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Student : Chien-Hua Chen Advisor : Kai-Ten Feng

Department of Communication Engineering
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Abstract

The wireless location estimation techniques have been wildly investigated with
the trend of commercial applications in recent years. Various types of radio
signals can be used to develop the location, estimation algorithms. In this thesis,
the range measurements transferred from-the received time-based information
are first linearized to utilize the Least Square (LS) method. The practical issues
such as the Non-Line-of-Sight{(NLOS)-errors and the Geometric-Dilution-of-
Precision (GDOP) effect are cancerned. The NLOS errors will cause a large
positive bias while measuring the time information. On the other hand, the poor
geometric layout will raise the GDOP value and reduce the accuracy of a location
algorithm. The proposed VBS (Virtual Base Stations) algorithm mitigates the
influence of the NLOS errors by adding some geometric constraints and reduces
the GDOP effect by joining the assisted virtual base stations. The proposed VBS
algorithm is compared with several existing location algorithms via simulations.
The performance is comparably better than other methods, especially in the
environments with large NLOS errors and poor geometric layout.
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Chapter 1

Introduction

Wireless positioning techniques have been wildly studied over the past few decades. Today,
more and more commercial applications such as the navigation system, the location-based
billing, and the Intelligent Transportation System (ITS) need to cooperate their own processes
with the information from the positigning systems:.After the issue of the emergency 911 (E-
911) subscriber safety service, theQoS of the positioning accuracy has been first-time defined.
The importance and the requirements of the positioning techniques in many fields excite the
research in this domain. Because, of such interests and demands in location-based services
(LBSs) , the studies of a new location’estimation scheme considers different environment
properties has been carried out.

The time-based information, said the Time-of-Arrival (TOA), is directly proportional to
the distance between the transmitter (i.e. Mobile Station or MS) and the receiver (i.e. Base
Station or BS). With simply multiplying by the speed of light, the distance above can be easily
obtained. As presented in Fig. 1.1.(a), a range circle with a receiver being the center and the
corresponding measured distance being the radius can be obtained from each communication
channel. Evidently, every single point on such a circle represents a possible location of the
wanted MS. The circles of two different base stations (BSs) will intersect at two points without
considering the special cases of tangency and non-intersection. Three range circles are the

least information required to acquire an unique point. This result can be applied to the
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Figure 1.1: Position Determination ‘Methods: (a) Time of Arrival (b)Time Difference of
Arrival (¢) Angel of Arrival

satellite-based and the network-based location schemes which are two major categories in
existing wireless location systems.

The concept of time difference can also be used to solve the problem of positioning in
the network-based system. Since the propagation time and distance between each pair of a
BS and an MS are closely related, the difference of two measured time information can be
associated with that of two measured distances in thinking. A hyperbola curve with two BSs
as the foci can be introduced from the formulation of the difference of two distances. The
intersection of two hyperbola curves will be viewed as the position of the MS, as shown in Fig.

1.1.(b). Hence the information of the Time-Difference-of-Arrival (TDOA) can be transformed



into a geometric relationship and applied in the application of positioning. The extra demand
in the network-based system utilizing the TDOA scheme is that synchronization of the BSs
is necessary.

In a two-dimensional (2-D) scenario, an object can be localized with hybrid time and/or
angle information. The Angle-of-Arrival (AOA) , also known as the Direction-of-Arrival
(DOA) , can be adopted to proceed the task of positioning. On a reference coordinates, a
line from a BS to the MS can produce an angle. It requires at least two lines that intersect
with each other to locate the MS in the AOA scheme as shown in Fig. 1.1.(c). With the
uncertainty of the position of MS, antenna arrays or multi-dimensional antenna are needed
for every BS to obtain the direction.

The TOA, TDOA and AOA information mentioned above can be utilized individually
or can be cooperated with each other in a network-based location estimation system [1] [2].
Since the expression of the distance contains inherently nonlinear terms, many mathematical
solutions can not be adopted to solve the problem. Therefore, linearized approaches are
applied to re-formulate the expression and estimate the position of MS [3]. However, one
thing to be emphasized is that only the Line-of-Sight (LOS) case is concerned in these location
methods. In this thesis, more realistic.noise and interference are considered. A VBS scheme
is proposed to estimate the location of MS under the considerations of NLOS (Non-Lone-of-
Sight) and GDOP (Geometric-Dilution-of-Precision).

The remainder of this thesis is organized as follows. The related work, including the
mathematical modeling, the existing location estimation algorithms, the propagation noise,
and the GDOP effect, is briefly described in chapter 2. The observation from GDOP and the
formulation of the VBS algorithm are discussed in chapter 3. The performance evaluations
are shown in chapter 4, followed by the conclusions remark in chapter 5. The reference is

outlined in the last part.



Chapter 2

Related Work

2.1 Mathematical Modeling

The mathematical models for the TOA, TDOA, and AOA measurements are summarized

as follows. The TOA measurement ¢, fiom the £ BS is obtained by

1
t, = [ AW W 0 | (2.1)
&l e
where c¢ is the speed of light, and % represents thé imeasured relative distance between the
MS and the ¢*" BS contaminated with the TOA measurement noise ny. The noiseless relative

distance ¢, between the MS and the ¢** BS can be obtained as

G =z — =z (2.2)

where & = (z, y) represents the MS’s position, and x, = (x4, y;) is the location of the ¢

BS in the 2-D setting; while in the 3-D formulation, = (z, y, z) and &, = (x¢, ye, z¢). On
the other hand, the TDOA measurement ¢; ; is obtained by computing the time difference
between the MS w.r.t. the i** and the j*" BSs as:

ri; 1
tij = % =G —G)tni—n (2.3)



where n; and n; represent the measurement noises from the MS to the it" and the j*" BSs.
Since it is assumed that the antenna arrays at the home BS can only measure the incoming
signals along the x and y directions, the AOA measurement 6 of the cellular system is obtained
as

Yy—1hn
r — I

0 = tan™Y( )+ ng (2.4)

where 6 represents the horizontal angle between the MS and its home BS. (z1, y1) is the

horizontal coordinate of the home BS, and ng is the measurement noise associated with 6.

2.2 Studies on Existing Location Estimation Algorithms

Different location estimation schemes have been proposed to acquire the MS’s position.
Various types of information (e.g. the signal propagation time, the received angle of the signal,
or the Receiving Signal Strength (RSS)) are involved to facilitated the algorithms design for
location estimation. The primary=objectives|in most of the location estimation algorithms are

to obtain higher estimation accuracy with promoted computational efficiency.

2.2.1 The Subspace Method

The subspace method is also known as the super-resolution method or the high-resolution
method. The multiple radio wave fronts or the superposition of them are received by sensor
arrays at a receiver. It utilizes the eigendecomposition or the eigenanalysis process of the
cross-correlation matrix to generate the estimates of some particular parameters contained in
the signals. These parameters can be the number of signals, the AOA information, the signal
strength, the noise strength or the characteristic (like gain, phase and polarization) of the an-
tennas. The most well-known super-resolution algorithm is the MUItiple SIgnal Classification
(MUSIC), which can be implemented as an unbiased estimator asymptotically. The MUSIC
scheme studied in [4] considers arbitrary-located antennas and a particular covariance matrix

within a noisy environment.
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Figure 2.1: Geometric Description of Three-Antenna Case

As shown in Fig. 2.1, multiple trafismitted signal wavefronts arrival with varies directions.
The incident signal vectors a(6;) and a(fs)-can construct the range space a. The vectors Eq,
E> and Eg3 are the eigenvectors ¢f the covariance matriﬁc S of the received vector r. The \q,
Ao and Ag are the corresponding &igenvalues-and \;>" Ao > A3 > 0. The signal subspace S,
can be generated by the vectors E; and BEawwhile the vector E5 can form the noise space. The
received vector r can be represented as the linear combination of the vector E;, Eo and Es.
The AOA parameter can be solved by intersecting the vector a and the signal subspace S;.

The MUSIC scheme is experimentally illustrated to be a robust solution for location
estimation, especially for a near-far environment. Over fading channels, the estimator in [5]
applying the MUSIC identification method intents to estimate the propagation delay of the
received signal in a DS-CDMA system. In [6], the variance of the MUSIC signal source
location estimates is derived and the synthetic formulation can be adopted to the correlation
matrix of a biased estimator. However, it has also be shown in [7] and [8] that the drawbacks
of the MUSIC approach include (i) comparably high sensitivity to large noise and (ii) its

complexity in computation.
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2.2.2 The Beamforming Method

The beamforming system is a space-time processor that operates on the output of sensor
arrays. The received temporal signal with spatial wavefront being a function of its unknown
MS’s position can be proceeded to locate multiple MSs, restrain interferences, and mitigate
noise. It supports spatial filtering capability by enhancing the amplitude of a coherent signal
associated with surrounding noises. The conventional adaptive beamforming technique is
sensitive to the estimation error of the position of MS. Signal distortion or cancellation will
be introduced in the iterative process.

A combination of localization and beamforming is proposed as in [9]. It utilizing the MU-
SIC scheme to provide the ability of self-correcting and increase the robustness to locate errors
without sacrificing the computation efficiency under the assumption that the number of MS
and the characteristic of the noise are known. An enhanced algorithm for simultaneous multi-
source beamforming and adaptive multi-target tracking is studied in [10]. The correlation
between the adaptive minimum variance (MV) beamforming and the optimal source localiza-
tion is also investigated and developed as in'{11]. ‘Under.equal priors, it shows that the optimal
source localization decision rule {i.e. the log-likelihood function) is directly proportional to

the output power of the adaptive MV. beamformer:

2.2.3 The Fingerprinting Method

Instead of exploiting the spatial and temporal information of the signal, the location
fingerprinting technique locates the MS based on the received signal strength (RSS) .

The fingerprinting technique involves both the off-line and the on-line phases. First in the
off-line mode, the location fingerprinting senses the RSS from multiple access points (AP) in a
802.11 wireless local area network. A location-scanned database is stored in a sink node and a
rectangular grid network covered a specific service area is ready as a radio map after collecting
enough statistical data. The location fingerprinting means the signal strength value at a grid
point of the radio map. The second mode comes with the on-line phase in real-time processes.

When a radio signal is received at multiple access points, a measured RSS vector can be

11



obtained and is used to compare with the location fingerprinting map at the sink node. In
order to minimize the error of location estimation, it generally applies a proximity-matching
method, like Euclidean distance, to figure out the position of the MS.

The characteristics of radio signals in indoor environments are discussed in [12]. For
WLAN location fingerprinting, the distribution of RSS is usually not Gaussian, and its stan-
dard deviation is signal-level dependent. In addition, it demonstrates that the effect of the
existence or movement of persons apparently affects the location fingerprinting and the infor-
mation of the changes should be recorded on the sink node. In [13], a method for arranging
and designing parameters is proposed when considering deploying a indoor positioning sys-
tem. A hybrid algorithm, which combines the RF propagation loss model, is proposed to both

mitigate the requirement of the training data and to adjust the configuration changes [14].

2.2.4 The Ray-Optical Approach

The ray-tracing and ray-launching techniques are the two ray optical approaches for lo-
cation estimation. The radio signals that|are launched from a transmitter and reflected or
diffracted by various objects are‘aggregatedin a receiver. The rays are treated as the traces
of radio signals and are summed®individually to determine the corresponding electric field
strengths.

In the method of ray-tracing, the generation of a image comes with a reflection of a ray. As
shown in Fig. 2.2.(a), the images T1 and T2 are relative to the transmitter T. High accuracy
can be achieved by tracking each trace apart, but the cost of high computation time can not
avoid. In the ray-launching approach, as illustrated in Fig. 2.2.(b), rays launched from the
transmitter reflect and diffract across the indoor circumstance. Every time a ray reflect from
a wall or diffract by a cone, the number of intersections will be added by 1 and the field will
be accumulated. When the number of intersection or path loss exceed a threshold, the tracing
of a ray will stop. One thing to be emphasized is that a vast amount of diffracted rays may
be introduced and heavily increase the load of the location system.

Experimental formulas from extensive measurements of urban and suburban propagation

12
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losses are studied as in [15] [16]. The unknown indoor parameters, such as materials, layouts
will significantly affect the propagation predictions of rays. An indoor micro cell area pre-
diction system is proposed in [17] and the prediction can be effortlessly estimated by using
ray-tracing scheme.

A ray-launching approach is enhanced with two methods, i.e. the effective-propagation-
area method and the dominant-corner extraction method [18]. By restricting the behaviors of
the propagations, it saves the computation time and efficiently fulfills the prediction of prop-
agation characteristics. The improved three dimensional indoor radio propagation techniques

are developed in [19] and [20].

2.2.5 The Taylor-Series Estimation (TSE) Algorithm

In [21], the Taylor series method is applied to linearize the equations of the range mea-
surements and hence the location calculations are simplified.

As mentioned in section 2.1, (z, y)is the position of the MS and (zy, y¢) is the position of
the ¢*" base station and r, is the TOA measurement from the base station ¢. Assuming that

the propagation noise can be neglected, the range measurement can be expressed as

Co = risme=_fel@y, zo,ye) (2.5)

where (; represents the noiseless distance between the MS and the ¢** BS. n; is the mea-
surement noise and is statistically distributed. We take the noises to have zero-mean values

< ny >=0 and n;; =< n;n; > is the i — jth term in the covariance matrix

Q = [nij]

If the z,, y, are the initial guessed values of the true MS’s position, the MS’s position (z,y)

can be written as

T =Ty + 0z Y =Yy + 0y (2.6)

14



where 0, and ¢, are the deviations of the MS’s position (z, y) and the corresponding initial
guessed position (zy, yy).

Expand the function f; in Taylor’s series by keeping only terms below second order as:

fe=710—10 = frp + ands + apdy (2.7)

where
ffu = ff(wva Yv, Ty, y@)

Qg1 = 8f€/ax|fﬂmyu Qg2 = afz/ay‘xmy”

The approximate relations of (2.7) can be written as

Af=z—n (2.8)
where
ap  ap 1 — fiv ny
A asy a2 i 0z .. ro — fou L N9
Oy
| an1 anz | | "N — [No | | N
The parameter § can be chosen as
§=(ATQ 'A)'ATQz (2.9)

Thus, to estimate the position of the MS, compute d,, §, with (2.9), replace

Ly < Ty —+ 530 Yo <— Yo + 6y (2.10)

in (2.9), and repeat the computations. The iterations will be converged when 6, and d, are

15



essentially zero.

2.2.6 The Two-Step Least Square (two-step LS) Algorithm

The content of this section will show the two-step least square location algorithm for the
TOA measurements and it can be obtained in [22]. The two-step LS method for the TDOA
measurements can be derived from the similar concept.

The notations of the MS’s position and the base stations are the same as those in the TSE
algorithm described in the previous section. The small propagation noises are concerned in
the two-step LS algorithm. The additive noises are assumed to be Gaussian-distributed and
independent of the radio signals. By incorporating the influences of the propagation errors

on the location estimation, the range measurements can be formulated as
2 2 2 _ 2,2 _
i > (e — )+ (Y —y)* = ke — 2z —yoy +2° +y (=1,2,..N (2.11)

where ky = CL’% —|—y§, r¢ = cty is the mieasuredidistance Between the MS and the ¢t" base station,
and c is the speed of light. Andbyidefining a’new variable 3 = x? + 32, we rewrite (2.11)

through a set of linear expressions
2 — 2y + LI YRy £=1,2,..N (2.12)

Let ¢, = [r y B3]’ and express (2.12) in matrix form

Hzx, <J (2.13)
where ~ ~ ~ ;
-2 — 2y1 1 7"% — k1
H— —2x9  — 2yo 1 T 7‘% — Ko
2y —2yn 1 i — KN

16



With measurement noise, the error vector is

¢ =J—Haz, (2.14)

When ry can be expressed as & + cny, the error vector v is found to be

= 2(Bn+cnon

B = diag{&la{?v“'v{]\f} (215)

The symbol ® represents the Schur product (element-by-element product). In addition, the
second term on the right of (2.15) can be ignored since the condition cn, < & is usually

satisfied. As a result, ¥ becomes a Gaussian random vector with covariance matrix given by

U = ElyyT] = 4*BQB (2.16)

Q is the covariance matrix of measured noise; and. &1,=.,£y are denoted as the true values of
distances between the sources and the receiver. The element x, are related by the equation,
B = 22 + y%, which means that (2:13)is still a set/of nonlinear equations in two variables
x and y. The approach to solve the nonlinear’problem is to first assume that there is no
relationship among z, y and . It can then be solved by the Least Square (LS) method.
The final solution is obtained by imposing the known relationship to the computed result via
another LS computation. This two step procedure is an approximation of a true Maximum
Likelihood (ML) estimator. By considering the elements of , independent, the ML estimator

of x, is

z, = argmin{(J—Hz)Tv1J-Hz)}

= H'Y'H)'HTV ) (2.17)

The covariance matrix of x, is obtained by evaluating the expectations of , and :ca:caT from

17



(2.17). The covariance matrix of x, can be calculated as [23]

cov(z,) = (ATTTH)™? (2.18)

Since we have used the independent supposition of variables z, ¢, and § in the estimation
of &, though the variable § is dependent on the variable x and y, we should revise the results
as follows. Let the estimation errors of z, y, and 3 be e, es, and e3. Here and below, denote

the i entry of a matrix M as [M];; then the entries in vector x, become

[®a]1 = 7o + €1 (2.19a)
[Tal2 = Yo + €2 (2.19Db)
[ma]3 = o + €3 (2.19¢)

where x,, y,, and (§, are denoted as the true malues of x, y, and 3. Let another error vector

Yy = Jp = Hyay, (2.20)
where
1 0 ERE
Hy=10 1 Jp = |[z.)3
]. 1 [$a]3
22
and xp= . Substituting (2.19a) - (2.19¢) into (2.20), we have
2
Yy

[V]1 = 2z0e1 + e% ~ 2z,.€1
()2 = 2yoen + €3 & 2yoen

[V]3 = e3

Obviously, the above approximations are valid only when the errors eq, es, and ez are fairly

18



small. Subsequently, the covariance matrix of vy is

U, = Elyy ]| = 4Bycov(z)By

By, = diag{z,,¥0,0.5} (2.22)

As an approximation, elements x, and ¥, in matrix x can be replaced by the first two elements

x and y in x,. Similarly, the ML estimate of x; is given by

z, = (H{V,'H,)'H[T,'J, (2.23)
~ (H{B,'(cov(z),) ‘B, "H)* (2.24)
o (H!B,'(cov(z),) "B, ), (2.25)

So the final position estimation ¢ = [z y]T is

T =u/Tp, O T="\Tp (2.26)

Here the sign of = should coincide with thesign of [x,]i calculated by solving (2.17), and the
sign of y coincides with the sign of.fz,]2:

The complete derivation of the thé ‘two-step LS for the TOA measurements is shown as
above. In addition, the two-step LS method can be adopted to estimate MS location from

the TDOA [23], and the TDOA/AOA measurements [24].

2.2.7 The Linear Line-of-Position (LLOP) Method

The linear line-of-position methods can be utilized to locate the MS’s position by using
the TOA measurements as in [25], and the hybrid TOA/AOA measurements in [26]. The
content of this section will show the linear Line-of-Position (LLOP) and it can be referred
to [25].

The TOA location method measures the ranges between the MS and the BSs. This range
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Circular LOP

Linear LOP

Figure 2.3: The Geometry of TOA-Based Location with Circular LOPs and Linear LOPs

between the ¢/* BS and the MS can be expressed as

Co =3/ (@ F@)2 (o= y)> (2.27)

where (z, y) is the position of the MS, (z¢;9¢) is-the position of the ¢ BS. The relationship
between the ranges for three BSs, their. location, andthe position of the MS are shown in Fig.
2.3 in two dimensions.

The Linear Line-of-Position (LLOP) method is based on the observations of Fig. 2.3.
Instead of utilizing the circular LOPs, the LLOP presents the approach of the linear LOPs,
a new interpretation of the geometry of TOA location. Since two TOA measurements inter-
sections at two points generate a line, the least number of BSs (i.e. 3) used to estimate the
location of the MS in 2-D scenarios will produce two independent lines. As indicated in Fig.
2.3, the new LLOPs also intersect at the location of the MS.

To determine the equations for the new linear LOPs, we must start with the original LOP
equations, given in (2.27) for £ = 1,2, 3. The lines which pass through the intersection of the

three circular LLOPs can be obtained by squaring and differentiating the ranges in (2.27) for

20



£ =1,2 and £ = 1,3, which result in

(22— w1+ (v — 1)y = (03— 3 + G~ @) (2:29)
(w5 —on)a + (g5~ )y = 2 (B — 3+~ ) (229)

Given the two linear LOPs above, the location of the MS can be obtained by solving (2.28)

and (2.29). The location of the MS (z, y) can be obtained as

= (Y2 —y1)C2 — (y3 —y1)Ch
T (s — )2 — 1) — (22— 1) (ys — w1 (2.30)

_ (x2 - -Tl)CQ — ($5 — xl)Cl
(g —x1)(y3 —y1) — (3 —21)(y2 — 1) (2.31)

where

C1 = (zh=mirk G — &)

Co= (s ARG 65)

The scheme developed the locationtgéometry for locating a MS in the 2-D plane with
three BSs. When there are more than the miniminn number (i.e. greater than three BSs
in the 2-D plane and there are measurement errors in the TOA signals, two approaches to
algorithm development can be taken: an intersection solution (geometry based) and a least

squares solution.

Intersection Solution

This approach can be generalized for N total BSs where independent N — 1 lines can be
produced from the intersections of the IV circles. These N —1 linear LOPs could then be used
to compute the intersection points. All of the intersections of the independent N — 1 lines
could be used to obtain W intersection points. As a result, the location of the MS

could be found from the mean of the intersection points or the centroid of a polygon formed

by these points.
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Least Squares Solution

An alternative approach to the solution of geometric equations is to compute the position
of the MS using a least squares when the number of the received BSs (V) is more than three.

Each of the independent N — 1 lines is represented in the form (as shown in (2.28)- (2.29))

ag 1% + ag2Yy = a;?Fa: =by (2.32)

for the ¢t" line, where a, = lag1, ars]’ and & = [z, y]T. The equations describing all of the

lines can be written in matrix form as
Az =Db (2.33)

where AT = [a) as...ag], b = [by by...bg]T, and G is the number of lines used. Due to the

measurement errors , the LS estimate is used:te obtain a solution &
z = (ATA) 'A%b (2.34)

This algorithm is obviously much+less*difficult“than’the geometric method since there is no

need to compute intersections of many lines:

2.3 Studies on Propagation Noise

2.3.1 Overview

The precision of time measurement significantly leads the performance of the location
algorithms which utilize the time-base information. The transmitted radio signal can reach
the receiver in the shortest time in the case that there are no barriers in the direct connection
between the transmitter and the receiver. This is called the Line-of-Sight (LOS) situation,
which often occurs in a open space. Yet, this ideal situation usually can not meet in a obstacle-

concentrated environment such as a dense urban or an office inside a building. The emitted
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True ranges

NLOS-corrupted
range measurements

Figure 2.4: The Range Measurements Suffer from the NOLS Errors.

radio signal is either reflected or diffracted by obstructions, and it must take extra time to
arrive at the receiver. The additional'propagation time is so-called the Non-Line-of-Sight
(NLOS) error, and is always positive|as presented in-Fig. 2.4. The NLOS error is viewed
as a killer issue for location estimation [27].The excess part of the time measurements will
result in range errors on the order-of 513 nietersTand 436 meters in the mean and the standard

deviation respectively [28], which inévitably makesa time-based location algorithm to fail.

2.3.2 Methods Proposed to Mitigate or Reduce the NLOS error
Identifying NLOS Error According to the Residual Analysis

The residual weighting algorithm (Rwgh) proposed in [29] exploits the concept of the LS
estimator and the weighting of each intermediate estimate to identify the NLOS error without
any prior information. It takes three steps to figure out the NLOS error. First, it chooses
a subset n from the N range measurements to form a range set where 2 < n < N. Second,

it proceeds the calculation of the intermediate LS estimate X, which is the vector minimizes
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6. Rwgh

RMSE performance comparisons

Figure 2.5: The:Flow Chart.of the Rwgh Algorithm

Res, and the sum of the residual8¢quares overithe data-of the corresponding combination S.

Res(x, )= "[ri —fx— a2 (2.35)
1ES
X = arg min Res(x,5) (2.36)

The estimated Res containing NLOS measurement is deservedly larger than that of other
estimates. Hence, the weighting is inversely proportional to Res of the estimate. At last, the
final estimates can be expressed as a weighted linear combination of the previous intermediate
estimates.

The flow chart of this algorithm is shown in Fig. 2.5. Both Deterministic and random
NLOS errors are concerned. The estimated Res with varies numbers of range combinations
are compared with the all-LOS case and the case suffered from NLOS error. The performance

shows that the Rwgh is effective to resist the NLOS error.
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Identifying NLOS Error According to the Standard Deviations

The transmitted radio signal corrupted by the NLOS errors arrives at the receives through
multiple channels. The characteristics of these channels can be obtained after acquiring
enough statistical data. The standard deviation, a kind of prior information, is used in [30]
to identify the NLOS error.

Once a radio signal reaches the receiver m, the range measurement r,(t;) is formulated
by using an N order polynomial fit and its unknown coefficients is solved by the least
square techniques. A smoothed measurement s,,(¢;) utilizing the solved coefficients above is
presented as another N** order polynomial function. The standard deviation at this moment

can be derived as

om = | Z ($m(ti) — m(t:))? (2.37)

Suppose that o, is the standard:deviation of the LOS cases that is calculated when the
transmitter has LOS with the receiver m:. 1t is well-known that the NLOS effect will increase
the standard deviation of the range measureéments in asgreat manner. According to the time
history of range measurements, a decision hypothesis distinguishing NLOS from LOS is made

as

Hy: 6y =0, (LOS case) (2.38)

Hy:6p >0, (NLOS case) (2.39)

The NLOS-contaminated signal can be identified and corrected. The corrected signal can

be proceeded with positioning and a better estimate is expected.

Identifying NLOS Error According to the Theoretic Decision Rules

The theoretic framework in [31] offers a binary hypothesis test to classify whether a range

measurement is corrupted by NLOS error or not. It is assumed that the error distributions
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can be categorized with respect to the NLOS and the LOS transmissions. The statistical
characteristic of the LOS error is assigned as a Gaussian distribution with zero mean and

variance O’l208. The distribution of NLOS error is also modelled as Gaussian with mean f,0s

2
nlos

It is noted that ppi0s > 0 and o > 01205. The general binary hypothesis

. 2
and variance o, ..

test for NLOS identification is as followed.

Hy: X ~ fx,,, with prior probability P(Hp) (LOS condition) (2.40)

Hy: X ~ fx . with prior probability P(H;) (NLOS condition) (2.41)

Five cases are classified and summarized according to whether the probability model, prior
probability, and the characteristic (i.e. the mean and variance) of NLOS error is known or
not. Four different hypothesis tests are presented with different combinations of the above
statistical information. It is worthy of mention that the fifth decision rule is the same with

that of the previous approach when thermodel 6f NLOS distribution is unknown.

Mitigating NLOS Error by Using Kalman Filtering

The Kalman filter is commonly used in-smoothing a data set or tracking an object. An
application [32] applying two Kalman filters, one for smoothing and the other for tracking,
proceeds the task of positioning in a NLOS environment. The method first periodically
samples the received radio signals to gather enough data to estimate the standard deviation

6m, and identifies the NLOS-corrupted range measurements by the following hypothesis test.

Hy: 6y =v0p, (LOS case) (2.42)

Hy: 6y, >0, (NLOS case) (2.43)

The o, is the standard deviation of the measurement noise in the LOS case. The presence of
v is to reduce the false alarm probability. The classified LOS and NLOS range measurements
in Fig. 2.6 are then passed to the Kalman filters behind. The smoothing procedure is taken

to proceed the LOS range measurements to an unbiased Kalman filter, and the NLOS ones to
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Figure 2.6: Mobile location estimation using the Kalman Filtering

a biased Kalman filter. The NLOS error-is mitigatedsstep by step with the bias obtained at
the sampling state. The proceeded TOA dataare continuously fed to the process of location
estimation. A Kalman filter finally handles-these estimated position data of the mobile to

acquire a smooth trajectory.

Mitigating NLOS Error According to the Properties of Geometry

The NLOS error is reduced in a cell-based layout without knowing the prior information
of the range measurements [33]. In addition, a large number of base stations required in [29]
are not necessary in this proposed method. A true range measurement is expressed as a
multiplication of the corresponding measured range and a scale factor. The function of a
scale factor is to scale a NOLS-corrupted range measurement to be closer to the true range.
Each scale factor is varied from 0 to 1, and all the three scale factors form a vector v. The
upper bound U of the vector v is [1 1 1]7. As shown in Fig. 2.7, a nonlinear equality g(v) is
derived by utilizing the law of cosines. The formula g(v) is a function of the measured ranges,

the distance of any two of the three base stations, and the vector v.
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Figure 2.7: The Geometry of the TOA-Based Location Showing the Relationship of the True
Ranges and Inter-BS Distance.

In the Fig. 2.7, the limitations of the lower bound L of the vector v is characterized by
confirming that any measured rarnge circlemustiintersect with another two. The intersections
A, B and C of the three measured tanges are the-'3 closest points to the MS. A nonlinear
cost function F'(v) is then presented as the squared sum of the distances between the mobile
station and these intersections. Given g(v) = 0 and the boundary of the vector v, the
objective function F'(v) is constraint-optimized with the applying of the sequential quadratic
programming (SQP) algorithm to obtain the estimated scale vector v as

V= mi F bject t = 2.44
V= min (v) subject to g(v) =0 (2.44)

Finally, the MS location is decided by taking the estimated scale vector v into any con-

ventional location algorithms.
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Figure 2.8: Geometric Constraints forr TOA-Based Location Estimation Confine the True
MS’s Position in the Overlap Region of the'Range Measurements.

Mitigating NLOS Error According to the Properties of Geometry and Noise Vari-

ance

As illustrated in Fig. 2.8 , the MS’s location estimation using the Two-Step Least Square
method may fall inside or outside of the boundaries of the three arcs, AB, BC, and CA.
With the larger overlap region caused by the increasing NLOS error, the inaccuracy of the
location estimation of the MS consequentially raises. The characteristics of the geometric
layout and the noise variances are applied to a method named the Geometry-Constrained
Location Estimation (GLE) algorithm [34] to modify the formulations within the Two-Step
Least Square method. The primary objective of the proposed GLE algorithm is to confirm
the location estimate within the overlap region by joining the geometric constraints into the
Two-Step LS method.

A specific information derived from the constraints of the geometric layout is added into
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the Two-Step Least Square method. The constrained cost function 7 is given by

1/2
1= 3 Sle-ul? (245
p=a,b,c
where x is the MS’s location as mentioned before; a = (24, y4), b = (zp, yp), and ¢ = (z¢, y)
represent the corresponding coordinates of the points A, B, and C. The parameter v defined
as the square root of the average squared-sum of the distance from the MS to the three points
A B and C is called the wvirtual distance and obviously varies as the three coordinates a ,b

and ¢ changes. The corresponding expected virtual distance e is defined as

1/2
Ye=| Y %Hme—uw =75 +n, (2.46)
p=a,b,c
where n,, is the error induced by the computed deviation between . and . The @, called the
expected MS’s position is chosen to minimize the deviation between the virtual distance v and
the corresponding ezxpected virtual distance=ys: The coordinates of the expected MS position
T, is a linear combination of those of the thrée points Ay B, and C with the parameters acting

as weights which is related to the signal.variations.

Te = W1Xg + WoLp + W3Te (2.47a)

Ye = W1Ya + W2Yp + W3Ye (2.47b)

where

2
Oy

W= —F—%5 >3
0?4+ 03+ 03

for 0 =1,2,3 (2.48)

o1, 09, and o3 are the corresponding standard deviations obtained from the three TOA mea-
surements r1, 72, and 3.
The selection of the weights is directly proportional to the corresponding signal variances.

For example, the excessive range measurement r; due to the comparatively large signal vari-
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ance o1 may probably cause the true position of the MS to move incorrectly toward to the
boundary of the arc BC. Therefore,the weighting of the coordinates of a should be relatively
large to make the true position of the MS to move toward the point A of the analogous
triangle.

The GLE algorithm integrates the geometric constraints into the first step of the Two-Step

Least Square method is defined as:

Hz =J + 1 (2.49)
where
T
o=[= v 5]
—2.’,1:‘1 —2y1 1
—2.732 -2 2 1
H-= Y
*2$3 *2y3 1
| 202 2y =1 |
’I"% — K1 1
7"2 — K9
Y= |72
7“?2) — R3
L '762 — Ve |

The corresponding coefficients are given by

B = a*+y
ke = i 4yl fort =1,2,3
1
Vo = g(:ca+wb+:cc)
1
Yy = g(ya+yb+yc)
1
Vo = (@t ah 2+ ya+ v
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The noise matrix ¢ in (2.49) can be obtained as
Y =2cBn+?n? (2.50)
where

B = dlag{ Cla C27 437 Y }

T
n = [nl ny N3 nw/c}

Based on the two-step LS scheme, an intermediate location estimate after the first step can

be obtained as
&= H'TH)THT® 1] (2.51)

where

¥ = Efyp’] =4 BQB

It is noted that ¥ is obtained by neglectingthe-second term of (2.50). The matrix Q can be

acquired as

—di 2 2 2 2 7,2
Q—dmg{ oy, 03, 03, O',YE/C}

Q represents the covariance matrix for both the TOA measurements and the expected virtual

distance, where 05

/e corresponds to the standard deviation of . /c. The final location esti-
mation can be obtained by continuously carrying on the second step of the Two-Step Least

Square method [22].
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2.4 Studies on an Important Metric — Geometric Dilution of

Precision (GDOP)

The GDOP is a metric that describes the effect of different BS layouts on the performance
of location algorithms. It is a measurement-to-noise ratio on standard deviation.

Let the distance ¢; from the MS to the i** BS in 2-D condition is given as

G=+(x—2)?+Wy—y)? i=12_.N (2.52)

where (z;, ;) are the known coordinates of the i BS, and (x,%) is the unknown position of
the MS. The matrix M is the partial deviations of the noise-free measurement equations with

respect to the unknown parameters (i.e. = and y).

I oG oG 1 [ o—a oy |
Ox oy G G
G O¢y Tme  Y—Y2
M — Oz ay _ ¢2 G2 (253)
N N TZTN L YYN
Ox Oy L (n (v

The Best, Linear, Unbiased Estimate (BLUE)-0f*(x, y) obtains the variance as

Var(z) = diagMT QM) ! (2.54)

where the matrix () is the noise covariance matrix. Define Goyxo as

_ Var(z)

G
Q

(2.55)
and the GDOP will be given by

GDOP = /G111 + G2 (2.56)

The GDOP can also be yielded when the range differences are concerned instead of the
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range measurements. If the noise errors are simplified by i.i.d. distribution with mean 0 and

variance 02, the matrix G will translate into
¢ = (M) ! (2:57)

A statement in [35] demonstrates that given a Gaussian-distributed noise, the GDOP and the
Cramer-Rao lower Bound (CRLB) are identical. In [36], the minimum GDOP inside a K-side
(K > 3) regular polygon takes place at the center of the layout and the value is \/% To verify
the conclusions in [36], a series of simulations with TOA or TDOA information are tried in a
K-side regular polygon. The results show that the shape of the GDOP seems to be a concave

function and the value at the center is minimum and comparable to \/—QR
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Chapter 3

The Location Estimation with The

Assistance of Virtual Base Stations

3.1 Overview

The Taylor-Series Estimation(TSE) algorithm [21] mentioned in section 2.1.5 transfers
an original measurement range into a-simplified form' By a linearized process. The adoption
of the first-order Taylor expansion for=two wvariables'notably simplifies the utilization of the
Least Square (LS) method on the range datas The method takes the error covariance matrix
into the formulation and views it as the weighting of the range data. An initial guess of
the MS’s position is necessary for the algorithm to continue the estimation iteratively. A
diverged result may occur due to a improper initial guess of the MS’s position. The two-step
LS method in section 2.1.6 can use the TOA [22], the TDOA [23], or the hybrid TDOA/AOA
[24] measurements to estimate the MS position. It is regarded as an implementation of a
Maximum Likelihood (ML) estimator under the assumption of equal prior. After a linearized
transformation of the independent-assumed objective parameters, a LS method is applied
to estimate the MS position in the first step. The estimated result is fine tuned with the
considerations of the presence of the estimation errors and the relationship of the objective

parameters. The other LS process is carrying on to get the final estimate. Rather than
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Figure 3.1: The Flow Chart of the VBS Algorithm

run iteratively, two-stepped process’is enough.in.thig.algorithm. The LLOP algorithm [25] in
section 2.1.7 uses the connections-of the intersections ofthe measured range circles to estimate
the MS position. There are 0%71 independent line equations generated by the intersections
of the N measured range circles. Two.similar method; intersections of the line equations and
the least squares, are applied to locate "the MS position. However, the TSE, the two-step
LS and the LLOP algorithms are only feasible for the LOS environments. The NLOS error
be a killer issue in the location positioning will bring up a considerable bias in to a time
measurement, especially in a dense region like metropolises and downtowns.

The method in [32] mitigates the influence of the NLOS error by utilizing the constraints
of the geometric layout in the cell-based communication network. A constraint equation and
a nonlinear cost function are derived from the characteristics of the geometry. The cost
function is constraint-optimized by adopting the SQP algorithm. The computation time is
intuitively increased duo to the optimization process. The Geometry-constrained Location
Estimation (GLE) algorithm [34] extended from the two-step LS method is found effective

and time-saving in location position. The proposed VBS (Virtual Base Stations) algorithm
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takes a step ahead by combining the considerations of the signal variations with the extending
geometric constraints of the virtual base stations. The functionalities of the assisted virtual
base stations is to improve the GDOP effects by joining the geometric constraints into the
formulations of the GLE algorithm. The flow chart of the proposed VBS algorithm is shown in
Fig. 3.1. An exponential distributed NLOS error is considered. The first estimate Zys 1 of the
MS’s position is obtained by utilizing the two-step LS method. The first assisted virtual base
station x, 1 can then be obtained by applying the proposed Center-of-Gravity (CG) based or
the Minimum GDOP (MG) based selection methods. The second estimate Zps2 of the MS’s
position obtained from the VBS algorithm is compared with the previous estimate Z;7,1. The
iteration processes will continue while the distance from the latest estimate to the last one is
larger than the chosen threshold. The proposed VBS algorithm iteratively adds virtual base

stations into the original layout and terminates as the estimated MS’s position converges.

3.2 Observations from the GDOP.

The GDOP criterion is originally-used in- the satellite-based location system to check if
the layout of the visible satellitesis geod for the goal of positioning. It has been applied to
the cell-based location system as well:. The interpretation of the meaning of the GDOP is
that it represents the standard deviation ratio of the signal and the noise. In a fixed layout,
the signal variations differ with where the MS locates. The radio signals range over larger
variations not only raise the inaccuracy of the location estimation but also the value of the
GDOP. In other words, the lower value of the GDOP stands for the smaller signal variations
in a fixed layout and expectedly accompanies the better performance of location estimation.

The GDOP is utilized as an index for judging the the effect of the geometric layout.
Several K-side (3 < K < 6) regular polygon layouts are examined to verify the phenomenons
of the GDOP. Each regular polygon is centered at the origin with the vertexes 1000m away
from the origin. In each case, the 3-D graph and the contour of the GDOP value are shown
in Fig. 3.2 to 3.5. Some results can be concluded inside the regular polygons by observing

the differences of these figures.
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The GDOP while using 3 TOA measurements
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The GDOP while using 5 TOA measurements
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The shape of the GDOP is a concave function with the values at the vertexes being the
maximum. The minimum GDOP is found to occur at the center and the value is comparably
to \/% in a K-side regular polygon. One thing to be noted is that the GDOP values are
smaller and the regions inside the regular polygons are flatter as K increases. According to
the statements above, a virtual base station utilized in the VBS algorithm can be joined to
the original layout to flatten the GDOP effect and lower the minimum value. The selection

of a virtual base station is to let the estimated MS’s position locate at the location where the

value of GDOP is minimum.

3.3 The Extended Two-Step LS Algorithm with Virtual Base

Stations

A series of geometric constraints involved by the assisted virtual base stations is feasible
to be integrate into the GLE algorithm.~The following section shows the way that how to
integrate the information of the agsisted Virtual base$tations into the conventional two-step

LS algorithm.

3.3.1 Overview

Analogous to the GLE algorithm by adding geometric constraints within the conventional
two-step LS method, the VBS algorithm extends the concept of ”virtual” assistances in the
GLE algorithm to add the geometric constraints from the assisted virtual base stations.

As shown in Fig. 3.6, the three original range measurements intersects at the A, B and
C points around the overlap region. A linear combination of the coordinates of the A, B
and C points with the corresponding parameters direct proportional to the signal variances
constructs the expected virtual distance as in (2.46). The expected virtual distance restricts
the MS in the overlap region and constructs a cost function to minimize the deviation to the
virtual distance as in (2.45). The functionality of the virtual base stations is to reduce the

GDOP effect in the original layout. From the observations in section 3.2, the more the number
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Figure 3.6: The Location Estimation:with the Assistance of the Virtual Base Stations

of the virtual base stations are, the lower the value 'of the GDOP is. With an appropriate

setting of the threshold, the precision of the dlocation can be achieved.

3.3.2 Formulation of the Extended Two-Step LS Algorithm

While the concept of the ”virtual” assistance in the proposed VBS algorithm is the same
with that of the GLE algorithm, the formulations of the expected virtual distance . as
in (2.46) and the definition of the weights as in (2.48) are utilized. In order to integrate
the information of the " added virtual base station with the geometric constraints, the
coordinates of the " virtual base station (v, Yu,i) is expressed as

Tyi = Qqi%q~+ 0Ty + acize fori=1,2, .. n (3.1)

)

Yoi = OqilYa+ iy +aciye fori=1,2, ... n (3.2)

The coordinates of x,, o and x. can be obtained after the the three TOA measurements
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are acquired. The parameters oy, ap; and o; can be obtained by solving (3.1) and (3.2)
associated with oy ; + 0oy ; +ac; = 1. The fraction % in (2.46) is substituted by the parameters

0, 0 and o ; so that the expression of the 7. ; can be formulated as

1/2

z.—pll’|  =v+n, (3.3)

Ye,i = g Qi

u=a,b,c

where n, ; is the error of between the v and the 7. ;.
It is assumed that there are n virtual base stations collaborating in the VBS algorithm.
By rearranging and combining (2.1) and (2.46) in the matrix format, the following equation

can be obtained:

Hz =J+ ¢ (3.4)
where
T
=
—2&31 duk 2y1 1
—275 - 2y2 1
—2x3 —+ 2y3 1
H= _21'1),1 - 2yv,1 1

—2% 2 — 2yv72 1

)

)

—2Tyn  — 2Yun 1
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7"% — K1

7"% — K2

7’% — R3
J— Ye,1 — ’71-@1,.’1
Ye,2 = Vko,2
i Ye,3 = Vkon

The corresponding coefficients are given by

B o= 2?4y’ (3.5)
ke = a2 +yl for 0 =1,2,3 (3.6)
Vous = Cai(Th + Ya)rhoui(rh + ) + aci(e? +y2) (3.7)

It is noted that the equation (3.7) is utilizéd to.facilitate the formulation of the two-step LS

problem. Moreover, the noise matrix ¢ in(3:4) can be-obtained as

Y =2 eBu+ *n?

where

B = diag{ G G G M 7

n = [nl Ny N3 Ny /C Ny, /c

(3.8)

.
(n+3)x(n+3)

|

(n+3)x1

Based on the two-step LS scheme, an intermediate location estimate after the first step can

be obtained as

&= H'TH)THT w1 (3.9)
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where

¥ = Eyy’] =42 BQB

It is noted that ¥ is obtained by neglecting the second term of (3.8). The matrix Q can be

acquired as
— dia 2 2 2 2 2 2
Q gy o1 03 03 Oerfe Tyenfe = Tyenje

It can be observed that Q represents the covariance matrix for both the TOA measurements
and the expected virtual distance, where o B corresponds to the standard deviation of
Ve, i

]767i|%. The final location estimation after the second step of the two-step LS algorithm can

be obtained by referring the approach as stated in [23].

3.4 The Selection of a Virtual Base Station

Since the information of the virtual baseistations can be integrated into the conventional

two-step LS method, two methods of selecting: virtual base stations are proposed hereafter.

3.4.1 The Center of Gravity (CG) Based Selection Method

As discussed in the section 3.2y the value of the GDOP at the center of the gravity is
minimum in a regular polygon. A virtual base station is added to make the latest location
estimate of the MS be at the center of the gravity of the modified layout. After the first
location estimate &)1 of the MS by the two-step LS method in a regular triangle layout, the

first virtual base station &, 1 is added in accordance with the CG based selection method by

T+ X2+ X3+ Xy 1
BSN + VBN

Ty = (3.10)

where the BSN and the VBN are the number of the base stations and the virtual base stations,
respectively. The BSN and the VBN are 3 and 1 in this case. The first added virtual base
station x,1 can be obtained as 4&);1 — 3zcg after a simple transformation while ¢ is the

position of the center of the gravity in the original layout. The first obtained virtual base
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station @, 1 is then gathered into the VBS algorithm to decrease the GDOP effect and locate
the second location estimate ;o of the MS. As the iterative process continues, the second

virtual base station x, 2 can be obtained by

T+ a2+ 23+ Ty + Ty 2

TM2=TTTBIN t VBN (3.11)

The BSN and the VBN are substituted as 3 and 2 now. Therefore the second added virtual
base station x, 2 can be yielded as 5&yr2 — 4xcg. As the process carries on, the selection of

the n" virtual base station can be expressed as

Zyn = (BSN + VBN)ay, — (BSN + VBN — 1)ayn_1 (3.12)

After n-iteration proceeds and the VBS algorithm stops, the position &y ,—1 and Zas .,
are expected to converge at the same point. By adopting (3.19), the n'* virtual base station

T, will converge to the nt" location estimate ) of the MS.

3.4.2 The Minimum GDQOP (MG) Based Selection method

Whenever the nt* virtual base station T, 15 going to be added into the existing layout,
the formulation of the GDOP can be acquired with the information of the coordinates of the
three base stations and the assisted (n — 1) virtual base stations, the range measurements and

the latest location estimate &z, of the MS. The expression in (2.53) can be reformulated as

TMn—T1 Ty —YL
r1 r1

TV n—T2 TMn—Y2
ro ro

Tnn—T3 M Y3

T3 T3
M = TN n—Tv,l  TMn—Yu,1 (3'13)
Tv,1 Tv,1

TV n—Tv2  Epn—Yv,2
Tv,2 Tv,2

M n—Tv,n  EMn—Yu,n

Tv,n Tv,n u
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where r,; is the distance from the it" virtual base station to the location estimate of the

MS. If the noise errors are simplified by i.i.d. distribution with mean 0 and variance o2, the

GDOP can be yielded as

GDOP =/ the trace of (HTH)"! (3.14)

Obviously, the GDOP formulation in (3.14) is a function of z,, ,, and ¥, . The function (3.14)
is intuitively differentiated with respect to x,, and y, , and the desired (zyn, y»n) can be

obtained theoretically by making each of the first-order differentials equals to 0 as

0GDOP
DG =—— = 1
1= =0 (3.15)
P
DG258§5020 (3.16)

Actually, the equations (3.15) and (3.16)invelve high-order power of z,, and y,, so that
the solution of (zyy, Yun) is hardito yieldipThe Taylor expansion with multiple variables
is applied to reformulate the equations (3.15)%and (3.16). The minimum GDOP value is
supposed to locate around the ceriter of.gravity in‘a non-regular polygon layout. Consequently
the corresponding first-order Taylor expansions of the equations (3.15) and (3.16) about the

point &, ,,=%c ., are given by

oDG oDG
DGl = DGl(weﬂJan) + 8«%‘71}7711 ‘mv,n:me,v,n (I’ - xeﬂ’yn) + Wml |mv,n:me,v,n (y - yE,U,’rL) (317)
8DG2 8DG’Q

DG, = DG?(%W,TL) + |wv,n=we,u,n (z — fEe,vm) + |T/U,n:a:e,'u,n (y — yem,n) (3.18)
0Ty p, 0

Yovn

where

Tewn = (BSN + VBN)ay, — (BSN + VBN — )iy, 1 ,BSN=3 ,and VBN=n (3.19)
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The n'" virtual base station Xy,n can be obtained by

Toyn _
Ty = = A" (3.20)
Yo,n
where
oDG, | DG, |
A = Oxy,n 1Tv,n=Te,v,n OYy,n 1®v,n=Te,v,n (3 21)
ODGo | DGy ‘ :
axv,n Ty,n="Te,v,n ayv,n Lv,n==Le,v,n
and
0DG; 0DG;
b = 9zv,n ‘mv,n:ﬂiem,n “Lewn + OYv,n ‘mva":mewm Ye,on — DG1($e7v’n> (3 22)
0DGo ODG2
0Tv,n ‘xv’"::l:e”“’” “Ten + 0Yv,n ‘xv,n:zew,n Yeon — DGQ(J’.&’UJL)

The termination of the VBS algorithm willistep the addition of new virtual base stations.
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Chapter 4

Performance Evaluation

The noise model in [37] is used to represent the NLOS errors. The threshold is chosen
as 0.1 meter. The proposed VBS algorithm with two selection methods of the virtual base
stations are compared with the TSE approach, the two-step LS algorithm and the LLOP
method. Different layouts and different:positions of.the MS are considered in the simulations

to verify the effectiveness of the VBS algortthm.

4.1 The Noise Models and Simulation Parameters

In the simulations, the exponential distributed noise model in [37] is applied to represent
the NLOS error. The exponential distributed NOLS error py,(7) is expressed as
%e%k T>0
P (T) = (4.1)
0 otherwise
for ¢ =1, 2,..N. 7y = 7,,(,°p is the RMS delay spread between the ¢t BS to the MS; 7,, is the
median value of 7, whose value varies with different environments. ¢ is the path loss exponent
which is assumed to be 0.5, and the factor for shadow fading p is set to 1 in the simulations.
The setting of the parameters in the noise model fulfills the environment while the MS is

located within the suburban area. On the other hand, the model for the measurement noise
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of the TOA signals is selected as the Gaussian distribution with zero mean and 10 meters of
standard deviation.
The following four different layouts are simulated to verify the improvement of the location

accuracy that the proposed VBS algorithm can promote.

1. Case(1): The three base stations are located at (0,0), (1000, 1000v/3) and (—1000, 1000v/3).

The MS is assigned to locate at (0, @\/g), i.e. the center of the gravity.

2. Case(2): The three base stations are located at (0,0), (1000, 1000+/3) and (—1000, 1000+/3).
The MS is assigned to locate at (650, 1450), i.e. near the point (1000, 1000/3).

3. Case(3): The three base stations are located at (0, 0), (1000, 1000v/3) and (—500, 1000).

The MS is assigned to locate at (166,910), i.e. the center of the gravity.

4. Case(4): The three base stations are located at (0, 0), (1000, 1000v/3) and (—500, 1000).
The MS is assigned to locate at (250,900, i.e. near the point (—500, 1000).

4.2 Simulation Results

The median value 7,,, of the NQLS"erroris set to be 0.3 in this thesis. The parameter m,
is the distance from the latest estimated MS’s position to the last one. The VBS algorithm
terminates if the value of m. is smaller than the given threshold. The threshold is set to be
0.1 meters in the thesis. The proposed VBS algorithm including both the VBS-CG and the
VBS-MG schemes is compared with the two-step LS method, the TSE algorithm, and the
LLOP approach via simulations. The performance evaluation of each case is obtained after
executing 100 times. The layout of each case is also presented with the information of the
iteratively-estimated MS’s position and the added virtual base stations.

In Case(1), a regular triangle layout with the MS locates at the center of the gravity is
considered. As shown in Fig. 4.1, the proposed VBS algorithm is compared to other existing
methods. Since the GDOP effect in the regular triangle is the slightest at the center of gravity

where the MS lies, the improvements obtained from the VBS algorithm is small. In Fig. 4.2,
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Figure 4.1: Performance Comparison between the Location Estimation Schemes under NLOS
Environments in Case(1) (with Median Value of the NLOS Noises: 7,,, =0.3 us)

the location estimates of the MS’s position and the'added virtual base stations of the CG and
the MG methods in the VBS algorithm-are presented. Obviously, the location estimates of
the two methods both approach to the MS’s position till the iterations converge.

In Case(2), the MS’s position ‘is located closer to a base station. As shown from Fig. 3.2
to 3.5, the GDOP effect is a concave funetion-and will become worse around any of the base
stations. The performance of the proposed VBS algorithm is better than the other methods as
presented in Fig. 4.3. Compared with the two-step LS method, the accuracy improvement of
the proposed VBS algorithm at the 60% average error is about 80 meters. The result implies
that the proposed VBS algorithm still can perform well while the MS is in a poor geometric
environment. It is noted that the performance of the CG-based and the MG-based selection
methods seem to be the same duo to the regular triangle layout. The MS location estimates
of the these two method in Case(2) are shown in Fig. 4.4.

The performance comparison is also held in a non-regular triangle layout. The MS is
located at the center of the gravity of the non-regular triangle layout as given in Case(3). The

comparison of performance is shown in Fig. 4.5 and the location estimates of the CG and
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Figure 4.2: The Positioning Processes of the VBS Schemes under NLOS Environments in
Case(1) (with Median Value of the NLOS, Noises: 7,, =0.3 us)
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Figure 4.3: Performance Comparison between the Location Estimation Schemes under NLOS
Environments in Case(2) (with Median Value of the NLOS Noises: 7,,, =0.3 us)
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Figure 4.4: The Positioning Processes of the VBS Schemes under NLOS Environments in
Case(2) (with Median Value of the NLOS Noises: 7,, =0.3 us)

the MG method are illustrated in Fig.- 4.6. Sincesthe layout is no more a regular triangle,
the performance of the proposed -VBS -algorithim is, better than that of other methods by 20
meters even if the MS is located «at the center of the gravity.

The layout in Case(4) is designed. as'a non-regular triangle and the MS’s is lied closer to a
base station. The performance comparison in Case(4) is shown in Fig. 4.7. The performance
of the VBS algorithm is superior to other methods. Although the poor layout and MS’s
position is presented, the proposed VBS algorithm promotes an improvement at the 60%
average error by 50 meters while comparing with the two-step LS method. One thing to be
mentioned is that the minimum GDOP value in a non-regular triangle layout may occur at
a point around the center of gravity rather than indeed at the center of gravity. Hence, the
performance of the selection method based on the minimum GDOP is better than that of the
CG-based method. In Fig. 4.8, both the CG and the MG based VBS algorithm can direct
the estimated MS’s position approaching to the true position evidently.

The relationship of the NLOS error and the Root-Mean-Squared Error (RMSE) is dis-

cussed, too. The 60% average position error is chosen as a criterion while comparing the
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performance of the TSE algorithm, the two-step!L,S method, the LLOP approach and the
proposed VBS algorithm under various NEOS' environments. The median value 7,,=0.3 is
selected to properly fulfill the NEOS error in‘the suburban areas. As shown in Fig. 4.9, the
performance of the proposed VBS-algorithmlis-apparently better than that of other methods,

especially when the value of 7, raises.
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Chapter 5

Conclusion

The NOLS errors will cause large positive biases while measuring the time information
data. The inaccuracies of the range measurements consequentially make the conventional
location algorithms, like the two-step LS method [23], fail to estimate the MS’s position. The
GLE algorithm [34] skillfully joins the geometrie constraints into the two-step LS method to
improve the location estimation under the| NLOS-corrupted environments. Additionally, the
GDOP effect in a communicatiornt layout is considered as well. The lower the GDOP value is,
the slighter the effect of geometry. can-affect-the positioning processes. The assisted virtual
base stations can be added to reduce the-GDOP" values inside the layout. The proposed
CG-based and the MG-based methods which intend to make the MS be at the location
where the GDOP value is minimum can be utilized to select the virtual base stations. The
proposed VBS algorithm not only imposes the geometric constraints but also iteratively adds
the virtual base stations into the conventional two-step LS method. Different layouts and
MS’s positions are examined to verify the improvement of the proposed VBS algorithm in the
location estimation. The performance shows that the proposed VBS algorithm can perform
better than other methods, especially the environments with poor geometric layout and large

NLOS errors.
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