雙頻濾波器之設計~利用貫孔牆類波導結構

研究生: 吴宗霖

指導教授: 黃瑞彬 博士

國立交通大學電信工程學系碩士班

本論文提出一個具轉角設計的雙頻濾波器。由於這個轉角的設計,發現在不影響濾波器的 雙頻通帶響應下,其高頻諧波響應有將-30dB的抑制,且我們可調整共振腔的長度來控制第二個 頻道的頻率。同時,可藉由改變共振腔來得到想要的頻寬。為了證明所提出濾波器有以上的 特性,我們實作四個有不同共振腔長度的濾波器,由量測的結果說明,這種有轉角的雙頻濾波 器,其高頻諧波平均可以抑制在-25dB以下。

A dual-bandpass filter using via-hole-wall waveguide

Student:

Zong-Lin Wu

Advisor: Dr. Ruey-Bing Hwang

Institute of Communication Engineering National Chiao Tung University July 2006

In this thesis, we proposed a planar dual-bandpass filter with bend design. With this bend structure, the higher harmonics response of the proposed dual-bandpass filter can have a suppression of nearly -30dB; meanwhile, the first and the second pass-band specifications remain unchanged. Besides, we found that the second pass-band frequency is tunable by adjusting the length of each cavity. In order to demonstrate the proposed filter performance, four filters with different cavity length were implemented on a low-loss dielectric substrate. In addition to changing the length of each cavity, we changed the aperture length to observe the variation of pass-band bandwidth. From the simulated and measured results, the proposed filter obtains more than -25 dB suppression in average. The measurement shows a very good agreement with simulation.

Acknowledgement

I would like to express my deepest gratitude to my advisor, Dr Ruey-Bing Hwang for his patient instruction, constructive guidance and invaluable suggestions. At the same time, I am also thankful to my friends in the same laboratory because they always provide me instance support to deal with the problems that I meet. For their help, I must thank them in sincerity.

Contents

Chinese Abstract	
English Abstract	
Acknowledgements	
Contents	
List of Figures	
Chapter I Introduction	1
Chapter II Structure configuration and fabrication	
process	3
Chapter III The numerical and experimental results	6
Chapter IV Conclusion	36
Bibliography	38

List of Figures

Figure 1. Structure configuration of via-holes array waveguide	3
Figure 2. Structure configuration for the dual-bandpass in this thesis	5
Figure 3. Configuration of the filter which the input/output substrate integrated	
waveguide is directly connected with the cavities	6
Figure 4. Configuration of the filter which the input/output substrate integrated	
waveguide is turned 90 degree and connected with the cavities	8
Figure 5. Simulated results by comparing the two filters with different the	
input/output design structures	9
Figure 6. (a) Simulated electric field strength (E_z) distribution over each cavity	
at 9.1GHz and 10.2GH	10
Figure 6. (b) Simulated electric field strength (E _z) distribution over each cavity at 9.1GHz and 10.2GHz Figure 6. (c) Simulated electric field strength (E _z) distribution over each cavity at 12.4GHz and 14.7GHz	11
Eigure 6 (d) Simulated electric field strength (E) distribution over each cavity	12
at 12 4GHz and 14 7GHz	12
	15
Figure 7. The photograph of the implemented dual-bandpass filter	15
Figure 8. Simulated and measured results of the dual-bandpass filter	18
Figure 9. Measured results of the dual-bandpass SIW filter	19
Figure 10. Simulated and measured results of the second dual-bandpass filter	21
Figure 11. Measured results of the dual-bandpass filter	22
Figure 12. Simulated and measured results of the second dual-bandpass filter	25
Figure 13. Measured results of the dual-bandpass filter	26
Figure 14. Simulated and measured results of the second dual-bandpass filter	29

Figure 15. Measured results of the dual-bandpass filter	30
Figure 16. Simulated and measured results of the four dual-bandpass SIW	
filters with controllable the second pass-band	33
Figure 17. Simulated results of the five dual-bandpasds SIW filters with	
controllable the second pass-band	34
Figure 18. Measured results of the dual-bandpass SIW filters with varied width	
of aperture (w _a)	36

