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摘要 

 

隨著商業應用的潮流，無線位置估測的技術在近年來被廣泛的研究著。很多種形式

的無線訊號都可以作為位置估測之用。在這篇論文之中，由傳播時間轉換過來的量

測距離首先被線性化，以便利用最小平方 (Least Square) 估計的方法。論文裡考

量兩個實務上的問題，分別是〝非直接路徑 (NLOS) 誤差〞與〝幾何衰減 (GDOP) 效

應〞。在量測時間資訊時，非直接路徑誤差會引發ㄧ個正值而且很大的偏差。另ㄧ方

面，基地台的幾何分佈不佳時，幾何衰減效應的值會增加，進而降低定位的準確度。

這篇論文所提出的〝虛擬基地台 (VBS) 輔助演算法〞藉由加入一些幾何限制以降低

非直接路徑誤差的影響；也藉由加入一些虛擬基地台來減少幾何衰減效應。所提出

的虛擬基地台輔助演算法在模擬時與一些現有的定位演算法相比較。模擬結果顯示

虛擬基地台輔助演算法的表現較好，特別是在非直接路徑誤差很大與基地台幾何位

置不佳時的錯誤率表現更佳。 
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Abstract 
 

The wireless location estimation techniques have been wildly investigated with 

the trend of commercial applications in recent years. Various types of radio 

signals can be used to develop the location estimation algorithms. In this thesis, 

the range measurements transferred from the received time-based information 

are first linearized to utilize the Least Square (LS) method. The practical issues 

such as the Non-Line-of-Sight (NLOS) errors and the Geometric-Dilution-of- 

Precision (GDOP) effect are concerned. The NLOS errors will cause a large 

positive bias while measuring the time information. On the other hand, the poor 

geometric layout will raise the GDOP value and reduce the accuracy of a location 

algorithm. The proposed VBS (Virtual Base Stations) algorithm mitigates the 

influence of the NLOS errors by adding some geometric constraints and reduces 

the GDOP effect by joining the assisted virtual base stations. The proposed VBS 

algorithm is compared with several existing location algorithms via simulations. 

The performance is comparably better than other methods, especially in the 

environments with large NLOS errors and poor geometric layout. 
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Chapter 1

Introduction

Wireless positioning techniques have been wildly studied over the past few decades. Today,

more and more commercial applications such as the navigation system, the location-based

billing, and the Intelligent Transportation System (ITS) need to cooperate their own processes

with the information from the positioning systems. After the issue of the emergency 911 (E-

911) subscriber safety service, the QoS of the positioning accuracy has been first-time defined.

The importance and the requirements of the positioning techniques in many fields excite the

research in this domain. Because of such interests and demands in location-based services

(LBSs) , the studies of a new location estimation scheme considers different environment

properties has been carried out.

The time-based information, said the Time-of-Arrival (TOA), is directly proportional to

the distance between the transmitter (i.e. Mobile Station or MS) and the receiver (i.e. Base

Station or BS). With simply multiplying by the speed of light, the distance above can be easily

obtained. As presented in Fig. 1.1.(a), a range circle with a receiver being the center and the

corresponding measured distance being the radius can be obtained from each communication

channel. Evidently, every single point on such a circle represents a possible location of the

wanted MS. The circles of two different base stations (BSs) will intersect at two points without

considering the special cases of tangency and non-intersection. Three range circles are the

least information required to acquire an unique point. This result can be applied to the

5
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Figure 1.1: Position Determination Methods: (a) Time of Arrival (b)Time Difference of
Arrival (c) Angel of Arrival

satellite-based and the network-based location schemes which are two major categories in

existing wireless location systems.

The concept of time difference can also be used to solve the problem of positioning in

the network-based system. Since the propagation time and distance between each pair of a

BS and an MS are closely related, the difference of two measured time information can be

associated with that of two measured distances in thinking. A hyperbola curve with two BSs

as the foci can be introduced from the formulation of the difference of two distances. The

intersection of two hyperbola curves will be viewed as the position of the MS, as shown in Fig.

1.1.(b). Hence the information of the Time-Difference-of-Arrival (TDOA) can be transformed

6



into a geometric relationship and applied in the application of positioning. The extra demand

in the network-based system utilizing the TDOA scheme is that synchronization of the BSs

is necessary.

In a two-dimensional (2-D) scenario, an object can be localized with hybrid time and/or

angle information. The Angle-of-Arrival (AOA) , also known as the Direction-of-Arrival

(DOA) , can be adopted to proceed the task of positioning. On a reference coordinates, a

line from a BS to the MS can produce an angle. It requires at least two lines that intersect

with each other to locate the MS in the AOA scheme as shown in Fig. 1.1.(c). With the

uncertainty of the position of MS, antenna arrays or multi-dimensional antenna are needed

for every BS to obtain the direction.

The TOA, TDOA and AOA information mentioned above can be utilized individually

or can be cooperated with each other in a network-based location estimation system [1] [2].

Since the expression of the distance contains inherently nonlinear terms, many mathematical

solutions can not be adopted to solve the problem. Therefore, linearized approaches are

applied to re-formulate the expression and estimate the position of MS [3]. However, one

thing to be emphasized is that only the Line-of-Sight (LOS) case is concerned in these location

methods. In this thesis, more realistic noise and interference are considered. A VBS scheme

is proposed to estimate the location of MS under the considerations of NLOS (Non-Lone-of-

Sight) and GDOP (Geometric-Dilution-of-Precision).

The remainder of this thesis is organized as follows. The related work, including the

mathematical modeling, the existing location estimation algorithms, the propagation noise,

and the GDOP effect, is briefly described in chapter 2. The observation from GDOP and the

formulation of the VBS algorithm are discussed in chapter 3. The performance evaluations

are shown in chapter 4, followed by the conclusions remark in chapter 5. The reference is

outlined in the last part.

7



Chapter 2

Related Work

2.1 Mathematical Modeling

The mathematical models for the TOA, TDOA, and AOA measurements are summarized

as follows. The TOA measurement t` from the `th BS is obtained by

t` =
r`

c
=

1
c
ζ` + n` ` = 1, 2, ...n (2.1)

where c is the speed of light, and r` represents the measured relative distance between the

MS and the `th BS contaminated with the TOA measurement noise n`. The noiseless relative

distance ζ` between the MS and the `th BS can be obtained as

ζ` = ‖x − x `‖ (2.2)

where x = (x, y) represents the MS’s position, and x ` = (x`, y`) is the location of the `th

BS in the 2-D setting; while in the 3-D formulation, x = (x, y, z) and x ` = (x`, y`, z`). On

the other hand, the TDOA measurement ti,j is obtained by computing the time difference

between the MS w.r.t. the ith and the jth BSs as:

ti,j =
ri,j

c
=

1
c
(ζi − ζj) + ni − nj (2.3)
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where ni and nj represent the measurement noises from the MS to the ith and the jth BSs.

Since it is assumed that the antenna arrays at the home BS can only measure the incoming

signals along the x and y directions, the AOA measurement θ of the cellular system is obtained

as

θ = tan−1(
y − y1

x− x1
) + nθ (2.4)

where θ represents the horizontal angle between the MS and its home BS. (x1, y1) is the

horizontal coordinate of the home BS, and nθ is the measurement noise associated with θ.

2.2 Studies on Existing Location Estimation Algorithms

Different location estimation schemes have been proposed to acquire the MS’s position.

Various types of information (e.g. the signal propagation time, the received angle of the signal,

or the Receiving Signal Strength (RSS)) are involved to facilitated the algorithms design for

location estimation. The primary objectives in most of the location estimation algorithms are

to obtain higher estimation accuracy with promoted computational efficiency.

2.2.1 The Subspace Method

The subspace method is also known as the super-resolution method or the high-resolution

method. The multiple radio wave fronts or the superposition of them are received by sensor

arrays at a receiver. It utilizes the eigendecomposition or the eigenanalysis process of the

cross-correlation matrix to generate the estimates of some particular parameters contained in

the signals. These parameters can be the number of signals, the AOA information, the signal

strength, the noise strength or the characteristic (like gain, phase and polarization) of the an-

tennas. The most well-known super-resolution algorithm is the MUltiple SIgnal Classification

(MUSIC), which can be implemented as an unbiased estimator asymptotically. The MUSIC

scheme studied in [4] considers arbitrary-located antennas and a particular covariance matrix

within a noisy environment.
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Figure 2.1: Geometric Description of Three-Antenna Case

As shown in Fig. 2.1, multiple transmitted signal wavefronts arrival with varies directions.

The incident signal vectors a(θ1) and a(θ2) can construct the range space a. The vectors E1,

E2 and E3 are the eigenvectors of the covariance matrix S of the received vector r. The λ1,

λ2 and λ3 are the corresponding eigenvalues and λ1 > λ2 > λ3 > 0. The signal subspace Ss

can be generated by the vectors E1 and E2 while the vector E3 can form the noise space. The

received vector r can be represented as the linear combination of the vector E1, E2 and E3.

The AOA parameter can be solved by intersecting the vector a and the signal subspace Ss.

The MUSIC scheme is experimentally illustrated to be a robust solution for location

estimation, especially for a near-far environment. Over fading channels, the estimator in [5]

applying the MUSIC identification method intents to estimate the propagation delay of the

received signal in a DS-CDMA system. In [6], the variance of the MUSIC signal source

location estimates is derived and the synthetic formulation can be adopted to the correlation

matrix of a biased estimator. However, it has also be shown in [7] and [8] that the drawbacks

of the MUSIC approach include (i) comparably high sensitivity to large noise and (ii) its

complexity in computation.

10



2.2.2 The Beamforming Method

The beamforming system is a space-time processor that operates on the output of sensor

arrays. The received temporal signal with spatial wavefront being a function of its unknown

MS’s position can be proceeded to locate multiple MSs, restrain interferences, and mitigate

noise. It supports spatial filtering capability by enhancing the amplitude of a coherent signal

associated with surrounding noises. The conventional adaptive beamforming technique is

sensitive to the estimation error of the position of MS. Signal distortion or cancellation will

be introduced in the iterative process.

A combination of localization and beamforming is proposed as in [9]. It utilizing the MU-

SIC scheme to provide the ability of self-correcting and increase the robustness to locate errors

without sacrificing the computation efficiency under the assumption that the number of MS

and the characteristic of the noise are known. An enhanced algorithm for simultaneous multi-

source beamforming and adaptive multi-target tracking is studied in [10]. The correlation

between the adaptive minimum variance (MV) beamforming and the optimal source localiza-

tion is also investigated and developed as in [11]. Under equal priors, it shows that the optimal

source localization decision rule (i.e. the log-likelihood function) is directly proportional to

the output power of the adaptive MV beamformer.

2.2.3 The Fingerprinting Method

Instead of exploiting the spatial and temporal information of the signal, the location

fingerprinting technique locates the MS based on the received signal strength (RSS) .

The fingerprinting technique involves both the off-line and the on-line phases. First in the

off-line mode, the location fingerprinting senses the RSS from multiple access points (AP) in a

802.11 wireless local area network. A location-scanned database is stored in a sink node and a

rectangular grid network covered a specific service area is ready as a radio map after collecting

enough statistical data. The location fingerprinting means the signal strength value at a grid

point of the radio map. The second mode comes with the on-line phase in real-time processes.

When a radio signal is received at multiple access points, a measured RSS vector can be

11



obtained and is used to compare with the location fingerprinting map at the sink node. In

order to minimize the error of location estimation, it generally applies a proximity-matching

method, like Euclidean distance, to figure out the position of the MS.

The characteristics of radio signals in indoor environments are discussed in [12]. For

WLAN location fingerprinting, the distribution of RSS is usually not Gaussian, and its stan-

dard deviation is signal-level dependent. In addition, it demonstrates that the effect of the

existence or movement of persons apparently affects the location fingerprinting and the infor-

mation of the changes should be recorded on the sink node. In [13], a method for arranging

and designing parameters is proposed when considering deploying a indoor positioning sys-

tem. A hybrid algorithm, which combines the RF propagation loss model, is proposed to both

mitigate the requirement of the training data and to adjust the configuration changes [14].

2.2.4 The Ray-Optical Approach

The ray-tracing and ray-launching techniques are the two ray optical approaches for lo-

cation estimation. The radio signals that are launched from a transmitter and reflected or

diffracted by various objects are aggregated in a receiver. The rays are treated as the traces

of radio signals and are summed individually to determine the corresponding electric field

strengths.

In the method of ray-tracing, the generation of a image comes with a reflection of a ray. As

shown in Fig. 2.2.(a), the images T1 and T2 are relative to the transmitter T. High accuracy

can be achieved by tracking each trace apart, but the cost of high computation time can not

avoid. In the ray-launching approach, as illustrated in Fig. 2.2.(b), rays launched from the

transmitter reflect and diffract across the indoor circumstance. Every time a ray reflect from

a wall or diffract by a cone, the number of intersections will be added by 1 and the field will

be accumulated. When the number of intersection or path loss exceed a threshold, the tracing

of a ray will stop. One thing to be emphasized is that a vast amount of diffracted rays may

be introduced and heavily increase the load of the location system.

Experimental formulas from extensive measurements of urban and suburban propagation
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Figure 2.2: The Ray-Optical Approaches Include (a) the Ray-Tracing Method and (b) the
Ray-Launching Method
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losses are studied as in [15] [16]. The unknown indoor parameters, such as materials, layouts

will significantly affect the propagation predictions of rays. An indoor micro cell area pre-

diction system is proposed in [17] and the prediction can be effortlessly estimated by using

ray-tracing scheme.

A ray-launching approach is enhanced with two methods, i.e. the effective-propagation-

area method and the dominant-corner extraction method [18]. By restricting the behaviors of

the propagations, it saves the computation time and efficiently fulfills the prediction of prop-

agation characteristics. The improved three dimensional indoor radio propagation techniques

are developed in [19] and [20].

2.2.5 The Taylor-Series Estimation (TSE) Algorithm

In [21], the Taylor series method is applied to linearize the equations of the range mea-

surements and hence the location calculations are simplified.

As mentioned in section 2.1, (x, y) is the position of the MS and (x`, y`) is the position of

the `th base station and r` is the TOA measurement from the base station `. Assuming that

the propagation noise can be neglected, the range measurement can be expressed as

ζ` = r` − n` = f`(x, y, x`, y`) (2.5)

where ζ` represents the noiseless distance between the MS and the `th BS. n` is the mea-

surement noise and is statistically distributed. We take the noises to have zero-mean values

< n` >=0 and nij =< ninj > is the i− jth term in the covariance matrix

Q = [nij ]

If the xv, yv are the initial guessed values of the true MS’s position, the MS’s position (x,y)

can be written as

x = xv + δx y = yv + δy (2.6)
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where δx and δy are the deviations of the MS’s position (x, y) and the corresponding initial

guessed position (xv, yv).

Expand the function f` in Taylor’s series by keeping only terms below second order as:

f` = r` − n`
∼= f`v + a`1δx + a`2δy (2.7)

where

f`v = f`(xv, yv, x`, y`)

a`1 = ∂f`/∂x|xv,yv a`2 = ∂f`/∂y|xv ,yv

The approximate relations of (2.7) can be written as

Aδ ∼= z− n (2.8)

where

A =




a11 a12

a21 a22

. .

aN1 aN2




δ =




δx

δy


 z =




r1 − f1v

r2 − f2v

.

rN − fNv




n =




n1

n2

.

nN




The parameter δ can be chosen as

δ = (ATQ−1A)−1ATQz (2.9)

Thus, to estimate the position of the MS, compute δx, δy with (2.9), replace

xv ← xv + δx yv ← yv + δy (2.10)

in (2.9), and repeat the computations. The iterations will be converged when δx and δy are
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essentially zero.

2.2.6 The Two-Step Least Square (two-step LS) Algorithm

The content of this section will show the two-step least square location algorithm for the

TOA measurements and it can be obtained in [22]. The two-step LS method for the TDOA

measurements can be derived from the similar concept.

The notations of the MS’s position and the base stations are the same as those in the TSE

algorithm described in the previous section. The small propagation noises are concerned in

the two-step LS algorithm. The additive noises are assumed to be Gaussian-distributed and

independent of the radio signals. By incorporating the influences of the propagation errors

on the location estimation, the range measurements can be formulated as

r2
` ≥ (x` − x)2 + (y` − y)2 = κ` − 2x`x− y`y + x2 + y2 ` = 1, 2, ...N (2.11)

where κ` = x2
` +y2

` , r` = ct` is the measured distance between the MS and the `th base station,

and c is the speed of light. And by defining a new variable β = x2 + y2, we rewrite (2.11)

through a set of linear expressions

−2x`x− 2y`y + β ≤ r2
` − κ` ` = 1, 2, ...N (2.12)

Let x a = [x y β]T and express (2.12) in matrix form

Hx a ≤ J (2.13)

where

H =




−2x1 − 2y1 1

−2x2 − 2y2 1

. . .

−2xN − 2yN 1




J =




r2
1 − κ1

r2
2 − κ2

.

r2
N − κN
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With measurement noise, the error vector is

ψ = J−Hx a (2.14)

When r` can be expressed as ξ` + cn`, the error vector ψ is found to be

ψ = 2cBn + c2n¯ n

B = diag{ξ1, ξ2, ..., ξN} (2.15)

The symbol ¯ represents the Schur product (element-by-element product). In addition, the

second term on the right of (2.15) can be ignored since the condition cn` ≤ ξ` is usually

satisfied. As a result, ψ becomes a Gaussian random vector with covariance matrix given by

Ψ = E[ψψT ] = 4c2BQB (2.16)

Q is the covariance matrix of measured noise, and ξ1,...,ξN are denoted as the true values of

distances between the sources and the receiver. The element x a are related by the equation,

β = x2 + y2, which means that (2.13) is still a set of nonlinear equations in two variables

x and y. The approach to solve the nonlinear problem is to first assume that there is no

relationship among x, y and β. It can then be solved by the Least Square (LS) method.

The final solution is obtained by imposing the known relationship to the computed result via

another LS computation. This two step procedure is an approximation of a true Maximum

Likelihood (ML) estimator. By considering the elements of x a independent, the ML estimator

of x a is

x a = arg min{(J−Hx )T Ψ−1(J−Hx )}

= (HT Ψ−1H)−1HT Ψ−1J (2.17)

The covariance matrix of x a is obtained by evaluating the expectations of x a and x ax
T
a from
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(2.17). The covariance matrix of x a can be calculated as [23]

cov(x a) = (HT Ψ−1H)−1 (2.18)

Since we have used the independent supposition of variables x, y, and β in the estimation

of x a though the variable β is dependent on the variable x and y, we should revise the results

as follows. Let the estimation errors of x, y, and β be e1, e2, and e3. Here and below, denote

the ith entry of a matrix M as [M ]i; then the entries in vector x a become

[x a]1 = xo + e1 (2.19a)

[x a]2 = yo + e2 (2.19b)

[x a]3 = βo + e3 (2.19c)

where xo, yo, and βo are denoted as the true values of x, y, and β. Let another error vector

ψb = Jb −Hbx b (2.20)

where

Hb =




1 0

0 1

1 1


 Jb =




[xa]21

[xa]22

[xa]3




and x b=




x2

y2


. Substituting (2.19a) - (2.19c) into (2.20), we have

[ψ]1 = 2xoe1 + e2
1 ≈ 2xoe1

[ψ]2 = 2yoe2 + e2
2 ≈ 2yoe2

[ψ]3 = e3

Obviously, the above approximations are valid only when the errors e1, e2, and e3 are fairly
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small. Subsequently, the covariance matrix of ψb is

Ψb = E[ψbψ
T
b ] = 4Bbcov(x )Bb

Bb = diag{xo, yo, 0.5} (2.22)

As an approximation, elements xo and yo in matrix x can be replaced by the first two elements

x and y in x a. Similarly, the ML estimate of x b is given by

x b = (HT
b Ψ−1

b Hb)−1HT
b Ψ−1

b Jb (2.23)

≈ (HT
b B−1

b (cov(x )a)−1B−1
b Hb)−1 (2.24)

• (HT
b B−1

b (cov(x )a)−1B−1
b )Jb (2.25)

So the final position estimation x = [x y]T is

x =
√

x b, or x = −√x b (2.26)

Here the sign of x should coincide with the sign of [x a]1 calculated by solving (2.17), and the

sign of y coincides with the sign of [x a]2.

The complete derivation of the the two-step LS for the TOA measurements is shown as

above. In addition, the two-step LS method can be adopted to estimate MS location from

the TDOA [23], and the TDOA/AOA measurements [24].

2.2.7 The Linear Line-of-Position (LLOP) Method

The linear line-of-position methods can be utilized to locate the MS’s position by using

the TOA measurements as in [25], and the hybrid TOA/AOA measurements in [26]. The

content of this section will show the linear Line-of-Position (LLOP) and it can be referred

to [25].

The TOA location method measures the ranges between the MS and the BSs. This range
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Figure 2.3: The Geometry of TOA-Based Location with Circular LOPs and Linear LOPs

between the `th BS and the MS can be expressed as

ζ` =
√

(x` − x)2 + (y` − y)2 (2.27)

where (x, y) is the position of the MS, (x`, y`) is the position of the `th BS. The relationship

between the ranges for three BSs, their location, and the position of the MS are shown in Fig.

2.3 in two dimensions.

The Linear Line-of-Position (LLOP) method is based on the observations of Fig. 2.3.

Instead of utilizing the circular LOPs, the LLOP presents the approach of the linear LOPs,

a new interpretation of the geometry of TOA location. Since two TOA measurements inter-

sections at two points generate a line, the least number of BSs (i.e. 3) used to estimate the

location of the MS in 2-D scenarios will produce two independent lines. As indicated in Fig.

2.3, the new LLOPs also intersect at the location of the MS.

To determine the equations for the new linear LOPs, we must start with the original LOP

equations, given in (2.27) for ` = 1, 2, 3. The lines which pass through the intersection of the

three circular LLOPs can be obtained by squaring and differentiating the ranges in (2.27) for
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` = 1, 2 and ` = 1, 3, which result in

(x2 − x1)x + (y2 − y1)y =
1
2
(x2

2 − x2
1 + ζ2

1 − ζ2
2 ) (2.28)

(x3 − x1)x + (y3 − y1)y =
1
2
(x2

3 − x2
1 + ζ2

1 − ζ2
3 ) (2.29)

Given the two linear LOPs above, the location of the MS can be obtained by solving (2.28)

and (2.29). The location of the MS (x, y) can be obtained as

x =
(y2 − y1)C2 − (y3 − y1)C1

(x3 − x1)(y2 − y1)− (x2 − x1)(y3 − y1)
(2.30)

y =
(x2 − x1)C2 − (x3 − x1)C1

(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)
(2.31)

where

C1 = (x2
2 − x2

1 + ζ2
1 − ζ2

2 )

C2 = (x2
3 − x2

1 + ζ2
1 − ζ2

3 )

The scheme developed the location geometry for locating a MS in the 2-D plane with

three BSs. When there are more than the minimum number (i.e. greater than three BSs

in the 2-D plane and there are measurement errors in the TOA signals, two approaches to

algorithm development can be taken: an intersection solution (geometry based) and a least

squares solution.

Intersection Solution

This approach can be generalized for N total BSs where independent N − 1 lines can be

produced from the intersections of the N circles. These N−1 linear LOPs could then be used

to compute the intersection points. All of the intersections of the independent N − 1 lines

could be used to obtain (N−1)(N−2)
2 intersection points. As a result, the location of the MS

could be found from the mean of the intersection points or the centroid of a polygon formed

by these points.
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Least Squares Solution

An alternative approach to the solution of geometric equations is to compute the position

of the MS using a least squares when the number of the received BSs (N) is more than three.

Each of the independent N − 1 lines is represented in the form (as shown in (2.28)- (2.29))

a`,1x + a`,2y = aT
` x = b` (2.32)

for the `th line, where a` = [a`,1, a`,2]T and x = [x, y]T . The equations describing all of the

lines can be written in matrix form as

Ax = b (2.33)

where AT = [a1 a2...aG], b = [b1 b2...bG]T , and G is the number of lines used. Due to the

measurement errors , the LS estimate is used to obtain a solution x̂

x̂ = (ATA)−1ATb (2.34)

This algorithm is obviously much less difficult than the geometric method since there is no

need to compute intersections of many lines.

2.3 Studies on Propagation Noise

2.3.1 Overview

The precision of time measurement significantly leads the performance of the location

algorithms which utilize the time-base information. The transmitted radio signal can reach

the receiver in the shortest time in the case that there are no barriers in the direct connection

between the transmitter and the receiver. This is called the Line-of-Sight (LOS) situation,

which often occurs in a open space. Yet, this ideal situation usually can not meet in a obstacle-

concentrated environment such as a dense urban or an office inside a building. The emitted
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Figure 2.4: The Range Measurements Suffer from the NOLS Errors.

radio signal is either reflected or diffracted by obstructions, and it must take extra time to

arrive at the receiver. The additional propagation time is so-called the Non-Line-of-Sight

(NLOS) error, and is always positive as presented in Fig. 2.4. The NLOS error is viewed

as a killer issue for location estimation [27]. The excess part of the time measurements will

result in range errors on the order of 513 meters and 436 meters in the mean and the standard

deviation respectively [28], which inevitably makes a time-based location algorithm to fail.

2.3.2 Methods Proposed to Mitigate or Reduce the NLOS error

Identifying NLOS Error According to the Residual Analysis

The residual weighting algorithm (Rwgh) proposed in [29] exploits the concept of the LS

estimator and the weighting of each intermediate estimate to identify the NLOS error without

any prior information. It takes three steps to figure out the NLOS error. First, it chooses

a subset n from the N range measurements to form a range set where 2 < n ≤ N . Second,

it proceeds the calculation of the intermediate LS estimate x̃, which is the vector minimizes
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Figure 2.5: The Flow Chart of the Rwgh Algorithm

Res, and the sum of the residual squares over the data of the corresponding combination S.

Res(x, S) =
∑

i∈s

[ri − ‖x− xi‖]2 (2.35)

x̃ = arg min
x

Res(x, S) (2.36)

The estimated R̂es containing NLOS measurement is deservedly larger than that of other

estimates. Hence, the weighting is inversely proportional to R̂es of the estimate. At last, the

final estimates can be expressed as a weighted linear combination of the previous intermediate

estimates.

The flow chart of this algorithm is shown in Fig. 2.5. Both Deterministic and random

NLOS errors are concerned. The estimated R̂es with varies numbers of range combinations

are compared with the all-LOS case and the case suffered from NLOS error. The performance

shows that the Rwgh is effective to resist the NLOS error.
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Identifying NLOS Error According to the Standard Deviations

The transmitted radio signal corrupted by the NLOS errors arrives at the receives through

multiple channels. The characteristics of these channels can be obtained after acquiring

enough statistical data. The standard deviation, a kind of prior information, is used in [30]

to identify the NLOS error.

Once a radio signal reaches the receiver m, the range measurement rm(ti) is formulated

by using an N th order polynomial fit and its unknown coefficients is solved by the least

square techniques. A smoothed measurement sm(ti) utilizing the solved coefficients above is

presented as another N th order polynomial function. The standard deviation at this moment

can be derived as

σ̂m =

√√√√ 1
K

K−1∑

i=o

(sm(ti)− rm(ti))2 (2.37)

Suppose that σm is the standard deviation of the LOS cases that is calculated when the

transmitter has LOS with the receiver m. It is well-known that the NLOS effect will increase

the standard deviation of the range measurements in a great manner. According to the time

history of range measurements, a decision hypothesis distinguishing NLOS from LOS is made

as

H0 : σ̂m = σm (LOS case) (2.38)

H1 : σ̂m > σm (NLOS case) (2.39)

The NLOS-contaminated signal can be identified and corrected. The corrected signal can

be proceeded with positioning and a better estimate is expected.

Identifying NLOS Error According to the Theoretic Decision Rules

The theoretic framework in [31] offers a binary hypothesis test to classify whether a range

measurement is corrupted by NLOS error or not. It is assumed that the error distributions
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can be categorized with respect to the NLOS and the LOS transmissions. The statistical

characteristic of the LOS error is assigned as a Gaussian distribution with zero mean and

variance σ2
los. The distribution of NLOS error is also modelled as Gaussian with mean µnlos

and variance σ2
nlos. It is noted that µnlos > 0 and σ2

nlos > σ2
los. The general binary hypothesis

test for NLOS identification is as followed.

H0 : X ∼ fXlos
with prior probability P (H0) (LOS condition) (2.40)

H1 : X ∼ fXnlos
with prior probability P (H1) (NLOS condition) (2.41)

Five cases are classified and summarized according to whether the probability model, prior

probability, and the characteristic (i.e. the mean and variance) of NLOS error is known or

not. Four different hypothesis tests are presented with different combinations of the above

statistical information. It is worthy of mention that the fifth decision rule is the same with

that of the previous approach when the model of NLOS distribution is unknown.

Mitigating NLOS Error by Using Kalman Filtering

The Kalman filter is commonly used in smoothing a data set or tracking an object. An

application [32] applying two Kalman filters, one for smoothing and the other for tracking,

proceeds the task of positioning in a NLOS environment. The method first periodically

samples the received radio signals to gather enough data to estimate the standard deviation

σ̂m, and identifies the NLOS-corrupted range measurements by the following hypothesis test.

H0 : σ̂m = γσm (LOS case) (2.42)

H1 : σ̂m > γσm (NLOS case) (2.43)

The σm is the standard deviation of the measurement noise in the LOS case. The presence of

γ is to reduce the false alarm probability. The classified LOS and NLOS range measurements

in Fig. 2.6 are then passed to the Kalman filters behind. The smoothing procedure is taken

to proceed the LOS range measurements to an unbiased Kalman filter, and the NLOS ones to
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Figure 2.6: Mobile location estimation using the Kalman Filtering

a biased Kalman filter. The NLOS error is mitigated step by step with the bias obtained at

the sampling state. The proceeded TOA data are continuously fed to the process of location

estimation. A Kalman filter finally handles these estimated position data of the mobile to

acquire a smooth trajectory.

Mitigating NLOS Error According to the Properties of Geometry

The NLOS error is reduced in a cell-based layout without knowing the prior information

of the range measurements [33]. In addition, a large number of base stations required in [29]

are not necessary in this proposed method. A true range measurement is expressed as a

multiplication of the corresponding measured range and a scale factor. The function of a

scale factor is to scale a NOLS-corrupted range measurement to be closer to the true range.

Each scale factor is varied from 0 to 1, and all the three scale factors form a vector v. The

upper bound U of the vector v is [1 1 1]T . As shown in Fig. 2.7, a nonlinear equality g(v) is

derived by utilizing the law of cosines. The formula g(v) is a function of the measured ranges,

the distance of any two of the three base stations, and the vector v.

27



BS1

BS2
BS3

A

B C
r3

r1

r2

MS

θ1

θ2θ3

Figure 2.7: The Geometry of the TOA-Based Location Showing the Relationship of the True
Ranges and Inter-BS Distance.

In the Fig. 2.7, the limitations of the lower bound L of the vector v is characterized by

confirming that any measured range circle must intersect with another two. The intersections

A, B and C of the three measured ranges are the 3 closest points to the MS. A nonlinear

cost function F (v) is then presented as the squared sum of the distances between the mobile

station and these intersections. Given g(v) = 0 and the boundary of the vector v, the

objective function F (v) is constraint-optimized with the applying of the sequential quadratic

programming (SQP) algorithm to obtain the estimated scale vector v̂ as

v̂ = min
L≤v≤U

F (v) subject to g(v) = 0 (2.44)

Finally, the MS location is decided by taking the estimated scale vector v̂ into any con-

ventional location algorithms.
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Figure 2.8: Geometric Constraints for TOA-Based Location Estimation Confine the True
MS’s Position in the Overlap Region of the Range Measurements.

Mitigating NLOS Error According to the Properties of Geometry and Noise Vari-

ance

As illustrated in Fig. 2.8 , the MS’s location estimation using the Two-Step Least Square

method may fall inside or outside of the boundaries of the three arcs, AB, BC, and CA.

With the larger overlap region caused by the increasing NLOS error, the inaccuracy of the

location estimation of the MS consequentially raises. The characteristics of the geometric

layout and the noise variances are applied to a method named the Geometry-Constrained

Location Estimation (GLE) algorithm [34] to modify the formulations within the Two-Step

Least Square method. The primary objective of the proposed GLE algorithm is to confirm

the location estimate within the overlap region by joining the geometric constraints into the

Two-Step LS method.

A specific information derived from the constraints of the geometric layout is added into
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the Two-Step Least Square method. The constrained cost function γ is given by

γ =


 ∑

µ=a,b,c

1
3
‖x − µ‖2




1/2

(2.45)

where x is the MS’s location as mentioned before; a = (xa, ya), b = (xb, yb), and c = (xc, yc)

represent the corresponding coordinates of the points A, B, and C. The parameter γ defined

as the square root of the average squared-sum of the distance from the MS to the three points

A,B and C is called the virtual distance and obviously varies as the three coordinates a ,b

and c changes. The corresponding expected virtual distance γe is defined as

γe =


 ∑

µ=a,b,c

1
3
‖x e − µ‖2




1/2

= γ + nγ (2.46)

where nγ is the error induced by the computed deviation between γe and γ. The xe called the

expected MS’s position is chosen to minimize the deviation between the virtual distance γ and

the corresponding expected virtual distance γe. The coordinates of the expected MS position

xe is a linear combination of those of the three points A, B, and C with the parameters acting

as weights which is related to the signal variations.

xe = w1xa + w2xb + w3xc (2.47a)

ye = w1ya + w2yb + w3yc (2.47b)

where

w` =
σ2

`

σ2
1 + σ2

2 + σ2
3

for ` = 1, 2, 3 (2.48)

σ1, σ2, and σ3 are the corresponding standard deviations obtained from the three TOA mea-

surements r1, r2, and r3.

The selection of the weights is directly proportional to the corresponding signal variances.

For example, the excessive range measurement r1 due to the comparatively large signal vari-
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ance σ1 may probably cause the true position of the MS to move incorrectly toward to the

boundary of the arc BC. Therefore,the weighting of the coordinates of a should be relatively

large to make the true position of the MS to move toward the point A of the analogous

triangle.

The GLE algorithm integrates the geometric constraints into the first step of the Two-Step

Least Square method is defined as:

Hx = J + ψ (2.49)

where

x =
[

x y β

]T

H =




−2x1 −2y1 1

−2x2 −2y2 1

−2x3 −2y3 1

−2γx −2γy 1




J =




r2
1 − κ1

r2
2 − κ2

r2
3 − κ3

γ2
e − γκ




The corresponding coefficients are given by

β = x2 + y2

κ` = x2
` + y2

` for ` = 1, 2, 3

γx =
1
3
(xa + xb + xc)

γy =
1
3
(ya + yb + yc)

γκ =
1
3
(x2

a + x2
b + x2

c + y2
a + y2

b + y2
c )
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The noise matrix ψ in (2.49) can be obtained as

ψ = 2 c Bn + c2n2 (2.50)

where

B = diag
{

ζ1, ζ2, ζ3, γ

}

n =
[

n1 n2 n3 nγ/c

]T

Based on the two-step LS scheme, an intermediate location estimate after the first step can

be obtained as

x̂ = (HTΨ−1H)−1HTΨ−1J (2.51)

where

Ψ = E[ψψT ] = 4 c2 BQB

It is noted that Ψ is obtained by neglecting the second term of (2.50). The matrix Q can be

acquired as

Q = diag
{

σ2
1, σ2

2, σ2
3, σ2

γe
/c2

}

Q represents the covariance matrix for both the TOA measurements and the expected virtual

distance, where σ2
γe/c corresponds to the standard deviation of γe/c. The final location esti-

mation can be obtained by continuously carrying on the second step of the Two-Step Least

Square method [22].
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2.4 Studies on an Important Metric — Geometric Dilution of

Precision (GDOP)

The GDOP is a metric that describes the effect of different BS layouts on the performance

of location algorithms. It is a measurement-to-noise ratio on standard deviation.

Let the distance ζi from the MS to the ith BS in 2-D condition is given as

ζi =
√

(x− xi)2 + (y − yi)2 i = 1, 2, ...N (2.52)

where (xi, yi) are the known coordinates of the ith BS, and (x, y) is the unknown position of

the MS. The matrix M is the partial deviations of the noise-free measurement equations with

respect to the unknown parameters (i.e. x and y).

M =




∂ζ1
∂x

∂ζ1
∂y

∂ζ2
∂x

∂ζ2
∂y

. .

∂ζN
∂x

∂ζN
∂y




=




x−x1
ζ1

y−y1

ζ1

x−x2
ζ2

y−y2

ζ2

. .

x−xN
ζN

y−yN
ζN




(2.53)

The Best, Linear, Unbiased Estimate (BLUE) of (x, y) obtains the variance as

V ar(x̂) = diag(MTQ−1M)−1 (2.54)

where the matrix Q is the noise covariance matrix. Define G2×2 as

G =
V ar(x̂)

Q
(2.55)

and the GDOP will be given by

GDOP =
√

G1,1 + G2,2 (2.56)

The GDOP can also be yielded when the range differences are concerned instead of the
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range measurements. If the noise errors are simplified by i.i.d. distribution with mean 0 and

variance σ2
n, the matrix G will translate into

G = (MTM)−1 (2.57)

A statement in [35] demonstrates that given a Gaussian-distributed noise, the GDOP and the

Cramer-Rao lower Bound (CRLB) are identical. In [36], the minimum GDOP inside a K-side

(K ≥ 3) regular polygon takes place at the center of the layout and the value is 2√
K

. To verify

the conclusions in [36], a series of simulations with TOA or TDOA information are tried in a

K-side regular polygon. The results show that the shape of the GDOP seems to be a concave

function and the value at the center is minimum and comparable to 2√
K

.
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Chapter 3

The Location Estimation with The

Assistance of Virtual Base Stations

3.1 Overview

The Taylor-Series Estimation (TSE) algorithm [21] mentioned in section 2.1.5 transfers

an original measurement range into a simplified form by a linearized process. The adoption

of the first-order Taylor expansion for two variables notably simplifies the utilization of the

Least Square (LS) method on the range data. The method takes the error covariance matrix

into the formulation and views it as the weighting of the range data. An initial guess of

the MS’s position is necessary for the algorithm to continue the estimation iteratively. A

diverged result may occur due to a improper initial guess of the MS’s position. The two-step

LS method in section 2.1.6 can use the TOA [22], the TDOA [23], or the hybrid TDOA/AOA

[24] measurements to estimate the MS position. It is regarded as an implementation of a

Maximum Likelihood (ML) estimator under the assumption of equal prior. After a linearized

transformation of the independent-assumed objective parameters, a LS method is applied

to estimate the MS position in the first step. The estimated result is fine tuned with the

considerations of the presence of the estimation errors and the relationship of the objective

parameters. The other LS process is carrying on to get the final estimate. Rather than
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Figure 3.1: The Flow Chart of the VBS Algorithm

run iteratively, two-stepped process is enough in this algorithm. The LLOP algorithm [25] in

section 2.1.7 uses the connections of the intersections of the measured range circles to estimate

the MS position. There are CN
N−1 independent line equations generated by the intersections

of the N measured range circles. Two similar method, intersections of the line equations and

the least squares, are applied to locate the MS position. However, the TSE, the two-step

LS and the LLOP algorithms are only feasible for the LOS environments. The NLOS error

be a killer issue in the location positioning will bring up a considerable bias in to a time

measurement, especially in a dense region like metropolises and downtowns.

The method in [32] mitigates the influence of the NLOS error by utilizing the constraints

of the geometric layout in the cell-based communication network. A constraint equation and

a nonlinear cost function are derived from the characteristics of the geometry. The cost

function is constraint-optimized by adopting the SQP algorithm. The computation time is

intuitively increased duo to the optimization process. The Geometry-constrained Location

Estimation (GLE) algorithm [34] extended from the two-step LS method is found effective

and time-saving in location position. The proposed VBS (Virtual Base Stations) algorithm
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takes a step ahead by combining the considerations of the signal variations with the extending

geometric constraints of the virtual base stations. The functionalities of the assisted virtual

base stations is to improve the GDOP effects by joining the geometric constraints into the

formulations of the GLE algorithm. The flow chart of the proposed VBS algorithm is shown in

Fig. 3.1. An exponential distributed NLOS error is considered. The first estimate x̂M,1 of the

MS’s position is obtained by utilizing the two-step LS method. The first assisted virtual base

station xv,1 can then be obtained by applying the proposed Center-of-Gravity (CG) based or

the Minimum GDOP (MG) based selection methods. The second estimate x̂M,2 of the MS’s

position obtained from the VBS algorithm is compared with the previous estimate x̂M,1. The

iteration processes will continue while the distance from the latest estimate to the last one is

larger than the chosen threshold. The proposed VBS algorithm iteratively adds virtual base

stations into the original layout and terminates as the estimated MS’s position converges.

3.2 Observations from the GDOP

The GDOP criterion is originally used in the satellite-based location system to check if

the layout of the visible satellites is good for the goal of positioning. It has been applied to

the cell-based location system as well. The interpretation of the meaning of the GDOP is

that it represents the standard deviation ratio of the signal and the noise. In a fixed layout,

the signal variations differ with where the MS locates. The radio signals range over larger

variations not only raise the inaccuracy of the location estimation but also the value of the

GDOP. In other words, the lower value of the GDOP stands for the smaller signal variations

in a fixed layout and expectedly accompanies the better performance of location estimation.

The GDOP is utilized as an index for judging the the effect of the geometric layout.

Several K-side (3 ≤ K ≤ 6) regular polygon layouts are examined to verify the phenomenons

of the GDOP. Each regular polygon is centered at the origin with the vertexes 1000m away

from the origin. In each case, the 3-D graph and the contour of the GDOP value are shown

in Fig. 3.2 to 3.5. Some results can be concluded inside the regular polygons by observing

the differences of these figures.
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The shape of the GDOP is a concave function with the values at the vertexes being the

maximum. The minimum GDOP is found to occur at the center and the value is comparably

to 2√
K

in a K-side regular polygon. One thing to be noted is that the GDOP values are

smaller and the regions inside the regular polygons are flatter as K increases. According to

the statements above, a virtual base station utilized in the VBS algorithm can be joined to

the original layout to flatten the GDOP effect and lower the minimum value. The selection

of a virtual base station is to let the estimated MS’s position locate at the location where the

value of GDOP is minimum.

3.3 The Extended Two-Step LS Algorithm with Virtual Base

Stations

A series of geometric constraints involved by the assisted virtual base stations is feasible

to be integrate into the GLE algorithm. The following section shows the way that how to

integrate the information of the assisted virtual base stations into the conventional two-step

LS algorithm.

3.3.1 Overview

Analogous to the GLE algorithm by adding geometric constraints within the conventional

two-step LS method, the VBS algorithm extends the concept of ”virtual” assistances in the

GLE algorithm to add the geometric constraints from the assisted virtual base stations.

As shown in Fig. 3.6, the three original range measurements intersects at the A, B and

C points around the overlap region. A linear combination of the coordinates of the A, B

and C points with the corresponding parameters direct proportional to the signal variances

constructs the expected virtual distance as in (2.46). The expected virtual distance restricts

the MS in the overlap region and constructs a cost function to minimize the deviation to the

virtual distance as in (2.45). The functionality of the virtual base stations is to reduce the

GDOP effect in the original layout. From the observations in section 3.2, the more the number
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Figure 3.6: The Location Estimation with the Assistance of the Virtual Base Stations

of the virtual base stations are, the lower the value of the GDOP is. With an appropriate

setting of the threshold, the precision of the location can be achieved.

3.3.2 Formulation of the Extended Two-Step LS Algorithm

While the concept of the ”virtual” assistance in the proposed VBS algorithm is the same

with that of the GLE algorithm, the formulations of the expected virtual distance γe as

in (2.46) and the definition of the weights as in (2.48) are utilized. In order to integrate

the information of the ith added virtual base station with the geometric constraints, the

coordinates of the ith virtual base station (xv,i, yv,i) is expressed as

xv,i = αa,ixa + αb,ixb + αc,ixc for i = 1, 2, ... , n (3.1)

yv,i = αa,iya + αb,iyb + αc,iyc for i = 1, 2, ... , n (3.2)

The coordinates of xa, xb and xc can be obtained after the the three TOA measurements
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are acquired. The parameters αa,i, αb,i and αc,i can be obtained by solving (3.1) and (3.2)

associated with αa,i +αb,i +αc,i = 1. The fraction 1
3 in (2.46) is substituted by the parameters

αa,i, αb,i and αc,i so that the expression of the γe,i can be formulated as

γe,i =


 ∑

µ=a,b,c

αµ,i‖x e − µ‖2




1/2

= γ + nγi (3.3)

where nγ,i is the error of between the γ and the γe,i.

It is assumed that there are n virtual base stations collaborating in the VBS algorithm.

By rearranging and combining (2.1) and (2.46) in the matrix format, the following equation

can be obtained:

Hx = J + ψ (3.4)

where

x =
[

x y β

]T

H =




−2x1 − 2y1 1

−2x2 − 2y2 1

−2x3 − 2y3 1

−2xv,1 − 2yv,1 1

−2xv,2 − 2yv,2 1

. . .

−2xv,n − 2yv,n 1
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J =




r2
1 − κ1

r2
2 − κ2

r2
3 − κ3

γe,1 − γκv,1

γe,2 − γκv,2

.

.

γe,3 − γκv,n




The corresponding coefficients are given by

β = x2 + y2 (3.5)

κ` = x2
` + y2

` for ` = 1, 2, 3 (3.6)

γκv,i = αa,i(x2
a + y2

a) + αb,i(x2
b + y2

b ) + αc,i(x2
c + y2

c ) (3.7)

It is noted that the equation (3.7) is utilized to facilitate the formulation of the two-step LS

problem. Moreover, the noise matrix ψ in (3.4) can be obtained as

ψ = 2 c Bn + c2n2 (3.8)

where

B = diag
{

ζ1 ζ2 ζ3 γ1 γ2 ... γn

}

(n+3)×(n+3)

n =
[

n1 n2 n3 nγ1/c nγ2/c ... nγn/c

]T

(n+3)×1

Based on the two-step LS scheme, an intermediate location estimate after the first step can

be obtained as

x̂ = (HTΨ−1H)−1HTΨ−1J (3.9)
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where

Ψ = E[ψψT ] = 4 c2 BQB

It is noted that Ψ is obtained by neglecting the second term of (3.8). The matrix Q can be

acquired as

Q = diag
{

σ2
1 σ2

2 σ2
3 σ2

γe,1/c σ2
γe,2/c ... σ2

γe,n/c

}

It can be observed that Q represents the covariance matrix for both the TOA measurements

and the expected virtual distance, where σ|γe,i|
1
2

corresponds to the standard deviation of

|γe,i| 12 . The final location estimation after the second step of the two-step LS algorithm can

be obtained by referring the approach as stated in [23].

3.4 The Selection of a Virtual Base Station

Since the information of the virtual base stations can be integrated into the conventional

two-step LS method, two methods of selecting virtual base stations are proposed hereafter.

3.4.1 The Center of Gravity (CG) Based Selection Method

As discussed in the section 3.2, the value of the GDOP at the center of the gravity is

minimum in a regular polygon. A virtual base station is added to make the latest location

estimate of the MS be at the center of the gravity of the modified layout. After the first

location estimate x̂M,1 of the MS by the two-step LS method in a regular triangle layout, the

first virtual base station x̂v,1 is added in accordance with the CG based selection method by

x̂M,1 =
x1 + x2 + x3 + xv,1

BSN + V BN
(3.10)

where the BSN and the VBN are the number of the base stations and the virtual base stations,

respectively. The BSN and the VBN are 3 and 1 in this case. The first added virtual base

station xv,1 can be obtained as 4x̂M,1 − 3xCG after a simple transformation while xCG is the

position of the center of the gravity in the original layout. The first obtained virtual base
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station xv,1 is then gathered into the VBS algorithm to decrease the GDOP effect and locate

the second location estimate x̂M,2 of the MS. As the iterative process continues, the second

virtual base station xv,2 can be obtained by

x̂M,2 =
x1 + x2 + x3 + xv,1 + xv,2

BSN + V BN
(3.11)

The BSN and the VBN are substituted as 3 and 2 now. Therefore the second added virtual

base station xv,2 can be yielded as 5x̂M,2 − 4xCG. As the process carries on, the selection of

the nth virtual base station can be expressed as

xv,n = (BSN + V BN)x̂M,n − (BSN + V BN − 1)x̂M,n−1 (3.12)

After n-iteration proceeds and the VBS algorithm stops, the position x̂M,n−1 and x̂M,n

are expected to converge at the same point. By adopting (3.19), the nth virtual base station

xv,n will converge to the nth location estimate x̂M,n of the MS.

3.4.2 The Minimum GDOP (MG) Based Selection method

Whenever the nth virtual base station xv,n is going to be added into the existing layout,

the formulation of the GDOP can be acquired with the information of the coordinates of the

three base stations and the assisted (n−1) virtual base stations, the range measurements and

the latest location estimate x̂M,n of the MS. The expression in (2.53) can be reformulated as

M =




x̂M,n−x1

r1

x̂M,n−y1

r1

x̂M,n−x2

r2

x̂M,n−y2

r2

x̂M,n−x3

r3

x̂M,n−y3

r3

x̂M,n−xv,1

rv,1

x̂M,n−yv,1

rv,1

x̂M,n−xv,2

rv,2

x̂M,n−yv,2

rv,2

. .

x̂M,n−xv,n

rv,n

x̂M,n−yv,n

rv,n




(3.13)
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where rv,i is the distance from the ith virtual base station to the location estimate of the

MS. If the noise errors are simplified by i.i.d. distribution with mean 0 and variance σ2
n, the

GDOP can be yielded as

GDOP =
√

the trace of (HTH)−1 (3.14)

Obviously, the GDOP formulation in (3.14) is a function of xv,n and yv,n. The function (3.14)

is intuitively differentiated with respect to xv,n and yv,n, and the desired (xv,n, yv,n) can be

obtained theoretically by making each of the first-order differentials equals to 0 as

DG1 ≡ ∂GDOP

∂xv,n
= 0 (3.15)

DG2 ≡ ∂GDOP

∂yv,n
= 0 (3.16)

Actually, the equations (3.15) and (3.16) involve high-order power of xv,n and yv,n so that

the solution of (xv,n, yv,n) is hard to yield. The Taylor expansion with multiple variables

is applied to reformulate the equations (3.15) and (3.16). The minimum GDOP value is

supposed to locate around the center of gravity in a non-regular polygon layout. Consequently

the corresponding first-order Taylor expansions of the equations (3.15) and (3.16) about the

point xv,n=xe,v,n are given by

DG1 = DG1(xe,v,n) +
∂DG1

∂xv,n
|xv,n=xe,v,n (x− xe,v,n) +

∂DG1

∂yv,n
|xv,n=xe,v,n (y − ye,v,n) (3.17)

DG2 = DG2(xe,v,n) +
∂DG2

∂xv,n
|xv,n=xe,v,n (x− xe,v,n) +

∂DG2

∂yv,n
|xv,n=xe,v,n (y − ye,v,n) (3.18)

where

xe,v,n = (BSN + V BN)x̂M,n − (BSN + V BN − 1)x̂M,n−1 ,BSN=3 ,and VBN=n (3.19)
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The nth virtual base station xv,n can be obtained by

xv,n =




xv,n

yv,n


 = A−1b (3.20)

where

A =




∂DG1
∂xv,n

|xv,n=xe,v,n
∂DG1
∂yv,n

|xv,n=xe,v,n

∂DG2
∂xv,n

|xv,n=xe,v,n
∂DG2
∂yv,n

|xv,n=xe,v,n


 (3.21)

and

b =




∂DG1
∂xv,n

|xv,n=xe,v,n ·xe,v,n + ∂DG1
∂yv,n

|xv,n=xe,v,n ·ye,v,n −DG1(xe,v,n)

∂DG2
∂xv,n

|xv,n=xe,v,n ·xe,v,n + ∂DG2
∂yv,n

|xv,n=xe,v,n ·ye,v,n −DG2(xe,v,n)


 (3.22)

The termination of the VBS algorithm will stop the addition of new virtual base stations.
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Chapter 4

Performance Evaluation

The noise model in [37] is used to represent the NLOS errors. The threshold is chosen

as 0.1 meter. The proposed VBS algorithm with two selection methods of the virtual base

stations are compared with the TSE approach, the two-step LS algorithm and the LLOP

method. Different layouts and different positions of the MS are considered in the simulations

to verify the effectiveness of the VBS algorithm.

4.1 The Noise Models and Simulation Parameters

In the simulations, the exponential distributed noise model in [37] is applied to represent

the NLOS error. The exponential distributed NOLS error pn`
(τ) is expressed as

pnk
(τ) =





1
τk

e
−τ
τk τ > 0

0 otherwise
(4.1)

for ` = 1, 2,...N. τ` = τmζ`
ερ is the RMS delay spread between the `th BS to the MS; τm is the

median value of τ` whose value varies with different environments. ε is the path loss exponent

which is assumed to be 0.5, and the factor for shadow fading ρ is set to 1 in the simulations.

The setting of the parameters in the noise model fulfills the environment while the MS is

located within the suburban area. On the other hand, the model for the measurement noise
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of the TOA signals is selected as the Gaussian distribution with zero mean and 10 meters of

standard deviation.

The following four different layouts are simulated to verify the improvement of the location

accuracy that the proposed VBS algorithm can promote.

1. Case(1): The three base stations are located at (0, 0), (1000, 1000
√

3) and (−1000, 1000
√

3).

The MS is assigned to locate at (0, 2000
3

√
3), i.e. the center of the gravity.

2. Case(2): The three base stations are located at (0, 0), (1000, 1000
√

3) and (−1000, 1000
√

3).

The MS is assigned to locate at (650, 1450), i.e. near the point (1000, 1000
√

3).

3. Case(3): The three base stations are located at (0, 0), (1000, 1000
√

3) and (−500, 1000).

The MS is assigned to locate at (166, 910), i.e. the center of the gravity.

4. Case(4): The three base stations are located at (0, 0), (1000, 1000
√

3) and (−500, 1000).

The MS is assigned to locate at (−250, 900), i.e. near the point (−500, 1000).

4.2 Simulation Results

The median value τm of the NOLS error is set to be 0.3 in this thesis. The parameter me

is the distance from the latest estimated MS’s position to the last one. The VBS algorithm

terminates if the value of me is smaller than the given threshold. The threshold is set to be

0.1 meters in the thesis. The proposed VBS algorithm including both the VBS-CG and the

VBS-MG schemes is compared with the two-step LS method, the TSE algorithm, and the

LLOP approach via simulations. The performance evaluation of each case is obtained after

executing 100 times. The layout of each case is also presented with the information of the

iteratively-estimated MS’s position and the added virtual base stations.

In Case(1), a regular triangle layout with the MS locates at the center of the gravity is

considered. As shown in Fig. 4.1, the proposed VBS algorithm is compared to other existing

methods. Since the GDOP effect in the regular triangle is the slightest at the center of gravity

where the MS lies, the improvements obtained from the VBS algorithm is small. In Fig. 4.2,
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Figure 4.1: Performance Comparison between the Location Estimation Schemes under NLOS
Environments in Case(1) (with Median Value of the NLOS Noises: τm =0.3 µs)

the location estimates of the MS’s position and the added virtual base stations of the CG and

the MG methods in the VBS algorithm are presented. Obviously, the location estimates of

the two methods both approach to the MS’s position till the iterations converge.

In Case(2), the MS’s position is located closer to a base station. As shown from Fig. 3.2

to 3.5, the GDOP effect is a concave function and will become worse around any of the base

stations. The performance of the proposed VBS algorithm is better than the other methods as

presented in Fig. 4.3. Compared with the two-step LS method, the accuracy improvement of

the proposed VBS algorithm at the 60% average error is about 80 meters. The result implies

that the proposed VBS algorithm still can perform well while the MS is in a poor geometric

environment. It is noted that the performance of the CG-based and the MG-based selection

methods seem to be the same duo to the regular triangle layout. The MS location estimates

of the these two method in Case(2) are shown in Fig. 4.4.

The performance comparison is also held in a non-regular triangle layout. The MS is

located at the center of the gravity of the non-regular triangle layout as given in Case(3). The

comparison of performance is shown in Fig. 4.5 and the location estimates of the CG and

50



−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−1500

−1000

−500

0

500

1000

1500

2000

2500

3000

3500

x−axis

y−
ax

is

 # of the VBSs of the CG−based and the MG−based VBS are: 4 and 3

BSs
The estimated MS of the CG−based VBS
The estimated MS of the MG−based VBS
True MS
The VBs of the CG−based VBS
The VBs of the MG−mode VBS
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Figure 4.3: Performance Comparison between the Location Estimation Schemes under NLOS
Environments in Case(2) (with Median Value of the NLOS Noises: τm =0.3 µs)
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the MG method are illustrated in Fig. 4.6. Since the layout is no more a regular triangle,

the performance of the proposed VBS algorithm is better than that of other methods by 20

meters even if the MS is located at the center of the gravity.

The layout in Case(4) is designed as a non-regular triangle and the MS’s is lied closer to a

base station. The performance comparison in Case(4) is shown in Fig. 4.7. The performance

of the VBS algorithm is superior to other methods. Although the poor layout and MS’s

position is presented, the proposed VBS algorithm promotes an improvement at the 60%

average error by 50 meters while comparing with the two-step LS method. One thing to be

mentioned is that the minimum GDOP value in a non-regular triangle layout may occur at

a point around the center of gravity rather than indeed at the center of gravity. Hence, the

performance of the selection method based on the minimum GDOP is better than that of the

CG-based method. In Fig. 4.8, both the CG and the MG based VBS algorithm can direct

the estimated MS’s position approaching to the true position evidently.

The relationship of the NLOS error and the Root-Mean-Squared Error (RMSE) is dis-

cussed, too. The 60% average position error is chosen as a criterion while comparing the
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Figure 4.5: Performance Comparison between the Location Estimation Schemes under NLOS
Environments in Case(3) (with Median Value of the NLOS Noises: τm =0.3 µs)
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Figure 4.7: Performance Comparison between the Location Estimation Schemes under NLOS
Environments in Case(4) (with Median Value of the NLOS Noises: τm =0.3 µs)
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Figure 4.9: The Comparison of the 60% Average Position Errors of the Location Estimation
Methods under Different NLOS Errors

performance of the TSE algorithm, the two-step LS method, the LLOP approach and the

proposed VBS algorithm under various NLOS environments. The median value τm=0.3 is

selected to properly fulfill the NLOS error in the suburban areas. As shown in Fig. 4.9, the

performance of the proposed VBS algorithm is apparently better than that of other methods,

especially when the value of τm raises.
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Chapter 5

Conclusion

The NOLS errors will cause large positive biases while measuring the time information

data. The inaccuracies of the range measurements consequentially make the conventional

location algorithms, like the two-step LS method [23], fail to estimate the MS’s position. The

GLE algorithm [34] skillfully joins the geometric constraints into the two-step LS method to

improve the location estimation under the NLOS-corrupted environments. Additionally, the

GDOP effect in a communication layout is considered as well. The lower the GDOP value is,

the slighter the effect of geometry can affect the positioning processes. The assisted virtual

base stations can be added to reduce the GDOP values inside the layout. The proposed

CG-based and the MG-based methods which intend to make the MS be at the location

where the GDOP value is minimum can be utilized to select the virtual base stations. The

proposed VBS algorithm not only imposes the geometric constraints but also iteratively adds

the virtual base stations into the conventional two-step LS method. Different layouts and

MS’s positions are examined to verify the improvement of the proposed VBS algorithm in the

location estimation. The performance shows that the proposed VBS algorithm can perform

better than other methods, especially the environments with poor geometric layout and large

NLOS errors.
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