Self-Configurable’Congestion Control

SRR

TES S F 1ol

PEREA -

3 2 BRI

Self-configurable Congestion Control

oy 20tk Student: Yu Hsiang Lin
1 Hayr o AR £ 4 Advisor: Dr. Wei-Kuo Liao

Eﬂ hal = [) L
TREIRE FALTT
AL

A Thesis Submitted to
the Department of Communication Engineering
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master of Science
In
Communication Engineering
Jan 2007
Hsinchu, Taiwan, Republic of China

PEARL L E o

HERAER £ 7 20

G A S g AR

LIRS

FERPH TR BV BREAIRE M B A F AR AR
F.RED 21993 # 43 0, & 5 34 div LN B R i FI0 5. SR A T AR A R eE
F P TWARTTEE T, TR Y h A Glic R £ F I e R e R kK T

3
Y
o
P
5

FIBFL A F R B A ARG A, S PO R I G ip
FAEH 2 AP TEGRLE B2 Tt Pl ok F S RIS
Flenicdp e RN % %, § RED il g R BBB DT b a jil 7 o
PR BE, NP e s A R A ODUSHE R R S, 2 Ap g Menif e

7 ARR.

Self-Configurable Congestion Control

Student: Yu Hsiang Lin Advisor: Dr. Wei-Kuo Liao

Department of Communication Engineering

National Chiao Tung University

Abstract

Edge routers can deploy congestion control.mechanism to reduce packet loss
probability while improving thetutilization of link bandwidth. RED, the most famous
congestion control algorithm, has been proposed in 1993. It has been rarely used due
to the difficulty of setting its five parameters: The /current researches show that these
parameters have to be carefully configured according to the status of flows passing
through the router, otherwise the performance of RED can be degenerated
significantly. In this thesis, we proposed a new congestion control mechanism with the
ability to configure its own parameter by itself. By using Markov decision process, we
provide the self-configuring ability to our congestion control mechanism. We use
average queue size and average packet arrival rate of the router as the performance
indices of congestion control mechanism. As shown in our simulation, while RED’s
performance degrades dramatically as the status of flows changes, our proposed

mechanism keeps the bandwidth utilization nearly 95% and low buffer occupancy.

B AR A A E R R AR o A LTS E
PEPREA ST S S RAE PR A FEDE R FRE P S
;*f%%é/ﬁ—’f%%ﬁ'i\&fiiﬁﬁf‘ F’*ﬁ‘;z"aﬁg@éﬂﬂ”\%% » 4%

FEFOERE BZ O BAFREL LS o RBREFRIADLA
IR A b e L gE S A G SRR > (kA] F oo
AP BEITTI o F A AT El%:‘lro
Ve s BREHTH T § o G iR ek
A S LAY AR D rﬂf"‘ B AEARAR A ol T
ﬁ’ﬁ?‘%} @ 4 I“P\Tﬂ%‘fﬁ fgmé‘?%iﬁk %ﬁi\&-x{‘uiﬁ
SO RAE D R BApIE 0 A A T R R
SGEnE . P A FHRET AR EE) EAE T F AT
r‘fﬂi/“g‘fi‘"f‘éo
s BB RN B R E Ezéijrﬁ{i >
EER - SR - A L'mg,k*uzagj;@w;, IR BT
Ad 59— BLERATTER o BESIT el ah L FF LR o

E ‘“\\. -

\‘Vﬁ@m«’

N
]
~
-

v
a -

\
Mo

\jx

g

~
G
S

_E‘ N
£

N

N\
PR

- N
\m:
=
>gk
F_&
Ny

4
N

N
_‘.X

\

Contents

Chinese ADSEIaCT. i 2
ENglish ADSTIaCt. 3

oM NS, . 5

LISt Of TabIeS. ... 5
LISt Of FIQUEES. ..o e 6

Chapter 1: INtrodUCTiON.ouin e 7

Chapter 2: Background and Motivation...................cocoiiiiiii i 10

2.1 Markov Decision Process with rewardccooiiiiiiiiiiiiiininiin, 10

2.1.1 Policy-Iteration method. ... 10

2.1.1.a The value determination operation...............cc.evveereenenneennnnn. 10

2.1.1.b Policy-improvement TOUtINE.eeuuirtiniaieeieeenieiieaneanans 13

2.2 Transmission Control Protocol(TCP)c.ooiiiiiiiiiiiiiiiiie, 13

2.3 Explicit Congestion Notification (ECN)...........c.oooiiiiiiiiiiiiiiiiii. 20
2.3 1 ECN-TCP header......c.vinuiiiitiie e e 21

2.3 2 ECN-TCP GateWaYS. .. ettt eeeas 22

233 ECN-TCP Sender........uiiiiiiiiiiie e e e 22

2.3 4 ECN-TCP RECEIVET. . .uutiitiiie et e e eaes e 22

2.4 Random Early Detection (RED)...........ccooiiiiiiiiiiiiiiiiiin e 23

2.5 MOtIVALION. ..ttt e 26

Chapter 3: Self-Configurable Congestion.Control.........................coiinn 30

3.0 Model for MDP... ... e e 31

3.2 Self-configuring mechanmism. . ../t . ita oo, 34

3.3 Calculate drop probability.... ..ol b 35

3.4 More above Markov Model........c0i e, 39

Chapter 4: SImulation ... e 41

4.1 UML Simulator Design <. . b s e 41

4.2 Network Topologyofitin e et 43

4.3 Simulation results.................. 44

4.3.1 Identical Delay...........oooiiiiiiiiiiiiiii e 45

4.3.2 Different amount of TCP SE€SSIONS..............cocoooiiiiiiiiiiiei e 48

4.3.3 Heterogeneous delays.............oooooiiiiiiiiiiiiiiii e 52

4.3.4 With and without update mechanism....... ... 55

Chapter 5: ConClUSION. ... e 56
RETEIEINCE. ... 57

List of Tables

Number Page

3.1 policy obtained by iteration method for & =0.9, error=40..................... 33

3.2 policy for different a , error=40......cooiiriiriiiii e, 34

3.3 “lost” value of different @ ... 34

3.4 drop probability for different @, error=40........ccevvriiiiiiiiiiiiiiinn.n. 37

3.5 Range of ‘lost’ of different &cooooiiiiiii 39

3.6 policy for different @ ,error=80.....ovvieriii i 40

4.1 performance of our mechanism with and without update mechanism........ 56

List of Figures

Number

Page

2.1 Tteration CycCle.o.oeii 15
2.2 Packets in transit during additive increase, with one packet being added

CaCh RT T ... e, 18
2.3 TCP window evolution under periodic loss. Each cycle delivers

(%)2 + %(%)2 - %) packets and takes % round trip times 19
24 RED algorithm...... ..ot e 24
3.1 proposed congestion control mechanism..........cc...coevvviiiiniinnn.nn.. 38
4.1 Object model diagram of our simulator.................c.ooooviiiinin... 41
4.2 Network Model.........ooii 43
4.3 value of a of 200 TCP sessions with 40msec round trip time(Proposed

MECHANISII) -+ ettt ettt et et et ettt e et e e 45
4.4 queue status of 200 TCP sessions with 40ms round trip time (Proposed

INECHAIISITL) - + et ettt et et e et et e et et e e et et e e et et e e e ee e e e aneeaans 46

4.5 queue status of 200 TCP sessions with 40ms round trip time(RED) 46
4.6 value of a of 200 TCP sessions with 140msec round trip time(Proposed

OIS AL 101 300} P 46
4.7 queue status of 200 TCP-sessions with 140msec(Proposed mechanism)...47
4.8 queue status of 200.TCP sessions Wwith 140ms round trip time(RED)....... 47
4.9 value of a of 1000 “TCP'sessions with RTT=140ms(Proposed

mechanism..... ol . R B i, 48
4.10queue status of 1000°-TCP—sesstons with RTT=140ms(Proposed
0TS0 s 101 00) PO PSP 49
4.11 queue status of 1000 TCPisessions with RTT=140ms(RED)... 49
4.12 value of «a of 500 TCP sessions with RTT=140ms....................... 50
4.13 queue status of 500 TCP sessions with RTT=140ms(Proposed method)..50
4.14 queue status of 500 TCP sessions with RTT=140ms(RED)................ 51
4.15 value of a queue status of 100 TCP sessions with round trip
AElay=30~ 140 MSEC. vttt ettt e 52
4.16queue status of 100 TCP sessions with round trip delay=30~140 msec
(Proposed MEthOd) . . nvneeeeeet e e 52

4.17 queue status of 100 TCP sessions with round trip delay=30~140 msec.
... 53

4.18 value of a of 500 TCP sessions with round trip delay=30~140 msec

... 53
4.19queue status of 500 TCP sessions with round trip delay=30~140
msec(Proposed Method) «.vvveineiiei i 54
4.20queue status of 500 TCP sessions with round trip delay=30~140
MSECRED) v 54

Chapter 1

Introduction

In the current Internet, the TCP transport protocol detects congestion and decreases
its sending rate after a packet has been dropped (or marked) at the gateway. Therefore,
without appropriate congestion control on links, the load may exceed the link capacity
and resulting in buffer overflow. As such, TCP will be in the slow start phase to
respond the bursty packets dropping and thus leads to the ineffective utilization of link

capacity.

When the route is fixed, it is expected that the congestion control for a link can be
done by the router itself. If doing so effectively, the end protocol would not need to
change. Therefore, despite the argument that the router may not achieve such without
changing the end protocol [6], many researches still endeavor in designing effective
congestion control methods which is ‘solely implemented at the router. In this thesis,
we follow this line of effort and elaborate on proposing a new congestion control

method in router.

Router simply with traditional drop tail cannot control the load on a link properly.
Drop tail sets a maximum length for each queue at the router and accepts packets until
the maximum queue length is reached. Once the maximum queue length is achieved,
it drops packets until the queue length is again below the maximum set value. This
method has been used for several years on the Internet, but it is not suited to TCP
sessions, because the drop-tail queues are always full or close to full for long periods

of time and packets are continuously dropped when the queue reaches its maximum

length. Another disadvantage of drop tail is the global synchronization problem,
which arises because the full queue length is unable to absorb bursty packet arrivals
and thus many of them are dropped, resulting in global synchronization. This global
synchronization can reduce all TCP sessions’ throughput at the same time, and it
happens from time to time. As a result, Tail drop mechanism keeps high buffer

occupation but low bandwidth utility.

Random early detection, also called RED [2], is a well-known mechanism. It is
designed for a network where a single marked or dropped packet is sufficient to signal
the presence of congestion to the transport-layer protocol. RED tries to maintain the
average queue length at a proper level to maintain high bandwidth utility. It has been
shown in [2], with proper setting,"RED can achieve the same bandwidth utility by
maintaining a smaller queue size than Tail Drop. However, even though RED is easy
to implement but it is vary hard to configurerits parameters due to the wide range of
round trip times associated with the ‘active.connections. Actually, these parameters can
only be set according to experience. An alternative way is to let RED tune its own
parameters, like [11] and [12]. These algorithms reveal an important idea that the
mechanism we use for load control should have ability to configure itself according to
the environment. But none of these algorithms has been studied extensively and

implemented on any network devices for now.

In this thesis we develop a congestion control mechanism that can keep as small
average queue length as needed to maintain high bandwidth utility. And our
congestion control mechanism also has ability to adjust its own parameters according

to different network environment. We use Markov decision process to develop our

mechanism and provide self-configuring ability by using the property of stochastic
minimax control. At the end, we use several different network environments to test

our mechanism, and the result shows that our mechanism works well for all of them.

The remaining thesis is organized as follows: In chapter 2, we introduce several
techniques and knowledge that will be needed to develop our congestion control
mechanism. In chapter 3 we build up our congestion control mechanism based on
Markov decision process. In chapter 4 the environment that we used to do our
experiment has been described. In chapter 5, we test our congestion control

mechanism under different settings.

Chapter 2

Background knowledge and Motivation

In this chapter we will introduce some properties of TCP traffic and RED. We also
describe the behavior of router and TCP connection with ECN being implemented.
ECN is an important mechanism to our congestion because it can significantly reduce
the amount of packets drop events, so we can do congestion control without alloying
end users’ throughput too much. Also we introduce Markov Decision Process (MDP)

that will be used to build our congestion control mechanism in next chapter.

2.1 Markov Decision Process with reward

Suppose in an N-state discrete:Markov. process, @ transition from state i to state j
costs tjj dollars. And at each state, there are k'alternatives to choose, which will cause
different transition probabilities. Then m thisisection, we will briefly explain a method
to find the optimal decision at each state, which will minimize the total cost after n

stages.

We define vi(n) as the expected total earnings in the next n transitions, and Pj; as
the transition probability from state i to state j, if the system is now in state I.
According to [1], if the system makes a transitions from i to j , it will cost the
amount rjj , and rjj plus the amount it expects to earn if it starts in state j with one

move fewer remaining . Further, if we define a quantity ¢ as

g =>Pr i=1,2,..N 2.1)

10

then the expected total cost can be expressed as

vV, = Z Pi[ry + Vv,;(n —1)]
S (2.2)
= Qi"'z Pijvj(n_l)

i-1

The quantity ¢; may be interpreted as the cost to be expected in the next transition out
of state i ;it will be called the expected immediate cost for state i . If we define v(n) as
a column vector with N components vj(n), and q column vector with N comp-

onents (i, thus, Eq(2.2) can be rewritten in vector form as
v(n)=q+Pv(n-1) (2.3)

Moreover, for the completely ergodic Markov process, we define a quantity 77 ; as the

probability that the system occupies“the ith state after a large number of transitions.

And the row vector 7 with components "77; is called the vector of limiting state

probability.

Consider a completely ergodic N-state Markov process described by a
transition-probability matrix P and a cost matrix R. Suppose that the process is
allowed to make transitions for a very long time and that we are interested in the
earnings of the process. The total expected costs depend upon the total number of
transitions that the system undergoes, so that this quantity grows without limit as the
number of transitions increases. A more useful quantity is the average costs of the
process per unit time. This quantity is meaningful if the process is allowed to make

many transitions; it was called the ‘lost’ of the process, g

11

g :Z”iQi (2.4)

Above discussion shows some basic properties and definitions about Markov decision
process with costs. But, in Markov decision process, there are more than one options
(or actions) can be taken in each state. We define policy as the rule of how to choose
action at each state. Thus, different policies will form different transition probabilities,
which will cause different Markov processes and different gains. Generally, the
policies that can minimize the total costs over a long period of time is considered as
the optimal policy. But it is quite complex to compute the expected costs of all
possible policies, especially when thete are many options to choose in each state. So,
in the next section, we will introduce a-method to. make an optimal policy according to

the gain instead of the total expected cost.

2.1.1 Policy-Iteration method

In this section, we will explain an method to find an optimal policy of the
Markov decision process with cost, which is introduced and proved in [1]. Here, we
define the optimal policy as the policy that achieves the minimum gain. This method
is composed of two parts: the value determination operation and the policy

-improvement routine.

2.1.1.a The value determination operation

Here, we assume that if the system is in state i at the beginning, then it has an

12

initial cost v; Thus, under some initial policy, we can write the following equations

according to () and the definition of the gain ,g

v,(N)=ng +V, =Q; +i p;[(n—=1))g +v,] i=12,.,N (2.5)

N
g+v, =0+ PV, i=12,.,N (2.6)
j=1

Because we assume the initial policy is known, that means the value of the transition
policy pjj is known, so what we have to do now is to solve the N+1 unknown variables
from Eq (2.6). These variables are vi,vy,...... ,Un and g. In [1], it says that we can just
let the v,=0 for all the time ,and solve the rest unknowns. In such case, the solution of
Vi,...Vn-1 and g are slightly differ from the correct ones., but they are sufficient enough

to be used to find the better policy in the next Section.

2.1.1.b Policy-improvement routine

Consider that if we have an optimal policy up to stage n, we could find the best

alternative in the ith state at stage n+1 by maximizing
K Nk
Qi +Z p; v;(n) (2.7)
j=1
over all alternatives. For large n, we could substitute Eq. (2.7) to obtain
k - k
o +Zpij(ng+vj) (2.8)
j=1

as the test quantity to be maximized in each state. Since

2. =1 (2.9)

j=1

13

the contribution of ng and any additive constant in the v; becomes a test-quantity

component that is independent of k. Thus, when we are making our decision in state i,

we can maximize
k L k
G +leijvj (2.10)
J:

with respect to the alternatives in the i" state. Furthermore, we can use the relative
values (as given by Eq. (2.6)) for the policy that was used up to stage n. The
policy-improvement routine may be summarized as follows: For each state i, find the

alternatives K that maximizes the test quantity

N
g + Z pi?v j
jel
using the relative values determined umder the. old policy. The alternative k now

becomes d, the decision in the' i", state. A new policy has been determined when

this procedure has been performed forievery: state:

We have now, by somewhat heuristic means, described a method for finding a
policy that is an improvement over our original policy. In [1] it proves that the new
policy will have a higher gain that the old policy. First, however, we shall show how
the value-determination operation and the policy-improvement routine are combined
in an iteration cycle whose objective is to find a policy that has highest gain among all

possible policies. The basic iteration cycle may be diagrammed as shown in Fig. 2.1

14

Value-Determination Operation

Use pjj and ¢ for a given policy to solve

N
g+v, =q, +Z Py, 1=12,...,N
j=1

for all relative values vj and g by setting vy to zero.

Policy-Improvement Routine

For each state I, find the alternative k' that maximizes
k N k
'+ Py Y
j=1

using the relative values V; of the previous policy. Then k* becomes the n

new decision in the ith state, qik‘ becomes @; and pijk‘ becomes pij. <

Fig 2.1 Iteration cycle

The upper box, the value-determination operation, yields the g and v,
corresponding to a given choice of p; andq;. The lower box yields the p; and g

that increase the gain for a given set of Vv,. In other words, the value-determination

operation yields values as a function of policy, whereas the policy-improvement

routine yields the policy as a function of the values.

We may enter the iteration cycle in either box. If the value-determination

operation is chosen as the entrance point, an initial policy must be selected. If the

15

cycle is to start in the policy-improvement routine, then a starting set of values is
necessary. The selection of an initial policy that maximizes expected immediate

reward is quite satisfactory in the majority of cases.

At this point it would be wise to say a few words about how to stop the iteration
cycle once it has done its job. The rule is quite simple: The final robust policy has
been reached (g is maximized) when the policies on two successive iterations are
identical. In order to prevent the policy-improvement routine from quibbling over
equally good alternatives in a particular state, it is only necessary to require that the

old d, be left unchanged if the test quantity for that d. is as large as that of any

other alternative in the new policy determination.

In summary, the policy-iteration method just described has the following three
properties:

1. The solution of the sequential’ decision process is reduced to solving sets of
linear simultaneous equations and subsequent comparisons.

2. Each succeeding policy found in the iteration cycle has a higher gain than the
previous one.

3. The iteration cycle will terminate on the policy that has largest gain attainable
within the realm of the problem; it will usually find this policy in a small
number of iterations.

These three properties are proved in [1].

2.2 Transmission Control Protocol (TCP)

16

In contrast to a simple demultiplexing protocol like UDP, TCP is a more
sophisticated transport protocol that can provide a reliable, connection-oriented,
byte-stream service, and is widely used to reliably transfer data in computer network.
It has a window based congestion-control mechanism to keep the sender from
overloading the network. TCP never sends more than one window size of packets into
the network. This window size is controlled by a mechanism, which is commonly
called AIMD (additive increase/ multiplicative decrease). The basic idea of the AIMD
mechanism is that TCP keeps increasing the size of congestion window, which limits
how many packets can be transmitted per round trip time (RTT), until it detects that a

packet has been dropped.

There are several different implementations of . TCP, like RENO, TAHOE or new
RENO. In our simulation, all -of our traffic/sources use RENO TCP to send data
packets. RENO TCP includes four mechanisms: slow start, congestion control, fast
retransmit and fast recovery. Its congestion-window is controlled by slow start and
congestion control. At the beginning, RENO TCP transmits packet with slow start
mechanism, and each ACK from destination increases congestion window by one.
Until a packet has been dropped in the network, so the destination receives an out of
order packet and it sends an ACK packet with the last in order packet’s sequence
number to the source. Then the fast retransmit mechanism will retransmit the missing

packet and TCP now uses the congestion control mechanism to transmit packet.

17

RTT —

Fig 2.2 Packets in transit during additive increase, with one packet being added

each RTT

The Fig 2.2 shows the behavior of the TCP while it still uses slow start to transmit
packet, that means each ACK from destination triggers the source to send two more
packets. According to Fig 2.3, thé traffic rate generated by the “Source” might be
considered as the product of the-congestion window size and packet size divide by the
value of round trip time. But in general-the-round trip time is much larger than the
transmission time, that means the TCP sender generates a short period of burst traffic

per round trip time.

18

Congestion window (packets)
b

W

W2

-

. Time
Al N W2 r
0 Wi2 W w2 W (RTT)

Fig 2.3 TCP window evolution under periodic loss. Each cycle delivers
Wy, LWy 1/ packets and takes W/ round trip times
P+, =)y P Y P

TCP sender’s throughput is actually depending on the packet drop probability of the
network. In [4], a simplified model of thethroughput of a single TCP connection has

been established. The author makes the following assumptions,

1.TCP connection has infinite data to send.

2.A TCP source is running over a lossy path which has a constant round trip time
(RTT), because it has sufficient bandwidth and low enough total load that it never
sustains any queues

3. Approximating random packet loss at constant probability p by assuming that the
link delivers approximately 1/p consecutive packets, followed by one drop

4.The maximum value of the window is W.

After a sufficient long time, the throughput of the TCP connection will become stable

19

as fig (2.3) and the relation between the throughput of the source and the drop

probability p can be described as

W Mss C

“RIT p

(2.12)

The constant of proportionality (C) lumps together several terms that are typically
constant for a given combination of TCP implementation, ACK strategy (delayed v.s.
non-delayed), and loss mechanism. In Eq (2.12), MSS denotes maximum segment size.
But in practice, there are much more than one TCP connections passing through a
single router or a gateway. Even we know the number of the TCP connections which
are passing through the router or a gateway, the relation between the total throughput
and the drop probability will not:be the multiplication of the Eq (2.12) and the number
of TCP connections. But it 18 believed that the total throughput of the TCP
connections is direct proportion to the square reot'of the drop probability deployed by

the router.

2.3 Explicit Congestion Notification (ECN)

TCP infers that the network is congested from a packet drop, which is indicated by
retransmit timer timeouts or duplicate acknowledgements. This mechanism can be an
expensive way to detect network congestion. An alternative way for routers or other
network devices to inform TCP senders that network is congested is using ECN
(explicit congestion notification). ECN enhances active queue management, like RED,

that drop packet probabilistically based on the queue state. When ECN is implemented,

20

packets are marked rather than dropped. As such, congestion information can be
quickly transferred to the source host where the transfer rate can be immediately
adjusted without additional delay in waiting for a duplicated ACK or timeout. As a

result, unnecessary packet drops can be avoided.

In general, TCP should respond to a single marked packet as it would to a lost
packet. That means TCP cuts down the congestion window by halve and reduces the
slow start threshold. The next four sections summarize the modifications TCP need to

implement ECN.

2.3.1 ECN-TCP header

To cooperate with ECN, TCP needs two additional bits in the header: one to indicate
that the connection is ECN capable: (E€T=bit) and another to indicate network
congestion (CE-bit). If a connection uses ECN for congestion control then the ECT-bit
is set to 1 for all packets, otherwise it is set to 0. How a gateway decides which packet

to mark is according to what kind of active queue management mechanism it uses.

Furthermore, ECN introduces two new flags in the reserved field of the TCP header.
One of them is the ECN echo flag, which is set in an ACK packets by the receiver if
an data packet’s CE-bit has been set. The other flag is the congestion window reduced
(CWR) flag. This flag is set by the sender after it has reduced its congestion window

for receiving congestion notification.

2.3.2 ECN-TCP Gateways

21

Gateways may use various kinds of active queue management mechanism, like
RED or BLUE [8]. Gateways supporting ECN can choose to mark arriving packets

instead dropping them.

2.3.3 ECN-TCP Sender

The sender treats an ECN echo ACK as a lost packet, but without the need to
retransmit the marked packet. Although this ACK acknowledges a data packet, it does
not increase the congestion window. If the sender receives multiple congestion
indications, including timeouts, duplicate ACKs and ECN echo ACK, it should react
just one per RTT to the congestiofn indication.In thé.case that a retransmitted packet is
marked or dropped, the sender teacts to congestion indication again. After the sender
responds to a congestion indication, 1t sets-the-=CWR flag in the next data packet sent

after the reduction of the window.

2.3.4 ECN-TCP Receiver

The receiver echoes the congestion notification of a CE packet back to the sender.
The receiver will keep setting every ACK packet’s CE bit to 1 until it receives a data
packet with the CWR flag has been set to 1 from sender. This provides robustness in

case an ACK packet with the echo flag set gets lost.

2.4 Random Early Detection (RED)

22

RED is an active queue management mechanism that is intended to address some of
the shortcomings of standard tail-drop FIFO queue management [3]. In a FIFO queue
it is possible for “lock-out” to occur, a condition in which a small subset of the flows
sharing the link can monopolize the queue during periods of congestion. Flows
generating packets at a high rate can fill up the queue such that packets from flows
generating packets at substantially lower rates have a higher probability of arriving at
the queue when it is full and being discarded. A second problem with a FIFO queue is
that latency is increased for all flows when the queue is constantly full. Simply
making the queue shorter will decrease the latency but negates the possibility of
accommodating brief bursts of traffic without dropping packets unnecessarily. RED
addresses both the lock-out problem by using a.random factor in selecting which
packets to drop and the “full queue” problem by. dropping packets early, before the

queue fills.

RED monitors router’s queue length and when it detects that congestion is
imminent, it notifies the source to adjust its congestion window by dropping packets.
RED is invented by Sally Floyed and Van Jacobson in [2]. It has been designed to be
used in conjunction with TCP. The authors say that their goal is to avoid a bias against
bursty traffic. Networks contain connections with a range of burstiness, and gateways
such as Drop Tail and Random Drop gateways have a bias against bursty traffic. With
Drop Tail gateways, the more bursty the traffic from a particular connection, the more
likely it is that the gateway queue will overflow when packets from that connection

arrive at the gateway.(2)

23

The basic idea of RED is shown in Fig (2.4)

for each packet arrival
calculate the average queue size avg
if min, <avg <max,
calculate probability p,
with probability p, :
mark the arriving packet
elseif max, <avg

mark the arriving packet

Fig 2.4 RED algorithm

In addition to Fig (2.4), RED needs two more algorithms : one for calculating the
average queue length, one for calculating drop probability. RED uses the following

equation to calculates the drop probability :

(avg=ming,) -
(max,, — ming,)

drop probability p= (2.13)

p

and max, denotes the maximum probability which is used by RED to drop (or mark)

the packet. Eq (2.14) is used to calculate the average queue length

avg =w,-avg +(1-w,)-q (2.14)

We now summarize RED’s behavior as follows : when a packet arrives to the router,
RED calculates the value of the average queue size (avg) according to the current
queue size (() by using Eq(2.14), then uses it to find the drop (or mark) probability

with Eq(2.13).

24

The authors of [2] classify the network congestion in to two kinds: longer-lived
congestion and transient congestion. The transient congestion increases the size of the
queue temporarily while the longer-lived congestion increases the average queue
length. Among all connections passing through the router, some connections may
generate more bursty traffic than others, so these connections are more likely to cause
transient congestion to happen. Some other congestion control methods, like Random
Drop or Drop-Tail mechanisms, have bias against to burst traffic. By adjusting
probability according to the average queue length, Sally and Van believe that RED is

able to avoid the bias against bursty traffic.

Finally, RED is claimed to provide several benefits, in particular 1) decrease the
end-to-end delay for both responsive (TCP) and nom necessarily responsive real-time
traffic (UDP), 2) prevent large number-of-eonsecutive packet losses by ensuring
available buffer space even with bursty. traffic, and 3) remove the higher loss bias

against bursty traffic observed with Tail Drop.

It has been believed that the performance of RED is highly depending on the value
of the parameters: maxq , ming , max, and wg. But it is vary difficult to configure
these parameters. In [10], several different experiments have been done to examine
RED’s performance with different parameter settings. It concludes that RED
parameters have a minor impact on the performance with small buffer and using RED

with large buffer indeed can improve the system’s performance.

But in [5], it concludes that RED avoids the bias against bursty traffic, and that this

25

results in a significant decrease of the drop rate suffered by bursty traffic only when
the fraction of bursty traffic is small. Otherwise, the main effect of RED is to increase
the drop probability of smooth traffic without improving the drop probability of the
bursty traffic, comparing to Tail drop mechanism. In practice, if we replace "bursty"
with "TCP" and "smooth" with "interactive UDP audio" for example, and if we note
that TCP makes up the vast majority of Internet traffic, the result above means that the
overall loss rate suffered by TCP connections when going from Tail Drop to RED will
not change much, but that the loss rate suffered by UDPLIP telephony applications

(whether they are rate adaptive or not) will increase significantly.

2.5 Motivation

In this section, we first discuss the difficulty of implementing RED. We now know
that RED is controlled by five parameters: maxy, , ming, , max,, wqand buffer size But
we didn’t show how to set these parameters! We now discuss it in two different criteria.
In [6], they discuss the stability of throughput of TCP connections while the
bottleneck link is using RED. They use the average size of all TCP connections’
congestion windows as an indicator of stability. It shows that even all TCP
connections have the identical round trip time, the average size of the congestion
windows still can oscillate heavily, which means the systems is unstable, if the round
trip time is large. It is because that the traffic from TCP connections only appears a
short period of time per RTT, which means that there is only transient congestion but
no longer-lived congestion and RED tries not to respond to such kind of congestion.
In RED, the parameter wy is used to control the sensitivity to the duration of periods of

congestion and is suggested to be 0.002 [2]. For such small value, while round trip

26

delay is larger than 140ms, the size of the average window oscillates heavily. In [6],
they conclude that it is the protocol stability more than other factor that determines the
dynamic of TCP/RED. But it is very difficult to develop a new protocol and ask every
one to use it. So, instead of modifying TCP, finding a way to improve RED’s stability

seems to be more practical.

Another way to discuss the stability of TCP/RED is to examine the stability of the
router’s queue length. While system is stable, the instantaneous queue length
oscillates between minth and maxth. In [7], the stability of the queue length has been
analysed and a necessary condition has been proposed as follows. Let C denotes the
link capacity (packets/sec), N denotes the number of TCP sessions , R denotes round

trip time and

= K:loge(l—wq)

L — max

max,, — min,, o) :
where ¢ is the sampling time, see-[9]

Then, for K and L satisfy the following condition, the queue length will be stable.
3 w 2
LROY [,
(2N) K

where w; =0.1min{

2N l}
R2C’R

In general, different TCP session will have different round rip time. So in [7], it
mentions that we can use an equivalent round trip time to see if the condition could be
satisfied. In fact, in the presence of heterogenous round trip times for the flows, this
bound should be interpreted for what we call the equivalent round trip time of the

flows. The equivalent round trip is calculated as the harmonic means of the individual

27

round trip time of the flows. Consider a scenario with N flows having heterogenous

round trip times R;. The harmonic mean of the round trip times (R.q) is given by

1 11
R.ONZR

€q

From above condition, we can see that the stability of TCP/RED is related to the
network environment. However, how these parameter settings affect the bandwidth
utility and average queuing delay is unidentified. Also, the information of network
environment, like the numbers of TCP session and round trip time of each TCP
connection are not easy to get, and changing all the time. So it is generally considered

that the major difficulty in deploying'RED is how to set its parameters.

According to the previous section, we -know-that'if we want to stabilize TCP/RED
performance, we need to know more information.about network environment, like the
number of TCP sessions, round trip time per session or equivalent round trip time.
Some people may try to make RED to dynamically tune these parameters by itself,
like “Adaptive RED algorithm”[11] or “Auto-Tuning algorithm” [12]. But all these
methods still use queue length as an indicator of network congestion. We agree with
that buffer is always needed because TCP session generates bursty traffic and routers
need buffer to contain such burst. But we want to try a more aggressive way to do the
congestion control on routers by controlling the packet arrival rate observed at the
router, so the router can maintain low buffer occupation and maximize the bandwidth
utility at the same time. Also, we want to conclude the effect caused by different

network environments to just one parameter, so the mechanism can be vary easy to

28

configure.

29

Chapter 3

Self-Configurable Congestion Control

In this chapter we are going to develop our method, which can maintain the packet
arrival rate to be 95% of link’s bandwidth in different network environments and
maintain the low buffer occupation. Here, the “different network environments”
means “the different combinations of the TCP sessions’ round trip times”. We first
separate the problem into two parts: the first part is how to achieve our goal, the

second part is to tune our method according to the network environment.

Since Markov decision process'is a conveniént tool to find a policy according to the
state space and cost function, which are defined according to our purpose. So we will
use the Markov decision process to control-the packet arrival rate, and find a way to
compensate the difference between thereality ‘and our Markov model. Before building
up the model, we first discuss what kind of problem we are dealing with. First, we
assume that we can directly control TCP senders’ throughput with some error by
sending some kind of ‘rate command’ to them. To simplify the problem, we also
assume that all TCP senders have the same round trip time. Once we detect that the
arrival rate is higher then we expected, we shall ask TCP senders to decrease their
throughput lower than the desired value, so the buffer occupation can be decreased.
And to raise the throughput if the current arrival rate is lower than we want. We need
to know when to raise (lower) the throughput and how much to raise (lower) it. We

will use Markov Decision Process to solve this problem.

30

In reality, TCP senders will respond to packet drops or “marked” ACK packets (if
ECN is implemented) and decrease their throughput. So the “rate command” is given
in the form of packet drop probability. We need three mechanisms to achieve our goal,
one to generate policy according to different error, one to determine the effect of the
error, and one to find out the relation between drop probability and packets arrival

rate.

3.1 Model for MDP

We use MDP to generate our desired policy and we will start to build a Markov
decision process to generate our desired,policy from now on. We first define the
discrete state space as the packetrarrival'tate; since our goal is to control the packet
arrival rate, which is measured in the petrcentage of the target bandwidth. Let S
denotes the state space, then S={10;20, .:200}, 'which represents 10% to 200% of
target bandwidth. And we assume at"each 'state, we can give “rate commands” to
control TCP sessions’ throughput. We define these “rate commands” to be our action
space A, A={15,25,35,45,50,60,76,86,90,94,95,96,97,98,99,105,110,120,130,140}.

Each action represents the amount of the target bandwidth (measured in percentage).

An essential part of Markov is the state transition probability, but such kind of
transition probability of TCP traffic is very hard to determine. Instead of using
complicated model, we try to build up a simplified model that can satisfy our need.
Another important issue is that we shall conclude the effect of real network
environment on just one parameter, so we can let the model to configure this

parameter by its own self to reduce the difference between our model and the reality.

31

Obviously, there is no such technique can help us to build up our model, and such
kind of model has not yet been seen. So we build a model that can generate our
desired policy first, then we analyze our model later to see if it is reasonable. We
conclude the properties of our policy as follows: 1. While the arrival rate is larger than
100% of bandwidth, we should ask TCP senders to decrease their throughput lower
than 100% of bandwidth to decrease the queue length; 2. While the arrival rate is
smaller than 100% of bandwidth, we should ask TCP senders to increase their
throughput larger than 100% of bandwidth to increase the queue length; 3. By
changing just one parameter, the Markov decision process should be able to generate a
new policy. We use MDP to decide when to decrease the rate and how much should it
decrease. We try to use normal random variables to generate state transition
probability. The reason of choosihg normal random variable is that we can easily

control its mean and deviation te generate out-desired policy.

After merely infinite trials, we conclude that state transition probability for a

transition from state 1 to state j by choosing action k (Pijk) should be in the following

form:
state[j]+ state] j —1 state[j]+ state j +1)
= p[N/ < state[j]] , forj=1
19
zl_zllpi'; , forj=20
e

and the variable N denotes the normal random variable we used to generate

transition probability. It’s mean and deviation is defined in the following equations :

32

3.1)

mean 4 = a *action[k]+ (1 - a) * state[i] (3.2)
deviation o7 =[100— action[k]*(1— &) +error *o . (3.3)

The parameter o and error are used to represent the effect of the real network

environment, and we can configure the value of them to reduce the difference between
our model and the reality. We will explain their roles and functionality later. And the

immediate cost is defined to be :

r; =[100 - state[i] . (3.4)

So we are looking for a policy that can minimize the cost. Such policy will keep

arrival rate approaching to 100% of target bandwidth. If we set a to be 0.9 and

error to be 40, then we can use the method introduced in section (2.1) to find the
policy. In general, it takes only 5 iterations to find-the policy. The result is shown in

table (3.1)

State (10 |20 |30 |40 |50 |60/70{80/90{100{110{120{130/140/150|160]170{180{190{200

Action|105{105{105|105]105(99(99(99(99|99 99 (99 (99 |99 (99 (98 |97 |95 |94 |94

Table(3.1) policy obtained by iteration method for a =0.9, error=40

And the lost of the Markov process is 28.730847. This means that under such policy
in average the instantaneous packet arrival rate is about [17(0.28730847)]*(target

bandwidth). We try to maintain the average packet arrival rate to be the target

bandwidth by using policy that can minimize the lost. And simply by changing the

33

value of . , we can generate different policy as in Table (3.2).

a

0.9 0.8 0.7 0.6 0.5 04 0.3 0.2 0.1

10 105 110 120 130 130 140 140 140 140

20 105 110 120 120 130 130 140 140 140

30 105 105 110 110 120 130 130 140 140

40 105 105 110 105 120 120 120 130 130

50 105 105 105 105 110 110 120 120 120

60 9 105 105 105 105 105 110 110 110

70 9 9 9 9 105 105 105 105 105

80 9 9 9 9) 9 9 9)

90 9 9 9 9) 9 9 9)

100 9 9 9 9) 9 9 9)

110 9 9 9 9) 9 9 9)

120 9 9 9 9) 9 9 9 91

130 9 9 9 9 9 9 97 95 90

140 9 9 9 % 9% % 90 90 86

150 9 97 9% % 90 86 86 76 76

160 98 95 90 90 86 86 76 76 60

170 97 %A 90 86 76 76 76 60 50

180 95 90 86 76 16 60 60 50 35

190 9% 86 76 76 60 60 50 35 25

200 94 86 16 76 60 60 45 25 15

Table 3.2 “policy for differentc , error=40
and the corresponding “lost” for each & "is:
a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
“lost” {9.4158 |11.6888[13.9770(16.2859|18.6062|20.9794|23.4336(26.0079|28.7308

Table 3.3 “lost” value of different «

From table(3.2), we can see that for larger &, the policy becomes more aggressive.

So if current state is much larger than target bandwidth, the policy will decrease the

TCP senders’ throughput significantly.

3.2 Self-configuring mechanism

34

In our model, we have two parameter need to be configured: « and error.

However, our current technique can only dynamically adjust one of them. Because
that a different policy correlates to a different value of ‘lost’. So, we can use the
value of gain to connect between the Markov process and the real network

environment. For example, we can first assume the error is very large, so we let «

to be 0.91 and use Markov decision process to find the policy. Then we use the
policy to control the arrival rate and record the immediate cost as the system transits
between states. After a while, we can obtain the real value of the system’s lost, and

we can use this value to find the corresponding value of « . Then, we can use the
new « to find a new policy. We define; g, to be the average of immediate cost
over time, so gt is actually the*“lost” of the"Markov process, and update ¢, in the
following way:

|gt—l _rt|

9 =0+ (3.5)

In eq(3.5), t denotes the number of stages, and I, denotes the immediate cost we
observed at stage t. So after we obtain the new value of @,, we will find the value

of a according to the table (3.3) and generate a new policy.

3.3 Calculate Drop probability

Now, we already build a Marko decision process to generate the policy, and a

35

update rule to tune our Markov decision process according to the real network. So
the last thing we have to do is to find out the relation between drop probability and

TCP senders’ throughput. From eq(2.12) , we define C' to be :

C'=.BW \/p7 (3.3)

We findC' according to the history. We record the packet arrival rate and drop

probabilities we deployed in the past 500ms. Let rate,,, denotes the average
packet arrival rate in the past 500ms, and p,, denotes the average drop

probability in the past S00ms. Now we can use C' to calculate the corresponding

drop probability for each action :

drop probability = [C'/(target bandwidth *action/100)]* . (3.4
For example, by setting target bandwidth to be 50, which means 50 Mbytes/sec, and
C' to 10, then table (3.2) can be translate into table (3.4). Under this assumption,

the corresponding drop probability of the action ‘15’ is larger then 1, which is

unreasonable. So we limit the maximum drop probability to be 0.8.

36

0.9 0.8 0.7 0.6 0.5 04 0.3 0.2 0.1
10 0036 0033] 0028 0024 0024 0.02 0.02 0.02 0.02
200 0036 0033 0028 0028] 0.024] 0024 0.02 0.02 0.02
30[0036 0036 0033 0033 0028 0024 0024 0.02 0.02
40 0036 0036[0033] 0036 0028 0028 0028 0.024] 0024

S0[0036 0036 0036 0036 0033 0033 0028 0.028] 0.028

60 0041] 0036 0036] 0036 0036 0036 0033 0033 0033

700 0041 0041 0041] 0041] 0.036[0036] 0.036] 0036 0036

80 0041 0041] 0041] 0041 0041] 0041] 0041) 00411 0041

9] 0041] 0041 0041 00411 0041 0041 0041 0041 0041
100l 0.041] O0041] 0041] 0041] 0041 0041 0041 0041 0041
110 0041 0041f 0041] 0041 0041] 0041) 0041 0041) 0041
1200 0041] 0041] 0041) 0041 0041 O0041] 0041 0041) 0043
130f 0041 0041f 0041] 0041] 0041] 0041] 0043] 0044 0.049
140, 0O41[O0041] 0041) 00421 0043 0045 00491 0.049] 0.0¥4
150 0.041] 0.043] 0.043] 0045 0049 0.054] 0054] 0069 0.069
160 0042 0.044] 0049] 0049 0.054[0054 0069 0.069 0.1
170 0.043] 0045 0049 0054 0069 009 0.069 0.1 0.16
180 0044 0049 0054 0069 0.069 0.1 0.1 016] 0327
190] 0045 0.054] 0069+ 0.069 0.1 0.1 016 0327 0.64
2000 045 0054 0069 069 0.1 01f 0.198 0.64 0.8

Table 3.4 drop probability for different , error=40

For example, if we change drop probability every 1 ms, according to how many

packets arrived in the past 1ms, then'the'mechanism can be shown in fig (3.1)

37

I Y

Every | ms calculate rae

rate = number of packets arrived in the past 1 ms

i = 500)
{i=1}

Identify state and calculate immediate cost 1,

rate histor{i] = rate,

P Higtordi] = drop probability,;
i=i+1
500
- .)
2 rate Hhisior]
rate,, = il ; Y
200
update 'lost'
300
= . .
ﬁp _histary{ i) B |g:_1 _ ?_!|
Pag =" =g t—
500 £
. and find corresponding & and polic
= rate,,. - fpﬂvg P g policy

Calculate and deploy new drop probability

drop probability = [f{target bandwidth * action/1007]

Fig (3.1) proposd congestion control mechanism

Fig (3.1) shows our congestion control mechanism, we update packet drop

38

probability every Ims according to it. We use p history[i] and rate history[i] to
record the drop probability we deployed and packet arrival rate, and calculate the

average rate and average drop probability over past 500 ms according to the record.

3.4 MORE about Markov model

We will explain the function of a special term ‘error’ in our Markov model in this
section. This term appears in the transition probability, and need to be set manually.

The relation between the ‘lost’ and the value of ‘error’ is shown in table (3.5)

error 10 20 30 40 50 60 70 80

range of 'lost' [0.58 |4.50 4{7.58 9.41 L1.11 |12.72 |14.28 |15.81

for 0=0.1~0.9 |~6.96 |~14.34- |~21.59 [~28.73 |~35.44 |~41.47 |~46.71 |~51.20

Table (3.5) Range of “lost’ of different « .

So we can see that the parameter ‘error’ can be used to choose the range of lost. If the
error is set to be too small, our self-configuring mechanism will not work. For
example, controlling the packet arrival rate to be maintained in the range of
(1£6.96%) target bandwidth seems to be not possible. So we suggest that the value of

error should be set larger than 40. The table (3.6) shows the policy while error is 80.

39

a

0.9 0.8 0.7 0.6 0.5 04 0.3 0.2 0.1

10 9 105 105 110 120 130 140 140 140
20 9 105 105 105 110 120 130 140 140
30 9 9 105 105 105 110 120 130 140
40 9 9 9 105 105 105 110 120 140
50 9 9 9 9 105 105 105 110 120
60 9 9 9 9 9 9 9 105 110
70 9 9 9 9 9 9 9 9 105
80 9 9 9 9 9 9 9 9 9
90 9 9 9 9 9 9 9 9 9
100 9 9 9 9 9 9 9 9 9
110 9 9 9 9 9 9 9 9 9
120 9 9 9 9 9 9 9 9 9
130 9 9 9 9 9 9 9 9%)
140 9 9 9 9 9 9 9 90 86
150 9 9 9 9 9 9 98 76 76
160 98 98 9 9 9 9% 0 76 60
170 97 97 9 97 94 90 76 60 50
180) 9% 95 94 86 76 70 60 45
190 95 95 90 86 76 76 60 45 35
200 94 94 86 86 16 60 50 35 25

Table 3.6-policy for different az, error=80

We start to analyze our model now by discussing the mean. As we can see, if « is

larger, the mean dependents on our action more than our current state.

40

Chapter 4

Simulation

In this chapter, we describe our simulator and simulated network topology. Our

simulator is designed by using Rhapsody version 5.01.
4.1 UML Simulator design

The object model diagram of our simulator is shown in Fig (4.1).

= [order
fcp)
1 link & rriatkioy
1
tout_tirner 1 1
order
s itsLink|*
7ol
packet
itsSyscIncIﬁ.la—,:HE
syscluckﬁ
= 1
(i
ik & [harpe

Fig(4.1) Object model diagram of our simulator
The class ‘tcp’ is modified from two files of NS version 2.29 :tcp.cc, tcp-reno.cc.
Despite the TCP protocol, a traffic generator and a duplex link with infinite sized
buffer also specified in the class ‘tcp’. Basically, we can replace the following

representation of NS by using a single instance of ‘tcp’ class.

set n0 [$ns node]

41

$ns duplex-link $n0 $n2 2Mb 10ms DropTail
set tcp [new Agent/TCP/Newreno]

$ns attach-agent $n0 $tcp

set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ftp set type FTP

The class ‘Sink’ is designed to ACK each TCP packets. The size of its receiving
buffer is designed to be 200 packets. It also has ability to support ECN technology.
Like the ‘tcp’ class, it also includes a duplex link with infinite sized buffer in it. The

following representation of NS can be replaced by a single instance of the class ‘sink’:

set n4 [$ns node]

$ns duplex-link $n3 $n4 0.5Mb 40ms DropTail
set sink [new Agent/TCPSink]

$ns attach-agent $n4 $sink

The class ‘link’ specifies a simplex link with finite buffer in NS. It also specifies an
RED algorithm from [2] to perform congestion conitrol. This function can be disabled,
so the buffer is simply controlled by tail drop mechanism. The following

representation of NS can be replaced by a single instance of the class ‘link’:

$ns simplex-link $n2 $n3 0.3Mb 100ms DropTail

The ‘packet’ class is used to simulate the network packet in the real world. It uses
an array to record each link it has to passing through to reach the destination. And it

also has necessary attributes that can be used to support ECN.

The instance of ‘sysclock’ class not only counts time, but also links to each
instances of class ‘tcp’, ‘sink’ and ‘link’. It routes packet through links to its
destination (TCP sender or sink receiver) according to the rout information recorded
on the ‘packet’. Finally, the ‘markov’ class specifies our proposed congestion control

mechanism. So, each link can choose to use Tail Drop, RED, or our mechanism to do

42

congestion control.

4.2 Network topology

Link Li .
TCP]_CP
senders - sinks
mechanism =
.| Tal
drop
Link L2
Fig (4.2)network model

Consider Fig (4.1), there are several TCP senders sending data packet through a
bottleneck link L1, and TCP sinks sending ‘ACKs’ back through L2. Each of L1 and
L2 uses an AQM (active queue management) method to control the length of queue.
We assume that L2 has a sufficient large capacity and uses FIFO to manage the buffer,
so ‘ACKs’ from TCP sinks will never be marked or dropped. Also, we assume that
links tj,ty,..,tn and si,s2,...Sx have very large capacity. The above assumption
guarantees that TCP senders sense a packet drop event only because that a data packet
has been dropped by L1’s AQM or buffer overflowed on L1. We also assume that
delays of links ti,tp,....,tx and sy,s2,...5n, may be different so each TCP session may
have different round trip time. If we can control the aggregate traffic rate from TCP

senders T, to Tx to be 95% of link L1’s bandwidth, then the queue length of L1 will

43

be small almost every time.

In our simulation, all of our senders using RENO TCP with ECN support to
provide congestion control, which is implemented according to ns2. And sink will
‘ACK’ to each packet. Our senders can generate two different kinds of traffic with
fixed packet size: short burst traffic and persistent traffic. Senders generate persistent
traffic will keep sending packets as many as congestion window allowed. Sender
generates short burst traffic sends 11 packets at first, after receiving all the ‘ACKs’ it
waits an exponential distributed random time with a mean of 350 msec then sends
another 11 packets. We implement our congestion control mechanism as L1’s AQM,
and L2’s buffer is simply controlled by FIFO. During all our experiment, the L1’s
bandwidth is set to be 50 Mbytes and the L2’s bandwidth is set to be 100 Mbytes. So,

it takes 20 ¢ sec for L1 to transmits-a data packet.and 10 ¢ sec for L2 to transmits an

‘ACK’packet. We also set the bandwidths of links t;,t,,...,ty and s,s5,...Snto be 100
Mbytes. The maximum size of queue of IL17is 1000 packets. And the maximum size of
queue of L2 is set to be very large to guarantee that the ‘ACK’ packets will never be

dropped.

4.3 simulation results

In this section, we demonstrate how different environments affect the performance
of TCP/RED and proposed congestion control mechanism. RED parameters is set as
follows :

max , =0.1, max, =750 packets, min,, =50 packets,w =0.02,

buffer size = 1000 packets.

We set the target bandwidth of our congestion control mechanism as 47.5MB/s, which

1s 95% of bottleneck link’s bandwidth, and the parameter ‘error’ to be 40. We test both

44

RED and our congestion control mechanism under several different network
environments to demonstrate that while RED’s performance is highly dependent on

the environment, our mechanism can always keep good performance.

4.3.1 ldentical delay

In the first experiment, we use 200 TCP sessions with identical delays to test
TCP/RED’s performance. This experiment shows how different round trip delays can
cause critical effect to TCP/RED’s performance. In the first case, we set the round trip
delay to be 40 ms. Under this condition, TCP/RED’s performance is quit well, it
achieve 100% bandwidth utility and control the average queue length at 156.2 packets.
But our mechanism can do even better, our mechanism control the average queue
length at 6.09 packets and bandwidth utility 15°95%. In the second experiment, we set
the round trip time to be 140ms. The result shows in Fig 5.6, although the average
queue length is maintained at 56.5 packets, and no buffer overflow happens after it
become stable. But the bandwidth wtility is-down to 74.8% of bottleneck link’s
bandwidth. Our mechanism still can maintain the 95% bandwidth utility and the
average queue length is maintained at 19.7 packets. From these two experiments, we

can see that RED

1

09

08

07 -

@ 06|

05

041

03r

0z2r

01
1] 5 10 15 20 25 30 35 40 45 50
time (sec)

Fig 4.3 value of a of 200 TCP sessions with 40msec round trip time
(Proposed mechanism)

45

1000

average quene length = 6.0939 packets |
average rate=47.6284 MB/s

400

a00

700

600

500

400

gueue size (packet)

300

200

100

1]] 10 15 20 25 a0
tirme (sec)
Fig 4.4 queue status of 200 TCP sessions with 40ms round trip time
(Proposed mechanism)

1000 T T T T T

average quene length=156.2 packets
average rate=S0HE/=

800 B

900

700 B

gueue length (packet)

o Ll 1 1 1 1 1
0 1 2 3 4 =3 53

time (sec)

Fig 4.5 queue status of 200 TCP sessions with 40ms round trip time
(RED)

o 5 10 15 20 25 30) 40 45 50
tirne (sec)

Fig 4.6 value of a of 200 TCP sessions with 140msec round trip time
(Proposed mechanism)

46

1000

average quene length:19.7 packets
average rate : 47.3ME/s

900

queue length (packet)

]] 10 15 20 25 30 35 40 45 a0
tire (sec)

Fig 4.7 queue status of 200 TCP sessions with 140msec
(Proposed mechanism)

1000 T T T T T

900
average gquene length=56.5 packets

a0 b average rate=37.4MB/=

700 - b
600 - b
a00 - b

400 F A

300 f
200
100
o LLILILh

a 1 2 3 4 5
time (sec)

gueue length (packet)

Fig 4.8 queue status of 200 TCP sessions with 140ms round trip time
(RED)

4.3.2 Different amount of TCP session

As mentioned in the previous chapter, TCP/RED’s stability and performance can be
improved by increasing the number of TCP sessions. So we fixed the round trip time
to be 140 ms, and increase the number of TCP sessions to see how the performances
of TCP/RED and our mechanism are affected by it. Unlike RED, our mechanism can

47

maintain the average queue length at a very small value even the amount of TCP
sessions increases to 1000. But when the number of TCP sessions is small, the
average queue length is higher. We briefly explain this behavior as follows: Assume
the bottleneck link’s bandwidth is equally shared by all sessions, then from eq (2.1)
we can get that the proper drop probability for maintaining the bandwidth utility at
95% is less then 8*10~*, with such small drop probability, the packets are rarely
being marked, so the average queue length can be a larger. And from fig (5.6), fig (5.8)
and fig (5.11), we can see as the number of TCP sessions increases, the average queue
length and throughput increase, too. TCP sessions’ throughput depends on the packet

mark (drop) probability it suffers over all the links it passes through.

0.8 b

0.7 b

04a A

0.4 4

02 1 1 1 1 1 1
] 5 10 15 20 25 30 35

tirme (sec)

Fig 4.9 value of a of 1000 TCP sessions with RTT=140ms
(Proposed mechanism)

48

1000 T T T T T

900 average quene length= 7.3801packets -
average rate =47.4473 MBf=
800 B
Fan B

500 -

500 B

400 -

gueue size (packet)

300 -

200 B

100 -

0 5 10 15 20 25 30
time (sec)
Fig 4.10 queue status of 1000 TCP sessions with RTT=140ms
(Proposed mechanism)

average queune length =297.8 packets
average rate = 46.3ME/z
1000

900 \ B
800 H N B
700+ B
600 B

500 B

400 B

gueue length (packet)

300 B

200 F B

100 B
D J_ 1 M 1 1

0 1 2 3 4 5 B 7 8 9

time (sec)

Fig 4.11 queue status of 1000 TCP sessions with RTT=140ms
(RED)

49

[IR=] b

08 b

05 B

0.4 b

Dz 1 1 1 1
0 g 10 15 20 25 30 34

time (sec)

Fig 4.12 value of a of 500 TCP sessions with RTT=140ms

1000 T T T T T

average quene length =7.7552 packets
300 7 average rate=47.2060MB/g)

500 H A

700 R

600 H

400 H

400

gueue length (packet)

300

200

100

a 5 10 15 20 25 3o
time (sec)

Fig 4.13 queue status of 500 TCP sessions with RTT=140ms
(Proposed method)

50

1000

average gqueune length: 114.5 packets
900 - average rate:47.4MB/g .
800 B
_ 7ooY .
% GO0 B
% 500 .
é 400 B
= 300 B
200 B
100 B
0
0 2 4 B 8 10 12 14
tirme (sec)
Fig 4.14 queue status of 500 TCP sessions with RTT=140ms
(RED)

4.3.3 Heterogeneous delays

In this experiment, we set the. TCP sessions to have different round trip delays (in
the range of 30msec~140msee). This is:more like-real network environment than
identical delays. Under this situation, things get more complicated. In the previous

experiments, we see that for 140ms round trip delay, the @ should be 0.3 . Since for

the same drop probability, each TCP session now generate different throughput, so
our congestion control suffer larger noise now. As a result, the maximum value of
instantaneous queue size and average queue size all becomes larger, but the average

throughput still can maintain at 95% of bottleneck link’s bandwidth.

51

0.92

09
neaf
0.8 |

r 084t
nazf
oaf
oral

076

0.74
0

m_
=
i
5]

25
tirne (sec)

Fig 4.15 value of a queue status of 100 TCP sessions with round trip
delay=30~140 msec

1000 T T T
average queue length: 104, 3pkts
2 average rate; 47.1 WB/=)

800 E
700 E

&00 b

500 1

400

gqueue length (packet)

300

200

100

[
[ay]
—
o

15 20 25
time (sec)

Fig 4.16 queue status of 100 TCP sessions with round trip delay=30~140 msec
(Proposed method)

52

1000 T T T T T T T T

average packet length=47.7 packets

|00 - average rate=45.1ME/s

500 A

700 H A

500+ B

400

gueue length (packets)

300

200

100

time (sec)

Fig 4.17 queue status of 100 TCP sessions with round trip delay=30~140 msec
(RED)

[IR=

[IR=]

0.88

0.868

0.54

n.e2

0.8

0.73 1 1 1 1 1 1 1 1 1
1}

time (sec)

Fig 4.18 value of a of 500 TCP sessions with round trip delay=30~140 msec

53

1000

averaze quene gize = 37,2681 packets
averaze rate =47.2695 HB/zec

800 E

900

700 | E

600 E

500 E

400 E

gueue size (packet)

300 E

200 E

100 H

0 5 10 158 20 28 30 35 40 45 50
tirme (sec)

Fig 4.19 queue status of 500 TCP sessions with round trip delay=30~140 msec
(Proposed method)

1000

average quene length= 370.5 packets

300 - average rate = S0HB/g

800 - b
700 H A
600 - b
a00 - b

400 H 4

gueue length (packets)

300 - b

200 F b

1001 4
] 1 1 1 1 1 1 1 1

time [sec)

Fig 4.20 queue status of 500 TCP sessions with round trip delay=30~140 msec
(RED)

4.3.4 With and without update mechanism

In the last experiment, we show that the update mechanism indeed can find the
proper policy. We use 500 TCP sessions with heterogeneous delays in the range of
30~140 msec, and the same settings of our mechanism as in section 3.4. But we

choose the value of @ manually, and fixed them for all time. The result is shown in

table 4.1. According to table 3.4, the drop probability becomes larger as the a

54

becomes smaller. Obviously, when the drop probability is too large, the throughput
becomes smaller than we want. With the help of our update mechanism, our
congestion control can fin the proper policy that can maintain 95% of bandwidth

utility.

a
state 0.1 0.6 0.9 updat
average queue
length 22.3632] 40.082 47.45 37.2
average arrrival ra{40.5MB/s[46.4MB/s|45.2MB/s 47.2MB/s

Table 4.1 performance of our mechanism with and without update mechanism

55

Chapter 5

Conclusion

Since RED has been published, a lot of researchers try to analyze its behavior, and
dozens of ways about how to tune RED’s parameters have been announced. There are
also many different forms of RED-like congestion control algorithms have been
proposed. However, all of them focus on controlling the queue length and use
queue-based control mechanism to avoid buffer overflow, which leads them to
nowhere. RED claims that it can provide many benefits like avoiding synchronization,
avoiding buffer overflow, and providing some kind of fairness, but it has never been
widely deployed. In this thesis, we focus on controlling the arrival rate instead of
queue length. The idea is that if we can maintainthe arrival rate to be 95% of link’s
bandwidth, then buffer occupancy should below or zero. Such kind of rate-based
congestion control has not yet-been developed because the difficulty on modeling
TCP’s throughput. It can be very difficult to build up a math model that captures the
characteristics of real TCP’s throughput behavior. However, it is much easier to build
up a model for MDP to generate a policy that satisfies some general concepts. In this
thesis, we develop a simplified model for MDP and an assistant mechanism that can
minimize the difference between our simplified model and the reality. The result
shows that our algorithm indeed can outperform RED on maintaining the low buffer

occupancy and high bandwidth utility.

56

References

[1]

Ronald A. Howard, “Dynamic Programming and Markov Process”

[2] Sally Floyd and Van Jacobson, “Random Early Detection Gateways for

[5]

[6]

[7]

congestion Avoidance”, IEEE/ACM Transactions on Networking, August,

1993.

B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S.Floyd,
V.Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S.
Shenker, J. Wroclawski, and L. Zhang, “Recommendations on queue

management and congestion avoidance.in the Internet,”, RFC2309, Apr. 1998.

Mathis, M., Semke, J. Mahdavi, J.7and Ott, T.J. (1997), “The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm”. Computer
Communications Review 27 (3), pp 67 - 82 (July 1997).

Martin May, Thomas Bonald, and Jean- Chrysostome Bolot, “Analytic
evaluation of RED performance,” in Proceedings of IEEE infocom, March

2000

Steven H .Low, Fernando Paganini, Jiantao Wang, Sachin Adlakha, John
C.Doyle, “Dynamics of TCP/RED and a Scalable Control” , Proceedings of

IEEE Infocom, June 2002

C.V.Hollot, Vishal Misra, Don Towsley and Wei-Bo Gong, “A Control

57

Theoretical analysis of RED”, IEEE infocom 2001.

[8] W. Feong, D.Kandlur, D.Saha, and K. Shin, “The Blue active queue
management algorithms”, IEEE IEEE/ACM Transactions on Networking

(TON) Volume 10, Issue 4 (August 2002) Pages: 513-528, 2002.

[9] Vishal Misra, Don Towsley and Wei-Bo Gong, “Fluid based Analysis of a
network of AQM Routers supporting TCP Flows with an Application to RED”

in Proceedings of ACM/SIGCOMM. 2000

[10] Martin May, Jean Bolot, Christophe Diot, and Bryan Lyles, “Reasons not to
deploy RED”, In Proc..tof 7th Int.Workshop on Quality of Service

(IWQoS ’99), London, pages.260—262,June 1999.

[11] W.-C. Fmg, D.D. Kandlur, D. Saha,.and K.G. Shin, "A Self Configwing RED
Gatnuay:' Pmceedingr of IEEE INFOCOM '99, pp. 1320 -1328, Mar 1999.
Eiahteenth Annual Joint Confcmee of the IEEE Computer and Communication

Societies

[12] Harsha Sirisena, Aun Haider and Krzysztof Pawlikowski, “Auto-Tuning RED

for Accurate Queue Control”, Global Telecommunications conference, 2002,

IEEE

[13] Victor Firoiu, Marty Borden, “A Study of Active Queue Management for

Congestion”, Infocom 2000, TelAviv, Israel, March 2000

58

