
 0

國 立 交 通 大 學

電信工程學系

碩 士 論 文

可自動調整之壅塞控制

Self-Configurable Congestion Control

研究生：林裕翔

指導教授：廖維國 博士

中華民國九十六年一月

 1

可自動調整之壅塞控制

Self-configurable Congestion Control

 研 究 生︰ 林裕翔 Student: Yu Hsiang Lin
 指導教授︰ 廖維國 博士 Advisor: Dr. Wei-Kuo Liao

國 立 交 通 大 學
電信工程學系碩士班

碩士論文

A Thesis Submitted to
the Department of Communication Engineering
College of Electrical and Computer Engineering

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of Master of Science
In

Communication Engineering
Jan 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年一月

 2

可自動調整之壅塞控制

研 究 生︰ 林裕翔 指導教授︰ 廖維國 博士

國立交通大學電信工程學系碩士班

中文摘要

 網路的端口路由器可利用壅塞控制來降低封包遺失率並提升頻寬使用

率.RED 在 1993 年被提出,並為現今最知名的壅塞控制理論.然而它從未被人們所

使用.目前的研究顯示,它所使用的各項參數需要仔細的根據網路的狀況來設定;

否則的話,其效能會大幅的下降.在本篇論文中,我們提出了一個可自行調整參數

的新壅塞控制機制.藉著使用馬爾可夫決策過程,我們的壅塞控制機制有能力自

行調整其參數.我們利用平均的隊伍長度及平均的封包到達率來當成壅塞控制機

制的性能指標.根據我的實驗結果,當 RED 的性能隨者網路環境的不同而劇烈的

改變同時,我們的控制機制永遠能保持95%的頻寬使用率,及相當低的暫存空間佔

有程度.

 3

Self-Configurable Congestion Control

Student: Yu Hsiang Lin Advisor: Dr. Wei-Kuo Liao

Department of Communication Engineering
National Chiao Tung University

Abstract

 Edge routers can deploy congestion control mechanism to reduce packet loss

probability while improving the utilization of link bandwidth. RED, the most famous

congestion control algorithm, has been proposed in 1993. It has been rarely used due

to the difficulty of setting its five parameters. The current researches show that these

parameters have to be carefully configured according to the status of flows passing

through the router, otherwise the performance of RED can be degenerated

significantly. In this thesis, we proposed a new congestion control mechanism with the

ability to configure its own parameter by itself. By using Markov decision process, we

provide the self-configuring ability to our congestion control mechanism. We use

average queue size and average packet arrival rate of the router as the performance

indices of congestion control mechanism. As shown in our simulation, while RED’s

performance degrades dramatically as the status of flows changes, our proposed

mechanism keeps the bandwidth utilization nearly 95% and low buffer occupancy.

 4

誌謝

在此首先感謝我的指導教授廖維國老師，在碩士班兩年的時間

中，對於我的研究方法、原則以及日常生活的態度，不厭其煩地給予

諄諄教誨，使得我在短短兩年之間能夠學會面對研究、課業，甚至於

生活該有的態度及想法，讓我著實獲益良多。接著感謝我的父母，在

金錢以及精神上的全力支持，使我在面對難題時，更能鼓起勇氣，全

心全意地繼續作下去，達成我的理想與目標。
另外論文的完成，還要感謝實驗室的學長們，有你們的經驗傳

承，使我能夠避免掉研究過程中的種種困境，讓我在過程裡走的更平

坦；還有實驗室裡的各位同學及可愛的學弟妹，柔嫚、廷任、佳甫、

為凡、俊宏、富元、永裕，你們的一路相陪，讓我在研究的道路上感

到絲絲的溫馨，有你們在，實驗室充滿了歡笑，是我過了許久仍回味

無窮的珍貴回憶。
最後還要感謝我的大學同期以及身邊週遭的各位朋友，在我作研

究之餘，給與我相當多生活的歡笑以及鼓勵，也是有了你們，才使得

我能夠一路劈荊斬棘，謝謝你們對我的支持鼓勵。

 5

Contents
Chinese Abstract………………………………………………………………...……2
English Abstract…………………………………………………………………….. 3
Contents……………………………………………………………………….………5
List of Tables………………………………………………………………….………5
List of Figures……………………………………………………………….………. 6
Chapter 1: Introduction………….…………………………………………………. 7
Chapter 2: Background and Motivation……………………………...………..….10
 2.1 Markov Decision Process with reward ...……………….………….…….…10
 2.1.1 Policy-Iteration method……………………………………….………..10
 2.1.1.a The value determination operation………………………………...10
 2.1.1.b Policy-improvement routine……………………………………….13

2.2 Transmission Control Protocol(TCP) ………………….…….……………..13
 2.3 Explicit Congestion Notification (ECN)……………………………….……20
 2.3.1 ECN-TCP header……………………………………………………….21
 2.3.2 ECN-TCP Gateways……………………………………………………22
 2.3.3 ECN-TCP Sender…………….…………………………….……………………22

 2.3.4 ECN-TCP Receiver………………………………………………… ….22
2.4 Random Early Detection (RED)………………………………….…. ……..23
2.5 Motivation…………………………………………………………… ……..26

Chapter 3: Self-Configurable Congestion Control…...…………………………...30
3.1 Model for MDP….……..…………………………………………..…...…...31
3.2 Self-configuring mechanism………………………………………………...34
3.3 Calculate drop probability..…………..……..……………………………….35

 3.4 More above Markov Model………………………………………………....39
Chapter 4: Simulation ……...…….…….……………….……………………………...…….…..41
 4.1 UML Simulator Design… ………………………………...…………………….....………… 41
 4.2 Network Topology…..………………………………………………………………43

4.3 Simulation results…………...……………………………………...……………………44
4.3.1 Identical Delay………….….……………….……………….…………….……….45
4.3.2 Different amount of TCP sessions.……..……………………………...………….....48
4.3.3 Heterogeneous delays.…………………………….……………….…………….…52
4.3.4 With and without update mechanism….…………...……..…..……..………………………..55

Chapter 5: Conclusion……………………………………………………………....56
Reference…………………………………………………………………………….57

List of Tables

Number Page

3.1 policy obtained by iteration method forα=0.9, error=40…..……….…...33
3.2 policy for differentα, error=40…….……………………...……….…....34
3.3 “lost” value of different α……………………………...…………………34
3.4 drop probability for differentα, error=40………………………………..37
3.5 Range of ‘lost’ of differentα……………………………………...………39

3.6 policy for differentα,error= 80………………………………………….40
4.1 performance of our mechanism with and without update mechanism…..…56

 6

List of Figures

Number Page

2.1 Iteration cycle………………………………………………………….15
2.2 Packets in transit during additive increase, with one packet being added

each RTT……………………………………………………………..18
2.3 TCP window evolution under periodic loss. Each cycle delivers

p
ww 1)
2

(
2
1)

2
(22 =+ packets and takes 2

w round trip times ………... 19

2.4 RED algorithm…………………………………….……………….…..24
3.1 proposed congestion control mechanism………...……………….……38
4.1 Object model diagram of our simulator……..….……………….……..41
4.2 Network Model……………………………...…………………….…...43
4.3 value of α of 200 TCP sessions with 40msec round trip time(Proposed

mechanism)………………………………………………………………...45
4.4 queue status of 200 TCP sessions with 40ms round trip time (Proposed

mechanism)……………………………………………………………46
4.5 queue status of 200 TCP sessions with 40ms round trip time(RED) …….46

4.6 value of α of 200 TCP sessions with 140msec round trip time(Proposed

mechanism) …………………………..……………………………….46

4.7 queue status of 200 TCP sessions with 140msec(Proposed mechanism)…47

4.8 queue status of 200 TCP sessions with 140ms round trip time(RED)……. 47
4.9 value of α of 1000 TCP sessions with RTT=140ms(Proposed

mechanism……………………………………………………………48
4.10queue status of 1000 TCP sessions with RTT=140ms(Proposed

mechanism)……………………………………………………..………49

4.11 queue status of 1000 TCP sessions with RTT=140ms(RED)… ….….…...49
4.12 value of α of 500 TCP sessions with RTT=140ms…………………..50

4.13 queue status of 500 TCP sessions with RTT=140ms(Proposed method)..50

4.14 queue status of 500 TCP sessions with RTT=140ms(RED)…………….51

4.15 value of α queue status of 100 TCP sessions with round trip

delay=30~140 msec…………………………………………………..52

4.16queue status of 100 TCP sessions with round trip delay=30~140 msec

(Proposed method)…………………………………………………….52

4.17 queue status of 100 TCP sessions with round trip delay=30~140 msec.

……………………………………………………………………..…53

4.18 value of α of 500 TCP sessions with round trip delay=30~140 msec

………………………………………………………………… …...53

4.19queue status of 500 TCP sessions with round trip delay=30~140

msec(Proposed method) ………………………………………………54

4.20queue status of 500 TCP sessions with round trip delay=30~140

msec(RED)……………………………………………………………54

 7

Chapter 1

Introduction

In the current Internet, the TCP transport protocol detects congestion and decreases

its sending rate after a packet has been dropped (or marked) at the gateway. Therefore,

without appropriate congestion control on links, the load may exceed the link capacity

and resulting in buffer overflow. As such, TCP will be in the slow start phase to

respond the bursty packets dropping and thus leads to the ineffective utilization of link

capacity.

When the route is fixed, it is expected that the congestion control for a link can be

done by the router itself. If doing so effectively, the end protocol would not need to

change. Therefore, despite the argument that the router may not achieve such without

changing the end protocol [6], many researches still endeavor in designing effective

congestion control methods which is solely implemented at the router. In this thesis,

we follow this line of effort and elaborate on proposing a new congestion control

method in router.

Router simply with traditional drop tail cannot control the load on a link properly.

Drop tail sets a maximum length for each queue at the router and accepts packets until

the maximum queue length is reached. Once the maximum queue length is achieved,

it drops packets until the queue length is again below the maximum set value. This

method has been used for several years on the Internet, but it is not suited to TCP

sessions, because the drop-tail queues are always full or close to full for long periods

of time and packets are continuously dropped when the queue reaches its maximum

 8

length. Another disadvantage of drop tail is the global synchronization problem,

which arises because the full queue length is unable to absorb bursty packet arrivals

and thus many of them are dropped, resulting in global synchronization. This global

synchronization can reduce all TCP sessions’ throughput at the same time, and it

happens from time to time. As a result, Tail drop mechanism keeps high buffer

occupation but low bandwidth utility.

Random early detection, also called RED [2], is a well-known mechanism. It is

designed for a network where a single marked or dropped packet is sufficient to signal

the presence of congestion to the transport-layer protocol. RED tries to maintain the

average queue length at a proper level to maintain high bandwidth utility. It has been

shown in [2], with proper setting, RED can achieve the same bandwidth utility by

maintaining a smaller queue size than Tail Drop. However, even though RED is easy

to implement but it is vary hard to configure its parameters due to the wide range of

round trip times associated with the active connections. Actually, these parameters can

only be set according to experience. An alternative way is to let RED tune its own

parameters, like [11] and [12]. These algorithms reveal an important idea that the

mechanism we use for load control should have ability to configure itself according to

the environment. But none of these algorithms has been studied extensively and

implemented on any network devices for now.

 In this thesis we develop a congestion control mechanism that can keep as small

average queue length as needed to maintain high bandwidth utility. And our

congestion control mechanism also has ability to adjust its own parameters according

to different network environment. We use Markov decision process to develop our

 9

mechanism and provide self-configuring ability by using the property of stochastic

minimax control. At the end, we use several different network environments to test

our mechanism, and the result shows that our mechanism works well for all of them.

The remaining thesis is organized as follows: In chapter 2, we introduce several

techniques and knowledge that will be needed to develop our congestion control

mechanism. In chapter 3 we build up our congestion control mechanism based on

Markov decision process. In chapter 4 the environment that we used to do our

experiment has been described. In chapter 5, we test our congestion control

mechanism under different settings.

 10

Chapter 2

Background knowledge and Motivation

 In this chapter we will introduce some properties of TCP traffic and RED. We also

describe the behavior of router and TCP connection with ECN being implemented.

ECN is an important mechanism to our congestion because it can significantly reduce

the amount of packets drop events, so we can do congestion control without alloying

end users’ throughput too much. Also we introduce Markov Decision Process (MDP)

that will be used to build our congestion control mechanism in next chapter.

2.1 Markov Decision Process with reward

Suppose in an N-state discrete Markov process, a transition from state i to state j

costs rij dollars. And at each state, there are k alternatives to choose, which will cause

different transition probabilities. Then in this section, we will briefly explain a method

to find the optimal decision at each state, which will minimize the total cost after n

stages.

We define vi(n) as the expected total earnings in the next n transitions, and Pij as

the transition probability from state i to state j, if the system is now in state i.

According to [1], if the system makes a transitions from i to j , it will cost the

amount rij , and rij plus the amount it expects to earn if it starts in state j with one

move fewer remaining . Further, if we define a quantity qi as

∑
=

=
N

j
ijiji rPq

1
 i=1,2,…,N (2.1)

 11

then the expected total cost can be expressed as

∑

∑

=

=

−+=

−+=

N

j
jiji

N

j
jijiji

nvPq

nvrPv

1

1

)1(

)]1([
 (2.2)

The quantity qi may be interpreted as the cost to be expected in the next transition out

of state i ;it will be called the expected immediate cost for state i . If we define v(n) as

a column vector with N components vi(n), and q column vector with N comp-

onents qi , thus, Eq(2.2) can be rewritten in vector form as

)1()(−+= nPvqnv (2.3)

Moreover, for the completely ergodic Markov process, we define a quantityπi as the

probability that the system occupies the ith state after a large number of transitions.

And the row vector π with components πi is called the vector of limiting state

probability.

Consider a completely ergodic N-state Markov process described by a

transition-probability matrix P and a cost matrix R. Suppose that the process is

allowed to make transitions for a very long time and that we are interested in the

earnings of the process. The total expected costs depend upon the total number of

transitions that the system undergoes, so that this quantity grows without limit as the

number of transitions increases. A more useful quantity is the average costs of the

process per unit time. This quantity is meaningful if the process is allowed to make

many transitions; it was called the ‘lost’ of the process, g

 12

∑
=

=
N

i
iiq

1
g π (2.4)

Above discussion shows some basic properties and definitions about Markov decision

process with costs. But, in Markov decision process, there are more than one options

(or actions) can be taken in each state. We define policy as the rule of how to choose

action at each state. Thus, different policies will form different transition probabilities,

which will cause different Markov processes and different gains. Generally, the

policies that can minimize the total costs over a long period of time is considered as

the optimal policy. But it is quite complex to compute the expected costs of all

possible policies, especially when there are many options to choose in each state. So,

in the next section, we will introduce a method to make an optimal policy according to

the gain instead of the total expected cost.

2.1.1 Policy-Iteration method

 In this section, we will explain an method to find an optimal policy of the

Markov decision process with cost, which is introduced and proved in [1]. Here, we

define the optimal policy as the policy that achieves the minimum gain. This method

is composed of two parts: the value determination operation and the policy

-improvement routine.

2.1.1.a The value determination operation

 Here, we assume that if the system is in state i at the beginning, then it has an

 13

initial cost vi. Thus, under some initial policy, we can write the following equations

according to () and the definition of the gain ,g

(2.6) N1,2,...,i

(2.5) N1,2,..,i]))1[()(

1

1

∑

∑

=

=

=+=+

=+−+=+=

N

j
jijii

N

j
jijiii

vpqvg

vgnpqvngnv

Because we assume the initial policy is known, that means the value of the transition

policy pij is known, so what we have to do now is to solve the N+1 unknown variables

from Eq (2.6). These variables are v1,v2,……,vN and g. In [1], it says that we can just

let the vn=0 for all the time ,and solve the rest unknowns. In such case, the solution of

v1,…vN-1 and g are slightly differ from the correct ones., but they are sufficient enough

to be used to find the better policy in the next section.

2.1.1.b Policy-improvement routine

 Consider that if we have an optimal policy up to stage n, we could find the best

alternative in the ith state at stage n+1 by maximizing

∑
=

+
N

j
j

k
ij

k
i nvpq

1
)((2.7)

over all alternatives. For large n, we could substitute Eq. (2.7) to obtain

1

()
N

k k
i ij j

j

q p ng v
=

+ +∑ (2.8)

as the test quantity to be maximized in each state. Since

1

1
N

k
ij

j

p
=

=∑ (2.9)

 14

the contribution of ng and any additive constant in the jv becomes a test-quantity

component that is independent of k. Thus, when we are making our decision in state i,

we can maximize

1

N
k k
i ij j

j

q p v
=

+∑ (2.10)

with respect to the alternatives in the thi state. Furthermore, we can use the relative

values (as given by Eq. (2.6)) for the policy that was used up to stage n. The

policy-improvement routine may be summarized as follows: For each state i, find the

alternatives k that maximizes the test quantity

1

N
k k
i ij j

j

q p v
=

+∑

using the relative values determined under the old policy. The alternative k now

becomes id , the decision in the thi state. A new policy has been determined when

this procedure has been performed for every state.

We have now, by somewhat heuristic means, described a method for finding a

policy that is an improvement over our original policy. In [1] it proves that the new

policy will have a higher gain that the old policy. First, however, we shall show how

the value-determination operation and the policy-improvement routine are combined

in an iteration cycle whose objective is to find a policy that has highest gain among all

possible policies. The basic iteration cycle may be diagrammed as shown in Fig. 2.1

 15

Fig 2.1 Iteration cycle

The upper box, the value-determination operation, yields the g and iv

corresponding to a given choice of ijp and iq . The lower box yields the ijp and iq

that increase the gain for a given set of iv . In other words, the value-determination

operation yields values as a function of policy, whereas the policy-improvement

routine yields the policy as a function of the values.

We may enter the iteration cycle in either box. If the value-determination

operation is chosen as the entrance point, an initial policy must be selected. If the

Value-Determination Operation

 Use pij and qi for a given policy to solve

N1,2,...,i
1

=+=+ ∑
=

N

j
jijii vpqvg

 for all relative values vi and g by setting vN to zero.

 Policy-Improvement Routine

 For each state I, find the alternative k` that maximizes

∑
=

+
N

j
j

k
ij

k
i vpq

1

 using the relative values vi of the previous policy. Then k` becomes the n
 new decision in the ith state, qi

k` becomes qi and pij
k` becomes pij.

 16

cycle is to start in the policy-improvement routine, then a starting set of values is

necessary. The selection of an initial policy that maximizes expected immediate

reward is quite satisfactory in the majority of cases.

At this point it would be wise to say a few words about how to stop the iteration

cycle once it has done its job. The rule is quite simple: The final robust policy has

been reached (g is maximized) when the policies on two successive iterations are

identical. In order to prevent the policy-improvement routine from quibbling over

equally good alternatives in a particular state, it is only necessary to require that the

old id be left unchanged if the test quantity for that id is as large as that of any

other alternative in the new policy determination.

In summary, the policy-iteration method just described has the following three

properties:

1. The solution of the sequential decision process is reduced to solving sets of

linear simultaneous equations and subsequent comparisons.

2. Each succeeding policy found in the iteration cycle has a higher gain than the

previous one.

3. The iteration cycle will terminate on the policy that has largest gain attainable

within the realm of the problem; it will usually find this policy in a small

number of iterations.

These three properties are proved in [1].

2.2 Transmission Control Protocol (TCP)

 17

In contrast to a simple demultiplexing protocol like UDP, TCP is a more

sophisticated transport protocol that can provide a reliable, connection-oriented,

byte-stream service, and is widely used to reliably transfer data in computer network.

It has a window based congestion-control mechanism to keep the sender from

overloading the network. TCP never sends more than one window size of packets into

the network. This window size is controlled by a mechanism, which is commonly

called AIMD (additive increase/ multiplicative decrease). The basic idea of the AIMD

mechanism is that TCP keeps increasing the size of congestion window, which limits

how many packets can be transmitted per round trip time (RTT), until it detects that a

packet has been dropped.

There are several different implementations of TCP, like RENO, TAHOE or new

RENO. In our simulation, all of our traffic sources use RENO TCP to send data

packets. RENO TCP includes four mechanisms: slow start, congestion control, fast

retransmit and fast recovery. Its congestion window is controlled by slow start and

congestion control. At the beginning, RENO TCP transmits packet with slow start

mechanism, and each ACK from destination increases congestion window by one.

Until a packet has been dropped in the network, so the destination receives an out of

order packet and it sends an ACK packet with the last in order packet’s sequence

number to the source. Then the fast retransmit mechanism will retransmit the missing

packet and TCP now uses the congestion control mechanism to transmit packet.

 18

Fig 2.2 Packets in transit during additive increase, with one packet being added
each RTT

The Fig 2.2 shows the behavior of the TCP while it still uses slow start to transmit

packet, that means each ACK from destination triggers the source to send two more

packets. According to Fig 2.3, the traffic rate generated by the “Source” might be

considered as the product of the congestion window size and packet size divide by the

value of round trip time. But in general, the round trip time is much larger than the

transmission time, that means the TCP sender generates a short period of burst traffic

per round trip time.

 19

Fig 2.3 TCP window evolution under periodic loss. Each cycle delivers

p
ww 1)
2

(
2
1)

2
(22 =+ packets and takes 2

w round trip times

TCP sender’s throughput is actually depending on the packet drop probability of the

network. In [4], a simplified model of the throughput of a single TCP connection has

been established. The author makes the following assumptions,

1.TCP connection has infinite data to send.

2.A TCP source is running over a lossy path which has a constant round trip time

(RTT), because it has sufficient bandwidth and low enough total load that it never

sustains any queues

3. Approximating random packet loss at constant probability p by assuming that the

link delivers approximately 1/p consecutive packets, followed by one drop

4.The maximum value of the window is W.

After a sufficient long time, the throughput of the TCP connection will become stable

 20

as fig (2.3) and the relation between the throughput of the source and the drop

probability p can be described as

p

CBW
RTT
MSS

= (2.12)

The constant of proportionality (C) lumps together several terms that are typically

constant for a given combination of TCP implementation, ACK strategy (delayed v.s.

non-delayed), and loss mechanism. In Eq (2.12), MSS denotes maximum segment size.

But in practice, there are much more than one TCP connections passing through a

single router or a gateway. Even we know the number of the TCP connections which

are passing through the router or a gateway, the relation between the total throughput

and the drop probability will not be the multiplication of the Eq (2.12) and the number

of TCP connections. But it is believed that the total throughput of the TCP

connections is direct proportion to the square root of the drop probability deployed by

the router.

2.3 Explicit Congestion Notification (ECN)

TCP infers that the network is congested from a packet drop, which is indicated by

retransmit timer timeouts or duplicate acknowledgements. This mechanism can be an

expensive way to detect network congestion. An alternative way for routers or other

network devices to inform TCP senders that network is congested is using ECN

(explicit congestion notification). ECN enhances active queue management, like RED,

that drop packet probabilistically based on the queue state. When ECN is implemented,

 21

packets are marked rather than dropped. As such, congestion information can be

quickly transferred to the source host where the transfer rate can be immediately

adjusted without additional delay in waiting for a duplicated ACK or timeout. As a

result, unnecessary packet drops can be avoided.

In general, TCP should respond to a single marked packet as it would to a lost

packet. That means TCP cuts down the congestion window by halve and reduces the

slow start threshold. The next four sections summarize the modifications TCP need to

implement ECN.

2.3.1 ECN-TCP header

 To cooperate with ECN, TCP needs two additional bits in the header: one to indicate

that the connection is ECN capable (ECT-bit) and another to indicate network

congestion (CE-bit). If a connection uses ECN for congestion control then the ECT-bit

is set to 1 for all packets, otherwise it is set to 0. How a gateway decides which packet

to mark is according to what kind of active queue management mechanism it uses.

 Furthermore, ECN introduces two new flags in the reserved field of the TCP header.

One of them is the ECN echo flag, which is set in an ACK packets by the receiver if

an data packet’s CE-bit has been set. The other flag is the congestion window reduced

(CWR) flag. This flag is set by the sender after it has reduced its congestion window

for receiving congestion notification.

2.3.2 ECN-TCP Gateways

 22

 Gateways may use various kinds of active queue management mechanism, like

RED or BLUE [8]. Gateways supporting ECN can choose to mark arriving packets

instead dropping them.

2.3.3 ECN-TCP Sender

 The sender treats an ECN echo ACK as a lost packet, but without the need to

retransmit the marked packet. Although this ACK acknowledges a data packet, it does

not increase the congestion window. If the sender receives multiple congestion

indications, including timeouts, duplicate ACKs and ECN echo ACK, it should react

just one per RTT to the congestion indication. In the case that a retransmitted packet is

marked or dropped, the sender reacts to congestion indication again. After the sender

responds to a congestion indication, it sets the CWR flag in the next data packet sent

after the reduction of the window.

2.3.4 ECN-TCP Receiver

 The receiver echoes the congestion notification of a CE packet back to the sender.

The receiver will keep setting every ACK packet’s CE bit to 1 until it receives a data

packet with the CWR flag has been set to 1 from sender. This provides robustness in

case an ACK packet with the echo flag set gets lost.

2.4 Random Early Detection (RED)

 23

RED is an active queue management mechanism that is intended to address some of

the shortcomings of standard tail-drop FIFO queue management [3]. In a FIFO queue

it is possible for “lock-out” to occur, a condition in which a small subset of the flows

sharing the link can monopolize the queue during periods of congestion. Flows

generating packets at a high rate can fill up the queue such that packets from flows

generating packets at substantially lower rates have a higher probability of arriving at

the queue when it is full and being discarded. A second problem with a FIFO queue is

that latency is increased for all flows when the queue is constantly full. Simply

making the queue shorter will decrease the latency but negates the possibility of

accommodating brief bursts of traffic without dropping packets unnecessarily. RED

addresses both the lock-out problem by using a random factor in selecting which

packets to drop and the “full queue” problem by dropping packets early, before the

queue fills.

 RED monitors router’s queue length and when it detects that congestion is

imminent, it notifies the source to adjust its congestion window by dropping packets.

RED is invented by Sally Floyed and Van Jacobson in [2]. It has been designed to be

used in conjunction with TCP. The authors say that their goal is to avoid a bias against

bursty traffic. Networks contain connections with a range of burstiness, and gateways

such as Drop Tail and Random Drop gateways have a bias against bursty traffic. With

Drop Tail gateways, the more bursty the traffic from a particular connection, the more

likely it is that the gateway queue will overflow when packets from that connection

arrive at the gateway.(2)

 24

The basic idea of RED is shown in Fig (2.4)

algorithm RED 2.4 Fig

packet arriving mark the
max if else

packet arriving mark the
:py probabilit with
py probabilit calculate

 maxmin if
 size queue average thecalculate

arrivalpacket each for

th

a

a

thth

avg

avg
avg

<

<<

In addition to Fig (2.4), RED needs two more algorithms : one for calculating the

average queue length, one for calculating drop probability. RED uses the following

equation to calculates the drop probability :

 max
)min(max

)min(
 y probabilit drop p

thth

thavg
p

−
−

= (2.13)

and maxp denotes the maximum probability which is used by RED to drop (or mark)

the packet. Eq (2.14) is used to calculate the average queue length

 qwavgwavg qq ⋅−+⋅=)1((2.14)

We now summarize RED’s behavior as follows : when a packet arrives to the router,

RED calculates the value of the average queue size (avg) according to the current

queue size (q) by using Eq(2.14), then uses it to find the drop (or mark) probability

with Eq(2.13).

 25

The authors of [2] classify the network congestion in to two kinds: longer-lived

congestion and transient congestion. The transient congestion increases the size of the

queue temporarily while the longer-lived congestion increases the average queue

length. Among all connections passing through the router, some connections may

generate more bursty traffic than others, so these connections are more likely to cause

transient congestion to happen. Some other congestion control methods, like Random

Drop or Drop-Tail mechanisms, have bias against to burst traffic. By adjusting

probability according to the average queue length, Sally and Van believe that RED is

able to avoid the bias against bursty traffic.

Finally, RED is claimed to provide several benefits, in particular 1) decrease the

end-to-end delay for both responsive (TCP) and non necessarily responsive real-time

traffic (UDP), 2) prevent large number of consecutive packet losses by ensuring

available buffer space even with bursty traffic, and 3) remove the higher loss bias

against bursty traffic observed with Tail Drop.

It has been believed that the performance of RED is highly depending on the value

of the parameters: maxth , minth , maxp and wq. But it is vary difficult to configure

these parameters. In [10], several different experiments have been done to examine

RED’s performance with different parameter settings. It concludes that RED

parameters have a minor impact on the performance with small buffer and using RED

with large buffer indeed can improve the system’s performance.

 But in [5], it concludes that RED avoids the bias against bursty traffic, and that this

 26

results in a significant decrease of the drop rate suffered by bursty traffic only when

the fraction of bursty traffic is small. Otherwise, the main effect of RED is to increase

the drop probability of smooth traffic without improving the drop probability of the

bursty traffic, comparing to Tail drop mechanism. In practice, if we replace "bursty"

with 'TCP" and "smooth" with "interactive UDP audio" for example, and if we note

that TCP makes up the vast majority of Internet traffic, the result above means that the

overall loss rate suffered by TCP connections when going from Tail Drop to RED will

not change much, but that the loss rate suffered by UDPLIP telephony applications

(whether they are rate adaptive or not) will increase significantly.

2.5 Motivation

In this section, we first discuss the difficulty of implementing RED. We now know

that RED is controlled by five parameters: maxth , minth , maxp, wq and buffer size. But

we didn’t show how to set these parameters. We now discuss it in two different criteria.

In [6], they discuss the stability of throughput of TCP connections while the

bottleneck link is using RED. They use the average size of all TCP connections’

congestion windows as an indicator of stability. It shows that even all TCP

connections have the identical round trip time, the average size of the congestion

windows still can oscillate heavily, which means the systems is unstable, if the round

trip time is large. It is because that the traffic from TCP connections only appears a

short period of time per RTT, which means that there is only transient congestion but

no longer-lived congestion and RED tries not to respond to such kind of congestion.

In RED, the parameter wq is used to control the sensitivity to the duration of periods of

congestion and is suggested to be 0.002 [2]. For such small value, while round trip

 27

delay is larger than 140ms, the size of the average window oscillates heavily. In [6],

they conclude that it is the protocol stability more than other factor that determines the

dynamic of TCP/RED. But it is very difficult to develop a new protocol and ask every

one to use it. So, instead of modifying TCP, finding a way to improve RED’s stability

seems to be more practical.

Another way to discuss the stability of TCP/RED is to examine the stability of the

router’s queue length. While system is stable, the instantaneous queue length

oscillates between minth and maxth. In [7], the stability of the queue length has been

analysed and a necessary condition has been proposed as follows. Let C denotes the

link capacity (packets/sec), N denotes the number of TCP sessions , R denotes round

trip time and

δ

)1(log
K ,

minmax
emax q

thth

wP
L

−
=

−
= ,

where δ is the sampling time, see [9]

Then, for K and L satisfy the following condition, the queue length will be stable.

}1,2min{1.0 where

 1
)2(
)(

2

2

2

2

3

RCR
Nw

K
w

N
RCL

g

g

=

+≤

.

 In general, different TCP session will have different round rip time. So in [7], it

mentions that we can use an equivalent round trip time to see if the condition could be

satisfied. In fact, in the presence of heterogenous round trip times for the flows, this

bound should be interpreted for what we call the equivalent round trip time of the

flows. The equivalent round trip is calculated as the harmonic means of the individual

 28

round trip time of the flows. Consider a scenario with N flows having heterogenous

round trip times Ri. The harmonic mean of the round trip times (Req) is given by

 ∑=
N

ieq RNR 1

111 .

From above condition, we can see that the stability of TCP/RED is related to the

network environment. However, how these parameter settings affect the bandwidth

utility and average queuing delay is unidentified. Also, the information of network

environment, like the numbers of TCP session and round trip time of each TCP

connection are not easy to get, and changing all the time. So it is generally considered

that the major difficulty in deploying RED is how to set its parameters.

 According to the previous section, we know that if we want to stabilize TCP/RED

performance, we need to know more information about network environment, like the

number of TCP sessions, round trip time per session or equivalent round trip time.

Some people may try to make RED to dynamically tune these parameters by itself,

like “Adaptive RED algorithm”[11] or “Auto-Tuning algorithm” [12]. But all these

methods still use queue length as an indicator of network congestion. We agree with

that buffer is always needed because TCP session generates bursty traffic and routers

need buffer to contain such burst. But we want to try a more aggressive way to do the

congestion control on routers by controlling the packet arrival rate observed at the

router, so the router can maintain low buffer occupation and maximize the bandwidth

utility at the same time. Also, we want to conclude the effect caused by different

network environments to just one parameter, so the mechanism can be vary easy to

 29

configure.

 30

Chapter 3

Self-Configurable Congestion Control

 In this chapter we are going to develop our method, which can maintain the packet

arrival rate to be 95% of link’s bandwidth in different network environments and

maintain the low buffer occupation. Here, the “different network environments”

means “the different combinations of the TCP sessions’ round trip times”. We first

separate the problem into two parts: the first part is how to achieve our goal, the

second part is to tune our method according to the network environment.

 Since Markov decision process is a convenient tool to find a policy according to the

state space and cost function, which are defined according to our purpose. So we will

use the Markov decision process to control the packet arrival rate, and find a way to

compensate the difference between the reality and our Markov model. Before building

up the model, we first discuss what kind of problem we are dealing with. First, we

assume that we can directly control TCP senders’ throughput with some error by

sending some kind of ‘rate command’ to them. To simplify the problem, we also

assume that all TCP senders have the same round trip time. Once we detect that the

arrival rate is higher then we expected, we shall ask TCP senders to decrease their

throughput lower than the desired value, so the buffer occupation can be decreased.

And to raise the throughput if the current arrival rate is lower than we want. We need

to know when to raise (lower) the throughput and how much to raise (lower) it. We

will use Markov Decision Process to solve this problem.

 31

In reality, TCP senders will respond to packet drops or “marked” ACK packets (if

ECN is implemented) and decrease their throughput. So the “rate command” is given

in the form of packet drop probability. We need three mechanisms to achieve our goal,

one to generate policy according to different error, one to determine the effect of the

error, and one to find out the relation between drop probability and packets arrival

rate.

3.1 Model for MDP

We use MDP to generate our desired policy and we will start to build a Markov

decision process to generate our desired policy from now on. We first define the

discrete state space as the packet arrival rate, since our goal is to control the packet

arrival rate, which is measured in the percentage of the target bandwidth. Let S

denotes the state space, then S={10,20, ... ,200}, which represents 10% to 200% of

target bandwidth. And we assume at each state, we can give “rate commands” to

control TCP sessions’ throughput. We define these “rate commands” to be our action

space A, A={15,25,35,45,50,60,76,86,90,94,95,96,97,98,99,105,110,120,130,140}.

Each action represents the amount of the target bandwidth (measured in percentage).

An essential part of Markov is the state transition probability, but such kind of

transition probability of TCP traffic is very hard to determine. Instead of using

complicated model, we try to build up a simplified model that can satisfy our need.

Another important issue is that we shall conclude the effect of real network

environment on just one parameter, so we can let the model to configure this

parameter by its own self to reduce the difference between our model and the reality.

 32

Obviously, there is no such technique can help us to build up our model, and such

kind of model has not yet been seen. So we build a model that can generate our

desired policy first, then we analyze our model later to see if it is reasonable. We

conclude the properties of our policy as follows: 1. While the arrival rate is larger than

100% of bandwidth, we should ask TCP senders to decrease their throughput lower

than 100% of bandwidth to decrease the queue length; 2. While the arrival rate is

smaller than 100% of bandwidth, we should ask TCP senders to increase their

throughput larger than 100% of bandwidth to increase the queue length; 3. By

changing just one parameter, the Markov decision process should be able to generate a

new policy. We use MDP to decide when to decrease the rate and how much should it

decrease. We try to use normal random variables to generate state transition

probability. The reason of choosing normal random variable is that we can easily

control its mean and deviation to generate our desired policy.

 After merely infinite trials, we conclude that state transition probability for a

transition from state i to state j by choosing action k (k
ijP) should be in the following

form:

(3.1) 20jfor , -1

1jfor ,]][[

19j2for ,)]
2

]1[][()
2

]1[][[(

19

1j
∑
=

==

=≤=

≤≤
++

≤<
−+

=

k
ij

k
i

k
i

k
ij

p

jstateNp

jstatejstateNjstatejstatepP

and the variable k
iN denotes the normal random variable we used to generate

transition probability. It’s mean and deviation is defined in the following equations :

 33

(3.3) . *)1(*][100 deviation

(3.2)][*)1(][*mean k
i

αασ

ααμ

errorkaction
istatekaction

k
i +−−=

−+=

The parameter α and error are used to represent the effect of the real network

environment, and we can configure the value of them to reduce the difference between

our model and the reality. We will explain their roles and functionality later. And the

immediate cost is defined to be :

][100 istaterij −= . (3.4)

So we are looking for a policy that can minimize the cost. Such policy will keep

arrival rate approaching to 100% of target bandwidth. If we set α to be 0.9 and

error to be 40, then we can use the method introduced in section (2.1) to find the

policy. In general, it takes only 5 iterations to find the policy. The result is shown in

table (3.1)

State 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Action 105 105 105 105 105 99 99 99 99 99 99 99 99 99 99 98 97 95 94 94

Table(3.1) policy obtained by iteration method forα=0.9, error=40

And the lost of the Markov process is 28.730847. This means that under such policy

in average the instantaneous packet arrival rate is about [1 +
− (0.28730847)]*(target

bandwidth). We try to maintain the average packet arrival rate to be the target

bandwidth by using policy that can minimize the lost. And simply by changing the

 34

value ofα, we can generate different policy as in Table (3.2).

α

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

10 105 110 120 130 130 140 140 140 140

20 105 110 120 120 130 130 140 140 140

30 105 105 110 110 120 130 130 140 140

40 105 105 110 105 120 120 120 130 130

50 105 105 105 105 110 110 120 120 120

60 99 105 105 105 105 105 110 110 110

70 99 99 99 99 105 105 105 105 105

80 99 99 99 99 99 99 99 99 99

90 99 99 99 99 99 99 99 99 99

100 99 99 99 99 99 99 99 99 99

110 99 99 99 99 99 99 99 99 99

120 99 99 99 99 99 99 99 99 97

130 99 99 99 99 99 99 97 95 90

140 99 99 99 98 96 94 90 90 86

150 99 97 96 94 90 86 86 76 76

160 98 95 90 90 86 86 76 76 60

170 97 94 90 86 76 76 76 60 50

180 95 90 86 76 76 60 60 50 35

190 94 86 76 76 60 60 50 35 25

200 94 86 76 76 60 60 45 25 15

Table 3.2 policy for differentα, error=40

and the corresponding “lost” for each α is:

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

“lost” 9.4158 11.6888 13.9770 16.2859 18.6062 20.9794 23.4336 26.0079 28.7308

 Table 3.3 “lost” value of different α

 From table(3.2), we can see that for largerα, the policy becomes more aggressive.

So if current state is much larger than target bandwidth, the policy will decrease the

TCP senders’ throughput significantly.

3.2 Self-configuring mechanism

 35

 In our model, we have two parameter need to be configured: α and error.

However, our current technique can only dynamically adjust one of them. Because

that a different policy correlates to a different value of ‘lost’. So, we can use the

value of gain to connect between the Markov process and the real network

environment. For example, we can first assume the error is very large, so we let α

to be 0.91 and use Markov decision process to find the policy. Then we use the

policy to control the arrival rate and record the immediate cost as the system transits

between states. After a while, we can obtain the real value of the system’s lost, and

we can use this value to find the corresponding value of α. Then, we can use the

new α to find a new policy. We define tg to be the average of immediate cost

over time, so gt is actually the “lost” of the Markov process, and update tg in the

following way:

t

rg
gg tt

tt

−
+= −

−
1

1 (3.5)

 In eq(3.5), t denotes the number of stages, and tr denotes the immediate cost we

observed at stage t. So after we obtain the new value of tg , we will find the value

ofα according to the table (3.3) and generate a new policy.

 3.3 Calculate Drop probability

 Now, we already build a Marko decision process to generate the policy, and a

 36

update rule to tune our Markov decision process according to the real network. So

the last thing we have to do is to find out the relation between drop probability and

TCP senders’ throughput. From eq(2.12) , we define 'C to be :

pBWC ⋅⋅=' (3.3)

We find 'C according to the history. We record the packet arrival rate and drop

probabilities we deployed in the past 500ms. Let avgrate denotes the average

packet arrival rate in the past 500ms, and avgp denotes the average drop

probability in the past 500ms. Now we can use 'C to calculate the corresponding

drop probability for each action :

 2)]action/100*bandwidthtarget /('[yprobabilit drop C= . (3.4)

For example, by setting target bandwidth to be 50, which means 50 Mbytes/sec, and

'C to 10, then table (3.2) can be translate into table (3.4). Under this assumption,

the corresponding drop probability of the action ‘15’ is larger then 1, which is

unreasonable. So we limit the maximum drop probability to be 0.8.

 37

α

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

10 0.036 0.033 0.028 0.024 0.024 0.02 0.02 0.02 0.02

20 0.036 0.033 0.028 0.028 0.024 0.024 0.02 0.02 0.02

30 0.036 0.036 0.033 0.033 0.028 0.024 0.024 0.02 0.02

40 0.036 0.036 0.033 0.036 0.028 0.028 0.028 0.024 0.024

50 0.036 0.036 0.036 0.036 0.033 0.033 0.028 0.028 0.028

60 0.041 0.036 0.036 0.036 0.036 0.036 0.033 0.033 0.033

70 0.041 0.041 0.041 0.041 0.036 0.036 0.036 0.036 0.036

80 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041

90 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041

100 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041

110 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041

120 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.043

130 0.041 0.041 0.041 0.041 0.041 0.041 0.043 0.044 0.049

140 0.041 0.041 0.041 0.042 0.043 0.045 0.049 0.049 0.054

150 0.041 0.043 0.043 0.045 0.049 0.054 0.054 0.069 0.069

160 0.042 0.044 0.049 0.049 0.054 0.054 0.069 0.069 0.1

170 0.043 0.045 0.049 0.054 0.069 0.069 0.069 0.1 0.16

180 0.044 0.049 0.054 0.069 0.069 0.1 0.1 0.16 0.327

190 0.045 0.054 0.069 0.069 0.1 0.1 0.16 0.327 0.64

200 0.045 0.054 0.069 0.069 0.1 0.1 0.198 0.64 0.8

Table 3.4 drop probability for differentα, error=40

For example, if we change drop probability every 1 ms, according to how many

packets arrived in the past 1ms, then the mechanism can be shown in fig (3.1)

 38

 Fig (3.1) proposd congestion control mechanism

 Fig (3.1) shows our congestion control mechanism, we update packet drop

 39

probability every 1ms according to it. We use p_history[i] and rate_history[i] to

record the drop probability we deployed and packet arrival rate, and calculate the

average rate and average drop probability over past 500 ms according to the record.

3.4 MORE about Markov model

 We will explain the function of a special term ‘error’ in our Markov model in this

section. This term appears in the transition probability, and need to be set manually.

The relation between the ‘lost’ and the value of ‘error’ is shown in table (3.5)

error 10 20 30 40 50 60 70 80

range of 'lost'

for α=0.1~0.9

0.58

~6.96

4.50

~14.34

7.58

~21.59

9.41

~28.73

11.11

~35.44

12.72

~41.47

14.28

~46.71

15.81

~51.20

Table (3.5) Range of ‘lost’ of different α.

So we can see that the parameter ‘error’ can be used to choose the range of lost. If the

error is set to be too small, our self-configuring mechanism will not work. For

example, controlling the packet arrival rate to be maintained in the range of

(1± 6.96%) target bandwidth seems to be not possible. So we suggest that the value of

error should be set larger than 40. The table (3.6) shows the policy while error is 80.

 40

α

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

10 99 105 105 110 120 130 140 140 140

20 99 105 105 105 110 120 130 140 140

30 99 99 105 105 105 110 120 130 140

40 99 99 99 105 105 105 110 120 140

50 99 99 99 99 105 105 105 110 120

60 99 99 99 99 99 99 99 105 110

70 99 99 99 99 99 99 99 99 105

80 99 99 99 99 99 99 99 99 99

90 99 99 99 99 99 99 99 99 99

100 99 99 99 99 99 99 99 99 99

110 99 99 99 99 99 99 99 99 99

120 99 99 99 99 99 99 99 99 99

130 99 99 99 99 99 99 99 98 96

140 99 99 99 99 99 99 99 90 86

150 99 99 99 99 99 99 98 76 76

160 98 98 99 99 99 96 90 76 60

170 97 97 99 97 94 90 76 60 50

180 96 96 95 94 86 76 70 60 45

190 95 95 90 86 76 76 60 45 35

200 94 94 86 86 76 60 50 35 25

Table 3.6 policy for differentα, error=80

 We start to analyze our model now by discussing the mean. As we can see, if α is

larger, the mean dependents on our action more than our current state.

 41

 Chapter 4

Simulation

In this chapter, we describe our simulator and simulated network topology. Our

simulator is designed by using Rhapsody version 5.01.

4.1 UML Simulator design

The object model diagram of our simulator is shown in Fig (4.1).

Fig(4.1) Object model diagram of our simulator

The class ‘tcp’ is modified from two files of NS version 2.29 :tcp.cc, tcp-reno.cc.

Despite the TCP protocol, a traffic generator and a duplex link with infinite sized

buffer also specified in the class ‘tcp’. Basically, we can replace the following

representation of NS by using a single instance of ‘tcp’ class.

set n0 [$ns node]

 42

$ns duplex-link $n0 $n2 2Mb 10ms DropTail
set tcp [new Agent/TCP/Newreno]
$ns attach-agent $n0 $tcp
set ftp [new Application/FTP]
$ftp attach-agent $tcp
$ftp set type_ FTP

 The class ‘Sink’ is designed to ACK each TCP packets. The size of its receiving

buffer is designed to be 200 packets. It also has ability to support ECN technology.

Like the ‘tcp’ class, it also includes a duplex link with infinite sized buffer in it. The

following representation of NS can be replaced by a single instance of the class ‘sink’:

set n4 [$ns node]
$ns duplex-link $n3 $n4 0.5Mb 40ms DropTail
set sink [new Agent/TCPSink]
$ns attach-agent $n4 $sink

The class ‘link’ specifies a simplex link with finite buffer in NS. It also specifies an

RED algorithm from [2] to perform congestion control. This function can be disabled,

so the buffer is simply controlled by tail drop mechanism. The following

representation of NS can be replaced by a single instance of the class ‘link’:

$ns simplex-link $n2 $n3 0.3Mb 100ms DropTail

 The ‘packet’ class is used to simulate the network packet in the real world. It uses

an array to record each link it has to passing through to reach the destination. And it

also has necessary attributes that can be used to support ECN.

The instance of ‘sysclock’ class not only counts time, but also links to each

instances of class ‘tcp’, ‘sink’ and ‘link’. It routes packet through links to its

destination (TCP sender or sink receiver) according to the rout information recorded

on the ‘packet’. Finally, the ‘markov’ class specifies our proposed congestion control

mechanism. So, each link can choose to use Tail Drop, RED, or our mechanism to do

 43

congestion control.

4.2 Network topology

Fig (4.2) network model

Consider Fig (4.1), there are several TCP senders sending data packet through a

bottleneck link L1, and TCP sinks sending ‘ACKs’ back through L2. Each of L1 and

L2 uses an AQM (active queue management) method to control the length of queue.

We assume that L2 has a sufficient large capacity and uses FIFO to manage the buffer,

so ‘ACKs’ from TCP sinks will never be marked or dropped. Also, we assume that

links t1,t2,..,tN and s1,s2,..,sN have very large capacity. The above assumption

guarantees that TCP senders sense a packet drop event only because that a data packet

has been dropped by L1’s AQM or buffer overflowed on L1. We also assume that

delays of links t1,t2,…,tN and s1,s2,…sN, may be different so each TCP session may

have different round trip time. If we can control the aggregate traffic rate from TCP

senders T1 to TN to be 95% of link L1’s bandwidth, then the queue length of L1 will

 44

be small almost every time.

 In our simulation, all of our senders using RENO TCP with ECN support to

provide congestion control, which is implemented according to ns2. And sink will

‘ACK’ to each packet. Our senders can generate two different kinds of traffic with

fixed packet size: short burst traffic and persistent traffic. Senders generate persistent

traffic will keep sending packets as many as congestion window allowed. Sender

generates short burst traffic sends 11 packets at first, after receiving all the ‘ACKs’ it

waits an exponential distributed random time with a mean of 350 msec then sends

another 11 packets. We implement our congestion control mechanism as L1’s AQM,

and L2’s buffer is simply controlled by FIFO. During all our experiment, the L1’s

bandwidth is set to be 50 Mbytes and the L2’s bandwidth is set to be 100 Mbytes. So,

it takes 20μsec for L1 to transmits a data packet and 10μsec for L2 to transmits an

‘ACK’packet. We also set the bandwidths of links t1,t2,…,tN and s1,s2,…sN to be 100

Mbytes. The maximum size of queue of L1 is 1000 packets. And the maximum size of

queue of L2 is set to be very large to guarantee that the ‘ACK’ packets will never be

dropped.

4.3 simulation results

 In this section, we demonstrate how different environments affect the performance

of TCP/RED and proposed congestion control mechanism. RED parameters is set as

follows :

packets. 1000sizebuffer

 ,02.0 wpackets, 50min packets, 750max ,1.0max qthth

=

====p

We set the target bandwidth of our congestion control mechanism as 47.5MB/s, which

is 95% of bottleneck link’s bandwidth, and the parameter ‘error’ to be 40. We test both

 45

RED and our congestion control mechanism under several different network

environments to demonstrate that while RED’s performance is highly dependent on

the environment, our mechanism can always keep good performance.

4.3.1 Identical delay

 In the first experiment, we use 200 TCP sessions with identical delays to test

TCP/RED’s performance. This experiment shows how different round trip delays can

cause critical effect to TCP/RED’s performance. In the first case, we set the round trip

delay to be 40 ms. Under this condition, TCP/RED’s performance is quit well, it

achieve 100% bandwidth utility and control the average queue length at 156.2 packets.

But our mechanism can do even better, our mechanism control the average queue

length at 6.09 packets and bandwidth utility is 95%. In the second experiment, we set

the round trip time to be 140ms. The result shows in Fig 5.6, although the average

queue length is maintained at 56.5 packets, and no buffer overflow happens after it

become stable. But the bandwidth utility is down to 74.8% of bottleneck link’s

bandwidth. Our mechanism still can maintain the 95% bandwidth utility and the

average queue length is maintained at 19.7 packets. From these two experiments, we

can see that RED

Fig 4.3 value of α of 200 TCP sessions with 40msec round trip time

(Proposed mechanism)

 46

Fig 4.4 queue status of 200 TCP sessions with 40ms round trip time

(Proposed mechanism)

Fig 4.5 queue status of 200 TCP sessions with 40ms round trip time

(RED)

Fig 4.6 value of α of 200 TCP sessions with 140msec round trip time

(Proposed mechanism)

 47

Fig 4.7 queue status of 200 TCP sessions with 140msec

(Proposed mechanism)

Fig 4.8 queue status of 200 TCP sessions with 140ms round trip time

(RED)

4.3.2 Different amount of TCP session

 As mentioned in the previous chapter, TCP/RED’s stability and performance can be

improved by increasing the number of TCP sessions. So we fixed the round trip time

to be 140 ms, and increase the number of TCP sessions to see how the performances

of TCP/RED and our mechanism are affected by it. Unlike RED, our mechanism can

 48

maintain the average queue length at a very small value even the amount of TCP

sessions increases to 1000. But when the number of TCP sessions is small, the

average queue length is higher. We briefly explain this behavior as follows: Assume

the bottleneck link’s bandwidth is equally shared by all sessions, then from eq (2.1)

we can get that the proper drop probability for maintaining the bandwidth utility at

95% is less then 410*8 − , with such small drop probability, the packets are rarely

being marked, so the average queue length can be a larger. And from fig (5.6), fig (5.8)

and fig (5.11), we can see as the number of TCP sessions increases, the average queue

length and throughput increase, too. TCP sessions’ throughput depends on the packet

mark (drop) probability it suffers over all the links it passes through.

Fig 4.9 value of α of 1000 TCP sessions with RTT=140ms

(Proposed mechanism)

 49

Fig 4.10 queue status of 1000 TCP sessions with RTT=140ms

(Proposed mechanism)

Fig 4.11 queue status of 1000 TCP sessions with RTT=140ms

(RED)

 50

Fig 4.12 value of α of 500 TCP sessions with RTT=140ms

Fig 4.13 queue status of 500 TCP sessions with RTT=140ms

(Proposed method)

 51

Fig 4.14 queue status of 500 TCP sessions with RTT=140ms

(RED)

4.3.3 Heterogeneous delays

In this experiment, we set the TCP sessions to have different round trip delays (in

the range of 30msec~140msec). This is more like real network environment than

identical delays. Under this situation, things get more complicated. In the previous

experiments, we see that for 140ms round trip delay, theα should be 0.3 . Since for

the same drop probability, each TCP session now generate different throughput, so

our congestion control suffer larger noise now. As a result, the maximum value of

instantaneous queue size and average queue size all becomes larger, but the average

throughput still can maintain at 95% of bottleneck link’s bandwidth.

 52

Fig 4.15 value of α queue status of 100 TCP sessions with round trip
delay=30~140 msec

Fig 4.16 queue status of 100 TCP sessions with round trip delay=30~140 msec

(Proposed method)

 53

Fig 4.17 queue status of 100 TCP sessions with round trip delay=30~140 msec

(RED)

Fig 4.18 value of α of 500 TCP sessions with round trip delay=30~140 msec

 54

Fig 4.19 queue status of 500 TCP sessions with round trip delay=30~140 msec

(Proposed method)

Fig 4.20 queue status of 500 TCP sessions with round trip delay=30~140 msec

(RED)

4.3.4 With and without update mechanism

In the last experiment, we show that the update mechanism indeed can find the

proper policy. We use 500 TCP sessions with heterogeneous delays in the range of

30~140 msec, and the same settings of our mechanism as in section 3.4. But we

choose the value ofα manually, and fixed them for all time. The result is shown in

table 4.1. According to table 3.4, the drop probability becomes larger as theα

 55

becomes smaller. Obviously, when the drop probability is too large, the throughput

becomes smaller than we want. With the help of our update mechanism, our

congestion control can fin the proper policy that can maintain 95% of bandwidth

utility.

 α

state 0.1 0.6 0.9 update
average queue
length 22.3632 40.082 47.45 37.2

average arrrival rat40.5MB/s 46.4MB/s 45.2MB/s 47.2MB/s
Table 4.1 performance of our mechanism with and without update mechanism

 56

Chapter 5

Conclusion

 Since RED has been published, a lot of researchers try to analyze its behavior, and

dozens of ways about how to tune RED’s parameters have been announced. There are

also many different forms of RED-like congestion control algorithms have been

proposed. However, all of them focus on controlling the queue length and use

queue-based control mechanism to avoid buffer overflow, which leads them to

nowhere. RED claims that it can provide many benefits like avoiding synchronization,

avoiding buffer overflow, and providing some kind of fairness, but it has never been

widely deployed. In this thesis, we focus on controlling the arrival rate instead of

queue length. The idea is that if we can maintain the arrival rate to be 95% of link’s

bandwidth, then buffer occupancy should be low or zero. Such kind of rate-based

congestion control has not yet been developed because the difficulty on modeling

TCP’s throughput. It can be very difficult to build up a math model that captures the

characteristics of real TCP’s throughput behavior. However, it is much easier to build

up a model for MDP to generate a policy that satisfies some general concepts. In this

thesis, we develop a simplified model for MDP and an assistant mechanism that can

minimize the difference between our simplified model and the reality. The result

shows that our algorithm indeed can outperform RED on maintaining the low buffer

occupancy and high bandwidth utility.

 57

References

[1] Ronald A. Howard, “Dynamic Programming and Markov Process”

[2] Sally Floyd and Van Jacobson, “Random Early Detection Gateways for

congestion Avoidance”, IEEE/ACM Transactions on Networking, August,

1993.

[3] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S.Floyd,

V.Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S.

Shenker, J. Wroclawski, and L. Zhang, “Recommendations on queue

management and congestion avoidance in the Internet,”, RFC2309, Apr. 1998.

[4] Mathis, M., Semke, J. Mahdavi, J. and Ott, T.J. (1997), “The Macroscopic

Behavior of the TCP Congestion Avoidance Algorithm”. Computer

Communications Review 27 (3), pp 67 - 82 (July 1997).

[5] Martin May, Thomas Bonald, and Jean- Chrysostome Bolot, “Analytic

evaluation of RED performance,” in Proceedings of IEEE infocom, March

 2000

[6] Steven H .Low, Fernando Paganini, Jiantao Wang, Sachin Adlakha, John

C.Doyle, “Dynamics of TCP/RED and a Scalable Control” , Proceedings of

IEEE Infocom, June 2002

[7] C.V.Hollot, Vishal Misra, Don Towsley and Wei-Bo Gong, “A Control

 58

Theoretical analysis of RED”, IEEE infocom 2001.

 [8] W. Feong, D.Kandlur, D.Saha, and K. Shin, “The Blue active queue

management algorithms”, IEEE IEEE/ACM Transactions on Networking

(TON) Volume 10, Issue 4 (August 2002) Pages: 513-528, 2002.

 [9] Vishal Misra, Don Towsley and Wei-Bo Gong, “Fluid based Analysis of a

network of AQM Routers supporting TCP Flows with an Application to RED”

in Proceedings of ACM/SIGCOMM. 2000

 [10] Martin May, Jean Bolot, Christophe Diot, and Bryan Lyles, “Reasons not to

deploy RED”, In Proc. of 7th Int. Workshop on Quality of Service

(IWQoS ’99), London, pages 260–262, June 1999.

 [11] W.-C. Fmg, D.D. Kandlur, D. Saha, and K.G. Shin, "A Self Configwing RED

Gatnuay:' Pmceedingr of IEEE INFOCOM '99, pp. 1320 -1328, Mar 1999.

Eiahteenth Annual Joint Confcmee of the IEEE Computer and Communication

Societies

[12] Harsha Sirisena, Aun Haider and Krzysztof Pawlikowski, “Auto-Tuning RED

for Accurate Queue Control”, Global Telecommunications conference, 2002,

IEEE

 [13] Victor Firoiu, Marty Borden, “A Study of Active Queue Management for

Congestion”, Infocom 2000, TelAviv, Israel, March 2000

