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摘要 

 
現在的生活裡，有著越來越多的行動式系統像是行動電話、MP3 播放器、

PDA、以及攜帶式電子遊樂器，其功能與複雜度都較過去上升。因此，對於行動

式系統來說大量的多媒體運算能力是必須的，而若是使用傳統的硬體架構來執行

這些運算，會因為架構上沒有很好的對應到多媒體檔案的特性，沒辦法很有效率

的對多媒體檔案作存取，會使得運算效能低落，最糟糕的是無法達到及時的需

求。本論文，為參考史丹佛大學所提出的串流處理器架構，設計了對應多媒體特

性的運算單元以提供所需運算能力，除此之外，在考量到了未來使用上的便利

性，以及能快速與真實的多媒體應用接軌，將此運算單元加上設計的介面電路後

使之成為能與 AMBA 相容的矽智產，如此便能在 ARM 的平台上，利用其他現成的

矽智產或是週邊，真實的將此設計變成多媒體運算所需要的硬體加速器。本論文

以軟式矽智產完成，並且經過 ARM 系列的基板驗證過所設計的介面電路，確定了

所設計的介面電路是符合 AMBA 規定的電路。 

 

 I



Design and Implementation of 

an ALU Cluster Intellectual Property as 

a Reconfigurable Hardware Accelerator for  

Media Streaming Architecture 

 

Student: Shao-Hsuan Chang        Advisor: Dr. Herming Chiueh 

 

Department of Communication Engineering 

National Chiao Tung University 

Hsinchu, Taiwan 

Abstract 

There are more and more portable systems such as mobiles, MP3 player, PDA, 
and other entertainment systems in today’s life. The functionality and complexity of 
them thus increase much higher than old-time ones. Therefore, having a great deal 
ability of multimedia operation is important for portable systems. However, it is tough 
to have enough amounts of multimedia operations from conventional hardware 
architecture. This results from the poor match between conventional architecture and 
features of media applications. It hence leads to inefficient memory access that 
induces performance degression. The worst case is unable to meet the real time 
requirement.  

 
According, this thesis designs an operational unit, ALU cluster, that is referenced 

from Stanford’s stream processor architecture and thus matches to media applications 
to provide necessary processing requirements for media applications. Besides, 
considering the issues of convenient usage in the future and rapid integration of real 
multimedia applications, we wrap ALU cluster as an AMBA-compatible IP by adding 
designed interface. Then, it is possible to exploit other existing IP and peripherals in 
the AMBA platform and truly treats our design as hardware accelerator for real 
multimedia applications. This thesis is finished with a synthesizable soft IP. The 
designed interface is verified by ARM-series baseboard. This ensures that the 
interface conforms to AMBA specification.  

 II



 

ACKNOWLEDGMENTS 
 
 
 

This thesis would not have been possible without the support of many 
exceptional people. First and foremost, thanks go to my research advisor, Professor 
Herming Chiueh. He has always been an inspiration to me and everyone else on this 
project through his vision and leadership. He also provided irreplaceable guidance for 
me when I needed for a fascinating problem, good advice, constructive criticism, 
support, and flexibility. 

 
I would also like to thank all team members of the SoC LAB group, especially 

my classmates over the years: We-Li Su and Joseph Tsai. They not only put up with 
me all of those years, but also made my days as an enjoyable graduate student. 

 
Finally, I can not say enough about the support provided by my family. My 

parents have been my biggest supporters and for that I am forever grateful. My 
girlfriend has always providing timely encouragement and advice. To all of my 
friends and family members who have helped me in one way or another over the years, 
I would like to say thanks. 

 III



 
CONTENTS 
 
 
 
摘要 I 
  
Abstract II 
  
Acknowledgement III 
  
List of Table VI 
  
List of Figure VII 
 
 
Chapter 1 Introduction 1 
1.1 Issues of Media Applications 1 
1.2 Proposed design: An ALU Cluster Intellectual Property (IP) 3 
1.3 Organization 5 
  
Chapter 2 Background 6 
2.1 Reconfigurable Architectures for Media Applications 6 

2.1.1 Stream Processor Architecture  7 
  2.1.2 Stream Processing Model  8 
  2.1.3 Implementations of Stanford’s Stream Processor Architecture  9 
2.2 Design Methodology in the SoC Era 11 
2.3 Overview of AMBA 13 
  2.3.1 Overview of AMBA AHB 15 
  2.3.2 Bus Connection 16 
  2.3.3 Signals of AHB Interface 17 
  2.3.4 Address Decoding 18 
  2.3.5 Basic Transfer 19 

2.3.6 Transfer Type 20 
  2.3.7 Burst Operation 21 
2.4 Overview of Emulation Environment 23 
2.5 Summary 25 
  

 IV



Chapter 3 Design and Implementation of an ALU Cluster Intellectual 
Property 

26 

3.1 An ALU Cluster 27 
  3.1.1 Architecture of an ALU cluster 27 

3.1.2 Implementation Results 28 
  3.1.3 Chip Testing 31 
    3.1.3.1 Testing Environment 32 
    3.1.3.2 Testing flow and result 33 
3.2 Design and Emulation for the AHB Slave Wrapper of Intellectual 

Property 
35 

  3.2.1 Architecture of AHB Slave Wrapper 35 
     3.2.1.1 Finite State Machine of AHB Slave Wrapper 36 
  3.2.2 Modifications for Baseboard and Data Preparing 38 
  3.2.3 Emulation Result 40 
3.3 An ALU Cluster Intellectual Property 42 

3.3.1 Architecture of an ALU Cluster Intellectual Property 42 
  3.3.2 Functional Verification 43 
    3.3.2.1 Testbench: 16-tap FIR filter System 44 
    3.3.2.2 Simulation Results 45 

3.3.3 Improvements from ALU Cluster to ALU Cluster IP 49 
  3.3.4 Extension of ALU cluster IP at magnetic RAM (MRAM) 51 
    3.3.4.1 Overview of MRAM 51 
    3.3.4.2 Modifications for MRAN 51 
    3.3.4.3 Implementation Result 52 
3.4 Implementation Comparisons 54 
3.5 Summary 56 
  
Chapter 4 Conclusion and Future Work 57 
  
Bibliography 59 
  
Appendix A: Assembly Code for Chip Testing 62 
  A.1: Assembly Code for FIR 63 
  A.2: Access Method for Memory Testing 66 
  
Appendix B: Memory Map 69 
 

 V



 

LIST OF TABLES 
 
 
Table 2.1 SPECIFICATION OF STREAM PROCESSOR ARCHITECTURE 10 

Table 2.2 BURST SIGNAL ENCODING 22 

Table 2.3 ACTICE BYTE LANES FOR A 32-BIT LITTLE ENDIAN DATA BUS 23 

Table 2.4 ACTICE BYTE LANES FOR A 32-BIT BIG ENDIAN DATA BUS 23 

   

Table 3.1 SUMMARY OF AN ALU CLUSTER 29 

Table 3.2 TESTING RESULTS 34 

Table 3.3 MODIFICATIONS FROM ALU CLUSTER TO ALU CLUSTER IP 49 

Table 3.4 SUMMARY OF IMPLEMENTATION RESULTS 53 

Table 3.5 TABLE OF IMPLEMENTATED COMPARSIONS 55 

   

Table A.1 THE OPERATIONS CORRESPONG TO THE ALU UNIT 62 

Table A.2 THE OPERATIONS CORRESPONG TO THE MUL UNIT 62 

Table A.3 THE OPERATIONS CORRESPONG TO THE DIV UNIT 62 

Table A.4 ASSEMBLE CODE FOR FIR 63,

64,

65 

Table A.5 ACCESS TABLE FOR ODD BANK MEMORY 66,

67 

Table A.6 ACCESS TABLE FOR EVEN BANK MEMORY 67,

68 

 

 VI



 

LIST OF FIGURES 
 
 
FIGURE 1.1.1 PROCESSOR-MEMORY GAP 2
FIGURE 1.2.1 PROPOSED ALU CLUSTER IP 4
   
FIGURE 2.1.1 STREAM PROCESSOR ARCHITECTURE 8
FIGURE 2.1.2 STREAM PROCESSING MODEL OF FIR FILTER SYSTEM 9
FIGURE 2.1.3 CHIP IMPLEMENTATION OF STREAM PROCESSOR 

ARCHITECTURE 
10

FIGURE 2.2.1 AN ASIC DESIGN 11
FIGURE 2.2.2 AN EXAMPLE OF PLATFORM DESIGN 13
FIGURE 2.3.1 A TYPICAL AMBA SYSTEM 15
FIGURE 2.3.2 DIAGRAM OF BUS CONNECTION 16
FIGURE 2.3.3 DIAGRAM OF AHB SLAVE 17
FIGURE 2.3.4 SIGNALS TO SELECT WHICH SLAVE 18
FIGURE 2.3.5 SIMPLE TRANSFER 19
FIGURE 2.3.6 TRANSFER WITH TWO WAIT 20
FIGURE 2.3.7 TWO KINDS OF BURST OPERATION 22
FIGURE 2.4.1 VERSATILE PLATFORM BASEBOARD FOR ARM926EJ-S 24
FIGURE 2.4.2 ARCHITECTURE OF VERSATILE PLATFORM BASEBOARD 25
   
FIGURE 3.1.1 ARCHITECTURE OF AN ALU CLUSTER 27
FIGURE 3.1.2 LAYOUT OF AN ALU CLUSTER 29
FIGURE 3.1.3 FLOORPLAN AND PAD ASSIGNMENT OF AN ALU CLUSTER 30
FIGURE 3.1.4 DIE MICRO PHOTO OF AN ALU CLUSTER 30
FIGURE 3.1.5 PACKAGE OF AN ALU CLUSTER 31
FIGURE 3.1.6 AN ALU CLUSTER ON THE PCB BOARD 32
FIGURE 3.1.7 LOGIC ANALYZER SYSTEM WITH LCD MONITOR DISPLAY 33
FIGURE 3.1.8 TESTING FLOW OF CHIP LEVEL TESTING 34
FIGURE 3.2.1 ARCHITECTURE OF AHB SLAVE WRAPPER 35
FIGURE 3.2.2 FINITE STATE MACHINE 36
FIGURE 3.2.3 PORTS MODIFICATIONS 39
FIGURE 3.2.4 MODIFICATIONS WITH ADDED REGISTER FILES 40
FIGURE 3.2.5 SOFTWARE CODES FOR ADS 42
FIGURE 3.2.6 ADDRESS DEFINITION 42

 VII



FIGURE 3.2.7 EMULATION RESULTS 43
FIGURE 3.3.1 ARCHITECTURE OF AN ALU CLUSTER IP 43
FIGURE 3.3.2 COEFFICIENTS OF THE FIR FILTER SYSTEM AND ITS INPUT 

FUNCTION 
44

FIGURE 3.3.3 EXPECTED OUTPUT RESULTS OF THE FIR FILTER SYSTEM 45
FIGURE 3.3.4 FULL WAVEFORM VIEW OF SIMULATION 46
FIGURE 3.3.5 DETAILED WAVEFORM IN EXECUTION STAGE A 47
FIGURE 3.3.6 DETAILED WAVEFORM IN EXECUTION STAGE B 47
FIGURE 3.3.7 DETAILED WAVEFORM IN READING STAGE A 48
FIGURE 3.3.8 DETAILED WAVEFORM IN READING STAGE B 48
FIGURE 3.3.9 MODIFICATIONS FOR MRAM WITH ADDED LOAD_STORE UNIT 52
FIGURE 3.3.10 LAYOUT OF AN ALU CLUSTER IP EXTENDED AT MRAM 53
FIGURE 3.3.11 FLOORPLAN OF AN ALU CLUSTER IP EXTENDED AT MRAM 54
 

 VIII



                                                                Chapter 1 Introduction 
 

 
 
 

CHAPTER 1 

Introduction 
 
 
 

With the technology improving, there are many media applications related to our 
life such as mobiles, MP3 player, PDA, and other portable entertainment system. It is 
hard to avoid the usage of these products because it is convenient to use them for 
watching movies, listening to music, and even playing video games at anywhere and 
anytime. The functionality of them keeps growing day by day. Thus, the processing 
requirements of media applications are more and more important right now. However, 
the conventional architecture with only single processor is hard to handle all jobs by 
itself. Therefore, another solution according to the features of media applications must 
be brought up to overcome the growing processing requirements. 

 
 

1.1 Issues of Media Applications 
 
It is known that media applications have three main characteristics: large 

available parallelism, little data reuse, and a high computation to memory access ratio 
[1] [2]. The first one, large available parallelism, is due to each streaming is 
independent to others. Thus, each streaming is possible to be operated solely at the 
same time. Little data reuse results from the streaming element reading from the 
memory only accesses memory once and do not revisit again, causing poor 
performance to the cache in the conventional architecture. Large amount of data 
operations result in high computation to memory access ratio is needed is the third 
characteristic. All these characteristics are poorly matched to conventional 
architectures and the performance will be extremely awful while media applications 
running on conventional ones. It must have another dedicate design to solve these 
issues by multiple operational units and efficient bandwidth hierarchy. 
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From the media characteristics, we know memory access is the most serious 
problem for processing of media applications. In the mean time, the processor and 
memory performance gap that reveals the performance growing of memory is much 
slower than processor, as shown in Figure 1.1.1 [3]. This phenomenon will cause 
more latency for memory access. That means communication between processor and 
memory is more precious. 

 

 
Figure 1.1.1: Processor-Memory Gap 

 
Fortunately, in the modern VLSI technology, as the process goes down to the 

deep submicron, it is possible to put lots of arithmetic logic unit (ALU) on a single 
chip in low cost [4] [5] [6]. It means that many operations are able to be executing at 
the same time by lots of functional units with little area cost. It is a great help for 
parallel processing. Summing up features of media applications and evolution of 
technology, there are many researches that are trying to improving the disability of 
conventional architecture by their own architectures such as Application Specific 
Integrated Circuit (ASIC), Platform-Based Architecture, and Reconfigurable 
Architecture. ASIC is specific to one application. It thus can have most balance to 
power, area, and performance. However, it lacks of flexibility to reuse design while 
the specification changes. Platform-Based Architecture consists of a processor core, 
memory, peripherals and other intellectual property (IP) with the same interface as 
hardware accelerator. By changing different IP, the same platform can be reused for 
distinct usages. The IP is mostly from ASIC by adding interface to solve different 
purposes. Although the flexibility of Platform-Based Architecture is better than ASIC, 
it still needs to change different IP for varied purposes. It is a characteristic, 
supporting application is limited, from ASIC. Therefore, Reconfigurable Architecture 
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is another choice. It will use many general purpose operational units. As the demand 
is modified, the operational units are modified by reconfiguration, too. It therefore 
uses the same hardware to achieve different purposes. Details about architectures 
listed above and design methodology will be addressed in Chapter 2. 

 
 

1.2 Proposed design: An ALU cluster IP 
 

According to the issues of media applications and three associated architectures, 
we choose IP as a our target to process media applications, because we can get best 
trade-off from some physical issues, reuse other ready components to simplify 
developing efforts, and make our IP reusable for further possible development. In 
order to provide a more powerful ability for our IP, we reference from Stanford’s 
stream processor that is a reconfigurable architecture and thus develop our IP as a 
reconfigurable hardware accelerator for media applications [7].  

 
The stream processor architecture is designed for media applications. Therefore, 

it matches the features of media ones and can handle them very well. However, it is a 
complete and huge system. Thus, it requires many human resources and much time to 
implement it. As a result, we select the processing part, ALU cluster, to be wrapped as 
an IP. Then, it can reduce efforts for developing a architecture to deal with media 
applications and be reused in the further. Details about stream processor architecture 
will be demonstrated in Chapter 2. The proposed design is shown in Figure 1.2.1. It is 
an ALU cluster IP that is compatible to AMBA-based platform. This platform may 
contain some available blocks such as processor, memory, other peripherals, and our 
intentional IP that is wrapped from an innovated ALU cluster from the stream 
processor architecture, as shown in the bottom part of the figure. 

 
Therefore, our proposed IP can be divided as hardware and software parts. The 

hardware part includes AMBA-AHB wrapper, ALU cluster, and memory. As for 
software, it must have architecture simulator to decide the number of internal 
operational units, depth of internal memory, and so on. The ALU cluster and 
architecture simulator are finished by our seniors last year [8] [9]. Taking these two 
previous designs as basement, some improvements are added to increase its 
performance that will be shown in Chapter 3. 
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Figure 1.2.1: Proposed ALU Cluster IP 

 
The advantages of the usage of the AMBA-based platform will be addressed in 

the Chapter 2. One major reason for choosing AMBA bus as a platform is because we 
take most care of connecting our design with real media applications. This can be 
benefited from the complete environment of AMBA bus. Except for the free 
specification of AMBA bus, there are already many baseboards and software that help 
to accelerate the design procedure. With these basebaords, there are mamy ready IPs, 
including processor core, memory, and peripherals, can be used directly. Besides, they 
are controlled by adequate software. Thererfore, these hardware and software are 
helpful to accelerate development. Details about the used platform and baseboard are 
in Chpater 2. 
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1.3 Organization 
 

The motivation for the thesis is introduced in this Chapter. The remaining of 
organization about this thesis is as follow. In the Chapter 2, the first part will 
introduce architectures memtioned above for media applications, and the second part 
will discuss the design methodology. This section induces us to establish AMBA-base 
platform. Then, the overview of AMBA on-chip bus and AHB slave protocol will be 
presented. The last section is the introduction of emulation environment                           
 

The Chapter 3 is the main chapter about the design and implementaion of the ALU 
cluster IP. The first section demonstrates the implementation results of ALU cluster, 
prototype I, and its testing outcomes. The second part is the hardware emulation of 
AHB wrapper by ARM baseboard. The following is the architecture, simulation 
results, and modifications of the ALU cluster IP. The last one is about IP that is 
extended to implement a real chip with magnetic RAM (MRAM) as data memory [10]. 
Then, the conclusion and future work will be addressed in the last chapter.  
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CHAPTER 2 

Background 
 
 
 

In this chapter, the related review of background about two architectures are used 
to deal with media applications, design methodology, AMBA specification of AHB 
protocol for the design, and used platform baseboard in this thesis is described. The 
first section will address reconfigurable architectures for media applications; they are 
DIVA and stream processor architecture [7] [11]. We will focus on stream processor 
architecture that is what we choose to further development. The second section is 
about the trend of design methodology, it reviews from ASIC to platform-based 
architecture. This section induces us to establish an AMBA-based platform that will 
advantage to further development. The third section is overview of the AMBA on-chip 
bus and the AHB slave protocol will be introduced most. As for the other details about 
AMBA bus, they could be found in the AMBA specification. The last section is about 
emulation environment that is our used platform baseboard in this thesis. 

 
 

2.1 Reconfigurable Architectures for Media Applications 
 

As we know from the introduction, media applications need an architecture that 
is different from conventional one to increase the processing requirements. Two kinds 
of architectures will be shown up. First, DIVA architecture will be introduced shortly. 
Then, the stream processor architecture is addressed.  
 

Brief speaking, DIVA is an architecture that integrates processor logic and 
memory in a processing-in-memory (PIM) chip. The advantages of its architecture is 
that internal PIM processors are directly connected to the memory banks, the memory 
bandwidth is dramatically increased (up to 2 orders of magnitude, tens or even 
hundreds of gigabits aggregate bandwidth on a chip). Latency to on-chip logic is also 
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reduced, down to as little as one-fourth that of a conventional memory system, 
because of the usages of internal memory access without the associated delays by 
communicating to off chip. It thus overcomes the large amount of memory demands 
and provides the ability to handle media applications. However, this architecture must 
have completely mechanism to communicate between each PIM. This will cause that 
extra efforts are needed to investigate the communications. Besides, the 
communicated protocol is not a general one that could not be portable to other 
hardware. Thus, it is not worthy to put much more efforts on it. We therefore choose 
stream processor as our reference architecture for further development. 

 
2.1.1 Stream Processor Architecture 
 

By trading off from features of media applications and growing technology, 
Stanford proposes the programmable stream processor architecture with three accents 
that are locality, concurrency and bandwidth hierarchy to better the processing 
performance of media applications. The stream processor architecture is shown in 
Figure 2.1.1 [12] [13]. It consists of ALU clusters, stream register file, streaming 
memory system, stream controller, micro controller, and host interface. The core of 
working part of that architecture is the eight ALU clusters. These eight ALU clusters 
achieve one of the features, the concurrency processing. They are controlled by 
microcontroller in single instruction multiple data (SIMD) manner. Therefore, all 
ALU clusters getting the same instructions from microcontroller and operate on 
different data streaming. Besides, these are very long instruction word (VLIW) 
instructions, performing compound stream operations on each streaming elements.  

 
There are many embedded local register files in the ALU clusters. The embedded 

local register files make the processing in local and accomplish the feature of locality. 
The streaming memory system is the interface to connect off chip SDRAM and is able 
to solve rare data bandwidth and provide ability to schedule dynamically. The stream 
register file is the novel organization of high performance memory pool and is used to 
store streaming of any length. Together with local register file, the stream register file 
can efficiently re-circulate streaming with different ALU clusters and perform the last 
characteristic of bandwidth hierarchy by storing the data from the streaming memory 
system to itself. By programming varied instructions, it is possible to execute different 
media applications. Stanford use stream processing model to map the media 
application into the stream architecture. The stream programming model allows 
simple control, makes explicit communication, and exposes the inherent parallelism 
of media applications. It will be discussed in next section. 
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Figure 2.1.1: Stream Processor Architecture 

 
2.1.2 Stream Processing Model 
 

The processing flow of media applications is certainly like a sequence of 
computation kernels that operate on long data streaming. The kernel is a small 
program that repeats its operation for the continuous input streaming and produces the 
output streaming for the following subsequent kernels. The streaming is a variable 
length collection of records and these records are logical grouping of media data. An 
example of stream processing model is shown in Figure 2.1.2. It is one kind of media 
applications, the finite impulse response (FIR) filter system [14]. An FIR filter is a 
one dimensional convolution. It only has two kinds of kernel, MUL and ADD which 
are also the common operations in the media operations, over a long data streaming. 
Thus, the FIR filter system is a good demonstration for stream processing model. The 
equation 2.1 describes its operation: 

 

∑
−

=

−=
1

0

][*][
M

k
k knxbny                                            (2.1) 

 
The y[n] represents the output data streaming of the FIR filter system. It is the 

weighted average of the of input data streaming, x[n], from x[n] to x[n-M+1], with the 
weights given by the coefficients bk. The coefficient of n represents its instant time for 
both x[n] and y[n]. The coefficient of k stands for the number of taps in the filter, and 
bk is nth tap coefficient.  
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Figure 2.1.2: Stream Processing Model of FIR Filter System 

 
he kernel in the stream processing model reveals the possibility to process 

med

apping the media applications to proper kernels and streams expose the 
char

.1.3 Implementations of Stanford’s Stream Processor Architecture 

We now take a look at Stanford’s work. The chip is shown in Figure 2.1.3. The 
eigh

he specification is shown in table 2.1. It is fabricated in the 1.5V 0.15 μm 
proc

T
ia applications: parallel and pipeline execution. Multiple kernels can activate at 

the same time on independent streaming data. The front side kernel handles its input 
streaming and produces the output streaming and the streaming data is then passed to 
be processed by the next kernel. Therefore, the kernels are not only parallel but also 
pipeline to cope with the media data. Since all data are organized as streaming, only 
single memory access from off chip is required and the succeeding transfers are from 
register to register. It is helpful to optimize for bandwidth requirement. As a result, the 
memory bandwidth demands of the media applications can be solved by exploiting 
this stream processing model.  

 
M

acteristics that are enumerated in previous section, large available parallelism, 
little data reuse, and high computation to memory access ratio, so that the hardware 
can easily exploit them and achieve the needed performance requirements. 
 
2
 

t ALU clusters are in the right side, and the microcontroller is on top of them. The 
stream register file is at the center. The left side is the interface to off-ship DRAM. 
The other modules are in the top side. The chip is placed similar to the block diagram 
as shown Figure 2.1.1. 

 
T
ess with five layers of aluminum metal by Texas Instruments (TI). The peak 

Input Data

MUL MUL MUL

ADD ADD

C0 C1 Cn-1

Filter 
Coefficients 
(C0 ~ Cn-1)

Output Data
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performance is at 180M Hz. The power dissipation running at 180M Hz is around 8 to 
10W, and the best power-efficient is at the operating point of 1.2v at 96M Hz. The 
total gate count is 21 million, and the chip area is 2.6 cm2. 

 
As shown in figure and table, it is obviously that the whole architecture of the 

strea

Table 2.1: Specification of Stream Processor Architecture 

m processor architecture is complete and huge. The inventor, Stanford, spends 
eight graduate students to complete all the architecture including design and 
verification. As shown in the Figure 2.1.3, there are many different modules of 
different functionality. The module level test must be exercised completely to ensure 
the pre-defined functionality is correct. Then, it is necessary to verify the integration 
of these modules. However, the fully system simulation takes much time and needs 
high level cycle accurate simulation model to shorten it. This model will also require 
some human resources. Aside from these issues, how to map the stream processor 
architecture to operating system (OS) and perform a real application on the stream 
processor architecture are the other two subjects. As long as running real media 
applications on the design, it thus is convincible. 

 

Process TI 0.15 um (1.5V ) 
Pe e 180 rformanc MHz 

Power (At 180 MHz , 2.0 V) 8~10 W 
Power (At 96 MHz , 1.2 V) 1  .6~1.9W

Gate count 21-million 
Area 2.6 cm2

 

Architecture 

 

Figure 2.1.3: Chip Implementation of Stream Processor 
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2.2 De

In today’s technology, although the development methodology is different for 
syste

 Time-to-market pressures  
ncreasing chip complexity  

n sizes 

 
Taking ASIC as example, it is the conventional design methodology. However, in 

the 

sign Methodology in the SoC Era 
 

m designers and processor designers as well as between DSP developers and 
chipset developers, there are some common problems in designing chips [15]. 

 

 Difficulty in verification of i
 Difficulty in timing closure while entering deep submicro
 Difficulty in integrating different levels and areas expertise 

SoC era, more and more transistors are placed into the chip causing the 
complexity of chip increases dramatically higher than used to. This results in 
problems listed above get worsen and loss competitiveness if the ASIC design is not 
able to come out betimes. The basic principle of ASIC is shown in Figure 2.2.1. The 
chip implementation could be finished as quickly as soon as the well-defined 
specification. The physical area, operating frequency, and power consumption are able 
to be optimized as being defined in the specification. The advantage of ASIC is that it 
could design a specific architecture that fully matches the pre-defined specification 
and thus incurs the best trade off between performance, power, and area. This is why 
the ASIC is still popular now day. However, it has a serious drawback of lacking of 
flexibility for reusing the design. As long as the specification changes, the chip must 
also change. 

 

Figure 2.2.1: An ASIC design 

Platform-based architecture aims the target of design reuse. It consists of a core 
and 

 

many pre-defined robust intellectual property (IP, sometimes called cores, block, 
or macro) as hardware accelerator that have already been designed and verified 
solidly with the same interface. There are some existing platforms are developed, such 
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as AMBA on-chip bus from ARM, device control bus (DCR) from IBM [16], and 
automated bandwidth allocation bus system from Silicon Backplane of Sonics [17]. 
The topologies of them are similar to each other. They communicate through the share 
bus with the same interface of protocol, although the needed standard interface will 
extend the design cycle and have extra overhead of timing and area.  

 
With the same communicating protocol, it could be helpful to integrate many 

diffe

urthermore, it makes the physical design problems, interconnect issue, clock 
skew

here is one more thing needed to be noticed in order to finish a platform design, 
only

ere is simple example to illustrate platform-based design, as shown in Figure 
2.2.2

rent modules tightly. By adding or deleting some IP could set up a different 
system as fast as possible. Therefore, if there is already plenty of reusable IP with the 
same interface, it can reduce much time to re-develop a new system depending on 
different requirements. One more attractive thing is that these platforms have been set 
up with a developing baseboard. There are many common IP such as processor, 
memory, and peripherals on the baseboard that benefits to fast prototyping. Forbye, 
they have OS in existence and can reduce the effort of connecting the real applications 
to intent design. 

 
F
, power consumption, etc, be engaged in the early stage of design process. The 

pre-defined IP not only can solve the physical problems early but also is easy to verify 
in advance. It changes the global problems to local ones to be dealt with. Therefore, 
because of lots of advantages of this design methodology, it gradually becomes a 
trend in the SoC era. Not only it is able to ease off the common problems but also has 
possibility to low down overall cost by reusing ready IP. 

 
T
 preparing robust IP for reuse is not enough. The designers have to provide other 

things that are complete documents and enough deliverables, such as functional, 
timing, synthesis, physical models and so on. Otherwise, the effort to integrate a 
pre-existing block into new designs will still be prohibitive high.  

 
H
. It is a simplified block diagram of cell phone system that consists of a processor, 

on-chip memory, DSP core, baseband codec, LCD controller, and USB controller and 
each block has the same protocol. The blocks communicate with others by bus 
through the same interface. It is obviously that there are many blocks in this platform 
are able to be reused in other system. For example, the USB controller can be reused 
directly in another design such as a MP3 player if they have the same interface.  
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Figure 2.2.2: An Example of Platform Design 

 

.3 Overview of AMBA 

The AMBA specification defines an on-chip communications standard for 
desig

he AMBA system could be used to facilitate the right-first-time development of 
emb

 The Advanced High-performance Bus (AHB) 
 

The AHB is for high performance, high clocking frequency system module. It 
acts 

 
2
 

ning high-performance embedded microcontrollers [18] [19]. There are four 
objectives of the AMBA on-chip bus system; right-first-time, technology-independent, 
modular system design, and minimization the silicon infrastructure.  

 
T

edded microcontroller products with one or more CPUs or signal processors. 
Being technology-independent and ensuring that highly reusable peripheral and 
system macrocells can be migrated across a diverse range of IC processes and be 
appropriate for full-custom, standard cell and gate array technologies. Improving 
processor independence and providing a development road-map for advanced cached 
CPU cores and the results from the modular system design. Then, it minimizes the 
silicon infrastructure requirement and supports efficient on-chip and off-chip 
communication for both operation and manufacturing test. There are three distinct 
buses are defined with the AMBA system. 

 

as the high-performance system backbone bus and provides the efficient 
connection of processors, on-chip memories and off-chip external memory interfaces 
with low-power peripheral macrocell functions. It is also specified to ensure ease of 
use in an efficient design flow using synthesis and automated test techniques. 
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 The Advanced System Bus (ASB) 
 

The AMBA ASB is also for high-performance system modules. It is an 
alter

 The Advanced Peripheral Bus (APB). 

he AMBA APB is for low-power peripherals. It is optimized for minimal power 
cons

n AMBA-based microcontroller typically consists of a high-performance 
syste

he characteristics of AMBA AHB, ASB, and APB are listed in the bottom of the 
figur

here is one thing different between APB and ASB or AHB. ASB and AHB have 
abili

native system bus suitable for use where the high-performance features of AHB 
are not required. ASB also supports the efficient connection of processors, on-chip 
memories and off-chip external memory interfaces with low-power peripheral 
macrocell functions as AHB does. 
 

 
T
umption and reduces complexity of interface to peripheral functions. APB can be 

used in conjunction with either version of the system bus. 
 
A
m backbone bus (AMBA AHB or AMBA ASB), which is able to sustain the 

external memory bandwidth, on-chip memory and other Direct Memory Access 
(DMA) devices reside. This backbone bus is able to provide a high-bandwidth 
interface between the elements that are involved in the majority of transfers. APB is a 
lower bandwidth communication bus and is also located on the high performance bus 
by the bridge. Most of the peripheral devices in the system are located in APB and are 
accessed through the bridge, as shown in Figure 2.3.1: A Typical AMBA 
SystemFigure 2.3.1. 

 
T
e. Basically, AHB has many advanced features such as pipeline operation, 

multiple bus masters, burst transfer, and split transactions. ASB is the former protocol 
compared to AHB by lacking the burst transfers and split transactions. APB is defined 
according to the attribute of low power issue. It latched address and control signal to 
save power. The interface is simpler than the other two. It thus is suitable for many 
peripherals.  

 
T
ty to wait the transfer while it is not ready whether the wait situation is from 

on-chip bus or itself. APB must response the transaction immediately for avoiding the 
loss of utility for the on-chip bus. 
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Figure 2.3.1: A Typical AMBA System 
  
2.3.1 Overview of AMBA AHB 
 
 AHB is one kind of AMBA bus which is intended to address the requirements of 
high-performance synthesizable designs. It sits above the APB and implements the 
features required for high-performance, high clock frequency systems including: burst 
transfers, split transactions, single cycle bus master handover, single clock edge 
operation, and non-tristate implementation. A typical AMBA AHB system design 
contains the following components: master, slave, arbiter, and decoder. 
 

 AHB master 
 

A bus master is able to start the reading and writing operations by providing 
appropriate address and control information to slaves. Only one bus master is allowed 
to actively use the bus at any one time, otherwise, the data may crash in the common 
bus.  

 
 AHB slave 

 
AHB slave responds the reading or writing operation according the information 

from master within a given address-space range. The bus slave signals back to the 
active master the success, failure or waiting of the data transfer. 
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 AHB arbiter 
 

The existence of AHB arbiter means the multiple AHB masters and slaves are 
available in the AHB system. The AHB arbiter has the responsibility to ensure that 
only one bus master at a time is permitted to initiate data transfers. Even though the 
arbitration protocol is fixed, any arbitration algorithm, such as highest priority or fair 
access can be implemented depending on the application requirements. The AHB 
would include only one arbiter, although this would be trivial in single bus master 
systems. 
 

 AHB decoder 
 

The AHB decoder is used to decode by address of each transfer and provide a 
signal to select which slaves that is involved in the transfer. A single centralized 
decoder is required in all AHB implementations. 

 
 In the following subsection, the bus connection, signals of AHB interface, basic 
transfer, transfer type, and burst operation will be presented. The other details about 
arbitration will be in the AMBA specification.  
 
2.3.2 Bus Connection 
 

The AMBA AHB bus protocol is designed to be used with a central multiplexer 
interconnection scheme rather than the tri-state interconnection method, as shown in 
Figure 2.3.2. By using this scheme, all bus masters drive out the address and control 
signals indicating the transfer they wish to perform. Then, the arbiter receives the 
information from masters and determines which one has the ability to get the access 
privilege. Then, the master routes address and control signals to all of the slaves. 
However, only one slave will start to be accessed by the signal from arbiter. A central 
decoder is required to handle the necessary control of reading data and multiplexer to 
response correct signal, which selects the appropriate signals from the slave that is 
involved in the transfer.  
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Figure 2.3.2: Diagram of Bus Connection 

 
 

2.3.3 Signals of AHB Interface 
 

The diagram of AHB slave is depicted in Figure 2.3.3. It shows total input and 
output ports. The bandwidth demonstrates here is 32 bits. Actually, the AMBA system 
is flexible to other bandwidth, such as 64, 128, or more bits are possible. The input 
ports could be divided into six groups according to its functionality; select, address 
and control, data, reset, clock, and split capable input. The select signal, HSELx, is 
from the arbiter to enable AHB slave to work. The address and control signals, 
HADDR, HTRANS, HSIZE, and HBURST, are together from AHB master. The 
master forwards the requirements to slave depending on these two kinds of 
information. Details will be presented in the following section. The data, HWDATA, 
clock, HCLK, and reset, HRESTn, are the common signals as we know. The last one 
group only exists in split capable slave. This group of signals is used to support the 
split transaction.  
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Figure 2.3.3: Diagram of AHB slave 

 
The output ports are able to separate in three groups; transfer responses, data, and 

split capable output. The response signals, HREADY and HRESP, are the information 
that the slave feedbacks to the master. They are used to judge if the transaction is 
finished correctly or failed. The data, HRDATA, is what master willing to read. 
HSPLITx is also used while the slave supports the split transaction. In fact, the 
AMBA specification doesn’t stress on this point. The usage of split transfer type 
depends on the designer’s intent.  
 
2.3.4 Address Decoding 
 

The signal HSELx is used to enable slave and is provided by the decoder, as 
shown in Figure 2.3.4. The decoder decodes the high-order address signals and then 
chooses one of the slaves to active. The minimum address space that can be allocated 
to a single slave is 1kB. All bus masters are designed such that they will not perform 
incrementing transfers over a 1kB boundary, thus ensuring that a burst never crosses 
an address decode boundary. 
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Figure 2.3.4: Signals to Select Which Slave  

 
2.3.5 Basic Transfer 
 

The transfer of AHB protocol is based on the pipeline operation. It separates the 
data and address phase into two stages, as shown in Figure 2.3.5. The necessary 
information including the HADDR and control, which are HADDR, HBURST, 
HSIZE, HTRANS, and HWRITE, will be broadcasted by master in the first stage. The 
second stage is data phase that passes or receives data in several cycles depending on 
the HRADY and HRESP. 
 

 
Figure 2.3.5: Simple Transfer  
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 The HRADY indicates the transfer state. The logic high represents that it is ready 
to be finished and the logic low is contrast to be extended. Figure 2.3.6 is the example 
that the transfer is extended with two cycles. The first stage is address phase the same 
as shown in Figure 2.3.5. However, in the second stage, the logic low for HREADY 
means the transfer is not ready to be completed. This may result from both master and 
slave depends on the transfer type, HTRANS. It will be introduced in the later. 
Therefore, by using the HREADY, the transfer is lengthened to ensure the transaction 
could be terminated with expected results. 
 
2.3.6 Transfer Type 
 

Every transfer can be classified into one of four different types, as indicated by 
the HTRANS[1:0] signals. They are IDLE, BUSY, NONSEQ, and SEQ and 
controlled by 2’b00, 2’b01, 2’b10, and 2’b11 respectively. They are listed as below. 
 

 IDLE 
 

It indicates that no data transfer is required and is used when a bus master is 
granted the bus, but does not wish to perform a data transfer. Slaves must always 
provide a zero wait state OKAY response to IDLE transfers and the transfer should be 
ignored by the slave. 

 
Figure 2.3.6: Transfer with Two Wait 
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 BUSY 
 

The BUSY transfer type allows bus masters to insert idle cycles in the middle of 
bursts of transfers. This transfer type is used while the bus master is continuing with a 
burst of transfers, but the next transfer cannot take place immediately. When a master 
uses the BUSY transfer type the address and control signals must reflect the next 
transfer in the burst. The transfer should be ignored by the slave. Slaves must always 
provide a zero wait state OKAY response, in the same way that they respond to IDLE 
transfers. 
 

 NONSEQ 
 

This transfer type represents the first transfer of a burst or a single transfer. The 
address and control signals are unrelated to the previous transfer. Because single 
transfers on the bus are treated as bursts of one, therefore the transfer type is also 
NONSEQUENTIAL. 
 

 SEQ 
 

The remaining transfers in a burst are SEQUENTIAL and the address must be 
related to the previous transfer. The control information is identical to the previous 
transfer. The address is equal to the address of the previous transfer plus the size (in 
bytes) in the incrementing burst. In the case of a wrapping burst, the address of the 
transfer wraps at the address boundary equal to the size (in bytes) multiplied by the 
number of beats in the transfer (either 4, 8 or 16). 
 
2.3.7 Burst Operation 
 

Burst information is provided by the use of HBURST and the eight possible 
types are shown in Table 2.2. Incrementing burst is the sequential access of locations 
and the address of each transfer in the burst is just an increment of the previous 
address depends on the transfer size.  

 
For wrapping burst transfers, if the address of the first transfer is not aligned to 

the total number of bytes in the burst (size x beats), then the address of the transfers in 
the burst will wrap when the boundary is reached. For example, a four-beat wrapping 
burst of word (4-byte) accesses will wrap at 16-byte boundaries. Therefore, if the start 
address of the transfer is 0x34, then it consists of four transfers to addresses 0x34, 
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0x38, 0x3C and 0x30. The last transfer will wrap back to 0x30. As shown in Figure 
2.3.7, the read rectangular is the incrementing burst and the blue rectangular is the 
wrapping burst which is depicted as the blue arrow. 
 

Table 2.2: Burst Signal Encoding 

HBURST[2:0] Type Description 

000 SINGLE Single transfer 
001 INCR Incrementing burst with undefined length
010 WRAP4 4-beat wrapping burst 
011 INCR4 4-beat incrementing burst 
100 WRAP8 8-beat wrapping burst 
101 INCR8 8-beat incrementing burst 
110 WRAP16 16-beat wrapping burst 
111 INCR16 16-beat incrementing burst 

 
The transfer size is controlled by HSIZE and supports eight dimensions; 8, 16, 32, 

64, 128, 256, 512, and 1024 bits. It thus may suffer issues of alignment, as shown in 
table 2.3 and 2.4. The selection between big-endian and little-endian are defined in the 
specification directly and depend on the designer’s decision. As long as the designs all 
follow the same endian, it will not be a serous problem. 
 
 

 
Figure 2.3.7: Two Kinds of Burst Operation 
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Table 2.3: Active Byte Lanes for a 32-bit Little-Endian Data Bus 

Transfer 
size 

Address 
offset 

Data 
[31:24] 

Data 
[23:16] 

Data 
[15:8] 

Data 
[7:0] 

Word 0 ˇ ˇ ˇ ˇ 
Halfword 0 - - ˇ ˇ 
Halfword 2 ˇ ˇ - - 

Byte 0 - - - ˇ 
Byte 1 - - ˇ - 
Byte 2 - ˇ - - 
Byte 3 ˇ - - - 

 
Table 2.4: Active Byte Lanes for a 32-bit Big-Endian Data Bus 

Transfer 
size 

Address 
offset 

Data 
[31:24] 

Data 
[23:16] 

Data 
[15:8] 

Data 
[7:0] 

Word 0 ˇ ˇ ˇ ˇ 
Halfword 0 ˇ ˇ - - 
Halfword 2 - - ˇ ˇ 

Byte 0 ˇ - - - 
Byte 1 - ˇ - - 
Byte 2 - - ˇ - 
Byte 3 - - - ˇ 

 
 
 
2.4 Overview of Emulation Environment 
 

In this thesis, the protocol verification is by the RealView Versatile Platform 
Basebord for ARM92EJ-S (VPB926EJ-S), as shown in Figure 2.4.1 [20]. It is the first 
basebord in the Versatile family and is designed for ASIC emulation and prototyping. 
By using the basebord, it takes great advantage of verifying validity of AMBA 
protocol, reducing the overall time about integrating our IP with others, and finally 
running real media applications on it.  

 

 - 23 -



                                                                 Chapter 2 Background 
 

 
Figure 2.4.1: Versatile Platform Baseboard for ARM926EJ-S 

 
This baseboard is designed specifically for ASIC emulation and prototyping, and 

supports advanced 3D graphics application development around ARM and PowerVR 
MBX cores. It also provides an AMBA Multi-layer AHB prototyping environment. 
Thus, we can prototype our design to verify the correctness of protocol. The 
architecture is shown in Figure 2.4.2.  

 
The upper part in the Figure is a powerful processing core; development chip. It 

can integrate high performance IP such as memory and DMA controllers and the 
ARM VFP9-S coprocessor around the ARM926EJ-S core. The vector processing 
capability of the ARM VFP9-S coprocessor offers increased performance for imaging 
applications such as scaling, 2D and 3D transforms, font generation, and digital filters. 
The development chip also includes an implementation of the ARM MOVE 
coprocessor which significantly improves the motion estimation capability required 
for applications like MPEG encode through hardware assistance for sum-of-absolute 
differences (SAD) calculations. The bottom part is the FPGA and it can be expended 
with logic tile. They are the programmable parts for HDL languages and share a 
common bus to communicate with other peripherals such as USB, I/O, Mse, Kbd, and 
etc. One different feature of the logic tile compared to FPGA is that it is able to 
communicate with on-chip memory as well as development chip. As a result, the logic 
tile, that we select is LT-XC2V8000 [21], is also needed for possible development in 
the future. It is a Virtex-II FPGA product of Xilinx and supports up to 8M gate counts. 
The detail information can be found in their individual document. 
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Figure 2.4.2: Architecture of Versatile Platform Baseboard 

 
2.5 Summary  
 

We have introduced four background references to finish this thesis. These 
references include the reasons, related knowledge, and verificated ways to design our 
IP for media applications. The first two are a reconfigurable architecture for media 
applications and design methodology. According this two references, we thus propose 
our designed IP. As a result, there is a overview about the protocol of our proposed IP 
in the following. Then, the last one is about the enmulation environment that is used 
to verify the correctness of protocol for our design. 
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CHAPTER 3 

Design and Implementation 
of an ALU Cluster 

Intellectual Property 
 
 
 

According to the previous two chapters, the motivation and necessary 
background are viewed. Thus, the design and implementation of proposedd ALU 
cluster IP will be shown up in this chapter. Our IP consists of AHB slave wrapper, 
ALU cluster, and memory. Memory is the easiest component and can be instanced 
from memory compiler. Thus, it will not be mentioned frequently in this chpater. The 
design and implementation of the other two components are the key points in this 
chapter. The first section is the demonstration of the previous ALU cluster. It has been 
tapped out by UMC with 0.18 um process and Artisan design kit. Therefore, the die 
photo and summary of characteristics are listed in the beginning. The chip is then 
tested by Agilent’s tools. Through the testing of real silicon, it is convinced that the 
ALU cluster is practicable to handle media applications.  

 
The second section is about the design of the AHB slave wrapper which stands 

for interface between ALU cluster and AMBA bus. It will accept control signals from 
AMBA bus and manage the ALU cluster to execute its function. It is then 
programmed into the ARM series baseboard for hardware emulation. This will verify 
the correctness of protocol of the proposed AHB slave wrapper.  

 
The third section is about the ALU cluster IP that is a complete integration of 

improved ALU cluster and designed AHB slave wrapper together. The improved ALU 
cluster is referenced from first section and is designed and implemented to advance its 
performance. The results of simulation will be introduced then. After the successful 
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integration, a synthesizable IP is finished. Then, there is one extension of this IP. The 
main core of our IP is unchanged and the data memory is replaced by a novel storage, 
magnetic RAM (MRAM). The last two sections are the implementation comparisions 
and summary about the development 
 
 
3.1 An ALU Cluster 
 
 The first part of this section is the brief report of the previous design, an ALU 
cluster, including the architecture, related layout, pad assignment and floorplan, die 
photo, and circuit summary. The testing is in the second part. It contains the testing 
environment, testing flow, and testing results. After the chip is tested, the ALU cluster 
is convincible that it is able to handle media applications as we expect.  
 
3.1.1 Architecture of an ALU cluster  

 
The architecture of an ALU cluster is shown in Figure 3.1.1. It consists of two 

ALU of two-stage pipeline, two multipliers of four-stage pipeline, one divider taking 
sixteen cycles to finish operation, a scratch pad register file (SPRF), ten banks of intra 
register file, a controller, and a decoder. The ALU can execute up to thirteen 
instructions; they are ADD, SUB, ABS, AND, OR, XOR, NOT, SLL, SRL, SRA, LT, 
GT, and EQ. The MUL can perform multiplication. The DIV can carry out three jobs: 
they are division that gets the quotient and remainder and find the square root. There 
are intra register files (IRF) embedded in the operation unit. The IRF are registers 
local to the operation unit. They can store streaming temporary. The SPRF is used to 
store coefficients using in common media applications and is used by ALU, MUL, 
and DIV to communicate with each other.  

 

 
Figure 3.1.1: Architecture of an ALU Cluster 
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The decoder can parse the instructions and provides control signals to control the 
ALU cluster. When the ALU cluster in working state, the controller decides which 
input sources, IRF, SPRF, and data memory, to the functional unit. When it works in 
reading or writing state, the controller manages the data flowing to or from IRF, SPRF, 
and outer data memory.  
 
3.1.2 Implementation Results 
 
 The summary of the circuit characteristics of the ALU cluster is listed in Table 
3.1. The 0.18 um process of UMC and cell based design kit of Artisan are utilized for 
the implementation. The operating frequency of post-layout simulation is 100 MHz. 
The chip size and core size are about 3x3 mm2 and 2.2x2.2 mm2. The gate count of 
the core is 411491. It contains fifteen banks of memory for data and instruction. They 
are four 32 x 128 single port static RAM (SRAM), one 14 x 128 single port SRAM, 
and ten 32 x 32 single port SRAM. They are generated by memory compiler with 
Artisan library. The memory of 128 entries is used for instruction memory and they 
could support output bandwidth of 142 bits per cycle to the VLIW instructions. The 
data memory has ten banks and each bank has 32 entries. They can work together to 
provide up to the bandwidth of 320 bits per cycle. The power dissipation is 968.35 
mW for the total chip when runs the media example of FIR filter that will have been 
introduced in the first chapter. The pure core size without these two kinds of memory 
is about 1.8 x 1.2 mm2. Its gate count is 255669 and the power is down to 312.38mW. 
The physical layout of the ALU cluster is shown in Figure 3.1.2.  
 

The core utilization is close to 88.8%. The data memory is the bottom 
rectangular and the instruction memory is the left rectangular. It can be seen clearly in 
Figure 3.1.3 about the floorplane and the pad assignment. There are total 
127input/output (I/O) pads, where 47 input pads, 32 output pads, and 48 power pads. 
The die microphotograph is shown in Figure 3.1.4. It is packaged with CQFP128 and 
its photograph is shown in Figure 3.1.5 
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Figure 3.1.2: Layout of an ALU cluster 
 

Table 3.1: Summary of an ALU Cluster 

Process UMC 0.18 um 
Library Artisan SAGE-x Standard Cell Library 

Post-layout Clock Rate 100 MHz 
Chip Size 2.98 x 2.98 mm2

Core Size (without memory) 2.2 x 2.2 mm2(1.8 x 1.2 mm2) 
Gate Count (without memory) 411491 (255669) 

Power Dissipation (without memory) 968.35 mW (312.38 mW) 

On-chip memory 
10 32x32 single port SRMA 
4 32x128 single port SRMA 
14x128 single port SRAM 

Pad 
Input: 47 pins 

Output: 32 pins 
Power: 48 pins 
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Figure 3.1.3: Floorplan and Pad Assignment of an ALU Cluster 

 

 
Figure 3.1.4: Die Micro photo of an ALU Cluster 
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Figure 3.1.5: Package of an ALU Cluster 
 
3.1.3 Chip testing 
 
 There are two main testing targets for the chip of the ALU cluster; they are 
functionality and performance. The testing of functionality is divided into three parts 
which are memory, instruction, and real program testing. The performance testing is 
by the 16-tap FIR filter. The memory testing is divided into five stages as listed 
bellow. The purpose of using these five stages is to find out the possibility of stuck at 
one and stuck at zero failures. Isolating the memory testing is because memory is the 
most common failure part of the chip. 

  
 Write all memory 32’hFFFF-FFFF, and then read them. 
 Write all memory 32’h0000-0000, and then read them. 
 Write all memory 32’hAAAA-AAAA, and then read them. 
 Write all memory 32’h5555-5555, and then read them. 
 Write all memory with interleaving 32’hAAAA-AAAA and 32’h5555-5555, and 

then read them. 
 

All bits of memory are written by one and zero in the first two stages. In the third 
stage, one and zero in interleaving manner are written to the memory. The fourth stage 
is the opposite of the third stage which are zero and one instead of one and zero. Two 
continuous data with 32’hAAAA-AAAA and 32’h5555-5555 are written in the fifth 
stage. This stage cause the continuous data is interleaving with one and zero.  
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 We then test functionality of instruction by feeding the random sources into all 
operational units. All instructions of different operation units must be gone through at 
least once to ensure the correctness. The last testing target is the real program by 
using 16-tap FIR filter as testbench that is the same benchmark of performance testing. 
The details will be in Appendix A. 
 
3.1.3.1 Testing environment 
 

The environment for the chip testing is shown in Figure 3.1.6 and Figure 3.1.7. 
The chip is placed on the PCB board as shown in Figure 3.1.6. Most of the pins are 
placed in the order sequence that helps to chip testing. Figure 3.1.7 shows what 
environment we use. It is Agilent 16902A Logic Analysis System together with 
Agilent 16720A pattern generator and Agilent 16910A logic analyzer module [22]. 
This logic analyzer system can support up to 48 pins’ pattern input from the pattern 
generator module and catch up to 64 pins’ output results by logic analyzer module. 
The maximum frequency support to half pins’ usage of the pattern generator is 
300MHz and 180MHz in full pins’ usage. It thus is adequate for the testing of our 
chip.  

 

 
Figure 3.1.6: ALU Cluster on the PCB board 
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Figure 3.1.7: Logic Analyzer System with LCD Monitor Display 
 

3.1.3.2 Testing flow and results 
 

The testing flow is shown in Figure 3.1.8. It is divided into three stages. The first 
stage is in the upper rectangular for preparing test pattern. Because the visibility of 
chip testing is very low, it is not easy to judge the sources of the problems. We thus 
run the testing target at the software level simulation to avoid the possibility of invalid 
testing pattern. The simulation results are then record and prepared to be compared 
with the outcomes of chip testing. The necessary format of test pattern for the pattern 
generator is produced with the simulation at the same time. The second stage is in the 
middle rectangular that is chip testing in the Logic Analysis System. The pattern 
generator module produces the same stimulus as simulation for the chip and then the 
logic analyzer module receives the results after chip processes the incomes. Therefore, 
the fruits from the logic analyzer module are compared with the ones from simulation 
in the third stage. 

 
After the outcomes are compared between software simulation and hardware 

testing, the results are listed, as shown in Table 3.2. The clock rate of memory and 
instruction testing is lower down to 1MHz for simplifying the possible problems from 
chip. Through the testing flow, we make sure that all the memory banks including 
data and instruction memory are correct. Also, the instructions of different functional 
units are true. The outcomes of program of FIR filter system are correct, too.  
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Figure 3.1.8: Testing flow of chip level testing 

 
Table 3.2: Testing Results 

Data Correct 
Memory 

Instruction Correct 

ALU0 Correct 

ALU1 Correct 

MUL0 Correct 

MUL1 Correct 

Instruction 
Functionality 

DIV0 Correct 

FIR Correct around 16~18 MHz 

 
However, the performance of the FIR filter system is down to around sixteen to 

eighteen MHz. It is more than five times slower than the post-layout simulation. The 
reason of this performance loss is because of the large loading through the probe lead 
set and the PCB board. It reminds us that it is necessary to connect the pod of Agilent 
to the chip directly in the future. Otherwise, it is hard to get the true performance of 
the chip from the huge loading. 
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3.2 Design and Emulation for the AHB Slave Wrapper of Intellectual 
Property 

 
In this section, there are three parts to demonstrate the design and hardware 

emulation. The architecture of the AHB slave wrapper is showed first. It shows up the 
functionality of the wrapper and how it controls the ALU cluster to execute media 
applications by finite state machine. Then, it will be programmed into ARM series 
baseboard to proceed hardware emulation for verifying its protocol. However, there 
are some necessary modifications for the baseboard, it will be displayed in the second 
pats. The last one is the emulation results. According to the hardware emulation, we 
can make sure that the correctness of protocol for proposed wrapper is verified.  
 
3.2.1 Architecture of AHB Slave Wrapper 
 

The architecture of the proposed wrapper consists of two components that are 
finite state machine (FSM) and address generation unit (AGU), as shown in Figure 
3.2.1. The FSM is in charge of receiving the signals from the AMBA bus and 
administrating the IP to obey the protocol of AHB slave. It will tell the AGU to 
produce the necessary address weather the ALU cluster is accessed in bursting 
incrementing or wrapping mode. There is one signal, alu_work, from the ALU cluster 
to FSM. It will be used to identify if the ALU cluster finishes executing the media 
applications or not. With the necessary information from the AMBA bus and ALU 
cluster, the FSM just can control the ALU cluster including, write data, read data, and 
execute instruction. 

 

 
Figure 3.2.1: Architecture of AHB Slave Wrapper 
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3.2.1.1 Finite State Machine of AHB Slave Wrapper 
 

The FSM of the wrapper is used to control the states of the IP and response the 
request of AMBA bus, which is used to dealing with issues such as reading and 
writing with on-chip bus and activating the ALU cluster. It has the responsibility to 
ensure that the IP is able to communicate with other modules from the AMBA bus. As 
a result, it must have some prescribed response back to AMBA bus. Also, it will 
identify the input signals from the AMBA bus and tell the ALU cluster if it has to 
execute the applications or still in its original state. Therefore, the FSM is designed 
with six states; they are Idle, Accessible, ALU_Work, Un-readable Wait, Un-writable 
Wait, and Error, as shown in Figure 3.2.2.  
 

 Idle: 
 

When the IP is not accessed and the ALU cluster finishes its executing, the FSM 
will be in the Idle state. It will go to other states while the bus is granted and the IP 
will be accessed or the ALU cluster is activated. Not only until IP has done the 
employment but also suffers some error, it will come back to the Idle state. In this 
state the wrapper will be ready to get the signals from AMBA bus and prepare next 
work. Basically, only while the HTRANS is equal to NONSEQ, it has the chances to 
move to other states. Otherwise, it will keep the Idle state. If the NONSEQ signal is 
encountered, it identifies which operation the IP is requested by HWRITE. Then, the 
FSM can move to its target state.  
 

 Accessible 
 

The FSM will directly move to Accessible state if the HTRANS is equal to 
NONSEQ and HERITE is high. In the Accessible state, the FSM continuously checks 
if the IP is accessed repeatedly. It will be two different kinds of accessing, but cause 
FSM still in the Accessible state. One of them is that HTRANS is still equal to 
NONSEQ. It means the the IP is accessed with different address. The other is that 
HTRANS is equal to SEQ. It represents that previous access is continuous with burst 
mode of wrapping or incrementing manner.  

 
There are three cases that the FSM will move away; the HTRANS changes to 

IDLE or BUSY and the reading data is not ready. These three cases mean that the 
access is finished, busy to write, and ready to read but data is not ready and will 
induce the state move to Idle, Un-readable Wait, and Un-writable Wait, respectively.  
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Figure 3.2.2: Finite State Machine 

 
 Un-readable Wait 

 
There are two possible paths that FSM will enter the Un-readable Wait state. 

One of the two paths is while the FSM is in the Idle state and the TRANS is 
NONSEQ and the HWRITE is low. It means the IP is being read. However, the first 
reading operation needs two cycles to prepare necessary data. Thus it must be in the 
Un-readable Wait state to wait the data. Until the data is ready, the FSM moves to 
Accessible state to carry out the following reading request. The other path is from 
Accessible state to Un-readable Wait state. The reason that the FSM must move to this 
state is the same as the first path, the necessary latencies.  

 
 Un-writable Wait 

 
There is only one reason that will enforce the FSM move to Un-writable Wait 

state. It is when the IP is being written data in burst mode of wrapping or 
incrementing way, but the TRANS is changed to BUSY. Pending the TRANS changes 
back to NONSEQ or SEQ, the FSM will return to Accessible state.  

 
 Error 

 
The FSM will go to the Error state while the IP is accessed in wrong ways. They 

are invalid address and invalid transaction. The invalid address is because the depth of 
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the data and instruction memory is limited. If the depth is over the real memory, it will 
be found by the FSM and go to the Error state. The invalid transaction is to avoiding 
the wrong combinations of HTRANS that violates the AHB protocol, although this 
might not be happened. The Error state will also occur if the IP is being accessed and 
is not granted unexpectedly, controlled by HSEL. This is designed to provide ability 
against accident. If the Error occurs, the Error state must obey the AHB protocol and 
thus have two cycles response, replying the AMBA BUS with proper HRESP and 
HREADY as defined in the specification. 

 
 ALU_Work 

 
The ALU_Work state manifests the IP is in the working service. The ALU 

cluster executes applications according to the instructions. There is only one path 
going to this state that is from Idle state to this one. The ALU cluster will be invoked 
by a strictly method that is to write the IP the end value of the program counter at 
predefined location. The details will be in Appendix B. In this state, if the wrapper is 
accessed weather it is a reading or writing operation, the FSM has the ability to reply 
the two cycles responses, RETRY, to the AMBA bus. At the same time, the ALU 
cluster keep working without being affected by the unexpected access until the end of 
the application. It will have internal check in the ALU cluster to judge if the execution 
is finished. Then, through signal, alu_work, the wrapper gets the status of ALU 
cluster.  

 
There is one thing needed to be emphasized. Because the execution must go 

through many stages to finish one instruction, it will take more cycles to write back 
the executed results. The extra cycles are depending on the different functional units. 
For example, the ALU is a two stages pipeline functional unit so that it takes six 
cycles that is two plus four to finish its operation. The four cycles is necessary course 
for every operation, such as instruction decoding, data source selecting, and result 
writing. Thus, the four stages functional unit, MUL, will take eight cycles and the 
sixteen cycles’ functional unit, DIV, will take twenty cycles to write back the result. 
 
3.2.2 Modifications for Baseboard and Data Preparing  
 

There are some modifications needed to program our wrapper into the baseboard. 
One of them is the interface of the wrapper to the outer bus because of the mismatch 
of the communication bus between the wrapper and baseboard. It can be found in the 
document of the baseboard that the data ports through the AHB bridges are shared by 
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writing and reading data signals. Thus, data signals of the wrapper to outer bus must 
be replaced with single tri-state bus, as shown in Figure 3.2.3. When the IP is 
accessed as writing transaction, it stands for input ports. As for reading state, the share 
bus then becomes output ports. It is needless of any revision for other ports because 
the baseboard is originally designed to be able compatible with AMBA system. 

 

 
Figure 3.2.3: Ports modification 

 
Because programming ALU cluster into the baseboard is hardly to verify the 

performance due to huge system, the baseboard doesn’t contain enough memory, and 
the functionality of the ALU cluster is verified through silicon, it is not necessary to 
program total IP into the baseboard. Thus, we take off the ALU cluster, instruction 
memory, and data memory and replace them as register files, as shown in Figure 3.2.4. 
Notice that only the wrapper and register files are prepared to be programmed into the 
baseboard. The register files are used to store the accessed results and return them 
back by the wrapper with the on-chip bus. The connections to the register files have 
taken the place of the ones to original ALU cluster. As to the signal alu_work, it is tied 
to high that represents the ALU cluster is unused. Thus, this modification can simplify 
the effort of protocol verification by only access the register files through the wrapper.  

 
 There are also many data needed to be programmed into the baseboard with our 
wrapper together. They are Arbiter, Decoder, and Multiplexer. These components are 
used to select control the AMBA bus. All of them are ready and can be got from 
ARM’s website. Thus, we put all these components including our wrapper and 
register files to software of Xinlinx ISE to do board level synthesis, placement, and 
routing [23]. After the software is finished, the programming bit file is then generated. 
With the bit file, we therefore can use the ARM Multi-ICE to program it into the 
baseboard [24].  
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Figure 3.2.4: Modifications with Added Register Files 

 
3.2.3 Emulation Result 
 
 After successfully programming our wrapper into the baseboard, the software of 
ARM Developer Suite (ADS) is then used to proceed the emulation [25]. By the ADS, 
the software codes are then assembled, compiled, and linked to be able to control the 
communications between ARM core and our wrapper. The software codes are 
demonstrated in Figure 3.2.5 and Figure 3.2.6. Figure 3.2.5 is the simple C code that 
has 32 entries of integer array that store 32 constants. These constants are then written 
to the specific address, ACT_ADD, which is the address of our wrapper and then read 
them out. The address is defined in Figure 3.2.6. WRAPPER_BASE is the base 
address of the wrapper and WORD_OFFSET is the offset to execute word access. 
Then, the read and written constants are compared to ensure that correctness of the 
transaction between ARM core and wrapper. The results are shown in Figure 3.2.7. It 
lists all the written and read results and comparison.  

 
After the successful emulation, we therefore can make sure our wrapper is 

verified through the baseboard and is able to be integrated with other existing IP. 
Besides, the flow of emulation is set up from FPGA synthesis to ADS emulation. This 
flow is reusable to further ARM series development in the future. 
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Figure 3.2.5: Software codes for ADS 

 

 
Figure 3.2.6: Address Definition 
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Figure 3.2.7: Emulation Results 

 
 
3.3 An ALU Cluster Intellectual Property 
 
 In this section, we combine the improved ALU cluster and designed wrapper 
together. The improvement of the ALU cluster is for control and internal storages. As 
for the operational units, they are the same with old ones. It will be showed in the first 
part in this section. The second part is about the functional simulation. The testbench 
is 16-tap FIR program that is one common media application. Then, the last part is the 
summary of the improvements. 
  
3.3.1 Architecture of an ALU Cluster Intellectual Property 
 

The architecture of IP consists of the wrapper, ALU cluster, instruction memory 
and data memory, as shown in Figure 3.3.1. The wrapper is introduced in previous 
section. The decoder in the ALU cluster is the main improvement. One of the 
improvements is to improving the ability of reading source and writing destination. It 
makes all memory, including data and instruction memory, expose to the AMBA bus. 
They can be accessed directly from AMBA bus. Besides, it betters the performance in 
shortening access cycles. The reading takes two cycle’s latencies in bursting reading. 
After the latencies, the reading data comes out every cycle. As for the orginal one, it 
must have four cycles to access one burst read. 

 - 42 -



                   Chapter 3 Design and Implementation of an ALU Cluster Intellectual Property 
 

32 32 32 32 32 32 32 32 32 32

32 3232 14
142

32
7+3

32 32 14
alu_work

142

5+4

32

32*10

32*5

 
Figure 3.3.1: Architecture of an ALU Cluster IP 

 
In order to let the ALU cluster is able to execute while AMBA bus is granted by 

other master, the ALU cluster needs a module that feeds instruction memory the 
address automatically. The new component, Pc_counter, is added to handle this job. It 
will increase the program counter by one every clock cycle. The decoder will have the 
end value of Pc_counter and compare it every cycle to check if the ALU cluster 
finishes the job. If the job is done, it actives the alu_work signal to let wrapper know 
the situation. If the alu_work is inactive, the IP can not be accessed simply and will 
return RETRY response back to AMBA bus. There is one special input combination 
can erase end value of Pc_counter in the decoder and thus coerce the IP to stop 
execution. This coercive mechanism is designed for avoiding possibility of deadlock 
occurring. 
 
3.3.2 Functional Verification  
 
 The development of the IP including finite state machine in the wrapper and total 
architecture is shown as above. In this part, the simulation of the testbench of 16-tap 
FIR filter and its results will be demonstrated to verify the executing ability of the IP 
for media applications.  
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3.3.2.1 Testbench : 16-tap FIR filter System  
 
 The IP is simulated with the 16-tap FIR as benchmark. The FIR filter system is 
chosen as the testbench for the functional verification since it is suitable for one 
dimensional architecture, needs repeat and high percentage of addition and 
multiplication, and applies for wide DSP applications, such as matched filtering, pulse 
shaping, equalization, etc. A brief review of FIR filter system is illustrated in the 
following. The equation 3.1 is a description for FIR filter system. The M represents 
the length of FIR filter, bk are the coefficients of the it, x[n-k] is the data sample at 
time instance n-k, and y[n] response the output to the instance time n.  
 

∑
−

=

−=
1

0

][*][
M

k
k knxbny                                        (3.1) 

 
As shown in the left Figure 3., they are the coefficients of bk and it is a 16-tap 

Kaiser window FIR bandpass filter. The right figure is the input function, which is 
exponential equation with ten sampling points. The FIR filter is simulated in advance 
by the Mathworks Matlab to get the correct results, as shown in Figure 3.3.2. The 
usage of the Matlab is to obtain the correct results with the input function is fed into 
the FIR filter. After comparing the results between the results from the Matlab and the 
IP, we thus can sure that the functionality is correct with the equality after the 
comparison. 
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Figure 3.3.2: Coefficients of the FIR Filter System and Its Input Function 
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Figure 3.3.3: Expected Output Results of the FIR Filter System 

 
3.3.2.2 Simulation Results 
 

The simulation environment is based on UMC 0.18 libraries and is simulated 
after logic synthesizing. The clock cycle is set up with 6.5 ns. In other words it is 
simulated in 153.87 MHz. The simulation has four steps, as shown in Figure 3.3.4. It 
is the full view of the simulation, including all steps. The first one, as depicted in the 
red rectangular, is to write necessary coefficients into IP. It is because media 
applications usually have lots of tables and reusable coefficients throughout the total 
executing journey. Writing the common used coefficients helps to accelerate the 
execution by abating memory reference. Total numbers of coefficients written in the 
first step are fifty-two. They will be fed in to the following operations. 

 
The second step is to configure IP, as depicted in the pink rectangular. The 

instructions are written into the instruction memory through AMBA bus. The needed 
configuring time depends on the different applications. As introducing in the previous 
chapter, the instruction format is a 142 bits VLIW instruction set. However, the input 
bandwidth from AMBA bus to the wrapper is only 32 bits. One instruction thus needs 
five times to be configured. The additional 18 bits, 160 bits for five clock cycles 
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configuring, will be truncated automatically. Our FIR is a 94 instructions VLIW 
program. Therefore, it takes totally 470 clock cycles to finish configuring this 
program.  
 

 

Write coefficients 

Read results 

Execute FIR 

Configure IP 

 Figure 3.3.4: Full Waveform View of Simulation 
 

 The IP will execute the pre-configured programs at the third stage. It is the 
yellow rectangular in Figure 3.3.4. The detailed simulation waveform is shown in 
Figure 3.3.5 and Figure 3.3.6. Two parts in Figure 3.3.5 are high light. The first one is 
the wathet blue rectangular. It is the key point to invoke ALU cluster to work. It writes 
the last instruction number to an individual register that is specialized to store the end 
value of instruction. As shown in the figure, it is ‘5e’ in hexadecimal representation 
that means the FIR program will halt at the 94th instruction by internal check. 
 

The second high light is the green rectangular. We insert a read request at the 
middle of the execution. The intention is to check if it wound bother the correctness of 
the ALU cluster. It will return RETRY response back to MABA bus. The correct 
results are shown in the forth stage. There is one more thing needed to be pay 
attention to. The HSELx that is introduced in the chapter 2 is low at all execution 
stage. The logical low for HSELx in execution stage is necessary. It means that the 
AMBA bus can be used by other IP while the ALU cluster is executing media 
applications at the same time. As for Figure 3.3.6, it is transaction after Figure 3.3.5. 
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Figure 3.3.5: Detailed Waveform in Execution Stage A 
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Figure 3.3.6: Detailed Waveform in Execution Stage B 

 
The forth stage is the reading stage, as depicted in the deep green rectangular in 

Figure 3.3.4. In this stage, the IP will read out the results to the AMBA bus. Figure 
3.3.7 and Figure 3.3.8 are a clearly chart showing the reading procedure.  

 
The yellow rectangular in the Figure 3.3.7 reveals the first data is read out. 

However, it can not be read out directly. The reading procedure must wait until the 
data is read out from data memory. Thus, it will have two cycles’ latency. The 
HREADY therefore must be low at these two cycles to response the AMBA bus. Until 
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the third reading cycle, the data is read out successful and the HREADY changes to 
high. The green rectangular in Figure 3.3.8 is also a reading procedure. However, it is 
a 16-beats burst mode incremental reading. The first two cycles are the necessary 
latencies the same as above. Then the sixteenth data are then read out in order and the 
HREADY responses the correct reading with logic high. Figure 3.3.7 is the waveform 
behind Figure 3.3.8. 

 

 

Burst read Two cycles’ latency 

Figure 3.3.7: Detailed Waveform in Reading Stage A 
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Figure 3.3.8: Detailed Waveform in Reading Stage B 
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The correct results from the IP must be gone along with the HREADY is high 
and HRESP is OKAY as specifying by protocol of AMBA bus. If either HREADY is 
low or HRESP is not OKAY, the simulation results are not what we wanted. The 
simulation results are then compared with the ones from Matlab, as presented in last 
section. We now can make sure that the functionality of IP is correct.  

 
3.3.3 Improvements from ALU Cluster to ALU Cluster IP  

 
The implementation from ALU cluster to ALU cluster IP not only adds the 

interface, AHB slave wrapper, but also has some intentional parts for improving 
previous one. The main modifications are listed in the table 3.3. It includes the 
reading ability of memory, synthesizing register, readable memory, and type of 
instruction fetch. 

 
Table 3.3: Modifications from ALU cluster to ALU cluster IP 

 ALU cluster IP ALU cluster 

Reading ability 
One cycle to  
read one data 

(two cycles’ latencies) 

Four cycles  
to read one data 

Register Only positive edge trigger
Mix positive and  

negative edge trigger 

Readable memory 
All data and instruction 

memory 
Only odd bank of data 

memory 

Type of instruction fetch Program counter 
Must assign instruction 
address to be fetched 

 
 These four main modifications can be indicated in the table. The first one is the 
reading ability. The ALU cluster takes four cycles to read one data even if it is in burst 
mode to read data. This will cause the reading time is very long. Our IP amends this 
situation by shortening the necessary cycle for reading by only two cycle latencies. 
Moreover, if the reading is in burst mode, it can continuously read out the data after 
the first two cycle latencies. The reading of burst modes with both wrapping and 
incrementing styles works with this reading ability.  
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 The second modification for the IP is the internal sequential element, register. 
The data and instruction memory in ALU cluster is negative edge trigger so that some 
registers in it also are negative edge trigger ones. This mixed type usage of register 
will cause some propagation only take less than half clock cycles to be used and the 
critical path thus arises on the propagation path. This degression of total performance 
is not on the execution unit is an unfortunately thing that have too many waste timing 
loss due to the half cycle usage. Besides, because the clock’s double edges are all 
needed to trigger by different registers, it will make the clock tree hardly to establish 
in the auto placement and route (APR) stage. Keeping the duty cycle takes also more 
efforts for APR tools. Owing to so many induced problems, we replace the memory 
and its related negative edge trigger registers to positive edge trigger ones to solve 
these problems. The related performance improving will be shown in the latter 
section.  
 
 The third modification arises from the testing. In the ALU cluster, not all the 
memory can be read out. Only odd bank of the data memory is visible. The even bank 
memory and the instruction memory are invisible. They all have ability to be written 
data but lack of aptitude to be read out. This is very inconvenient for testing issue. If 
the data is willing to be read out to find out the possible defects, the visibility for the 
memory is very preciousness. Although it will have more wires and multiplexers to 
the requirement that is more compulsory gate counts, we still amend the ALU cluster 
the reading ability. 
 
 The last modification is the type of the instruction fetch. The type of instruction 
fetch in original design of the ALU cluster must pass instruction address to activate 
the procedure of fetching instruction. It is flexible to choose the wanted instruction by 
feeding its address. The stall, jump and other branch instructions can be easily 
substituted with this way. However, it is not a comfortable way compared to the 
method that is able to fetch instruction automatically. It will add another responsibility 
to tell the instruction memory its necessary address. It means that it must have a 
mechanism to keep sight of the fetching procedure. It is obviously not matched to our 
intended design, which checks automatically by itself.  
 

Therefore, an incremental adder, Pc_counter, which is introduced in the previous 
section, is added. It will automatically pass address to instruction memory to get the 
instructions. The advantage of using the Pc_counter to generate the necessary address 
is that the other components on the AMBA bus can spare the attention when the IP is 
executing the media applications. It thus increases the bus utility.  
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3.3.4 Extension of ALU cluster IP at magnetic RAM (MRAM) 
 

This part will address that the IP is extended by replacing the data memory of the 
IP with a new type of memory with magnetism. Most of the other blocks are 
unchanged. Only a few bolocks are slightly modified to be adequate for MRAM. The 
first sub part is the overview of MRAM. The second one is about the necessary 
modifications for the connecting interface between IP and MRAM. Then, there is one 
another load_store unit that takes the responsibility of communication. Finally, the 
results of implementation are listed in the final subsection. 
 
3.3.4.1 Overview of MRAM 
 

General purpose memory stands for the data accessing, such as SRAM and 
DRAM. They have a characteristic of high speed accessing. However, once the power 
is off, the stored data will also be cleared. It thus can not store data in long time. 
Batter-SRAM is provided to support problems of data retention but it costs with large 
power consumption and area overhead. The non-volatile memory therefore is invited 
to overcome the hardness like EEPROM, Flash memory, and etc. Nevertheless, for the 
non-volatile memory the accessing control is much more complex and has a limit of 
number to re-read and re-write.  

 
MRAM is then innovated with a kind of non-volatile memory. It is not like 

conventional non-volatile memory by extra processing with gate of transistor. It uses 
magnetism to represent the logic state. There are several advantages of MRAM; 
process compatible, large number times of data accessing, and non-volatile long life 
time. Because MRAM is fabricated by the upper metal layer, it thus is compatible to 
CMOS technology and will have low extra area overhead. The times of data accessing, 
over 1015, is much greater than conventional non-volatile memory. This is an 
attractive feature for Consumer Electronic Product. It thus can be reused nearly 
forever. Therefore, MRAM has a large potential to be another trend of memory. 

 
3.3.4.2 Modifications for MRAM 

 
Because the interface of MRAM and SRAM is different and the supporting 

bandwidth of MRAM is smaller than SRAM, it must be adjusted a lot to be able to 
connect MRAM with IP. We thus add an extra unit, Load_store unit (LSU), to account 
for this issue, as shown in Figure 3.3.9. Therefore, the decoder must have ability for 
the LSU unit. We increase conventional 142 bits to 143 bits for the instruction. If the 
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143rd bit is not set, the whole IP acts the same as before to execute the applications. 
As the 143rd bit is set, the LSU operate to access data between IRF and MRAM 
depending on the instruction. The data bandwidth between IRF and MRAM is 
restricted by MRAM. We thus also modify the bandwidth of IRF to support byte 
access. The byte access will not get any trouble to the AHB wrapper. The wrapper is 
originally designed for byte, half word, and word access in little endian manner.  

 

 
Figure 3.3.9: Modifications for MRAM with Added Load_store Unit 

 
3.3.4.3 Implementation Results 
 

The summary of implementation results are listed in table 3.4. It is through 0.18 
um process of TSMC and cell based design kit of Artisan. The operating frequency of 
post-layout simulation is 105 MHz. The chip size is about 3.15x3.15mm2, and its core 
size is 2.31x2.30mm2. The gate count of the core is 260910. It must be noted that the 
data memory in the IP is replaced with MRAM such that there is no area cost for data 
memory. The instruction memory is the same of the IP with only one difference. It is 
the adding bit for load_store unit. Therefore, we need eighteen 8 x 128 single port 
static RAM (SRAM) which are generated by memory compiler with Artisan library. 
The power dissipation is 403.36 mW for the total chip while is simulated by 0.9 net 
toggle probability. The pure core size without instruction memory is about 
1.43x1.43mm2. Its pure gate is 203893.67 and the power dissipation is down to 
273.6mW. The physical layout of this co-project is shown in Figure 3.3.10 and its 
floorplan is in Figure 3.3.11.  
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Table 3.4: Summary of Implementation Results  

Process TSMC 0.18 um 
Library Artisan SAGE-x Standard Cell Library 

Post-layout Clock Rate 105 MHz (9.5ns) 
Chip Size 3.15x3.15 mm2

Core Size (without memory) 2.31x2.30 mm2(1.43x1.43 mm2) 

Gate Count (without memory) 260910 (203893.67) 
Power Dissipation (without memory) 403.36 mw (273.6 mW) 

On-chip memory 18x128x8single port SRAM 

Pad 

Input: 34 pins 
Output: 25 pins 
Inout: 32pins 

Power: 40 pins 

 

 

Figure 3.3.10: Layout of an ALU Cluster IP Extended at MRAM 
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Figure 3.3.11: Floorplan of an ALU Cluster IP Extended at MRAM 

 
 In this section, a synthesizable ALU cluster IP is finished. It is designed from 
previous ALU cluster with added AHB slave wrapper. Thus, a hardware accelerator 
for media applications is complete. Owing to it is a soft IP, it is portable to different 
process. The extension of MRAM thus is an example that the process is changed from 
UMC to TSMC. The results of implementation for different process will be in next 
section. 
 
 
3.4 Implementation Comparisons 
 

There are four implementated results about the related work in different process, 
as listed in table 3.5. The first one is the ALU cluster that is designed by senior in our 
lab and has real silicon back. The second implementation is the synthesizable ALU 
cluster IP that is my proposed design. These two are implemented with the same 
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process, UMC 0.18 um. The third and forth implementation is the ALU cluster IP that 
is extended at MRAM. They are implemented in process TSMC 0.18 um and 0.15 um. 
Therefore, we take a look at first two results. Although one of them is after auto 
placement and route (APR) and the other one is after synthesis, the comparisions are 
not very fair. It still shows some useful data: the gate count is reduced about 25% and 
the clock cycle is reduced from 10ns to 6.5ns. Even though these two data will be 
worst after APR, it presents some advancements. Through the first and third results 
which are both implemented after APR, we can see that the gate count is about 20% 
better than older one. This is a great reduced for area. As for the clock cycle, it is 
nearly equal to the older one. This results from the usage of inout PAD causing extra 
time to select to type of that PAD. 

 
Table 3.5: Table of Implementated Comparisons  

 
ALU cluster 

(after APR) 

ALU cluster IP

(after synthesis)

ALU cluster IP

(after APR) 

(MRAM) 

ALU cluster IP 

(after synthesis)

(MRAM) 

Process UMC 0.18 um UMC 0.18 um TSMC 0.18 um TSMC 0.15 um

Simulation 
frequency 

100MHz 
(1/10ns) 

153.87MHz 
(1/6.5ns) 

105.26 MHz 
(1/9.5ns) 

166.67MHz 
(1/6ns) 

Gate Count 
(include instruction 

memory) 

255669 
(295365) 

192767 
(249784) 

203894 
(260910) 

267473 
(include instruction 

memory) 

Gate Count 
(wrapper) 

- 1699 (0.88%) 1708 (0.84%) 1202(0.45%)

Pad 
Input: 47 pins 

Output: 32 pins 

Power: 48 pins 
- 

Input: 34 pins 

Output: 25 pins

Inout: 32pins 

Power: 40 pins 

- 

 
 The forth data shows that when the process go down, the performance will be 
better. Its huge gate cout is because we lack of memory compiler at this process. Thus, 
instruction memory is changed from SRAM to registers. This increases the gate cout 
mostly. As for the gate count of the wrapper, it is obviously that the area overhead for 
the wrapper is slightly. It contains less than 1% area cost for each wrapper in three 
cases. 
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3.5 Summary 
 

The proposed design is finished as a synthesizable IP that is portable to different 
CMOS process as showing in three implementations that the process is changed from 
UMC to TSMC. The verification for our IP is separated to two parts; harfware 
emulation and chip testing. Hardware emulation is used to ensure that designed 
wrapper is realistic to implement into hardware and is compatible to AMBA system. 
The processing core, ALU cluster, is verified by chip testing. The memory is tested to 
guarantee that the process of UMC 0.18 um is stable to further development. The 
operational units are also tested to promise our ALU cluster is workable to process 
media applications. Then, our proposed ALU cluster IP is simulated to demostrate that 
it has the same processing ability with the older ALU cluster and betters its reading 
ability. Besides, it is extended to replace data memory with MRAM as storage 
elements. Theredore, our IP has a non-volatile data memory for media applications. 
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CHAPTER 4 

Conclusion and Future Work 
 
 
 
 This thesis proposes a reconfigurable architecture for multimedia applications. 
That is an ALU cluster IP as a reconfigurable hardware accelerator in platform-based 
design. It is proven by simulating with a testbanch, 16 tap FIR. Therefore, it can take 
the responsibility to accelerate the performance for media applications.  
 

The proposed ALU cluster IP has been disassembled to two parts, designed ALU 
cluster and wrapper, for testing and verification. Designed ALU cluster is proved by 
silicon. It thus ensures us that the operational unit, ALU cluster, is workable to handle 
media ones. Designed wrapper is emulated in AMBA platform. Through this 
emulation, we not only verify the correctness of protocol but also set up the emulating 
flow that is reusable for further development.  
 

The designed soft IP is fully synthesizable and compatible to different CMOS 
processes. According the synthesis scripts, it is effortless to change process from 
UMC to TSMC and from 0.18 um to 0.15 um.  

 
However, there are several future works can be carry out to investigate this design. 

In hardware part, the wrapper is emulated through VPB926EJ-S. However, the 
processing core, ALU cluster, is not programmable into the FPGA board. It is pity to 
emulate total design. Thus, after our IP is taped out and has silicon back, it is able to 
setup the enviornment of it that is compatible to VPB926EJ-S and can be plugged in it 
as a daughter board. Therefore, our IP can truly stand for a hardware accelerator in 
VPB926EJ-S. 

 
As for the benchmarks, because there is only one benchmark, 16 tap FIR, it is not 

enough to convince everyone that proposed IP is powerful for media applications. 
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Thus, it is necessary for our IP to be verified through other media related benchmarks. 
For this reason, a wisely compiler is needed to schedule the instructions for the VLIW 
instruction sets of the ALU cluster. This will be a great help to prepare needed media 
applications.  
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APPENDIX A 
Assembly Codes for Chip Testing 

 
Table A.1: The Operations Correspond to the ALU Unit 

Operation Description 
ADD Add 
SUB Subtract 
ABS Absolute value 
AND Bitwise AND 
OR Bitwise OR 

XOR Bitwise XOR 
NOT Bitwise invert 
SLL Logical shift left 
SRL Logical shift right 
SRA Arithmetic shift right 
LT Less-than 
GT Greater-than 
EQ Equal 

 
 

Table A.2: The Operation Corresponds to the MUL Unit 
Operation Description 

MUL Multiply 
 
 

Table A.3: The Operations Correspond to the DIV Unit 
Operation Description 

DIV Quotient 
REM Remainder 
SQR Square root 
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Instruction format of ALU cluster: S1_A1_S2_A2_DE_DA_OP 
S1: source selection1 
A1: address of selection1 
S2: source selection2 
A2: address of selection2 
DE: destination selection 
DA: address of destination 
OP: operation code 
 
DM, D1~D9 : data memory 
RF, I1~I9 : local register file (RF is source; Ix is destination) 
SP : scratch pad register file 
 

A.1 Assembly Code of FIR  
 

Table A.4: Assembly code for FIR 
# ALU_0 ALU_1 MUL_0 MUL_1 DIV_0 
1   DM_16_DM_01_DM_20_MUL DM_15_DM_01_I9_00_MUL  

2   DM_16_DM_02_I8_00_MUL DM_14_DM_01_I7_00_MUL  

3   DM_15_DM_02_I6_00_MUL DM_16_DM_03_I9_01_MUL  

4   DM_13_DM_01_I7_01_MUL DM_14_DM_02_I6_01_MUL  

5   DM_15_DM_03_I7_02_MUL DM_16_DM_04_I6_02_MUL  

6   DM_12_DM_01_I7_03_MUL DM_13_DM_02_I6_03_MUL  

7   DM_14_DM_03_I7_04_MUL DM_15_DM_04_I6_04_MUL  

8      

9   DM_16_DM_05_I8_01_MUL DM_11_DM_01_I7_05_MUL  

10 RF_00_RF_00_DM_00_ADD  DM_12_DM_02_I6_05_MUL DM_13_DM_03_I7_06_MUL  

11  RF_00_RF_00_SP_00_ADD DM_14_DM_04_I6_06_MUL DM_15_DM_05_I7_07_MUL  

12  RF_01_RF_01_I9_02_ADD DM_16_DM_06_I6_07_MUL DM_10_DM_01_I7_08_MUL  

13  RF_02_RF_02_I8_02_ADD DM_11_DM_02_I6_08_MUL DM_12_DM_03_I7_09_MUL  

14  RF_03_RF_03_I9_03_ADD DM_13_DM_04_I6_09_MUL DM_14_DM_05_I7_10_MUL  

15  RF_04_RF_04_I8_00_ADD DM_15_DM_06_I6_10_MUL DM_16_DM_07_I9_00_MUL  

16 RF_01_SP_00_DM_01_ADD  DM_09_DM_01_I7_00_MUL DM_10_DM_02_I6_00_MUL  

17  RF_05_RF_05_I8_03_ADD DM_11_DM_03_I7_01_MUL DM_12_DM_04_I6_01_MUL  

18 RF_02_RF_02_DM_02_ADD RF_06_RF_06_I9_04_ADD DM_13_DM_05_I7_02_MUL DM_14_DM_06_I6_02_MUL  

19 RF_03_RF_01_I9_05_ADD RF_07_RF_07_I8_04_ADD DM_15_DM_07_I7_03_MUL DM_16_DM_08_I6_03_MUL  

20  RF_08_RF_08_I8_05_ADD DM_08_DM_01_I7_04_MUL DM_09_DM_02_I6_04_MUL  
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21  RF_09_RF_09_I9_01_ADD DM_10_DM_03_I7_11_MUL DM_11_DM_04_I6_11_MUL  

22  RF_10_RF_10_I8_06_ADD DM_12_DM_05_I7_05_MUL DM_13_DM_06_I6_05_MUL  

23 RF_04_RF_03_I9_06_ADD RF_00_RF_00_I8_07_ADD DM_14_DM_07_I7_06_MUL DM_15_DM_08_I6_06_MUL  

24 RF_05_RF_00_DM_03_ADD RF_01_RF_01_I9_02_ADD DM_16_DM_09_I8_01_MUL DM_07_DM_01_I7_07_MUL  

25 RF_00_RF_05_I9_03_ADD RF_02_RF_02_I8_02_ADD DM_08_DM_02_I6_07_MUL DM_09_DM_03_I7_08_MUL  

26  RF_03_RF_03_I9_07_ADD DM_10_DM_04_I6_08_MUL DM_11_DM_05_I7_09_MUL  

27 RF_01_RF_06_I8_08_ADD RF_04_RF_04_I9_08_ADD DM_12_DM_06_I6_09_MUL DM_13_DM_07_I7_10_MUL  

28 RF_06_RF_04_DM_04_ADD RF_11_RF_11_I8_03_ADD DM_14_DM_08_I6_10_MUL DM_15_DM_09_I7_00_MUL  

29 RF_02_RF_07_I8_00_ADD RF_05_RF_05_I9_04_ADD DM_16_DM_10_I6_00_MUL DM_06_DM_01_I7_01_MUL  

30  RF_06_RF_06_I8_05_ADD DM_07_DM_02_I6_01_MUL DM_08_DM_03_I7_02_MUL  

31 RF_07_RF_02_I9_00_ADD  DM_09_DM_04_I6_02_MUL DM_10_DM_05_I7_03_MUL  

32 RF_08_RF_01_I9_01_ADD RF_07_RF_07_I8_06_ADD DM_11_DM_06_I6_03_MUL DM_12_DM_07_I7_04_MUL  

33 RF_03_RF_08_DM_05_ADD RF_08_RF_08_I9_05_ADD DM_13_DM_08_I6_04_MUL DM_14_DM_09_I7_11_MUL  

34 RF_04_RF_03_I9_02_ADD RF_09_RF_09_I8_04_ADD DM_15_DM_10_I6_11_MUL DM_05_DM_01_I7_05_MUL  

35  RF_10_RF_10_I9_06_ADD DM_06_DM_02_I6_05_MUL DM_07_DM_03_I7_06_MUL  

36 RF_00_RF_00_DM_06_ADD RF_00_RF_00_I8_02_ADD DM_08_DM_04_I6_06_MUL DM_09_DM_05_I7_12_MUL  

37 RF_01_RF_05_I8_01_ADD RF_01_RF_01_I9_07_ADD DM_10_DM_06_I6_12_MUL DM_11_DM_07_I7_07_MUL  

38 RF_05_RF_06_I9_03_ADD RF_02_RF_02_I8_07_ADD DM_12_DM_08_I6_07_MUL DM_13_DM_09_I7_08_MUL  

39  RF_03_RF_03_I9_04_ADD DM_14_DM_10_I6_08_MUL DM_04_DM_01_I7_09_MUL  

40 RF_06_RF_04_I9_08_ADD RF_04_RF_04_I8_03_ADD DM_05_DM_02_I6_09_MUL DM_06_DM_03_I7_10_MUL  

41  RF_11_RF_11_I8_00_ADD DM_07_DM_04_I6_10_MUL DM_08_DM_05_I7_00_MUL  

42 RF_02_RF_01_DM_07_ADD RF_05_RF_05_I9_00_ADD DM_09_DM_06_I6_00_MUL DM_10_DM_07_I7_01_MUL  

43 RF_03_RF_02_SP_00_ADD RF_06_RF_06_I8_05_ADD DM_11_DM_08_I6_01_MUL DM_12_DM_09_I7_02_MUL  

44 RF_07_RF_07_I9_01_ADD RF_12_RF_12_I8_06_ADD DM_13_DM_10_I6_02_MUL DM_03_DM_01_I7_03_MUL  

45 RF_04_RF_03_I8_04_ADD RF_07_RF_07_I9_05_ADD DM_04_DM_02_I6_03_MUL DM_05_DM_03_I7_04_MUL  

46  RF_08_RF_08_I9_06_ADD DM_06_DM_04_I6_04_MUL DM_07_DM_05_I7_11_MUL  

47  RF_09_RF_09_I9_02_ADD DM_08_DM_06_I6_11_MUL DM_09_DM_07_I7_05_MUL  

48 RF_08_SP_00_DM_08_ADD RF_10_RF_10_I8_01_ADD DM_10_DM_08_I6_05_MUL DM_11_DM_09_I7_06_MUL  

49 RF_01_RF_00_I9_03_ADD RF_00_RF_00_I8_02_ADD DM_12_DM_10_I6_06_MUL DM_02_DM_01_I7_12_MUL  

50 RF_00_RF_05_I8_03_ADD RF_01_RF_01_I9_04_ADD DM_03_DM_02_I6_12_MUL DM_04_DM_03_I7_07_MUL  

51 RF_05_RF_06_I8_07_ADD RF_02_RF_02_I9_07_ADD DM_05_DM_04_I6_07_MUL DM_06_DM_05_I7_08_MUL  

52  RF_03_RF_03_I9_09_ADD DM_07_DM_06_I6_08_MUL DM_08_DM_07_I7_09_MUL  

53 RF_02_RF_01_I9_08_ADD RF_04_RF_04_I8_08_ADD DM_09_DM_08_I6_09_MUL DM_10_DM_09_I7_10_MUL  

54 RF_03_RF_04_DM_09_ADD RF_11_RF_11_I9_01_ADD DM_11_DM_10_I6_10_MUL DM_01_DM_01_I7_00_MUL  

55 RF_06_RF_03_I9_00_ADD RF_05_RF_05_I8_00_ADD DM_02_DM_02_I6_00_MUL DM_03_DM_03_I7_01_MUL  

56 RF_04_RF_02_I8_05_ADD RF_06_RF_06_I9_05_ADD DM_04_DM_04_I6_01_MUL DM_05_DM_05_I7_02_MUL  

57  RF_12_RF_12_I8_06_ADD DM_06_DM_06_I6_02_MUL DM_07_DM_07_I7_03_MUL  
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58 RF_09_RF_08_I8_01_ADD RF_07_RF_07_I9_02_ADD DM_08_DM_08_I6_03_MUL DM_09_DM_09_I7_04_MUL  

59  RF_08_RF_08_I8_04_ADD DM_10_DM_10_I6_04_MUL DM_01_DM_02_I7_11_MUL  

60 RF_00_RF_07_DM_10_ADD RF_09_RF_09_I9_03_ADD DM_02_DM_03_I6_11_MUL DM_03_DM_04_I7_05_MUL  

61 RF_07_RF_05_I8_02_ADD RF_10_RF_10_I9_04_ADD DM_04_DM_05_I6_05_MUL DM_05_DM_06_I7_06_MUL  

62 RF_01_RF_00_I8_03_ADD RF_00_RF_00_I9_06_ADD DM_06_DM_07_I6_06_MUL DM_07_DM_08_I7_12_MUL  

63 RF_05_RF_01_I9_09_ADD RF_01_RF_01_I8_09_ADD DM_08_DM_09_I6_12_MUL DM_09_DM_10_I8_08_MUL  

64 RF_02_RF_06_I8_10_ADD RF_02_RF_02_I9_10_ADD DM_01_DM_03_I7_07_MUL DM_02_DM_04_I6_07_MUL  

65 RF_03_RF_04_I9_00_ADD RF_03_RF_03_SP_00_ADD DM_03_DM_05_I7_08_MUL DM_04_DM_06_I6_08_MUL  

66 RF_08_RF_02_DM_11_ADD RF_04_RF_04_I9_07_ADD DM_05_DM_07_I7_09_MUL DM_06_DM_08_I6_09_MUL  

67  RF_11_RF_11_I8_00_ADD DM_01_DM_04_I7_10_MUL DM_02_DM_05_I6_10_MUL  

68 RF_09_RF_03_DM_12_ADD RF_05_RF_05_I9_01_ADD DM_03_DM_06_I7_00_MUL DM_04_DM_07_I6_00_MUL  

69 RF_04_RF_10_I8_01_ADD RF_06_RF_06_I9_02_ADD DM_05_DM_08_I7_01_MUL DM_06_DM_09_I6_01_MUL  

70 RF_06_RF_09_I8_04_ADD RF_12_RF_12_SP_01_ADD DM_07_DM_10_I9_03_MUL DM_01_DM_05_I7_02_MUL  

71 RF_10_SP_00_I9_05_ADD RF_07_RF_07_I8_02_ADD DM_02_DM_06_I6_02_MUL DM_03_DM_07_I7_03_MUL  

72  RF_08_RF_08_SP_02_ADD DM_04_DM_08_I6_03_MUL DM_05_DM_09_I7_04_MUL  

73 RF_01_RF_00_I9_08_ADD RF_09_RF_09_I8_03_ADD DM_06_DM_10_I6_04_MUL DM_01_DM_06_I7_05_MUL  

74 RF_00_RF_01_DM_13_ADD RF_10_RF_10_I8_05_ADD DM_02_DM_07_I6_05_MUL DM_03_DM_08_I7_06_MUL  

75 RF_07_RF_04_I8_07_ADD RF_00_RF_00_I9_04_ADD DM_04_DM_09_I6_06_MUL DM_05_DM_10_I8_06_MUL  

76 RF_02_SP_01_I9_06_ADD RF_01_RF_01_I8_09_ADD DM_01_DM_07_I7_07_MUL DM_02_DM_08_I6_07_MUL  

77 SP_02_RF_02_I9_09_ADD  DM_03_DM_09_I7_08_MUL DM_04_DM_10_I6_08_MUL  

78  RF_02_RF_02_I8_00_ADD DM_01_DM_08_I7_09_MUL DM_02_DM_09_I6_09_MUL  

79 RF_03_RF_05_I8_01_ADD RF_03_RF_03_I9_01_ADD DM_03_DM_10_I6_11_MUL DM_01_DM_09_I7_10_MUL  

80 RF_05_RF_07_DM_14_ADD RF_04_RF_04_I8_04_ADD DM_02_DM_10_I6_10_MUL DM_01_DM_10_DM_20_MUL  

81 RF_08_RF_08_I8_10_ADD RF_05_RF_05_SP_00_ADD DM_07_DM_09_I7_30_MUL DM_08_DM_10_I6_30_MUL  

82 RF_04_RF_09_I9_02_ADD RF_06_RF_06_I8_02_ADD    

83 RF_09_RF_03_SP_63_ADD RF_07_RF_07_I9_07_ADD    

84 RF_01_RF_00_I9_03_ADD RF_08_RF_08_I8_05_ADD    

85  RF_09_RF_09_I7_00_ADD    

86 RF_06_RF_10_DM_15_ADD     

87 SP_00_RF_06_I9_00_ADD     

88  RF_10_RF_10_DM_01_ADD    

89 RF_03_RF_04_DM_18_ADD RF_30_RF_30_I8_31_ADD    

90 RF_07_RF_05_DM_20_ADD RF_00_RF_11_DM_00_ADD    

91 RF_02_RF_01_DM_17_ADD     

92 RF_00_RF_02_DM_19_ADD     

93      

94 SP_63_RF_31_DM_16_ADD     
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A.2 Access method for Memory Testing  
 
Parameter  

all_one = 32'hFFFFFFFF  // 11111111 
all_zero = 32'h00000000  // 00000000 
one_zero = 32'hAAAAAAAA  // 10101010 
zero_one = 32'h55555555  // 01010101 

 
Because only odd bank of memory could be directly access, we separate memory 

testing between odd and even bank. As shown in table A.5, In1 and In2 are input data. 
According to the testing flow in chapter 3, In1 and In2 are both equal to all_one, 
parameter listed above, in first stage. The In1 and In2 change to all_zero, one_zero, 
and zero_one in the following three stages. In the fifth stage, In1 is one_zero and In2 
is zero_one to get mixing input. Then the data is read out the same as table A.5. 

 
Table A.5: Access Table for Odd Bank Memory 

     Bank 
Address 

D9 D7 D5 D3 D1 

0 In1 In1 In1 In1 In1 
1 In2 In2 In2 In2 In2 
2 In1 In1 In1 In1 In1 
3 In2 In2 In2 In2 In2 
4 In1 In1 In1 In1 In1 
5 In2 In2 In2 In2 In2 
6 In1 In1 In1 In1 In1 
7 In2 In2 In2 In2 In2 
8 In1 In1 In1 In1 In1 
9 In2 In2 In2 In2 In2 
10 In1 In1 In1 In1 In1 
11 In2 In2 In2 In2 In2 
12 In1 In1 In1 In1 In1 
13 In2 In2 In2 In2 In2 
14 In1 In1 In1 In1 In1 
15 In2 In2 In2 In2 In2 
16 In1 In1 In1 In1 In1 
17 In2 In2 In2 In2 In2 
18 In1 In1 In1 In1 In1 
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19 In2 In2 In2 In2 In2 
20 In1 In1 In1 In1 In1 
21 In2 In2 In2 In2 In2 
22 In1 In1 In1 In1 In1 
23 In2 In2 In2 In2 In2 
24 In1 In1 In1 In1 In1 
25 In2 In2 In2 In2 In2 
26 In1 In1 In1 In1 In1 
27 In2 In2 In2 In2 In2 
28 In1 In1 In1 In1 In1 
29 In2 In2 In2 In2 In2 
30 In1 In1 In1 In1 In1 
31 In2 In2 In2 In2 In2 

 
The even bank memory could only be access by writing. They can’t be read out 

directly and must be read with indirect method. Thus the table A.6 only represents the 
writing data to these even bank memory. The input data is the same as the odd bank 
memory testing with five stages flow. After the data is written into all even bank 
memory, the D8 and D6 are access by ALU to perform operation of adding by zero 
and write its result to D9 and D7. The data of D4 and D2 are in the similar way to be 
access by MUL to execute operation of multiply by one and write back to D5 and D3. 
Finally, the D0 is performed by divider and responses to D1. Therefore, the results are 
able to be access the same as table A.5. 

 
Table A.6: Access Table for Even Bank Memory 

     Bank 
Address 

D8 D6 D4 D2 D0 

0 In1 In1 In1 In1 In1 
1 In2 In2 In2 In2 In2 
2 In1 In1 In1 In1 In1 
3 In2 In2 In2 In2 In2 
4 In1 In1 In1 In1 In1 
5 In2 In2 In2 In2 In2 
6 In1 In1 In1 In1 In1 
7 In2 In2 In2 In2 In2 
8 In1 In1 In1 In1 In1 
9 In2 In2 In2 In2 In2 
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10 In1 In1 In1 In1 In1 
11 In2 In2 In2 In2 In2 
12 In1 In1 In1 In1 In1 
13 In2 In2 In2 In2 In2 
14 In1 In1 In1 In1 In1 
15 In2 In2 In2 In2 In2 
16 In1 In1 In1 In1 In1 
17 In2 In2 In2 In2 In2 
18 In1 In1 In1 In1 In1 
19 In2 In2 In2 In2 In2 
20 In1 In1 In1 In1 In1 
21 In2 In2 In2 In2 In2 
22 In1 In1 In1 In1 In1 
23 In2 In2 In2 In2 In2 
24 In1 In1 In1 In1 In1 
25 In2 In2 In2 In2 In2 
26 In1 In1 In1 In1 In1 
27 In2 In2 In2 In2 In2 
28 In1 In1 In1 In1 In1 
29 In2 In2 In2 In2 In2 
30 In1 In1 In1 In1 In1 
31 In2 In2 In2 In2 In2 
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APPENDIX B 

Memory Map  
 
 HADDR[13:0] is used to access data and instruction memory. The bank selection 
of these two memory is shown in table B.1. They are selected by HADDR[12:9]. 
Form 4’b0000 to 4’b1110, it could select fifteen banks of data and instruction memory. 
The last blank of 4’b1111 will be used to store the end value of pc_counter. The other 
7 bits, HADDR[8:2] is used as address bits. There is one thing needed to be reminded. 
The depth of data memory is thirty-two and the depth of instruction is one hundred 
and twenty-eight. Thus, it takes five bits for data memory and seven bits for 
instruction memory. 
 

Table B.1: Destination bank of memory,  
D for data memory and I for instruction memory 

Destination Memory HADDR [12:9] 
D9 (left bank of ALU_0) 0000 b

 D8 (right bank of ALU_0) 0001 b

D7 (left bank of ALU_1) 0010 b

 D6 (right bank of ALU_1) 0011 b

D5 (left bank of MUL_0) 0100 b

 D4 (right bank of MUL_0) 0101 b

D3 (left bank of MUL_1) 0110 b

 D2 (right bank of MUL_1) 0111 b

D1 (left bank of DIV_0) 1000 b

D0 (right bank of DIV_0) 1001 b

I5 1010 b

I4 1011 b

I3 1100 b

I2 1101 b

 I1 1110 b

End of Pc _counter 1111 b

 
 HADDR[1:0] is used for byte and half word access. HADDR[13] is connected to 
original port that is mem_d__ctrl in older ALU cluster. 
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