21)
Otherwise, W" is given by Eq. 2.21 when MMSE criterion is adopted

23
2
o 0 .

H" (2.22)
0 05

where o>

is the noise power, In our proposed systém, only ZF is adopted.

After nulling, interference from already-detected components Df" and DQI“ is
subtracted out from the received signal, resulting in a modified received vector where
less interferences are present, which is called interference cancellation. The most
general interference cancellation skills are successive interference cancellation (SIC)
and parallel interference cancellation (PIC). In our 2x2 MIMO system, SIC is adopted.
Assuming that both H and qg are estimated correctly, then the detected signals after

interference cancellation, denote as le and Dzk , can be shown to be

. | ZE (e ™ — {E DE(n)
D =|(A5) () ]

Zlk (n)e /%M — H§2D2k (n)

- (223)
« A ZEm)e 7™ — HF DF(n
B =l (asy ]2

Z} (n)e 7" — H Df (n)
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Therefore after we divide the scaling (‘Hm +‘H1]‘2‘ ) and (‘H;‘l‘ +‘H§2‘ ), the

original signal Xlk and X;‘ can then be recovered.

2.5 Summary

In this chapter, we first introduce the MIMO-OFDM system, and propose our
system architecture including the transmitter and receiver. We also give the description
of all functional blocks in the order of data passing through a system. At the transmitter,
convolutional encoder, interleaver, mapper, adding preamble channel, and frame
structure are gone through. At the receiver, synchronization is first mentioned, which
consists of coarse timing, fine timing, frequency, and phase synchronizations. Then,
channel estimation, de-mapper, de-interleaver, and Viterbi decoder are described in the
rest part of the receiver. Finally, we highlight the space-time coding techniques, also
called space diversity technique and:spatial .multiplexing technique, implemented on
the system as an independent, sectionstorgive a‘detailed introduction. More detailed

experimental results and performance analysis will be given in Chapter 4.
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Chapter 3

MIMO-OFDM System Platforms

In Chapter 3, we will introduce the development environment, including fast
prototyping platform and self-designed platform. The fast prototyping platform is
chosen to be our initial verification platform of MIMO-OFDM baseband algorithms,
since the debugging interface is much more convenient for designers and the system is
much simpler than another platform. On the other hand, the self-designed platform is
used to perform the final verification-of whole: MIMO-OFDM system including
baseband and RF parts, where transmitter and receiver are implemented on two
separated boards with their own REF modules each. The self-designed platform is much
closer to a real wireless communication system and therefore can take all phenomena
and effects of the wireless system into account. In the following sections, hardware
modules, software design flows, and the corresponding debugging tools of these two

platforms are detailed explained.

3.1 Fast Prototyping Platform

Figure 3.1 shows the development environment of the fast prototyping platform,
including Aptix® System Explorer with several specific modules, a high speed work
station, a digital to analog converter (DA), an analog to digital converter (AD), a logic
analyzer (LA), an oscilloscope, and some PCs. A close-up shot of Aptix MP3C is given
in Figure 3.2 where the modules installed on Aptix MP3C are highlighted, including
three Xilinx FPGA modules, one DSP module, and one USB module.
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Figure 3.2: Modules installed on Aptix MP3CF platform

3.1.1 Aptix® System Explorer

Under the trend of System on Chip (SoC) and the concept of time-to-market,
Aptix® corporation has developed a series of fast prototyping system named MPx,
which provides a total solution of real-time verification and integration for industry

and high-performance functional simulation for application specific integrated circuit
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(ASIC) designer so as to achieve the goal of time-to-market. In our laboratory, we
choose Aptix” System Explorer MP3CF as our fast prototyping system.

The Aptix® MP3CF System Explorer'™ contains two parts, hardware platform
called MP3CF FPCB and software called Explorer, on which we will give more

introduction in later sections.

3.1.1.1 Hardware: MP3CF Platform

Aptix® MP3CF Platform consists of several functional units, such as the onboard
micro-controller, the clock generator, some re-programmable inter-connect chips called
field programmable interconnect components (FPIC), the main motherboard called
field programmable circuit board (FPCB), and some flexible input/output (I/O) buses
[18] as illustrated in Figure 3.3.

s ™

[ Clock Modules I §
‘zzug Ll

| Three FPIC’s
, Sl
- o it

=W ow

THEEE
PEEE

o

[ Micro-Controller

Figure 3.3: Aptix® MP3CF platform

Micro-controller mainly takes charge of the operation of the whole platform, such
as the control of booting sequence and storing or loading the design of circuit through
flash memory; clock generator provides system clock, and supports eight different
clock sources from outside; FPIC is responsible for the inter-connect of all modules;
FPCB is the place where modules can be installed; I/O bus is the bridge between

Aptix® platform and devices outside.
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Aptix® MP3CF is powerful and capable of easy expansion and high integration. It
not only supports modules produced by Xilinx Corporation and Altera Corporation, but
also those fitting the definition of freehole pins. By the right definition, we can install
modules developed by other companies on Aptix® MP3CF through an adapter. For
example, we developed a DSP C6701 EVM by using the core chip TMS320C6701
DSP of Taxas Instruments (TI) and also a CYPRESS USB 2.0 module by using the
core chip of CYPRESS CY7C68013, both of them being not the products from Xilinx
or Altera. Therefore, by the usage of the adapter, we can integrate different modules on

Aptix® MP3CF and make the system more flexible and powerful.

3.1.1.2 Software: Explorer

The software (called Explorer) provides an easy-to-use, consistent user interface
which displays commands through-a series of pull-down menus. The main design flow

is described as follows and illustrated-in Figute 3.4.

(1) Import Design into Explorer

Explorer requires< to " be “informed

about the netlist files that we are using in (_mport Netist ]

the design including top-level netlist, (_mport pin Map ]

component netlist, and pinmap file. [ SetupFPCB )
Parameters
Top-level netlist is an electronic design E \ J
~
interchange format (EDIF) file containing X Assign Power
P E U and Ground )
connectivity information between the L L , .
. . Place Parts
different components that will be mounted (F\)> @] . On Board |
on the MP3CF FPCB. Component netlists W r 2
P E
.. . . Compile Design
are EDIF files containing major design R b P 9 )
information in each component. All EDIF ( Setup )
Communication
files can be generated by electronic design - -

Program FPCB )

automation (EDA) tools that can support | and Logic Analyzer

synthesis, such as Synplify Pro we adopt.

Figure 3.4: Explorer flow
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Finally, we have to identify the pinmap file used in the design to assign

packages, pins, and other information to those parts.

(2) Setup FPCB Parameters
Explorer can support several different FPCBs. We require specifying

which FPCB we are using to develop.

(3) Assign Power and Ground
Some physical parameters of the design need to be set up, such as power

and ground nets.

(4) Place Parts on Board
We need to place our design components in their correct positions on the
coordinate system. There will be a board view window helping us move a
component onto the right place of FPCB by dragging the component to the

desired place with a mousex

(5) Compile Design
The compilation process fitst maps the FPCB and then maps the existing
/0, clock, bus and FPGA nets to MP3CE hardware. Using the result of FPCB
mapping, compilation continues  with FPGA place-and-route which will run for
all FPGAs in the design. Once the FPGA place and route has been completed
successfully, compilation conducts the FPCB routing. The FPCB router routes
the FPICs with all nets in the design mapped to the FPGAs. In general,

place-and-route is the most time-consuming process of all.

(6) Setup Communication
In this process, we need to do some configurations about communication
to program the board and devices. For hardware (FPCB board), we need to
specify communication method, address for the method, and whether the flash
is to be programmed or not when downloading. For debug (LA), we need to
identify communication method, address for the method, and which probing

pod of the LA is to be connected with.
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(7) Program FPCB and LA
Finally, we can download our design onto FPCB and probing information

to the LA, and start to verify our system design.

3.1.2 FPGA Module

In our fast-prototyping system, we use several FPGA modules mounted on Aptix®™
MP3CF platform to implement our communication system. In the following sections,
we will give an overview of our FPGA modules. Then we will show the design flow of

FPGA.

3.1.2.1 FPGA Overview

The demand for more complex programmable hardware is constantly growing to
meet the formidable industrysrequirement. The*major categories of programmable
hardware are programmable” logic device (PLD): and FPGA. A PLD consists of
micro-cells and a central intér-connection-logic. Typical PLD applications are “glue
logic” for connecting other ASICs: On the.other hand, FPGAs consist of even more
complex logic block on one chip. Typical applications are central control units (CPU)
and DSPs up to very complex SoC design. Therefore, we adopt some FPGA modules
to realize our communication system. Generally, FPGA can be categorized into three
types by its structure:

1. Look-up-table (LUT): Xilinx, Altera, AT&T

2. Multiplexer: Actel, Quicklogic

3. Transistor array: Cross point

If we focus on its programming architecture, there are two major types:

1. SRAM: Xilinx, Altera, AT&T, Atmel
2. Anti-fuse: Actel, Cypress, Quicklogic

Static random access memory (SRAM) type has a merit of being able to program

repeatedly while Anti-fuse type has the feature of one time programmable (OTP).
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Anti-fuse type can offer security for design but cannot be modified further.

Compared to ASIC, FPGA has lower performance apparently, especially on power
consumption and maximum supportable speed. However, as the technique of
semiconductor industry grows, FPGA becomes more and more competitive to ASIC.
Actually, FPGA has more integration ability and flexibility than ASIC, and

undoubtedly, is the best candidate component for a fast-prototyping system.

3.1.2.2 FPGA Design Flow

In our design, we choose Xilinx ISE 7.1 and Synplify Pro 8.2 as the development
tool for the first half of the design flow. The second half is done on a workstation with
Explorer. Figure 3.5 is the main FPGA design flow and later we will give more

information about the flow.

(1) Design Entry

In general, EDA tools are required to' develop register transfer level (RTL)
codes by appropriate- methodologies. In Xilinx ISE 7.1, it supports three
methods: HDL (hardware: description language) Editor, Schematic Flow, and
FSM (finite state machine)” Editor. HDL Editor allows us to edit source files
directly like VHDL (very high speed integrated circuit hardware description
language) [19]-[22] and Verilog [23], which are the most common HDLs in use
today. Schematic Flow is another choice to create our source files by drawing
the scheme with underlying HDL macros. FSM Editor allows us to edit by
timing state diagram, which is suitable for realization controller, such as

memory access controller.

-29 -



Xilinx Foundation

1. Design Entry 2. Simulation © 7
3. Synthesis

\/

System Explorer

4. Implementation <

WappingD . o @ PR D
« Mapping z@_pwnlo? c_ij;“-f RD

/

FPGA Prototyping Modules
1111 111 1111

FPGA= =FPGA= = FPGA=
1111 111 111

Figure 3.5: FPGA design flow

(2) Synthesis
After completing editing RLL source. files, we need to translate them into
gate level called netlist-files, which only contains information of logic gates and

inter-connections. We choose/touse Synplify Pro 8.2 for synthesis.

(3) Simulation
Design verification is an important aspect of each project design. Before
implementing our circuit in the target device, it is a good idea to simulate and
verify the circuit. The most common verifications are functional simulation and

timing simulation.

A. Functional Simulation
Functional simulation can be done after the schematic has been
entered or a HDL file has been created and synthesized. Functional
simulation gives information about the logic operation of the circuit, but it

does not provide any information about timing delays.

B. Timing Simulation
The timing simulation will give us detailed information about the time

it takes for a signal to pass from one gate to the other (gate delay) and
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gives information on the circuit’s worst-case conditions. The total delay of

a complete circuit will depend on the number of gates the signal sees and

on the way the gates have been placed in the FPGA.

One of the most popular simulation tools is ModelSim, which is
completely integrated into Xilinx ISE 7.1, and can perform functional
simulation and timing simulation very well. Thus, we choose ModelSim SE

5.5¢ as the simulation tool in our design flow.

(4) Implementation
The implementation is typically done after the design has been verified by
functional simulation. The implementation tools will translate the netlist
(schematic, HDL), place and route the design in the target device and generate a

bitstream that can be downloaded into the device.

(5) Download to Aptix® Explorer MP3CF
After the process of implementation, we can download our design into
hardware platform. Tozverify that signals-are really working properly in circuit,
we can use the LA to debug: Once the result‘does not match what we expect, we
need to come back to modify our design.and go through the whole design flow
again. That is to say, iterative tests are required until we obtain the results we

want.

3.1.3 ‘C6701 DSP EVM

Digital signal processors, such as TMS320 family of processors, are used in a
wide range of applications, from communications and controls to image and speech
processing. They are found in cellular phones, fax/modems, disk drivers, radio, and so
on. Texas Instrument recently introduced the TM320C6x processor, based on the
very-long-instruction-word (VLIW) architecture. This newer architecture supports
features that facilitate the development of efficient high-level language compilers. The
TMS320C67x DSPs are the floating-point DSP family in the TMS320C6000E DSP
platform. We choose TMS320C6701 as our core chip on DSP EVM to implement our
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MIMO-OFDM system. Later, we will give an overview of the core chip on DSP EVM.
Then we will introduce the architecture of EVM. Finally, we will show the design flow

about DSP.

3.1.3.1 TMS320C6701 DSP Overview

‘C6701 DSP EVM shown in Figure 3.6 is developed to integrate with other
modules on Aptix® platform so that we can come to the realization of MIMO-OFDM
system. The EVM is applicable for Aptix® MPx series platform; it uses TMS320C6701
DSP as its core chip. The system clock is 132 MHz, and can be upgraded up to 167
MHz. Owing to having eight functional units in CPU, the DSP can perform 1056 mega
floating-point operations per second (MFLOPS).

Figure 3.6: ‘C6701 DSP EVM

The architecture of ‘C6701 DSP EVM is shown in Figure 3.7, including
TMS320C6701 DSP, flash memory, SBSRAM, universal asynchronous
receiver/transmitter (UART), joint test action group (JTAG), and other interface
circuits like transceiver and complex programmable logic device (CPLD). Later, we

will give more information to what have not been mentioned.

(1) Flash Memory:
It is a nonvolatile read-only memory that is electronically erasable and

programmable, and it has a capacity of 128 Kbytes. When completing our
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development, we can program the design into the flash memory. On the other
hand, when we reset the DSP, it will automatically load the design from flash

memory into internal program memory.

(2) SBSRAM:
SBSRAM works on the frequency of 132 MHz and has a capacity of 512
Kbytes. There are two working modes determine what it is used for, called Map
0 and Map 1. When Map 0 mode is set, it plays the role of program memory.

When Map 1 mode is set, it is taken as general memory.

(3) JTAG and UART:
Both of them are interfaces of data transmission. JTAG is an interface
compliant with IEEE 1149.1 standard interface, and it also connects with

Innovate Integration Code Hammer PCI interface on PC to load the program

from the software, Code Composer, Studio (CCS). We can even stop the

TMS320C
6701

Floating
DSP

External
Control
Signal

Control
(CPLD)

Jansasuel |

External
Data Bus

Figure 3.7: Architecture of ‘C6701 DSP EVM
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3.1.3.2 DSP Design Flow

The Code Composer Studio (CCS) [24] provides an integrated development
environment (IDE) to incorporate the software tools. CCS includes tools for code
generation, such as a C compiler, an assembler, and a linker. It also has graphical
capabilities and supports real-time debugging, which enables us to develop our design

efficiently. The DSP design flow with CCS can be separated into the following parts.

(1) Create Project:

First of all, we need to create a project, and add the necessary files for
building the project. The most important files are source files, which can either
be C source files (.c) or assembly source file (.asm). Then we also require
Linker Command File (.cmd) and a run-time support library file (.lib). Last, we

may require some header files (.h) to be included.

(2) Code Generation and Options:
Various options arepassociated - with code generation tools, such as C
compiler and linker. We can set up Compiler Option and Linker Option to do
further configuration if we require, or we.can just use the default setting in most

cases.

(3) Building and Running the project:

After finishing code generation, we can build and run the project. In this
process, it compiles and assembles all C files using c/6x and assembles the
assembly files using asm6x. The resulting object files are then linked with
run-time library support file using /nk6x. This generates an executable file that
can be loaded into ‘C6701 processor and run. Then, we can load the program

after a build.

(4) Monitoring the Watch Window:
Before monitoring the watch window, we need to verify that the processor
is still running. After that, monitoring watch window allows us to change the
value of a parameter or to monitor a variable we desire. Through monitoring,

we can do debugging and regressive test until it works as we expect.
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(5) Correcting Program Errors:
Once an error occurs, the error message will be listed and being a link
directly to the line where the error occurs. After making the appropriate

correction, we have to build, load, and run the program to verify our results.

3.1.4 USB 2.0 Module

USB 2.0 Module uses CYPRESS CY7C68013 [25] as its core chip as shown in
Figure 3.8, which includes a 24 MHz 8051 and a 4 Kbytes FIFO. The maximum data
rate can be up to 480 Mbps. The FIFO provides the interface between USB 2.0 module
and C6701 EVM. Figure 3.9 shows a diagram of the USB 2.0 module and its
neighborhood. Through USB 2.0 module, we can transfer data, which comes from PC
and will come to USB FIFO first, to DSP EVM. Also, USB 2.0 module can transmit
data coming from DSP EVM to PC,:We can’connect PC with a web camera to generate

video stream as our data source. tele

(" Aptix MP3CF

DSPEVM

Module

PC Terminal

Figure 3.9: USB 2.0 module and its neighborhood
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3.1.5 AD and DA Modules

In our MIMO-OFDM system, we use the dedicated AD and DA modules to do the
conversion between digital and analog signals as illustrated in Figure 3.10. The major
components of each module include eight AD/DA chips, clock source, four databuses,

and eight I/O ports, and are descript as follows.

1. AD/DA Chips: DAS825E and ADC900u are used as core chip respectively.

2. Clock Source: It can be setup by the combination of JP1, JP2, and JP10
jumpers.

3. Databus: Through the configuration of virtual pins in Aptix® Explorer,
databus can receive and sent signals from and to FPGA modules by specific

cables.

In addition, the output of DA, contains, eight resistors numbered from R279 to
R226. When DA is connected to AD, Wer need to use 0.1 Q resistors. But if we attempt
to connect with the instrument that has 50 Q 1nput resistant, we must change resistors

to 50 Q to avoid the 1mpedancp"mlsmatch43_x_oblem, Whlch will make signals decay.

~

Receiver 1~4

Figure 3.10: AD and DA modules on fast prototyping platform
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3.1.6 Debugging Tools

As an old saying goes, “What is a workman without his tools.” In our fast

prototyping system, we do have some useful tools for debugging as follows.

1. Logic Analyzer: We use Agilent 16702B LA to perform the major task of
debugging. There are two modules installed on it. One is 16522A Pattern
Generator Module, and the other is 16711 A Measurement Module. The former
is mainly used for generating desired signals, such as the reset signal or some
selection signals for model selection; the latter is used for probing signals in
FPGA on Aptix® MP3CF platform by connecting specific pods to the slots on
Aptix®.

2. Oscilloscope: It is usually used when transmitted signals are prepared by
FPGA and sent to the DA module by specific cables. Therefore, we can verify
the waveform shown in,the oscilloscope. For OFDM signals following IEEE
802.11a, we may expect to see the waveform containing preambles in the form
of square wave in the head part and  OFDM symbols follow behind those

preambles.
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3.2 Self-designed Platform

In order to approach a real wireless communication system, the multi-
synchronous and high-speed bus FPGA design, combined with our module-based RF,
AD/DA, and MAC/BB hardware system, becomes the best solution. Our laboratory
has finished and successfully tested RF, AD/DA and MAC/BB boards. The
development environment is shown in Figure 3.11, and the close-up shot of main board
is shown in Figure 3.12, where four Xilinx Virtex II 6000 FPGAs are mounted in
MAC/BB board, and each MAC/BB board is able to connect with at most two AD/DA
and two RF modules.

In order to avoid the interference between high speed digital bus, those layouts
and interconnections of different modules shall be handled very carefully. Our
measurements show that directly connected modules did achieve feasible solution
which reduces the risk of facing interéonnection problems.

Further analysis and evalﬁaﬁon ‘C}uﬁriflg‘nde{%elnopment are given in the following

& ‘
sections. | e "

1

—— o —— —— = —— ——

I : =
Self-Designed | | ADDAandRF | | A?:”Se‘;"‘SE“.‘”?’A I | Agilent 89600S
Platform 11 Module 1 | i I 1vector Signal Analyzer
11 1 1 [

Figure 3.11: Development environment of self-designed platform
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3.2.1 RF Module

The RF module, as sho&ﬁfﬂiﬁ "Eigure 313, consists of MAX2828, which is
specifically designed for single-ban(; IEEé l802.11a applications covering world-band
frequencies of 4.9 GHz to 5.875 GHz. MAX2828 includes all circuitry required to
implement the RF transceiver function, providing a fully integrated receive path,
transmit path, voltage-controlled oscillator (VCO), frequency synthesizer, and
baseband control interface. Only the RF switches, RF bandpass filters (BPF), RF
baluns, and a small number of passive components are required to form the complete
RF front-end solution. Because the balance of I/Q signals will impact on the waveform
of RF output, the RLC components had been fine tuned. Besides, we also tested the
frequency accuracy and power level of transmitted carriers in our interested band from
5.15 GHz to 5.875 GHz. One of those measurements is shown in Figure 3.14; the
power level shall be further improved with fine tuning of matching circuits. We used
3-wires (Clock, Data and Latch) to control the RF module from PC currently, and then

the control mechanism will be integrated into MAC/BB after verification.

-39-



Figure 3.13: RF module on self-designed platform
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Figure 3.14: Measured carrier spectrum form RF module

3.2.2 AD and DA Modules

The AD/DA module, as shown in Figure 3.15, consists of ADS2807 and

DAC2900. ADS2807 is an analog to

digital converter which provides a high
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bandwidth track-and-hold and gives excellent spurious performance up to and beyond
the Nyquist rate. The measured timing diagram is shown in Figure 3.16, which
indicates the valid data during the high clock period. In addition, it is recommended
that data hold time is 3.5 ns for saving data from bus to SRAM, which had been
verified on our AD/DA boards too. DAC2900 is a digital to analog converter which
offers exceptional dynamic performance, and enables to generate very-high output
frequencies suitable for “Direct IF” applications. It has been optimized for
communications applications in which separate I and Q data are processed while

maintaining tight offset matching.

5

Figure 3.15: AD/DA module on self-designed platform
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Figure 3.16: Measured data waveform from AD/DA module

3.2.3 MAC/BB Platform

The MAC/BB is an FPGA-based module which is composed of four Xilinx
Virtex-II 6000 modules, as shown in Figure 3.17. It outperforms conventional DSP
processors on a board-for-board comparison, resulting in significant improvements in
processing speed, size, weight, power, and costs. Combining a wide variety of flexible
features and a large range of densities up to 6 million system gates, the Virtex-II 6000
enhances programmable logic design capabilities and is a powerful alternative to
mask-programmed gates arrays. With its advantages of very fast data rate, it can
achieve full duplex and real time operating for wireless communication. The VHDL
codes had been used to drive LEDs by differential clock rate from oscillator to verify

its functionality.

Figure 3.17: MAC/BB platform

3.2.4 USB Interface

In order to have a convenient input for the audio/video signal in the future, USB

interface was designed into the platform, which is shown in Figure 3.18. It will comply
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with the USB specification revision 1.1, and be upgraded to USB 2.0 if necessary. The
compatibility test is conducted with compliance software run at PC equipped with PCI
to UTMI compliant interface card during test stage. This will make sure we can easily
connect our platform with any signal source with USB port. The built-in USB interface

codes for FPGA was defined and implemented.
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3.2.5 Debugging Toé"f?s-‘:,._,.,_l

Besides the logic analyzer and oscilloscope mentioned before, two additional
instruments, spectrum analyzer and vector signal analyzer, are adopted to capture and

analyze RF signals.

1. Spectrum Analyzer: Agilent PSA Series Spectrum Analyzer E4443A is
chosen. It offers high-performance spectrum analysis up to 6.7 GHz and
beyond with swept-tuned measurements with digital Resolution-BandWidths
(RBW) filters. In our debugging flow, E4443A capture the transmitted 5.2GHz
signals, down convert them to 70MHz intermediate frequency (IF), and then
fed out to vector signal analyzer to perform advanced analysis. Its block

diagram is shown in Figure 3.19.

2. Vector Signal Analyzer: Instead of swept-tuned measurements, vector signal

analyzer 89600S performs fast Fourier transform (FFT) measurements with
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digital FFT filters, which can measure all signal characteristics (i.e. phase) and
avoid very long sweeps times required for narrow RBW. Figure 3.20 shows the
block diagram of vector signal analyzer, notice that it is PC-based and
therefore machines only capture the RF signal accurately and feeds to PC,

where final analysis are performed on PC.
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Figure 3.20: Vector signal analyzer block diagram
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3.3 Summary

In this chapter, we introduce two adopted platforms, e.g., fast prototyping
platform and self-designed platform. These two platforms both are equipped with
FPGA, USB, and AD/DA modules; moreover the self-designed platform provides RF
modules by which realistic wireless channel characteristics can be generated. Finally,
corresponding debugging tools are mentioned; in particular the logic analyzer and
oscilloscope are used to measure baseband signals, and spectrum analyzer and vector

signal analyzer are used to capture and analyze RF signals.
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Chapter 4

MIMO-OFDM System Realization

The 5 GHz MIMO-OFDM system is implemented on the FPGA-based hardware
introduced in Chapter 3. It demonstrates both diversity and multiplexing schemes that
use MIMO technique in conjunction with OFDM. In this chapter, a complete design
flow including MATLAB verification, FPGA;realization, ModelSim simulation, and
experimental results will be presented; where the principles and concepts of circuit

design on FPGA will specially be'emphasized.

4.1 Design Flow

Digital Signal Processing (DSP) design has traditionally been divided into two
types of activities — systems/algorithm development and hardware/software
implementation. The majority of DSP system designers and algorithm developers use
the MATLAB language for prototyping their DSP algorithm. Hardware designers take
the specifications created by the DSP engineers and create a physical implementation
of the DSP design by creating a register transfer level (RTL) model in a hardware
description language (HDL) such as VHDL and Verilog. Our MIMO-OFDM system
can be regarded as a DSP system, and Figure 4.1 shows the design flow we adopt.

First, we have to program a floating-point MATLAB code in order to not only
verify the algorithms mentioned in Chapter 2 but to evaluate the system performance.
Then, the floating-point MATLAB code is required to be manually converted into a
fthe ixed-point MATLAB code. Subsequently, RTL model is established, where we
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choose VHDL as our hardware description language and Xilinx ISE 6.1 as our
development tool. Next, this RTL implementation is simulated by ModelSim SE 5.5¢
and synthesized onto a netlist of gates using Synplify Pro 8.2. Finally, the netlist of
gates is placed and routed onto Xilinx FPGAs using Xilinx ISE 6.1. The detailed

design flow will be discussed in the following sections

Floating point MATLAB .m

|

DSP Designer Quantization @
(Manual) MATLAB

Fixed point MATLAB .m

|
] | -

Hardware Designe
(Manual)

Coding

Eilinx IZE 6.1

Bit true VHDL/Verilog .vhd/.v

?I‘

; ; -
Automatic RTL. Slmulatlo_n IE!"
Logic Synthesis pagelsim SE Synplify Pro
v 5.5e 8l

Netlist of gates .edf

Automatic Place & Route i
Eilinx IZE 6.1

“ é

FPGA bit stream .bit

Figure4:1: FPGA design flow

4.2 MATLAB Verification

As developing a communication system, MATLAB is one of the best candidates
for us to model and simulate the system by means of its powerful matrix computation
ability and well-defined communication functions. In addition, its 2D or 3D graphic
interface also makes designers easily illustrate the system performance with the effects
of simulated channel and quantization error and so on. In this section, both
floating-point and fixed-point verifications will be mentioned. In the floating-point
verification stage, we attempt to verify the accuracy of communication algorithms and
sketch out the performance of the system, which is considered as the basis in
comparison with fixed-point cases. On the other hand, in the fixed-point verification
stage, we need to establish a fixed-point system model by using a quantization

algorithm first, and then perform advanced fixed-point analysis.
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4.2.1 Floating-Point Verification

In this section, the function blocks and adopted algorithms mentioned in Chapter
2 will be verified first, and then the whole system will be constructed and the system

performance will be expressed.

1. RRC:

In our system, a 25-tap root raised cosine filter with roll off factor £=0.22
is designed, and its impulse response and frequency response is shown in
Figure 4.2. It can be clearly observed in the frequency response that signals
with frequency higher than approximately 12 MHz are filtered (the sample rate
equals 40 MHz), that is, the waveform in time domain will become much
smoother, and therefore can effectively combat the aliasing in AD/DA
conversion and the ISI problem. Figure 4.3 shows the waveforms before and
after RRC pulse shaping: Waveform inpart (a) is a series of BPSK modulated
signals. After the pulse shaping in transmitter side RRC, the smoother
waveform will look like part (b). Next the-waveform passing through RRC in
the receiver side is shown'in part-(c). Finally, the eye diagram after RRC

shaping is illustrated in Figure 4:4.

Impulse Response
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g
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Figure 4.2: Impulse and frequency response of RRC filter with 5=0.22
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Figure 4.3: (a) Original waveform (b) RRC shaped waveform on transmitter

(c) RRC shaped waveform on receiver

Eye Diagram

Arnplitude

Figure 4.4: Eye diagram of RRC shaped waveform

2. Timing synchronization:

As we have mentioned in Section 2.3.1, a data-aided timing
synchronization algorithm is adopted in our system. Here we pass our
transmitted signal through a Rayleigh fading, multipath channel, and then
process the post-RRC received signal by timing synchronization block. The
output waveform is shown in Figure 4.5. It can be observed that there is a main

hill, whose summit is our reference frame start position. Because of multipath
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effect, there are also many smaller hills hidden inside the main hill; however
they will all be neglected because our algorithm will only choose the most

reliable, e.g., the most highest peak, as our reference start position.

- 1ot Coarse Timing Synchronization Output
. T T T T T T T

P owver

D 1 1 1 1 1 1 1 1 1
0 50 00 180 200 Z500 300 3500 400 4500 AOO0
Tirne

Figure 4.5: Coarse timing synchronization output

. Channel estimation:

The channel estimation result is shown in Figure 4.6, where the above one
is the real channel frequency response, and another one is the estimated
channel frequency response.-We.can see these two curves are almost the same
except the amplitude of the below one is one-time bigger than another, which

is caused by the space-time structure in long preamble.
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Figure 4.6: Real and estimated channel frequency response
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4. System performance:

The floating-point BER to SNR system performance is shown in Figure
4.7, where a Rayleigh fading channel with AWGN noise is generated, and the
total path number is four, including one main path and three multipaths. We
can see that under the same SNR, the BER in the STBC case is much smaller
than the BER in the VBLAST case, and the gap becomes bigger and bigger as
SNR increases.

MIMO-OFDM Performance

—6—sTBC |3
" —B—V-BLAST | |

BER

10t
0oL

100

1
0 2 4 3 g 10 12 14 16 18 20

1 D'? I 1 I 1 I

E,/MN,_ (dB)

Figure 4.7: Floating-point system performance

4.2.2 Fixed-Point Verification

Before fixed-point verification, we need to convert the floating-point MATLAB
code to the fixed-point MATLAB code by the quantization algorithm first. Since a
quantization procedure is very complicated and time-consuming due to its nonlinear
characteristics, we leave the detailed descriptions of this part to Chapter 5. In this
chapter we will only show the results available in the quantization algorithm.

Table 4.1 shows the result word lengths available in the quantization algorithm,
where EM means error metrics, which can represent the level of the quantization error.
The bigger the EM is, the more serious quantization error we get. Otherwise, R means
the required hardware resources; m and p indicate the integer and fractional lengths.

The detailed definitions of these parameters will be detailed explained in Chapter 5.
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Based on the word lengths shown in Table 4.1, we then construct the fixed-point
system model on MATLAB, and perform the fixed-point verification. Figure 4.8 shows
a fixed-point BER to SNR system performance. We observe that no matter in the
STBC or VBLAST case, the curves drift to right-upper side when the number of EM
increases, which indicates the system performs worse as the level of quantization error
increases. Furthermore, we also observe that in low SNR, channel noise dominates the
system performance, therefore the differences between EMs are not obvious. On the
other hand, in high SNR, the quantization error noise dominates the system

performance, therefore the gap between different FMs becomes bigger and bigger.

Table 4.1: Word lengths under different EMs

EM,; g ges 1 5 10
EM;.. srsc 0.9402 4.1791 8.756
EMﬁne_ VBLAST 0.9622 4.496 9.626
My T Pigpr 10 7 6
MprcTPrRO 13 12 9
M, orrcTPrarRC 11 8 7
M+ Pyt 14 11 11
LR o 10 8 8
Moy, +Pen 12 9 7
My, +Ppy, 12 8 8
R 13808 10338 9268

MIMO-OFDM Performance

o= STBCA
—<— STBC EM1
—+— STBC EM5

— £ STBC EM10
— O W-BLASTHAl
—S— V-BLAST EM1
——W-BLAST EM5
— 57— - V-BLAST EM10 |3

BER

0 2 4 [ a 10 12 14 16 18 20
E,/N_(dB)

Figure 4.8: Fixed-point system performance
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4.3 FPGA Realization

With the introduction of advanced Field-Programmable Gate Array (FPGA)
architectures which provide built-in DSP support such as embedded multipliers and
block RAMs on the Xilinx Virtex-II and the multiply-accumulators, DSP Blocks, and
MegaRAMs on the Altera Stratix, a new hardware alternative is available for designers
who can get even higher levels of performances than those achievable on general
purpose DSP processors.

In our implementation, we adopt Xilinx Virtex-II series as our FPFA and VHDL
as our hardware description language. The programming concepts that deserved to be
mentioned in high level language like MATLAB and in hardware description language
like VHDL are quite different. In general, high level language keeps its temporary data
in a form of variables, and simply assigns the stored variable to another one which is
used to be the input of next stage ‘or functions if necessary, whereas hardware
description language may need-extra data buffer and related components to perform the
same task. Since we have no:choice but to-add RAMs, register, as data buffers, some
index-related jobs can be performed-in-the: same time, such as zero padding, bit
reversing, or adding cyclic prefix‘and so forth: The following sections will give readers

more concepts and clear description about how we design in FPGA.

4.3.1 Design Principles

Before going through the circuit design of our components in the MIMO-OFDM

system, some important design principles need to be mentioned first.

1. Parallel processing:

Since FPGA has a highly flexible architecture, and can support any level
of parallelism, we can significantly enhance the data throughput by parallel
processing. Taking a generally used function, FIR filter, for example, an FIR
filter consists of many multiply-and-accumulate operations, and it will be
time-consuming if only a single, fixed multiply-and-accumulate unit is used.

Hence sufficient multiply-and-accumulate units are always realized.
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The STBC encoder in the transmitter is another good example of parallel
processing, since data of two successive symbols are required to do STBC
encoding, we then can transfer them simultaneously form the previous block to
the STBC encoding block. By doing so, we don’t need to buffer the first

symbol and start to do STBC encoding until another symbol serially arrives.

. Avoid critical path problem:

Critical path problem is often faced by designers. When the delay of a
circuit is determined by the delay of its longest sensitizable paths (such paths
are called critical paths), the problem of dealing with the delay of a circuit is
called critical path problem. Sometimes a complicated numerical computation
is carried out in a block, and thus many summations and multiplications are
serially executed in a path within a single clock period. Although high speed
multiply-accumulators are embedded inside Xilinx FPGAs, these operations
cannot be completely executed in time within a single clock period; therefore
error results will be fed out. In-onder to ‘avoid this kind of problem, registers
will be inserted in the path and therefore the whole computation will be
separated into few scctions:and-can be executed within few clock periods

depending on how many registers are inserted.

. Reuse RAMs or ROMs:

In our design, RAMs and ROMs are widely used, and most of FPGA
resources are occupied by them. Under this circumstance, to save or reuse
RAMs and ROMs becomes the most crucial key to save total circuit area.
Therefore in some proposed circuit blocks, alternatively reusing of few
small-sized RAMs is adopted instead of only one-time using a single

huge-sized RAM.

. Substitute real number computation for complex number computation:
Inevitably, large amount of complex number computations are included in

our MIMO-OFDM system. In MATLAB, these complex number computations

can be easily computed, whereas become inconvenient in VHDL since

complex number operations cannot be carried our directly in VHDL. Hence, in
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order to deal with complex number computations, the original complex
number arithmetic is separated into many real number segments. For example,
one simple complex number computation, (X+Y)/Z, will become
(ae+ce+bf+df)/(e'+[ )+ (-af-cf+be+de)i/(e’+f ) after the rearrangement,
where X=a+bi, Y=c+di, Z=e+fi, and a, b, ¢, d, e, and fare real numbers.

4.3.2 Circuit Design

In the following paragraphs, components are roughly divided into transmitter
components and receiver components, and all circuits follow the principles introduced

in the previous section. Additionally, every component is hierarchically designed.

4.3.2.1 Circuit Design of Transmitter

Figure 4.9 shows the overview of the circuitdesign of the transmitter. All circuits
are synchronous, and a pipelined architecture is adopted where the clock is used to
control the data transfer simultaneously:-All:delay blocks make use of components
SRL16 to implement a progressive delay line; where SRL16 is an exclusive feature of
Virtex architecture that allows users to save a lot of room and increase tremendously

the performance. Detailed circuit designs of function blocks are described as follows.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

IFFT os_cp pmb_data_mux
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Figure 4.9: Circuit design of transmitter
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(1) Convolutional encoder:

Figure 4.10 shows our circuit design of the convolutional encoder, named
conv. First the source data are fed into an encoder, conv_encoder, which
encoding rule follows what has been discussed in Section 2.2.1. Then three
parallelly generated bits da, db, and dc are passed into the next circuit —
conv_ram_ctrl. The main function of conv_ram_ctrl is to generate control
signals, such as write enable signal (wen), and writing or reading addresses
(address_1-3). Besides control signals, da, db, and dc are buffered for one clock
period for the sake of the synchronization of data and control signals. Finally, a
particular RAM is used, where it allows three input signals simultaneously to be
written into three different allocations according to respective addresses in
writing stage, and output only one signal in reading stage. RAM size depends
on which MIMO technique is adopted in the system. When spatial diversity
scheme is chosen, it requires at least 48x6x3=576 memories to store, therefore a
1024x1 RAM is realized. On the other-hand, a 2048x1 RAM is chosen in spatial
multiplexing scheme. In addition, the write enable signal wen is fed out so that
the next stage can know when te-read-by recognizing wen changing form high

to low (form writing mode to reading mode).

conv
conv_encoder conv_ram_ctrl conv_ram_1024x1
LA da buf_in_1 buf out 1 d?_l 1
din db buf_in_2 buf_out 2 di_2
de—buf_in_3 buf_out 3——di 3 ' |dofH
address_1/ 30 |ADDR_1
address 2——ADDR_2
address_3—+—ADDR_3
wen we
clk clk clk
RST RST RST |
| E—

Figure 4.10: Circuit design of convolutional encoder

(2) Interleaver / de-interleaver:
The circuit designs of the interleaver and de-interleaver are similar;
therefore here we just explain the design concept of the interleaver. As we

mentioned in Section 2.2.2, a block interleaving scheme is adopted. Hence the
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interleaving will take place repeatedly in every symbol, which contains 96 bits
through totally 576 bits (take the signal length of the spatial diversity scheme
for example). By this reason, there are only two 128x1 RAM instead of a 1024x
1 RAM embedded inside, which can dramatically save FPGA resources.
Inter_ram_ctrl will generate a writing address with a interleaved order, and
simultaneously generate sequential reading address. Then, by scheduling of
multiplexer and de-multiplexer, the two 128 x1 RAMs will alternately
interleaved store and then sequentially fed out the data from one RAM to

another. In this way, the input signals are successfully interleaved.

interleaver
inter_ram_ctrl demux ram_128x1 mux
raml_wen—._ | datal[ di
ram2_wen A wil AW q
data_buffer_out— —<data —A r 90— wl
address_writer———A_W we
address_read ; JUuU
dmux_se'l data2(——di
emux_se A_W2 A W
I data_buffer_in | r do w2
clk we
RST S S
—~ delay_1clk
[ ]
L

Figure 4.11; Circuit design of interleaver

(3) Mapper / de-mapper:

In our design, the de-mapper block is integrated with another block, which
will be discussed in the following paragraphs. Here we see the circuit design of
mapper first. In mapping stage, two successive input bits are going to be
modulated into in-phase and quadrature parts, hence a adopted QPSK
modulation scheme is carried out in mapper_ram_ctrl, and then the modulated
signals, including I part and Q part, are fed into adopted 512x2 RAMs along
with control signals. Here word lengths are chosen to be 2 in order to represent
+1 and -1 in 2’s complement method. For the sake of convenience in the next
stage, the successive mapped data symbols are fed out simultaneously by

arranging the order of reading addresses deliberately.
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mapper

mapping_ram_ctrl ram_512x2_i
2
data_i_out 2
daress i 1| o O H |2
address_i
drecs i :g ADDR 1 do_1+ pOLXLLX
address_L ——ADDR_2 do_2|  X0DXITX
data_in wen Y
T -
ram_512x2_q
2
2 e 512|:|
data_qg_out 1 di 5
clk address _g_1 19 ADDR_1 do_ll2 (IBICER
KOLX11X
rst address_g_2 19 ADDR_2 do_2r

Figure 4.12: Circuit design of mapper

(4) STBC encoder with pilot zero tones adder:

This circuit is suitable for the spatial diversity scheme, and the structure is
very similar to what we have introduced in previous paragraphs. After feeding
in successive mapped data symbols,  the STBC scheme is executed in
stc_ram_ctrl and then-separate data‘into two streams, which are respectively
stored into four 512x2 RAMs:. These RAMs are designed to allow two signals
written in the writing stage and one signal read in the reading stage. Moreover

pilot tones and zero tones are also imbedded into the output signals of this stage.

STBC+pt _zt
stc_ram_ctrl ram_stcl i
stcl_even_i_out H di 1 A
stcl_odd_i_out 42 di_2 4
, ADDR_1 | |dopeXaix
address_even —— ADDR 2 ||
ram_stcl g
stcl_even_qg_out H2 di_1 5
XODXATN . stcl_odd_g_out 2 di 2 512
‘ rnod_even_l_lrl ADDR_1 dol 1Z>@L><ii><
2.mod_even_g_in ADDR 2
2 A _c
5 mod_odd_l_lr_l ST
ag 107 @ £l stc2_even_i_out =2 di_1 2
stc2_odd_i_out 2 di_2 512
|, —moor1 | o XXX
address_odd ADDR_2 L
ram_stc2 g
stc2_even_q_out = di_1 P
stc2_odd_q_out 2 di_2 512
ik ADDR 1 | |dop2 %X
RST ADDR 2 L

Figure 4.13: Circuit design of STBC encoder with pilot zero tones adder
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(5) De-multiplexer with pilot zero tones adder:
Opposite to the previous circuit, this circuit is designed for the spatial
multiplexing strategy. Since it just separates the input signal into two
independent streams without advanced space-time coding, the circuit design is

much simpler than the previous circuit.

demux+pt_zt

mux_ram_ctrl ram_antl i
2
antl_i_out H& di 1 55 AT
. ADDR_1 | |do 2%
address_even —— [ we L]
ram_antl_g
2
antl_g_out =2 di 1 512 D
m12 mod_even_i_in ADDR_1 | |do ;2@
2. mod_even_g_in Lwe L
2 mod_odd_i_in | — T
2. mod_odd_g_in v
ant2_i_out H2 di_1 512
ADDR 1 | |dop2@aX
address_odd |- we —
ram_ant2_q
clk 2
RST ant2_i_out 2 di_1 512 T
ADDR_1 | |do 20
—we L

Figure 4.14: Circuit design of de-multiplexer with pilot zero tones adder

(6) FFT / IFFT:

Fast Fourier transform (FFT) is a type of discrete Fourier transform (DFT),
but only faster with fewer computations (summations and multiplications). A
DFT takes N computations to calculate a transform for N points, whereas the
FFT takes around Nlog2N computations to complete the same thing. Here we
adopt a 64-tap FFT which is provided by Xilinx and can operate 20-bit complex
(20-bit real, 20-bit imaginary) samples, and a rough design concept is illustrated
in Figure 4.15.

A pipelined implementation of a 64-point FFT requires a simple pipeline
consisting of 6 butterfly computation modules. This method operates on two
data points per clock cycle, yielding an effective data rate that is twice the clock
rate, but requires customized butterfly computation modules for each stage of
the FFT computation. Since a butterfly computation is carried out, the output

signal will be in bit-reverse order.
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Finally, according to the results available in the quantization algorithm, the
word length of IFFT (FFT) outputs should be truncated from 20 bits to 10 bits

(14 bits) Furthermore, an additional saturation circuit is attached behind IFFT to

mitigate PAPR problem.
FFT
xin |3 Butterfly = > Butterfly > > Butterfly >
—> utterfly utterfly utterfly
yin > computation )| By l—y|cOmputation ey l—y|COmputation |_s, ey _| \
I_) 20 [Xout
9 ! S
Butterfly Dela Butterfly Dela Butterfly Yout®
> computation | Y i computation —>| Y > computation >

Figure 4.15: Circuit design of fast Fourier transform

(7) Oversampler and cyclic prefix adder:

Signals must be not only oversampled but also cyclic prefix added in this
circuit. Moreover, the postsIFFT bit-reverse ordered signal need to be sorted to
be sequential order. We achieve:these three purposes by merely arranging the
order of address when: data 1s written into and read out from 1024x10 RAMs.
The arrangement of address. order-in-writing mode will not only sort signal to
sequential order but lead to zerespadding between every signal, also called
oversampling; whereas the arrangement in reading mode will let output signal
look like that a copy of the last 1/4 part of OFDM symbol is attached to the

front of itself, that is, cyclic prefix.

os_cp

os+cp_ram_ctrl ram_i
clk 10

rst

buffer_i_out 3 di 1024 |do 3
— ADDR

_32 buffer_i_in  wen e ram_q
. ADDREY | [k 10

0
buffer_q_in
rst

clk buffer_q_out10 di 1024 |4g
rst __ ADDR

Figure 4.16: Circuit design of oversampler and CP adder
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(8) Preamble generator:

As we described in Chapter 2, preambles are BPSK modulated and consist
of ten short preambles and two long preambles. In our design, one oversampled
short preamble and one oversampled long preamble are stored in 256x2 ROMs.
We repeatedly read out the short preamble ten times and the long preamble two
times, then total series of data form a complete preamble channel. Since
preambles are also STBC encoded, a pmb_gen_stbc block is equipped in first

antenna preamble generator.

pmb_gen_tx1 pmb_gen_tx2
pmb_gen_rom_ctrl pmb_gen_stbc pmb_gen_rom_ctrl
pmb_count_out - pmb_count
) 5 rom_256x2_i
rom_256x2_i pmb_buf_i_outs A SPO <
2 .. 8
. A SPO——pmb_buf i_in , ADDR rom_256x2_q
ADDR ™ rom_2s6x2.q  [Pmb_buf_q_outs |:A SPO
A SPO 2\ pmb_buf_qg_in sel
clk | clk
RST s€ RST

Figure 4.17: Circuit design of first and second preamble stream generators

(9) Root raised cosine filter:

Figure 4.18 shows the circuit design of the 25-tap RRC filter, and we can
see that all 25 multiply-and-accumulate operations are executed in one clock
cycle; such parallel processing can maximize data throughput. Furthermore,
basing on the results available in the quantization algorithm, coefficients
embedded inside are truncated to 13 bits and the output word lengths in the

transmitter RRC and receiver RRC are also truncated to be 10 bits and 11 bits.

RRC
10 10 10 10
——6—){ Reg0 }—&—)‘ Regl }—&—){ Reg2 }— -------

Datain

23 Data out

v

Figure 4.18: Circuit design of RRC filter
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4.3.2.2 Circuit Design of Receiver

Figure 4.19 shows the overview of the circuit design in the receiver. Certainly, a
pipelined architecture is adopted and more delay blocks are adopted than in transmitter.

The circuit designs of function blocks are given as follows.

rx_rrc time_sync ch_est dataide\ayizzcmlz ph_est
10 M
—b_n RRC out] 11 clk rx1_data_even_i H11_iH \ H11 i rx1_phi_even_i
RST - rx1_i_in rx1_data_even_q  H11_g[ . H11_q rx1_phi_even_q—r—|
- 14 rx1_data_odd_i H21_iH : H21 i x1_phi_odd_iF—+—
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Figure 4.19: Circuit design of receiver side

(1) Timing synchronizer:

The timing synchronization block diagram is shown in Figure 4.20. First,
in order to do two-time downsampling, the switch block is designed to generate
two times period clock sources. After that, the following matched filter blocks
(sp_match) are designed to match short preambles. After every matched filter
successfully matches short preambles and generates ten impulses, the
successive series of comparators (S_comp) are processed to find out the
maximum absolute value among 8 paths, e.g., to find out the most reliable
reference. Next, this maximum sequence is delayed by 16 clocks and sum up to
enhance the peak values by the delay_sum block. Finally, an FIR filter (FIR)

with response of some repeated {0,0,0,...,0,1} is applied to rake the values of
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each impulse, and then generates a hill-like output waveform, where the time

index of the summit of this hill can be regarded as a start time of the packet. The

circuit design of the matched filter and the FIR filter is similar to the RRC filter,

where a maximum data throughput is achieved by parallel processing.
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g !
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Figure 4.20: Circuit design of timing synchronizer

(2) Oversample and cyclic prefix remover:

Based on the timing information available in the time_sync block,

oversample and CP are removed by arranging the address order in this block.

rm_os_cp

os+cp_ram_ctrl

ram_1024x11_i

11

11

clk
rst

buf_i_in

buffer_i_out

clk 11

rst
11

wen

di
ADDR
we

1024 do

ADDR

buf_qg_in

buffer_g_out

ram_1024x11_q

=1 | [clk 11

rst
di

-
[

1024

do

ADDR
we

Figure 4.21: Circuit design of oversample and CP remover
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(3) Pilot zero tones mover:

In this stage, we reserve all data tones, remove zero tones, and gather pilot
tones together for convenience of the following procedures. Remembering that
these post-FFT data are in bit-reverse order, therefore the order of writing
address will be extremely complicated. Here we store our address order in a
ROM named index_rom in advance, and sequentially read out the data to be the
writing address. Furthermore, to achieve a higher data rate, the stored data are
parallelly fed out symbol by symbol from RAMs, therefore the following stages,
such as channel estimator, phase estimator, STBC detector, or VBLAST

detector, can easily process succeeding symbols at the same time.

mv_pt_zt
mv_pt_zt_ram_ctrl ram_512x14 i
14
- buf_i_in buf | 14 U
inbuf_I_out f i 512)
buf_q_inBUl_L_ 5 di 14
19 ADDR_a do_ll‘4
+—ADDR_b do_2/+
ADDR_a —|we
index_rom EIIRLL ram_512x14_q
6 wen
14
D | U
Ja—We
buf_i_out di .
9 14
clk :9 ADDR_a do_l14
rst ADDR_b do_2H4

Figure 4.22: Circuit design of pilot zero tone mover

(4) Channel estimator:
Long preambles are used to carry out the major task of channel estimation.
As shown in Figure 4.23, the frequency domain chips of the original long
preambles is stored in ROMs, where the FFT output of the received long
preamble is also fed into this stage and decoupled by the rule of STBC in
accumulator. Therefore, the channel frequency response can be obtained simply
by dividing these two outputs in ch_est_div blocks. Finally, the successive

blocks truncate, modify the output of dividers and then store them in RAMs.
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Figure 4.23: Circuit design of channel estimator

(5) Phase estimator:

In Section 2.3.4, we have discussed the phase estimation algorithm, and the
estimated phase can be figured out by Eq. 2.8 with an arc tangent operation « .
However, when it turns to .FPGA. realization, we care about the relative
amplitude between real and image parts of the estimated phase but not the exact
angle value, since we ean.compensate phase shift by multiplying the conjugate
estimated complex phase and the'received data. Therefore, no arc tangent circuit
is implemented in the phase estimation ‘block shown below, and no sine or

cosine circuits are required to"be implemented in the STBC detector or

VBLAST detector, either. That can save a lot of hardware resources.
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phl_even_g;
phl_odd_j
phl_odd_g
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Figure 4.24: Circuit design of phase estimator
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(6) STBC decoder:

The STBC decoder and the de-mapper are integrated in a single block in
order to save additional RAMs. The estimated channel information, estimated
phase information, and post-FFT data are first fed into Accumulator block,
where complicated complex number computations are executed inside. Here we
do not divide the diversity gain <‘H1k1‘2 + ‘H;‘Q + ‘H{;‘Q + ‘H;Q‘Q) as shown in
Eq. 2.14 since only a signed bit is required to be checked in the following
QPSK de-mapping block. The detected results are transferred to the next block
ram_ctrl where de-mapping is executed inside. Because the estimated channel,
phase, and received data are parallelly sent into this stage, the de-mapped data

are parallelly figured out and then stored into a 1024x1 RAM.

de_stbc_map

Accumulator

—H11_ i
—H11_
H21

H21_q

H12_i
+—H12_q
:: :gg_l ram_ctrl de_stbc_map_ram_1024x1

q

¥ Iph1_even_i | 3 ; wen) 4o - |wen
+—{ph1_even_g dtl_i \ dtl i ADDR_even_1— ADDR_even_1
™ Iph1_odd_i dtl_gl— dtl__q ADDR_even_: \ ADDR_even_2
\ phl_odd_q dt2_j—+—dt2_i ADDR_odd_1/ "~ |ADDR_odd_1
oyl di2_g—+——dt2 g  ADDR_ odd_2] ' |ADDR_odd_2 1024 do
+—1{ph2_even g de_map_even_1 de_map_even_1
+—iph2_odd_i de_map_even_2 de_map_even_2
) ph2_odd_q clk de_map_odd_1]| de_map_odd_1
1.\4 bAl Va1 rst de_map_odd_2| de_map_odd_2
z1_even_q
' |z _odd_i
! z1_odd_q
+—z2_even_i
—z2_even_q
T |z2_odd_i
" |z2_odd g

Figure 4.25: Circuit design of STBC decoder

(7) VBLAST detector:

The computations in the VBLAST detector is much more complicated than
what in the STBC detector, therefore the critical path problem is much severer
too. In order to explain how we deal with this problem, we must first introduce
how we separate the original complex number computations. Figure 4.25 shows
our separating strategy, where whole complex number arithmetic is separated
into 7 blocks and detailed real calculating tasks in every block are shown in

Table 4.2.
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Accumulator

dt_ final

phi

Figure 4.26: Original real number calculating strategy in VBLAST

e.f el=all*a22-b11*b22-al2*a21+b12*h21;
fl=al1*b22+a22*b11-a12*h21-a21*b12;

wll i=(a22*el+b22*f1)/(el*el+f1*f1); wll_qg=(-a22*f1+b22*el)/(el*el1+f1*f1);
w w21 _i=(-a21*e1l-b21*f1)/(e1*e1+f1*f1); w21l_q=(a21*f1-b21*el)/(el*el+f1*f1);
E_’ wl2_i=(-al2*el-b12*f1)/(e1*e1+f1*f1); wl2_q=(al2*f1-b12*el)/(el*el+f1*f1);
w22_i=(all*el+b11*f1)/(e1*el+f1*f1); w22_qg=(-all*fl+bll*el)/(el*el+f1*f1),

= ztmp z1tmp_i=z1_i*ph1_i+z1_g*phl_q; z1tmp_qg=-z1_i*phl_g+z1_g*phl_i;
phi z2tmp_i=z2_i*ph2_i+z2_q*ph2_q; z2tmp_q=-z2_i*ph2_qg+z2_g*ph2_i;

dtl_1st_i=wll_i*z1tmp i-wll_g*z1tmprg+w21_i*z2tmp_i-w21_g*z2tmp_q;

dt2_1st_g=wl2=i*zltmp_q+wl2: g*zltmp_i+w22_i*z2tmp_g+w22_qg*z2tmp_i;

Do first time QPSK decision

w
dt_ 1st dtl_1st g=wll_i*zitmp_g+wll _g*zltmpZi+w21_i*z2tmp_g+w21_g*z2tmp_i;
t dt2_1st_i=w12_j*zitmp_i-wl2 g*z1ltmp_q+wW22_i*z2tmp_i-w22_q*z2tmp_g;

gl=z1tmp_i-a21*d2_i+b21*d2_q; hl=zltmp_g-a21*d2_g-b21*d2_j;
g,h g2=z2tmp_i-a22*d2_i+b22*d2.g; h2=z2tmp_g-a22*d2_g-b22*d2_j;
g3=z1tmp_i-all*d1_i+b11*d1 "qg; “h3=z1ltmp_g-all*dl_qg-b11*d1_i;
g4=z2tmp_i-al2*d1_i+b12*d1_q; h4=z2tmp_g-al2*dl_qg-b12*d1_i;

dtl_final_i=all*gl+b11*hl+al2*g2+b12*h2;
dt_final dtl_final_g=all*hl-b11*gl+al2*h2-b12*g2;
dt2_final_i=a21*g3+b21*h3+a22*g4+b22*h4;

dt2_final_g=a21*h3-b21*g3+a22*h4-b22*g4;

Table 4.2: Tasks in VBLAST accumulator

However, by experimenting, these seven tasks cannot be completely
executed in a single clock period. Therefore, the original dividing strategy is
modified as shown in Figure 4.27. We can see that two accumulators are
realized, and only three to four real calculating tasks are required to be executed
in a clock period, thus the accurate results can be figured out in time. By this
kind of rearrangement, critical path problem is resolved. Final circuit design of

the VBLAST detector with integration of de-mapper is shown in Figure 4.28.
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Figure 4.27: Modified real number calculating strategy in VBLAST
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Figure 4.28: Circuit design of VBLAST detector

(8) Viterbi decoder:

The circuit design of the Viterbi decoder is shown in Figure 4.29. Three
main blocks are included: branch metric generator (BMG); add, compare, and
select (ACS) block; and the trace back unit (TBU). The BMG unit generates the
branch metrics for each symbol of the input sequence by comparing the
received code symbol with the expected code symbol for each connection of the
trellis (state) and counts the number of different bits. For a 1/3 rate code
adopted in our system, there are eight possible symbol combinations in the

encoded sequence: 000, 001, 010, 011, 100, 101, 110, and 111; therefore eight

BMG units are implemented in BMG block as shown in Figure 4.30.
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Figure 4.29: Circuit design of Viterbi decoder
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Figure 4.30: Circuit design of branch metric generator

The ACS unit is thé heatt-of the-Viterbi decoder. Each node in the trellis
diagram corresponds to ‘an*ACS unit in the corresponding Viterbi decoder.
Therefore, referring to the treliis diégram shown in Figure 2.8, there should be
totally 16 ACS units in the ACS block as shown in Figure 4.31. The ACS unit
has 4 inputs (two branch metrics and two path metrics) and two outputs (the
new path metric and the survivor bit). The survivor bit is the most important
information generated by the ACS unit. It indicates which sum between an input
path metric and a branch metric generated the smallest result and was selected

as the output path metric or local winner.
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Figure 4.31: Circuit design of add, compare, and select block

The ACS block assigns the jmeenls‘ureini-ent functions to each state, but the
actual Viterbi decision_s- ‘:on encoder:rs".t”ates aré based on the trace back operation
to find the path of the st‘ates.‘ Us1@e tracé back operation, every state from a
current time 1is followed- ba‘ckwardsht‘hrou;c‘gh its maximum likelihood path. The
point at which the corrected bit streams starts is called the merger point (also
called the trace back depth). The performance of Viterbi decoder largely
depends upon the trace back depth. The increase in trace back depth increases
the complexity and hardware exponentially so one has to trade off between the
performance level and the complexity and hardware.

Normally for decoders using non-punctured codes, the trace back depth
equals five-times constraint length, which is sufficient to decode the correct
output in the presence of noise. In our system, the constraint length is 5,
therefore twenty-five trace back depth is required. We adopt a 16x32 register
array to store the path of the states. Comparing with original 16x192 (STBC) or
16x384 (VBLAST) register array, a large amount of FPGA resources are saved.
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4.4 ModelSim simulation

When developing an FPGA system, ModelSim simulation can help designers
developing efficiently and accurately. It can pull out all signals and simulate how they
work simultaneously without the limitation of the number of debugging pins, therefore,
designers can save a lot of time downloading to FPGA and directly examine the
changes and interactions between signals. Figure 4.32 and 4.33 shows the data flows in
STBC and VBLAST system. In STBC case, total flow spends approximately 110 us.
On the other hand, VBLAST case spends approximately 150 us. VBLAST spends

more time than STBC because that two times source data are required to be dealt with.

[ I (N S A E—

Figure 4.33: VBLAST ModelSim simulation result
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In addition to total data flow period, some design concepts such as parallel
processing and overlapped processing also can be observed through above two figures.
Figure 4.34 shows the transmitted waveform. Signal in first 16 us is preamble channel,

which is BPSK modulated; the rest of data are OFDM symbols.
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Figure 4.34: Transmitted waveform of MIMO-OFDM system

4.5 Experimental Results

There are two platforms for us tosdewnload:our baseband codes and perform the
advanced verification. In order to take acceunt.of:interaction between other modules
such as DSP, USB, and AD/DA on-these two platforms, modification needs to be
executed frequently. Therefore to synthesis, map, and place and route iteratively seems
to be unavoidable and always waste" a lot of time. Besides time consuming, the
insufficiency of FPGA gate count becomes another problem, especially on the
VBLAST receiver side. Therefore we must try our best to save gate count, and that is
an important reason why we try to find out a quantization algorithm that can minimize
the hardware resource requirement. Table 4.3 shows time and area consumption in our
developing flow, where whole design flow including developing transmitter and

receiver takes 2 to 4 hours. Therefore to test a system is quite time consuming.

Table 4.2: Synthesis and P&R information
STBC

VBLAST

Tx (VirtexE 2000)

RX (Virtex2 6000)

Tx (VirtexE 2000)

RX (Virtex2 6000)

Synthesis Time

20mins

30mins

42mins

1hr 30mins

Place and Route Time

30mins

45mins

40mins

50mins

Total LUTs

32925 (85%)

45228 (66%)

35035 (91%)

59717 (88%)

Block Multipliers

NA

132 (91%)

NA

144 (100%)
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4.5.1 Fast Prototyping Platform

In the fast prototyping platform, we successfully integrate FPGA, DSP, USB, and
AD/DA modules. First the web camera catches the real time images continuously as
the data source, and then passes it to DSP module. DSP, without any processing,
directly pass the data to FPGA, and FPGA performs MIMO-OFDM transmitter
algorithm. After the processing of transmitter, data are passed through DA and received
by AD. Subsequently AD passes data to receiver FPGA, and start to decode the
received data. Finally, the decoded data are sent back to PC through DSP and USB
module, and shows through the self-developed application software in PC. We can
provide an user interface to demonstrate the real time transmitted and received images,
as shown in Figure 4.35. In this figure, a 3x3 images set is located. The three columns
represent transmit images, receive images, and error images respectively, whereas the
three rows represent the synthesized images of all antennas, first antenna, and second
antennas respectively. The real-time bit error.rate:is also calculated and shown in the

right hand side.

Delay Time (ms)
200

[dle Faints
YWicdth * Height

Error Rate
3.958E-3
Tirne

162312

Figure 4.35: Prototyping platform experimental result
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4.5.2 Self-designed Platform

In the self-designed platform, we attempt to establish a real wireless environment,
under which the adopted algorithm can be tested. Figure 4.36 shows the experimental
environment which has been shown in Chapter 3. First, source data are stored in a
ROM in FPGA, and passed to DA after processing by transmitter algorithm on FPGA.
Next, data are transmitted on the 5.2 GHz frequency band by the RF module, and a
receive antenna is allocated near the RF module. Subsequently data are received by the
receive antenna and passed to spectrum analyzer E4443A and vector signal analyzer
89600S. Finally, received data are analyzed and shown on PC. Figure 4.37 shows the
analyzed result, which can represent the effects of a real wireless channel. We can see
that in frequency domain, the measured center frequency is 5.200152 GHz, and the
occupied bandwidth (OBW) is approximately 20 MHz. In time domain, due to the
mismatch between mixers in transmitter and reqeiver, preamble data (only transmitted
in real part) is distributed into ‘re‘al‘ and jq‘lagéﬂpaln*‘tis in the receiver. Otherwise, owing to
Ela u

the effect of frequency offset; the slight swing in eﬁvelop of received data also can be

observed.

. 1
Agilent BA4443A pgilent 89600

PSA Series I :
Spectrum Analyzer | :Vector Signal Analyzer

|
Self-Designed | |  AD/DAand RF | 1
Platform 11 Module i |
11 | 1

Figure 4.36: Self-designed platform development environment
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Figure 4.37: Self-designed platform experimental result: received spectrum and

waveforms on PSA and VSA

After the received data pass through AD converter, all signals are digitalized and

therefore can be measured by the logic analyzer easily. Figure 4.38 shows the

waveform of timing synchronizer measured by the logic analyzer. As simulated in

MATLAB and ModelSim, timing synchronization output forms a hill and the peak

time index is regarded as the packet start time.
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Figure 4.39 shows the source data stream in transmitter, transmitted data stream,
and detected data stream in the receiver, where the source data stream and the detected
data stream are specially expanded below. By comparing the source data stream with
detected data stream we can find out that they are exactly the same, which confirms

that our algorithm does work successfully.
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Figure 4.39: Self-designed platform experimental result: source data and detected data

waveform on LA

4.6 Summary

In this chapter, a complete communication system design flow is proposed,
including MATLAB verification, FPGA realization, ModelSim simulation, and
experimental results. Through this design flow, we finish developing a 2x2
MIMO-OFDM system on two FPGA-based platforms, e.g., fast prototyping platform
and self-designed platform. On the fast prototyping platform, we integrate our
communication algorithm with web camera, and demonstrate real time video on the
self-developed software interface. On the self-designed platform, real wireless channel
effects can be generated by means of RF module, and some RF debugging instruments,

which makes our system become much closer to real communication system.
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Chapter 5

Proposed Quantization Algorithm
with Minimum Hardware
Requirement

The algorithms used by DSP systems-are:typically specified as floating-point DSP
operations. On the other hand, most digital FPGA“implementations of these algorithms
rely solely on fixed-point approximations to reduce the cost of hardware while
increasing throughput rates. The essential-design step of floating-point to fixed-point
conversion is not only time consuming, but also complicated due to the nonlinear
characteristics and the massive design optimization space. In a bid to achieve short
product cycles, the execution of floating to fixed-point conversion is often left to
hardware designers, who are familiar with VLSI constraints. Comparing with the
algorithm designers, this group often has less insight into the algorithm and depends on
ad hoc approaches to evaluate the implications of fixed-point representations. The gap
between algorithm and hardware design is even aggravated as algorithms continue to
become more complex. Thus, a systematical method for floating to fixed-point
conversion is urgently called for.

In this chapter, a quantization algorithm which is especially suitable for
communication systems is proposed, where hardware resources are minimized, and the

equivalent quantization error is constrained within a specified limit.
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5.1 Introduction of Quantization

Numeric representation in digital hardware may be either fixed or floating-point.
In fixed-point representation, the available bit-width is divided and allocated to the
integer part and the fractional part, with the extreme left bit reserved for the sign (2’s
complement). In contrast, a floating-point representation allocates one sign bit and a
fixed number of bits to an exponent and a mantissa. In fixed-point, relatively efficient
implementations of arithmetic operations are possible in hardware. In contrast, the
floating-point representation needs to normalize the exponents of the operands for
addition and subtraction. Synthesizing customized hardware for fixed-point arithmetic
operations is obviously more efficient than their floating-point counterparts, both in
terms of performance as well as resource usage. In the following paragraphs, some
fixed-point quantization examples will be introduced.

The first quantization example is shown in Figure 5.1, which illustrates two
different  fractional quantizationy metheds.» The full precision number
“00110111101010000” represents 28496, and once we take the position of decimal
point into account, the original number-needs to divide 2'* and therefore becomes
1.7392578125. If we want to quantize the fraetional part of this number from 14 bits to
be 9 bits, two methods can be alternated, e.g., truncation and rounding. Truncation
means to discard bits to the right of the least significant bit, that is, to remove right side
“10000” directly, and the original number will lead to 1.73828125. Otherwise,
rounding denotes to round the original number to the nearest representable value or the
value farthest from zero if there are two equidistant nearest representable values. In
rounding case, the quantized number will becomes 1.740234375, which is closer to full
precision number than truncation case. Obviously, rounding performs better than

truncation, yet will complicate the circuit and occupy more hardware resources.
28496/214 T 1.7392578125

Full Precision 001110111101010000

FIX_12_9_floor |o|o|1]1|o|1]1|1]1]0|1]of1.73828125
FIX_12 9 round

1.740234375

o
[N
—C
[N
[N
[N
[
[N
[N

Figure 5.1: Quantization example 1: truncation and rounding
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Besides fractional part quantization, truncating the integer part is also feasible.
Figure 5.2 figures out the second example about how to truncate the integer part. Full
precision number is 13.6875, and there are 5 bits including 1 sign bit to represent
integer part. If we want to truncate integer part to 3 bits, saturation or wrapping can
be alternatively adopted. In saturation case, the original number is saturated to the
largest positive (or maximum negative) value; whereas wrapping case discards any
significant bits beyond the most significant bit. In this example, saturated number is
3.9375, and wrapped number is -2.3425, where wrapping causes a significant
quantization error. In communication system, especially in OFDM system, designers
will face serious PAPR problem, where dealing with overflow problem becomes an
important issue. As the results of saturation and wrapping shown in this example,
wasting a little circuit complexity and hardware resources to realize a saturation circuit
instead of wrapping circuit after IFFT in order to mitigate PAPR effects is intensely
recommended.

219/24 =
Full Precision ol 1] 2| ofa] 1] 0} 1] 1| 13.6875

FIX_7 4 sat ofzjaf 12| 1] 1| 3.9375
FIX_7_4 wrap ol.4f 1] 0] 1] 1] 23425

Figure 5.2: Quantization example 2: saturation and wrapping

MATLAB provides some functions that can translate floating-point values into
fixed-point values, which enable designer to design, model, and simulate the system
and to carry out the arithmetic in fixed-point domain. Fixed-point support is provided
using the MATLAB quantization functionality that comes with the Filter Design and
Analysis (FDA) Toolbox. This support is provided in the form of a quantizer object
and two methods or functions that come with this object, namely, “quantizer()” and
“quantize().” The “quantizer()” function is used to define the quantizer object, which
allocates the bit-widths to be used along with whether the number is signed or
unsigned, what kind of rounding is to be used, and whether overflows saturate or wrap.

The “quantize()” function applies the quantizer object to numbers, which are inputs to
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and outputs from arithmetic operations. For example, a quantization model of type
signed fixed-point, with 40 total bits with one sign bit, 8 integer bits, and 32 fractional

bits, handling overflow with saturation is defined as follows in MATLAB:

ql = quantizer(‘fixed’,’floor’,’saturate’,[40,32]);
X(q = quantize(ql,X);

This quantizer object is used to quantize an arbitrary numerical value “X”’ (which
may be a scalar or a multidimensional vector) as shown above. The resulting number
“Xq” has a double floating-point representation in MATLAB, but can be exactly

represented by a 40-bit fixed-point signed number with 8 integer and 32 fractional bits.

5.2 Previous Work

The strategies for floating-point to’fixed-point conversion can be roughly
categorized into two groups [31].; The first one is basically an analytical approach
coming from those algorithm:designers who analyze the finite word length effects due
to fixed-point arithmetic. The. other—approach is based on bit-true simulation
originating from the hardware designers. The-analytical approach started from attempts
to model quantization error statistically; then it was expanded to specific linear time
invariant (LTI) systems such as digital filters, FFT, etc. In the past three decades,
numerous papers have been devoted to this approach [26]-[31]. The bit-true simulation
method has been extensively used recently [32]-[35]. Its potential benefits lie in its
ability to handle non-LTI systems as well as LTI systems.

Our proposed approach is very closely related to the approach of Roy and
Banerjee [35], where the authors have developed a simulation-based method to
determine the optimum word lengths for DSP algorithms. Although the authors claim
that [35] the proposed approach can minimize the hardware resources while
constraining the quantization error, the way they adopt to estimate the hardware
resources (regard the bit precision of all quantizers as hardware resources) is too rough,
therefore the final experimental result is not precise enough. Moreover, only few

quantization methods are adopted in the approach, that is, truncation and wrapping,
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which are insufficient to satisfy the characteristics such as PAPR in communication
systems. To modify these two defects, the concept of hardware resource weighting is
introduced in our quantization algorithm, which makes hardware resources estimation
much more accurate; moreover in order to fit our special purposed system, e.g.,
communication system, not only truncation and wrapping but also saturation are

adopted in our quantization algorithm.

5.3 Proposed Quantization Algorithm

Our algorithm attempts to minimize the hardware resource requirement while
constraining quantization error within a specified limit, depending on the requirement
of the user or application. Especially, the concept of hardware resource weighting is
introduced therefore our algorithm can accurately estimate the hardware resources
requirement. The quantization algetithm consists of the following passes, which are
explained in detail in the next paragraphs:

® Pre-quantization works

® Determine hardware resource-wetghtings
® Determine integer lengths
o

Determine fraction lengths

5.3.1 Pre-quantization Works

Before executing the proposed quantization algorithm on our MIMO-OFDM
system, some pre-quantization works need to be operated first.
1. Separate all blocks into quantization-related and quantization-irrelevant
blocks, and find out the performance-dominated data flow path
In order to convert floating-point MATLAB code into fixed-point MATLAB
code, first we need to separate all MIMO-OFDM function blocks into two groups,
e.g., quantization-related blocks and quantization-irrelevant blocks:
® Quantization-related blocks:

Function blocks are called quantization-related as long as there are DSP
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operations, such as the four fundamental operations of arithmetic, FFT/IFFT
and so on, between input signals and output signals. When we are dealing
with fixed-point variables without truncation, these DSP operations will
always make variable’s word length become longer and longer, and therefore
we must face quantization issues. In our MIMO-OFDM system, the
following function blocks are distributed into the quantization-related group:
IFFT/FFT

RRC filter

Timing synchronizer

Channel estimator

Phase estimator

STBC detector

VvV V. V YV V VYV V

VBLAST detector
Quantization-irrelevant. blocks:

The definition «0f quantization-irrelevant blocks is right opposite to
quantization-related- blocks. Besides the-quantization-related blocks shown
above, the rest of blocksun-eur-MIMO-OFDM system are categorized into
quantization-irrelevant blocks. When we are dealing with the floating-point
to fixed-point conversion, these blocks will remain the same because they
will suffer neither rounding nor truncation issues.

Figure 5.3 shows the distribution of quantization-related and

quantization-irrelevant blocks in our system, and shows two data flow paths in the

system. The first data flow path, named major data flow path, starts from

convolutional encoder and ends to Viterbi decoder; the second data flow path,

named minor data flow path, starts from convolutional encoder and ends to timing

synchronizer. Since quantization will cause additional error, called quantization

error, it can be easily observed that the quantization errors along major data flow

path will dominate the system performance much more severely than what along

the minor data flow path; therefore our further works will focus on determining

the word lengths of the coefficients or variables in the quantization-related

function blocks along the major data flow path.
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Figure 5.3: Data flow paths and distribution of quantization-related blocks

and quantization-irrelevant blocks in MIMO-OFDM system

2. Find out the variables-which need to be guantized in quantization-related

blocks along the main data flow path
Here we list the variables whose word lengths are required to be determined

in the function blocks along the major data flow path:

IFFT output data

RRC coefficients

AD/DA length

Word length of RRC output data in receiver side

FFT output data

Post-FFT long preamble chips embedded in channel estimator block

Channel estimator output data

VvV V V V V V V V

Phase estimator output data

Note that although AD and DA are not quantization-related blocks, there
available word lengths are inherently limited by hardware circuit design to be 10
bits therefore AD and DA’s word length also needs to be taken into consideration

as we convert floating-point codes into fixed-point codes.
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Parameters settings and definitions

To concentrate on dealing with quantization issues purely, channel effects
such as multipath, AWGN noise, Rayleigh fading and so on are all neglected.
Furthermore, the detected constellation of floating-point case is regard as the basis,
where the difference between the output vectors for the original floating-point and

the fixed-point MATLAB code is regarded as error vector, denoted by e.

e = outdatage — outdatagyed (5.1)

We next define an error metric (£M) using the following definition:

EM = norm( e)/norm(outdatage,)x 100 (5.2)

where the vector norm is defined by

1/2
2] (5.3)

€.
1

norm(e) = [Z

]

After that, we define the following.terms that are used in the algorithm
»  fl_dt: floating-point detected-constellation

fx__ dt: fixed-point detected constellation

maz;: range of the ith variable

p;: the ith precision (fraction' [ength)

m;: the ith integer length (including sign bit)

q;: the ith quantizer

w;: the ith hardware resource weighting

YV V. V VYV V V VY

R: total hardware resource requirement

Additionally, in spite of some special variables, signed fixed-point value with
truncation and wrapping quantization methods are carried out. However, since we
try to operate this quantization algorithm on our MIMO-OFDM system, some
communication characteristics require to be taken into account and therefore the
following quantization settings should be modified:
® [FFT: In order to mitigate PAPR problem, we choose saturation method to

quantize the output signals of IFFT.
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® AD/DA: With limit of the circuit design of AD/DA module, the available
bit-widths is constrained, e.g., ten bits in our system. Moreover, the signals
fed into DA and fed out from AD are limited to unsigned values, therefore
quantization method must be unsigned too. Furthermore, quantization
methods are also constrained, where truncation and wrapping are adopted by

DA truncation and saturation are adopted by AD.

Here we list all quantizers and their quantization settings in Table 5.1.

Table 5.1: Quantizers and their settings in MIMO-OFDM system

Variables Parameters and Quantizers
IFFT output data 4, = quantizer(‘fixed’, “floor’, ‘sat’,[m,p D, Dypsl)
RRC coefficients gpe = quantizer(‘fixed’, ‘floor’, ‘wrap’,[mpptPrrer Pracl)
DA output data dp4 = quantizer(‘ufixed’, “floor’, ‘wrap’,[m,+pp,, Ppal)
AD output data 4,4 p =.quantizer(‘ufixed’, ‘floor’, ‘sat’,[m,,+p4p, Papl)
RRC output data in receiver Qirrc = Quantizer(fixed, “floor’, “wrap’,[m,.pp it Proprer Proprcl)
FFT output data qy, = quantizer(‘fixed”, *floor’, ‘wrap’,[m+py, pyl)
Post-FFT long preamble chips{ g = quantizer(*fixed’, < floor’, “wrap”,[1my, gt Dy Dpogrl)
Channel estimator output data |-, = quantizer(‘fixed’, *floor’, ‘wrap’,[m+p,;, D))
Phase estimator output data q,,= quantizer(‘fixed’, “floor’, ‘wrap’,[m,+p ;. p,,])

5.3.2 Determine Hardware Resource Weightings

Hardware resources weightings (w;) can help our proposed algorithm estimating
hardware resources requirement accurately, where it indicates the corresponding
hardware overhead as one additional bit is added. To acquire weighting factors
correctly, designers must know circuit design very well. Otherwise, synthesis tools
such as Synplify Pro or Synopsis is also needed to count corresponding hardware
resources. However, too much hardware resources usage information such as
embedded RAMs, block multipliers, registers, and LUTs is included in a single
synthesis report therefore to define a equivalent weighting factor to represent total
hardware resources usage is very difficult. Based on experimental experience, we find

that the usage of LUTs can represent hardware resource most properly, therefore we
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adopt the usage of LUTs as our hardware resource weighting factor directly in our
quantization algorithm.

There are two ways to get additional usage of LUTs as certain word length of
system is changed: first method is to design and synthesis another system, where there
are only certain word length and corresponding circuits different from original one;
then, comparing the difference between the LUT usage of these two systems, and view
the quotient of this difference and additional bit-widths as weighting factor. Another
method is to find out the influenced circuits such as subsequent data buffers or
calculators when certain word length increase 1 bit, and then synthesize them
respectively. Subsequently, sum up their additional LUTs and regard it as weighting
factor of certain variable.

Obviously, the first method can calculate weighting factor more accurately than
another, however will waste extremely large amount of time on designing and
synthesizing new systems. Therefore imethod-two seems to be much more feasible than
method one thus is adopted in eur algerithm:.

Here we illustrate the influenced circuit blocks in Figure 5.4 and Figure 5.5, and
show final experimental results in Table5:2--Notice that our synthesis tool is Synplify

Pro 8.2, and target FPGA is Xilinx Virtex2 series.
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Table 5.2: Experimental results of hardware resource weightings

Variables Parameter | Experimental Results
IFFT output data Wi 402
RRC coefficients Wrpe 20
RRC output data in receiver WypRCo 240
FFT output data Wy 20
Post-FFT long preamble chips Wy 416
Channel estimator output data Wey, 184
Phase estimator output data Wy, 35

5.3.3 Determine Integer Lengths

The determined integer lengths must be able to cover all possible maximum and

minimum signed values of variables, that is, avoid overflow efficiently. To achieve this
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goal, the usage of training sets is necessary. The more training sequences we test, the
more reliable variables ranges we obtained. In communication system, we train the
system and obtain the ranges of variables by generating various source data sets.

First, floating-point MATLAB code are executed, and then we obtain

floating-point detected constellation fI_ d¢ and ranges of every variables max,, where

max; = max(abs(Maxi),abs(Mmi)) (5.4)

Next, by using the information of max, we can easily determine the integer length m,

by the following equation:

m, = floor(log,(mazx,))+2 (5.5)

where one additional bit is used to represent sign bit.

Our experimental results of integer lengths are shown as follows.

Table 5.3: Experimental results of integer lengths

Variables Parameter | Experimental Results
IFFT output data Mgy, 5
RRC coefficients MpRe 2
RRC output data in receiver MywrRC 7
FFT output data Mgy 7
Post-FFT long preamble chips Mgy 8
Channel estimator output data M, 1
Phase estimator output data My 6

5.3.4 Determine Fraction Lengths

Since the integer word lengths are already decided and all variables are able to be
covered by corresponding ranges, the rest of work is to decide the precision, that is, the
fraction word lengths of every variable. To do so, we propose two modification
methods, e.g., coarse modification and fine modification. Both of these two methods
are able to find out a set of fraction lengths that can constrain quantization error within
target error metric (EM,,,.,) with minimized hardware resources usage. Coarse

modification only roughly scales down all fraction lengths from a maximum precision
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simultaneously to match the proposed EM,,, .. without consideration to hardware
resource weighting. On the other hand, fine modification scales fraction lengths each
by each and calculates corresponding error metrics, and eventually finds out a set of
fraction lengths, which system error metric is smaller than EM,, .. and can minimize
the hardware resources with consideration to resource weightings. Usually, we run
coarse modification first, and then set up the scaling ranges of variables in fine
modification based on the results available in coarse modification. In the following

sections, the ideas of these two methods will be detailed explained.

5.3.4.1 Coarse Modification

The purpose of coarse modification is to find out a set of fraction lengths which
can be regarded as the reference when we deal with fine modification. First at all, the
target error metric (EM,,,.) is decided, which is chosen to be 1, 5, and 10 in our
experiment. Then, we start coarse modification, which criterion is to find out a set of

minimum identical fraction lengths that corrésponding error metric (EM,

coarse.

) is smaller

than the target error metric.

Vi,p, = p, min p subject to &M, (5.6)

coars

LEM

target

® STEP 1: For all ss, set fraction lengths (p,) to be maximum precision (p,),,,),
say 20 bits, in our experiment.

® STEP 2: Run fixed-point MATLAB code, and then obtain fixed-point
detected constellation (fr  dt).

® STEP 3: Calculate coarse error metric (EM,

“0arse.

) by comparing floating-point
detected constellation (fl_ dt) with fixed-point constellation (fr_ dt).
® STEP4:IfEM,,. <EM

coarse target>

® STEPS:If EM,,.> EM

coarse target>

for all s, set p, = p, -1, and then redo step 2~4.

stop coarse modification.

Table 5.4 shows experimental results of fraction lengths available in coarse

modification.
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Table 5.4: Experimental results of coarse modification

Coarse modification
EM, ;501 1 5 10
EM, ;s stBC 0.953 4.7553 9.83
EM, ;05 vBLAST 0.9871 4.6561 9.918
i 10 7 6
Prrc 10 7 6
P.irrC 10 7 6
Py 10 7 6
Pinr 10 7 6
Pen 10 7 6
Py 10 7 6
R 20522 16616 15314

5.3.4.2 Fine Modification

In fine modification, we-attempt to take the hardware resource weighting (w;) into
consideration, and minimize the total*hardware resource requirement (R). As shown in
Eq. 5.7, we regard the product of‘the total word length (m,+p,) and the weighting

factor (w,) as the total hardware resource requirement.

RzZ((mi +pl.)><w2.) (5.7)

The criterion of fine modification is shown as follows, where a set of fraction
length which can minimize hardware resource requirement R and ensure the result

error metric EMj;,, being smaller than the target error metric £M,,,,,, is found.

arget

target

arg man((m7 +p,)x wz) subject to EMﬂne <EM (5.8)

3

R

® STEP 1: Start from the result fraction length (p;) of coarse modification.
STEP 2: Decide proper precision variances of these variables.

® STEP 3: Run fixed-point MATLAB code through these precision ranges, and
then obtain fine error metric (EM,.) and the total resource requirement (12).

® STEP 4: Find out a minimum R which satisfies EM;,, < EM,

target®
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Eventually, we can obtain final fraction lengths shown in Table 5.5. Notice that
setting proper precision ranges is empirical, and it becomes more time-consuming
however is able to reach global minimum of R more accurately as ranges are wider.
The principle of setting ranges is giving the variables with larger w;s wider ranges, and

giving the variables with smaller w,;s narrower ones.

Table 5.5: Experimental results of fine modification

Fine modification
EM, et 1 5 10
EMg;. stsc 0.94021 4.1791 8.7568
EM};.. vprasr 0.9622 4.496 9.626
Pt 5 2 1
Prrc 11 10 7
PryrrC 4 1 0
Dy 7 4 4
Dinsre 2 0 0
Pen 11 8 6
Pon 6 2 2
R 13808 10338 9268

5.4 Simulation Results

Figure 5.6 shows the STBC and VBLAST detected constellations under

floating-point case, where no channel effects are involved.

Floating-point de-STBC Constellation Floating-point VBLAST (ZF+SIC) Constellation
* * ] * ) i
- - i - - 7

Figure 5.6: Detected constellation under floating-point case
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Figure 5.7~5.9 show the other fixed-point detected constellations under different

EMta’rgetS'
Fixed-point de-STBC Constellation Fixed-point VBLAST (ZF+3IC) Constellation
- - b - - 4
» » | L » 7

Figure 5.7: Detected constellation under EM,,,,.,= 1
Fixed-point de-STBC Constellation Fixed-point VBLAST (ZF+SIC) Constellation
-~ %« | o

" ﬁ*-z% LA

Figure 5.8: Detected constellation under EM, ., =5

arget

Fixed-point de-STBC Constellation Fixed-point VBLAST (ZF+SIC) Constellation
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s 2 Yag
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Figure 5.9: Detected constellation under FM, 10

arget =
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Comparing with the above figures, it can be clearly observed that the quantization
error does affect the detected constellations for both STBC and VBLAST cases. The
constellations spread out more severely from the original four points in floating-point

case as EM,

targe

. increases, which will cause detection error as channel effects are taken
into consideration. To verify the effects of quantization error to system performance,
we illustrate a BER to SNR plot under different £M,, s in Figure 5.10, where all
system settings remain the same to floating-point case except the fixed-point value
variables are carried out instead of the floating-point values. Notice that saturation is

performed in IFFT output values and all the other quantizers follow Table 5.1.

MIMO-OFDM Performance

10’ :
5 --g-- STBC A
=i —<— STBC EM 1
—+— STBC EMS E
— £ - STEC EMID
10° — O~ V-BLASTH .
—&—-BLASTEMT |3
P —p— V-BLAST EMS
e OF — — -\-BLAST EMI0 |3
i E
1t
e
1oL
10'? 1 1 1 1 1 1 1 1

] 2 4 5] g 10 12 14 16 18 20
E,/N_(dB)

Figure 5.10: System performance under different EMs as g, uses saturation

We can easily observe that for both STBC and VBLAST cases, the curves drift to
right-upper side when the number of EM increases. It indicates that system performs
worse as the level of quantization error increases. Furthermore, we can also observe
that in low SNR, channel noise dominates the system performance, therefore the
differences between EMs are not obvious. On the other hand, in high SNR, the
quantization error noise dominates the system performance, therefore the gap between
different £Ms becomes bigger and bigger.

Additionally, in order to emphasize the importance of adopting saturation method
to fight PAPR problem in IFFT, we perform another case in Figure 5.11, where original

IFFT quantizer “g, fﬂ=quantizer(‘ﬁxed’, ‘floor’, “sat’,[m, P shown in Table

2
i’ p ifﬂ]
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5.1 is changed to be “g, fﬂ=quantizer(‘ﬁxed’, ‘floor’, ‘wrap’,[m 1. That is,

ifﬁ+p ifft’ p ifft
wrapping is applied instead of saturation. Clearly, both curves in Figure 5.11 drift to
right-upper side much more severely comparing with Figure 5.10, and BER is
saturated to about 10™ as SNR increases. The reason is that wrapping is probable to let
an extremely large positive value be a negative value or vise versa, which will cause
severe quantization error comparing with saturation; that is why we intensively
recommend using saturation instead of wrapping when dealing with PAPR problem in

IFFT output data.

MIMO-OFDM Performance
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Figure 5.11: System performance under different EMs as ¢,;, uses wrapping

Finally, total word lengths of variables and error metrics and hardware resource
requirements under different £M,, s are categorized in Table 5.6. We can detect a
trend from this table: additional 1070 LUTs are required as error metric is improved
form 10 to 5, however more additional 3470 LUTs are required as error metric is
improved form 5 to 1. That is, to achieve a zero quantization error system, the increase

of additional hardware resource requirement will grow exponentially.
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Table 5.6: Experimental results of final word lengths and EMs

EM, et 1 5 10
EM,.. srpc 0.9402 4.1791 8.756
EMy;.. vprasr 0.9622 4.496 9.626
U 10 7 6
MprctPrRC 13 12 9
My wrrCT PrarRC 11 8 7
Myt Pipe 14 11 11
My, e+ Dy 10 8 8
M, FPep, 12 9 7
m,, +D,p 12 8 8
R 13808 10338 9268

5.5 Summary

Since most practical FPGA designs are' limited to finite precision signal
processing using fixed-point arithmetic because: of the cost and complexity of
floating-point hardware, a systematical quantization algorithm is important for
designers to map original floating-point ‘code into fixed-point code. This chapter
describes how the floating-point arithmetic in MATLAB are converted into fixed-point
of specific precision for hardware design based on profiling the inputs, intermediate,
and output signals. Especially, the idea of hardware resource weighting is inserted and
the characteristics of communication system are also considered. Experimental results
including integer lengths, fraction length, and total resource requirements under error
metric equals 1, 5, and 10 are reported, and fixed-point system BER to SNR

performances are also illustrated in this chapter.
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Chapter 6

Conclusion

In future wireless communication systems, the demand of higher throughput and
higher link quality is urgently called for, since various multimedia or home
applications will be provided and thus reliable and affordable technologies are required
to realize those contents. Coupled-with a robust and efficient OFDM air interface,
MIMO technologies can lead t0 a very attractive high-speed data transmission solution
for future wireless systems. Recent years, researches on the topic of MIMO-OFDM
system have been exploited greatly,” and the MIMO-OFDM based standard, IEEE
802.11n, is just on the stage of competition for two proposals from TGn Sync and
WWISE, respectively. This encourages us to build up a hardware system based on
MIMO-OFDM instead of the theoretical analysis only.

This thesis had described the signal processing concepts and algorithms of a 2x2
MIMO-OFDM system in physical layer, including STBC and VBLAST MIMO
techniques. Furthermore, two FPGA based platforms are adopted to implement our 2x2
MIMO-OFDM system, e.g., fast prototyping platform and self-designed platform. In
the fast prototyping platform, three FPGA modules, one DSP chip, and one USB
module are installed; on the other hand, four FPGA modules, USB interface, and RF
modules are equipped in the self-designed platform. A complete dataflow including
software application interface, web camera, USB transmission, and baseband
algorithms on DSP and FPGA are constructed in the fast prototyping platform; whereas
a real wireless communication environment containing RF mismatch, multipath effects,

and so on are generated through real indoor experimental environment and RF modules
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on the self-designed platform. Finally, due to the complexity and time-consuming
procedure of floating-point to fixed-point conversion, we have proposed a systematical
quantization algorithm which can not only minimize the hardware resource
requirement but also constrain quantization error within a specified limit.

To summarize, hardware implementation is highly complicated. Therefore, the
avalailability of MATLAB simulation, proper quantization algorithms, useful HDL
simulation software, and powerful debugging tools becomes especially significant.
Nevertheless, some future works still remain. For example, higher modulation order
such as 16QAM, 64 QAM and so on can be realized; furthermore, total power
consuming issues ought to be taken into consideration, too. Finally, although there is a
lot of room for improvment, we believe that the MIMO-OFDM system implemented

on the FPGA-based platform we proposed is still highly advanced nowadays.
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