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Abstract: This work presents an approach that ac-
curately identifies instantaneous modal parameters of a
structure using time-varying autoregressive with exoge-
nous input (TVARX) model. By developing the equiva-
lent relations between the equation of motion of a time-
varying structural system and the TVARX model, this
work proves that instantaneous modal parameters of a
time-varying system can be directly estimated from the
TVARX model coefficients established from displace-
ment responses. A moving least-squares technique incor-
porating polynomial basis functions is adopted to ap-
proximate the coefficient functions of the TVARX model.
The coefficient functions of the TVARX model are rep-
resented by polynomials having time-dependent coeffi-
cients, instead of constant coefficients as in traditional
basis function expansion approaches, so that only low
orders of polynomial basis functions are needed. Nu-
merical studies are carried out to investigate the effects
of parameters in the proposed approach on accurately
determining instantaneous modal parameters. Numerical
analyses also demonstrate that the proposed approach
is superior to some published techniques (i.e., recursive
technique with a forgetting factor, traditional basis func-
tion expansion approach, and weighted basis function
expansion approach) in accurately estimating instanta-
neous modal parameters of a structure. Finally, the pro-
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posed approach is applied to process measured data for
a frame specimen subjected to a series of base excitations
in shaking table tests. The specimen was damaged dur-
ing testing. The identified instantaneous modal parame-
ters are consistent with observed physical phenomena.

1 INTRODUCTION

Time-varying systems have many applications in vari-
ous fields. In mechanical and civil engineering, a sys-
tem with active control devices (Saleh and Adeli, 1994,
1997, 1998; Adeli and Saleh, 1997, 1998; Adeli and
Kim, 2004; Kim and Adeli, 2004, 2005a,b,c,d; Jiang and
Adeli, 2008a,b) modifying stiffness or damping is a time-
varying system. A structure under damage normally ex-
hibits nonlinear dynamic behaviors and time-dependent
stiffness and damping (e.g., Adeli and Jiang, 2006; Jiang
et al., 2007). Variations in system stiffness and damp-
ing over time result in time-varying modal parameters
of the system. Consequently, determining instantaneous
modal parameters of a time-varying system is generally
very useful when assessing structural damage in real ap-
plications.

The time-varying autoregressive with exogenous in-
put (TVARX) model is often utilized to establish an
input–output relationship of a time-varying linear sys-
tem from its dynamic responses and input forces (e.g.,
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Loh et al., 2000; Niedźwiecki, 2000). The recursive least-
squares approach is one of the most popular techniques
to estimate time-dependent coefficients of the TVARX
model. The recursive least-squares approach, which is
an online approach, was well described by Ljung (1987).
Although the recursive least-squares approach has high
computational efficiency when estimating time-varying
parameters, the approach shows slow tracking capabil-
ity for time-varying coefficients and is highly sensitive to
initial conditions. To improve these shortcomings, vari-
able forgetting factors (Fortescue et al., 1981; Toplis
and Pasupathy, 1988; Leung and So, 2005), covariance
matrix resetting (Jiang and Cook, 1992; Park and Jun,
1992), the sliding window technique (Choi and Bien,
1989; Belge and Miller, 2000), and Kalman filter (Loh
et al., 2000) have been incorporated into the recursive
least-squares approach.

Another common approach for establishing the
TVARX model is the basis function expansion ap-
proach, which shows excellent capability on tracking co-
efficients changing with time. Various basis functions,
such as the Fourier series (Marmarelis, 1987), Legendre
polynomial (Niedźwiecki, 1988), Walsh function (Zou
et al., 2003), and wavelets (Tsatsanis and Giannakis,
1993; Wei and Billings, 2002; Adeli and Samant, 2000;
Karim and Adeli, 2002; Ghosh-Dastidar and Adeli,
2003), were used to describe TVARX model coeffi-
cients. Selecting the proper basis functions is a key to
the success of this approach. Numerical experiences by
Zou et al. (2003) indicated that the Legendre polyno-
mial performed well for the coefficients that change
smoothly over time, whereas the Walsh functions were
good for piecewise stationary time-varying coefficients.
The basis function expansion approach often needs a
great number of basis functions and always has trou-
ble determining how many basis functions should be
used. Numerical difficulties are often encountered when
a large number of basis functions are utilized, especially
for polynomial basis functions. Niedźwiecki (2000) pro-
posed a weighted basis function approach to overcome
these problems, but his approach has an inherent draw-
back of computational inefficiency in establishing the
TVARX model.

Accurately establishing the TVARX model from
measured dynamic responses of a structure is inad-
equate for assessing structural damage even though
most published work on the TVARX model is con-
cerned with how to establish the model accurately. Fur-
thermore, the TVARX model coefficients do not have
physical meanings. A popular approach to assess struc-
tural damage is based on the changes of modal pa-
rameters of the structure (Moaveni et al., 2008; Car-
den and Brownjohn, 2008; He et al., 2008; Li and Wu,
2008; Ni et al., 2008) even though a drop in natural
frequency itself may not really result from structural

damage (Clinton et al., 2006). Consequently, this work
presents a novel procedure for accurately determin-
ing instantaneous modal parameters of a time-varying
system.

First, this work describes a novel and efficient ap-
proach for constructing a suitable TVARX model
from the dynamic responses of a structure. The coeffi-
cient functions in the TVARX model are constructed
through the moving least-squares technique adapted
from the mesh-free finite element method for construct-
ing shape functions (Liu, 2003). The proposed approach
needs only low-order polynomials to accurately approx-
imate TVARX model coefficients and considerably im-
proves the computational inefficiency of a weighted ba-
sis function approach.

Second, this work verifies the equivalence between
the equation of motion for a structure and the TVARX
model when displacement, velocity, or acceleration re-
sponses are utilized. Then, this work demonstrates, for
the first time in publication, that the instantaneous
modal parameters of a time-varying system can be esti-
mated from TVARX model coefficients established us-
ing displacement responses but not using velocity or ac-
celeration responses by a traditional technique typically
used for the AR or ARX model for estimating modal
parameters.

Numerical simulations are performed to validate the
effectiveness of the proposed procedure in estimating
instantaneous modal parameters accurately. Numerical
studies investigate the effects of parameters in the pro-
posed procedure on accurate determination of instan-
taneous modal parameters. Numerical studies also in-
dicate that the proposed approach is superior to some
published techniques (i.e., recursive technique with a
forgetting factor, traditional basis function expansion
approach, and weighted basis function expansion ap-
proach) in providing accurate estimation of instanta-
neous modal parameters for a structure. Finally, the
proposed procedure is applied to process measured data
for a frame specimen, subjected to a series of base ex-
citations in shaking table tests. The specimen showed
strong nonlinear dynamic behaviors because damage
occurred during testing.

2 METHODOLOGY

The time-varying structural system encountered in civil
and mechanical engineering can be described by the
following equation of motion when a single-degree-of-
freedom system is considered:

m(t)ẍ + c(t)ẋ + k(t)x = f (t) (1)

where m, c, and k are system mass, damping co-
efficient, and stiffness, respectively; ẍ, ẋ, and x are
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acceleration, velocity, and displacement, respectively.
The time-dependent material properties of the system
m, c, and k are likely due to control devices or imposed
damage.

The instantaneous modal parameters of a time-
varying system given by Equation (1) are defined,

ωn(t) = 2π fn(t) =
√

k(t)
m(t)

and ξ(t) = c(t)
2m(t)ωn(t)

(2)

where ωn(t) and ξ(t) are instantaneous natural fre-
quency and damping ratio, respectively, and are time
dependent. These definitions are similar to those of
modal parameters for a linear time-invariant (LTI) sys-
tem. Consequently, the system given by Equation (1)
can also be characterized by its instantaneous modal pa-
rameters.

When the output responses and input of a time-
varying system are measured, the TVARX model is
frequently applied to establish the relationship be-
tween measured input and output. The mathematical
expression of the TVARX model with the order (I, J),
TVARX(I, J) for single-input/output systems (or sys-
tems with a single degree of freedom) is

y (t) =
I∑

i=1

φi (t)y(t − i) +
J∑

j=0

θ j (t) f (t − j) + an(t)

(3)

where y(t − i) and f(t − i) are the measured response,
which can be acceleration, velocity or displacement, and
input at time t − i�t, respectively; 1/�t is the sampling
rate of the measurement; φ i(t) and θ j(t) are coefficient
functions to be determined in the model; an(t) is the
residual error accommodating the effects of measure-
ment noise, modeling errors, and unmeasured distur-
bances. The relationship between Equations (1) and (3)
is examined in the following section.

A moving least-squares approach (Lancaster and
Šalkauskas, 1990) is employed to construct the coeffi-
cient functions. The TVARX model coefficient func-
tions are expanded onto a set of basis functions. Ap-
proximation theory of a function states that a function
can always be expanded by a complete set of basis func-
tions (Watson, 1980). Hence, polynomial basis functions
are used here; let

φi (t)=
Ni∑

n=0

āintn = pT
i ai and θ j (t)=

N̄ j∑
n=0

b̄jntn = p̄T
j bj

(4)

where pT
i = (1, t, t2, . . . , t Ni ), p̄T

j = (1, t, t2, . . . , t N̄ j ),
aT

i = (āi0, āi1, āi2, . . . , āi Ni ), bT
j = (b̄j0, b̄j1, b̄j2, . . . ,

b̄j N̄ j
); āin and b̄jn are the coefficients to be determined.

A weighted least-squares technique is applied to de-
termine coefficients āin and b̄jn in Equation (4). Let
φ̄ik and θ̄ jk denote the true values of φ i(tk) and θ j(tk),
respectively. Vector ai is determined by minimizing the
error function defined by

E(t) =
l̄i∑

l=1

W(t, tl)
(

pT
i (tl)ai − φ̄il

)2 (5)

where W(t, tl) is a weight function that must be positive,
and l̄i is the number of nodal points for φ i(t). The nodal
points uniformly distribute along the time domain un-
der consideration.

Minimizing E yields

∂ E
∂ai

= 0 (6)

Careful arrangement of Equation (6) yields

Ai (t)ai = Qi (t)ϕ̄i (7)

where

Ai (t)=
l̄i∑

l=1

W(t, tl) pi (tl) pT
i (tl), Qi (t)= [qi1, qi2, . . . , qi l̄i

].

qil = W(t, tl) pi (tl) and ϕ̄i = (φ̄i1, φ̄i2, . . . , φ̄i l̄i
)T

(8)

The solution for ai in Equation (7) is

ai = A−1
i (t) Qi (t)ϕ̄i (9)

Equation (9) indicates that ai is dependent on time.
Notably, the number of nodal points should be much
larger than the number of basis functions in pi to en-
sure the existence of A−1

i . Substituting Equation (9) into
Equation (4) results in

φi (t) = ϕ̃i (t)ϕ̄i (10)

where ϕ̃i (t) is a vector of shape functions for φ i(t) in
terms of finite element terminology, and

ϕ̃i (t) = pT
i (t)A−1

i (t) Qi (t) (11)

Similarly, θ j(t) can be expressed as

θ j (t) = θ̃ j (t)ϑ̄ j (12)

where

ϑ̄ j = (θ̄ j1, θ̄ j2, . . . , θ̄ j l̂ j
)T, θ̃ j (t) = p̄T

j (t)Ā−1
j (t) Q̄j (t).

Āj (t)=
l̂ j∑

l=1
W(t, tl) p̄ j (tl) p̄T

j (tl), Q̄j (t) = [q̄ j1, q̄ j2, . . . , q̄ j l̂ j
]

q̄ jl = W(t, tl) p̄ j (tl) (13)

and l̂ j is the number of nodal points for θ j(t). If the same
nodal points and the same polynomial bases are used
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for each coefficient function in the TVARX model, each
coefficient function has the same shape functions, and
the formulation becomes simple. In Equations (10) and
(12), ϕ̄i and ϑ̄ j are unknown. Notably, the number of
nodal points should be much larger than the number of
basis functions in pi.

A least-squares approach is applied to determine ϕ̄i
and ϑ̄ j by minimizing

Ē =
N∑

n̄ = 1

(an(tn̄))2 (14)

where N is the number of data points to be used
in establishing the TVARX model. Recall that an(t)
is the noise variable in the TVARX model. From
Equations (3), (11), and (12), one can establish

an(t) = y(t) −
⎛
⎝ I∑

i=1

�t,i ϕ̄i +
J∑

j=0

�t, j ϑ̄ j

⎞
⎠ (15)

where

�t,i = y (t − i) ϕ̃i (t) and �t, j = f (t − j) θ̃ j (t) (16)

Substituting Equations (15) and (16) into Equation
(14) and minimizing Ē with respect to ϕ̄i and ϑ̄ j yield

VTỸ = VT VC̃ (17)

where

V =

⎡
⎢⎢⎢⎢⎣

�t1,1 �t1,2 . . . �t1,I �t1,0 �t1,1 · · · �t1,J

�t2,1 �t2,2 . . . �t2,I �t2,0 �t2,1 · · · �t2,J

...
...

. . .
...

...
...

. . .
...

�tN,1 �tN,2 · · · �tN,I �tN,0 �tN,1 · · · �tN,J

⎤
⎥⎥⎥⎥⎦

(18a)

Ỹ = [
y(t1) y(t2) · · · y(tN)

]T (18b)

C̃ =
[
ϕ̄T

1 ϕ̄T
2 · · · ϕ̄T

I ϑ̄
T
0 ϑ̄

T
1 · · · ϑ̄

T
J

]T

(18c)

Unknowns ϕ̄i and ϑ̄ j are determined from Equation
(17) by

C̃ = (VT V)−1VTỸ (19)

Then, coefficient functions φ i(t) in the TVARX
model, Equation (3), are derived by substituting Equa-
tion (19) into Equation (10).

Many weight functions can be used in the above for-
mulation (Lancaster and Šalkauskas, 1990; Liu, 2003).
In this work, the exponential weight function is applied:

W (tm, tp) =
{

e−((tm−tp)/0.3d)2 |tm − tp|/d ≤ 1

0 |tm − tp|/d > 1
(20)

where d defines the dimension of the domain where
W �= 0 and is called the support of the weight func-
tion. This weight function is usually used in curve fitting
(Lancaster and Šalkauskas, 1990) or constructing shape
functions in the mesh-free method (Liu, 2003).

It is desirable to obtain instantaneous modal pa-
rameters of the time-varying system after the TVARX
model has been established from measured output and
input. Instantaneous modal parameters can be evalu-
ated by following the same procedure used to estimate
modal parameters for an LTI system from the ARX
model (Wang and Fang, 1986; Huang, 2001) because the
TVARX model is exactly the same as the ARX model
at any instantaneous moment. Consequently, the instan-
taneous modal parameters are associated with the poles
of ∣∣λI − λI−1φ1 − λI−2φ2 − · · · − λφI−1

∣∣ = 0 (21)

Because φ j (j = 1, 2, . . . , I) is time dependent, the
poles λ are also functions of time. The values of λ are
usually complex and appear in a conjugate pair. Let λk

be a root of Equation (21) and λk = ck + idk. Then,
the corresponding instantaneous natural frequency and
damping ratio are determined by

ωk =
√

α2
k + β2

k and ξk = αk

ωk
(22)

where

βk = 1
�t

tan−1 dk

ck
and αk = 1

2�t
ln(c2

k + d2
k) (23)

Notably, the system given by Equation (1) with a sin-
gle degree of freedom should have only one instanta-
neous natural frequency function. Consequently, I in
Equation (21), or Equation (3), should theoretically
equal two, and only two roots for Equation (21) exist.
However, I in Equation (21) is typically larger than two
when the responses or input containing noise are em-
ployed to construct the TVARX model.

3 TVARX MODEL AND STRUCTURAL
DYNAMIC RESPONSES

This section establishes the theoretical relationship be-
tween Equations (1) and (3) and further assesses the va-
lidity of the procedure in determining the instantaneous
modal parameters shown in the previous section.

According to the central difference approach, Equa-
tion (1) can be discretized as[

m(t)
(�t)2

+ c(t)
2�t

]
x(t + �t)= f (t) −

[
k(t) − 2m(t)

(�t)2

]
x(t)

−
[

m(t)
(�t)2

− c(t)
2�t

]
x(t − �t)

(24)
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The equation is further simplified as

x(t) = φ̂1(t)x(t − �t) + φ̂2x(t − 2�t) + θ̂1(t) f (t − �t)
(25)

where

φ̂1(t) = −k(t − �t) − 2m(t − �t)/(�t)2

γ (t − �t)
,

φ̂2(t) = −m(t − �t)/(�t)2 − c(t − �t)/(2�t)
γ (t − �t)

,

θ̂1(t) = 1
γ (t − �t)

and

γ (t − �t) = m(t − �t)
(�t)2

+ c(t − �t)
(2�t) (26)

If velocity responses are utilized to establish the
discrete equation of Equation (1), differentiating
Equation (1) with respect to t once yields

m(t)v̈(t) + [ṁ(t) + c(t)]v̇(t)

+[ċ(t) + k(t)]v(t) + k̇(t)x(t) = ḟ (t) (27)

where v(t) denotes velocity responses. From Equation
(1),

x (t) = 1
k(t)

[ f (t) − m(t) v̇ (t) − c (t) v (t)] (28)

Substituting Equation (28) into Equation (27) and us-
ing the central difference approach lead to

v(t) = �

φ1 (t) v (t − �t) + �

φ2 (t) v (t − 2�t) + �

θ0(t) f (t)

+�

θ1 (t) f (t − �t) + �

θ2 (t) f (t − 2�t) (29)

where

�

φ1 (t) = −
�

k(t − �t) − 2m(t − �t)/(�t)2

�
γ (t − �t)

,

�

φ2(t) = −m(t − �t)/(�t)2 − �c (t − �t)/(2�t)
�
γ (t − �t)

,

�

θ0 (t) = 1

(2�t) �
γ (t − �t)

,

�

θ1 (t) = − k̇(t − �t)

k(t − �t) �
γ (t − �t)

,

�

θ2 (t) = −1

(2�t) �
γ (t − �t)

,

�
γ (t − �t) = m(t − �t)

(�t)2 +
�c (t − �t)

(2�t)
,

�c (t) = ṁ(t) + c (t) − m(t) k̇(t)
k(t)

,

�

k(t) = k(t) + ċ (t) − c (t) k̇(t)
k(t)

(30)

Similarly, if acceleration responses are employed, one
can establish

a(t) = φ̃1(t)a(t − �t) + φ̃2(t)a(t − 2�t) + θ̃0(t) f (t)

+ θ̃1(t) f (t − �t) + θ̃2(t) f (t − 2�t) (31)

where a(t) denotes acceleration responses, and

φ̃1(t) = − k̃(t − �t) − 2m(t − �t)/(�t)2

γ̃ (t − �t)
,

φ̃2 (t) = −m(t − �t)/(�t)2 − c̃ (t − �t)/(2�t)
γ̃ (t − �t)

,

θ̃0(t) = 1
γ̃ (t − �t)

(
1

(�t)2
− k̇(t − �t)

(2�t)k(t − �t)

−
�̇

k(t − �t)

(2�t)
�̇

k(t − �t)

⎞
⎠ ,

θ̄1(t) = 1
γ̃ (t − �t)

×
(

−2

(�t)2 − k(t − �t) k̈(t − �t) − (
k̇(t − �t)

)2

(k(t − �t))2

+ k̇(t − �t)
�̇

k(t − �t)

k(t − �t)
�

k(t − �t)

⎞
⎠ ,

θ̃2(t) = 1
γ̃ (t − �t)

(
1

(�t)2

k̇(t − �t)
(2�t) k(t − �t)

+
�̇

k(t − �t)

(2�t)
�

k(t − �t)

⎞
⎠ ,

γ̃ (t − �t) = m(t − �t)

(�t)2 + c̃ (t − �t)
(2�t)

,

c̃(t) = ṁ(t) + �c (t) − m(t)
�̇

k(t)
�

k(t)
,

k̃(t) = �

k(t) + �̇c (t) −
�c (t)

�̇

k(t)
�

k(t)

(32)

Equations (25), (29), and (31) indicate the equiva-
lence between the discrete form of the equation of mo-
tion and TVARX model when noise variable an(t) does
not exist. Accordingly, when displacement responses
are used, (I, J) in Equation (3) should be (2, 1) and
θ 0(t) = 0. When velocity or acceleration responses are
used, (I, J) in Equation (3) should be (2, 2).

As the relationship between Equations (1) and (3) is
now known, attention now turns to the evaluation of
instantaneous modal parameters. When displacement
responses are used to establish the TVARX model,
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Equation (25) should be obtained theoretically. Then,
the roots of Equation (21) are

λ1,2 = c1 ± id1 (33)

where

c1 = 2m(t − �t) − (�t)2k(t − �t)
2m(t − �t) + c(t − �t)�t

,

d1 = �t
[
4m(t − �t)k(t − �t) − (�t)2k2(t − �t) + c2(t − �t)

]1/2

2m(t − �t) + c(t − �t)�t
(34)

The argument, t − �t, in functions m, c, and k, is not
shown in the following equations to simplify the expres-
sions. Substituting Equation (34) into Equation (23)
yields

α1 = 1
2�t

ln
(

2m − c�t
2m + c�t

)
and

β1 = 1
�t

tan−1

[
�t
[
4mk − k2(�t)2 + c2

]1/2

2m − k(�t)2

]
(35)

The Taylor expressions of α1 and β 1 given by Equation
(35) are

α1 =
{

−2πξ

T
+ O

(
�t
T

)2
}

and

β1 =
{(

(2π)[1 − ξ 2]
1
2

T

)

+ 1
3!T

(
3πT2

2[1 − ξ 2]
1
2

+ 24π3[1 − ξ 2]
1
2

− 16π3[1 − ξ 2]
3
2

)(
�t
T

)2

+ O
(

�t
T

)4
}

(36)

where T = 2π
√

m/k, which is the instantaneous pe-
riod, and O((�t/T)n) are terms with an order in (�t/T)
higher than (or equal to) n. It is well known that (�t/T)
must be sufficiently small to have an accurate finite dif-
ference presentation for the equation of motion. Ac-
cordingly, when (�t/T) approaches zero, Equation (36)
can be simplified as

α1 = −2πξ

T
and β1 = 2π

T
(1 − ξ 2)1/2 (37)

Substituting Equation (37) into Equation (22) yields

ω1 = 2π

T
=
√

k
m

and ξ1 = ξ = c

2
√

km
(38)

Similarly, one obtains the following results from the
coefficient functions of the TVARX model established

using velocity or acceleration responses:

ω1v =
√

�

k
m

and ξ1v =
�c

2

√
�

km

(39)

or

ω1a =
√

k̃
m

and ξ1a = c̃

2
√

k̃m
(40)

where subscripts v and a denote the computational re-
sults obtained from velocity and acceleration responses,
respectively. Accordingly, ω1v, ω1a, ξ 1v, and ξ 1a ob-
tained from the TVARX model can differ significantly
from the true instantaneous modal parameters of a
structural system under consideration. Comparison of
Equations (1) and (27) reveals that ω1v and ξ 1v are
equal to the true instantaneous modal parameters at
t = t̂ when ṁ(t̂), ċ(t̂), and k̇(t̂) equal zero.

4 NUMERICAL VERIFICATION

Numerical simulation responses were processed to
demonstrate the feasibility of the proposed procedure.
The Runge–Kutta method was applied to determine
the needed dynamic responses of Equation (1), with a
time increment (�t) equal to 0.001 second. Consider
a system with a single degree of freedom defined by
Equation (41) subjected to the base excitation (ag(t))
(Figure 1),

ẍ (t) + 2ξ (t) ωn (t) ẋ (t) + ωn (t)2 x (t) = −ag(t) (41)

Two instantaneous modal parameter types are con-
sidered here and defined as follows:

Type I: Slowly varying system

ωn(t) = 2π

(
1.5 − 0.5 sin

(
2π

60
t
))

,

ξ(t) = 4 + 2 sin
(

2π

60
t
)

, 0 ≤ t ≤ 30 (42)

Type II: Periodically varying system

ωn(t) = 2π

(
1.0 − 0.5 sin

(
2π

10
t
))

,

ξ(t) = 5 + 2.5 sin
(

2π

10
t
)

, 0 ≤ t ≤ 30 (43)

The instantaneous modal parameters defined by Equa-
tion (43) vary with time much more rapidly than
those defined by Equation (42). Displacement re-
sponses were processed in the following system iden-
tification. Figure 1 presents the time histories of
displacement responses for slowly varying and period-
ically varying systems.
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Fig. 1. Input acceleration and displacement responses.

The effects of noise and some parameters involved in
the proposed procedure on determining instantaneous
modal parameters are investigated thoroughly. The pa-
rameters considered are the support of the weight func-
tion (d in Equation (20)), the order of polynomial ba-
sis (Ni and N̄ j in Equation (4)), and number of nodal
points (l̄i in Equation (5)). For simplicity, Ni and N̄ j are

set to equal N̄ for all i and j; l̄i is also set to equal l̂ for
all i.

4.1 Parametric studies

The TVARX(2, 1) model is used in this section. After
setting the desired parameters (i.e., d, N̄, and l̂), the
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Table 1
Means and variances of relative errors of identified instantaneous modal parameters

Slowly varying system Periodically varying system

σ (%) μ(%) σ (%) μ(%)

l̂ N̄ d fn ξ fn ξ fn ξ fn ξ

20 0 2 0.645 1.566 1.070 2.187 6.721 11.81 8.091 20.64
4 0.077 0.245 0.141 0.301 1.623 3.224 2.018 4.305
6 0.014 0.022 0.011 0.022 0.469 1.401 0.493 1.406

1 2 0.033 0.104 0.039 0.120 4.145 5.115 2.848 6.553
4 0.011 0.033 0.018 0.047 1.381 2.062 1.462 2.365
6 0.001 0.006 0.007 0.014 0.524 1.587 0.531 1.524

2 2 0.053 2.907 0.037 1.428 1.051 4.293 1.513 5.427
4 0.003 0.008 0.006 0.013 0.770 3.048 1.096 3.655
6 0.001 0.004 0.007 0.013 0.446 1.485 0.652 2.024

3 2 37.57 38.08 28.57 65.52 34.71 63.27 29.53 102.2
4 0.001 0.005 0.007 0.014 0.562 1.736 0.880 2.501
6 0.001 0.005 0.007 0.014 0.414 1.100 0.605 1.832

35 0 2 0.107 0.642 0.171 0.705 1.069 11.59 1.447 10.15
4 0.005 0.029 0.008 0.024 0.104 0.232 0.083 0.177
6 0.002 0.009 0.007 0.014 0.080 0.136 0.068 0.153

1 2 0.007 0.034 0.011 0.043 0.594 1.959 0.601 2.173
4 0.001 0.005 0.007 0.014 0.050 0.108 0.059 0.108
6 0.001 0.005 0.007 0.014 0.023 0.035 0.047 0.067

2 2 0.001 0.008 0.007 0.016 0.214 2.385 0.332 2.480
4 0.001 0.005 0.007 0.014 0.026 0.106 0.049 0.106
6 0.001 0.005 0.007 0.014 0.032 0.076 0.054 0.087

3 2 0.001 0.025 0.007 0.021 0.108 0.675 0.117 0.580
4 0.001 0.005 0.007 0.014 0.033 0.100 0.052 0.096
6 0.001 0.005 0.007 0.014 0.024 0.037 0.046 0.063

instantaneous modal parameters at any instant time t =
ti can be determined using the proposed procedure. The
relative error of identified instantaneous modal param-
eters at t = ti is defined as

∣∣ρid(ti ) − ρtrue(ti )
∣∣

ρtrue(ti )
× 100% (44)

where ρ true and ρ id are the true and identified instan-
taneous natural frequency (fn) or damping ratio (ξ),
respectively. Table 1 summarizes the means (μ) and
variances (σ ) of relative errors of instantaneous param-
eters identified using different numbers of nodal points
(l̂ = 20 and 35), various orders of the polynomial ba-
sis (N̄ = 0, 1, 2, and 3), and different supports of the
weight function (d = 2, 4, and 6 seconds). Figures 2 and
3 display the means of relative errors of the identified in-
stantaneous modal parameters acquired using different
numbers of nodal points for slowly varying and periodi-
cally varying systems, respectively.

Table 1 and Figures 2 and 3 show several interesting
facts. Using the parameter values given in Table 1 yields
accurately identified fn or ξ , except for some results ob-

tained using d = 2. The instantaneous modal parameters
identified using d = 4 or 6 are considerably more accu-
rate than those obtained using d = 2, especially in the
cases of small l̂ (i.e., l̂ = 20) and large N̄ (i.e., N̄ = 3).
Figures 2 and 3 show that using larger l̂ yields more
accurate results of identification when d = 4 or 6 and
N̄ = 0, 1, 2, or 3 are utilized. The proposed approach
does not need polynomial basis functions with high or-
ders. These facts demonstrate the important features of
the proposed procedure.

Figures 4 and 5 present the comparison of the iden-
tified instantaneous modal parameters with true values
for slowly varying and periodically varying systems, re-
spectively. The instantaneous modal parameters were
identified using d = 4, N̄ = 2, and l̂ = 30 in the pro-
posed approach. A recursive technique with a constant
forgetting factor equal to 0.95 (Ljung, 1987) was also
applied to determine the instantaneous modal param-
eters shown in Figures 4 and 5. The results of the pro-
posed approach are highly accurate, with the relative er-
rors much less than 1%, and substantially better than
those obtained using the recursive technique. When the
periodically varying system is considered, the recursive
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Fig. 2. Means of relative errors of identified fn and ξ varying with l̂ for a slowly varying system: (a) d = 4 seconds;
(b) d = 6 seconds.

technique has very limited capability of identifying the
instantaneous damping ratios varying with time.

Figure 6 depicts the instantaneous parameters for the
periodically varying system identified using a traditional
basis function expansion technique and a weighted ba-
sis function approach (Niedźwiecki, 2000) whose re-
sults are denoted by “BF” and “WBF,” respectively.
The “BF” results were obtained using 20 polyno-
mial basis functions ({1, t, t2, . . . , t19}), although the
“WBF” results were determined using the same poly-
nomial basis functions ({1, t, t2}) and weighting function
(Equation (20) with d = 4) as those employed to obtain

the results denoted by “proposed” in Figure 5. Compar-
ison of the results in Figures 5 and 6 reveals that the pro-
posed approach gives much more accurate results than
the traditional basis function expansion technique and
the approach of Niedźwiecki (2000) do. Notably, using
more polynomial basis functions in the traditional basis
function expansion approach does not significantly im-
prove the accuracy of results. An Intel R©-based PC with
2.40-GHz CPU was used to calculate all the numerical
results shown here. It took 28.2 and 54.3 seconds of CPU
time to obtain the results utilizing the present approach
and the approach of Niedźwiecki (2000), respectively.
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Fig. 3. Means of relative errors of identified fn and ξ varying with l̂ for a periodically varying system: (a) d = 4 seconds;
(b) d = 6 seconds.

4.2 Effects of noise and selection of a suitable order
of the TVARX model

Noise is always found in measured data. White noise
was added to numerical simulation displacement re-
sponses and input acceleration to assess the effect of
noise on the accuracy of instantaneous modal param-
eters identified using the proposed approach. The vari-
ance of the noise-to-signal ratio is set at 5%. Similar to
processing noisy data for a time-invariant system, the
order of the TVARX model must increase to accom-
modate noise.

Figures 7 and 8 depict the means of relative errors of
identified instantaneous modal parameters varying with

the orders of the TVARX model for the slowly varying
and periodically varying systems, respectively. For sim-
plicity, I is set equal to J in the TVARX(I, J) model in
the following computations. The instantaneous modal
parameters were obtained using N̄ = 2, d = 4 or 6, and
l̂ = 25, 30, or 35. The means of relative errors of identi-
fied instantaneous modal parameters generally decrease
as I and J increase. As expected, noise significantly im-
pacts the accuracy of identified instantaneous modal
parameters, especially when identifying instantaneous
modal damping ratios. The accuracy of the identified re-
sults (Figures 7 and 8) using large I and J is not as good
as those (Table 1) for data without noise. Nevertheless,
Figures 7 and 8 show that using large I and J can yield
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Fig. 4. Identified fn and ξ for a slowly varying system.

Fig. 5. Identified fn and ξ for a periodically varying system.
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Fig. 6. Identified fn and ξ for a periodically varying system by two existing approaches.

Fig. 7. Variation of means of relative errors of identified fn and ξ with the orders of the TVARX model for a slowly varying
system: (a) d = 4 seconds; (b) d = 6 seconds.
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the means of relative errors of identified instantaneous
modal frequencies and damping ratios less than 2% and
10%, respectively.

In real applications, the true instantaneous modal pa-
rameters are typically unknown. That is, one cannot
estimate the means of relative errors of identified in-
stantaneous modal parameters and decide the suitable
order of the TVARX model. However, the Akaike in-
formation criterion (AIC) (Akaike, 1973), which was
originally developed for a time-invariant system, is also
often used to determine suitable I and J values in the
TVRAX(I, J) model (Tsatsanis and Giannakis, 1993).
The AIC is defined as

AIC = NT ln V + 2Nd (45)

where NT is the number of data points used to con-
struct the TVARX model, V is the mean square error of
the one-step-ahead prediction from the TVARX model,
and Nd is the total number of parameters in determining
the coefficients of the TVARX model. In the proposed
procedure, Nd = (I + J + 1) × l̂ because each coeffi-
cient function in the TVARX(I, J) model is expanded
using a series of functions with l̂ parameters to be de-
termined. Figure 9 shows the values of the AIC varying
with orders of the TVARX model. These values of the
AIC were obtained using N̄ = 2, l̂ = 35, and d = 4 or
6 seconds in the proposed approach. The value of the
AIC generally decreases as I and J increase. When I
and J are fixed, the values of the AIC determined us-
ing d = 4 seconds are significantly smaller than those
obtained with d = 6 seconds. This trend is not consis-
tent with that μ of fn and ξ obtained using d = 6 may be
smaller than those obtained with d = 4 (Figures 7 and
8). The reason for this inconsistency can be because the
AIC value indicates level of agreement between the re-
sponses predicted by the TVARX(I, J) model and mea-
sured responses. When measured data contain noise,
the TVARX model giving better prediction does not
guarantee to yield more accurate identification of modal
parameters.

An error index (μ̄) similar to the mean of relative
errors of identified instantaneous modal parameters
(Equation (44)) is proposed to supplement AIC when
selecting a suitable order of the TVARX model. The
error index is defined as

μ̄(I, J ) = 1
n

n∑
k=1

∣∣∣∣ρ(I, J, tk) − ρ(I − 1, J − 1, tk)
ρ(I, J, tk)

∣∣∣∣ (46)

where ρ (I, J, tk) denotes the identified instanta-
neous natural frequency or damping ratio at t = tk
obtained using the TVARX(I, J) model. When the
TVARX(I, J) model results in highly accurate identi-
fication of instantaneous modal parameters, the value
of μ̄(I, J) will likely be very small. Figure 9 presents

the μ̄(I, J ) of fn and ξ varying with I and J, where fn

and ξ were obtained using N̄ = 2, l̂ = 35, and d = 4 or
6 seconds. The values of μ̄(I, J ) of fn and ξ generally
decrease as I and J increase.

The following two criteria are employed when choos-
ing a suitable order of the TVARX model:

1. A suitable I and J must be chosen from a range of
I and J in which μ̄(I, J ) changes with small fluctu-
ations and must be less than the assigned thresh-
old values that are case dependent.

2. A suitable I and J must be chosen from a range
of I and J in which the value of the AIC changes
with small fluctuations, or a suitable I and J yield
the minimum value of the AIC in a broad range
of I and J.

When d = 4 seconds was used, the TVARX(41, 41)
and TVARX(50, 50) models were good models for the
slowly varying system and periodically varying system,
respectively (Figures 9 and 10). When d = 6 seconds was
used, the TVARX(30, 30) and TVARX(40, 40) mod-
els were suitable for the slowly varying system and peri-
odically varying system, respectively. Figures 11 and 12
display the instantaneous modal parameters identified
using these TVARX models for slowly varying and pe-
riodically varying systems, respectively. Figures 11 and
12 also present a comparison of the identified instanta-
neous modal parameters with true values.

When d = 4 seconds was used, the TVARX(41, 41)
model yielded the maximum relative errors of identified
fn and ξ of 2.2% and 30.2% for the slowly varying sys-
tem, respectively. The TVARX(50, 50) model yields the
maximum relative errors of fn and ξ of 3.1% and 33.0%,
respectively, for the periodically varying system. Nev-
ertheless, most relative errors of ξ are less than 20%.
When d = 6 was used, the TVARX(30, 30) model for
the slowly varying system yielded 2.1% and 14.5% max-
imum relative errors for fn and ξ , respectively. Most rel-
ative errors of ξ are less than 10%. The TVARX(40,
40) model for the periodically varying system generates
the maximum relative errors of fn and ξ of 3.9% and
22.6%, respectively. These identified fn and ξ are suffi-
ciently accurate for damage assessment of a structure
because structural damage can be detected with con-
fidence as its fundamental frequency shift exceeds 5%
(Salawu, 1997).

Figure 13 displays the results identified using
the weighted basis function approach proposed by
Niedźwiecki (2000) to process the noisy data for the
periodically varying system. The identified instanta-
neous fn and ξ were obtained using the same polyno-
mial basis functions ({1, t, t2}) and weighting function
(Equation (20) with d = 6) and TVARX model
(TVARX(40, 40)) as those employed to obtain the
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Fig. 8. Variation of means of relative errors of identified fn and ξ with the orders of the TVARX model for a periodically varying
system: (a) d = 4 seconds; (b) d = 6 seconds.

Fig. 9. Values of AIC varying with the orders of the TVARX model: (a) slowly varying system; (b) periodically varying system.

results denoted by “d = 6” in Figure 12. Compar-
ing the results in Figure 13 with “d = 6” results in
Figure 12 discovers that the present approach gives
much better results than the weighted basis function ap-
proach in processing noisy data. Furthermore, it took

29.3 and 2,590.7 seconds of CPU time to obtain those
results using the present approach and the weighted
basis function approach, respectively. The present ap-
proach is substantially superior to the weighted ba-
sis function approach in accurately and efficiently
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Fig. 10. The error index, μ̄, of fn and ξ varying with the orders of the TVARX model: (a) d = 4 seconds; (b) d = 6 seconds.

Fig. 11. Instantaneous modal parameters identified from noisy data for a slowly varying system.

estimating the instantaneous modal parameters of a
structure.

5 APPLICATIONS TO MEASURED RESPONSES
FROM SHAKING TABLE TESTS

Shaking table tests are vital to understanding the dy-
namic behaviors, especially nonlinear behaviors, of

structural systems under earthquakes. The National
Center for Research on Earthquake Engineering in
Taiwan conducted a series of tests on reinforced con-
crete (RC) frames of two columns interconnected by
a strong beam to investigate the dynamic behaviors
of low-ductility RC columns and to understand their
collapse mechanism. The details of testing programs
are given by Wu et al. (2006). Figure 14 shows the
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Fig. 12. Instantaneous modal parameters identified from noisy data for a periodically varying system.

Fig. 13. Instantaneous modal parameters identified from noisy data by employing a weighted basis function approach.
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Fig. 14. A sketch of experiment setup.

dimensions of a typical frame and the test setup. In
total, 21 tons of lead ballast was added to the beam
(Figure 14) to simulate axial loads on first-story columns
in a typical four-story RC building in Taiwan. Ac-
celerometers and linear displacement transducers were
installed at appropriate locations to measure accelera-
tion and displacement responses of a specimen. Load
cells were installed between the specimen and shaking
table to measure base shear forces.

The specimen was subjected to a series of base excita-
tion inputs; that is, it was first shaken under white noise
input with small amplitude to estimate its modal param-
eters. The test is denoted as “before-damage” test be-
cause the specimen was not damaged. Then, the spec-
imen was subjected to an earthquake input recorded
during the 1999 Chi-Chi earthquake in Taiwan. Strong
nonlinear behaviors were observed during this test, and
columns near beam connection were damaged. The
test is denoted as “during-earthquake” test. Finally,
the specimen was shaken again with a low-level white
noise input, which is denoted as “after-damage” test.
Figure 15 shows the acceleration input and displace-
ment response histories during these three tests. Dis-
placement shown in Figure 15 is the horizontal rela-
tive displacement between A and B (Figure 14). Data

were recorded at a sampling rate of 200 Hz. The Fourier
spectra of these displacement responses are given in
Figure 16.

The proposed identification procedure with d = 6,
N̄ = 2, and l̂ = 35 was applied to process experimen-
tal data (Figure 15). By employing the criteria based
on the AIC and μ̄ (discussed in the previous sec-
tion), the TVARX(17, 17) and TVARX(34, 34) mod-
els were judged good models for processing data from
the “before-damage” and “after-damage” tests, respec-
tively, whereas the TVARX(36, 36) model could be
appropriate for “during-earthquake” test data. The
identified instantaneous modal parameters are shown in
Figure 17.

As expected, small variations of instantaneous nat-
ural frequencies with time were observed for the
cases with white noise input as no further damage
occurred under such small input excitation forces.
The identified instantaneous natural frequencies in the
“before-damage” test are larger than those obtained
from the “after-damage” test; the trend is opposite
for the identified instantaneous modal damping ratios.
The instantaneous natural frequencies in the “before-
damage” test are 2.33–2.45 Hz, although those from the
“after-damage” test are 1.57–1.66 Hz. These identified
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Fig. 15. The input acceleration and response histories from shaking table tests: (a) before damage; (b) during earthquake; (c)
after damage.

Fig. 16. Fourier spectra for displacement responses.
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Fig. 17. Instantaneous modal parameters identified from
experimental data.

frequencies are close to the peak frequencies observed
in the Fourier spectra (Figure 16). The range of identi-
fied ξ in the “before-damage” test is 3.3–10% and that
for ξ from the “after-damage” test is 4.4–16%. As ex-
pected, the damaged specimen consumes more damp-
ing energy than the specimen before damage when sub-
jected to the same level of input acceleration.

The instantaneous natural frequencies from the
“during-earthquake” test are close to those identi-
fied from the “before-damage” test when t < 2 sec-
onds as no damage existed for this duration in the
“during-earthquake” test. The value of fn decreased
dramatically around t = 3 seconds, which likely indi-
cates specimen damage. As displacement magnitude
gradually increases over time to t = 19.15 seconds
(Figure 15b), the identified fn value generally decreases
to 0.93 Hz and ξ increases to 52% from less than 10%.
Subsequently, the gradual decrease in magnitude of

Fig. 18. Hysteretic loops between story drift and base shear:
(a) 0 < t < 30 seconds; (b) 0 < t < 3.18 seconds.

displacement responses leads to an increase in fn and
decrease to ξ . These observations obey the well-known
physical phenomenon suggesting that structural dam-
age decreases the natural frequency and increases the
damping ratio of a structure.

To explain further the identified instantaneous modal
parameters in the “during-earthquake” test, Figure 18a
depicts experimental hysteretic loops between story
drift and base shear. The story drift is the relative dis-
placement between A and B (Figure 14), and base
shear was measured from load cells. The plot was con-
structed by using the measured data from t = 0 to
30 seconds. The plot clearly indicates that the speci-
men was severely damaged during the test. Figure 18b
presents an enlarged section of the plot in Figure 18a for
t ≤ 3.18 seconds. Notably, the curve slope at an instant
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highly depends on structure stiffness at that time. The
slopes of the curve between t = 3.02 and 3.05 seconds
are significantly smaller than those for t ≤ 3.02 seconds
(Figure 18b). Hence, a remarkable decrease in fn ex-
ists at roughly t = 3 seconds (Figure 17). Nega-
tive slopes exist along the largest hysteretic loop at
19.05 ≤ t ≤ 19.15 (Figure 18a) and result in the smallest
fn (Figure 17). Furthermore, the largest hysteretic loop
indicates the largest energy dissipation in the loop and
yields the largest damping ratio (Figure 17).

6 CONCLUDING REMARKS

This work presented a novel approach for accurately
estimating instantaneous modal parameters of a time-
varying structural system via the TVARX model. A
moving least-squares technique with polynomial basis
functions—frequently utilized in a mesh-free method
for analyzing mechanical problems—is adopted to es-
tablish the shape functions for the coefficient functions
of the TVARX model. The primary advantages of the
proposed approach over a conventional basis function
expansion approach and a weighted basis function ap-
proach are in using low-order polynomial basis func-
tions and in saving computational time, respectively.
Finally, the instantaneous natural frequencies and
damping ratios are directly estimated from coefficient
functions of the TVARX model.

This work theoretically developed the equivalent
relations between the equation of motion and the
TVARX mode, and further proved that the instanta-
neous modal parameters of a time-varying system can
be estimated from the TVARX model coefficients es-
tablished from displacement responses—but not from
velocity or acceleration responses—via a conventional
technique typically utilized to identify modal parame-
ters of the time-invariant ARX model.

To confirm the validity of the proposed identification
approach, numerical simulations of a time-varying sys-
tem with a single degree of freedom were performed.
This work numerically demonstrated that the proposed
approach is much superior to some existing approaches
(i.e., recursive technique with a forgetting factor, tradi-
tional basis function expansion approach, and weighted
basis function expansion approach) in providing accu-
rate estimation of instantaneous modal parameters for
a structure. Numerical studies indicate that increasing
the number of nodal points (l̂) generally improves the
accuracy of identified instantaneous modal parameters.
When a large number of nodal points is utilized, the
identified instantaneous modal parameters are not sig-
nificantly affected by the order of polynomial basis func-
tions (N̄) and the support of the weight function (d) for

N̄ = 0, 1, 2, 3 and d = 4 or 6 seconds. When data con-
taining noise are processed, one must increase the or-
der of the TVARX model to identify the instantaneous
modal parameters accurately.

To demonstrate the applicability of the proposed ap-
proach to real data, responses to shaking table tests
were processed. The specimen was subjected to a series
of base excitation inputs. The specimen was first shaken
under white noise input with small amplitude, then sub-
jected to a large earthquake input and damaged, and fi-
nally shaken under a small amount of white noise input
again. The trend in variations of the identified instanta-
neous modal parameters is consistent with the observed
physical phenomena during the tests. Changes to instan-
taneous modal parameters due to structure damage can
be applied to develop useful criteria for assessing dam-
age of real structures.

The work concentrated on a system with a single de-
gree of freedom or a system with single input/output
because the resulting mathematical formulation is sim-
ple, its correctness is easily verified, and the parameters
controlling the accuracy of the identified instantaneous
modal parameters can be studied comprehensively. The
formulas given here are easily extended to systems with
multiple degrees of freedom. Application of the pro-
posed approach to processing measured responses of
structures with multiple degrees of freedom and further
performing damage assessment of structures are inter-
esting and shall be done in the future.
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APPENDIX

Nomenclature
a(t) = acceleration

ag(t) = base excitation input
ai = coefficient vector corresponding to pi

an(t) = residual error in TVARX
c(t) = damping coefficient, function of time

d = support of weight function
f(t − i) = input at time t − i �t

fn = instantaneous natural frequency (Hz)
(I, J) = order of TVARX
k(t) = stiffness, function of time

l̄i = the number of nodal points for φ i(t)
l̂ j = the number of nodal points for θ j(t)

m(t) = mass, function of time
Ni = the highest order of polynomial in pi

N̄ j = the highest order of polynomial in p̄ j

N̄ = Ni and N̄ j for all i and j
pi = a vector of polynomial basis functions for

φ i(t)
p̄ j = a vector of polynomial basis functions for

θ j(t)
v(t) = velocity

W(t, tl) = a weight function
x(t) = displacement

y (t − i) = measured response at time t − i�t
ωn(t) = instantaneous natural frequency (rad/

second)
ω1a = instantaneous natural frequency identi-

fied by using acceleration responses
ω1v = instantaneous natural frequency identi-

fied by using velocity responses
ξ(t) = instantaneous damping ratio
ξ 1a = instantaneous damping ratio identified by

using acceleration responses
ξ 1v = instantaneous damping ratio identified by

using velocity responses
φ i(t), θ j(t) = coefficient functions in TVARX

φ̄ik = true values of φ i(tk)
θ̄ jk = true values of θ j(tk)

ϕ̃i (t) = a vector of shape functions for φ i(t)
θ̃ j (t) = a vector of shape functions for θ j(t)

μ = means of relative error in identifying in-
stantaneous modal parameters

μ̄ = an error index defined by Equation (46)
σ = variances of relative error in identifying

instantaneous modal parameters


