
Contents

1 Introduction 1

1.1 Existing Methods of Video Segmentation . . . . . . . . . . . . . . . . . . . . . 2

1.2 Main Contributions of This Work . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 A Region-Based Video Segmentation Algorithm 8

2.1 The Segmentation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Seed-Area Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Initial Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Strategies in Region Growing . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Region Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Motion-Based Region Integration . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Region Tracking and Updating . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 An Enhanced Region-Based Video Segmentation Algorithm with Extrac-

tion of Overlaid Objects 35

3.1 Brief Review and Method Introduction . . . . . . . . . . . . . . . . . . . . . . 36

v



3.2 Motion Analysis in Pixel Tier: Motion Estimation and Change Detection . . 40

3.2.1 Motion Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Detection of Changed Pixels . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Edge Analysis in Pixel Tier: Edge Detection and Patch Delineation . . . . . . 44

3.4 Foreground Tier: Motion-Oriented Foreground Separation . . . . . . . . . . . 47

3.4.1 Foreground Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2 Foreground Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.3 Foreground Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Overlays Tier: Segmentation of Overlaid Objects . . . . . . . . . . . . . . . . 50

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Edge-Based Morphological Processing for Efficient and Accurate Video

Object Extraction 63

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Existing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Mask Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 Mask Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.3 Remarks on Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Reduced-Complexity Motion Analysis and Edge Processing for Accurate

Identification of Object Boundaries 84

5.1 Motion-Related Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Forward Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vi



5.1.2 Backward Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Mask Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Mask Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.2 Footprint Tightening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.3 Boundary Sharpening . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.4 Mask Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.5 Summary and Comparison with Other Edge-Based Methods . . . . . . 98

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.1 Illustration of Algorithm Steps . . . . . . . . . . . . . . . . . . . . . . 100

5.3.2 Algorithm Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.3 Algorithm Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Support of Content-Based Applications 112

6.1 Methods for Object Enlargement and Shrinkage . . . . . . . . . . . . . . . . . 112

6.2 Experimental Results and Discussions . . . . . . . . . . . . . . . . . . . . . . 116

7 Conclusions and Future Work 120

vii



List of Figures

1.1 A typical structure of the video segmentation system. . . . . . . . . . . . . . 3

2.1 System structure of the video segmentation. . . . . . . . . . . . . . . . . . . . 10

2.2 Illusration that a single global threshold may not capture local intensity struc-

tures property. Above: a possible image intensity profile; below: corresponding

gradient amplitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Illusration that a more local gradient intensity analysis may capture the more

detailed structures in an image. Above: looking at two image sections sepa-

rately; below: separate intensity analysis of the two sections reveals detailed

image structure in each section. . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Arbitary example for illustration of seed-area identification. (a) Bright and

dark region sets, Rhj indicates separated regions. (b) Separately treated each

Rhj to obtain seed areas (dark regions): seed set S = {sk}. . . . . . . . . . . 13

2.5 Illustration of an example of region growing. . . . . . . . . . . . . . . . . . . . 16

2.6 Illustration of region growing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Illustration of the final result of Fig. 2.5. . . . . . . . . . . . . . . . . . . . . . 18

viii



2.8 Arbitary example for illustration of the region-map and its corresponding

RAG. (a) An arbitary region-map example. (b) Corresponding weighted RAG.

(a) Assume regions in (a), in ideal, become two regions after refining out small

regions. (b) Weighted RAG. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 Illustration of region merging and RAG changing: Merging Step-by-step. . . 22

2.10 Illustrative temporal progression of different regions. . . . . . . . . . . . . . . 26

2.11 Segmentation performance of the Table Tennis Sequence. (a) Original frame

1. (b) Regions by bright and dark segmentation. (c) Seed (bright areas) and

uncertain regions (dark areas). (d) Initial segmentation result of the (a). (e)

Background portion found in the second frame. (f) Uncovered area in frame 2

(dark points). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.12 Tracking of ping-pong ball. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.13 Ball-playing-arm tracking result. . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.14 Recreated frame 1 after removing ping-pong ball and player’s left hand. . . . 30

2.15 VO tracking results of Claire. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.16 VO tracking results of Akiyo. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.17 Fractional agreement between the segmented foreground object of the Akiyo

sequence and the reference mask. . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.18 Fractional agreement between the segmented foreground object masks of the

Akiyo sequence in adjacent frames. . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Illustration of video scene with overlaid objects or region showing different

motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Real-life examples where video scene contains multiple overlaid objects or re-

gions showing different motion. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ix



3.3 Overall structure of the proposed algorithm. . . . . . . . . . . . . . . . . . . . 40

3.4 Filtering masks for detecting moving pixels. . . . . . . . . . . . . . . . . . . . 43

3.5 Reducing covered and uncovered areas in change detection. . . . . . . . . . . 45

3.6 Patch delineation algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Process of initial patch delineation. . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 Structure of the foreground separation algorithm. . . . . . . . . . . . . . . . . 47

3.9 Structure of object segmentation algorith. . . . . . . . . . . . . . . . . . . . . 50

3.10 Some patch delineation results for Akiyo, Salesman, and Flower Garden. (a),(c),

and (e) are the originals, and (b), (d), and (f) are the results, where the dif-

ferent patches are distinguished by different gray levels. . . . . . . . . . . . . 54

3.11 Some change detection results for Akiyo, Salesman, and Flower Garden. Num-

ber below each picture gives the frame number. In the case of Akiyo and

Salesman, the changed pixels are marked in white, but for clarity, in the case

of Flower Garden the unchanged pixels are instead marked in white. . . . . . 55

3.12 Foreground region of Akiyo. Number below each picture gives the frame number. 56

3.13 Foreground region of Salesman. Number below each picture gives the frame

number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.14 Foreground region of Flower Garden. Number below each picture gives the

frame number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.15 Object “right arm” obtained in the overlays tier from the foreground region of

Salesman. Number below each picture gives the frame number. . . . . . . . . 57

3.16 Object “head” obtained in the overlays tier from the foreground region of

Salesman. Number below each picture gives the frame number. . . . . . . . . 58

x



3.17 Object “Tree trunk” obtained in the overlays tier from the foreground region

of Flower Graden. Number below each picture gives the frame number. . . . 58

3.18 Object “house right” obtained in the overlays tier from the foreground region

of Flower Graden. Number below each picture gives the frame number. . . . 59

3.19 Synthesized Flower Garden scene from segmentation result, with tree removed.

Upper row: original frames 10, 20, 30; middle row: synthesized frames. . . . . 59

3.20 Fractional agreement between the segmented foreground object of the Akiyo

sequence and the reference mask. . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.21 Fractional agreement between the segmented foreground object masks of the

Akiyo sequence in adjacent frames. . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Example of orthogonal scans, assuming perfect edge detection that finds all

the boundary pixels of the object. (a) Object shape. (b) Resulting mask of

maximal scan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Another example of orthogonal scans, assuming perfect edge detection that

finds all the boundary pixels of the object. (a) Object shape. (b) Resulting

mask of minimal scan. (c) Resulting mask of maximal scan. . . . . . . . . . . 67

4.3 Results of minimal scan when the lower-right object edge is missing. (a) Object

of Fig. 4.1(a). (b) Object of Fig. 4.2(a). . . . . . . . . . . . . . . . . . . . . . 68

4.4 The proposed method of edge linking. . . . . . . . . . . . . . . . . . . . . . . 69

xi



4.5 Arbitrary example for illustration of the proposed algorithm. (a) CDM. (b)

Result of CDM round-out. (c) Result of CDM round-out, with edge pixels

therein marked in black. (d) Result of segmental row scans. (e) Result of

segmental column scans, i.e., result of boundary tightening. (f) Result of

boundary tightening with edge pixels in the mask marked in black while other

pixels marked in gray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 Illustration of the mask refinement method. (a) Zoomed-in section of the

mask sketch result for illustration use. (b) After stopping of one-pixel gaps.

(c) Respective search areas of shortest-path algorithm for edge discontinuities

(a, b) and (c,B). (d) Final result of edge linking between A and B. . . . . . . 78

4.7 Illustration of algorithm behavior. (a) An original frame of Mother-and-

Daughter sequence. (b) CDM. (c) Rounded CDM. (d) Result of mask sketch. 79

4.8 Result of mask refinement at different search bandwidths. (a) Dw = 2. (b)

Dw = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.9 Segmentation results for Mother and Daughter based on maximal scan. (a)

Result of maximal scan on CDM. (b),(c),(d) Results of mask refinement with

Dw = 20, 60, and 100, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 80

4.10 Result of mask refinement based on minimal scan at different search band-

widths. (a) Dw = 2. (b) Dw = 5. . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.11 Comparison of algorithm efficiency and accuracy in segmentation of Mother-

and-Daughter sequence. (a) Maximal-scan based processing. (b) Minimal-scan

based processing. (c) Proposed method. . . . . . . . . . . . . . . . . . . . . . 81

4.12 Fractional agreement between the segmented foreground object of the Akiyo

sequence and the reference mask. . . . . . . . . . . . . . . . . . . . . . . . . . 82

xii



4.13 Fractional agreement between the segmented foreground object masks of the

Akiyo sequence in adjacent frames. . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Structure of the proposed algorithm. . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Object-based motion estimation. (a) An object under consideration (shaded

region) in the previous frame has moved to a different position in the current

frame (dashed contour). Each small square is BW × BW in size. (b) Illus-

trating the idea that motion estimation is carried out on the 3× 3 macroblock

centered at the treated block. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Mask refinement procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 An arbitary example for illustration of the mask refinement method. (a) The

coarse mask (gray pixels). (b) The coarse mask with the edge pixels therein

marked in black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Illustration of the mask rounding procedure. (a) The mask after orthogonal

scans and taking the union. (b) The eroded mask (FGr). . . . . . . . . . . . 92

5.6 Illustration of the footprint procedure. (a) FGr with the edge pixels therein

marked in black. (b) Row map. (c) Column map. (d) The footprint-tighten

mask (FGt), with edge pixels therein marked in black. . . . . . . . . . . . . 93

5.7 Illustration of the boundary sharpening procedure. (a) Mask after overgrowing

pruning in the horizontal direction. (b) Mask after overgrowing pruning in

the vertical direction.. (c) A section of the horizontally prunced mask. (d)

The same section after edge filling in the horizontal direction. (e) Convered

result of overgrowth prunching and edge filling in the horizontal direction. (f)

Converged result of overgrowth purning and edge in the vertical direction. . 95

xiii



5.8 Illustruction of the mask tuning procedure. (a) Intersection of the two direc-

tional masks in FGs. (b) Oi,n. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.9 Illustration that more than basic morphological operations are needed on in-

tersection map of edge-based orthogonal scan to obtain accurate object mask.

(a),(b) Results of horizontal and vertical scan, respectively. (c) The intersec-

tion map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.10 Illustration of the mother-related analysis in the proposed algorithm using

frame 74 of the Mother and Daughter sequence as example. (a),(b) Orginal

frame 73 and 74, respectively. (c) Foreground object O1,73 segmented from

frame 73. (d) Change detection result CD74. (e) Union of P1,74 and CD74. (f)

Coarse mask PCDB
1,74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.11 Illustration of the mask refinement procedure in the proposed algorithm using

frame 74 of the Mother and Daughter sequence as example. (a) Union mask of

two orthogonal scan results. (b) Result of mask rounding, FGr. (c),(d) Row

and column maps obtained in footprint tightening, respectively. (e) Result of

footprint tightening, FGt. (f),(g) After one iteration of boundary sharpening

in horizontal and vertical directions, respectively. (h) Intersection map of FGs. 103

5.12 Example segmentation results of the Akiyo sequence. Left, top to bottom:

Orginal frame, 30, 70, and 117. Right: segmentation results. . . . . . . . . . 105

5.13 Example segmentation results of the Mother and Daughter sequence. Left, top

to bottom: Orginal frame, 50, 95, and 120. Right: segmentation results. . . 106

5.14 Example segmentation results of the Salesman sequence. Left, top to bottom:

Orginal frame, 10, 20, and 30. Right: segmentation results. . . . . . . . . . . 107

xiv



5.15 Example segmentation results of the Foreman sequence. Left, top to bottom:

Orginal frame, 4, 24, and 34. Right: segmentation results. . . . . . . . . . . 108

5.16 Fractional agreemment between the segmentated foreground object of the

Akiyo sequence and the reference mask. . . . . . . . . . . . . . . . . . . . . . 109

5.17 Fractional agreemment between the segmentated foreground object of the

Akiyo sequence in adjacent frame. . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1 Amplitude response of the MPEG-2 enlargement and shrinkage filters. . . . . 114

6.2 Proposed enlargement algorithm, illustrated by example. (a) Enlargement by

two or three times, (b) Enlargement by two, four, or five times (Gray squares

denote pixels in the original object mask or as obtained by interpolation us-

ing the MPEG-2 filter; white squares denote linear linear interpolated pixels.

Dashed lines indicate linear interpolation between nearest pixels.) . . . . . . 115

6.3 Proposed Shrinkage algorithm, illustrated by example. (a) Shrinkage by two

or three times, (b) Shrinkage by two, four, or five times (Gray squares denote

pixels in the original object mask or as obtained by decimation using the

MPEG-2 filter; white squares denote linear linear interpolation pixels. Dashed

lines indicate linear interpolation between nearest pixels.) . . . . . . . . . . . 116

6.4 Similarity, in PSNR, between the orginal segmented video object in CIF Mother-

and-Daughter sequence and that enlarged X times and shrunk to orginal size,

where X is between 2 and 5. (a) For interior of object (inside a three-pixel-

wide band at object boundary). (b) For the three-pixel-wide band at object

boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5 Synthesized scenes using segmented (and shrunk by 2 times) video objects and

other contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xv



6.6 Applications from superposed VOs. (a) Motion history of the ball in the Table-

tennis. (b) VO in the Mother-and-Daughter fuse a statue for exhibition. . . 119

xvi



List of Tables

2.1 Sorted List of Adjacent Pixels for the Two Seed Regions . . . . . . . . . . . . 18

2.2 Sorted List of Adjacent Pixels for the Two Seed Regions After Merging (3,2) 18

2.3 Sorting the RAG’s Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Average Computing Time in ms per Frame of Major Algorithm Functions . . 34

3.1 Average Computing Time in ms per Frame of Major Algorithm Functions . . 61

4.1 Average Computing Time in ms per Frame of Major Algorithm Functions . . 76

5.1 Number of Pixels Deleted in Each Iteration of Boundary Sharpening for the

First Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Average Computing Time in ms per Frame of Major Algorithm Functions . . 111

xvii



Chapter 1

Introduction

As digital data gradually enter people’s lives, consumers wonder when digital images and

video will become accessible everywhere. Consumers desire access digital contents because

an image or video affects human perceptions more directly than any other medium. “An

image or video can speak more than a thousand words.”

Video information is quite large in size, and needs to be compressed for efficient transmis-

sion and storage. Some coding technologies, such as MPEG-1, MPEG-2, H.261 and H.263,

have led to the quick development of multimedia applications. The coding techniques can

be used for multimedia storage, videophones, videoconferencing, high-definition television

(HDTV), video-on-demand (VOD), and video over wireless networks. These coding methods

treat each frame in video as fixed array of pixels and partition each input frame into square

or rectangular blocks as the elementary coding unit, and they have been called frame-based

coding methods.

In contrast to the frame-based methods, MPEG-4 and MPEG-7 allow content based

processing. the MPEG-4 video standard was designed for high efficiency, very low bit-rates

manipulation, and universal access. MPEG-7 is for multimedia content description interface,

1



which describes contents of video scenes for effective retrieval and searching [14, 39, 43]. The

content based methods yield more flexibility in video applications [7, 12, 15, 28, 29, 30, 32,

44, 59]. Subjectively meaningful video contents, such as people, houses, hands, and cars,

have been called “video objects” or “semantic objects.” Segmented objects can be separately

processed for various uses [46, 47]. Thus video segmentation is a key technique to fully

exploit the potential of MPEG-4 and MPEG-7. Although MPEG-4 and MPEG-7 have been

developed, neither standard regularizes video segmentation methods. In addition, the video

segmentation schemes availabe in the literature still leave room for improvement.

1.1 Existing Methods of Video Segmentation

Automatic video segmentation refers to segmenting images into semantic regions. Automatic

segmentation of moving objects (foreground) from the background aims to generate a VOP

(Video Object Plane, in MPEG-4 technology). Many video segmentation approaches have

been proposed [9, 10, 16, 17, 26, 27, 34, 35, 36, 37, 38, 54, 56, 57, 58]. The approaches can

be classified into motion-based segmentation (using only motion information) [9, 38, 56, 57]

and spatio-temporal segmentation (combining of temporal and spatial segmentation) [10, 16,

17, 26, 27, 34, 35, 36, 37, 54, 58]. Pure motion-based approaches suffer from inaccurate

object boundaries due to that motion estimation is an ill-posed problems. Spatial-temporal

segmentation approaches can be further classified into region-based and edge-linking-based

methods. Spatio-temporal methods appear to attain the best boundary accuracy. Fig. 1.1

summarizes the structure of typical video segmentation.

Wang and Adelson [56, 57] published the first study on motion segmentation. They dis-

cussed motion models and orientation consistencies rather than spatial information, which re-

sults in boundary inaccuracy. Borshukov et al. [4] enhanced Wang’s motion selection method

2



Video Stream

Content Feature
Extraction

Applications
Segmentation

Mask
Organization

Previous
Frame FeaturesProject

Features
Motion

Estimation

Rough
Features

Video Objects

Fig. 1.1: A typical structure of the video segmentation system.

to consider homogeneity of motion orientation. Their study aimed only to improve Wang’s

scheme, and did not consider spatial information. Neri et al. [38] concentrated on statistical

models to extract moving objects, creating mathematical models under the assumption of in-

ter frame motion. The extraction process lacked the spatial-border information, and therefore

object boundaries were inaccurate. However, Neri et al. applied a morphological operation to

fill in the inside-holes of the objects. Some recent studies only discuss detecting the moving

areas for particular purposes (e.g., medical sonograms, infrared imagery detection, security

and traffic surveillance). Detecting a video’s moving areas is important in practical use, and

its post processing significantly impacts segmentation performance [9, 27, 35, 37]. Chien et

al. [9] eliminated shadow noise and foreground noise by a highly complex motion estimation

method for tracking.

Spatial-temporal approaches are very attractive for automatic image segmentation since

they efficiently handle spatial descriptions such as area, size and connectivity, which can be

viewed as region-based features. Temporal information is then applied to carry these features

into the next frames. Wang’s spatial-temporal scheme [58] centered on morphological oper-

ations to unify spatial data for straightforward segmentation, using a watershed algorithm.

3



The algorithm was also modified for region updates performed on zones that showed changes

between frames. Gao et al. [16] proposed a method considering color information similar to

Wang’s scheme.

Wang’s method, like many others, is slow. Chien modified the method to improve its

speed, but this improvement did not apply to the first frame. Kim et al. published a paper

[26] that further concentrated on change detection and developed foreground extraction over

segmented zones, which yielded objects with accurate boundaries. However, the temporal

detection sometimes fails on the inside of a zone, causing objects to be drawn incompletely.

Tsaig and Averbuch [54] modeled each zone’s object-based motion information using a prob-

ability model (i.e., the Markov random field, MRF).

This study applies a spatio-temporal method to consider the automatic segment a natu-

ral video scene automatically into a composition of objects. Automatic video segmentation

methods can be classified into three categories: heuristic, probabilistic, and mixed. A proba-

bilistic method models the video frames as two-dimensional random processes and attempts

to maximize some probabilistic measure of goodness of segmentation [61], while the heuristic

scheme analyzes the motion and texture to split the video frames into regions with disparate

heuristic motion and texture features [34]. Probabilistic methods frequently involve an iter-

ative procedure initialized with the result of a heuristic segmentation method. The mixed

algorithms employ heuristic analysis in one part of the algorithm and probabilistic optimiza-

tion in another part. An example of the probabilistic approach can be found in [51], and

some examples of the mixed approach are can be found in [42] and [54]. This study considers

the heuristic approach.

One common video segmentation approach is described briefly as follows. First, a frame

(or some key frames) is selected as the starting frame to execute segmentation. Then each

4



object’s features, such as color, shape, motion and texture are analyzed. Then, each object is

mapped to next frame. Then, inter-frame segmentation is applied to each subsequent frame

following the previous frame. Inter-frame segmentation automatically tracks each object,

and the resulting partition can achieve the temporal coherence of object labeling, i.e., object

correspondence, and maintain segmentation similarity between successive frames. Therefore,

more reliable segmentation results can be attained when the feature alignment and repeated

feature aggregation are robust.

Some video segmentation methods employ change detection to separate moving objects

from stationary background. However, objects obtained from change detection may contain

inside holes and boundary inaccuracy. Therefore, inside patching and boundary accuracy are

two important issues.

1.2 Main Contributions of This Work

The main contribution of this study in video segmentation is summarized as follows.

1. The method linking region-based spatial segmentation and temporal analysis is de-

loped. This method combines intensity region growing, motion analysis and tracking

techniques, and it is shown that the method is sufficient to determine a complete seg-

mentation. The complexity of this algorithm is similar to [10] and [58]. Subjectively,

this method can obtain better results.

2. A multi-tiered segmentation algorithm was developed to tracks foreground objects and

slice up into different objects by motion layers. This method extends region-based

segmentation [58]. The integration with a change detection scheme is novel, and an

overlays segmentation can be made over the changed areas.

5



3. A novel morphological filtering is proposed for efficient and accurate video object ex-

traction. This method integrats morphological filtering and a shortest-path algorithm.

This method can significantly improve the complexity of [37], and the object boundary

accuracy is better than [27].

4. An Algorithm for fast object boundary correction were created. This algorithm is based

on two novel designs: an edge-linking method for object extraction and a complexity

reduction for motion estimation. The approach can accurately obtain segmentation and

robustly propagate the objects between frames. The complexity of this method can be

significantly reduced.

1.3 Organization of the Thesis

This dissertation is organized as follows.

Chapter 2 develops a method for automatic segmentation which is based on low-level and

spatial segmentation and temporal analyses. Region based spatial segmentation is introduced,

including region growing and region merging techniques, and then a complexity reduction of

motion analysis and object tracking are presented. This chapter shows that the method is

sufficient to determine a complete segmentation. The approach using region features and

temporal analysis is robust for accurate segmentation.

Chapter 3 presents a spatio-temporal algorithm for multi-tier structure segmentation and

tracking. It is based on analysis of apparent motion, inter-frame pixel value changes, edges,

and textural homogeneity of image regions. It is designed to be able to separate multiple

overlaid objects that do complicated or relatively fast motion, to handle object deformation,

and to address appearance and disappearance of objects. The above abilities distinguish the

6



algorithm from some recently published ones. Experiments on several different kinds of video

show that the algorithm can yield reasonably good identification of object boundaries.

Chapter 4 considers the edge-linking approach for accurate locating of moving object

boundaries in video segmentation. We review the existing methods and propose a “segment-

based” scheme designed for efficiency and better accuracy. The algorithm is based on mor-

phological filtering and designed with computational complexity also in mind. Experiments

show that the scheme yields good performance.

Chapter 5 discusses a design of the edge-linking approach for fast processing. The way

is a “pixel-based” method designed for efficiency and better accuracy. Same mind of the

chapter 4, the algorithm is designed with computational complexity as well. In addition,

a reduced-complexity motion analysis is presented. A comparision with some other motion

estimation is also addressed. Experiments show that the scheme yields good performance

and fast processing.

Chapter 6 investigates some tools for applications by the integration of VOs and nature

images. Some simply new methods for shape are proposed.

Finally Chapter 7 gives the conclusion and points out some topics for potential future

work.

7



Chapter 2

A Region-Based Video

Segmentation Algorithm

This chapter describes a technique for region based video segmentation.∗ Methodsare pre-

sented for generating regions, competitive expansion of regions, integrating regions and track-

ing regions. As we can seen, all these are region-based processing. In generating of regions,

we select the region-growing method for easy implementation. The system studied in this

chapter introduces the concept of competitive seed areas. We first describe a modified method

suitable for nature scene uses. Region growing is also used for subsequent frames. We then

describe region growing that is based on competitive characters. Then regions are deter-

mined different in the first and the subsequent frames. Then a simplified motion estimation

is introduced to track the region set. Additionally, this study considers region integration

∗Part of this chapter has appeared in Yih-Haw Jan and D. W. Lin, “A method for video segmentation

based on object tracking,” in Proc. Int. Symp. Commun., Nov. 2001, paper 10.4. and Y.-H. Jan and D, W.

Lin, “Image sequence segmentation via heuistic texture analysis and region tracking,” in SPIE vol. 4671, in

Visual Commun. Image Processing, pt. 2, Jan. 2002, pp. 543–551.

8



employing motion information. The final section exhibits the segmentation results.

2.1 The Segmentation Method

This section outlines an automatic region-based segmentation method. Fig. 2.1 shows the

proposed video segmentation method. The proposed method comprises four tasks, namely,

seed-area identification, initial segmentation, motion-based segmentation, and region tracking

and updating.

Seed-area identification is performed on every input frame. Based on simple intensity

analysis, a number of relatively homogeneous “seed areas” in the frame are identified for use

in subsequent image segmentation and region tracking. The initial segmentation is performed

on the first frame of the sequence only. Beginning with the seed areas, a segmentation

of the first frame is achieved via regional growth and merging, where the region growth

procedure attempts to locate the region boundaries where the local image texture changes

significantly. The other two tasks are applied to all subsequent frames. The task of motion-

based segmentation extracts the moving regions by estimating the motion of each segmented

region and integrates the regions exhibiting similar motion. The task of region tracking and

updating projects each moving region onto the next frame based on the dense motion vectors

obtained in the last task, validates the mapping by examining the seed areas involved, and re-

segments the uncovered areas, the overlapped areas, and other areas in the next frame which

exhibit undesirable features. Clearly, the proposed method contains only one pass which

operates in the forward direction. Without higher-level intelligence, a one-pass, forward-only

method generally has difficulty achieving correct object segmentation during the first few

frames of the appearance of a new object. The mechanism incorporates tasks of motion-

based segmentation and region tracking and updating that can modify the segmentation by

9



Seed-Area
Identification

Initial
Segmentation

Region
Tracking and

Updating

Motion-Based
Segmentation

Frame
Memory

Succeeding
Frames

First Frame
Video
Stream

Segmentation
Output

Fig. 2.1: System structure of the video segmentation.

adjusting the object boundaries in later frames. Each task is detailed below.

2.2 Seed-Area Identification

In this section, we discuss initial classification that capitalizes on the homogeneity properties

and analysis of gradients to identify object boundaries. Watershed approaches [17, 34, 58]

and histogram thresholding [41] are among the most commonplace methods. These methods

generally make use of homogeneity valleys over an image and cluster then in some way.

Regional growth can be considered belonging to the broad watershed methods and enjoys the

advantage of easy implementation. This approach considers intensity similarity relative to

spatial locations. Therefore each segment is a closed region and has homogeneous features,

because regional growth begins with valleys, then adds adjacent pixels to regions where pixels

show similar features.

Since region growth is used for initial classification, in practice there are two main issues

related to region growth. These problems are as follows: first, how are the geometric valleys

selected? and second, how should the similarity criteria be?

The purpose of this task is to divide a frame into a number of seed areas for use in

10



subsequent image segmentation and region tracking. The rationale behind the particular

approach is illustrated in Figs. 2.2 and 2.3.

Often, an image contains patches wherein the intensity (and color) values are relatively

homogeneous. Still-image segmentation often capitalizes on such property and analyzes inten-

sity gradients to determine boundaries. Incidentally, the watershed approach represents such

thinking. Since our segmentation method assumes no high-level knowledge concerning the

image contents but employs only low-level signal processing, it is natural to base the initial

segmentation on intensity analysis. And it is natural to consider thresholding the intensity

gradients so that gradients above the threshold are considered to mark region boundaries.

However, it may not be appropriate to use a single global threshold for the entire image,

because the intensity structures of different areas of the image may be different. Using a

single global threshold may miss some finer local intensity structures. Figs. 2.2 illustrates

the situation where areas A and B are both composed of two patches having relatively homo-

geneous intensities within each patch but significantly different intensities between patches.

But a single-threshold gradient-based segmentation does not find this out. Therefore, the

intensity analysis should be conducted more locally. On the other hand, since overly small

objects are usually not considered appropriate, the intensity analysis should avoid producing

overly fine segmentations. Fig. 2.3 illustrates the idea that a more local gradient analysis

may capture the more detailed structures in an image.

In ways, first calculate the mean image intensity µI of the whole frame. The frame is

termed a bright image if more than 50% of the pixels have intensity values exceeding µI ;

otherwise it is considered a dark image. The pixels with intensity values exceeding µI are

termed bright pixels, and those with intensity vales below µI are termed dark pixels. The

following describes the operations conducted on a bright image. The operations performed

11



A

B

Threshold

 G
radiedt A

m
plitude

Im
age L

evel

Fig. 2.2: Illusration that a single global threshold may not capture local intensity structures

property. Above: a possible image intensity profile; below: corresponding gradient amplitude.

A B

Im
age L

evel
G

radient A
m

plitude

Threshold  A Threshold  B

Fig. 2.3: Illusration that a more local gradient intensity analysis may capture the more

detailed structures in an image. Above: looking at two image sections separately; below:

separate intensity analysis of the two sections reveals detailed image structure in each section.

12



Rh1

Rh2
Rh3

Rh4

Rh5

I

Rh6 (RD1)

(RD2)

(RD4)

(RD3)
(RD4)

(RD3)

Rh1
Rh2

Rh3

Rh4

Rh5

I

Rh6

S1

S2

S3
S4 S5

S6 S7

S8

(c) (d)

Fig. 2.4: Arbitary example for illustration of seed-area identification. (a) Bright and dark

region sets, Rhj indicates separated regions. (b) Separately treated each Rhj to obtain seed

areas (dark regions): seed set S = {sk}.

on a dark image are complementary.

For a bright image, each connected set of bright pixels is identified and rank-ordered

based on descending size. Let Rhi denote the hi-th the bright region. The intensity mean

µRhi
and intensity variance σ2

Rhi
of this region are calculated. A region growing process is

performed starting with the largest bright region. The neighboring points with intensity

values exceeding µRhi
− σRhi

are merged into the region. Some small bright regions can be

relegated to the dark background. The remaining, unmerged dark pixels then may form

multiple connected regions. Consequently , all regions are identified.

For each region in the final set, either bright or dark, the gradient structure is analyzed

and one or more areas of low gradient value are identified to form the desired seed areas. This

approach achieves the localized gradient analysis illustrated in Fig. 2.3. Each set of such pixels

then constitutes a seed area, termed S, which is used in subsequent image segmentation and

region tracking.

Fig. 2.4 illustrates an implement related to the initial classification and the local gra-

13



dient analysis. Fig. 2.4(b) shows the initial classification region set, and the regions, Rhj.,

are labeled by scanning RDx. Fig. 2.4(b) shows the formation of seed areas S = {sk} by

considering each Rhj. Moreover, S awaits further evolution from the region growth process.

2.3 Initial Segmentation

The task is achieved in two steps: region growing and region merging. Region growing involves

growing the seed areas by examining both the local variation and area-wide variation in pixel

intensity values. Meanwhile, region merging merges the small regions until they all reach a

minimum specified size.

To improve the regional growth segmentation process, various methods were devised to

select the homogeneity criterion automatically from the image. This study employs a method

based on the previously developed method of seed-area identification for locating seed regions

that focus especially on local seeds. As seed regions are chosen, each routine grows the highest

similar intensity parameter pair of the region and its unseeded neighbor pixel. The following

steps comprise the basic process of region growth:

The following steps are the universal processes in region growing:

(1) Select the seed pixel Sr.

(2) Check the adjacent pixels, pr, and then add x to Sr if x is the most likely pixel to Sr

with cost Csr , i.e., minx∈pr Csr(x).

(3) Repeat (2), until no more pixels can be added.

In the second step, namely, region merging, the size of each region is made to at least

equal a predefined value Nr.

14



2.3.1 Strategies in Region Growing

The goal of region growing is to partition the image into a set of disjoint regions. Region-

growing considers the similarity of intensity relative to spatial locations. Region-growing is

based on the step of taking some pixels, called seeds, and growing the regions around them

based upon certain homogeneity criteria. If the adjoining pixels resemble the seed, they are

merged with the seed within a single region. The process continues until all the pixels in the

image are assigned to the most similar region of each.

It is one of the conceptually simplest methods, however, for the use in practice, we must

consider its complexity, which is related to the definition of seed regions and the similarity

rules. Researches in region-growing mostly concerns the measure of distance to improve the

segmentation effect.

The measure of similarity here usess features such as region mean and variance of in-

tensity. More specifically, in region growth, each seed area is assigned a distinct label if its

area exceeds a certain threshold, say Nr. Meanwhile, other pixels are merged into the seed

areas individually via the following process. Let sk denote the k-th seed area. A hypothet-

ical example involves sk developing to Rk. It mean µRk
and variance σRk

in intensity are

calculated. Furthermore, the local texture information at each pixel represented by the local

mean and variance in intensity in a 3 × 3 window are calculated. For a pixel pi,j at location

(i, j), the local mean and variance are denoted µi,j and σ2(i, j), respectively. This is done for

all the pixels located immediately outside the border of each seed area are calculated. the

“distance” between one such pixel pi,j, and the seed area Rk is calculated as

d(Rk, pi,j) = α|I(i, j) − µRk
| + β|ᾱRk

− σ(i, j)| + γ|I(i, j) − µ(i, j)| (2.1)

where I(i, j) is the intensity of pi,j, σRk
is the average of the local standard deviations of all

15



Region
#1

Region #2

0 1 2 3 4 5 6 7 x

0

1

2

3

4

5

6

7

y

: Seed region #1

: Seed region #2

: Unidentified pixels neighboring region #1

: Unidentified pixels neighboring region #2

: Other unidentified pixels

Fig. 2.5: Illustration of an example of region growing.

the pixels in Rk, and α, β , and γ are some weighting factors. From all the pixel-area pairs,

find the one with the smallest distance. Merge that pixel into that seed area if the pixel

intensity is within µk ± 3σRk
.

The seeded-area-based region growing algorithm employs ordered lists of d(Rk, pi,j). Fig. 2.5

shows a hypothetical example involving two seed regions (regions 1 and 2) and some uniden-

tified pixels between them. The region-growing procedure is illustrated below. Table 2.1

lists the two sorted list ofs of the on the unidentified pixels adjacent to the two seed regions

initially. Each row is sorted based on the distance of the unidentified adjacent pixels to the

16



Region
#1

Region #2

0 1 2 3 4 5 6 7 x

0

1

2

3

4

5

6

7

y

Region
#1

Region #2

0 1 2 3 4 5 6 7 x

0

1

2

3

4

5

6

7

y

(a) Growing (3,2) into region #1 (b) Growing (2,2) into region #1

Region
#1

Region #2

0 1 2 3 4 5 6 7 x

0

1

2

3

4

5

6

7

y

Region
#1

Region #2

0 1 2 3 4 5 6 7 x

0

1

2

3

4

5

6

7

y

(c) Growing (2,3) into region #1 (d) Growing (7,7) into region #2

Region
#1

Region #2

0 1 2 3 4 5 6 7 x

0

1

2

3

4

5

6

7

y

Region
#1

Region #2

0 1 2 3 4 5 6 7 x

0

1

2

3

4

5

6

7

y

(e) Growing (6,6) into region #2 (f) Growing (7,6) into region #2

Fig. 2.6: Illustration of region growing.

17



Table 2.1: Sorted List of Adjacent Pixels for the Two Seed Regions

Candidates of Sorted List of Adjacent Pixels

Seed-region # 1 2 3 4 5 6 7 8

1 (3,2) (2,2) (4,3) (0,0) (1,1) (5,4) (6,4) (7,5)

2 (7,7) (6,6) (0,2) (1,3) (3,4) (2,3) (4,4) (5,5)

Table 2.2: Sorted List of Adjacent Pixels for the Two Seed Regions After Merging (3,2)

Candidates of Sorted List of Adjacent Pixels

Seed-region # 1 2 3 4 5 6 7 8

1 (2,2) (3,3) (4,3) (0,0) (1,1) (5,4) (6,4) (7,5)

2 (7,7) (6,6) (0,2) (1,3) (3,4) (2,3) (4,4) (5,5)

Region
#1

Region #2

0 1 2 3 4 5 6 7 x

0

1

2

3

4

5

6

7

y

Region
#3

Region
#4

Fig. 2.7: Illustration of the final result of Fig. 2.5.

18



seed area Rk, namely, d(Rk, pi,j). Furthermore, the priority in merging is given to the load-

ing pixel with the lowest distance. Assume d(R1, p3,2) < d(R2, p7,7), so pixel (3,2) is merged

into R1. Fig. 2.6(a) illustrates the result after region 1 merges into p3,2 and the update of

adjacent pixels. p3,3 then becomes adjacent to region 1 and the parameters of region 1 are

recalculated, resulting in the sorted lists shown in Table 2.2. Similar operations are repeated

until the seeded regions can grow no more. Figs. 2.6(a)–(f) illustrate the procedure assuming

that (7,6) is the last growing pixel. Fig. 2.7 shows the final regions.

The complexity depends on the number of seed regions and their sizes. In the beginnings,

we need to sort the adjacent pixels to each Rk according to their distances. In each step of

region growing afterwards, we only need to re-calculate the distances for the pixels neighboring

to the merged pixel and sort them. The computation of region growing has O(CNlogN)

complexity, where C denotes the total number of seed regions in the process, and N is the

number of pixels.

2.3.2 Region Merging

Watershed-type segmentation frequently leads to over-segmentation and causes the segmen-

tation to lose the meaning of object identification. Region merging can reduce the amount

of regions by fusing adjacent regions with high similarity.

In the proposed method, the measure of spatial similarity uses the regional mean. For

each region Rj , its adjacent regions Rj are considered, and their spatial similarity is denoted

by Wi,j = |µRi − µRj |. The Wi,j is sorted in a non-decreasing order, except for |Ri| > Nr

and |Rj | > Nr. If |Ri| ≤ |Rj |, then |Ri| is merged with Rj . The parameters (region mean

and weight) of all other nodes connecting to Ri or Rj then are changed, Wi,j = ∞ is set,

and the weights are re-sorted. The cases (|Ri| + |Rj|) > Nr and (|Ri| + |Rj|) ≤ Nr must be

19



considered further. Some examples are illustrated below. The procedure is iterated until no

regions is smaller than Nr.

Fig. 2.8(a) is an arbitary example for a region segmentation map. A RAG (Region Agja-

cent Graphic) is an undirected graph to represent the nodes corresponding to connected re-

gions [54]. The links represent the vicinity relation and we weighted by similarity. Fig. 2.8(b)

shows the corresponding RAG. Fig. 2.8(c) is assumed to be the ideal segmentation (simple

two regions). The merging process then re-organizes the RAG in Fig. 2.8(d) into the fitness

to Fig. 2.8(a). Initially, all Wi,j are shut away when both |Ri| and |Rj| exceed Nr. We assume

|R1| > Nr and |R2| > Nr. So nodes 1 and 3 are marked with boldface circles, and we set

aside the weight between nodes 1 and 3, i.e., W1,3 = ∞. Figs. 2.9(a)–(d) merge the other

thin-circle-nodes as follows: W4,6 = 1.0 is the lowest value, and the region size with R4 ≥ R6

(see Fig. 2.8(a)), so |R6| merges with |R4|. Fig. 2.9(a) shows that the edge between nodes 4

and 6 becomes a dashed line (namely, edge-fusion), and all the other weights that connect

with nodes 4 or 6 are re-computed. If |R4 + R6| ≤ Nr, thus any node 4 and 6 remain merger

candidates. Then as displayed in Fig. 2.8(d), W2,3 = 2.0 is the smallest weight so that |R2|

merges with |R3| (because |R2| ≤ |R3|). Fig. 2.9(b) shows that the circle of node 2 (because

|R3| > Nr and both nodes 2 and 8 are black circles (block W2,8)), and re-calculate the weights

of node-2-connected and node-3-connected nodes. The RAG illustrates that W3,4 = 3.1 is the

leading weight, so that |R4| merges with |R3| (because |R4| ≤ |R3|). Fig. 2.9(c) illustrates

that circles of node-4 and node-6 are blocked (because |R3| > Nr and nodes 4 and 6 are in

a flock), and W1,4 and W2,4 are set aside (because both nodes 2, 4 and 8 are black circles).

Then, only W1,5 remains, and can be fused as mentioned above motioned and illustrated in

Fig. 2.9(d).

After sweeping up entire thin-circle-node. The question arises of what should be the next

20



1

5
6

2

3

4

21

4

5 6

W4,6

W2,3

W3,4

3

W1,5

W1,2

W1,4 W2,4

W1,3

(a) (b)

21

4

5 6

2.0

3.0

3

4.0

8.0

6.0 5.0

7.0

1.0

(c) A supposed example (d) Create a RAG

Fig. 2.8: Arbitary example for illustration of the region-map and its corresponding RAG. (a)

An arbitary region-map example. (b) Corresponding weighted RAG. (a) Assume regions in

(a), in ideal, become two regions after refining out small regions. (b) Weighted RAG.

step after sweeping up all of the thin-circle node. Fig. 2.9(f) finally shows that the dash-edge

in RAG links with the merged regions, Exact two regions are left.

The region merging procedure is described as follows:

1. Given a K-RAG assume k regions are qualified for merger.

2. Sort weights.

3. Consider the minimum weight (consider i, j in turn and |Ri| ≤ |Rj |):

(a) Merge Ri and Rj and update the RAG paramters.

(b) Change the all weights related to Ri and Rj.

21



21

4

5 6

2.0

3.1

3

4.0

8.0

6.2 5.3

21

4

5 6

3.1

3

4.0
6.2 5.4

(a) Merge 6 with 4 (b) Merge 2 with 3

21

4

5 6

3

4.0

21

4

5 6

3

.

(c) Merge 4 with 3 (d) Merge 5 with 1

Fig. 2.9: Illustration of region merging and RAG changing: Merging Step-by-step.

(c) Re-sort locally.

4. Go to 3 if any |Ri| merge into |Rj|.

Next the complexity of the most expensive steps is examined. The weight sorting in step

2 costs O(|E|log|E|) operations, where |E| = k × (K − 1). When each merging process, the

complexity of 3a depends on regions’ sizes. We can only say that this step takes about O(kNr).

Step 3b fuses at least one weight, however, some weights must be removed. The illustration

is shown in Fig. 2.9(d), where the node 2 merges with 3, and then we could black node-2

or block node-2’s connections. The procedure takes O(K) for the worse case. Last, step 3c

sorts the rest weights. At this time, the current weights are less than k, for convenience, we

asses its complexity O(klog|E|). The complexity is thus approximately O(|E|log|E|).

22



Table 2.3: Sorting the RAG’s Weights

Rank 1 2 3 4 5 6 7

W4,6 W2,3 W3,4 W1,5 W2,4 W1,4 W1,2

Weights 1.0 2.0 3.0 4.0 5.0 6.0 8.0

∆W -1.0 -1.0 -1.0 -1.0 -1.0 -2.0 -

2.4 Motion-Based Region Integration

This task aims to estimate the motion of each region and extract the moving regions. To

decompose a dynamic scene into its constituent objects, the temporal information frequently

is important. Moving objects are mainly based on the temporal coherence. The assumption

is that regions in the same object undergoes the same motion. Furthermore, it implies that

the regions integrate into an object when they share high-similarity of motion. Thus, the

temporal information is commonly used to determine whether two regions belong to the same

object.

Briefly, techniques for defining the motion similarity can be divided into two types. One

type derives directly from motion vectors [55, 56, 57, 58], while the other one is based on

background statistics [1, 25, 26]. The former technique checks the distances between the

parametric motion representations for two regions. Wang and Adelson [57] demonstrated

that clustering the distance on a set of motion layers is practical. However, the inaccuracies

of motion estimation may affect the segmentation results. Tuncel and Onural [55] estimated

the dense motion vectors and proposed video-object segmentation by a fast recursive short-

est spanning tree method. Moreover, Wang [58] integrated adjacent regions by measuring

the incremental mean-square motion compensation error. The latter technique tested the

23



foreground regions based on the assumption of a still background.

The proposed method most closely resembles the first method. The method first con-

structs a dense motion field for each region using a forward motion estimation approach. To

reduce the computational load while obtaining reasonably accurate motion vectors, this study

first performs motion estimation for each pixel on the region boundary. The motion estima-

tion employs block-matching techniques. The resulting motion vectors are called seed motion

vectors. Each pixel in a region is tested only using these seed motion vectors. Regions with a

high percentage of moving pixels are considered moving regions. Connected moving regions

are integrated into a single big moving region provided certain criteria are met. Consistent

with MPEG-4 terminology, each such integrated region may be called a VO.

To test whether two connected moving regions can be integrated, the affine motion pa-

rameters of each region are first identified, where the affine motion model for pixel px,y in

region Ri is given by

uRi = ai,1 + ai,2x + ai,3y,

vRi = ai,4 + ai,5x + ai,6y, (2.2)

with uRi(x, y) denoting horizontal displacement and uRi(x, y) vertical displacement. The

affine motion parameters ai,k,k = 1,2,...,6, may be found with any appropriate error-minimization

method. For convenience, let (uRj

Ri
(x, y), vRj

Ri
(x, y)) denote the synthesized motion vector at

pixel pz,y in region Ri, obtained by substituting the affine motion parameters for region Rj

into the (2.2) for region Ri. Then we do the following. For each pair of adjacent regions,

say Ri and Rj , compute the sum of root-mean-square (RMS) motion vector errors with

synthesized motion vectors as

C(Ri, Rj) =

√√√√ 1
NRi

∑
(x,y)∈Ri

[uRi
Ri

(x, y) − u
Rj

Ri
(x, y)]2 + [vRi

Ri
(x, y) − v

Rj

Ri
(x, y)]2

24



+

√√√√ 1
NRi

∑
(x,y)∈Rj

[uRj

Rj
(x, y) − uRi

Rj
(x, y)]2 + [vRj

Rj
(x, y) − vRi

Rj
(x, y)]2 (2.3)

where NRk
denotes the number of pixels in region Rk. Find the pair (i∗, j∗) with lowest error,

that is,

(i∗, j∗) = arg min
i,j

C(Ri, Rj) (2.4)

If both the RMS errors in (Eqn.2.3) are below a predefined value, the two regions are inte-

grated into one. The better set of affine motion parameters is used for the integrated region,

and the same procedure is iterated until no more region integrations can be made.

2.5 Region Tracking and Updating

In image sequence segmentation for video compression and content-based functionalities,

proper object tracking over video frames is extremely important, including the proper ad-

justment of object shapes over time to deal with possible object deformation, object occlusions

from motion, and segmentation errors in earlier frames. By monitoring the progression of

each object over the frames, a human viewer can, for example, select some objects of interest

and observe their life over the video sequence.

For the task of region tracking and updating, each moving region is first projected into

the next video frame using the forward motion information obtained via the motion-based-

segmentation task. Some covered and uncovered areas may appear. Seed areas (found in

the seed-area-identification task) are sought which have nonempty intersections with the

projection footprint. For each such seed area, if more than a certain percentage of its size

(for example, 50%) is in the footprint and the area of intersection is not below a predefined

threshold (for example, 20 pixels), then the intersection is considered a valid new seed area.

Additionally, pixels must have low percentage forecasting errors (for example, under 0.05) to

25



fame t frame t+1 frame t+2

R

R

R

Fig. 2.10: Illustrative temporal progression of different regions.

be included certain ranges. The remaining pixels are considered “uncertain areas” requiring

re-segmentation. For the uncertain areas, re-segmentation employs regional growth from the

modified seed areas and region merging, as in the initial segmentation task.

The above procedure allows splitting, merging, and deformation of regions, as are needed.

In tracking, one also needs to maintain the correspondence of regions in two successive frames.

To deal with splitting and merging of regions, the newly segmented regions in the second frame

which fall in the footprint of a region in the previous frame may be considered a valid child of

the region. The idea is illustrated in Fig. 2.10 with the point marked R. The correspondence

between regions in two successive frames are then affirmed, completing the work of region

tracking and updating.

26



2.6 Experimental Results

To illustrate the performance of the proposed system structure, we now give some exam-

ple results from segmenting some common test sequences. Consider first the Table Tennis

sequence, where the picture resolution used is SIF (240 × 352). Fig. 2.11(a) is the original

frame 1. Fig. 2.11(b) presents the region set of initial classification. In Fig. 2.11(c), we stand

for the seed areas by white points and the black points are uncertain pixels. Fig. 2.11(d)

shows the result of initial segmentation of the first frame. Fig. 2.11(e) shows the background

portion of the second frame in the sequence. The dark-filled areas mark the locations of two

connected moving regions in the foreground. Not dark-filled is a small, third moving region

in the lower-right comer of the picture which shows the left hand of the table tennis player.

The uncovered areas found in the second frame are shown in dark in Fig. 2.11(f).

Selected objects of Table Tennis from the segmentation results are shown in Figs. 2.12

and 2.13. The sampled result of the table tennis ball, tracked from frame 1 to frame 40, is

shown in Fig. 2.12. The segmentation result every fifth frame of the ball-playing arm is shown

in Fig. 2.13. The region tracking method gets the arm stationarly linked across the frames.

Fig. 2.14 shows the recreated frame 1 after we rebuild the Table Tennis’s background, and

removed the ping-pong ball and player’s left hand.

Fig. 2.15 shows some tracking result of the foreground object in the CIF format (352×288)

of Claire sequence. Note that the initial segmentation at frame 1 does not yield the full

outline of the talker but only her head and parts of body. This is not surprising since we did

not endow high-level intelligence into the segmentation algorithm. Considering the low-level

processing, in the beginning of this scene, we can observe that the start motion is slight. As

time progresses, the motion information is picked up and the segmentation becomes more in

line with human perception.

27



(a) (b) (c)

(d) (e) (f)

Fig. 2.11: Segmentation performance of the Table Tennis Sequence. (a) Original frame 1.

(b) Regions by bright and dark segmentation. (c) Seed (bright areas) and uncertain regions

(dark areas). (d) Initial segmentation result of the (a). (e) Background portion found in the

second frame. (f) Uncovered area in frame 2 (dark points).

Fig. 2.16 shows sampled tracking result of the foreground object in the Akiyo sequence

(CIF format). Here the outline of the talker appears better identified in frame 1. However,

the upper-right part of the talker’s head suffers continued redundant-segmentation due to

likeness in intensity between the hair and the background. The right hair caused some

mis-segmentation at the beginning, the problem disappeared in frame 20. However the later

frames (showing of frame 80 and 100) occured again. These examples confirm the effectiveness

of the proposed method to some extent. They also indicate some areas for improvement.

Both Figs. 2.17 and 2.18 present the object performance. The curve in Fig. 2.17 shows

the fractional agreement between our segmentation result and the reference mask for each

28



Fig. 2.12: Tracking of ping-pong ball.

frame evaluated as follows [60]:

Qs(Oseg
n , Oref

n ) = 1 −
∑

x,y Oseg
n ⊕ Oref

n∑
x,y Oref

n

(2.5)

where Oseg
n and Oref

n are the segmentation mask and reference mask at frame n, respectively,

and ⊕ denotes the Exclusive-OR (XOR) operation. The Qs is equal to or less than 1. The

closer the value to 1, the better the result. Most of the accuracy values are above 0.98. The

temporal coherency is defined by

ζn = Qs(On, On−1) (2.6)

where On and On−1 denote segmentation mask, Øseg
n , or reference mask, Oref

n , at frame n

and n − 1. Evaluating temporal quality measure is to test the following between Oseg
n and

Oref
n . Fig. 2.17 shows the spallity comparability of the extracted object to the mask in Akiyo

sequence. Fig. 2.18 demonstrates the differences of each object’s adjacency tightly followed

the standard mask. We present some computing time data for CIF Akiyo, CIF Claire and SIF

Table-Tennis. Tab. 2.4 lists the data from using a personal computer with 1.8-GHz Pentium

IV CPU.

29



(a) Frame 5 (b) Frame 10 (c) Frame 15

(d) Frame 20 (e) Frame 25 (f) Frame 30

Fig. 2.13: Ball-playing-arm tracking result.

Fig. 2.14: Recreated frame 1 after removing ping-pong ball and player’s left hand.

30



(a) Frame 1 (b) Frame 30 (c) Frame 60

(d) Frame 90 (e) Frame 110 (f) Frame 120

Fig. 2.15: VO tracking results of Claire.

31



(a) Frame 1 (b) Frame 20 (c) Frame 40

(d) Frame 60 (e) Frame 80 (f) Frame 100

Fig. 2.16: VO tracking results of Akiyo.

32



0 10 20 30 40 50 60 70 80 90 100
0.9895

0.99

0.9905

0.991

0.9915

0.992

0.9925

0.993

Frame Number

F
ra

ct
io

na
l A

gr
ee

m
en

t

Fig. 2.17: Fractional agreement between the segmented foreground object of the Akiyo se-

quence and the reference mask.

0 10 20 30 40 50 60 70 80 90 100
0.9975

0.998

0.9985

0.999

0.9995

1

Frame Number

T
em

po
ra

l C
oh

er
en

cy

Reference mask    
Proposed algorithm

Fig. 2.18: Fractional agreement between the segmented foreground object masks of the Akiyo

sequence in adjacent frames.

33



Table 2.4: Average Computing Time in ms per Frame of Major Algorithm Functions

Algorithm Seed-Area Region Region Motion Total

Functions Identification Growing Merging Analysis Time

Akiyo 33.1 50.1 13.1 223.5 319.8

Claire 37.5 53.3 14.8 230.9 336.5

Table-Tennis 39.6 68.7 29.6 339.7 477.6

34



Chapter 3

An Enhanced Region-Based Video

Segmentation Algorithm with

Extraction of Overlaid Objects

In the last chapter, we used region growing to split images into patches and used motion

analysis to integrate VOs. This chapter presents an implementation for the case to extract

the non-integral changed foreground and segment superimposed objects.∗ In this chapter we

propose a multi-tier processing which can extract the foreground containing multiple overlaid

objects. We again employ low-level processing, i.e., texture and motion analysis. Some

researches about image segmentation and object tracking have been described in Chap. 2 We

begin by describing a brief review, point out some problems, and give a short introduction

to the proposed multi-tier algorithm.

∗A major part of this chapter has appeared in Yih-Haw Jan and D. W. Lin, “Video segmentation with

extraction of overlaid objects Via Multi-Tier Spatio-Temporal Analysis,” Int. J. Electrical Engineering, vol.

11, no. 3, pp. 205–218, Aug. 2004.

35



3.1 Brief Review and Method Introduction

Before introducing the proposed algorithm, let us first briefly comment on some existing

methods for fully automatic video segmentation. It is the experience of many that, in video

segmentation, edges are important in accurate identification of object boundaries. Therefore,

the watershed approach (which is essentially a sort of gradient or edge analysis) has been

used frequently for spatial segmentation. A critical issue of the approach is how to threshold

the gradient values to find proper region boundaries. Too low a threshold may result in

gross over-segmentation (especially for highly textured scenes) and too high a threshold may

combine multiple objects into one. The way to track the movement and shape change of

each segmented region must also be designed carefully. Earlier results were apparently not

satisfactory subjectively [58]. A later refinement yields significantly more accurate identifi-

cation of region boundaries [17], but the way video objects are defined and tracked is rather

simplistic, and there is no treatment of temporary overlaying together of multiple objects.

Taking a different route, Chen and Shirai [8] and Neri et al. [38] base their segmentation

primarily on motion analysis. However, the issue of exact delineation of region boundaries

is not addressed. In fact, the boundaries of the segmented regions can be quite far from

actual object boundaries [38]. Since edges provide important cues to object boundaries, it is

natural to expect a better segmentation from joint use of motion and edge information than

consideration of motion alone. In fact, even the motion estimates are more reliable in edge

and textured areas. In this vein, Gu et al. [19] conduct motion-based segmentation on edges.

However, the segmented edges need not form closed contours and hence the results do not

necessarily delineate each object fully. A few other algorithms employ motion estimation or

change detection to locate moving regions and then use the edges found in the moving regions

to define object boundaries [27, 36, 37]. Meier and Ngan [36, 37] consider separation of a

36



scene into two regions only, namely, the foreground and the background. However, the final

algorithm [37] requires one to make an advance choice between use of motion estimation or

change detection based on speed of object motion; where motion estimation is more suitable

for slower motion while change detection, faster motion. If the motion is very fast, then

background edges would have to be filtered out first. This is because the foreground region

is determined by analyzing the edges in the changed regions (where the changed regions have

been termed the change detection mask or CDM in short). If background edges are present

in the CDM, then they may be mistaken to be part of the foreground and cause segmentation

errors. Kim and Hwang [27] also employ change detection and edge analysis to extract the

moving foreground. Then they conduct motion analysis to separate the foreground objects

that exhibit different motion. However, the motion model is rather simple. Choi et al. [11]

combine motion and edge analysis in an effective way, but the presented results do not lend

themselves conveniently to evaluation of the segmentation accuracy at object boundaries. In

addition, temporal tracking of the objects is not addressed. Kim et al. [26] rely on change

detection and region analysis to segment the video. Since their object tracking does not use

local motion information, we conjecture that the method may have difficulty dealing with

fast moving, deformable objects.

We now introduce our algorithm. It has a tiered structure, in which the first (lowest)

tier extracts a number of spatial and temporal features from the video and the upper tiers

employ these features to effect the segmentation. In the design of the upper tiers, it is noted

that, in video scenes, we often see moving objects (or parts of one bigger object) that show

different motion overlaid one on top of another. Fig. 3.1 illustrates the situation schematically.

There we depict the typical condition where there is a stationary background and a moving

foreground. The foreground may contain several regions showing different motion, where

37



Object 3

A

Object 2Object 1Object 0

D C B

Foreground

A

C

B

D

: Background

: Foreground

: Motion vector

Fig. 3.1: Illustration of video scene with overlaid objects or region showing different motion.

each region may actually be composed of one or more natural objects, or one or more distinct

parts of a natural object. For the purpose of this work, these regions that are distinguished

by difference in motion are called objects. Two real-life examples are given in Fig. 3.2. In

the Flower Garden sequence, the foreground consists of the house, the flower bed, and the

tree, with the tree showing different motion relative to the house and the flower bed. In the

Salesman sequence, the person is in the foreground, with his arms showing different motion

than the body. Our video segmentation algorithm can address this situation.

The algorithm is composed of three tiers and its overall structure is illustrated in Fig. 3.3.

The low-level video features extracted by the first tier are edges, changed areas, block motion,

and texturally homogeneous image regions (termed patches in this research). The second and

middle tier employs these features in a motion-oriented analysis to effect a separation of the

38



(a) Flower Garden sequence (b) Salesman sequence.

Fig. 3.2: Real-life examples where video scene contains multiple overlaid objects or regions

showing different motion.

moving part (called foreground) and the station-ary part (called background) in the video

frames. The third and highest tier then identifies and tracks the overlaid objects, also via a

motion-oriented analysis. Accordingly, the three tiers are named pixel tier, foreground tier,

and overlays tier, respectively. As shown in Fig. 3.3, the pixel-tier functions can be further

divided into two parts: edge analysis and motion analysis. Note that the designations of

“foreground” and “background” as given above arise because a substantial fraction of video

sequences is composed of a stationary background and moving foreground objects. The terms

can be viewed as an artifice for convenience and need not be interpreted literally. In case

where, due to camera motion, the physical background is moving but the physical foreground

is stationary, the algorithm will consider the former foreground while the latter, background.

The remainder of this paper is organized as follows. Sec. 3.2 describes the motion analysis

part in the pixel tier while Sec. 3.3, the edge analysis part. Sec. 3.4 describes the method of

foreground separation. Section 3.5 describes the method of object segmentation and tracking

for the foreground. Sec. 5.3 presents some experimental results. And Section 5.3 gives the

39



Edge
Analysis

Motion
Analysis

Foreground
Separation

Object
Segmentation

Frame
Memory

Edge Info.

Patch Info.

Motion Info.

Change Info.

frame
 n

Frame
Memory

Foreground
Tier

Overlay's
Tier

Pixel Tier

frame
 n-1

Video
Input

frame n-1frame n+1

Fig. 3.3: Overall structure of the proposed algorithm.

discussion.

3.2 Motion Analysis in Pixel Tier: Motion Estimation and

Change Detection

This part of the pixel tier does motion estimation and change detection to provide motion

information and locations of changed pixels to the upper tiers. We describe the functions in

separate subsections.

3.2.1 Motion Estimation

The motion estimation employs a block-based hierarchical technique [3] with the final block

size set to 2× 2. Use of the hierarchical technique with small final blocks results in relatively

accurate motion estimates in reasonable complexity. The motion estimation is conducted in

both the forward and the backward directions. That is, when we conduct motion estimation

on two successive video frames, we divide both frames into 2 × 2 blocks. For each block, the

displacement with respect to the best-match block in the other frame is found.

40



The complexity of motion estimation depends on the parameters chosen for the hierar-

chical stages, such as the block sizes used, the search ranges, and the subsampling factors.

The study has not made an extensive study concerning the optimal combination of param-

eters. Rather, we have made an arbitrary choice of a set that appears to yield acceptable

performance. It results in an overall search range of ±14 pixels in both the horizontal and

the vertical dimensions. A more detailed discussion of the parameter settings would take us

too far away from the focus of this work. Suffice it to say that the complexity for forward

or backward motion estimation alone is roughly 97% of full-search block-matching, motion

estimation with an equal search range. In fact, the motion estimation does not have to be

carried out for every 2 × 2 block in each direction. We shall see that only the foreground

regions make use of the motion vectors. If the motion estimator avails itself of fee information

concerning the location of the foreground regions, then the amount of computation incurred

on motion estimation can be reduced considerably.

Conceptually, this corresponds to adding a feedback path from the foreground tier to the

pixel tier in the algorithm structure. For example, if the foreground regions constitute 50%

of the frame size, then the total complexity of our motion estimation scheme, forward and

backward taken together, becomes roughly 97% of full-search block matchina ofeaual search

range.

3.2.2 Detection of Changed Pixels

Change detection locates the moving video regions roughly. It requires statistical modeling

of the background noise (due at least in part to camera noise). Typically, a pixel is declared

changed (e.g., moving) or unchanged according to whether the frame difference around it is

greater than or smaller than a threshold calculated from the statistical model. Because the

41



fundamentals of change detection have been well-documented in the literature [1, 25, 27, 38],

we only describe our method briefly below. Let the video have stationary background. And

assume the background part of the frame difference follows a zero-mean Gaussian distribution

p(dk|H0) =
1√

2πσ2
exp(− d2

i

2σ2
), (3.1)

where H0 denotes the null hypothesis that the pixel at location (x, y) is unchanged, dk is the

difference at pixel (x, y) between frames k, and k+1 , and σ2 is equal to twice the camera

noise variance. Generally, We decide the threshold, TH, by required significance level. That

is,

α = p(dk > TH|H0), (3.2)

where α is the significance level. In this section, proposed method is geared at identifying the

areas showing significant temporal variation in a video frame. To minimize the noise effects,

the noise power in the frame is first estimated, so that object boundaries may be identified

more robustly in the higher tiers. Model the observed frame n as

In = Sn + Nn, (3.3)

where Sn is the signal and Nn is the noise, which may include camera noise and quantization

error. Let µs and σ2
s denote the mean and the variance of Sn, respectively, and let Nn be

zero-mean white Gaussian with variance σ2
n. Further, assume that the signal and the noise are

statistically independent. To estimate the noise power, we analyze the interframe intensity

differences. The idea is a modified version of that in [?]. Let δm,n denote the intensity

difference between frames m and n, i.e., δm,n = Im − In and let δm,n(x, y) denote the value

of δm,n at pixel (x,y). By the above model, the value of δm,n, in the stationary background

area of the video has Gaussian distribution. Note that

σ2
n−1,n = E[(In−1 − In)2] = 2σ2

N + 2σ2
s(1 − ρ), (3.4)

42



(p1) (p2) (p3) (p4)

(p5) (p6) (p7) (p8)

treated pixel filtering mask pixel

Fig. 3.4: Filtering masks for detecting moving pixels.

where ρ denotes the correlation coefficient between Sn−1 and Sn. For stationary pixels,

the intensity values are strongly correlated and ρ ≈ 1. Therefore, the noise variance may be

estimated through these pixels. For moving pixels, however, they may be nearly uncorrelated,

i.e., ρ ≈ 0. These pixels should be excluded in the estimation of the noise power. We

determine these pixels in the following way. Essentially, it finds the pixels around which

ρn−1,n, shows a directional structure, and considers them as moved. Consider the set of

filtering masks shown in Fig. 3.4. For each pixel (x,y), we compute the eight mean intensity

differences defined by the eight masks Pi, as

fi(x, y) =
1
5

∑
(s,t)∈Pi

δn−1,n(x, y). (3.5)

Let µ(x, y) annd σm(x, y) be the mean and the variance of δn−1,n in the 3× 3 W centered at

(x,y), i,e.,

µ(x, y) =
1
5

∑
(s,t)∈Pi

δn−1,n(x, y), (3.6)

σ2
m(x, y) =

1
9

∑
(s,t)∈W

[δn−1,n(s, t) − µ(x, y)]2. (3.7)

And let µδn−1,n be the mean of δn−1.n. Define

F (x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δn−1,n, if |fi(x, y) − µm(x, y)| < ασm(x, y)∀i,

µδn−1,n , otherwise,
(3.8)

43



and α is some suitablle constant. Then we estimate the noise power as

σ̂2
N =

1
2M

∑
(x,y)

[F (x, y) − µδn−1,n ]2, (3.9)

where M is the number of pixels in a frame. The noise power estimate may be used to define

a threshold βσ̂2
N , where β is some suitable factor, so that the pixels (x, y) in frame n for which

σ2
m(x, y) < βσ̂2

N are declared unchanged while others are declared changed. A similar process

may be performed on δn,n+1 to determine another set of changed pixels. The intersection of

the two sets is considered changed pixels in frame n. The reason for taking the intersection

is as follows.

For a moving object, the changed pixels identified using two successive frames may include

the areas around the object that are covered or uncovered due to object motion. Taking

the above intersection helps localize the object better for the upper tiers’ benefit. Fig. 3.5

illustrates the situation, where an object (or the boundary of a smooth object) denoted R is

shown moving over frames n − 1 to n + 1. Taking the intersection of two successive sets of

changed pixels may reduce (or even eliminate) the covered and uncovered areas and better

localize the moving object in frame n. Of course, if the object does not move between frames

n−1 and n or between frames n and n+1, then ideally the algorithm would return a null set

for it. In addition, the changed pixels for the first frame of the video sequence are obtained

from analyzing the first and the second frames only.

3.3 Edge Analysis in Pixel Tier: Edge Detection and Patch

Delineation

This part of the pixel tier does detection of edges and partitioning of a video frame into tex-

turally homogeneous image regions. This is to provide edge and region boundary information

44



R

R

R

n-1 n n+1 n-1, n n, n+1
Intersection of
Changed Pixels

Changed Pixels Indentified
from Indicated Frames

Frame No.

Fig. 3.5: Reducing covered and uncovered areas in change detection.

for upper tiers’ use. For convenience and to avoid likely confusion with subsequent use of the

terms “region” and “object,” the texturally homogeneous regions so obtained will be termed

“patches” and the process to obtain such regions “patch delineation.” Edge information is

very useful in detecting object motion and identifying object boundaries. We employ the

Canny method for edge detection [5]. However, typical edge detection algorithms, including

the Canny method, do not necessarily yield closed region contours or fully connected curves

at object boundaries. To help object segmentation, therefore, we also conduct intensity-and-

texture-based patch delineation for a complement. Experience shows that patch delineation

based on simple intensity and texture analysis may encounter difficulty in highly textured

areas and at thin objects (such as rims of picture frames and ends of bookshelf layers), where

the patches fanned may not be aligned with natural texture or object boundaries. Edge

detection may perform better in these cases. In conclusion, it is deemed that the joint use

of edge detection and patch delineation should yield complementary information and thus be

45



Initial Patch
Delineation

Patch
Projection

Patch
Modification

Forward Motion
Info.

Previous Frame
(From Frame Memory)

Succeeding
Frames

Patch Info.

Video
Sequence

First Frame

Fig. 3.6: Patch delineation algorithm.

Patch
Growing

Seed Area
Identifi-
cation

Patch
Merging

Fig. 3.7: Process of initial patch delineation.

beneficial.

As the Canny edge detection method is well-documented in the literature, below we

only describe our method for patch delineation, which is a special feature of the overall

segmentation algorithm. Its procedure is illustrated in Fig. 3.6. As shown, it consists of three

functional blocks, namely, initial patch delineation, patch projection, and patch modification.

We describe these blocks in the following subsections.

In principle, the delineated patches do not have to constitute semantically meaningful

objects, but due to the structure of natural video scenes, they often will correspond to

semantically meaningful parts of bigger objects.

The patch delineation was mentioned in Chapter 2 where the terms “region” and “patch”

are a synonym. The task is accomplished in three steps: seed-area identification, patch

growing, and patch merging. Fig. 3.7 depicts the process.

46



Foreground
Extraction

Foreground
Validation

Foreground
Sketch

Current Frame

Edge Info.

Patch Info.

Backward Motion Info.

Forward Motion Info.

Change Info.
Previous Frame
(from Frame Memory)

Foreground Info.

Fig. 3.8: Structure of the foreground separation algorithm.

3.4 Foreground Tier: Motion-Oriented Foreground Separa-

tion

This tier separates each video frame into two parts: a mov ing part called foreground and

a stationary part called back ground. The foreground may consist of more than one con

nected set of pixels. For convenience, we term each such connected set a foreground region.

The next tier will further divide each foreground region into objects based on further motion

analysis.

The structure of our algorithm for foreground separation is shown in Fig. 3.8. The step of

foreground sketch obtains a sketch of the foreground regions in the current frame by working

with the changed pixels in the current frame and the footprints of the motion-compensated

projection of the foreground regions found in the last frame. The step of foreground extraction

refines the sketch by determining a more exact border for each foreground region (using the

edge and patch information from the pixel tier) and then judiciously fills the space inside the

border. Lastly, the step of foreground validation adjusts the boundary of each foreground

region so extracted by projecting it backwards into the earlier frame and comparing its shape

with the corresponding foreground region in the last frame. Large discrepancies may give

birth to new foreground regions. The steps are described in detail in the following subsections.

47



3.4.1 Foreground Sketch

This step forms a sketch of the foreground regions for the current frame (say In) for later

refinement.

We first perform motion-compensated projection of the foreground pixels found in the

last frame In−1 into the current frame, employing the forward motion vectors obtained in

the pixel tier. (This projection is omitted for the first frame of the video sequence.) We

then include the changed pixels found in the pixel tier in constructing the sketch. This

is to accommodate minor changes in object shapes that are not captured by block-based

forward motion estimation and to allow possible addition of new moving objects with time.

Specifically, we take the union of the projected foreground map (denoted F p
n) and the set of

changed pixels (denoted Cn). Mathematically, let Un denote the union, then Un = F p
n

⋃
Cn.

For a large moving object with smooth intensity variations, it is possible that only pixels

on the boundary are marked as changed. As a result, the changed areas identified in the pixel

tier may have holes in the middle. This condition may hold even after taking the union with

the projected foreground. To flesh out the interior of the foreground regions, we execute a

fill-in process as follows.

First, each connected set of pixels in Un is considered to define a foreground region, if its

area exceeds a certain threshold, say Ar. For convenience, let Un denote one such set. For

each Un, a “row fill-in” and a “column fill-in” are conducted, where the former fills in the

space between the leftmost and the rightmost pixels of each row in the set and the latter

fills in the space between the topmost and the bottom most pixels in the set. The union of

the two resulting maps is taken. Then the union is eroded from the outer side so that the

outer pixels that are not the eight-neighbor of any pixel in Un are etched away. The result

constitutes the desired foreground sketch.

48



3.4.2 Foreground Extraction

Built on the result of the foreground sketch and the edge and the patch information from

the pixel tier, this step determines a more exact border for each foreground region and then

does a judicious fill-in of the space inside the border. The refined border for each foreground

region is obtained by finding, within the sketch of the region, among the edge pixels and the

patch boundary pixels those that are closest to the sketch’s perimeter. A row fill-in and a

column fill-in, as that conducted in the step of foreground sketch, are performed over this

set of border pixels. Instead of taking the union as in the step of foreground sketch, we

now take the intersection of the resulting maps. To smooth out the border, a morphological

dilation [18] is executed on the intersection map using a 3× 3 structuring element. Only the

intersection of the dilated map with the original sketch of the region is kept.

3.4.3 Foreground Validation

This step further refines the boundaries of the foreground regions. It can also detect and

separate new foreground regions that emerge next to the existing ones and hence may get

extracted together with them in the two previous steps.

To fine-tune the foreground boundaries, we perform backward motion-compensated pro-

jection (from In to In−1) for the foreground regions in In, employing the backward motion

vectors found previously via hierarchical motion estimation. For an extracted foreground

region in In, the pixels whose backward motion do not point them to the corresponding fore-

ground region in In−1 are trimmed from the region and considered as possibly belonging to

a new foreground region.

This trimming may possibly result in some holes in a foreground region map and jagged-

ness in its boundary. Therefore, the region is subjected again to the fill-in process as that

49



Affine
Motion

Modeling

Motion
Clustering

Object
Fill-in and
Merging

Object
Lanking

Object-
Map

Projection

Object Map

Store to
Frame Memory

Forward
Motion Info.

A Foreground
Region in

Current Frame

Previous Frame
(from Frame Memory)

Fig. 3.9: Structure of object segmentation algorith.

done in the steps of foreground sketch and foreground extraction. The set of trimmed pixels

are also subjected to the same process, so that any new foreground region may be detected.

Now, to further distinguish the different semantic objects in each foreground region, we

execute a motion-based segmentation process in the overlays tier as described next.

3.5 Overlays Tier: Segmentation of Overlaid Objects

This tier first segments the foreground regions that are separated in the last tier to obtain

semantically meaningful objects. This is done through clustering of the foreground pixels

by similarity in motion. A spatially connected cluster will potentially seed an object. Time

links between the finally obtained objects (more exactly, video object planes in MPEG-

4 language) in successive video frames are established via a particular procedure and the

objects are tracked through the video sequence. Fig. 3.9 depicts the algorithm structure.

The details are explained below.

The motion clustering is based on affine motion parameters, and we only use such pa-

rameters from the foreground areas that show homogeneity in motion. To identify the areas

with homogeneous motion, In−1 and In are first divided into fixed-size blocks. The block size

50



may or may not be equal to the final block size in the hierarchical forward motion estimation

of the pixel tier. For each foreground region in In−1, blocks belonging to the interior of each

segmented object in In−1 are projected (with motion compensation) into In. (This projection

is skipped if In is the first frame to be segmented.) Let P denote the union of the footprints

of this projection. For each foreground region in In, say F, let S = F
⋂

P . Then the pixels

of S in each block form one area for which we check for homogeneity in forward motion.

Mathematically, let (u(x, y), v(x, y)) be the motion vector at pixel (x,y). Let Bi denote the

ith block in In. We calculate the variance in motion of the pixels in S
⋂

Bi as

σ2 =
1
N

∑

(x,y)∈S
⋂

Bi

[u(x, y) − u]2 + [v(x, y) − v]2, (3.10)

where N is the number of pixels in S
⋂

Bi, and (u, v) is the mean forward motion vector in

S
⋂

Bi. If σ2 is greater than a predefined threshold Td, then the motion of the foreground

region F in Bi is considered inhomogeneous and skipped in the clustering operation. (There-

fore, this check of motion homogeneity is not needed when the size of Bi, is the same as the

final block size used in the hierarchical forward motion estimation in the pixel tier, for in this

case all pixels in Bi, share the same motion vector.) For each retained Bi, the affine motion

parameters aik, k = 1, ..., 6, for S
⋂

Bi, are obtained, where the affine motion model is defined

similarly to ( 2.2). This completes the step marked “affine motion modeling” in Fig. 3.9.

In the step of motion clustering, the K-means clustering algorithm is applied to the set

of affine motion parameters of the retained blocks to yield an appropriate number of motion

classes, say Nc. Each pixel in foreground F is assigned to the class that matches best in

motion. To speed up the convergence of the K-means algorithm, for the second and later

frames it may be initialized with the help of the previous frame’s segmented object map.

Specifically, the resulting object map for the previous frame may be projected (with motion

compensation) into the current frame. The mean affine motion parameters of the retained

51



blocks in the projected footprint of each object may be used to initialize the clustering

algorithm. We note that Wang and Adelson [57] also employ motion-based clustering to

segment video scenes into layers, but the detailed procedure is quite different. After motion

clustering, each connected set of pixels in a foreground region is considered to potentially

define an object. Again, these sets may not form filled areas but may have holes in the

middle. A fill-in process as that in foreground sketch is used to clear out the holes. Overly

small objects are merged into a large adjacent object based on likeness of the mean affine

motion parameters. The above constitutes the work in the step of “object fill-in and merging.”

Finally, in the step of object linking, we establish temporal linkages of the segmented objects

across video frames. The mechanism therein allows new appearance, disappearance, and

merging of objects. In essence, it compares the footprints of the forward motion-compensated

projection of the objects in the previous frame with the object map of the current frame to

determine the temporal linkings and form tracking paths. The details are as follows. For an

object in frame In−1, say On−1, let the forward motion-compensated projection in In be Op
n.

Assume that Op
n intersects with q segmented objects in In, denoted Om

n ,m = 1, 2, ..., q. Let

Am denote the area of 0m
n and let Ac

m be the area of the intersection between 0p
n and 0m

n . Any

object 0m
n for which this intersection constitutes an over-whelming percentage of the object

size, i.e., Ac
m/Am ≥ Ω for some large percentage number Ω, is considered a successor of 0n−1

in In. If no such 0m
n exists, then On−1 ceases to exist. (For example, it may have merged

into another object.) Objects in In that are not the successor of any object in In−1 may start

new tracking paths.

52



3.6 Experimental Results

We present some experimental results for the sequences Akiyo (352× 288) , Salesman (352×

288), and Flower Garden (720×480). The first two has stationary backgrounds while the third

has camera pan. Our experience indicates that the Salesman sequence is quite a challenge

to video segmentation algorithms and we have not seen its use in the segmentation examples

reported by others.

To start, we show some pixel-tier results. Since Canny edge detection and the hierarchi-

cal motion estimation are well-documented operations, we only present the results of patch

delineation and change detection. Fig. 3.10 show some patch delineation results and Fig. 3.11

show some results of change detection. The results are subjectively proper.

Next, we consider the results of the foreground tier. Fig. 3.12–3.14 show the foreground

yielded by the algorithm for the different sequences. Note that the foreground boundaries are

identified reasonably well, except in the case of the Flower Garden where parts of the sky are

grouped with some tree branches into the foreground. A solution to this last problem awaits

further work. We now consider the results of the overlays tier. For the Akiyo sequence, since

the foreground (the news woman) does not contain parts with significantly different motion,

it is not segmented into multiple objects. In other words, the overlays and the foreground

tiers have the same results. The Salesman and the Flower Garden sequences are different.

For Salesman, the arms and the head show different motion than the body. Figs. 3.15 and

3.16 show the right arm and the head as segmented in the overlays tier. They are tracked

successfully in object linking. For Flower Garden, Figs. 3.17 and 3.18 show the objects

“tree trunk” and “house right” as segmented from the foreground. Fig. 3.19 demonstrates

the ability of the algorithm to deal with changes in object shapes; in this case it successfully

tracks the changing shape of the building emerging from the right of the tree trunk.

53



(a) (b)

(c) (d)

(e) (f)

Fig. 3.10: Some patch delineation results for Akiyo, Salesman, and Flower Garden. (a),(c),

and (e) are the originals, and (b), (d), and (f) are the results, where the different patches are

distinguished by different gray levels.

54



22 115

15 60

1 15

Fig. 3.11: Some change detection results for Akiyo, Salesman, and Flower Garden. Number

below each picture gives the frame number. In the case of Akiyo and Salesman, the changed

pixels are marked in white, but for clarity, in the case of Flower Garden the unchanged pixels

are instead marked in white.

55



20 50

80 107

Fig. 3.12: Foreground region of Akiyo. Number below each picture gives the frame number.

10 20

30 40

Fig. 3.13: Foreground region of Salesman. Number below each picture gives the frame num-

ber.

56



1 7

14 16

Fig. 3.14: Foreground region of Flower Garden. Number below each picture gives the frame

number.

5 8

10 14

Fig. 3.15: Object “right arm” obtained in the overlays tier from the foreground region of

Salesman. Number below each picture gives the frame number.

57



5 8

12 32

Fig. 3.16: Object “head” obtained in the overlays tier from the foreground region of Salesman.

Number below each picture gives the frame number.

1 7

14 16

Fig. 3.17: Object “Tree trunk” obtained in the overlays tier from the foreground region of

Flower Graden. Number below each picture gives the frame number.

58



1 7

14 16

Fig. 3.18: Object “house right” obtained in the overlays tier from the foreground region of

Flower Graden. Number below each picture gives the frame number.

(a) Frame 10 (b) Frame 20 (c) Frame 30

Fig. 3.19: Synthesized Flower Garden scene from segmentation result, with tree removed.

Upper row: original frames 10, 20, 30; middle row: synthesized frames.

59



0 20 40 60 80 100 120

0.997

0.9975

0.998

0.9985

Frame Number

F
ra

ct
io

na
l A

gg
re

m
en

t

Fig. 3.20: Fractional agreement between the segmented foreground object of the Akiyo se-

quence and the reference mask.

Figs. 3.20 and 3.21 present the algorithm’s fractional agreement performance by (2.5)

and (2.6) between our segmentation result and the reference mask. The curve in Fig. 3.20

shows that the accuracy of Akiyo sequence achieves 0.996 or better in most frame. Fig. 3.21

demonstrates that most of the the differences of each object’s adjacency tightly followed the

standard mask. Tab. 3.1 presents some computing time data for several test sequences: CIF

Akiyo, CIF Claire, CIF Salesman, and 720× 480 Flower Garden (using a personal computer

with 1.8-GHz Pentium IV CPU).

Currently, the algorithm treats the two ends of the house appearing behind on the two

sides of the tree in the Flower Garden sequence as two objects. It does not recognize that

they actually are two parts of one physical object. Staying in the realm of low-level spatio-

temporal analysis without incorporating higher-level intelligence, to recognize this fact would

60



0 20 40 60 80 100 120
0.9975

0.998

0.9985

0.999

0.9995

1

Frame Number

T
em

po
ra

l C
oh

er
en

cy

Reference mask    
Proposed algorithm

Fig. 3.21: Fractional agreement between the segmented foreground object masks of the Akiyo

sequence in adjacent frames.

Table 3.1: Average Computing Time in ms per Frame of Major Algorithm Functions

Steps Pixel Tier Foreground Tier Overlays Tier Total Time

Akiyo 447.3 185.5 42.3 676.6

Claire 455.9 166.4 42.5 664.8

Salesman 493.1 152.7 47.9 693.7

Flower-Garden 1981.2 525.8 194.6 2701.6

61



require processing on a longer-term memory of the video contents than presently considered.

We relegate this to potential future work. Nevertheless, we can perform manual processing

of the segmentation result to achieve various effects. For example, one application of video

segmentation is video editing based on object manipulation. To demonstrate such use of the

segmentation result of our algorithm, Fig. 3.19 shows a synthesized frame using the foregound

objects of the Flower Garden sequence with the tree removed.

Compared to some recently published automatic video segmentation algorithms, the

present work made a few advances in the following aspects:

1. Some algorithms separate the video into foreground and background only, or into mul-

tiple objects with each performing simple motion. Our algorithm can separate multiple

overlaid objects doing complicated motion, can deal with object deformation, and can

handle object appearance and disappearance.

2. Some algorithms may require advance choice of the processing mode based on the speed

of motion in the video, or prior processing of background edges for good performance

in fast motion. Our algorithm does not.

62



Chapter 4

Edge-Based Morphological

Processing for Efficient and

Accurate Video Object Extraction

In the previous two chapters, we used high complexity methods to segment objects. In

this chapter, we want to reduce the extraction processes. This chapter considers the edge-

linking approach for accurate locating of moving object boundaries in video segmentation.∗

We review the existing methods and propose a scheme designed for efficiency and better

accuracy. The scheme first obtains a very rough outline of an object by a suitable means,

e.g., change detection. It then forms a relatively compact image region that properly contains

the object, through a procedure termed “mask sketch.” Finally, the outermost edges in the

region are found and linked via a shortest-path algorithm. The second part of this chapter

∗A major part of this chapter has appeared in Yih-Haw Jan and D. W. Lin, “Edge-based morphological

processing for efficient and accurate video object extraction,” IEICE Trans. Information & Systems, vol.

E88–D, no. 2, pp. 335–340, Feb. 2005.

63



is bi-directional motion estimation for reliable object tracking. We disscussed it in Ch. 3

In this chapter we study a multi-tier processing which concerns the drawing out of. The

ideas employed in mask sketch reduce the search area effectively. Experiments show that the

scheme yields good performance. We develop two edge-linking techniques in this and next

chapters.

4.1 Background

Extraction of semantic video objects from natural video is a prerequisite for various content-

based video applications, and it has attracted much recent attention. Here two key issues are

the accurate identification of object boundaries and the required processing time.

A common design of current object extraction algorithms is to first obtain, roughly, the

location and the shape of the objects of interest via spatial and/or temporal analysis and

then try to obtain a refined estimate of the object boundaries. In the spatial/temporal

analysis, the algorithms may partition the video into regions showing homogeneity in certain

features (such as intensity, color, and/or motion), or they may identify image areas showing

heterogeneity (such as edges and/or changed areas) that may characterize object boundaries.

In the refinement of object boundaries, some common approaches are contour evolution [33,

50], watershed analysis [10, 58], and edge linking [31, 37]. This letter considers the last

approach and proposes a way for efficient and accurate extraction of the object boundary,

given the object’s rough location and shape.

In the edge-linking approach (as well as many other approaches), object boundaries are

assumed to be situated at locations showing high intensity or color gradients. A variety of

methods can be used to find such locations, for which a popular choice is the Canny edge

detector [5]. The need for edge linking arises because typical edge detectors often yield

64



segments of unconnected contours at object boundaries. Two problems that must be solved

in edge linking are thus: 1) among all the edges that can be found in an image, which ones

should be considered candidates for linking, and 2) among all the ways the candidate edges

can be linked, what is the most proper way of linking (perhaps with slight modification of

the edge locations if appropriate).

The two problems above are interrelated, for if we do not suitably limit the range of the

candidate edges (the first problem), then the linking (the second problem) will have to trade

between computational complexity and accuracy in object delineation. The primary novelty

of this work consists in proposing an efficient technique to limit the range of candidate edges

so as to facilitate the use of a linking algorithm that can trace the object boundaries closely

at a lower complexity than methods published previously.

In what follows, Sect. 2 reviews some existing edge-based segmentation methods and their

problems. Section 3 describes the proposed method. Section 4 presents some experimental

results. And Sect. 5 is a brief conclusion.

4.2 Existing Methods

Given a set of edges in a region, one common way to obtain a rough outline of the object is by

orthogonal scans. In one technique [2, 27], each row that contains edge pixels is considered.

The space between the leftmost and the rightmost such pixels is filled in. Likewise, for each

column that contains edge pixels, the space between the topmost and the bottommost such

pixels is filled in. Then a rough object mask is obtained by ANDing the two pixel maps. In

another technique [37, 40], a row scan is performed as above. Then the result is subjected to

a column scan, whose result is subjected to a second row scan. For convenience, we refer to

these techniques as minimal scan and maximal scan, respectively.

65



(a) (b)

Fig. 4.1: Example of orthogonal scans, assuming perfect edge detection that finds all the

boundary pixels of the object. (a) Object shape. (b) Resulting mask of maximal scan.

Ideally, one would desire that the obtained mask boundary be close to the actual object

boundary. However, whether this can be the case depends the object geometry. Consider the

object shape illustrated in Fig. 4.1(a), for example, and assume perfect edge detection which

finds all the boundary pixels of the object. Then it is not difficult to see that the object mask

obtained from minimal scan coincides with the real object shape perfectly while that from

maximal scan is as shown in Fig. 4.1(b). For another example, consider the object shape

illustrated in Fig. 4.2(a). Minimal and maximal scans would result in the masks shown in

Figs. 4.2(b) and (c), respectively. Both expand significantly beyond the true object boundary.

A moment’s thought reveals that, for maximal scan, the resulting object mask will expand

if the object shape is nonconvex and, for minimal scan, it will happen when there exists a

cave-shaped area where the cave opening narrows towards its mouth.

After the orthogonal scans, several ways may be used to refine the object mask. Some

employ morphological operations [2, 27] (but the details are not clearly given in these pub-

lications). And some employ a shortest-path algorithm to find and connect the boundary

edges [37, 40]. The first way may yield an enlarged object contour beyond the actual object

boundary (in addition to that due to orthogonal scans). The second way follows the edges

66



(a) (b) (c)

Fig. 4.2: Another example of orthogonal scans, assuming perfect edge detection that finds

all the boundary pixels of the object. (a) Object shape. (b) Resulting mask of minimal scan.

(c) Resulting mask of maximal scan.

better, and a favorite shortest-path algorithm is Dijkstra’s algorithm [13]. However, if the

orthogonal scans result in a greatly expanded object mask, then the shortest-path algorithm

will need to sift out many pixels, which presents a complexity concern. (For example, a typ-

ical implementation of the Dijkstra algorithm has O(n2) complexity, where n is the number

of pixels in the search area [49, 53].) Worse yet, if strong edges exist in the overgrown area

of the mask and they are not identified and excluded for edge linking through some means,

then these edges may be mistaken to be part of the object boundary.

We remark that, while the minimal scan may give a closer outline of the object than

the maximal scan when the edges are well-detected, it may yield a grossly distorted object

outline when some edges are missed. For example, consider the case where the the extreme

lower-right edges of the objects in Figs. 4.1(a) and 4.2(a) are missed by the edge detector.

Then the results of maximal scan will stay the same, but the minimal scan will yield the

results shown in Fig. 4.3. Therefore, whether one method is better than the other may be

case-dependent. Our aim is an efficient scheme that combines the merits of the minimal and

the maximal scans.

67



(a) (b)

Fig. 4.3: Results of minimal scan when the lower-right object edge is missing. (a) Object of

Fig. 4.1(a). (b) Object of Fig. 4.2(a).

4.3 The Proposed Method

As indicated previously, we assume that the rough location (in Sec. 3.2.2)and the rough shape

of the object of interest have been obtained by some means. Our goal is to identify the object

boundary accurately and efficiently through edge linking. The proposal is mainly built on

two relatively simple ideas:

1. to make more effective use of the object’s known approximate location and shape to

narrow the search area, and

2. to make more effective use of the detected edges interior to the search area.

To facilitate algorithm development and the following discussion, we assume use of change

detection to roughly delineate the moving objects, but other techniques can also be employed.

Change detection detects image areas that exhibit significant changes from one video frame

to another. Normally, the result (termed “change detection mask” or CDM in short) will

consist of pixels from both the moving objects and the background. Many change detection

methods have been proposed in the literature, for example, [1, 21, 27, 38]. Usually, changed

pixels are determined by thresholding the frame difference or a filtered version of it, where

the threshold may be set considering the amount of camera noise in the video. Since change

68



CDM
Rount−Out

Boundary
Tightening

Mask Sketch

Shortest−
Path

Search

Refinement
Mask

Fig. 4.4: The proposed method of edge linking.

detection only serves an illustration purpose in this work, we omit further discussion of it.

Concerning edge detection, we employ the Canny edge detector.

Our edge linking method consists of two stages: mask sketch and mask refinement. In the

former we define the outer perimeter of the area that contains an object of interest, and in the

latter we refine the estimated object boundary. They are discussed in separate subsections

below. The overall procedure is illustrated in Fig. 4.4.

4.3.1 Mask Sketch

We illustrate the procedure using the arbitrary CDM example shown in Fig. 4.5(a), where

pixels in the CDM are marked in gray. In some cases, a CDM may enclose a half-open area.

A common example is a person’s upper body in a videophone scene. In such a case, we

consider all pixels between the two farthest separated edge pixels on the frame boundary on

the open side of the CDM as edge pixels and include them in the CDM, similar to [27] and

[2].

To start, we round out the CDM to obtain a solid region. In addition to defining the

maximum support of the object, this step also serves two functions. First, by this we make

the edges interior to the CDM, but not part of it, also available for subsequent edge-based

processing. And secondly, we stop one- and two-pixel wide “cracks” in the CDM. More than

one way exists to obtain the same result. One of them is as follows.

69



A row scan is performed over each row of the CDM to fill in the space between the two

farthest separated pixels in this row. A similar column scan is performed over each column of

the CDM. The two results are ORed together to yield an “OR map.” Then we erode the OR

map from the outer side inwards so that pixels that are not an eight-connected neighbor of

any pixels of the CDM are dropped. By the above we not only fill in the hollow areas inside

the CDM (if any), but also stops all one- and two-pixel wide cracks as desired. However, it

also expands the CDM slightly by one pixel around. Therefore, we now go one round over

the pixels on the outer boundary of each connected set of the already eroded OR map, and

delete the pixels that are not in the CDM as we go. This makes the pixel map’s footprint fit

the CDM’s shape while keeping the one- and two-pixel cracks filled. The largest connected

region of the pixel map is taken as the rounded CDM. For the arbitrary CDM example of

Fig. 4.5(a), we obtain Fig. 4.5(b) as the result. Further, it can be seen that the rounded

CDM will contain the edges interior to but not part of the original CDM, making them also

available for subsequent edge-based processing. Next, we tighten the boundary of the rounded

CDM by working with the edge pixels therein. Note that each row of pixels in the rounded

CDM may consist of more than one connected segment, and likewise each column. We do

“segmental orthogonal scans” as follows. First, for each connected horizontal segment that

contains two or more edge pixels, we connect the furthest two of them. Then we regard the

boundary pixels in the result as virtual edge pixels and, for each connected segment in each

column of the rounded CDM, we connect the two furthest edge pixels. This completes the

boundary tightening step. For the above example, let the edge pixels in the rounded CDM be

as shown in black in Fig. 4.5(c). Then the resulting pixel maps after segmental horizontal and

vertical scans are as illustrated in Figs. 4.5(d) and (e), respectively. To further appreciate

the effects of these scans, Fig. 4.5(f) shows the result again, with the edge pixels marked

70



in black while the others in gray. Comparing it with Fig. 4.5(c), we see that the mask is

indeed tightened to match the edge contours better. Note also that, while the technique of

orthogonal scans may look much like that in maximal scan, the segmental nature leads to a

very different result.

4.3.2 Mask Refinement

Now that we have bounded the outer perimeter of the object of interest, we proceed to refine

the estimated object boundary. For this we employ Dijkstra’s shortest-path algorithm to

find and to link up the outermost edges in the boundary-tightened mask. For simplicity, we

consider all edges equally as in [37]. Experience indicates that this yields reasonable results.

If desirable, the edge strengths (such as magnitudes of gradient values at edge pixels) can

be easily incorporated into the path metric, e.g., as in [40], but the effect of noise on the

computed values of the edge strengths must be taken into account.

Figure 4.6 illustrates how our algorithm works using a section of the resulting mask shown

in Fig. 5.5(f) from mask sketch. Consider edge linking between points A and B shown in

Fig. 4.6(a), for example. The algortithm considers all edge pixels on the boundary of the

mask as belonging to the object boundary, where a pixel is considered to be on the mask

boundary if at least one of its eight-connected neighbors is not in the mask. First, all

nonedge boundary pixels in the mask are identified. In Fig. 4.6(a), the nonedge boundary

pixels between points A and B are marked by cross hatching. Next, we stop all edge gaps

around the mask boundary that are only one pixel wide. This is done by examining each

nonedge boundary pixel. If two of its orthogonal four-connected neighbors are edge pixels, it

is declared to be an edge pixel. Fig. 4.6(b) shows the result for the example, where all pixels

on the mask boundary (between A and B) that are now considered belonging to the object

71



boundary are marked black. The others remain cross-hatched. For clarity, in this figure we

omit the black marking of the edge pixels that are not on the mask boundary. Note that the

above gap-stopping method is in effect a kind of shortest-path algorithm for edge linking over

one-pixel gaps, but with reduced complexity compared to the Dijkstra algorithm in normal

operation. Regarding the example, we are now left with two edge discontinuities between A

and B, defined by the pixel pairs (a, b) and (c,B), respectively.

The algorithm continues by considering separately each remaining edge discontinuity

along the mask boundary. For each discontinuity, we search in the mask for the shortest

path that bridges it, where each edge pixel in the mask is given an equivalent length d0 and

each nonedge pixel an equivalent length d1. (We let d0 = 1 and d1 = 10 in the experiments.)

To control the computational complexity, we may limit the search area to a band around the

mask’s boundary. This is equivalent to assuming that the object boundary be within the

width of the band. Let Dw be the bandwidth in number of pixels. For example, Fig. 4.6(c)

illustrates the two search areas for the edge discontinuities (a, b) and (c,B), respectively,

with Dw = 5. After executing Dijkstra’s shortest-path algorithm over the two search areas

separately, we obtain the final result shown in Fig. 4.6(d) for edge linking between A and B.

4.3.3 Remarks on Complexity

The complexity of the above algorithm is difficult to characterize precisely, because it depends

on the detailed organization of the operations involved. Nevertheless, we can see that an

unsophisticated implementation of mask sketch that follows the description given above may

involve several passes over the CDM and its interior, each pass involving some simple logical

operations on each pixel. Therefore, the complexity of mask sketch is on the order of the

size of the extracted object. The complexity of mask refinement depends on the total length

72



of the edge discontinuities. We mentioned that a typical implementation of the Dijkstra

algorithm has O(n2) complexity, where n is the number of pixels in the search area. Thus the

complexity of mask refinement is at most O(L2D2
w) where L is the perimeter of the extracted

object.

In contrast, the maximal and the minimal scans both require complexities of a similar

order-of-magnitude to mask sketch. However, since their results do not follow the object

shape as closely as the mask sketch’s, if a shortest-path algorithm is used subsequently to

delineate the object better, the algorithm may need to search over a considerably bigger

area for the object boundary, which means potentially significant complexity penalty. Some

examples are given in the next section.

4.4 Experimental Results

To illustrate the working and the performance of the proposed algorithm, we present some

results for a typical frame in the CIF test sequence Mother and Daughter. (Results for other

frames are similar in nature.) The sequence gives a typical example of the situation where

the moving objects have a grossly nonconvex contour. Figure 4.7 shows an original frame,

the corresponding CDM, the rounded CDM, and the result of mask sketch. Figure 4.8 shows

the results of mask refinement at Dw = 2 and Dw = 5. The two results differ only slightly

and both are subjectively pleasing.

For comparison, Fig. 4.9 shows the result from using maximal scan on the CDM. Due

to the greatly expanded object mask in cave-shaped areas from maximal scan, compared to

the proposed method the subsequent shortest-path algorithm needs to search over a much

larger area for the correct object boundary. In contrast, minimal scan usually results in less

expansion of the object mask than maximal scan and is thus of a lesser complexity concern

73



when its result is used as the starting point for edge linking by shortest-path search. But

nevertheless the tighter mask area resulting from the proposed method still offers a complexity

advantage in edge linking. Figure 4.10 shows the results of mask refinement at Dw = 2 and

Dw = 5 under minimal scan. Note the difference in the face region of the mother compared

to the corresponding results in Fig. 4.8. At Dw = 7, the result becomes better aligned with

the true object contour in this face region. (We remark that, as noted previously, [27] and

[2] do not employ a shortest-path algorithm to obtain the final object mask. Both employ

morphological operations, but the details are not clearly given. Both result in an enlarged

object mask in cave-shaped areas of the object. Our focus in this work is not to compare

the performance of edge linking with these methods, but to obtain an efficient edge linking

scheme with good performance.)

To assess more quantitatively the relative complexity of different methods, we define a

measure called refinement efficiency (RE) as

RE =
NC

ND
, (4.1)

where NC is the number of object boundary pixels filled in by Dijkstra’s algorithm and ND

is the total number of pixels examined by the algorithm in the process. Note that RE is a

function of Dw. Generally speaking, RE should tend to decrease as Dw increases. Moreover,

assuming that the object mask obtained at Dw = ∞ is the true mask, we define a measure

called mask convergence (MC) as

MC = 1 −
∑

OW
⊕

O∞
O∞

, (4.2)

where
⊕

denotes exclusive OR (XOR) and OW and O∞ are the object masks obtained with

Dw = W and Dw = ∞, respectively. It measures the closeness of OW to O∞, and its value is

always smaller than or equal to 1. It is equal to 1 only when OW and O∞ are identical. Jointly

74



considering RE and MC gives us a better picture of the algorithm performance. Having high

RE and MC values at low Dw values indicates efficient and accurate segmentation. In this

regard, Fig. 4.11 shows that the proposed method is more efficient in edge linking than

processing based on maximal scan or minimal scan.

Furthermore, the objects moves continuously through temporal evolution. When an ob-

ject moves slowly at a certain time instance, we forward superpose the object’s projection

and the current change area. For robustness, backward check the superimposed objects and

repeatedly use the above method to extract the objects in the latter frames. Details are in

Sec. 3.2.1 and [23]. Figs. 4.12 and 4.13 present the algorithm’s fractional agreement per-

formance by the (2.5) and (2.6) between our segmentation result and reference mask. The

curve in Fig. 4.12 shows that the accuracy of Akiyo sequence achieves 0.995 or better in most

frame. Fig. 4.13 demonstrates that most of the the differences of each object’s adjacency

tightly followed the standard mask. Tab. 4.1 presents some computing time data for several

CIF sequences: Akiyo, Claire, Salesman, and Mother-Daughter (using a personal computer

with 1.8-GHz Pentium IV CPU).

We considered the edge-linking approach to accurate extraction of object boundaries for

natural video segmentation. The primary novelty of the proposed method consists in an

efficient technique to limit the range of searched candidate edges for linking and facilitate

the use of a shortest-path algorithm that can trace the object boundaries closely at a lower

complexity than methods published previously. Experimental results demonstrated that the

proposed method was efficient and performed well. A topic for potential future work is further

enhancement of the algorithm efficiency. Another is a more comprehensive comparison of the

complexity and performance of the edge-linking approach with that of watershed analysis

and contour evolution.

75



Table 4.1: Average Computing Time in ms per Frame of Major Algorithm Functions

Algorithm Motion Orthogonal Mask Segmental Edge

Functions Estimation Scan Trimming Orthogonal Scan Linking

Akiyo 185 3.9 4.2 3.9 6.49

Claire 156 3.1 6.6 3.7 4.61

Salesman 126 3.4 7.1 3.2 7.07

Mother-Daughter 247 4.4 11.3 4.7 10.8

76



(a) (b)

(c) (d)

(e) (f)

Fig. 4.5: Arbitrary example for illustration of the proposed algorithm. (a) CDM. (b) Result of

CDM round-out. (c) Result of CDM round-out, with edge pixels therein marked in black. (d)

Result of segmental row scans. (e) Result of segmental column scans, i.e., result of boundary

tightening. (f) Result of boundary tightening with edge pixels in the mask marked in black

while other pixels marked in gray.

77



���
�
�

�
�
��
�
�
�
�
�
����
��
��
����

�

�
�
�
�
��
��
�
�
�
��
�
����

A
B

�
�

���
�
�

�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
��
�
����

A
B

a

b

c

(a) (b)

��
���
�
�

��
��
�
�
�
�
�
�
�
�
�
�
�
���
�

�
�

Dw

D
w

a

b

Dw
�
�
�c
�
�
B

(c)

A
B

(d)

Fig. 4.6: Illustration of the mask refinement method. (a) Zoomed-in section of the mask

sketch result for illustration use. (b) After stopping of one-pixel gaps. (c) Respective search

areas of shortest-path algorithm for edge discontinuities (a, b) and (c,B). (d) Final result of

edge linking between A and B.

78



(a) (b)

(c) (d)

Fig. 4.7: Illustration of algorithm behavior. (a) An original frame of Mother-and-Daughter

sequence. (b) CDM. (c) Rounded CDM. (d) Result of mask sketch.

(a) (b)

Fig. 4.8: Result of mask refinement at different search bandwidths. (a) Dw = 2. (b) Dw = 5.

79



(a) (b)

(c) (d)

Fig. 4.9: Segmentation results for Mother and Daughter based on maximal scan. (a) Result

of maximal scan on CDM. (b),(c),(d) Results of mask refinement with Dw = 20, 60, and 100,

respectively.

(a) (b)

Fig. 4.10: Result of mask refinement based on minimal scan at different search bandwidths.

(a) Dw = 2. (b) Dw = 5.

80



20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

Search Bandwidth D
w

R
ef

in
em

en
t E

ffi
ci

en
cy

Refinement Efficiency

20 40 60 80 100 120

0.875

0.9

0.925

0.95

0.975

1

M
as

k 
C

on
ve

rg
en

ce

Mask Convergence

(a)

2 3 4 5 6 7
0.08

0.1

0.12

0.14

0.16

0.18

Search Bandwidth D
w

R
ef

in
em

en
t E

ffi
ci

en
cy

Refinement Efficiency

2 3 4 5 6 7
0.992

0.994

0.996

0.998

1

1.002

M
as

k 
C

on
ve

rg
en

ce

Mask Convergence

(b)

2 3 4 5 6 7
0.1

0.15

0.2

0.25

0.3

0.35

Search Bandwidth D
w

R
ef

in
em

en
t E

ffi
ci

en
cy

Refinement Efficiency

2 3 4 5 6 7
0.998

0.9985

0.999

0.9995

1

1.0005

M
as

k 
C

on
ve

rg
en

ce

Mask Convergence

(c)

Fig. 4.11: Comparison of algorithm efficiency and accuracy in segmentation of Mother-and-

Daughter sequence. (a) Maximal-scan based processing. (b) Minimal-scan based processing.

(c) Proposed method.
81



0 50 100 150
0.995

0.9955

0.996

0.9965

0.997

Frame Number

F
ra

ct
io

na
l A

gr
ee

m
en

t

Fig. 4.12: Fractional agreement between the segmented foreground object of the Akiyo se-

quence and the reference mask.

82



0 50 100 150
0.998

0.9985

0.999

0.9995

1

Frame Number

T
em

po
ra

l C
oh

er
en

cy

Reference mask    
Proposed algorithm

Fig. 4.13: Fractional agreement between the segmented foreground object masks of the Akiyo

sequence in adjacent frames.

83



Chapter 5

Reduced-Complexity Motion

Analysis and Edge Processing for

Accurate Identification of Object

Boundaries

In previous chapters, We developed relatively sophisticated segmentation algorithms that can

identify moving object boundaries reasonably accurately and can separate multiple overlaid

moving objects [22]. In addition, for slow moving objects, we develop an edge-based morpho-

logical processing considering efficient and accurate object extraction. This chapter considers

accurate delineation of moving object boundaries with reduced complexity.∗ By experience,

we find that each of the following three image analysis techniques has characteristics useful to

∗Part of this chapter will appear in Yih-Haw Jan and D. W. Lin, “Automatic video segmentation with

novel motion analysis and edge processing for accurate identification of object boundaries,” in Int. J. Electrical

Engineering.

84



EDGE
ANALYSIS

CHANGE
DETECTION

FORWARD
TRACKING

BACKWARD
VALIDATION

MASK
REFINEMENT

FRAME
MEMORY

VIDEO
INPUT

FRAME  n

FRAME  n-d FRAME  n-1

Fig. 5.1: Structure of the proposed algorithm.

the intended task: change detection is good at identifying significantly changing areas across

video frames, motion estimation is good for tracking object motion, and edge detection can

provide accurate information concerning object boundaries. Their characteristics are com-

plementary. We choose to found our algorithm on all three techniques jointly. Specifically,

we use them to obtain a sketch of the “mask” of the moving objects. And we design a par-

ticular method to refine the mask for accurate delineation of the moving object boundaries.

The primary novelties of the proposed scheme consist in the mask refinement method and

the method of motion estimation with reduced complexity. Fig. 5.1 shows the overall struc-

ture of the proposed algorithm. Roughly speaking, semantic objects are detected initially

with “change detection,” tracked in time with motion-compensated “forward tracking” and

“backward validation” that allow object shape changes, and their boundaries delineated more

accurately with “mask sketch.” The block “edge analysis” provides useful information for the

last function.

In what follows, Sections 5.1 and 5.2 describe the proposed segmentation algorithm with

its novelties, except the edge analysis block which employs the well-reputed Canny edge

detector [5]. Then Section 5.3 presents some experimental results. And Section 5.4 gives the

85



discussion.

5.1 Motion-Related Analysis

The design of the change detection (details have introduced in Sec. 3.2.2) and the motion-

compensated object tracking functions is based on the following observation. In video signal

analysis and segmentation, motion information is helpful for tracking of moving objects.

However, conventional motion estimation methods are usually very computation-intensive

and need not yield reliable motion information. As a result, one often would like to minimize

its use or its complexity. By simply detecting the changed areas, change detection is a

favored low-complexity mechanism to roughly identify image regions that contain moving

objects [1, 26, 37, 38]. However, if an originally moving object comes to a standstill, change

detection will lose track of the object unless a long-term memory is provided, such as in

[9]. Moreover, there is also a concern in accuracy of object boundary identification without

motion information. In this work, we choose to develop a low-complexity, object-based motion

estimation technique for object tracking. It is complemented by change detection which helps

in capturing fully the possible temporal changes in object shape and in identifying new moving

objects (especially in the first two video frames).

5.1.1 Forward Tracking

A main purpose of the “forward tracking” function is to find the footprint of each object of

the previous frame (say In−1 ) in the current frame (say In). Some inaccuracy is tolerable,

because the subsequent backward validation and mask refinement will localize the object

boundary more precisely. By integrating the footprint with the change detection output, we

can accommodate appearance of new moving objects and handle object deformation better.

86



(a)
Treated
Block Macroblock

Current
Frame

Object UnderConsideration

(b)

Fig. 5.2: Object-based motion estimation. (a) An object under consideration (shaded region)

in the previous frame has moved to a different position in the current frame (dashed contour).

Each small square is BW × BW in size. (b) Illustrating the idea that motion estimation is

carried out on the 3 × 3 macroblock centered at the treated block.

87



Key in the forward tracking function is a novel low-complexity motion estimation method,

which is illustrated in Fig. 5.2. Fig. 5.2(a) shows that an object under consideration in frame

has moved to a different position in frame . The object is divided into square blocks of size

BW × BW pixels. (We have used BW = 4 in this work.) To save computation, we first

consider all blocks on the object boundary. For each such block, we perform block-matching

motion estimation for a “macroblock” of 3 × 3 blocks centered at this block, as illustrated

in Fig. 5.2(b). For simplicity, we only consider translational motion. However, the motion

vectors may point out of the frame as in the unrestricted motion vector (UMV) mode of the

ITU-T H.263 standard [48]. The required out-of-frame pixels are obtained by repeating the

pixel values at frame boundaries. The obtained motion vector is assigned to the pixels of the

treated block. We then proceed inwards from the boundary blocks until all the interior blocks

are treated. In each step, we treat one “layer” of blocks that are immediately inside the blocks

that had been treated in the previous step. For each of these blocks, we perform macroblock-

based motion estimation similar to the case of boundary blocks, but the candidate motion

vectors are highly limited: only the zero vector and the motion vectors of its already treated

neighbors are tested, and the best is taken. An exact evaluation of the complexity of the

above motion estimation method is impossible, as it depends on the shape and the size of

the object. To gain some idea, consider the situation where the moving foreground objects

occupy a rectangular region of 50% of the frame size, for example. Then, for CIF video

(352×288), there may be about 200 blocks along the perimeter of the region and about 3000

blocks inside it. Since each interior block has 9 neighbor blocks, assume that each of them

needs to check 5 motion vectors on the average. Consider maximum motion up to ±14 pixels

in each direction. Therefore, the proposed method is about 8% and 25% the complexity of

purely full-search and three-step search algorithms [48], respectively. Further simplification

88



of the motion estimation algorithm can be considered, but is left to potential future work. To

continue, the mask (i.e., pixel map) of each object in In−1 is projected forwardly onto using

the motion vectors obtained above. For convenience, let Oi,n−1 ,i = 1, 2, ..., S, denote the

ith object in In−1 and let Pi,n denote the corresponding projected footprints. The forward-

tracked mask PCDF
i,n of each object is obtained by taking the union of Pi,n and CDn ,

retaining the largest connected set of pixels, and filling up all small isolated “holes” (in the

interior of the connected set) that may show up in the pixel map due to slight difference in

the estimated motion of nearby blocks.

5.1.2 Backward Validation

Backward validation is conducted to trim each mask PCDF
i,n for better accuracy, since the

forward motion estimation need not be very accurate and since CDn may contain contribu-

tions from more than one object. For this, backward motion estimation from In to In−1 is

performed for the pixels in PCDF
i,n that are not in Pi,n . The method is similar to the forward

motion estimation described above. Only those pixels whose backward motion-compensated

projections lie inside or touch Oi,n−1 are retained. As in forward tracking, if any small isolated

holes show up in the trimmed PCDF
i,n, they are filled up. The resulting set of validated pix-

els is denoted PCDB
i,n and referred to as the coarse mask. In typical videophone scenes, the

pixels needing backward validation are relatively few. Hence the required backward motion

estimation does not add much computation.

5.2 Mask Refinement

Due to the nature of our change detection and motion estimation methods, the coarse mask

PCDB
i,n may contain background pixels beyond the actual object boundary. The mask re-

89



finement function seeks to obtain a better localization of the object. Since object boundaries

are often characterized by high gradients in pixel values, our mask refinement procedure does

edge-based processing. For natural video, typical edge detectors (such as the Canny detec-

tor that we use [5]) often do not obtain closed or connected contours at object boundaries.

Therefore, in addition to finding the correct edges that mark object boundaries, a way to

connect the “broken” boundary edges must be devised.

We assume that an object is located completely within the coarse mask. In many cases,

a coarse mask may enclose a half-open area. A common example is a person’s image in a

videophone scene, which may show the person’s upper body butted to the bottom side of

the frame and result in a coarse mask that is half open on the lower side. In such a case, we

consider all pixels between the two farthest separated edge pixels on the frame boundary on

the open side of the mask as edge pixels and include them in the mask, similar to [27].

Fig. 5.3 shows a flowchart of our mask refinement procedure. It includes four function

blocks. The “mask rounding” block rounds out the coarse mask to form a solid pixel map.

The result enables us to tell the outer side from the inner side of the pixel map. It also

enables us to define the outermost edge pixels in subsequent processing. The “footprint

tightening” block trims away some possibly existing overgrowth on the outer side of the

rounded mask. The “boundary sharpening” block further shrinks the mask so as to locate

the object boundary at existing edges where suitable and to fill in the gaps that may be

present between these edges. And lastly, the “mask tuning” block puts together the output

of the boundary sharpening block and fine-tunes it to yield the final refined mask.

We will illustrate the procedure using the arbitrary coarse mask example shown in Figure

4. This mask is highly non-convex on the outer side to signify that a distinguishing feature

of the proposed method is the ability to handle highly non-convex object shapes well. In

90



Mask

Rounding

Boundary

Sharpening

Footprint

Tightening

Mask

Tuning

B

ni
PCD

,
ni

O
,

r
FG

t
FG

s
FG

Fig. 5.3: Mask refinement procedure.

addition, the mask is grossly hollow, which is a non-ideal situation that is not expected to

happen often (except for the first frame of a video sequence where the mask refinement must

be based on the change detection output) but can be dealt with by the proposed procedure.

5.2.1 Mask Rounding

To start, the “mask rounding” function does orthogonal scans. Specifically, a horizontal scan

is performed over each row in the coarse mask to fill in the space between the leftmost and

the rightmost pixels. Corresponding vertical scans are performed to obtain another result.

The union of the two results is taken. The above closes up the interior of the mask, but

the obtained union map may be larger than the actual object. (Fig. 5.5(a) shows the result

corresponding to Fig. 5.4(a).) To cut away the overgrowth, we erode the union map from

the outer side inwards, so that every outer pixel that is neither in the coarse mask nor an

eight-connected neighbor of it is removed. (Fig. 5.5(b) shows the corresponding result for the

illustrative example.) This will also stop all one- and two-pixel “cracks” on the outer side

of the coarse mask, but will in general cause the coarse mask to grow by one pixel around.

We thus further examine the outermost “slice” of pixels and remove all that are not in the

original coarse mask. The result, denoted MRi,n, is a solid area enclosed by the coarse mask,

with one- and two-pixel cracks filled up. The complexity of this work is roughly on the order

of the size of MRi,n, for there may be up to several index computations, memory accesses,

and comparisons performed on each pixel.

91



(a) (b)

Fig. 5.4: An arbitary example for illustration of the mask refinement method. (a) The coarse

mask (gray pixels). (b) The coarse mask with the edge pixels therein marked in black.

(a) (b)

Fig. 5.5: Illustration of the mask rounding procedure. (a) The mask after orthogonal scans

and taking the union. (b) The eroded mask (FGr).

92



(a) (b)

(c) (d)

Fig. 5.6: Illustration of the footprint procedure. (a) FGr with the edge pixels therein marked

in black. (b) Row map. (c) Column map. (d) The footprint-tighten mask (FGt), with edge

pixels therein marked in black.

5.2.2 Footprint Tightening

We assume that most edge pixels close to the perimeter of MRi,n define the object bound-

ary. We now tighten the footprint of MRi,n somewhat to make its boundary closer to the

outermost edge pixels in it. For this, we first examine each connected horizontal and vertical

line segment in MRi,n. For each horizontal line segment, if the outermost edge pixels are

close to the ends of the segment (say within several pixels of an end and sufficiently distant

from the segment’s center), then the space between them is filled. Call the result a row map.

A similar operation is carried out vertically to result in a column map. For example, let the

edge pixels in the MRi,n of Fig. 5.5(b) be located as shown in black in Fig. 5.6(a). Then the

row and the column maps are as shown in Fig. 5.6(b) and (c), respectively.

Next, we trim the MRi,n from the outer side inwards. Any outer pixel that is not an

93



eight-connected neighbor of the row map or the column map is removed. We name the result

FTi,n. For convex parts of the object, the outer boundary of FTi,n is at most two pixels away

from an edge pixel horizontally and vertically. Fig. 5.6(d) illustrates the result obtained for

the arbitrary example. The complexity of footprint tightening is also roughly on the order of

the size of MRi,n, or equivalently, roughly on the order of the size of FTi,n.

5.2.3 Boundary Sharpening

Based on FTi,n, we now define the object boundary more definitely. This block contains

two steps: the first, termed overgrowth pruning, locates the object boundary at existing

edges where suitable, and the second, termed edge filling, interpolates between the assumed

boundary edges where gaps exist.

In overgrowth pruning, we go over the boundary pixels in FTi,n. For each pixel, if an

edge pixel exists within a distance of B pixels in the FTi,n, then we prune the pixels from

the boundary pixel inwards, stopping at the edge pixel. Otherwise, no action is taken.

This is carried out in the horizontal and the vertical directions separately. From previous

discussion on footprint tightening, a suitable value for B may be 3. Continuing on the

illustrative example, Figs. 5.7(a) and (b) show the results after this step. The pixels marked

“X” are those boundary pixels at which no pruning action is taken. They indicate where

edge interpolation needs to be carried out.

The above processing invites a question, namely, it seems that we have kept some pixels

outside the edge pixels in footprint tightening, only to be pruned in this step. The answer

is that, by keeping these pixels in footprint tightening, we also maintain some additional

latitude in placement of the interpolated edges in gaps.

Now in edge filling, we conduct edge interpolation by examining the boundary pixels

94



(a)

(b)

101112131415164 5 6 7 8 91 2 3

18
17
16
15
14
13

11
10
9
8
7
6
5
4
3
2

21
20
19

12

1

101112131415164 5 6 7 8 91 2 3

18
17
16
15
14
13

11
10
9
8
7
6
5
4
3
2

21
20
19

12

1

(c) (d)

(e) (f)

Fig. 5.7: Illustration of the boundary sharpening procedure. (a) Mask after overgrowing

pruning in the horizontal direction. (b) Mask after overgrowing pruning in the vertical

direction.. (c) A section of the horizontally prunced mask. (d) The same section after edge

filling in the horizontal direction. (e) Convered result of overgrowth prunching and edge

filling in the horizontal direction. (f) Converged result of overgrowth purning and edge in

the vertical direction.

95



where the pruning action has been skipped in the first step. Again, the processing in the

horizontal and the vertical directions are performed separately. We describe the processing

in the horizontal direction below. The processing in the vertical direction is similar.

For illustration, Fig. 5.7(c) shows a zoomed-in plot of a section of the object in Fig. 5.7(a)

as indicated there in dashed lines. Call the pixels marked “X” potential edge pixels. Consider

each of them in turn in raster-scan order. Let Cx denote the pixel that is being examined

currently. We check if an edge or a potential edge pixel exists within a horizontal distance

of B pixels in the line segment immediately above. If so, then the distance with the closest

one is noted, where the distance is measured in orthogonal steps that one pixel has to take

to reach the other pixel. Let Cu denote this nearest edge or potential edge pixel above. In

the same way, the nearest edge or potential edge pixel below, say Cd, is found. Then the

mean column position between Cu and Cd is obtained. The potential edge pixel Cx is moved

to that column position, adding a further 0.5 steps if that column position happens to be

a fractional one. Several exceptional cases are as follows. First, if a Cu or a Cd as defined

above cannot be found, then we take its column position to be the same as Cx. Second, if

the new pixel position for Cx is outside , then Cx is not moved.

For example, consider the potential edge pixel at (H,V) = (10,17) in Figure 7(c), where

H denotes the horizontal coordinate and V the vertical coordinate of the pixel. Let B = 3.

The nearest edge or potential edge pixel above, within B pixels horizontally, is at (11,18)

with distance 2. The nearest edge or potential edge pixel below, within B pixels horizontally,

is at (10,16) with distance 1. Thus the potential edge pixel is moved to (11,17). This new

position for the potential edge pixel is used in subsequent processing. For example, for the

potential edge pixel at (10,16), Cu and Cd are located at (11,17) and (11,15), respectively. It

is moved to (11,16), therefore. The overall result is as shown in Fig. 5.7(d).

96



One can iterate over the two steps of overgrowth pruning and edge filling several times to

stabilize the masks fully. But experience shows that one pass usually suffices; more iterations

affect the masks only very slightly. Some real video examples will be given later. For the

illustrative example, a second iteration in the horizontal direction yields no changes on the

mask at all. A second iteration in the vertical direction merely removes, in overgrowth

pruning, the remaining gray pixels in the third column on the right-hand side of the mask in

Fig. 5.7(b) that have survived the first iteration. The resulting masks are shown in Fig. 5.7(e)

and (f). The output of the boundary sharpening function, termed BSi,n , consists of the two

masks resulting from the horizontal and the vertical processing.

The complexity of the boundary sharpening function, apparently, is on the order of the

length of the perimeter of FTi,n (or BSi,n), for there may be up to several index computa-

tions, memory accesses, comparisons, and simple arithmetic operations conducted for each

boundary pixel.

5.2.4 Mask Tuning

We now obtain the final refined mask from the two directional masks yielded by boundary

sharpening. In this, we first take the intersection of the two masks in BSi,n. For the il-

lustrative example, the intersection of Fig. 5.7(e) and (f) is as shown in Fig. 5.8(a). We

then fine-tune the boundary slightly to smooth out some rough turnings. This is achieved

by examining the layer of pixels just outside the intersection map. For each pixel, if a large

number (say 5 or more) of its eight-connected neighbors are in the intersection map, then we

add this pixel to the mask. The resulting mask defines the extracted object Oi,n. Fig. 5.8(b)

shows the result for the illustrative example. The complexity of mask tuning is on the order

of the size of BSi,n (or Oi,n).

97



(c) (d)

Fig. 5.8: Illustruction of the mask tuning procedure. (a) Intersection of the two directional

masks in FGs. (b) Oi,n.

5.2.5 Summary and Comparison with Other Edge-Based Methods

In summary, the above mask refinement procedure makes several passes over the mask area

and several passes over its boundary. Each pass may involve up to several index computations,

memory accesses, comparisons, and/or simple arithmetic operations for each traversed pixel.

The precise amount of computation depends on the detailed organization of the program and

is difficult to characterize exactly. We shall provide some information on the computation

time used by our (unoptimized) program on several common test sequences in the next

section.

For comparison, consider two other groups of edge-based methods for mask refinement

(in our terms). One of them takes the union (in some sense) of orthogonal scans [37, 40], and

the other the intersection [2, 27].

The first group of methods, by their way of doing orthogonal scans, will fill up the outer

indents (i.e., non-convex regions) in a way resembling what our mask rounding does initially

(see Fig. 5.5(a)). Then a shortest-path algorithm is used to find and connect the boundary

edges in the resulting mask, where the most popular shortest-path algorithm is the Dijkstra

algorithm [13]. Because Dijkstra algorithm’s complexity is typically O(N2) where N is the

98



size of the search area [49, 53] the search over large indents for boundary edges can be very

computation intensive. In contrast, the complexity of our algorithm, as analyzed above, is

O(N).

The second group of methods have complexity O(N) and are computationally simpler than

our algorithm. By taking the intersection of the resulting masks of orthogonal scans, they will

fill up the outer indents of a mask to a lesser degree than the first group of methods. This is

illustrated in Fig. 5.9, where Fig. 5.9(a) and (b) show the results of orthogonal scans that fill

in the space between the outermost edge pixels in the coarse mask horizontally and vertically,

respectively, and Fig. 5.9(c) shows their intersection. The thin white stripes protruding into

the intersection map as a result of broken edges around the mask boundary can be filled up

with basic morphological operations such as closing. But the overgrowth outside the boundary

edges where the object mask is non-convex cannot be handled satisfactorily with these basic

operations. Indeed, some examples in [27] (Fig. 5.3(d)) and [2] (Fig. 5.3(d)) show that the

segmented object masks leave the indents filled, yielding an inaccurate segmentation where

the object contour is non-convex. It is very common for real-life objects to have non-convex

contours. The proposed algorithm can handle this situation more satisfactorily.

5.3 Experimental Results

We present some experimental results on several common CIF test sequences to illustrate the

working and the performance of the proposed video segmentation algorithm. We first give a

walk-through of some key algorithm steps. Then we present some segmentation results. And

lastly, we provide some data regarding the algorithm speed.

99



(a) (b) (c)

Fig. 5.9: Illustration that more than basic morphological operations are needed on intersec-

tion map of edge-based orthogonal scan to obtain accurate object mask. (a),(b) Results of

horizontal and vertical scan, respectively. (c) The intersection map.

5.3.1 Illustration of Algorithm Steps

Consider segmenting frame 74 of the Mother and Daughter sequence. Fig. 5.10 illustrates

the working of motion-related analysis. Fig. 5.10(a) and (b) show the original frames 73

and 74. Fig. 5.10(c) shows the foreground object O1,73 as already segmented from frame 73.

Fig. 5.10(d) shows the change detection result CD74 obtained from analyzing frames 74 and

71 (i.e., we have let d = 3). We employ the three-step motion estimation algorithm for the

boundary blocks. Because the sequence is of the videophone type, the motion search range is

±7 pixels. Fig. 5.10(e) shows the union of P1,74 and CD74 , an intermediate result in forward

tracking. And Fig. 5.10(f) shows the coarse mask PCDB
1,74 after backward validation.

Fig. 5.11 illustrates the working of the mask refinement procedure. Fig. 5.11(a) shows

an intermediate result of mask rounding, namely, the union mask of the two orthogonal

scan results. The final result of mask rounding, i.e., MR1,74, after erosion of invalid outer

pixels is shown in Fig. 5.11(b). Fig. 5.11(c) and (d) show the row and the column maps,

respectively, obtained in the first step of footprint tightening. Note the horizontal white

stripes that protrude into the mother’s and the daughter’s head areas in Fig. 5.11(c), and

100



(a) (b)

(c) (d)

(e) (f)

Fig. 5.10: Illustration of the mother-related analysis in the proposed algorithm using frame

74 of the Mother and Daughter sequence as example. (a),(b) Orginal frame 73 and 74,

respectively. (c) Foreground object O1,73 segmented from frame 73. (d) Change detection

result CD74. (e) Union of P1,74 and CD74. (f) Coarse mask PCDB
1,74.

101



Table 5.1: Number of Pixels Deleted in Each Iteration of Boundary Sharpening for the First

Frame

Iteration No. 1 2 3

Step Pruning Filling Pruning Filling Pruning Filling

Akiyo 1724 501 4 3 3 1

Claire 1037 827 10 3 0 0

Mother-Daughter 1637 448 7 3 1 0

Salesman 1430 257 8 5 2 0

Foreman 1613 701 10 7 2 0

the vertical white stripes that protrude into the mother’s and the daughter’s hair areas in

Fig. 5.11(d). They indicate the existence of gaps in the boundary edges found using the

Canny edge detector. Fig. 5.11(e) shows the final footprint-tightened mask, FT1,74. In this

case, it is only slightly different from the mask rounding result. Fig. 5.11(f) and (g) show

the results of boundary sharpening in the horizontal and the vertical directions, respectively,

each for one iteration. Note the difference between the front contours for the mother’s face.

There are other small but noticeable differences between the object boundaries in Fig. 5.11(f)

and (g), too. Fig. 5.11(h) shows the intersection map of Fig. 5.11(f) and (g).

We mentioned that the steps in boundary sharpening can be iterated until convergence.

Tab. 5.1 gives the convergence behavior in processing the first frame of some common CIF

test sequences. The convergence behavior for later frames is substantially similar, only that

a lower portion of pixels are involved. We thus see that, as mentioned, the work is largely

finished in the first iteration. Hence one iteration should suffice.

102



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5.11: Illustration of the mask refinement procedure in the proposed algorithm using frame

74 of the Mother and Daughter sequence as example. (a) Union mask of two orthogonal

scan results. (b) Result of mask rounding, FGr. (c),(d) Row and column maps obtained

in footprint tightening, respectively. (e) Result of footprint tightening, FGt. (f),(g) After

one iteration of boundary sharpening in horizontal and vertical directions, respectively. (h)

Intersection map of FGs.
103



5.3.2 Algorithm Performance

Fig. 5.12- 5.15 present some segmentation results for several common CIF test sequences of

different levels of segmentation difficulty. Fig. 5.12 shows the results for the Akiyo sequence,

one of the easier due in part to the smooth shape of the moving object (the person). Fig. 5.13

shows some results for the Mother and Daughter sequence, which is somewhat more difficult

than Akiyo due to the motion content and the non-convex shape of the moving foreground

(the two persons). In both cases, we see that the object boundaries are subjectively quite

accurately identified. Fig. 5.14 shows some results for the Salesman sequence. This sequence

is a challenge to video segmentation algorithms due in part to the high background noise

and the moving shadow in the front. We see that the segmentation result, though still not

completely ideal, delineates the moving person rather accurately. Finally, Fig. 5.15 shows

some results for the Foreman sequence. With a violently moving background, this sequence

is probably the most challenging of the four. In addition, the low contrast between the

foreman’s helmet and the building behind makes their separation difficult based on change

detection. In fact, to the authors’ knowledge, no published automatic video segmentation

algorithms to date seem to demonstrate good segmentation performance for this sequence.

Towards a better segmentation, one possibility is to incorporate region-based analysis (such

as the technique presented in [22] or watershed-type analysis). Another possibility is to

invoke background (or global) motion estimation. These and other possible remedies are left

to potential future work.

Besides subjective evaluation, objective evaluation of the segmentation performance is

often also of interest. A reference segmentation mask for the Akiyo sequence is available.

We thus also evaluate the segmentation accuracy using the measure proposed in [60], which

calculates the fractional agreement between the segmented object mask and the reference

104



Fig. 5.12: Example segmentation results of the Akiyo sequence. Left, top to bottom: Orginal

frame, 30, 70, and 117. Right: segmentation results.

105



Fig. 5.13: Example segmentation results of the Mother and Daughter sequence. Left, top to

bottom: Orginal frame, 50, 95, and 120. Right: segmentation results.

106



Fig. 5.14: Example segmentation results of the Salesman sequence. Left, top to bottom:

Orginal frame, 10, 20, and 30. Right: segmentation results.

107



Fig. 5.15: Example segmentation results of the Foreman sequence. Left, top to bottom:

Orginal frame, 4, 24, and 34. Right: segmentation results.

108



0 50 100 150
0.9925

0.993

0.9935

0.994

0.9945

0.995

Frame Number

F
ra

ct
io

na
l A

gr
ee

m
en

t

Fig. 5.16: Fractional agreemment between the segmentated foreground object of the Akiyo

sequence and the reference mask.

mask for each frame. Fig. 5.16 shows the result. We see that the fractional agreement

is over 0.993 nearly all the time. Further, Fig. 5.17 shows the temporal coherency of the

segmentation measured by fractional agreement between the object masks obtained for two

adjacent frames. We see that the coherency is close to that of the reference mask, sometimes

higher.

5.3.3 Algorithm Speed

We did some high-level analysis of the algorithm complexity in the last section. There we

noted that the precise amount of computation depended on detailed organization of the

program and the video material. As a result, it is difficult to characterize exactly. We

therefore present some computing time data for several common CIF test sequences. Tab. 5.2

lists the data from using a personal computer with 1.8-GHz Pentium IV CPU. The program is

109



0 50 100 150
0.998

0.9985

0.999

0.9995

1

Frame Number

T
em

po
ra

l C
oh

er
en

cy

Reference mask    
Proposed algorithm

Fig. 5.17: Fractional agreemment between the segmentated foreground object of the Akiyo

sequence in adjacent frame.

not optimized. With suitable optimization of the program, the speed should be significantly

faster. Thus the algorithm is suitable for real-time desktop or portable multimedia and

videoconferencing applications.

5.4 Discussion

We presented an algorithm for automatic segmentation of moving objects in natural video

scenes. Novel edge-based morphological processing methods were designed to facilitate accu-

rate determination of the object boundaries. The algorithm can handle grossly non-convex

object shapes, which are commonplace in typical natural video. A novel, low-complexity

motion estimation technique was also designed to aid robust object tracking. Experimental

results showed that the algorithm achieved good performance, except for videos with vio-

110



Table 5.2: Average Computing Time in ms per Frame of Major Algorithm Functions

Algorithm Change Motion Mask

Functions Detection Estimation Refinement

Akiyo 7.63 11.6 10.7

Claire 7.61 11.9 11.3

Mother-Daughter 7.60 13.7 13.2

Salesman 7.81 10.6 9.1

Foreman 7.57 19.6 11.6

lently moving background and low contrast between the moving object and the background.

Several possible ways to improve the segmentation performance for such videos were pointed

out. And they are left to potential future work. The required computing time of the pro-

posed algorithm was seen to be appropriate for real-time desktop or portable multimedia

applications.

111



Chapter 6

Support of Content-Based

Applications

This chapter describe techniques for authoring tools [6], and integrating the foreground ob-

jects and background images. Firstly, shrinkage and enlargement are two of the basic tech-

niques. The complexity of the techniques are analyzed. Then we illustrate a technique fits

video synthesis and superimposition to the video sequence.

In using the segmentation results in scene composition, we frequently need to enlarge or

shrink the objects. We consider how these can be done efficiently with good performance, in

a manner that is also suitable for spatial-scalable coding.

6.1 Methods for Object Enlargement and Shrinkage

Image interpolation is employed to add the resolution of an image by estimating the pixel

intensities on an upsampled position. The most commonly used image interpolation methods,

such as nearest neighbor interpolation, bicubic interpolation and bilinear interpolation, can

112



cause blocky interpolated images with jaggy edges. Several schemes for edge preserving in-

terpolation have been presented. Jensen and Anastassion [24], estimate the local areas’ edge

positions and directions by a truncated Fourier expansion series when the shape of small

patchs of an image which have edges across them. The nonlinear operations can reconstruct

high frequency components. Ting [52] presents an edge orientation-directed interpolation.

The proposed edge preserving interpolation method consists of two stages. The first stage

is the fuzzy logic system that realizes edge contrast preservation by adaptively synthesizing

the interpolated pixel based on the local edge gradients. The second stage detects the sig-

nificant edges by checking several structural elements and readjusts the interpolated edge

pixels according to the detected edge orientation. Besides, Schultz and Stevenson [?] use a

Bayesian approach to preserve edges and other discontinuties in image expansion. In addi-

tion, Ratakondo and Ahuja [45] present an iterative interpolation method, in which the image

interpolation problem is formulated as a inverse problem.

Consider scene composition using the extracted video objects, enlarge or shrink the seg-

mentation results are frequently needful tools. This is expected to require often enlargement

or shrinkage of the video objects. For convenience, we consider employing the interpolation

and decimation filters specified in MPEG-2 [20], which are [-12, 140, 140, -12]/256 for inter-

polation and [-29, 0, 88, 138, 88, 0, -29]/256 for decimation. The frequency responses of these

filters are shown in Fig. 6.1.

Several modifications, such as considering edge direction to cope with jaggy edges [24, 52],

are necessary. For simplicity, presented methods use MPEG-2 filters. MPEG-2 only consid-

ers enlargement and shrinkage by a factor of two (both horizontally and vertically), but we

consider arbitrary-factor interpolation and decimation. And second, MPEG-2 only consid-

ers interpolation and decimation for rectangular video frames, whereas we have arbitrarily

113



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Rad (Pi)

A
m

pl
itu

de

Enlarge Filter
Shrink Filter 

Fig. 6.1: Amplitude response of the MPEG-2 enlargement and shrinkage filters.

shaped video objects. Consider enlargement by arbitrary integer factors first. We consider a

simple interpolation method illustrated by example in Fig. 6.2. In essence, enlargement by an

integer-power-of-2 (say “2” ) times is accomplished by repeated application of the MPEG-2

interpolation filter n times. Enlargement by a factor that is not an integer power of 2 is

accomplished by enlarging to the nearest lower integer power of 2, followed by linear inter-

polation between two nearest pixels according to the relative pixel distances. Shrinkage by

arbitrary integer factors-operates on a similar principle and is illustrated also by an example

in Fig. 6.3. Again, shrinkage by an integer-power-of-2 times is accomplished by repeated

application of the MPEG- 2 decimation filter. Shrinkage by a factor that is not an integer

power of 2 is accomplished by shrinking to the nearest lower integer power of 2, followed

by linear interpolation between two nearest pixels according to the relative pixel distances.

A rational-factor (say, p/q where p and q are integers) enlargement or shrinkage can be

obtained, in principle, by conducting an p-times interpolation and q-times decimation.

114



Size

2

3

1

1/2

1/3 2/3

0 1

0

0

1

1

Size

2

4

1

5

0 1

1/2

1/4 3/4

0

1

1

1

0

0

1/5 2/5 3/5 4/5

1/2

(a) (b)

Fig. 6.2: Proposed enlargement algorithm, illustrated by example. (a) Enlargement by two

or three times, (b) Enlargement by two, four, or five times (Gray squares denote pixels in the

original object mask or as obtained by interpolation using the MPEG-2 filter; white squares

denote linear linear interpolated pixels. Dashed lines indicate linear interpolation between

nearest pixels.)

In either enlargement or shrinkage, when the filter memory extends beyond the object

mask (this happens when operating on pixels near the object boundary), we repeat the bound-

ary pixel values for filtering purpose, similar to the principle used in H.263 and MPEG-4 for

motion estimation. Note also that the way object enlargement and shrinkage are conducted

fits well into a context of spatial-scalable coding.

115



1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 312 4 6 8 10 12 14 16 18 20 2422 26 28 30 320

1

1/2

1/3

Size

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 312 4 6 8 10 12 14 16 18 20 2422 26 28 30 320

1

1/2

1/4

1/5

Size

(a) (b)

Fig. 6.3: Proposed Shrinkage algorithm, illustrated by example. (a) Shrinkage by two or

three times, (b) Shrinkage by two, four, or five times (Gray squares denote pixels in the

original object mask or as obtained by decimation using the MPEG-2 filter; white squares

denote linear linear interpolation pixels. Dashed lines indicate linear interpolation between

nearest pixels.)

6.2 Experimental Results and Discussions

Since we deal with arbitrarily shaped objects, the interpolation and decimation performance

at object boundaries is of particular interest. For this we discussed a way to enlarge or

shrink arbitrarily shaped video objects. In Fig. 6.4 we show some results on the similarity (in

PSNR) between the original segmented object and the resulting one that is enlarged X times

and shrunk to the original size, where “X” is between 2 and 5. As expected, the interior

pixels (inside a three-pixel-wide band at object boundary) are subject to less distortion from

enlargement and shrinkage compared to pixels near the object boundary. But overall, the

PSNR is reasonably high.

Fig. 6.5 shows two synthesized scenes (two frames each) obtained by superimposing the

moving objects segmented (and shrunk by two times) from the Claire, the Akiyo, and the

Salesman sequences onto some background and middle ground, and with an additional fore-

116



ground overlaid on them. The synthesized scenes appear natural.

Future work, considering Ting’s methods [52], will employ edge preserving interpolation

method consists for object enlargement. Moreover some applications are frequently necessary

to present an object’s motion details or layered syntheses. A motion line can describe the

motion history of foregrounds. This is particularly useful tools in fields such as athletic and

dance analyses ,or entertainment, such as Fig. 6.6(a). The result shows the superposed ball

in the Table-tannis. The result presents the history of the ball track. Additionally, if a

people want to exhibit a valued work of art, he can shoot the art in showroom and shoot

the narrator’s pre-exposition. The explained films can be composed of the two shots, such

as Fig. 6.6(b). The result presents a fusion example from extracted VO in the Mother-and-

Daughter and a statue.

117



0 50 100 150
44.4

44.6

44.8

45

45.2

45.4

45.6

45.8

Frame Number

P
S

N
R

 (
dB

)

Two  
Three
Four 
Five 

(a)

0 50 100 150
42.5

43

43.5

44

44.5

45

Frame Number

P
S

N
R

 (
dB

)

Two  
Three
Four 
Five 

(b)

Fig. 6.4: Similarity, in PSNR, between the orginal segmented video object in CIF Mother-and-

Daughter sequence and that enlarged X times and shrunk to orginal size, where X is between

2 and 5. (a) For interior of object (inside a three-pixel-wide band at object boundary). (b)

For the three-pixel-wide band at object boundary.

118



Fig. 6.5: Synthesized scenes using segmented (and shrunk by 2 times) video objects and other

contents.

(a) (b)

Fig. 6.6: Applications from superposed VOs. (a) Motion history of the ball in the Table-

tennis. (b) VO in the Mother-and-Daughter fuse a statue for exhibition.

119



Chapter 7

Conclusions and Future Work

This thesis surveyed video segmentation methods and content-based applications of natural

video sequences. Four techniques were proposed for video segmentation, one of which dealt

with region-based method, one handled multi-tiered object structure, and the other two

considered edge-linking design.

Regarding the region-based method, this study presented a method that featured designs

to help facilitate good region segmentation while limiting the computational complexity.

First, a preliminary seed-area identification and a final re-segmentation process are conducted

on each video frame to help determine homogeneous areas and conduct region tracking.

Then, a simple method of measuring homogeneity of texture in a region was devised and

segmentation attempted to locate object boundaries where the texture exhibits significant

changes. Next, a reduced-complexity motion estimation technique was used, so that dense

motion fields can be calculated at a reasonable complexity. The proposed method could

enhance segmentation performance.

In relation to multi-tiered object segmentation, this study presented an algorithm employ-

ing low-level spatio-temporal signal processing, and the segmentation was based on analysis

120



of edges, textural homogeneity of image regions, interframe pixel value changes, and apparent

motion. Experiments involving several different kinds of video, including one difficult talking-

head sequence (the Salesman) and one involving relatively fast motion (the Flower Garden)

showed that the algorithm yielded reasonably good identification of object boundaries. While

the algorithm was developed based on the assumption of a stationary background, in principle

it can also address situations involving global background motion. The objective evaluation

based on the Akiyo sequence shows that this method outperforms the region-based method,

but has high computational complexity.

In terms of edge-linking methods, this study devised new algorithms for video object

extraction. The algorithms employed edge analysis for accurately determining object bound-

aries. This work proposed a method based on the shortest path algorithm. Moreover, this

study presented a morphological filtering algorithm based on adjacent pixels. The former

method is more complicated than the latter. The error is below 0.7% in every frame, and

generally is even better. Motion estimation achieves the greatest reduction in the latter, at

3.88 times that of full search. Compared to the existed edge-linking approaches in [27, 37],

this study offered objective assessments of the performance change associated with the bound-

ary correction. A characteristic of the edge-linking approach is that it is designed for use

with still background videos, such as videoconference applications. For moving backgrounds,

more effective approach of global motion detection is necessary.

For scene composition, this study developed simple object enlargement and shrinkage

methods. When object sizes are suitable, objects overlapped with objects or images via

multi-layer superimposition to establish new scenes. Additionally, for checking motion his-

tory, object overlaps and their transparencies provide a useful means of tracking the motion

manners.

121



This thesis has shown the effectiveness of the proposed approaches to video segmentation.

However, further work is required to enhance the algorithms, and a number of issues require

further study:

1. The motion estimation algorithm influences processing speeds and enabling applica-

tions. To achieve real-time processing and handle shacked cameras, faster global motion

estimation is required. When the global motion information has been identified, the

local motion information can be further examined, along with locating foregrounds and

still backgrounds. Tough questions include aperture problem and occlusion problems.

2. The statistical model of motion is considered to improve the usability, which may be

integrated to the region-based frame work. For example, a Markov Random Fields

(MRF) [62] approach can be pursued. This approach could particularly effective for

segmenting scenes involving moving backgrounds, but must consider methods of reducig

complexity.

3. Application development video segmentation is an enabling technology. This technology

represents the basis of numerous video analysis technologies. The developed methods

yield object results, and thus provide a basis for applications. For example, video

description tools (authoring) could be developed, which consider a mosaic based on the

background, and the manner in which the foreground object moves over this background

and displays related shape changes.

122



Bibliography

[1] T. Aach, A. Kaup, and R. Mester, “Statistical model-based change detection in moving

video,” Signal Processing, vol. 31, no. 2, pp. 165–180, Mar. 1993.

[2] F. E. Alsaqre and B. Yuan, “Moving object segmentation for video surveillance and

conferencing applications,” in Int. Conf. Commun. Technol. Proc., vol. 2, Apr. 2003,

pp. 1856–1859.

[3] M. Bierling, “Displacement estimation by hierarchical blockmatching,” SPIE vol. 1001,

Visual Commun. Image Processing, 1988, pp. 387–403.

[4] G. D. Borshukov, G. Bozdagi, Y. Altunbasak, and M. Tekalp, “Motion segmentation

by multistage affine classification,” IEEE Trans. Image Processing, vol. 6, no. 11, pp.

1591–1997, Nov. 1997.

[5] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal.

Machine Intell., vol. 8, no. 6, pp. 679–698, Nov. 1986.

[6] K. Cha and S. Kim, “MPEG-4 studio: An object-based authoring system for MPEG-4

contents,” J. Multimedia Tools Applications, vol. 25, no. 1, pp. 111–131, Jan. 2005.

123



[7] Y.-J. Chang, C.-C. Chen, J.-C. Chou, and Y.-C. Chen, “Implementation of a visual

chat room for multimedia communications,” in IEEE Workshop Multimedia Signal

Processing, 1999, pp. 599–604.

[8] H.-J. Chen and Y. Shirai, “Segmentation based on accumulative observation of apparent

motion in long image sequences,” IEICE Trans. Inf. & Syst., vol. E77-D, no. 6. pp. 694–

704, June 1994.

[9] S.-Y. Chien, S.-Y. Ma, and L.-G. Chen, “Efficient moving object segmentation al-

gorithm using background registration technique,” IEEE Trans. Circuits Syst. Video

Technol., vol. 12, no. 7, pp. 577–586, July 2002.

[10] S.-Y. Chien, Y.-W. Huang, and L.-G. Chen, “Predictive watershed: a fast watershed

algorithm for video segmentation,” IEEE Trans. Circuits Syst. Video Technol., vol. 13,

no. 5, pp. 453–461, May 2003.

[11] J. G. Choi, S.-W. Lee, and S.-D. Kim, “Spatio-temporal video segmentation using a

joint similarity measure,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 2, pp.

279–286, Apr. 1997.

[12] P. Daras, I. Kompatsiaris, I. Grinias, G. Akrivas, G. Tziritas, S. Kollias and M. G.

Strintzis, “MPEG-4 authoring tool using moving object segmentation and tracking in

video shots,” EURASIP J. Applied Signal Processing, vol. 2003, no. 9, pp. 861–877,

Aug. 2003.

[13] D. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math.,

vol. 1, pp. 269–271, 1959.

124



[14] M. Flickner et al.,“Query by image and video content: The QBIC system,” in IEEE

Computer, vol. 28, no. 9, pp. 23–32, Sep. 1995.

[15] A. C. M. Fong, S. C. Hui, M. and K. H. Leung, “Content-based video sequence in-

terpretation,” IEEE Trans. Consumer Electronics, vol. 47, no. 4, pp. 873–879, Nov.

2001.

[16] H. Gao, W.-C. Sju, and C.-H. Hou, “Improved techniques for automatic image seg-

mentation,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 12, pp. 1273–1280,

Dec. 2001.

[17] D. Gatica-Perez, C. Gu, and M.-T. Sun, “Semantic video object extraction using four-

band watershed and partition lattice operators,” IEEE Trans. Circuits Syst. Video

Technol., vol. 11, no. 5, pp. 603–618, May 2001.

[18] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Addison-Wesley, 1992.

[19] H. Gu, Y, Shirai, and M. Asada, “Motion description and segmentation of multiple

moving objects in a long image sequence,” IEICE Trans. Inf. and Syst., vol. E78-D,

no. 3. pp. 277–289, Mar. 1995.

[20] B. G. Haskell, A. Puri, and A. N. Netravali, Digital video: An introduction to MPEG-2.,

Springer, 1996.

[21] Y.-H. Jan and D. W. Lin, “Extraction of video objects by combined motion and edge

analysis,” in in Proc. IEEE Int. Symp. Circuits Syst., vol. 5, May 2000, pp. 677–680.

[22] Y.-H. Jan and D. W. Lin, “Video Segmentation with extraction of overlaid objects via

multi-tier spatio-temporal analysis,” Int. J. Electical Engineering,, vol. 11, no. 3, pp.

205–218, Aug. 2004.

125



[23] Y.-H. Jan and D. W. Lin, “Automatic video segmentation with a novel edge-based

morphological filtering,” in Proc. IEEE Int. Symp. Consumer Electronics., Reading,

UK, 2004, pp. 340–344, Sep.

[24] K. Jensen and D. Anastassion, “Subpixel edge localization and interpolation of still

images,” IEEE Trans. Image Processing, vol. 4, pp. 285–295, Mar. 1995.

[25] M. Kim and J. Kim, “Moving video object segmentation using statistical hypothesis

testing,” Electron. Lett., vol. 36, no. 2, pp. 128–129, Jan. 2000.

[26] M. Kim, J. G. Choi, D. Kim, H. Lee, M. H. Lee, C. Ahn, and Y. S. Ho, “A VOP

Generation tool: Automatic segmentation of moving objects in image sequences based

on spatio-temporal information,” IEEE Trans. Circuits Syst. Video Technol., vol. 9,

no. 8, pp. 1216–1226, Dec. 1999.

[27] C. Kim and J. N. Hwang, “Fast and automatic video object segmentation and tracking

for content-based applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, no.

2, pp. 122–129, Feb. 2002.

[28] I. Kompatsiaris and M. G. Strintzis, “Spatiotemporal segmentation and tracking of

objects for visualization of videoconference image seqeences,” IEEE Trans. Circuits

Syst. Video Technol., vol. 10, no. 8, pp. 1388–1402, Dec. 2000.

[29] K. W. Lee and J. Kim, “Moving object segmentation based on statistical motion

model,” Electron. Lett., vol. 35, no. 20, pp. 1719–1720, April 1999.

[30] M. E. Lukacs and D. G. Boyer, “A universal broadband multipoint teleconferencing

service for the 21st century,” IEEE Commun. Mag., vol. 33, no. 11, pp. 36–43, Nov

1995.

126



[31] H. Luo and A. Eleftheriadis, “Rubberband: an improved graph search algorithm for

interactive object segmentation,” in Proc. IEEE Int. Conf. Image Processing, vol. 1,

2002, pp. 101–104.

[32] H. Luo, A. Eleftheriadis, “Model-based segmentation and tracking of head-and-shoulder

video objects for real time multimedia services,” IEEE Trans. Circuits Syst. Video

Technol., vol. 5, no. 3, pp. 379–389, Sep. 2003.

[33] A.-R. Mansouri and J. Konrad, “Multiple motion segmentation with level sets,” IEEE

Trans. Image Processing, vol. 12, no. 2, pp. 201–220, Feb. 2003.

[34] F. Marques and C. Molina, “An object tracking technique for content-based function-

alities,” in SPIE vol. 3024, Visual Commun. Image Processing, 1997, pp. 190–198.

[35] T. Meier and K. N. Ngan, “Automatic segmentation of moving objects for video object

plane generation,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, pp. 525–538, Sep.

1998.

[36] T. Meier and K. N. Ngan, “Segmentation and tracking of moving objects for content-

based video coding,” IEE Proc.-Vis. Image Signal Process., vol. 146, no. 3, pp. 144–150,

June 1999.

[37] T. Meier and K. N. Ngan, “Video segmentation for content-based coding,” IEEE Trans.

Circuits Syst. Video Technol., vol. 9, no. 8, pp. 1190–1203, Dec. 1999.

[38] A. Neri, S. Colonnese, G. Russo, and P. Talone. “Automatic moving object and back-

ground separation,” Signal Processing, vol. 66, no. 2, pp. 219–232, Apr. 1998.

127



[39] W. Niblack et al., “The QBIC project: Querying images by content using color, texture

and shape,” in IS&T/SPIE, Storage and Retrieval for Image and Video Databases, Feb.

1993, pp. 173–187.

[40] E. P. Ong, B. J. Tye, W. S. Lin, and M. Etoh, “An efficient video object segmentation

scheme,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Processing, vol. 4, 2002, pp.

3361–3364.

[41] N. Otsu, “A threshold selection method from gray-level histogram,” IEEE Trans. Sys-

tem Man Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[42] I. Patras, E. A. Hendriks, and R. L. Lagendijk, “Video segmentation by MAP labeling

of watershed segments,” IEEE Trans. Pattern Anal. Machine Intell., vol. 23, no. 3, pp.

326–332, Mar. 2001.

[43] A. P. Pentland et al., “Photobook: tools for content-based manipulation of image

database,” in IS&T/SPIE, Storage and Retrieval for Image and Video Database II,

Feb. 1994, pp. 34–47.

[44] J. Pons, J. Prades-Nebot, A. Albiol, and J. Molina, “Fast motion detection in com-

pressed domain for video surveillance,” Electron. Lett., vol. 38, no. 9, pp. 409–411,

April 2002.

[45] K. Ratakondo and N. Ahuja, “POCS based adaptive image magnification,” in Proc.

IEEE Int. Conf. Image Processing, 1998, pp. 203–207.

[46] P. Salembier, P. Brigger, J. R. Casas, and M. Padas, “Morphological operators for image

and video compression.” IEEE Trans. Image Processing, vol. 5, no. 6, pp. 881–898, June

1996.

128



[47] P. Salembier, F. Marques, M. Pardas, R. Morros, I. Corset, S. Jeannin, L. Bouchard,

F. Meywe, and B. Marcotegui, “Segmentation-based video coding system allowing the

manipulation of objects.” IEEE Trans. Circuits Sysl. Video Technol., vol. 7, no. 1, pp.

60–74, Feb. 1997.

[48] Y. Q. Shi and H. Sun, Image and Video Compression for Multimedia Engineering. Boca

Raton, Florida: CRC Press, 2000.

[49] P. M. Spira and A. Pan, “On finding and updating spanning trees and shortest pathes,”

SIAM J. Computing, vol. 4, no. 3, pp. 375–380, 1975.

[50] S. Sun, D. R. Haynor, and Y. Kin, “Semiautomatic video object segmentation using

VSnakes,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 1, pp. 75–82, Jan.

2003.

[51] A. M. Tekalp, Digital Video Processing. Upper Saddle River, New Jersey: Prentice

Hall, 1955.

[52] Hou-Chun Ting, “Edge orientation-directed interpolation of digital images and its ap-

plications,” Ph.D. dissertation, Dept. of Electronics Engineering, National Chiao Tung

University, 1997.

[53] M. Thorup, “Undirected single-source shortest paths with positive integer weights in

linear time,” J. ACM, vol. 46, no. 3, pp. 362–394. May 1999.

[54] Y. Tsaig and A. Averbuch, “Automatic segmentation of moving objects in video se-

quences: a region labeling approach,” IEEE Trans. Circuits Syst. Video Technol., vol.

12, no. 7, pp. 597–612, July 2002.

129



[55] E. Tuncel and L. Onural, “Utilization of the recursive shortest spanning tree algorithm

for video-object segmentation by 2-D affine motion modeling,” IEEE Trans. Circuits

Syst. Video Technol., vol. 10. no. 5, pp. 776–781, Aug. 2000.

[56] J. Y. A. Wang and E. H. Adelson, “Spatio-temporal segmentation of video data.” in

SPIE vol. 2182, Image and Video Procecding II, Feb. 1994, pp. 625–638.

[57] J. Y. A. Wang and E. H. Adelson, “Representing moving images with layers,” IEEE

Trans. Image Processing, vol. 3. no. 5, pp. 625–638. Sep. 1994.

[58] D. Wang, “Unsupervised video segmentation based on watershed and temporal track-

ing,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, no. 5, pp. 539–546, Sep. 1998.

[59] S. Weik, J. Wingbermuhle, and W. Niem, “Automatic creation of flexible antropomor-

phic models for 3D videoconferencing,” in Proc. Computer Graphics, 1998, pp. 520–527,

[60] M. Wollborn and R. Mech, “Refined procedure for objective evaluation of VOP gener-

ation algorithms,” Doc. ISO/IEC JTC1/SC29/WG11 MPEG98/3448, Mar. 1998.

[61] C. S. Won, “A block-based MAP segmentation for image compresssion.” IEEE Trans.

Circuits Syst. Video Technol., vol. 8. no. 5, pp. 592–601, Sept. 1998.

[62] W. Zeng and W. Gao, “Semantic object segmentation by a spatio-temporal MRF

model,” in Proc. IEEE Int. Conf. Pattern Recognition, vol. 4, pp. 775–778, pp. 1021–

1025, Aug. 2004.

130


