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Abstract

An unsupervised joint prosody labeling and modeling method (UJPLM) for
Mandarin speech is proposed, a;new scheme intended to construct statistical prosodic
models and to label prosodic tags consistently for Mandarin speech. Two types of
prosodic tags are determined by four prosodic imodels designed to illustrate the
hierarchy of Mandarin prosody: th¢ break of a-syllable juncture to demarcate prosodic
constituents and the prosodic state of a syllable to represent any prosodic domain’s
pitch level variation resulting from its upper-layered prosodic constituents’ influences.
The performance of the proposed method was evaluated using an unlabeled
read-speech corpus articulated by an experienced female announcer. Texts of the
corpus were selected from The Sinica Treebank Corpus. Experimental results showed
that the estimated parameters of the four prosodic models were able to explore and
describe the structures and patterns of Mandarin prosody. Besides, certain
corresponding relationships between the break indices labeled and the associated
words were found, and manifested the connections between prosodic and linguistic
parameters, a finding further verifying the capability of the method presented. A
quantitative comparison in labeling results between the proposed method and human
labelers indicated that the former was more consistent and discriminative than the
latter in prosodic feature distributions, a merit of the method developed here on the

applications of prosody modeling. In virtue of the success of UJPLM, the advanced

il



UJPLM (A-UJPLM) method was designed based on UJPLM to jointly label seven
prosodic tags and model syllable pitch contour, duration and energy level.
Experimental results showed that A-UJPLM performed quite well. The break labeling
result showed that A-UJPLM inserted more minor breaks than UJPLM to result in a
more consistent labeling of minor breaks to the human labeling. Lastly, an application
of A-UJPLM to the prosody generation for Mandarin TTS is proposed. Experimental
results showed that the proposed method performed well. Most predicted values of
syllable pitch mean, duration and energy level matched well to their original

counterparts. This also reconfirmed the effectiveness of the A-UJPLM method.
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Chapter 1 Introduction

1.1 Background

The term prosody refers to certain inherent suprasegmental properties that carry
melodic, timing, and pragmatic information of continuous speech, encompassing
accentuation, intonation, rhythm, speaking rate, prominences, pauses, and attitudes or
emotions intended to express. Prosodic features are physically encoded in the
variations in pitch contour, energy level, duration, and silence of spoken utterances.
Prosodic studies have indicated that these prosodic features are not produced
arbitrarily, but rather realized after a hierarchically organized structure which
demarcates speech flows into domains of varying lengths by boundary or break cues
such as pre- and post-boundary lengthening, pitch and energy change, pauses, etc.
Therefore, prosodic structure in English, for,example, functions to set up syntagmatic
contrasts to mark a prosodic word, an_intermediate phrase, or an intonational
boundary [1-3]. On the other hand, the prosodic structure of Mandarin Chinese also
parses continuous speech into different-prosodic constituents by breaks that reflect
different levels of Chinese linguistic*processing:. phonetic, lexical, syntactic, and
pragmatic. As a result, successive words with related prosodic feature variations are
aggregated to form prosodic phrases, and contiguous prosodic phrases are, in turn,

integrated to form prosodic phrases of a higher level.

Many literatures on Chinese prosody have shown that the prosody of Mandarin
speech can be organized into hierarchical structures [4-7]. Figure 1.1 displays a
commonly agreed and used prosody hierarchy structure consists of four layers,
including, from the lowest layer to the highest one, syllable layer, prosodic word layer,
prosodic phrase layer (or intermediate phrase), and intonation phrase. As far as the
major prosodic information relevant to each of the layers is concerned, given that
Mandarin is a monosyllabic and tonal language, where each syllable with its inherent
tone contains a lexical meaning, and each tone carries a lexically contrastive role, the
features of every syllabic tone of an utterance are the most important prosodic
information for the lowest layer; besides, tone along with syllable constituents affects

syllable duration and energy level as well. As for the second prosodic layer, a



prosodic word refers to di-syllabic and multi-syllabic words or phrases composed of
words syntactically and semantically closely related or most frequently collocated, so

the words or phrases are uttered as a single unit as in 75 (wu) “fog” + ¢(de) + 25 =

(xing-cheng) “to form” (the formation of fog). As for the third prosodic layer,
prosodic phrase is composed of one or several prosodic words and it usually ends
with a perceptible but unobvious break. Finally, intonation phrase is at the top layer of
the Mandarin prosodic structure. It determines the pitch contour of the intonation of a
sentence containing one or several prosodic phrases and it ends with an obvious break.
Basically, the four-layer prosodic structure interprets the pitch and duration variations
of syllable well for sentential utterances. Some recent studies [8,9] proposed to
integrate prosodic phrases into prosodic phrase groups to interpret the contributions of
higher-level discourse information to the wider-range and larger variations on the
prosodic features of utterances of long texts. In the science of speech processing, to
model prosody is to exploit a framework or a computational model to represent a
hierarchy of prosodic phrases of speech and ito describe its relationship with the

syntactic structure of the associated text!

P
PP PP
PW | PW PW "l PW PW PW
SYL |73 % 3| ik 7| F 09 mx 3t hm & T K| RUZR 35 89 B 1b

Figure 1.1: A commonly agreed and used prosody hierarchy structure that consists of
four layers, including, syllable layer (SYL), prosodic word layer (PW), prosodic
phrase layer (PP), and intonation phrase (IP). (Note: this figure is excerpted and
modified from Ref. [6])

In the past, many prosody modeling methods have been proposed for various
applications, including generation of prosodic information for text-to-speech (TTS)
[10-12], segmentation of untranscribed speech into sentences or topics [13-15],
generation of punctuations from speech [16-18], detection of interrupt points in
spontaneous speech [13,19-21], automatic speech recognition (ASR) [22-28], and so
forth. It can be found from those prosody modeling studies that four main issues have
been intensively addressed. The first one is concerning representing a hierarchical

prosodic phrase structure indirectly by tags marking important prosodic events.



Among various prosodic events explored in the relevant literature [29-35], break type
and tone pattern are the most important ones: the break types of all word boundaries
can determine the hierarchical prosodic phrase structure of an utterance, and the tonal
patterns of all syllables/words can indicate the accented syllables/words of an
utterance, and may specify the pitch contour patterns of the prosodic constituents.
Several prosody representation systems have been proposed in the past. They include
ToBI (Tones and Breaks Indices, a standard prosody transcription system for
American English utterances) [29], PROSPA [31], INTSINT [32], and TILT [33].
Among them, ToBI and its modifications to other languages, such as Pan-Mandarin
ToBI [34] and C-ToBI [35], are most popular conventions for Mandarin Chinese
prosodic tagging. The second main issue is about realizing the constituents of a
hierarchical prosodic phrase structure by using prosodic feature patterns. This is
mainly used in TTS for the generation of prosodic information from prosodic tags. A
common approach is to use a multi-component representation model to superimpose
several prototypical contours of multizlevel prosodic phrases for each prosodic feature
[36-38]. In Ref. [36], three components of séntence-specific contours, word-specific
contours, and tone-specific contours are superimposed to form the synthesized

contours of pitch and syllable duration-fot-Mandarin TTS.

The third main issue is relating torexploring the relationship between prosodic
tags (or boundary types) and the acoustic features surrounding the associated word
juncture. Patterns of pause duration, pitch, and energy around word junctures are
modeled for each prosodic tag or boundary type to help speech segmentation [13-15],
topic identification [15], punctuation generation [16-18], interrupt point detection
[13,19-21], and ASR [22-28] based on word-based features. The last issue is upon
modeling the relationship between prosodic structure and syntactic structure. It is
known that prosodic structure is closely related to syntactic structure although they
are not identical. Usually, only the relationship between a prosodic tag, such as break
or prominence, and contextual linguistic features of syntactic structure is built. A
good break-syntax model should be very useful in predicting breaks of various levels
from input text for TTS. Main methods of building a break-syntax model for TTS are
hierarchical stochastic model [39,40], N-gram model [41], classification and
regression tree (CART) [40,42-45], Markov model [46], artificial neural networks
[47], maximum entropy model [48-51], etc. In the popular Markov model-based



approach, emission probabilities can be generated by CART [44] or maximum

entropy model [51].

1.2 Motivation

Prosody modeling has been proved to be useful in above-mentioned applications,
and the most commonly adopted approach by the previous studies is a supervised one
to construct prosodic model from an annotated speech database with tags marking
prosodic events being pre-labeled manually. However, the supervised prosody
modeling based on human labeling unavoidably arises such problems as diseconomy
due to labeler training and manual labeling labor, and inter-labelers’ and
intra-labeler’s inconsistency caused by individual subjectivity and fatigue during long
time labeling, respectively. This inconsistency may mislead prosody modeling to
obtain erroneous results, and hence lead to unwanted degradation of modeling
performance. Even in the studies where prosody labeling can be automatically done
by machine, their model is still trained with''a manually-annotated speech corpus
[52-57], so the performance of'machine labeling“is still subject to the quality of

human prosody labeling.

To tackle the problems arising from the supervised prosody modeling with
manual labeling, this dissertation presents a new unsupervised approach of prosody
modeling to jointly perform prosody modeling and labeling for Mandarin speech
based on an unlabeled speech database. It is an extension of the previous work by
Chen et al. [58,59] which will be introduced in Section 1.3. The basic idea of this
work is to properly model the observed features and then let the modeled-features
objectively determine prosodic tags by themselves rather than by human perception
with audio and visual aid in conventional prosody labeling works. The task
automatically determines two types of prosodic tags for all utterances of a corpus and
to build four prosodic models simultaneously. The two types of prosodic tags are: (1)
the break types of inter-syllable locations (or syllable junctures) which can be used to
demarcate the constituents of a hierarchy of Mandarin speech prosody; and (2) the
prosodic states of syllables which can be used to construct the pitch contour, syllable
duration and energy level patterns of the prosodic constituents. The four prosodic
models are introduced to describe the various relationships between the two types of

prosodic tags and all available information sources including acoustic prosodic



features and syntactic structure features. Three advantages of the proposed method
can be found. First, prosody modeling and labeling are accomplished jointly and
automatically without using human-labeled training corpus. Second, all information
sources, including acoustic and linguistic features, are systematically used (via
introducing the four prosodic models) in the prosody labeling. We therefore expect
that the result of the prosodic labeling is more consistent than that done by human,
which will in turn make the four prosodic models more accurate. Third, the four
prosodic models constructed address all the four main issues of prosody modeling
discussed above. So they are useful models and may be directly used or extended to

be used in those applications mentioned above.

1.3 Overview of Unsupervised Joint Prosody Labeling and

Modeling

Since the proposed unsupervised joint prosody labeling and modeling method is
an extension of the previous works by Chen et:al. [58,59], these previous works will
be introduced in Subsection 1:3.1 to give a clearer concept of the prosodic states
defined. Then the prosody hierarchy-adopted in this study and its relationship to the
defined prosody tags, i.e. break types and-prosodic states, are described in Subsection
1.3.2. In Subsection 1.3.3, we present the general concept of the four prosodic models
which are the core of this dissertation. Lastly, the database used in our experiments is

introduced in Subsection 1.3.4.

1.3.1 Previous Works

Two statistical prosody models for Mandarin speech using unlabeled speech
corpora were proposed by Chen et al. [58,59]. These two models consider several
affecting factors on the variations in syllable pitch contour and syllable duration,
respectively, including lexical tones, initial-final or base-syllable type, and prosodic
state. Here, prosodic state is conceptually defined as the state in a prosodic phrase and
used as a substitution for the effects from high-level linguistic features, such as a
word, a phrase or a syntactic tree. Prosodic states are also assumed to account for the
prosodic variation contributed by para-linguistic features, such as intention, attitude

and style of the speaker, and even by non-linguistic features, such as physical and



emotional conditions of the speaker. They therefore treat the high-level linguistic
features, para-linguistic features and non-linguistic features as high-level affecting
factors on prosodic variation. On the other hands, low-level affecting factors refer to
some syllable-level linguistic features which represent intrinsic characteristics of
Mandarin prosody, such as lexical tones and base-syllable type, and so forth. For the
syllable duration model, a companding factor (CF) is hence defined to control the
compression/increase or stretch/increase of syllable duration/pitch associated with
each of the above low- and high-level affecting factors. Based on the assumption that
all CFs are combined multiplicatively or additively, the multiplicative and additive

syllable duration models are expressed respectively by

Z,=X7. 1. V7, (1.1)
and
Z, =X}y, 7, ¥V, T (1.2)

where Z, and X, are the observed and normalized durations of the n-th syllable;
7, represents duration CF of the affecting factors x; z,, »,, Jj,, [, and s,

respectively represent the lexical tone, duration’ prosodic state, base-syllable type,

utterance, and speaker of the n-th syllable;" and the residual X, is modeled by a
normal distribution with mean y7, and variance v, ie.
P(Z,y, | AD=N(Z 51y, 7, 7,707, VYo Vs Vi 7 Vs ) . Notice that the prosodic state is

treated as a latent variable hence the Expectation-Maximization (EM) algorithm is
introduced to train the multiplicative or additive syllable duration models based on the
maximum likelihood (ML) criterion. After training, each syllable can be labeled a

prosodic state index by
v, =max p(y,1Z,,4) (1.3)

Then, the CF sequence of prosodic state { Yy } of each utterance can represent the

syllable-duration variation of the utterance primarily resulted from high-level

linguistic features.



Based on the same idea, the syllable pitch mean and shape models are

respectively expressed by

Y, =X, +B, +B,, + B, +B,+5, +5, (1.4)
and
Z,=X,+b, +b, +b +b, +b, (1.5)

where Y,/Z, and X, /X are observed and normalized pitch mean/shape of the
n-th syllable; f./b represents the pitch mean/shape CF of the affecting factors x;
pt,, ft,, i, f , p,, tc, and g, are, correspondingly, previous lexical tone,

following lexical tone, initial type, final type, pitch mean prosodic state, tone
combination and pitch shape prosodic state of the n-th syllable. The training and
labeling of the pitch mean/shape models are similar to the way in syllable duration

modeling.

The main purpose of using prosodic:state. to-replace conventional high-level
linguistic information is to decompose “the effects of low-level and high-level
linguistic features on speech “prosody.Through- this modeling approach, some
unsolved problems, such as the “inconsistency between prosodic and syntactic
structures, the ambiguity of word segmentation and word chunking for Mandarin
Chinese, can be avoided. Hence, this modeling scheme can more focus on modeling
the global effect of mapping high-level linguistic features to the prosodic state and
break indices, since interference caused by low-level linguistic feature has been
properly removed. The following are some key observations and conclusions of the
proposed models evaluated by a speech corpus consisted of paragraphic utterance of

five speakers:

1. The variances of syllable duration, pitch mean and pitch shape were greatly
reduced as the observed prosodic features are normalized with the CFs for

considered affecting factors.

2. The quantitative influence of each affecting factor is directly obtained from their

corresponding CFs.



3. The obtained CFs for low-level linguistic features generally agreed with the prior

knowledge of Mandarin prosody.

4. By investigating the relationship between the labeled prosodic states and their
associated texts, the prosodic states labeled seemed to be linguistically
meaningful. For example, the prosodic states with larger CFs are usually labeled
on the last syllable of a sentence illustrating syllable duration lengthening effect;
pattern of a prosodic phrase is more apparent when it is represented by a
sequence of pitch mean prosodic state CFs than when observed in original pitch

mecan.

5.  Experiments on prosody generation for Mandarin TTS system showed that the
hybrid-regression model that normalized the observed prosodic features with
CFs for syllable level linguistic features in advanced achieved a better prediction
result than a conventional regression method that take observed prosodic features
and all levels of linguistic features as targets and inputs. The results implied the
proposed models can properly decompose the influences of high-level and

low-level linguistic features on prosody:

6. A simple rule-based break labeling method is proposed. Large and medium
sudden low-to-high pitch prosodie-state transitions indicated minor and major

breaks boundaries.

As discussed above, the two models proposed by Chen et al. could generate
linguistically meaningful prosodic state tags and they can give a better representation
of prosodic phrase patterns. However, a well-defined prosody hierarchy is not
considered in these previous studies. Besides, the relationship between prosodic states
and high-level linguistic features are still untouched. Some important acoustic
features related to prosodic breaks are also not incorporated in those models. We
therefore intend the new proposed unsupervised joint prosody labeling and modeling
method in this dissertation to address those missing research fields mentioned above

based on the previous works by Chen et al.



1.3.2 Prosody Hierarchy and Prosody Tags

Recently, Tseng et al. [8] proposed to integrate contiguous prosodic phrases into
prosodic phrase groups to interpret the contributions of higher-level discourse
information to the wider-range and larger variations in syllable pitch and duration of
long utterances in paragraphs. Figure 1.2 displays the hierarchical prosodic phrase
grouping (HPG) model of Mandarin speech proposed by Tseng. It is a five-layer
structure. The first three layers in the hierarchy are the same as those of the four-layer
prosodic structure introduced in Section 1.1, which are referred to as Syllable (SYL),
Prosodic Word (PW), and Prosodic Phrase (PPh) in the system of Tseng et al.,
respectively. The fourth layer, Breath Group (BG), is formed by combining a
sequence of PPhs, and a sequence of BGs, in turn, constitutes the fifth layer, Prosodic
Phrase Group (PG). The above five prosodic units are delimited by different type of
the six breaks proposed by Tseng et al. Firstly, B0 and Bl are defined for SYL
boundaries within PW. Here, B0Qstepresents reduced syllabic boundary and Bl
represents normal syllabic boundary. Usually no. identifiable pauses exist for both B0
and B1. Secondly, B4 and B5 ate defined for BG and PG boundaries, respectively. B4
is a breathing pause and BS is a‘completespeech paragraph end characterized by final
lengthening coupled with weakening. of speech’ sounds. Thirdly, B2 and B3 are

perceivable boundaries defined for PW and PPh boundaries, respectively.

B5 PG B5

4 A
BG B4 BG
A A A
PPh | B3 | PPh PPh
A ' A A
PW B2 PW PW PW
N ) N N R
SYL SYL |BI/BO | SYL SYL SYL

Figure 1.2: A conceptual prosody hierarchy of Mandarin speech proposed by Tseng et
al. in Ref. [8].



In this dissertation, we adopt the prosodic structure of Tseng et al. because our
speech database also consists of long Mandarin utterances of paragraphs. However,
we modify the break type labeling scheme of HPG model by dividing B2 into two
types, B2-1 and B2-2, and combining B4 and BS5 into one denoted simply by B4. Here,
B2-2 represents syllabic boundary of B2 perceived by pause, while B2-1 is B2 with FO
movement. The reason of dividing B2 into B2-1 and B2-2 is due to the difference of
their acoustic cues to be modeled. On the contrary, the combination of B4 and BS is
owing to the similarity of their acoustic characteristics. So, the break-type tags used is
in A={B0, B1, B2-1, B2-2, B3, B4}. These six break-type tags can be used to delimit
four types of prosodic units: SYL, PW, PPh, and BG/PG. These four units are the

constituents of our hierarchical prosodic structure.

To further specify the four-layer prosodic structure, a representation of its
constituents using prosodic features is needed. Two main approaches of
representation can be considered. One is direct representation approach to represent
each individual prosodic constitient by multiple prototypical patterns for each
prosodic feature of syllable pitch contour, duration; or energy level [8,10,11]. The
other is indirect representation approach by using some tags which carry the
information of prosodic constituents and are treated as hidden, i.e. the prosodic states.
Due to the following two reasons, we do-not adopt direct representation approach in
the prosody modeling and labeling study. First, the technique of direct representation
approach is still not mature enough to produce a good direct representation for the
hierarchy of Mandarin speech prosody. The modeling errors, defined as the ratio of
mean square errors of direct representations to the variances of the raw data, are still
as high as about 30% for the multi-layer representations of syllable duration, and
energy using the HPG model [8]. Second, a good direct representation is not easy to
be realized for the case of joint prosody modeling and labeling using an unlabeled
speech corpus in which the prosodic structures of all utterances are not well
determined in advance. Degeneration may occur because break labeling errors may
produce inaccurate representation patterns of prosodic constituents, which in turn may
cause more break labeling errors to occur. Instead, we adopt an indirect representation
approach to employ the defined prosodic states discussed in Subsection 1.3.1 to
represent the aggregative contributions of the constituents of the upper three layers on

syllable pitch level. Similar to the definition of the previous works by Chen ef al., the

10



prosodic state tag is defined as a quantized and normalized syllable pitch level,
duration and energy level with the effects from base-syllable or final types, the
current tone and the two nearest neighboring tones being properly eliminated. So it
carries mainly the prosodic information of the upper three layers of the prosodic
structure, i.e. PW, PPh, and BG/PG. We call it prosodic state to roughly mean the
state in a prosodic phrase (PW, PPh, or BG/PG). Two advantages of using the
prosodic-state tag can be found. First, the tag is defined for each individual syllable so
that the effect of a labeling error is limited to the current syllable only. No
degeneration in the joint prosody modeling and labeling process will occur. Second,
the tag carries the full prosodic information in the upper three layers of the prosodic
structure. In experimental results, we will show the capability of the prosodic-state tag
on constructing the pitch contour patterns of PW, PPh, and BG/PG. It is worth to note
that the pitch prosodic state, duration prosodic state and energy prosodic state are
correspondingly defined for syllable pitch mean, syllable duration, and syllable
energy level variations of high-level prosodic constituents ( i.e. PW, PPh, and
PG/BQ). In this dissertation, forssimplieity, we. first only consider the pitch prosodic
state in unsupervised joint prosody labeling and modeling. Then the duration prosodic
state and the energy prosodic state are’added-to the proposed method to perform an

advanced unsupervised joint prosody labeling and modeling.

1.3.3 The Four Prosodic Models

The four prosodic models are designed to model the prosody hierarchy
illustrated in Subsection 1.3.2 and perform unsupervised joint prosody labeling and
modeling given with both acoustic and linguistic features. Two types of acoustic
features can be considered. One is the prosodic features which carry the information
of prosodic constituents. Primary features of this type include syllable pitch contour,
syllable duration, and syllable energy level. Another is the acoustic features used to
specify the break type of syllable juncture. Primary features of this type include pause
duration and energy-dip level of syllable juncture, energy and pitch jumps across
syllable juncture, lengthening factor of syllable duration, etc. The linguistic features

used span a wide range from syllable level, word level to syntactic tree level.

The first model, referred to as the syllable prosodic model, describes the
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variations in syllable prosodic features, including syllable pitch contours, duration
and energy level, controlled by several major affecting factors, such as syllable-level
linguistic features and prosodic tags. The next one, referred to as the break-acoustics
model, describes the relationship between the break type of a syllable juncture and
nearby acoustic features, such as pause duration and energy-dip level of syllable
juncture. The third one describes the relationship between the break type of a syllable
juncture and contextual linguistic features. It is referred to as the break-syntax model.
Finally, the last model describes the relationship between the prosodic states of
syllables and the break types of neighboring syllable junctures, and is referred to as
the prosodic state model. We can then regard the proposed unsupervised joint prosody
labeling and modeling method which is based on the four prosodic models as a
clustering problem. With proper initializations of break types and prosodic states, a
designed sequential optimization training algorithm is conducted to iteratively
estimate parameters of the four prosodic models, and find all prosodic tags using an

unlabeled speech corpus.

1.3.4 Experimental Database

An unlabeled read Mandarin speech database was used to evaluate the proposed
unsupervised joint prosody labeling and modeling method. The database contained
425 utterances with 56237 syllables uttered by a female professional announcer in a
sound-proof booth. All speech signals were digitally recorded in a form of 16kHz
sampling rate and 16-bit resolution. Its associated texts were all short paragraphs
composed of several sentences selected from the Sinica Treebank Version 3.0 [60].
There are six files in the Sinica Treebank Version 3.0 as listed in Table 1.1. All the
texts used in this study were extracted from the “news.check” file. Those texts were
automatically parsed and manually checked. The tone and base-syllable type of each
syllable were transcribed by a linguistic processor with a 130,000-word lexicon and
then manually error-corrected. All syllable segmentation and FO detection were first
done automatically using the Hidden Markov Model Toolkit (HTK) [61] and
WaveSurfer [62], respectively, and then error corrected manually. The database is
further divided into two parts: a training set of 379 utterances with 52192 syllables
and a test set of 46 utterances with 4801 syllables.
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Table 1.1: The content of the Sinica Treebank corpus

File name Content

news.check, travel.check News papers, books, or internet articles
ko.check, ev.check Elementary school text books

oral.check Text from phonetic balanced speech
sino.check Text from Taiwan Panorama

1.4 Organization of the Dissertation

The dissertation is organized as follows. Chapter 1 gives the background,
motivation, review of related previous works and description on the experimental
databases used in this study. Chapter 2 presents the proposed unsupervised joint
prosody labeling and modeling method which employs four prosodic models to
describe relationship between prosodic tags, acoustic features and associated
linguistic features. For simplicity we only consider the modeling of syllable pitch
contour in this chapter and will extend’the modeling to include the other two syllable
prosodic features, i.e. syllable duration,and syllable energy level, in Chapter 3. The
experimental results on the training set of thé Sinica- Treebank corpus are discussed.
Then, an extension to joint modeling.of syllable pitch contour, duration and energy
level is presented in Chapter 3."An application' of the proposed model to prosody
generation for TTS is discussed in Chapter 4. Some conclusions and related future

research topics are given in the last chapter.
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Chapter 2 Unsupervised Joint Prosody Labeling
and Modeling

2.1 Introduction

The proposed method first treats the problem as a model-based prosody labeling
problem to define four prosodic models to describe various relationships between the
prosodic tags to be labeled and the available information sources of acoustic and
syntactic features. It then extends the formulation for the joint prosody labeling and
modeling problem and applies a sequential optimization procedure to jointly label
prosodic tags and estimate the model parameters using an unlabeled speech corpus.
This chapter is organized as follows. Section 2.2 presents the four prosodic models
which is the core of this dissertation., The training algorithm for the four prosodic
models is given in Section 2.3. Sections 2:4-and 25 give the experimental results and
the detail analysis of model-labeled break, respectively. Lastly, some conclusions and

remarks are given in Section 2.6.

2.2 The Design of the Four Models

The prosody labeling problem can be generally formulated as a parametric
optimization problem to find the best prosodic tag sequence T given with the
acoustic feature sequence A of the input speech utterance and the linguistic feature

sequence L of the associated text:
T =argmax P(T|A,L)=argmax P(T,A|L) (2.1)

Two types of prosodic tags which carry the information of prosodic structure of
Mandarin speech are considered in this study. One is the break type of syllable
juncture. A set of six break types, defined in Subsection 1.3.2, is used. It is denoted as
{BO, B1, B2-1, B2-2, B3, B4}. These six break types are used to define a hierarchy of
speech prosody comprising four constituents of SYL, PW, PPh, and BG/PG. Another
is the prosodic state of syllable defined as a quantized and normalized syllable pitch

level with the effects of the current tone and the two nearest neighboring tones being

14



properly eliminated. As discussed in Subsection 1.3.2, it is an indirect representation
of the prosodic constituents to carry the pitch level information of PW, PPh, and
BG/PG. So, T can be refined to comprise a break-type sequence B and a prosodic
state sequence p.

Two types of acoustic features can be considered. One is the prosodic features
which carry the information of prosodic constituents. Acoustic features of this type
are assumed to be closely related to the prosodic-state tags and loosely related to or
independent of the break-type tags. Primary features of this type include syllable pitch
contour, syllable duration, and syllable energy level. For simplicity we only consider
syllable pitch contour in this chapter and will extend the study to include the other
two in next chapter. Another is the acoustic features used to specify the break type of
syllable juncture. Acoustic features of this type are assumed to be closely related to
the break-type tags, and loosely related to or independent of the prosodic-state tags.
Primary features of this type include pause duration and energy-dip level of syllable
juncture, energy and pitch jumps,across syllable juncture, lengthening factor of
syllable duration, etc. Among them, pitch jump:has been implicitly considered via the
use of prosodic-state tag, energy jump is somewhat a-redundant feature as energy-dip
level is used, and lengthening factor-will-be-considered together with the syllable
duration modeling in next chaptet. We therefore ‘only consider the two features of
pause duration and energy-dip level here. From above discussions, A can be refined to
comprise a syllable pitch contour sequence sp, a pause duration sequence pd, and an
energy-dip level sequence ed.

The linguistic features used span a wide range from syllable level, such as
syllable tone and initial type; word level, such as syllable juncture type (intra-word
and inter-word), word length, part of speech (POS), and type of punctuation mark
(PM); to syntactic tree level, such as size of syntactic phrase and syntactic juncture
type (intra-phrase and inter-phrase). Since syllable tone is an important linguistic
feature and mainly used in the modeling of syllable pitch contour, we separate it from
other linguistic features. So, L is refined to include a syllable tone sequence t and a
reduced linguistic feature set 1.

Based on above discussions, we rewrite P(T,A|L) by

P(T,A|L)=P(B,p,sp,pd,ed|l,t)=P(sp,pd,ed B,p,L,t) P(B,p[l,t) (2.2)
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where P(sp.pd.ed/B,p,I,t) is a general prosodic feature model describing the
variations in acoustic prosodic features (sp,pd,ed) controlled by the prosodic tags
(B,p) representing the prosodic structure and the linguistic features (I, t) representing
the syntactic structure; and P(B,p|l,t) is a general prosody-syntax model which

describes the relationship between (B,p) and (1, t).
Since the break type tag sequence, B, has already carried the prosodic cues
related to syllable junctures, we therefore assume that the observed syllable-based

acoustic feature, sp, and the juncture-based acoustic features, ( pd,ed ), are

independent as B is given. So we split P(sp,pd,ed|B,p,l,t) into two terms:
P(sp.pd.edB,p,Lt) ~ P(sp|B.p.L.t) P(pd,ed|B,p,Lt) (2.3)

Here P(sp/B,p,L,t) is a syllable pitch contour model describing the variation in
syllable pitch contour controlled by (B,p,I,t) and P(pd,edB,p,l,t) is a break-
acoustics model describing the acoustic cues of syllable junctures for different break
types. The syllable pitch contour,model is realized using a modified version of the
syllable pitch contour model proposed previously by Chen et al [58]. It models the
pitch contour of each syllable ‘separately-and considers four main affecting factors,

including the current prosodic State »p,, the-current tone ¢ , and the coarticulations

and ¢

n+l 2

from the two nearest neighboring tones, ¢

n—1

conditioned, respectively, on
the break types, B,, and B, , of the syllable junctures on both sides. Specifically, the

model is expressed by

N

P(spB.p.Lt) ~ P(sp/B.p,t) ~ [ [ P(sp,Ip,.B...L5") (2.4)
n=l1

where

sp,=sp,+B, +B, +B; , +B, , +n  for1<n<N (2.5)

is the observed pitch contour of n-th syllable (referred to as syllable n hereafter)

represented by the first four orthogonally-transformed parameters of syllable log-F0

contour [63]; B',=(B,,,B,); t””:(tn_l,tn,tn+]); sp, is the normalized (or residual)

n-1

version of sp,; P, represents the affecting pattern (AP) of affecting factor x. Here

X

AP means the effect of a factor on increase or decrease of the observed syllable pitch

contour vector sp,. P, and B, are the APs of affecting factors 7z, and p,,

tn
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respectively; p, is tone pair #;"=(t,,); By , and B, , are the APs of

forward and backward coarticulation contributed from syllable n-1 and syllable n+1,

respectively; and p is the AP of global mean. For taking care of utterance
boundaries, two special break types, B, and B,, are assigned to the two ending
locations of all utterances, i.e., B,=B, and B, =B,; and two special APs of
coarticulation, B} , =B, , and B, =Pj , ,areaccordingly adopted to represent
the effects of utterance onset and offset, respectively. B, is set to have nonzero

value only in its first dimension in order to restrict the influence of prosodic state
merely on the log-F0 level of the current syllable. Figure 2.1 displays the relationship

of sp, with these affecting factors. By assuming that sp’ is zero-mean and

normally distributed, i.e. N(sp;0,R), we have

P(sp,|p,.B..t:)= N(sp,:B, +B, +p-§n o +[s’;n 5 HR)  forl<n<N (2.6)
Btn
Bf 1>Pn—1
B%, .,
Bpn

Figure 2.1: The relationship of observed syllable pitch contour with its APs.

It is noted that the effect from I is assumed to be implicitly included in the effect of p
and hence is neglected. We also note that the coarticulation effect is elegantly treated
to consider different degrees of coupling between two neighboring syllables via
letting it depend on the break type of the syllable juncture.

The break-acoustics model P(pd,ed|B,p.Lt) is further elaborated via assuming

that (pd,ed) is independent of (p,t) which mainly carries information of prosodic

constituents rather than that of syllable juncture. So we have
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N-1
P(pd,ed|B,p.Lt) ~ P(pd.edB,l) ~ [ [ P(pd,.ed,|B,.1,) (2.7)
n=1

where pd and ed, are the pause duration and energy-dip level of the juncture
following syllable n (referred to as juncture n hereafter); and 1 is the contextual

linguistic feature vector around juncture n. For mathematically tractable,

P(pd, ,ed | B, ) is further simplified and realized by the product of a gamma
distribution for pause duration and a normal distribution for energy-dip level:
P(pd,.ed,|B,),)=g(pd,:ct, , fy , N(ed i 15, .52, )

(2.8)

In this study, g(pd,;a,,.B;,) and N(ed,;u, , ,aéwln) are concurrently
generated by the decision tree method for each break type.

Similarly, we simplify the general prosody-syntax model P(B,p[l,t) via
assuming the independency of (B,p).rand t,’and decomposing it into two models, i.e.
P(B,p|Lt)~P(B,p[l)=P(p[B,1) P(Bl)~ P(pB) P(BI) 2.9)
where P(p/B) is a prosodic state model’describing the dynamics of p given with B,
and P(B,|1) is a break-syntax model describing the relationship between B and the

contextual linguistic feature sequence 1. In this study, we realize P(p/B) by a

Markov model:
N

P(pIB)~P(p, )[HP(mpn_l ,Bn_l)} (2.10)
n=2

where P(p) 1s the initial prosodic-state probability for syllable 1 and
P(p,|p,,.B,,) 1s the prosodic-state transition probability from syllable n-1 to
syllable n given B, _,. We also simplify P(BJl) by separately modeling it for each

syllable juncture:
N-L

P(BI=] [P(B,1,). (2.11)
n=1

Here P(B,|l) isimplemented by the decision tree method.
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2.3 Joint Prosody Labeling and Modeling

A sequential optimization procedure based on the ML criterion is proposed to
jointly label the prosodic tags for all utterances of the training corpus and to estimate
the parameters of the four prosodic models. It is divided into two main parts:
initialization and iteration. The initialization part determines initial prosodic tags of
all utterances and estimates initial parameters of the four prosodic models by a
specially designed procedure. The iteration part first defines an objective likelihood

function for each utterance by

n=2

N N
Q:(HP(SPH ‘ pn’Br:’—l’t:jll ] P(pl)HP(pn |pn1’Bn1)j
=l (2.12)

[1(P(pd, ed, 1B,1,)P(3, |1n))j

It then applies a multi-step iterative procedure to update the labels of prosodic tags
and the parameters of the four prosodic.medels Sequentially and iteratively. In the

following subsections, we discuss the sequential optimization procedure in detail.

2.3.1 Initialization

The initialization part is further divided"into two sub-parts: (a) a specially
designed procedure to determine initial break labels of all syllable junctures; and (b) a
ML estimation process to estimate initial parameters of the four prosodic models and
to determine the initial prosodic-state labels of all syllables using the information of

initial break labels determined in the first sub-part.

(a) Initial labeling of break indices

The initial break index of each syllable juncture is determined by a decision tree
(see Figure 2.2) designed based on a prior knowledge about break labeling/modeling
gained in previous studies [8,28,40,52-58,64,65]. It is known that pause duration is
the most important acoustic cue to specify breaks. Most word junctures with PM have
long pauses so that they are most likely labeled as major break, or in our case B3 and
B4. On the other hand, most intra-word syllable junctures have very short pause
duration so that they are generally labeled as non-break, or in our case B0 and BI.

Moreover, B0 represents tightly coupled syllable juncture so that it is distinguished
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from Bl by having very short pitch pause duration and high energy-dip level.
In-between these extreme situations, non-PM inter-word junctures with medium
pause duration and with medium pitch jump are likely labeled as B2-2 and B2-1,
respectively. By using the prior knowledge, we develop the algorithms to determine
all thresholds of the decision tree (7h1~ Th6) in a systematic way to avoid doing it

manually or by trial and error. Detail of the algorithms is given in Appendix A.

pd,, >Thl
A

(7 Interword
N

Y

ed, >Th6 and
() Pitch pause < Th4

N

'BO| | BI

Figure 2.2: The decision tree for initial break type labeling.

(b) Estimation of the initial.parameters of the four prosodic models and
prosodic-state indices

The initializations of the break-acoustics model and the break-syntax model can
be done independently with initial break indices of all syllable junctures being given.
We realize them by the CART algorithm [66]. For the initialization of the
break-acoustics model, the CART algorithm with the node splitting criterion of
maximum likelihood gain is adopted to classify pause duration pd, and energy-dip
level ed, for each break type B according to a question set ©®, derived from the
contextual linguistic features 1 . Each leave node represents the product of a gamma
distribution g(pd,;a,, ,B,, ) and a normal distribution N(ed,; t, >G§,1,,) . For the
initialization of the break-syntax model P(B,|l,), a decision tree is built by using
another question set ®, derived also from 1 to classify break types. The details of

I, ©, and ©, used in this study are listed in Appendixes B, C.1, and C.2,

no

respectively.
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The initializations of the syllable pitch contour model and prosodic-state indices
are integrated together and performed by a progressive estimation procedure. Since
the syllable pitch contour model is a multi-parametric representation model to
superimpose several APs of major affecting factors to form the surface syllable pitch
contour, the estimation of an AP may be interfered by the existence of the APs of
other types. It is therefore improper to estimate all initial parameters independently.
We hence adopt a progressive estimation strategy to first determine the initial APs
which can be estimated most reliably and then eliminate their effects from the surface
pitch contours for the estimations of the remaining APs. In this study, the order of

initial AP estimation is listed as follows: global mean p, five tones B, ,
coarticulation {B},,, B}, B}, and B5,., }» and prosodic states B,. Notice that
the initial prosodic-state indices are assigned by vector quantization (VQ) of the
pitch-level components of the residue pitch contours; and the APs are set to be the

codewords obtained by VQ. Lastly, the initialization of the prosodic state model

P(p/B) is done using the labeled prosodic-state indices and break indices.

2.3.2 Iteration

The iteration is a multi-step:iterative procedure listed below:

Step 1: Update the APs of five tones |, with all other APs being fixed.
Step 2: Update the APs of coarticulation {B} . B}, . B;, and B, } with all
other APs being fixed, and then update R.

Step 3: Re-label the prosodic state sequence of each utterance by using the Viterbi
algorithm so as to maximize Q defined in Eq. (2.12). Then, update the APs
of prosodic state B, the prosodic state model P(p[B) and R.

Step 4: Re-label the break type sequence of each utterance by using the Viterbi
algorithm so as to maximize Q. Then, update the prosodic state model

P(pB) and R.

Step 5:  Re-construct the decision trees to update P(pd,.ed,|B,l) and P(B,|l)

by the CART algorithm using the question sets ©, and ©, , respectively.

Step 6: Repeat Steps 1 to 5 until a convergence is reached.
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2.4 Experimental Results

The experiment was conducted on the training set which consisted of 379
utterances with in total 52192 syllables. The number of prosodic states was properly
set to be 16 because the root mean squared error (RMSE) of VQ saturated when the
number of prosodic states was greater than 16. As shown in Figure 2.3, the sequential
optimization procedure took 69 iterations to reach a convergence. Following is

examinations and interpretations of the parameters of the four prosodic models.

5
3.5:'(10

348+ .

34f :

338 .

3.3r .

325+ .

Total Likelihood

32r .

3_ 05 1 1 1 1 1 1
0 10 20 30 40 50 50 70

lteration Mumber

Figure 2.3: The plot of total log-likelihood versus iteration number.

2.4.1 The Syllable Pitch Contour Model

We first examined the parameters of the syllable pitch contour model
P(sp,|p,.B,,t%"). The covariance matrices of the original and normalized syllable

n-12"n-1

log-F0 contour feature vectors are shown below:

5654 23.9 -25.6 -0.5 35 02 -02 00

239 905 97 -82| 02 319 26 -15|
= x10*= R_, = x10
PT1256 97 178 -0.9 02 26 111 06

-0.5 82 -09 50 00 -15 0.6 3.7

Obviously, all elements of Rspr were much smaller than those of R, . This showed

that the influences of the affecting factors considered were indeed essential to the

variation of sp.
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Figure 2.4 displays the APs of five tones. We find from the figure that the APs
of the first four tones conformed well to the standard tone patterns found by Chao
[67]. As for tone 5, its low dipping pattern resembles the pattern of tone 3 to some
degree. This also matched the finding in the previous study about tone 5 [68].

025

02r
016
o1r
005

Log-F0

-0.05¢
01
-015¢
02
-025¢

Tong1 —#—Taong2 —&— Tong 3 —+—Tong4—-— Tone &

Figure 2:4: The APs-of five tones

Table 2.1 displays the APs«(log-FO levels) -and the distribution of the 16
prosodic states. It can be seenifrom Table 2.1 that:these 16 log-F0 levels spanned
widely to cover the whole dynamie range of log-F0 variation with lower indices of
prosodic state corresponding to lower'log-FO levels; and the prosodic states
distributed normally with relatively few located at the two extremes of high and low

prosodic states.

Table 2.1: The APs (log-F0 levels, B, (1)) and the distribution ( P(p)) of the

16 prosodic states.
State index 1 2 3 4 5 6 7 8

B,(1) -0.77 -0.50 -037 -0.28 -022 -0.16 -0.10 -0.05
P(p) 0.00 001 002 004 0.07 0.10 0.11 0.12
State index 9 10 11 12 13 14 15 16
B,(1) 001 0.06 012 0.17 024 031 038 049
P(p) 0.12 0.10 0.09 0.08 0.06 005 0.03 0.0l

Figures 2.5(a) and 2.5(c) display the APs of forward and backward

coarticulations, B}, and P}, for the three break types of B0, Bl, and B4. These

three break types were chosen on purpose to show extreme cases of inter-syllable
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coarticulation: BO for tightly coupling, Bl for normal coupling, and B4 for no
coupling. Some interesting phenomena can be observed from the figure. First, it can

be seen from Figure 2.5(a) that most APs of forward coarticulation for B0 and B1,

Béo,tp and Bf;l’w, were bended in their beginning parts. These bendings were to

compensate the level mismatch between the beginning and ending parts of the log-F0
contours of the tone pairs for highly coarticulated preceding and current syllables, so
as to make their log-F0 contours be concatenated more smoothly. For example, the

upward bending at the beginning parts of {Bé’tp|tp:(1,2),(1,3),(2,2),(2,3),(1,5)}

were due to H-L mismatches, while the downward bending at the beginning parts of

{Bg,m\tp=(3,1),(3,4),(5,1),(5,4),(4, 1)(4,4)} corresponded to L-H mismatches.
Similarly, it can be observed from Figure 2.5(c) that the ending parts of the APs of

backward coarticulation for B0 and Bl, Bj,, and B}, were bended. But the

degrees of their upward and downward bendings were generally smaller. This
conformed to the observation reported in Refs[69] that the carry-over effect on the
syllable FO contour influenced :by the. preceéding syllable is much larger than the
anticipation effect caused by the 'following-syllable: Second, it can be found from
Figures 2.5(a) and 2.5(c) that most APs of forward and backward coarticulations for
B4 with the same current tone looked similar and*hence were nearly independent of
their respective preceding and succeeding tones. This showed that the inter-syllable
coarticulation across a B4 break was relatively low as compared with those of BO and
B1. Moreover, many APs of forward and backward coarticulations for B4 were
downward bended in their beginning and ending parts, respectively. They exhibited
the onset and offset phenomena at the beginning and ending syllables of BG/PG.
Furthermore, we find from Figures 2.5(b) and 2.5(d) that most utterance initial and

final patterns, pj , and B} ,, looked very similar to those of Bj,, and B, .

respectively, to show the same onset and offset phenomena at the two types of

utterance boundaries. We also find that B , and B ; were two exceptional

patterns which had lower levels. These probably resulted from the total relaxation of
pronunciation at the utterance ending for these two tones. Third, it can be found from

Figure 2.5(c) that the APs of B}, s and B3, ;5 Wwere upward bended drastically in

their ending parts. As combining with the AP of tone 3 shown in Figure 2.4, these
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bendings would make the integrated log-F0 patterns of the first syllable in a (3,3) tone
pair change from middle-falling tone-3 shape to middle-rising tone-2 shape to fulfill
the well-known 3-3 tone sandhi rule which says that the first tone 3 of a 3-3 tone pair

will change to a tone 2. On the contrary, we find that the pattern B, 4¢3 didnotbend

upward. This showed that the 3-3 tone sandhi rule did not apply when the syllable
juncture was a B4. Last, we made some comments to the APs of forward and
backward coarticulation for B2-1, B2-2 and B3. Basically, the APs of B2-1 and B3
resembled to those of B4 but with smaller upward and downward bendings, and B2-2

had similar patterns to those of B1 but with smaller upward and downward bendings.
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Figure 2.5: The (a) forward and (c) backward coarticulation patterns, B{;Jp and B’;,tp ,

for BO (point line), Bl(solid line), and B4(dashed line); and the (b) onset and (d)
offset patterns, B , and B3 ,,for B, and B,.Heretp=(i,j)and¢=1ior}.
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From above analyses, we find that the inferred syllable pitch contour model
provides a meaningful interpretation to the variation in syllable pitch contour
controlled by several major affecting factors. With this capability, the model can be
used in Mandarin TTS to generate pitch contour if all tags of prosodic-state and break
type can be properly predicted from the input text. It can also be used in Mandarin

ASR to manipulate pitch information for tone discrimination.

2.4.2 The Break-Acoustics Model
The two break-acoustics models, g(pd,;a; ,.B,,) and N(ed,;u, Jn,ai 1)

were built by the decision tree method using the question set ®,. One decision tree

was constructed for each break type. Figure 2.6 displays the distributions of pause
duration and energy-dip level for the root nodes of these six break types. It can be
found from the figure that the break types of higher level were generally associated
with longer pause duration and lower energy-dip level. BO had very short pause
duration and wide-spread energy-dip level with. vety high mean value. B1 and B2-1
had similar distributions of short ‘pause dutations and wide-spread high energy-dip
level. B2-2 had medium long pause duration-and medium high energy-dip level. Both
B3 and B4 had wide-spread long’pause duration and low energy-dip level. These
conformed to the prior knowledge about break types [4,8,70,71].
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Figure 2.6: The pdfs of (a) pause duration and (b) energy-dip level for the root nodes
of these 6 break types. Numbers in () denote the mean values.

To further examine the model, we show its decision trees for the five break

types of B4, B3, B2-2, B2-1 and B1 in Figure 2.7. It is noted here that no tree split for
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B0 due to the relative uniformity on the acoustic prosodic features of its samples.
Generally, the questions used to split trees of higher-level break types (B4 and B3)

tended to be related to higher-level syntactic features, such as PM (0 2.4) and
syntactic phrase size (Q3.1.3, Q3.3.2, 03.3.11, and Q3.3.18). On the contrary,
the questions of lower-level phonetic features (QL1, @13, and Q1.4) tended to

split trees of lower-level break types (B1 and B2-1).
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Figure 2.7: The decision trees of the break-acoustics model for (a) B4, (b) B3, (c)
B2-2, (d) B2-1, and (e) B1. The numbers in a bracket denote average pause duration
in ms (left), energy-dip level in dB (middle) and sample count (right) of the associated
node. Solid line indicates positive answer to the question and dashed line indicates
negative answer.

From above discussions, we find that the inferred break-acoustics model
describes the relationship of the break type of syllable juncture with the two
inter-syllable acoustic features and some contextual linguistic features very well. So it
seems that the model can be used to predict major and minor breaks from acoustic and
linguistic cues for some applications, such as segmenting speech into sentences and

generation of punctuations from speech.
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2.4.3 The Prosodic State Model

We then examined the prosodic state model. Figure 2.8 displays some most

significant transitions of P(p,|p, ,,B,,) for six break types. For BO and BI, the

general high-to-low, nearby-state transitions showed that the syllable log-F0 level
declined slowly within PWs. We also find that some low-to-high, nearby-state
transitions occurred within PWs of low pitch level. This demonstrated the sustaining

phenomenon of the log-F0 trajectory at the ending part of some PPhs.
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Figure 2.8: The most significant prosodic state transitions for (a) B0, B1 and B2-1,
and (b) B2-2, B3 and B4. Here, the number in each node represents the index of the
prosodic state. Note that bold and thin lines denote the primary and secondary state
transitions, respectively.
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For B2-2, it had both high-to-low and low-to-high state transitions. For B2-1, B3,
and B4, their low-to-high state transitions showed clearly the phenomena of syllable
log-FO level resets across PWs, PPhs, and BG/PGs. Comparing with these clear
log-FO level resets, the resets of B2-2 were insignificant. Combining the results
shown in Figures 2.6 and 2.8, we find that B2-1 and B2-2 had different acoustic
characteristics: B2-1 had significant log-FO reset with very short pause duration,
while B2-2 had longer pause duration with low or no log-F0 reset.

From above findings, since the prosodic states defined in our study mainly carry
the full information of pitch-level variation in the upper three layers of prosodic
structure (PW, PPh, or BG/PG), the prosodic state model can roughly represent
dynamic patterns of PW, PPh, and BG/PG and may be applied to pitch contour

generation in Mandarin TTS.

2.4.4 The Break-Syntax Model

The break-syntax model P(B, I ) was builtby the decision tree method using
the question set O, . Figure. 2.9 displays the decision tree of the break-syntax model.
The tree was divided into four:sub-trees, I3-76, by the three questions of (,2.1.1
(PM?), Q,2.1.3 (minor PM?) and ©,1.3 (intra-word?). It can be seen from the
figure that the root node of sub-tree 73, which corresponded to syllable juncture with
minor PM, was mainly composed of B3 and B4. Similarly, the root nodes of sub-trees
T4 and T35, corresponding to major PM and intra-word syllable juncture, were mainly
composed of B4 and BO0/BI1, respectively. Due to the fact that the break-type
constituents of both 74 and 75 were pure, they had very simple tree structures. On the

contrary, sub-tree 76 was a miscellaneous collection of all other types of syllable

juncture without PM. So, it had the most complex tree structure.
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Figure 2.9: The decision tree of the break-syntax model. The bar plot associated with
a node denotes the distributions of these six break types (B0, B1, B2-1, B2-2, B3, B4,
from left to right) and the number is the total sample count of the node.

Figure 2.10 displays the more detailed structures of these four sub-trees up to
the fourth layer. From Figures2.10(a) and 2.10(b), we find that nodes in 73 and 74
were mainly split by questions related-to. high-level linguistic features such as

0,3.3.19 (Is the length of the following syntactic phrase/sentence greater than 67?)
and (,3.3.29 (Is the length of the preceding syntactic phrase/sentence greater than
77). As shown in Fig. 2.10(c), 75 had two leaf nodes split by O,1.1 (Does the

following syllable have a null initial or initial in {m, n, [, }?). The set associated with
positive answer was mainly composed of B0, while another set was mainly composed
of Bl. As shown in Figure 2.10(d), 76 was constructed by questions related to

features of various levels, including Q,1.1, 0,2.4.18 (Is the preceding word “DE”?),
0,2.3.2 (Is the preceding word a function word?), (,3.3.24 (Is the length of the

preceding syntactic phrase greater than 2?), and so on. We also find from Figure 2.10
that the purities of the break-type constituents were high for leaf nodes of 74 and 75,
medium high for nodes of 73, and relatively low for most nodes of 76. This implies
that it is difficult to correctly label (or predict) the break types of syllable junctures
other than intra-word and those with major PM by the break-syntax model using only

linguistic features without the help of acoustic cues.

30



0,33.19

-
03328 ~ 0,33.26

976

/ 0,33.17 7 0,24.4

382 594 409 ” 2419

/

/
o] o] o] 9]
=]l s gl

(a)
0.33.29
o ).3.3.22 011
c/ 2
7 N oieTa
288 »
309 279 15277 6697
(b) (¢)
0,11

0,337 /Q23.3.15

I16712 u 1933 i 5153 1861

/ / / /
(d)

Figure 2.10: The more detailed structures of sub-trees of (a) 73, (b) 74, (c) 75 and (d)
76. Solid line indicates positive answer to the question and dashed line indicates
negative answer.
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2.5 Analyses of the Labeled Breaks and Prosodic

Constituents

To further evaluate the performance of the proposed method, explorations in the
relationships between prosodic breaks and linguistic features of texts, the length of
prosodic constituents, and the general pitch patterns of prosodic constituents obtained
in our method were described in Subsections 2.5.1 through 2.5.3. Besides, to further
verify the labeling outcomes generated by our models, a comparison conducted

between human labeling and our labeling was given in Subsections 2.5.4 and 2.5.5.

2.5.1 Analyses of the Labeled Break Types

Since the purpose of announcers’ broadcasting is to propagate information
accurately to the audience relying exclusively on their audio perception, our
well-trained informant skillfully manipulated as many segmental and prosodic cues as
possible, such as clear and precise articulation, strategic variations in the fundamental
frequency, volume, syllable length, and types.of breaks. These prosodic information
carried in the utterance speech, in'turn, reflects the informant’s mental grammar,
his/her Mandarin linguistic competence that determifies when to form a semantically
appropriate word chunk, a prosodic phrase, or a larger unit, and hence where and how
long a break in an utterance should be sothat the informant’s speech would sound

natural, informative, and attention attracting to the audience.

As a research based on our informant’s speech data rich in the Mandarin
prosodic cues, our break-type-labeling model also can generate appropriate break
types consistent with native speakers’ psychological reality. To verify this point, we
examined the relationship between some special groups of words/morphemes and
their concurring break types that both our break-type-labeling model and the ordinary
Mandarin native speakers would consistently produce. These special groups of
words/morphemes include (1) affix morpheme; (2) DE; (3) Ng, Di, and T; (4) VE; (5)

Caa and Cb; and (6) P [72]. The results are discussed in more detail as follows.

1. Set of Affix Morpheme
It is well-known that prefixes and suffixes are bound morphemes that attach to
their preceding or following heads to form units of complex words. Since the resultant

form after combining the head and the affix is a unit, it is reasonable to predict that
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the breaks at the boundaries between the head and the affix tend to fall in B0 or Bl
types. These phenomena were observed in our corpus. We found that some Mandarin
Chinese mono-syllabic prefixes, such as bu- “# not, un-, dis-, in-,” ke- “¥ -able,”
wu- “#& not, -less, un-,without,” etc. [67,73], tend to join the following roots to form

legitimate words as in bu-li “* 4| unfavorable,” bu-fang-bian “* = i{ inconvenient,”

(13

ke-wu “7¥ & detestable,” ke-sing “¥ {7 feasible,” wu-sian “ & *T limitless,”

wu-shuang & B unparalleled.” Similarly, by attaching mono-syllabic suffixes, such
as -bian “i# side,” -zhe “ﬁ -er, -or,” -hua “it -ize,” etc., to the preceding roots, we

1V X W in [u-bian “§: ide, curb,” he-bian ;@i
can derive comple ords as in [u-b “§&i¥ roadside, curb,” he-b “@

3

riverside,” zuo-zhe “i% ﬁ author, writer,” sing-zhe {7 "F’i‘ religious practicer,”
gung-yie-hua “1 % it industrialize,” min-zhu-hua “% i i* democratize.”

Table 2.2 lists the statistics of the break types labeled for the syllable boundaries
of 121 prefixes and 195 suffixes. It can be seen from the table that 79.6% of the
post-syllable boundaries of these. 121 prefixes and 98.5% of the pre-syllable
boundaries of these 195 suffixes were-labeled as BO or Bl. These prosodic findings
reflect the fact that morphologically the combination of head and affix generates a
lexical unit, and thus the break-between-themis determined to be the break type of

intra-PW category by our method. The results wete also consistent with some rules

found in Refs. 64, 65, and 68.

Table 2.2: Statistics of break types labeled for 121 prefixes and 195 suffixes.

Labeled break type B0 Bl B2-1 B2-2 B3 B4 Total count
Prefix Pre-boundary 94 1289 460 545 193 5 2586
Post-boundary 584 1475 344 178 5 0 2586
Suffix Pre-boundary 1046 2466 31 20 3 0 3566
Post-boundary 307 1479 272 482 568 458 3566

2. Word Set of DE

The words in the DE set particularly refer to de, zhe, and di, which serve
multi-functions including a possessive marker, an adjective marker, and an adverbial
marker [72]. They are characterized by the fact that a DE word can combine with a
wide range of preceding syntactic constituents to form a possessive adjective as in an

noun phrase (NP)-de structure: xue-sheng-de quan-li “% 2 fg + students’ right,”

to derive an adjective phrase as in a verb phrase (VP)-de structure: se-siang-zhe gin
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“R, ¥R 2_ nostalgia,” or to function as an adverbial phrase as in a DM-de structure:
ke-ren yi-bo-bo-di yong-jin-dien-lai “% * — k3 % i JE K guest were flocking to
the shop.” Despite the variety of the preceding constituent, a DE word, similar to a
suffix, builds closer connection with its preceding constituent to form a larger
syntactic unit; consequently, it is predictable that the break at the DE words’
pre-boundary position tends to fall into B0 and B1, which means a pause is hardly to
be perceived at this juncture. It is also reasonable to infer that due to a looser
connection between the DE words and the following constituent, less B0 and Bl

would occur at the post-boundary position.

The statistics in Table 2.3 indicates that the distribution of the break types
labeled by our model just conformed with our anticipation; while 92.3% pre-boundary
breaks of the DE words were B0 and B1, only 65% post-syllable boundaries of the DE
words fell into the same types, which suggests that for the DE words, the majority of
the neighboring breaks are unperceivable, and in most cases only at the post-boundary
position can perceivable breaks bé sensed. This result also matched the findings in

Refs. 64, 65, and 68. Two examples are given below for illustration:

Ex.1: ... » F] & (because, Cbaa) *~ |¢(women, Nad)' % (in, P21) A+ € (society, Nac)
B1 =1(DE) B1 ¥ i (position, Nad) #&7% (raise, VC2) > ...

(... Because women’s social status hasbeen improved, ...)

Ex.2: ... » B % (now, Nddc) #'(I, Nhaa) &_ (am, V_11) = -+ — #& (thirty one year
old, DM) Bl ¢(DE) B2-2 H ¥ (single, VHI11) % %%(woman, Nab) -

(.... Now, I am a thirty-one-year-old single woman.)

Table 2.3: Statistics of break types labeled for the DE words.

Labeled break type B0 B1 B2-1 B2-2 B3 B4  Total count

Pre-boundary 168 1600 146 1 0 0 1915
Post-boundary 210 1035 331 294 41 4 1915

3. Word Sets of Ng, Di, and T

Ng, D1, and T represent the word sets of Mandarin Chinese localizers, aspectual
adverbs, and particles [72], respectively. The distinctive shared feature of these sets of
words is that almost all the words are no longer than two syllables in length and that
when combining with other syntactic constituent to form a larger phrase, they are all

positioned at the end of the derived phrase, such as san-tian hong “= * t¢ three days
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latter,” kai-hui dang-zhungp; “%# ¢ % ¢ while the meeting is being held,” and bu-qu
le-mar “7 4 7 %5 ? Not going?.” Due to the characteristic of being post-positioned in

a phrase, these words are inclined to be incorporated with their preceding constituents,

and predictably barely any pauses can be perceived at the pre-boundary position.

The statistic results listed in Table 2.4 indicate that our model’s break-labeling
performance just exactly met our expectation. As high as 94%, 93%, and 87% of the
pre-syllable boundaries of the words in this category were labeled as BO or B1. Three

examples are given below:

Ex.3: ... > 4*(it, Nhaa) §?(and, Caa) % % (woman, Nab) fr(and, Caa) g & (tell
one's fortune, VBI1) J‘ﬂ" (person, Nab) B1 2 ¥ (between, Ng) B3 i (Dbb) # (no,
VJ) 4 ¥ (conspire, Nv1) i #f(cheat, Nv4) > ...

(.... There is no conspiracy to cheat among it, the woman and the fortune teller.)

Ex.4: ...> % 3z (forget, VK1) B0 7 (Di) Bl 4%t (after marriage, Ndc) I (realistic,
VHI11) «1(DE) % # (environment,"Nac) - Be

(... have forgotten the realistic environment after marriage.)

Ex.5: ... » F] 5 (because, Cbaa) #' (I, Nhaa), - ig(always, Dd) 7 (have, V_2) 5
(read, VC2) # % (have no limit, V€2) ¢(DE) +Z (book, Nab) Bl *#(“ah”, Tc)
B4\

(... for I always have books to read!)

On the other hand, it is also interesting to find that for the breaks at the
post-syllable boundaries, 67% and 96% of them were labeled as B3 /B4 especially for
the Ng-set and T-set words, respectively. Further investigation reveals that most of
the longer breaks were caused by a following PM, an index representing the
occurrence of a detectable pause. Besides, because the T-set words are phrasal or
sentential final particles and hence are highly likely to be followed by a PM, a much

higher ratio of B3/B4 could be found. Two examples are given in the following:

Ex.6: Bb #f(to, P31) 4 #f(human, Naeb) B0 ¥ 3.(in some sense, Ng) B3 > ...
(...To human beings, ...)

Ex.7: ... £ (think, VE2) #%% (idea, Nac) f#;4-(to solve, VC2) BO m 2 (nothing but,
Tb)B4 ! ...

(...just figured out the solution ...)
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Table 2.4: Statistics of break types labeled for the word sets of Ng, Di, and T.

Labeled break type B0 Bl B2-1 B2-2 B3 B4 Total count

Ng Pre-boundary 97 420 19 12 0 2 550
Post-boundary 26 81 17 58 245 123 550
Di Pre-boundary 107 83 12 1 0 2 205
Post-boundary 30 68 36 41 11 19 205
Pre-boundary 89 84 14 11 0 0 198
Post-boundary 0 5 1 2 22 168 198

4. Word Set of VE

VE represents a class of transitive verbs that take a sentence as the object, such

[

as ren-wei “:%% to suppose/think/believe (that),” gan-dao “f ] to feel (that),”

biao-she “# 7 to show/indicate/mean/suggest (that),” etc [72]. It is evident that

since the message carried in a sentential object, compared to a NP object for example,
demands longer time to process mentally, before being accurately expressed, a longer
pause is reasonably anticipated to occur_ after a VE verb for information operation.
Based on the statistic results Jisted in“Table 2.5,. on the whole 72% post-word
boundaries of the VE verbs were labeled as breaks' with distinctly audible pauses,
namely B2-1, B2-2, B3, or even’ B4, another quite.favorable evidence that the break
types labeled by our model were consistent with the pause duration people usually

take in their utterances. A typical example is given in Ex. 8.

Table 2.5: Statistics of break types labeled for word set of VE.

Labeled break B0 Bl Byl B22 B3 B4 Total
type count

Post-boundary 63 177 99 108 159 234 840

Ex.8: ... » % & (government , Nad) Bl #i(proclaim, VE2) B3 i (he, Nhaa) i& &
(violate, VI1) # ycfi{city government, Ncb) — = (one, DM) 4 F(family, Nab) 7
it (can not, Dbab) &5 (store, VC33) = + 7 F #(2,500, DM) ¥+ (shoes, Nab)
er(DE) 2 (rule, Nac) > ...

( ...City government proclaimed that he violated the rule that no more than 2,500

pairs of shoes were allowed to be stored in a family.... )

However, it cannot be neglected that no less than 28% post-word boundaries of

the VE verbs were labeled as B0 or Bl, implying that seemingly our model still
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generated quite a few unexpected break types for the VE verbs. Further observation of
the data, nevertheless, found two main reasons to account for this discrepancy of
labeling. First, besides a sentential object, part of the VE verbs could also take a NP
object, so the breaks occurring before a NP object were predictably shorter than

before a sentential object. A typical example is given below:

Ex.9: ... F](because, Cbaa) i%(you, Nhaa) ¥ (can, Dbab) & (from, P19) i3 (past,
Ndda) % (experience, Nac) ® (in the course of, Ng) B2-2 # i¢(examine, VE2)
B1 = pz(success and failure, Nad) - ...

(...because you can examine your success and failure based on the past experience...)

The other reason for the occurrence of B0/B1 after a VE verb is that to express
attitudinal, temporal, spatial, or manner information about a VE verb, a small word
from the DE, Di, Ng, or T sets (such as de, zhe, le, guo, etc.) was attached to the verb,
and this attachment and the close connection between the small word and the VE verb
caused no need to pause at the juncture." Howewver, the originally expected long pause
(B3/B4) after the VE verb did not actually disappear; it was retained and only lagged

behind to occur after the VE vetb, for instance:

Ex.10: ... » r(with, P11) {7 # (action; Nad) L (prove, VE2) Bl 7 (Di) B3 # (he,
Nhaa) - (care, VKI) &J‘ (you, Nhaa) (DE) R i (feeling, Nac) £ (and, Caa)

#p ¥ (expectation, Nac) - ...

(...his actions have already proved that he cares about your feeling and

expectation....)

5. Word Sets of Caa and Cb

Caa and Cb are two subcategories of Mandarin conjunctions, representing
conjunctive conjunctions and correlative conjunctions [72], respectively. In the case
of Caa, the arguments linked by the Caa conjunctions are words or phrases of
identical syntactic categories and are usually associated in their meaning as in fengy
hecaa yun “R o wind and rain,” reyy hia-shicaa lengvn “#::& %4 hot or cold,”
SiNen Zhicaa Shinew suing“® 3 -+ # from four to ten years old,” and the like. Upon
observation, we found that people usually tend to take a longer pause at pre-word
boundary than at the post-word context, forming a sensible rhythmic variation and

hence facilitating message delivery.
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The statistics of the labeling results in Table 2.6 informs us that 90% of the Caa
pre-boundary breaks were not shorter than B2-2, while, on the contrary, 98% of the
post-word breaks were not longer than B2-2, a labeling outcome verifying our
observation of the Caa words’ neighboring breaks; that is, longer pauses tended to
occur at the boundary between the preceding argument and the conjunction. The

results matched some findings in Ref. 40. One example is given below for illustration:

Ex.11: ... - 2 jE(life, Nad) BJ%‘&E (stress, VH21) B3 ¥ (and, Caa) Bl 3 %% (marriage,
Nv4) zt & (put off, VC2) «(DE) F* & (problem, Nac) » ...

(...the problems of stressful life and postponed marriage....)

On the other hand, the Cb conjunctions function to join two clauses — a
syntactic unit much larger than Caa’s arguments — into a compound sentence, and
therefore have higher potential to be preceded or followed by a PM in written texts to
delimit the domain of a clause or a sentence; in read speech the occurrence of a PM
elicits the announcer to take a longet pause to index a message transition or a piece of
new message is coming. Our statistic results show that in the case of Cb conjunctions
80% of the pre-word boundaries and 20% of the post-word boundaries were labeled
as B3/B4, which means much: more PMs-0ccuired before Cb conjunctions than

afterward. One typical example is given below for demonstration:

Ex.12: ... » B4 #] & (because, Cbaa) B2-1 ¥ At (academic credential, Nad) i (Dbb)
#t(not, VG2) # % (choose spouse, VA4) (DE) % #f(absolute, A) % i# (condition,
Nac) °

(..., because the academic credentials are not absolute conditions of choosing

spouse.)

Table 2.6: Statistics of break types labeled for word sets of Caa and Cb.

Labeled break type B0 Bl B2-1 B2-2 B3 B4 Total count

Caa Pre-boundary 5 32 1 127 214 26 405
Post-boundary 52 104 157 85 7 0 405
Ch Pre-boundary 61 46 23 39 168 512 849
Post-boundary 135 284 166 95 150 19 849

6. Word set of P
P represents the class of Chinese prepositions, which precede a required

argument and together play several semantic roles and indicate various relationships

38



such as time, location, tool, purpose, etc. Although Chinese Knowledge Information
Processing (CKIP) categorizes prepositions into 65 types [73], only 13 types are
active in the Sinica Treebank corpus. As for the adjacent pause of a preposition, it is
reasonable to expect that due to the close connection of a preposition and its
following argument, the pause at the post-word boundary tends to be short. For

A 9

convenience of illustration, only ba/jiang “3= ,#-” (labeled as P07) and zai “i

(labeled as P21), two typical and most frequently used prepositions, are selected out
as the representative examples for discussion.

The statistic results in Table 2.7 show that on the whole for both ba/jiang “#= ,
#- and zai “ % about 90% of the post-word boundaries were labeled as breaks no

longer than B2-1 (a break type caused by a pitch jump instead of lengthened pause
duration), which indicates that the pauses at this juncture were either unperceivable or
tending to be very short, again another confirmation of our model’s sound labeling
job. Besides, a closer look at the distribution of break type percentages reveals that as

high as 49% and 69% of the post-word breaks were B2-1 for ba/jiang “¥ ,#-" and zai

6 A 9

", respectively. This statistics reflected our informant’s idiosyncratic style of

articulating prepositional phrase; namely, besides leaving no pauses (Ex. 13), she
often made a pitch jump between.a preposition and the following argument to cause a
sensible short pause (Ex. 14).
Ex.13: > B4 3 (P07) Bl 3%+ (children, Nab) # #a(regard as, VG1) - #.(a piece of,
DM) ¥ 2 (uncut jade, Nab) »

(....treat children as unpolished jade....)

Ex.14: % (at one time, Dd) #5 4 (investigate, VE2) i (he, Nhaa) B3 { (among ,
P21) B2-1 iE2 (past, Ndda) % % (a large number of, VH11) =(DE) ¥ i%(works,
Nab) ¥ (among, Ng)

(...has investigated that among a large number of works he wrote...)

On the other hand, as far as the labeling at the pre-word boundary is concerned,
most labels were either Bl or B3/B4; that is, 46% and 41% of the labels were B3/B4
and 44% and 49% of them were B1 for ba/jiang “3 ,#- and zai “ #.,” respectively,
which suggests that our informant either took quite a long pause or just no pause at
the pre-word position. To explain this phenomenon, further examination on the data

containing these two prepositions revealed that the informant’s long breaks (B3/B4)
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before a preposition were contributed by a left PM (Ex. 15), and in the remained cases

she usually took no pause at this position (Ex. 16).

Ex.15: ... > B4 #-(P07) B2-1 ¥* % (document, Nab) #% ¥ (transfer, VC32) ' [
(Taoyan, Nca) # F(district court, Ncb) % 32 (process, VC2) °

( ...transfer the documents to Taoyan District Court to process....)

Ex.16: -t ¢ (association, Nac) ﬁ‘&(an auxiliary confirming, Dd) X (establish, VC33)
Bl #.(at,P21) Bl s (his, Nhaa) FH(home, Ncb) -
(....The association is established at his home....)

Table 2.7: Statistics of break types labeled for word sets of P07 and P21.
Labeled break type B0 Bl B2-1 B2-2 B3 B4 Total count

PO7 Pre-boundary 0 39 0 9 329 89
Post-boundary 8 38 34 9 0 0 89
Pl Pre-boundary 1 168 12 24 88 53 346
Post-boundary 27 79 208 28 4 0 346

2.5.2 Analyses of Prosodic Constituents

Based on the break type labeling, we can' divide the syllable sequence of each
utterance into three types of prosodic constituents (i.e;, PW, PPh, and BG/PG) to form
a four-layer prosodic structure. StatiStics in"Table'2:8 shows that the average lengths
for these three types of prosodic constituents are, respectively, 3.17 syllables or 1.85
lexical words (LWs) for PWs; 6.98 syllables, 4.02 LWs, or 1.69 PWs for PPhs; 16.69
syllables, 9.62 LWs, 4.07 PWs, or 1.94 PPhs for BG/PGs.

Table 2.8: Statistics of three types of prosodic constituents. Value in
parentheses denotes standard deviation.

Average length Prosodic constituent
in PW PPh BG/PG
syllable 3.17(1.74) 6.98(3.48) 16.69(9.49)
LW 1.85(1.03) 4.01(2.17) 9.62(5.43)
PW 1.00 1.69(1.55) 4.07(2.90)
PPh X 1.00 1.94(1.75)

According to the histograms displayed in Figure 2.11, the length of each of these
three prosodic constituents spans, respectively, from 1 to 12 syllables for PWs, from 1

to 33 syllables for PPhs, and from 1 to 99 syllables for BG/PGs. Besides, the
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histograms also reveal that quite a few PPhs and BG/PGs, whose average lengths are
supposed to be about 6.98 and 16.69 syllables, respectively, are nevertheless no
longer than three syllables in length. Further investigation into these oddly short PPhs
and BG/PGs indicates that the main reason lies in several special structure patterns of
these constituents that require a long pause to highlight their prominence for
successful information processing. First of all, in the case of short BG/PGs, defined as
a sequence of syllables bounded by a B4 on both sides, many of the particularly short
BG/PGs actually consisted of a mono-syllabic subject and VE verb, which, as
discussed in Subsection 2.5.1, due to its sentential object was tending to be followed
by a long break up to B4; accordingly, bounded by a B4 on both sides, the structure
pattern of a subject plus a VE verb, both mono-syllabic in length, could generate as
many short BG/PGs as possible.

BGPG FPPh
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Figure 2.11: Histograms of lengths for BG/PG, PPh, and PW.

As for the cases of short PPhs, defined as a sequence of syllables delimited by (1)
a B3 at both sides or (2) a B3 and a B4 at each side, respectively, most of the B3s or
B4s bounding the very short PPhs were actually caused by the existence of PMs that
cued long pause duration. Table 2.9 shows the statistic results of the short PPh
instances with respect to the existence of PMs at their two endings. As shown in the
table, 66% of one-syllable PPhs were bounded by PMs on both sides, and most of
them were numbers that were used to enumerate events. On the other hand, in the case
of two- or three-syllable PPhs, on the whole about 84% of them were delimited at
least by a left-sided PM, which means that the majority of these PPhs occurred at the
beginning of a sentence. In terms of the internal structure of the two-syllalbe PPhs,

91% of them were bi-syllabic LWs functioned to express transitional relationships
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like contrast, comparison, reinforcement, or addition. As for the three-syllable PPhs,
the structure of them were either a topicalized tri-syllabic noun, or any phrasal
structure composed of two smaller syntactic elements as in a subject-VE structure (wo
ren-wui “# 3% % I suppose”), a preposition-noun structure (¢ € & you Chung-qing
“from Chung-qing”), a noun-localizer structure (hun-zhan zhong “R ¥ * in the

scuffle”), etc., and the long pauses adjacent to these PPhs were, on the informant’s
part, strategies to cause prominent stress on these short phrases, and on the audience’s
part, offered the listeners longer time to process and catch the information with least

distortion.

Table 2.9: Count of short PPh instances with respect to the
existence of PM at their two endings.

) PPh Length in Syllable
Count of PPh instances

1 2 3

No PMs on both sides 5 38 56
PM on right side only 1 8 28
PM on left side only 6 254 178
PMs on both sides 23 159 121
Total 35 459 383

2.5.3 Pitch Patterns of Prosodic Constituents

We then explored the log-F0 patterns of the three prosodic constituents of PW,
PPh, and BG/PG. First, we extracted the prosodic state patterns from the observed

pitch contour, sp, , by eliminating the influence of the current tone, the

coarticulations from the two nearest neighboring tones, and the global mean, i.e.,
pm,=sp,()~B, )-B}, , (D-B,, O-pd)  forl<n<N (2.13)

where x(1) denotes the first dimension of vector x. A sequence of pm, delimited

by B2-1/B2-2/B3/B4 at both sides is regarded as a prosodic state pattern formed by
integrating the log-F0 mean patterns of the three prosodic constituents we considered.

A model of prosodic state pattern is therefore defined by

pm,=pm, +ﬂPWn +ﬁPPhn +ﬁBG/PGn (2.14)

where pm, is the residual of log-FO mean at syllable n; f, , P, and Py pe

42



are the log-F0 patterns of PW, PPh and BG/PG, with PW =(i,j), PPh,=(i,j) and
BG/PG,=(i,j) denoting that syllable n is located at the jth place of an i-syllable PW,
PPh and BG/PG, respectively. The model was trained by a sequential optimization
procedure. After well-training, the variances of sp, (1), pm, and pm, were
565.4x107*, 359.1x107*, and 191.2x107*, respectively. Hence, the total residual
error (TRE), which is the percentage of sum-squared residue over the observed

sum-squared log-F0 mean, is about 33.8% by the current representation.

Figure 2.12 displays the patterns of f,, ., f,,, , and [y; ,; with different
lengths. It is noted that only the patterns calculated using more than 20 instances of
prosodic state patterns are displayed because we want to know their general log-F0
patterns. It can be found from Figure 2.12(a) that all f,;,,; had declining patterns
with dynamic range spanning approximately from -0.1 to 0.1. Moreover, most of them

had short ending resets. From Figure 2.12(b), we find that short /., had

rising-falling patterns, while long 58, had rising-falling-sustaining-falling patterns.

Moreover, they had smaller dynamic range spanning approximately in [-0.07, 007].

Lastly, we find from Figure 2:12(c) that short /., showed high-falling patterns,
while long /., showed falling-sustaining-falling patterns. Their dynamic range

spanned approximately from -0.1 to 0.1.

From above analyses, we find that the prosodic-state tags possess rich
information to represent the high-level prosodic constituents of the four-layer
prosodic structure defined in this study. All these three types of log-F0 patterns

generally agree with the findings of previous studies on intonation patterns of

Mandarin speech [58,68,74,75]. The superposition patterns [y, + 555/ pc» and all

these three patterns (B, , Bopy and Sygpg ) resembled the intonation patterns

reported in the studies of Tseng and co-workers [9,76-78] and the study of Chen et al.
[36], respectively. Furthermore, with this prosodically meaningful finding, these

quantitative prosodic constituent patterns combining with the APs of tone and

coarticulation (i.e., B, and Bé,tp/ BZJP) can be used in Mandarin TTS to generate

pitch contour if all break type can be properly predicted from the input text. However,

due to the fact that the errors of the current representation are still high, a further
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study to explore a more efficient representation is worthwhile doing in the future.
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Figure 2.12: The log-F0 patterns of (a) BG/PG, (b) PPh, and (c) PW. The special
symbol “0” in (a) indicates the ending syllable of a log-F0 pattern.

2.5.4 Comparison with Human Labeling

To further evaluate the performance of break labeling of the proposed method, a
part of the Sinica Tree-Bank corpus used in this study was labeled cooperatively by
two experienced labelers working in the Phonetics Laboratory, Department of Foreign
Languages and Literatures of National Chiao Tung University. The annotated dataset
consisted of 42 utterances with 5326 syllables. The labeling system used was a
ToBI-like one developed by the laboratory, which represents the Mandarin speech
prosody by a four-layer structure containing syllable, PW, intermediate phrase, and
intonation phrase. These four prosodic constituents are delimited by four break types

of b1, b2, b3, and b4, respectively. Here b1 represents an implicit non-break index, 52
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is a perceivable break index for PW boundary, 53 is a minor-break index, and 54 is a

major-break index.

Table 2.10 displays the correlation matrix of the break indices labeled by the two
methods. It can be found from Table 2.10 that 97.8% of human-labeled b4s, i.e.,
major breaks, were labeled as break indices of phrase or utterance boundaries (i.e., B3,
B4, or B,) in our method, and 96.5% of bls, i.e., non-breaks, were labeled as indices
of SYL boundaries within PW (i.e., BO or Bl). This indicates that the two labeling
methods were consistent for the two extreme cases of non-break and major break. It is
also observed from the table that 53s mainly (73.6%) corresponded to break
indices> B2-2, suggesting that the intermediate phrase boundaries in manual labeling,
defined and perceived by the labelers as a minor-break, were, to quite a certain extent,
consistently judged as a clearly perceived short pause (B2-2) or medium pause (B3) in
our labeling. However, in the cases of b2, 69.7% of them, defined as perceivable
breaks, inconsistently corresponded to non-breaks (B0 or Bl) in our scheme. To
account for such inconsistency, a statistics on theinternal morphological and syntactic
structures of the PWs delimited-by B2 and 2 shows that (1) while as high as nearly
69.3% of PW-LW correspondence occurted in the human labeling, 40.0% of such
correspondence was found in our method;and (2) while 41.2% of the PWs labeled by
our method was cases of compound words or-long phrases composed of at least four
syllables, only 2.2% of the PWs in the similar types was judged by the labelers. This
significant discrepancy in the demarcation of PWs between these two methods
suggests that labelers, though trained to listen to the prosodic cues with visual aids of
graphic user interface to label the breaks, tended to subjectively treat LWs as PWs or
as pronunciation units rather than objectively and exclusively relied on the actual
prosodic features in prosodic labeling. This inclination obviously resulted in shorter
average lengths of prosodic constituents in human labeling. Figure 2.13 displays the
histograms of length of the prosodic constituents formed by the two labeling methods.
It can be found from the figure that the average lengths of PWs, PPhs, and BG/PGs
labeled by our method were indeed longer than human-labeled PWs, intermediate

phrases, and intonational phrases, respectively.
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Table 2.10: Correlations between unsupervised

and human labeled breaks

Human
) bl b2 b3 b4 total
Unsupervised
B0 836 207 9 0 1052
Bl 1970 726 70 0 2766
B2-1 81 313 53 1 448
B2-2 20 93 227 12 352
B3 0 0 137 260 397
B4 0 0 4 265 269
B. 0 0 0 42 42
total 2907 1339 500 580 5326
(a) 1500 Prosodic Word - Intermediate Phrase @ Intonation Phrase
2.12 *
om0 (2.12) 160 (4.79) N (9.21)
% 100 30
]
500 20
50
10
o 5 0 o g 20 a0
FFh BG/PG
1] 25
(b) a0 20 (17.13)
- 15
] a0
0 10
20 :
0 0

10 u] 10

Length in Syllable

20

Figure 2.13: The histograms of length of the prosodic constituents formed by (a) the
human labelers and (b) the proposed methods. The numbers in () represent the

average length of prosodic constituents.

From the perspective of prosodic features, it can be found from Figures 2.14(a)
and 2.14(b) that the similar histograms of pause duration and normalized pitch jump
in the same rows represented labeling consistency in our method, while the

distinguishable histograms in the same columns expressed labeling inconsistency in
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human labeling. Furthermore, Table 2.11 displays symmetric Kullback-Leibler
distances (KL2) [79] for the two break labeling methods to measure the difference
between two acoustic feature distributions that belong to different break indices
labeled by the same method. It can be found from Table 2.11 that the KL2 distances
for the proposed unsupervised method were generally greater than those of human
labeling. Moreover, we find from Table 2.11(a) that the KL2 distances of pause
duration were relatively large for all break index pairs of the proposed method except
(B1,B2-1); nevertheless the KL2 distances of normalized pitch jump for (B1,582-1)
were large. On the contrary, we find from Table 2.11(b) that the KL2 distances of
both acoustic features were low for (b1,62) of human labeling. This confirms that the
six break types B0-B4 in our labeling have distinct characteristics of acoustic
features but the break types in human labeling have less discriminated ones.
Specifically, B4 has very large pause duration and significant pitch reset; B3 has large
pause duration and pitch reset, B2-2 has medium pause duration, B2-1 and B1 have
small pause duration but B2-1 has significant pitch reset and B0 has almost no pause
duration. This property will be advantageous to:ourdabeling method on those prosody

modeling applications using acoustic features.
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Figure 2.14: The histograms of (a) pause duration (in sec) and (b) normalized pitch
jump (in log-F0) for syllable-juncture instances belonging to sub-groups with
different break-index pairs labeled by the two methods.



Table 2.11: Distances measuring the difference between two acoustic feature
distributions that belong to different break indices labeled by the same method: (a) the
proposed method, and (b) human labeling. Upper and lower triangular matrices
represent KL.2 distances for pause duration and normalized pitch jump, respectively.

(2)

B0 B1 B2-1 B2-2 B3 B4
B0 2.63 3.39 23.59 23.42 22.77
B1 0.19 0.16 14.21 23.28 22.66
B2-1 4.59 4.87 11.92 21.17 20.62
B2-2 0.52 0.72 2.79 13.84 18.85
B3 1.66 2.12 1.25 1.43 12.71
B4 3.69 4.18 0.36 2.50 0.88
(b)
bl b2 b3 b4
b1 0.12 6.83 23.16
b2 0.24 6.07 22.10
b3 0.60 0.36 10.56
b4 2.05 1.20 0.82

2.5.5 A Labeling Example

A typical example displaying the labeling results of the beginning part of a long
utterance by the two methods is given in Figure 2.15; We first examined the labeling
results of our method. From Figure 2.15(a), we find that the three PMs were labeled
as two B3 and one B4. One other B3 without PM appeared at the right boundary of a
nine-syllable NP. Besides, there existed five B2-1 and four B2-2. They all appeared at
inter-word junctures. We also find from Figure 2.15(b) that all three B3 and five B2-1
had clear normalized log-F0 reset. Moreover, the curve of integrating APs of prosodic
state and the global-mean of pitch level showed smoother PW patterns derived via
removing the tone and coarticulation effects from the observed zigzag curve of log-F0
mean. We then compared the results of the two labeling methods. It can be found
from Figure 2.15(a) that aside from giving indices of breaks to all the
above-mentioned breaks labeled by our method, human labelers gave four additional
breaks to divide the nine-syllable-NP ({7 Fcfx 2 34 7 3i3t xing-zheng-yuan
zhu-ji-chu de tong-ji) PW into three PWs, and the two four-syllable compound-word
PWs, “i& v jin-kou(import) % %f jin-e(the amount of money)” and “3& #
qu-nian(last year) F ¥ tong-gi(the same period)”, into four two-syllable words. To

justify whether the deletions of these four human-labeled breaks were reasonable, we
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examined the pause durations of these four word junctures and the normalized pitch
patterns of the three integrated PWs. The pause durations were 12 ms, 40 ms, 22 ms,
and 1ms. Obviously, they were all not significant. Besides, as seen in Figure 2.15(b)
all the three normalized pitch patterns of none-syllable-NP PW and two four-syllable
compound-word PWs were smooth. So the deletions of these four breaks by our

method seemed reasonable.

(a) PP =
P43 G T B2-1/h2 )
MP L Meh: FEE] wo-guo B2-1/h2
MP -DE L vl
NP Myl [ chu-kou B2-2/63
MNeai{T ELfby ding-zhengyuan 52 ECaa; B i B2-1/2
MNeb:F EFEE ahoji-chu Nyl [ jin-kou b2
DE: fY de b2 L Nad: 4528 jin-e B3/b3
Mad: 35T tong-ii B3/b4 | pp
’ - P49; FEEE bigi B2-1/b2
NP P
':Ndatu::—l— E 45 shi-yus-fen B2-2/b2 Nelaba: E4F qunian 52
M _ Mac: []HE tong-gi B2-2/b3
Modabd: — 7 - Dab: 15 jun
ECaa: F| dao B2-1/b2 —Dbab: 35 you B2-2/h2
Modabd: — 4 H et-shis B3/b3 L yH1E: B zeng-ia B4/b4

(b)

|xing- zhu- | shi- i | er- wo- | chu-... | . . _ ju”; _
yi-ju |zheng- ji- de to:g yue- | shi- |guo | kou ) |il(I:u ‘": bli l:li:ll tonig ('!J; Z??ag
48 yuan, chu ,J fen ' daol i | p q ) q L you J
0 5 10 15 20 25 30 35 40

Syllable Index

Figure 2.15: An example of the automatic prosody labeling. (a) Syntactic trees with
prosodic tags: upper case B and lower case b for break-index labeled by our method
and the human labeler, respectively; and (b) syllable log-F0 means: observed (open
circle) and prosodic statet+global mean (close circle). Solid/dash/dot lines represent
B3/B2-1/B2-2 respectively. The utterance is “yi-ju(according to) xing-zheng-yuan(the
Executive Yuan) zhu-ji-chu(Directorate-General of Budget, Accounting and Statistics)
de(DE) tong-ji(statistics), shi-yue-fen(October) yi(1st) dao(to) er-shi-ri(20th),
wo-guo(our country) chu-kou(export) ji(and) jin-kou(import) jin-e(the amount of
money) bi-qi(in comparison with) qu-nian(last year) tong-gi(the same period)
Jjun(both) you(to have some) zeng-jia(increase).”

50



2.6 Conclusions

In this chapter, a new approach of joint prosody labeling and modeling for
Mandarin speech has been proposed. It first employed four prosodic models to
describe the relationship of two types of prosodic tags to be labeled with the input
acoustic prosodic features and linguistic features, and then used a sequential
optimization procedure to determine all prosodic tags and estimate the parameters of
the four prosodic models jointly using the Sinica Treebank speech corpus.
Experimental results showed that the estimated parameters of the four prosodic
models were able to penetratingly explore and appropriately describe the hierarchy of
Mandarin prosody. First, the syllable pitch contour model was able to interpret the
variation in syllable pitch contour controlled by such affecting factors as lexical tones,
adjacent breaks, and prosodic state. Next, the prosodic state model was developed to
clearly describe the declination effect of log-F0 level within PW and the resets across
PW, PPh, and BG/PG, and hence toyiextract the pitch patterns of each prosodic
constituent. Then, the break-acoustics model.could demonstrate the distinct acoustic
characteristics for each of the six break types.The-last model, the break-syntax model,
was built to express the general-relationship between the break type and the linguistic
features of various levels. Besides, ‘the performance of our models was further
confirmed by the corresponding relationships found between the break indices labeled
and their associated words which served as evidences to manifest the connections
between prosodic and linguistic parameters, and it was also verified by our more
consistent and discriminative prosodic feature distributions than those in human
labeling by a quantitative comparison. In conclusion, the method we proposed to
develop the joint prosody labeling and modeling for Mandarin speech was able to
construct interpretive prosodic models and generate prosodic tags that were

automatically and consistently labeled.
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Chapter 3 Advanced Unsupervised Joint
Prosody Labeling and Modeling

3.1 Introduction

Motivated by the success of the unsupervised joint prosody labeling and
modeling method (referred to as the UIPLM method hereafter) on the modeling of
syllable pitch contour discussed in Chapter 2, we extend the study to include the other
two important prosodic features, syllable duration and energy level, in this chapter.
The study will jointly model syllable pitch contour, duration and energy level using
the same method presented in the previous chapter. For simplicity, this extension is

referred to as the advanced UJPLM (A-UJPLM) method.

3.2 The New Prosodic Model

In the A-UJPLM method, a new prosodie model to jointly consider the modeling
of syllable pitch contour, duration, and energy level is first proposed. The new model
considers more acoustic features,smore prosodic tags, and more affecting factors. We

discuss the new prosodic model in detail in the following subsections.

3.2.1 Features and Parameters Used in the New Prosodic Model

Aside from the prosodic features A={sp,pd.ed} used in the previous study of
pitch modeling, we consider more features in this study, including syllable duration
sequence sd, syllable energy-level sequence se, normalized inter-syllable pitch

jump sequence pj defined by

i, =(sp,.. )-B, , (D)—(sp,()-B, (1)), (3.1)
and normalized syllable duration lengthening factor sequences dl and df defined
by

dl,=(sd,~y, -7, )~(sd..~7,,~7,,) (3.2)
and
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df,=(sd,~y, =7, )~(sd,u=7,,~7,.)- (3.3)
where y, and py, represent respectively the syllable duration APs of tone and

base-syllable type (to be defined latter). Hence, the acoustic feature set becomes

A={sp,sd,se,pd,ed,pj,dl,df} . For a better presentation of these acoustic features, we
divide them into three classes: syllable prosodic features X={sp,sd,se} ,
inter-syllable prosodic features Y={pd,ed} , and differential syllable prosodic
features Z={pj,dLdf}.

As for prosodic tags, two new types of prosodic states, the duration prosodic

state q and the energy prosodic state r, are introduced for the modeling of syllable

duration and energy level to consider the effects contributed from high-level prosodic
constituents of PW, PPh and PG/BG. Besides, a new break type B2-3 is added to
represent the syllabic boundary of B2 with perceived lengthening of the preceding
syllable. So, the complete prosodic tag set becomes T={B,PS}, where B= {B0, BI,
B2-1, B2-2, B2-3, B3, B4} is theybreak-type set and PS={p,q.,r} represents the
prosodic-state tag set.

The linguistic features used in the new prosodic: model are similar to those used
in the old model with the following modifications. Firstly, in the syllable level, we
separate base-syllable and final types from.the linguistic feature L because they are
two important linguistic features, other than syllable tone, that seriously affect the
variations of syllable duration and energy level. Secondly, all syntactic tree-level
features are removed to consider that they can not be extracted reliably in practical
applications. Lastly, two utterance-level normalization factors are added to consider
respectively the variation in syllable duration due to the speaking rate and the
variation in syllable energy level due to the recording volume. Hence, the linguistic
feature L is refined to include a syllable tone sequence t, a base-syllable type
sequence s, a final type sequence f, an utterance sequence u, and a reduced linguistic
feature set 1. To give a clearer picture of notations used in this study, we summarize

them in Table 3.1.
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Table 3.1: The notations of prosodic tags, prosodic features and linguistic features

T : prosodic tag B : break type
PS : prosodic state P : pitch prosodic state
( : duration prosodic state
I' : energy prosodic state
A : prosodic feature X : syllable prosodic feature SP : syllable pitch contour

sd : syllable duration
se : syllable energy level

Y : inter-syllabic prosodic feature  pd : pause duration

ed : energy-dip level

Z. . differential prosodic features  Pj : normalized pitch jump

dl normalized duration
lengthening factor 1
df normalized duration

lengthening factor 2

L : linguistic feature  I: reduced linguistic feature set

t: syllable tone sequence

S: base-syllable type sequence
f: final type sequence

U: utterance sequence

3.2.2 Design of the New Prosodic Model

Based on above discussions, we'reformulate P(T,A|L) by

P(T,A|L)=P(A|T,L)P(T|L)=P(X,Y,ZB:PS,L)P(B,PS|L)

~P(X/B,PS,L)P(Y,Z/B,L)P(PS|B)P(BIL) S

where P(X|B,PS,L) is a syllable prosodic model describing the variation in syllable
prosodic features controlled by B, PS, and L; P(Y,Z|B,L) is a break-acoustic model

describing the inter-syllable acoustic characteristics specified for different break type

and surrounding linguistic features; P(PS|B) is a prosodic state model describing
the dynamics of prosodic states controlled by break types; and P(B|L) is a
break-syntax model describing the dependence of break occurrence on the
surrounding linguistic features.

P(X|B,PS,L.) is further elaborated by modeling syllable log-F0 contour
sequence sp, syllable duration sequence sd, and syllable energy level sequence se
separately, and assuming that their variations are controlled by five main affecting
factors of lexical tone t, base-syllable type s, final type f , utterance u, prosodic

state PS={p,q.r}, and break B, to obtain
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p(X[B,PS,L)=~p(sp/B,p,t) p(sd|q.t,s,u) p(sefr,t,f,u)

= n+1 N - (3 5)
sz(Spn |Br7—1 ’pn ’tn—l )Hp(Sdn |qn ’tn ’Sn ’un )Hp(sen |r;1 ’tn ’-/r; ’un )

n=1 n=1 n=1
where
p(sp,|B,.p,.45 )=N(sp,:B, +B, +B;  +B,  +Im.R) (3.6)

models the variation in syllable log-F0 contour sp , represented by the first four

. f b .
orthogonally-transformed parameters, with §, ., ., B , . and P, , denoting,
respectively, the APs of tone ¢ , the pitch prosodic state p, , and the forward

(carryover) and backward (anticipatory) coarticulations contributed from syllable n-1

and syllable n+1, respectively, and p and R denoting the global mean and the

covariance matrix of residual;
p(Sdn | qnﬁtn’sn’un) = N(Sdn;ytn +}/q” +7/Sn +7/un +1le’Rd) (3'7)

models the variation in syllable dutation sd, with »'s denoting various APs, and

4, and R, denoting the global mean and the variance of residual; and

pse, |r,.t,, f,.,u,)=N(se a, +a& +e;+a, +u,R) (3.8)

models the variation in syllable energy level. 'se, with a's denoting various APs,

and g, and R, denoting the global mean and the variance of residual.

The break-acoustic model P(Y,Z|B,L) is further elaborated by

N
P(Y,Z|B,L)~P(Y,Z|B)~] | p(pd, .ed,. pj, dL,df,| B,.),) (3.9)

n=l

where p(pd, .ed,,pj,.dl .df,|B,],) is derived by the CART algorithm with the node

splitting criterion of maximum likelihood gain. The CART algorithm jointly classifies

the samples of pause duration pd, , energy-dip level ed , normalized pitch jump
pj,» and normalized duration lengthening factors dl and df, for each break type
according to a question set derived from the contextual linguistic features 1 . A joint

pdf formed by the product of a gamma distribution for pause duration and four normal
distributions for energy-dip level, normalized pitch jump, and the two duration

lengthening factors is generated for each leaf node.
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The prosodic state model p(PS|B) is further divided into three sub-models for

the three types of prosodic states and expressed by
p(PS|B)~ p(p|B)p(q|B) p(r|B) (3.10)

where p(p|B), p(q/B) and p(r|B) are all represented by bigram models as

P(p|B)zP(pl)|:HP(pn|pnI’Bn1)} > (3.11)
P(q|B)zP(ql)[ﬁP(Qn‘qn—l’Bn—l)jl’ (3.12)
and

P(F|B)zP(’T)[ﬁP(’2|’71-1aBn-1)}- (3.13)

The break-syntax model P(B|L)=P(BJ|l) is elaborated in the same way as the old
model discussed in Chapter 2 (see Eg: (2.11)).

3.3 Model Training by-the A-UJPLM Method

Like the UJPLM method; the¢ A-UJPLM" method employs a sequential
optimization procedure based on the ML criterion to jointly label the prosodic tags for
all utterances of the training corpus and estimate the parameters of the new prosodic
model. It is divided into two main parts: initialization and iteration. The initialization
part determines initial prosodic tags of all utterances and estimates initial parameters
of the new prosodic model, which is composed of eight sub-models as discussed in
Subsection 3.2.2, by a specially designed procedure. The iteration part first defines an

objective likelihood function for each utterance by

n=l

N
Q: HP(spn |pn’B:-l’t:jll)p(Sdn |qn9tn’sn’un)p(sen |rn’tn’-fn’un)j
n=2

N
P(pl)P(ql)P(rl)HP(pn |pn—1’Bn—1)P(Qn |qn—1’Bn—l)P(rn |rnl’Bnl)] ‘ (314)

N-1
(H(p(pdn’edn’pjn’dln’df;z |Bn’ln)P(Bn |ln))J

n=1

It then applies a multi-step iterative procedure to update the labels of prosodic tags
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and the parameters of the eight prosodic sub-models sequentially and iteratively. In

the following subsections, we discuss the sequential optimization procedure in detail.

3.3.1 Initialization

The initialization part is further divided into two sub-parts: (a) a specially
designed procedure to determine initial break labels of all syllable junctures; and (b) a
ML estimation process to estimate initial parameters of the eight prosodic sub-models
and determine the initial prosodic-state labels of all syllables using the information of

initial break labels determined in the first sub-part.

(a) Initial labeling of break indices

The determination initial break index of each syllable juncture is similar to the
method described in Chapter 2. As shown in Fig. 3.1, the decision rules for
determining B4, B3, B2-2 and B2-1 are the same as the ones illustrated in Fig. 2.2.
Non-PM inter-word junctures with,‘apparent duration lengthening at the preceding
syllable are likely labeled as B2-3. Intra-word jlnctures and non-PM inter-word
junctures failed to be judged as"B2-1, B2-2,-and B2-3 are most likely to be labeled as
B0 or B1. The thresholds Th1~ Th6 are setun-the same way as those used in Chapter 2.
The algorithms to determine 747 and 7h8 are given in Appendix A.

N

ed, >Th6 and
() Pitch pause < Th4

dl,>Th7 and
df,> Th8 B0 |

Bl

Ye, >Th6 and
Pitqéh pause < Th4
N

Figure 3.1: The decision tree for initial break type labeling.
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(b) Estimation of the initial parameters of the eight prosodic sub-models and
prosodic-state indices

The initializations of the break-acoustics model and the break-syntax model can
be done independently with initial break indices of all syllable junctures being given
in previous step. We realize them by the CART algorithm with the node splitting
criterion of maximum likelithood gain given the question sets ®, and ©,. The
details of ®, and ®, used in this study are listed in Appendixes D.1 and D.2,
respectively. The initializations of the syllable pitch contour, duration and energy
level models and prosodic-state indices are integrated together and performed by a
progressive estimation procedure. A progressive estimation strategy is adopted to first
determine the initial APs which can be estimated most reliably and then eliminate
their effects from the surface syllable prosodic features for the estimations of the
remaining APs. In this study, the order of initial AP estimation is listed as follows:

global mean {p,u,,u, }, utterance {y, ,, }, five tones {P,,7,,, }, base-syllable

and final types {7, ,a, }, coarticulation {B; B, .B5 , .B5 , },and prosodic states
{B,.7,,a.}. Notice that the initial prosodic-state.indices are assigned by performing

VQs separately to the three features, of pitch-level components of the residue pitch
contours, the residual syllable durations and the residual syllable energy levels. The
APs are set to be the corresponding ‘codewords. Lastly, the initialization of the

prosodic state sub-models P(p/B), P(qB) and P(r|B) are done using the labeled

prosodic-state indices and break indices.

3.3.2 Iteration
The iteration is a multi-step iterative procedure listed below.
Step 1: Update the APs of utterance y, and ¢, with all other APs being fixed.
Step 2: Update the APs of five tones B,, 7, and «, with all other APs being
fixed.

Step 3: Update the APs of coarticulation {p’, B’;,tp, ﬁfé,,,z] and BI;M} with all

Bap?

other APs being fixed, and then update R.
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Step 4:

Step 5:

Step 6:

Step 7:

Step 8

Update the APs of base-syllable type and final, y, and «, with all other

APs being fixed, and then update R, and R .

Re-label the prosodic state sequence of each utterance by using the Viterbi
algorithm so as to maximize Q defined in Eq. (3.14). Then, update the APs of
prosodic states B,, 7, and «,, the prosodic state sub-models P(pB),
P(qB), P(rB), R, R, and R,.

Re-label the break type sequence of each utterance by using the Viterbi
algorithm so as to maximize Q. Then, update P(p/B), P(qB), P(r/B), R,
R, and R,.

Re-construct the decision trees to update p(pd, .ed, ,pj .dl .df |B,.1 ) and
P(B,1)) by the CART algorithm using the question sets ®, and ©,,

respectively.

Repeat Steps 1 to 7 until a conyergence is reached.

3.4 Experimental Results

The same Treebank database was used-to.evaluate the A-UJPLM method. The

numbers of the three types of prosodic state were.all empirically set to 16. As shown

in Figure 3.2, the sequential optimization procedure took 109 iterations to reach a

convergence. Following is examinations and interpretations of the parameters of the 8

prosodic sub-models.

4.2

Total Likelihood

3.6
0

L L L L L L L L L L
10 20 30 40 50 60 70 80 90 100 110
Iteration Number

Figure 3.2: The plot of total log-likelihood versus iteration number.
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3.3.1 The Syllable Prosodic Model

We first examined the parameters of the syllable prosodic model p(X|B,PS,L).

The covariance matrices/variances of the original and residual syllable log-F0 contour,

duration and energy level are shown below:

5654 239 -256 -0.5 3.8 02 -0.2 0.0

239 905 97 -82| 02 319 26 -15|
o = xI0" = R, = x10
P 1256 97 17.8 -0.9 P 0.2 26 11.1 0.6

0.5 -82 -09 50 00 -1.5 06 3.7
R,=382.1x10° = R =3.7x10°
R,=4843 = R, =026

Obviously, all components of covariance and variances of the three residuals were
much smaller than their counterparts of the original features. This showed that the
influences of the affecting factors considered were indeed essential to the variation of

sp, sd and se.

Table 3.2 displays the APs of five tones. These results generally agreed with
those of previous studies [58,59;67,68].

Table 3.2: APs of five tones

Tone 1 2 3 4 5

Pitch mean 0.153 -0.080 -0.175 0.088 -0.145
Syllable duration 0.012 0.015 -0.008 -0.001 -0.075
Energy level 0.367 -1.015 -1.272 1.500 -1.940

Figure 3.3 displays the decision tree analysis of the duration APs of base-syllable
type. It can be found from the figure that the syllables with initial in {b, d, g} are
much shorter in average than other combinations of initial-final. Generally, syllables
with initial in {q, ch, c, f, h, x, sh, s, p, t, k} are longer while syllables with final of
single vowel are shorter. The results generally confirmed to those of previous studies
[59]. The decision tree analysis of energy-level APs of final type is shown in Figure
3.4. It can be seen from the figure that the average energy level, from large to small,
are those of open, mid and close vowels. Besides, the energy level of final with

medial is generally smaller than others.
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Initial in {b, d, g}
(15)

-~ <

Finals are open vowel In;ti\ai in {q, ch, ¢}

(-25) (22)

I T~

| Initial in {f, h, x, sh, s}
: (59) (16)
I =~ ~

(-27) (-22) Finals are single vowel Initial in {p, t, k}

(42) (7)
> N < \\
(25) (45) "
\
\
Finals are single vowel Null initial
(24) (1)
/I /\\
| \
| \
0) (30)  Finals are open vowel ~ \
'\8) (4)
\
\
(4) (-13)

Figure 3.3: Decision tree analysis of duration APs of base-syllable type. Number in ()
represents the average length (ms) of the APs in the leaf node. Solid line indicates
positive answer to the question and dashed line-indicates negative answer.

Mid ‘or ‘close vowel
(0.54)

Mid vowel With medial
(-0.87) (2.85)

=< A
-~

With medial of “wu” (-2.51) N

(-0.42) .

th medial of “vu” (2.:54) (3.41)

(-1.71) With medial of “yu
(-0.05)

~
~

~
~

(-0.73) With medial of “yi”
(0.13)

A
A
(0.30)  (-0.04)
Figure 3.4: Decision tree analysis of energy-level APs of final. Number in ()

represents the average energy level (dB) of the APs in the leaf node. Solid line
indicates positive answer to the question and dashed line indicates negative answer.
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Table 3.3 displays the APs of the pitch, duration and energy prosodic states. It

can be seen from Figure 3.5 that, for each of the three prosodic features, the APs of 16

prosodic states spanned widely to cover the whole dynamic range.

Table 3.3: APs of prosodic states

p/g/r 2 3 4 5 6 7 8
B,(D 087 -058 -042 -033 -026 -020 -0.14 -0.09
Ve 2012 -0.09 -0.08 -0.06 -0.05 -0.03 -0.02 -0.01
a, -18.49 -1325 -10.50 -840 -6.57 -496 -3.47 -2.12
plg/r 10 11 12 13 14 15 16
B,( 003 003 009 015 021 028 037 048
Yy 002 003 005 007 009 012 0.17
a, 2080 058 198 346 505 682 903 12.15
Normalized logF0 mean

250 T T T

200
‘5150*
3 100+

50

0-1 —OJ.8 —OJ.G - ‘ -04 -0.2 0 0.2 04 0.6

LogFO
Normalized syllable duration

250 T T

200 —
§150* —
8 100+ .

50 —

Count

-0.1 -0.

05 0 0.05 0.1

Normalized energy level

250
200
150
100

50

Figure 3.5: Distributions of normalized prosodic features and the APs of prosodic

states (vertical lines).
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Table 3.4 displays the total residual errors (TREs) of the prosodic modelings for
syllable pitch contour, duration, and energy level with respect to the use of different
combinations of APs. It can be seen from the table that the TREs reduced as more
APs were considered and the most significant one is prosodic state. This result
suggested that higher-level prosodic constituents (i.e., PW, PPh and PG/BG) may
account for great amount of prosodic variations. More detail analysis of prosodic state

will be given in Subsection 3.3.3.

Table 3.4: TREs of the prosodic modelings for syllable pitch contour, duration and
energy level w.r.t. the use of different combinations of affecting factors.

Pitch Duration Energy level
APs TRE APs TRE APs TRE
+ Utterance 98.8% + Utterance 77.8%
+ Tone 71.6% + Tone 88.1% + Tone 74.5%
+ Coarticulation  60.3% + Base-syllable 62.9% + Final 48.0%
+ Prosodic state 1.1% + Prosodic state 1.1%  + Prosodic state 1.0%

3.3.2 The Break-Acoustics Model

Figure 3.6 displays the "distributions--of pause duration, energy-dip level,
normalized pitch jump, and normalized-duration lengthening factors for the root
nodes of these seven break types. As can be seen from the figure, the break types of
higher level were generally associated with longer pause duration, lower energy-dip
level, greater normalized pitch jump, and larger duration lengthening factors. The
distributions of pause duration and energy-dip level were similar to those obtained in
the previous study shown in Fig. 2.5. Notice that B2-3 was similar to Bl and B2-1 in
the distributions of pause duration, and energy-dip level. B2-1, B2-2, B3, and B4 had
positive normalized pitch jumps in average while B0, B1, and B2-3 had negative ones.
This result illustrated the declination and reset effects of log-FO at intra-PW and
inter-PW syllable boundaries, respectively. Normalized duration lengthening factors
of B2-2, B2-3, B3, and B4 were relatively larger than those of B0, Bl, and B2-1.
These distributions showed the lengthening effect for the last syllable of PW, PPh,
and PG/BG.
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3.3.3 The Prosodic State Model

Figure 3.7 displays some most significant transitions of pitch prosodic state
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Figure 3.6: The pdfs of (a) pause duration, (b) energy-dip level for the root nodes, (c)
normalized pitch jump, (d) normalized duration lengthening factor 1 and (e)
normalized duration lengthening factor 2 of these seven break types. Numbers in ()
denote the mean values.

P(p,|p,,.B,,) for seven break types. It can be found that the prosodic state

transitions of B0, B1, B2-1, B2-2, B3 and B4 generally agree with the results
illustrated in Subsection 2.4.3. The transition of B2-3 is similar to those of B0 and B1.

This implies no apparent pitch reset exists at the duration-lengthening juncture of

B2-3.



Prosodic state

Figure 3.7: The most significant pitch prosodic state transitions, P(p, | p, ,,B, ), for

each break types. Notice that the darker lines represent the more primary prosodic
state transitions.

Figure 3.8 illustrates the transitions of duration prosodic state P(q, |q, ,,B, ).

Generally, larger break types made more significant high-to-low transitions. It can be
observed from the transitions of B3 and B4 that PPhs and PG/BGs usually begun with
lower states and ended with -higher 'states to manifest the significant duration
lengthening effect before major break junctures. Compared with the transitions of B3
and B4, those of B2-2 and B2-3%had less high=to-low dynamics implying less syllable
duration lengthening before minor‘break junctutres. As for B0, Bl and B2-1, they had

small nearby-state transitions without preferred direction.

Prosodic state

B _,=B0 B1 B2-1 B2-2 B2-3 B3 B4

Figure 3.8: The most significant duration prosodic state transitions, P(q, |q, ,,B, ),

for each break types. Notice that the darker lines represent the more primary prosodic
state transitions.
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The energy prosodic state transitions are shown in Figure 3.9. Apparently,
low-to-high transitions were primarily found in major breaks (i.e., B3 and B4), while
high-to-low and level transitions were mainly observed in non-break and minor break.
These results demonstrated the declination of energy level within a PPh or PG/BG,

and the reset when restarted a PPh or PG/BG.

Prosodic state

n-1 n  n-1 n_ n-1 n n-1 n n-1 n
B2-1 B2-2 B2-3 B3 B4

Figure 3.9: The most significant energy prosodic state transitions, P(q, |q, ,,B, ),

for each break types. Notice that the darker lines represent the more primary prosodic
state transitions.

3.3.4 The Break-Syntax Model
Figure 3.10 displays the decision tree of the break-syntax model. It can be seen

from the figure that the root nodes of the two sub-trees 73 and 74, which
corresponded to syllable juncture with PM, were mainly composed of major break
types of B3 and B4. T4 contained more B4 because it corresponded to major PMs. 76
which corresponded to intra-word was mainly composed of non-break. 75 had much
more complex tree structure than other sub-trees. By further analyzing the entropies
of the leaf nodes in sub-trees 73-6, we find that 76 had the largest entropy. This
implies that it is more difficult to correctly predict the break types of non-PM

inter-word junctures.
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ﬁ
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Figure 3.10: The decision tree of the break-syntax model. The bar plot associated with
a node denotes the distributions of these six.break’types (B0, B1, B2-1, B2-2, B3, B4,
from left to right) and the numbér is the total samplecount of the node.

More detailed structures of these four sub-trees up to the fourth layer are shown
in Figure 3.11. It is found from Figures 3.11(a) and (b) that nodes in 73 and 74 were
mainly split by questions related to sentence-level linguistic features such as LFS>=7
(Is the length of the following sentence equal to or greater than 7?). Generally, the
juncture of PM was more likely to be B4 when the previous/following sentence was
long. It is also found from Figure 3.11(b) that the minor PM “dun hao” (or “ ~ ”’) was
likely to be labeled as B3 and B2-2 other than B4. We find from Figure 3.11(c) that in
T6 Type-2 intra-word junctures, which are anticipated as potential break positions,
were more likely to be minor breaks than Type-1 intra-word junctures which were
simply labeled as B0 and B1. For the most complex sub-tree 75 (see Figure 3.11(d)),
the labeling of non-PM inter-word juncture could be firstly discriminated as tending
to BO or Bl by the initial type of the following syllable {null initial, m, n, 1 ,r}. The
junctures with non-sonorant initial could be further discriminated as non-break by the
following word with POS “DE”. This result matched with the previous finding
presented in Subsection 2.5.1. It was also found that the distance to previous PM

(DPP>=2, DDP>=11, DFP>=3) and the distance to next PM (DFP>=3) were used to
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discriminate other sub-trees of 75. Generally speaking, a non-PM inter-word juncture
had higher potential to be labeled as minor breaks as its distance to the nearby PM

was longer.

‘363].“509 IJ‘WOS ‘874 .II

Type-2 intraword?
Q

()

? / ’
dunao. Initial in null or (m, n, 1, r)?

/

21937

DPP>=11 Null initial? PWL=1
6485 Ll 1974 ‘ 1170
- o
(o]
I1296 15189 I1386 I588 iszz 548 || 2851 i2466

(d)

Figure 3.11: The more detailed structures of sub-trees of (a) 73, (b) 74, (¢) 76 and (d)
75. Solid line indicates positive answer to the question and dashed line indicates
negative answer.
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3.4 Analyses of the Labeled Breaks and Prosodic

Constituents

3.4.1 Comparison Between A-UJPLM and UJPLM

Table 3.5 shows the cooccurrence matrix for the break types labeled by
A-UJPLM and by UJPLM. Some findings from the table are discussed as follows.
Firstly, the labeling results of these two methods were roughly consistent to each
other. This is especially true for non-breaks and major breaks. Secondly, about 83%
of the new break type B2-3 labeled by A-UJPLM corresponded to the tags of B0 and
B1 labeled by UJPLM. This implies A-UJPLM inserted more minor breaks than
UJPLM by re-labeling non-breaks into B2-3. Thirdly, by more detailed analysis we
find that the two most inconsistent pairs (82-2,83) and (B1,B2-1) were owing to the

similarities in the distributions of their inter-syllable acoustic features.

Table 3.5: Cooccurrencé matrix  for. thé. break types labeled by
A-UJPLM and by UJPEM

UIPLM "1 Bl B> B3y s Count

Advanced UIPLM
B0 82.7 “16.3-1.0 0 0 0 10311
Bl 309943 1.1 16 O 0 23892
B2-1 38 116 762 83 0.1 0 4812
B2-2 0 39 27 764 170 0 3464
B2-3 164 668 58 109 0 0 3065
B3 0 0 01 32 877 90 3549
B4 0 0 0 0 10.6 89.3 2720

Figure 3.12 displays the histograms of length for the three high-level prosodic
constituents of BG/PG, PPh and PW. Compared with Fig. 2.10, we find that both
histograms of BG/PG and PPh looked similar for these two methods, while the
histogram of PW for A-UPJLM shrank significantly. Table 3.6 shows the statistics of
length for the three prosodic constituents. As can be seen from the table, the average
length of PW (2.8 syllables) was shorter than that of UJPLM (3.17 syllables, see
Table 2.8) due to the insertions of B2-3s. The average length of PPh (7.46 syllables)
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was longer than that of UJPLM (6.98 syllables) due to the substitutions of B3s with
B2-2s. The average length of PG/BG (16.85 syllables) was slightly longer than that of
UJPLM (16.69 syllables).

BG/PG PPh PW
200 800 8000
150 600 6000
1S IS =
3 100 3 400 3 4000
O O o
50 200 2000
0 0 0 |
0 50 100 0 10 20 30 123456789101112
Length in Syllable Length in Syllable Length in Syllable

Figure 3.12: Histograms of lengths for BG/PG, PPh and PW.

Table 3.6: Statistics of three types of prosodic constituents. Value in
parentheses denotes standard deviation:

Average Prosodic constituent

length in PW PPh BG/PG

Syllable 2.80(1.40) 7.46(3.66) 16.85(9.38)
LW 1.64(0.84) 4.30(2.29) 9.75(5.44)
PW 1.00 2.31(1.79) 5.28(3.38)
PPh X 1.00 1.77(1.66)

Table 3.7 displays the cooccurrence matrix of the break indices labeled by
A-UJPLM and by human. Basically, the cooccurrence matrix is similar to that of
UJPLM shown in Table 2.10. It is found that 94.7% of human-labeled b4s, i.e. major
breaks, were labeled as break indices of phrase or utterance boundaries (i.e. B3, B4 or
B.) in A-UJPLM; and 94.4% of b1s, 1.e. non-breaks, were labeled as indices of SYL
boundaries within PW (i.e. BO or Bl). It is also observed that b3s still corresponded
mainly to break indices of short or medium pause, i.e. B2-2 and B3. The most
significant difference lies in the tags of b2. It is found that many b2s were
inconsistently labeled to non-break tags of B0 and B1. By adding the new break type
B2-3, A-UJPLM reduced the inconsistency rate from 69.7% for UIPLM to 53.5%.
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Table 3.7: Cooccurrence matrix of break tags
labeled by A-UJPLM and human

Human

Unsupervised b2 b3 b4 total
B0 884 167 5 0 1056
Bl 1860 549 31 1 2441

B2-1 81 361 66 1 509
B2-2 17 54 212 29 312
B2-3 65 208 52 0 325

B3 0 0 129 242 371

B4 0O 0 5 265 270

B. 0 0 0 42 4

Total 2907 1339 500 580 5326

3.4.2 Patterns of Prosodic Constituents

To explore the general patterns of syllable pitch contour, duration, and energy
level for high-level prosodic constituents of PW, PPh, and BG/PG, we first extract the

prosodic state patterns from the observed ssyllable prosodic features (i.e. sp,, sd

n

and se, ) by eliminating the influences of litterance,.current tone, coarticulations from

the two nearest neighboring tones, base-syllable type; final type, and the global mean,

Le.,

pm, =sp —B, -, . -B,, —n fori€n< N (3.15)
dm,=sd, =y, =7, =V, —H, for1<n<N (3.16)
em,=se,—a, —a, —Q, — [, for1<n<N (3.17)

Sequences of pm,, dm, and em, delimited by B2-1/B2-2/B3/B4 at both sides are

regarded as prosodic state patterns formed by integrating the log-F0/syllable
duration/energy level patterns of the three prosodic constituents we considered. Three

superposition models for prosodic state patterns are therefore defined by

pm, =pm; +BPm +BPPhn +BBG/PGH (3.18)
dm, =dm, +Ypy +7ppy, + V56,16, (3.19)
em, =em, Ty, +ppy, T, p, (3.20)
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where pm,, dm, and em are respectively the residuals of log-F0, syllable
duration and syllable energy level at syllable n; B, y, and o, represent APs of

affecting factor x for log-F0, syllable duration and syllable energy level, respectively;
PW =(i,j), PPh,=(i,j),and BG/PG,=(i,j) denote that syllable n is located at the

jth place of an i-syllable PW, PPh, and BG/PG, respectively. A sequential
optimization procedure based on the MMSE criterion is adopted to train these three

models. The error functions for each utterance are defined by

N
Ep :;.pmn _BPW,, _|3PPh,, _BBG/PG,, ‘2 (3.21)

2
(dm ~Vpw, ~Vpen, _7/BG/PG,,) (3.22)

Mz

E,=

n:

N
k= Z(em ~Qpy, —Cppy, aBG/PGH)Z (3.23)

n=l1

Then, with proper initializations,it sequentially updates the patterns of PW, PPh and

BG/PG to minimize E,/E,/E, ~until a convergenee is reached.

Figures 3.13, 3.14, and 3.15 display,.trespectively, the general patterns of pitch
level, duration and energy level for PW, PPh and.PG/BG with different lengths. It is
noted that the patterns with more instances are displayed in darker lines and dots. As
shown in Figure 3.13, these log-F0 patterns matched the results of the previous study
shown in Figure2.11. It can be clearly observed from Figure 3.14 that the last
syllables of all duration patterns of PPh and PW were lengthened significantly, while
those of most BG/PG duration patterns were shortened. Interestingly, the shortening
of the antepenultimate syllable in PPh, which is an important feature of tempo
structure in Mandarin Chinese, is also found. These phenomena completely matched

with the findings of Tseng [8]. From Figure 3.15, we find that both short ¢, and
Op, had falling patterns, while long ., and «a,, had, respectively,
falling-sustaining-falling and falling-sustaining patterns. Compared with ¢, ,, and
Oppy s Oy 1s more flat and had smaller dynamic range. It is worth to note that the

last syllables of all energy level patterns had small resets illustrating a special stress

style of Mandarin speech.
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Figure 3.13: The log-HO patterns of BG/PG, PPh and PW.
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Figure 3.14: The duration patterns of BG/PG, PPh and PW.
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Figure 3.15: The energy level patterns of BG/PG
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Table 3.8 displays the TREs of the prosodic modeling results for syllable pitch
contour, duration, and energy level with respect to different combinations of affecting
factors. It can be found from the table that TREs reduced as more affecting factors
were used. The low-level affecting factors/linguistic features (i.e., utterance, tone,
coarticulation, base-syllable, and final type) accounted for 39.7%, 37.1%, and 50.0%
of prosodic variation in pitch, duration, and energy level, respectively; while the three
high-level prosodic constituents (i.e. PW+ PPh + BG/PG) contributed another 22.9%
(60.3% - 37.4%), 20.8%, and 22.0 % of prosodic variation in pitch, duration, and
energy, respectively. Among the three high-level prosodic constituents, we find that
the most significant one is PW for both pitch and duration, and PPh for energy level.
However, the TREs are still high. More sophisticated representations of PW, PPh, and
BG/PG are worthwhile investigating in the future.

Table 3.8: Total residual errors (TREs) w.r.t. the use of different combinations
of affecting factors for pitch/duration/energy level modeling

Pitch Duration Energy level
APs TRE APs TRE APs TRE
+ Utterance 98.8% + Utterance 77.8%
+ Tone 71.6% + Tone 88.1% + Tone 74.5%
+ Coarticulation  60.3% + Base-syllable=1-762.9% + Final 48.0%
+PW 51.7% +PW. 48.:6% +PW 46.9%
+ PPh 44.6% + PPh 45.0% + PPh 32.7%
+ BG/PG 37.4% + BG/PG 42.1% + BG/PG 26.0%
+ Prosodic state 1.1% + Prosodic state 1.1% + Prosodic state 1.0%

3.4.3 A Labeling Example
A typical example of the labeling results by A-UJPLM is given in Figure 3.16.

Compared with the labeling result by UJIPLM shown in Figure 2.14, most breaks
labeled were the same except for an inserted B2-3 and a substitution of B3 with B4 at
the end of the first PP. The insertion of B2-3 seemed to be reasonable because there
existed an apparent syllable duration lengthening on the syllable “[%”. For each
prosodic feature of syllable log-F0 mean, duration and energy level, the curve formed
by integrating the prosodic-state APs and global mean showed smoother PW patterns
as compared with those of the observed zigzag curve. The last syllables of all PWs

had longer syllable duration illustrating the pre-boundary duration lengthening effect.
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It is also found that apparent resets existed on the energy prosodic state of the

syllables of most PWs manifesting clear stress patterns.

last
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Figure 3.16: An example of the automatic-prosody labeling by A-UJPLM. Upper,
middle and lower panels represent observed (open circle) and prosodic state+global
mean (solid diamond) of syllable log-F0 means, syllable duration and syllable energy
level, respectively. The utterance is “yi-ju(according to) xing-zheng-yuan(the
Executive Yuan) zhu-ji-chu(Directorate-General of Budget, Accounting and Statistics)
de(DE) tong-ji(statistics), shi-yue-fen(October) yi(1st) dao(to) er-shi-ri(20th),
wo-guo(our country) chu-kou(export) ji(and) jin-kou(import) jin-e(the amount of
money) bi-qi(in comparison with) qu-nian(last year) tong-gi(the same period)
jun(both) you(to have some) zeng-jia(increase).”

;‘4

>
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3.5 Conclusions
In this chapter, the A-UJPLM method designed based on the UJPLM method

discussed in Chapter 2 is proposed. It employs a new prosodic model to incorporate
more acoustic features, more prosodic tags, and more affecting factors. Basically,
A-UJPLM functions like UJPLM to perform the works of prosodic labeling and
modeling jointly. It extends the UJPLM method to additionally model syllable
duration and energy level. Besides, it adds a new break type B2-3 to take care of
minor break with pre-break syllable lengthening. Besides, some additional
inter-syllable acoustic features, including normalized pitch jump, and normalized
duration lengthening factors, are also incorporated to help the labeling and modeling
task. Experimental results on the same Sinica Treebank corpus showed that
A-UJPLM performed very well. The parameters of the eight prosodic sub-models are
all linguistically/prosodically meaningful. A comparison with the results of UIPLM
showed that their break labeling results were quite matched for the cases of non-break
and major break. On the other hand; A-UJPLEM could insert more minor breaks than
UJPLM via introducing the new minor break 82-3 and resulted in a more consistent

labeling of minor breaks to the human labeling.-So, A-UJPLM is a promising method.
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Chapter 4 An Application to Prosody
Generation for TTS

4.1 Introduction

Prosody generation plays a very importance role on the naturalness of the
synthesized speech in a TTS system. The main concern is to explore an appropriate
mapping from the linguistic features of various levels extracted from the input text to
the prosodic features representing the prosody hierarchy of the synthesized speech.
Many methods have been proposed in the past, including the conventional rule-based
approach [68,80,81], the linear regressive method [82], the decision tree-based
method [83], the recurrent neural network-based method [12], the template tree-based
approach [84], etc. Prosodic features can be divided into two types: numerical and
categorical (or symbolic). For Mandarin speech;.numerical prosody features can be
some explicit values such as duration/pitch .contour/energy level of each syllable and
inter-syllable pause duration; while categorical : features can be parameters
representing the prosody hierarchy such as break indices on syllable junctures. Many
existing TTS systems [8,10,11,37,82,85,86,87] generate prosody in two steps. First,
symbolic prosodic features such as inter-syllable break types are predicted from the
input linguistic features. A prosody hierarchical structure of the input text is then
derived from the labeled symbolic prosodic features. Last, numerical prosodic
features are obtained by superimposing prosodic patterns of various levels pre-stored
or generated from a model, or by selecting prosodic templates from a speech

inventory.

In this chapter, an A-UJPLM-based approach is proposed for prosody generation.
Figure 4.1 displays the schematic diagram of the approach. It is composed of two
steps: break prediction and prosodic feature prediction. In the break prediction step, a
break type sequence is predicted for each input text by the break-syntax model

p(B|L) using some linguistic features extracted from the input text. The break type

sequence implicitly forms a representation of the prosody hierarchy with PW as the

basic synthesis unit of prosody generation. It has been suggested that a synthesized
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utterance concatenated by PWs sounds more natural and pleasant than one by LWs
[45]. Hence break prediction plays an importance role to properly parse the input text
into strings of PWs, PPhs, and BG/PG. In the prosodic feature prediction step, four
types of prosodic features, including syllable pitch contour, syllable duration, syllable
energy level, and inter-syllable pause duration, are generated from input linguistic
features and the break-type sequence generated in the first step by using the syllable
prosodic model p(X/B,PS,L), the prosodic state model p(PS|B,L), and the

break-acoustic model P(Y,ZB,L).

Linguistic Break B* Prosodic Prosodic
Feature — W Predicti »  Feature | » Features sp,
Sequence L rediction Prediction sd, se, pd
B €>
P(B|L
P(X|B*PS,L)
P(PS|B*,L)
P(Y,ZB*,L)
7

Figure 4.1: The proposed prosody generation method.

To evaluate the performance of the proposed: break prediction and prosodic
feature prediction methods, the test set of-thesSinica Treebank corpus is adopted. The
dataset consists of 46 utterances with 4801 syllables. It is labeled in advance with
seven types of break B={B0, Bl, B2-1, B2-2, B2-3, B3, B4} and three types of
prosodic states PS={p,q.,r} by a Viterbi decoding algorithm which maximizes the

objective function Q defined in Eq. (3.14). The prosodic models used in Eq. (3.14) are
learned from the training set of the Sinica Treebank corpus discussed in Chapter 3. In
the labeling process, all model parameters except the utterance APs are fixed. Steps of

the labeling process are listed below:

Step 1: Initialize the utterance APs, y, and ¢,, by simply averaging syllable

durations and syllable energy levels of each utterance.

Step 2: Re-label the prosodic state and break-type sequences of each utterance by
using the Viterbi algorithm that maximizes Q defined in Eq. (3.14).

Step 3: Update the utterance APs with all other APs being fixed.

Step 4. Repeat Steps 2 to 3 until a convergence is reached.
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In this study, the labeling process took 15 iterations to reach a convergence.

This Chapter is further organized as follows. Section 4.2 presents the proposed
break prediction method. Then the proposed prosodic feature prediction method is

discussed in Section 4.3. Some conclusions are given in the last section.

4.2 The Proposed Break Prediction Method

4.2.1 Linguistic Features

The linguistic features used for break prediction span a wide range from syllable
level, such as initial type, and syllable juncture type (intra-word or inter-word); word
level, such as, word length, POS, and type of punctuation mark (PM); to sentence

level, such as length of sentence. They are discussed in more detail as follows.

(1) Syllable level

As illustrated in Subsection 2:4.4, we find ‘that some syllable-level linguistic
features are very useful for predicting break types. These features include the initial
type of the following syllable and the syllable juncture type. Seven initial types are
used in this study, including null initial, {m, n, [, r}, {b, d, g}, {f, s, sh, shi, h}, {ts, ch,
chi}, {p, t, k}, and {tz, j, ji}; and three types of syllable juncture are used, including
inter-word, Type-1 intra-word and Type-2 intra-word. Here, Type-1 intra-words
represent normal intra-word locations, while Type-2 intra-words are special

intra-word locations of some specific long words, which have high potential to be

pronounced with pauses such as “F 157 V*= 4 = bai-fen-zhi san-shi.”

(2) Word level

Word-level linguistic features used in this study are POS, word length, and PM.
Four POS sets are used in this study, i.e. broad class word, level-1, level-2, and
level-3 POS sets. The details of the four POS sets are listed in Appendix B. Word
length is also an important feature for break prediction. It is observed in Subsection
2.5.1 that some short words are easy to be combined with its previous or following

word. We categorize word length into fiver classes: 1 syllable, 2 syllables, 3 syllables,
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4 syllables, and >4 syllables. A window up to six words is adopted in this study to
extract the POS and word length features for the break prediction of the current word
juncture: three words before and three words after the juncture. PM is the most
significant feature to predict major break. Five types of PM are used in this study,

113

including comma, period, question mark, dun hao “ ~ ,” and others.

(3) Sentence level

The sentence-level features used are length of sentence, distance to the beginning
of the current sentence, and distance to the end of the current sentence. By
investigating the correlation between the length and the number of major/minor
breaks in a sentence, we find that the number of minor/major breaks increases as the
sentence becomes longer. It is also found that a major break is more likely to be
inserted in a syllable juncture if it is far away from the beginning or end of a sentence.

Table 4.1 summarizes the linguistic features used in this study.

Table 4.1: Summary of linguistic*features.used and their abbreviations

Type of following syllable’s initial:‘null-initial, {m, n, [, r}, {b, d, g}, {f, s,

Fl sh, shi, h}, {ts, ch, chi}, {p, t,ky; {1z, ], ji}

Type of syllable boundary: linter-word, Type-1 intra-word, Type-2

SB intra-word.

POSO  Broad class of preceding/following word: substantive word, function word

POS1 1l-type POS: A,C,D,N, [, P, T, V, DE, SHI, DM

19-type POS : A, C, Dfa, Dfb, D, N, Nd, Ne, Ng, Nh, P, T, VA, VC, VH,

POS2 V 2, DE, SHI, DM
47-type POS : A, Caa, Cab, Cba, Cbb, Da, Dfa, Dfb, Di, Dk, D, Na, Nb, Nc,

POS3 Necd, Nd, Neu, Nes, Nep, Neqa, Negb, Nf, Ng, Nv, Nh, I, P, T, VA, VAC,
VB, VC, VCL, VD, VE, VF, VG, VH, VHC, VI, VJ, VK, VL, V_2, DE,
SHI, DM

WL Length of word in syllable: 1, 2, 3, 4, >4

PM Type of PM: comma, period, question mark, dun hao and others

LS Length of sentence in syllable

LPS Length of previous sentence

LFS Length of following sentence

DPP Distance to previous PM (the beginning of the sentence)

DFP  Distance to following PM (the end of the sentence)
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4.2.2 Prediction Methods
In this study, three break prediction methods are discussed, namely (1) the

baseline all-in-one CART-based method, (2) the two-stage method, and (3) the
Markov model-based method.

(1) The baseline all-in-one CART-based method

As shown in Figure 4.2, this method predicts seven break types according to the
question set formed from the linguistic features discussed in Subsection 4.2.1 by a
single decision tree trained by the CART algorithm. The split criterion used in the

CART algorithm is the maximum information gain.

Linguistic N All-In-one B0/B1/B2-1/B2-2/
Features CART B2-3/B3/B4

Figure 4.2: All-zin-one;,CART for break prediction.

Table 4.2 displays the prediction résult by the ‘baseline method. It can be found
from the table that the prediction rates were high.for B1 and B4, medium for B3 and
B0, and low for B2-1, B2-2 and B2-3. The overall prediction accuracies were 76.2%
and 73.7% for the inside and outside tests, respectively. The low prediction accuracies
of the three types of minor break mainly resulted from their confusions with Bl
caused in part by the relatively large counts of Bl in many leaf nodes of the trained
decision tree. BOs were also easily confused with Bls. Since both BO and Bl are
defined as intra-PW boundary, this type of confusion may not harmful to the
following prosodic feature prediction. B3s were mainly confused with B2-2 and B4.
This result seemed reasonable because the acoustic characteristics of B2-2, B3 and B4
are overlapped with apparent inter-syllable pause duration.

Table 4.3 displays the confusion matrix of the target and predicted break types
which are reduced to three broad classes of break, i.e. non-break {B0, B1}, minor
break {B2-1, B2-2, B2-3} and major break {B3, B4}. It can be seen from the table that
the overall prediction accuracies were 87.5% and 85.8% for the inside and outside

tests, respectively. Although the overall prediction accuracies were high, the

82



accuracies for minor break were still too low. This may result in parsing the input text

into too long PWs so as to make an over-smoothed intonation to lose pleasant rhythm.

The prediction ability for minor break certainly needs to be improved.

Table 4.2: The confusion matrix of the target and predicted break types (%) using the
baseline all-in-one CART-based method for (a) the inside and (b) outside tests.

(a)

Tar\Pre BO B1 B2-1 B2-2 B2-3 B3 B4 Total
BO 74.1 19.9 35 1.2 0.9 0.3 0.0 10247
Bl 4.8 89.8 2.8 1.3 1.0 0.3 0.0 23744

B2-1 54 26.0 56.4 7.5 34 1.2 0.0 4782
B2-2 2.9 15.7 14.1 52.9 3.7 10.5 0.1 3443
B2-3 49 34.5 17.5 10.6 29.9 2.5 0.0 3046
B3 0.8 4.6 33 8.6 0.9 72.8 9.0 3527
B4 0.0 0.2 0.1 0.3 0.0 13.9 85.4 2703
Avg =76.2
(b)

Tar\Pre BO B1 B2-1 B2-2 B2-3 B3 B4 Total
BO 73.0 20.3 45 1.1 0.5 0.6 0.0 626
B1 5.8 87.3 3.8 1.5 1.2 0.4 0.0 2107

B2-1 2.4 26.8 51.8 120 4.5 2.4 0.0 332

B2-2 0.9 20.3 15.7 51.1 2.8 9.2 0.0 325

B2-3 7.0 393 204 12.9 16.9 35 0.0 201

B3 0.4 6.0 43 16.7 1.1 58.9 12.8 282

B4 0.0 0.0 0.0 1.2 0.0 12.3 86.4 162
Avg =73.7

Table 4.3: The confusion matrix of the break prediction for the
baseline method evaluated using 3 broad classes of break: (a) The
inside and (b) outside tests. (NB: non-break, MiB: minor break, MB:

major break)
(a)

Tar\Pre NB MiB MB Total
NB 94.4 5.3 0.3 33991
MiB 29.7 65.9 4.4 11271
MB 3.1 7.4 89.4 6230

Avg = 87.5
(b)

Tar\Pre NB MiB MB Total
NB 93.1 6.4 0.5 2733
MiB 30.2 64.6 5.2 858
MB 4.1 14.4 81.5 444

Avg = 85.8
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(2) The two-stage method

By detailed analysis of the break prediction results of the baseline method, we find
that minor breaks are easily confused with non-breaks. The deletion of a minor break
may make the synthesized speech too hasted so as to degrade its naturalness. To
improve the break prediction accuracy of minor break, a two-stage method is
proposed. Figure 4.3 shows its block diagram. In the first stage, a three-class CART is
trained to classify the three broad classes of major break, minor break, and non-break.
In the second stage, each syllable juncture is further classified by one of other three
decision trees into seven-class break type. For example, if a syllable juncture is
determined as a major break in the first stage, then it is fed into B3/B4 classification
to be classified as B3 or B4.

Syllable
boundaries

|

p——
MB/MiB/NB- MB/MiB/NB
CART classification

MiB NB

2

MB
< > <> >
MB B3/B4 MiB B2-1/B2-2/B2-3 NB CART B0/B1
CART classification | | CART classification classification

B4 or B4 B2-1, B2-2 or B2-3 B0 or Bl
- v -
Integrator

Figure 4.3: A block diagram of the two-stage break prediction method.

The performance of the method is listed in Tables 4.4 and 4.5. It can be seen
from Table 4.4 that the first stage achieved 12.7% and 13.3% improvements on the
minor break prediction in the inside and outside tests, respectively, as compared with
the baseline method. Although the detection accuracies of both non-break and major
break degraded slightly, the overall accuracies were improved. For the second-stage
prediction, as shown in Table 4.5 the overall predictions of seven break types were
improved in both inside and outside tests, especially in the predictions of B2-1, B2-2,

and B2-3.

84



Table 4.4: The confusion matrix of target and predicted reduced three
classes break types using the two-stage approach: (a) inside test (b)

outside test.

(a)

Tar\Pre NB MiB MB Total
NB 94.0 5.7 0.3 33991
MiB 18.4 78.6 2.9 11271
MB 1.8 11.0 87.2 6230

Avg = 89.8
(b)

Tar\Pre NB MiB MB Total
NB 92.4 7.4 0.2 2733
MiB 18.4 77.9 3.7 858
MB 1.6 16.4 82.0 444

Avg = 88.2

Table 4.5: The confusion matrix «0f target;and.prédicted seven break types using the
two-stage approach: (a) inside test and (b) outside test.

(a)

Tar\Pre BO B1 B2+l B2-2 B2-3 B3 B4 Total
BO 74.7  20.1 2.8 1.0 1.2 0.3 0.0 10247
B1 4.8  88.8 2.8 ) 1.7 0.3 0.0 23744

B2-1 4.5 16.1 62.4 8.5 7.5 0.9 0.0 4782
B2-2 1.6 7.8 17.1 59.2 7.1 6.8 0.3 3443
B2-3 3.7 214 17.1 13.5 43.0 1.3 0.0 3046
B3 0.8 23 4.5 12.2 25 68.4 93 3527
B4 0.0 0.1 0.1 0.1 0.0 12.8  86.8 2703
Avg =774
(b)

Tar\Pre BO B1 B2-1 B2-2 B2-3 B3 B4 Total
BO 70.6 228 3.7 1.0 1.9 0.0 0.0 626
B1 58  86.3 4.0 1.5 2.1 0.3 0.0 2107

B2-1 2.1 18.1 58.4 10.8 8.7 1.8 0.0 332
B2-2 0.6 10.5 22.8 52.3 7.4 5.8 0.6 325
B2-3 1.0 264 22.9 15.4 31.8 2.0 0.5 201
B3 0.0 2.5 3.2 18.1 4.3 61.0 11.0 282
B4 0.0 0.0 0.0 0.6 0.0 9.9  89.5 162

Avg =74.5
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(3) The Markov model-based method

The third method we tested is the Markov model-based method. Compared with
the two methods illustrated above, the Markov model-based method not only takes
linguistic features but also incorporates contextual information to predict break type.

The general form of break prediction in this method can be expressed by

N
- — n—1
B =argmax p(B|L) =argmax [ [ p(B, |8 L,) @.1)

Many methods can be used to generate the probability p(B,|B/"',L,). They include

the HMM method [46,49] and the CART algorithm, etc. In this study, we adopt the
CART algorithm to train a decision tree for generating the probability

p(B,| B, L,). Here we only consider the classification of the three broad classes of

break. The decision tree is a refinement of the decision tree trained in the first stage of
the two-stage method. We further split the leaf nodes of the previous-trained decision
tree using a question set containing theé'information of previous breaks. The optimal
break sequence can be obtained by the Viterbi.decoding algorithm solving Eq. (4.1).
The experimental results are shown in Table 4.6: Compared with the results of the
two-stage method shown in Table 4.4, the overall accuracies of break prediction were
slightly higher for both inside and outside tests. ' However, the improvement was not
significant for the outside test. This may 'suggest that the break prediction mainly

relies on the linguistic features rather than the contextual information of break.

Table 4.6: The confusion matrix of target and predicted reduced three
classes break types using the Markov model: (a) inside test (b) outside

test.
(a)

Tar\Pre NB MiB MB Total
NB 94.2 5.5 0.3 33991
MiB 18.4 78.6 2.9 11271
MB 1.9 10.6 87.6 6230

Avg =90.1
(b)

Tar\Pre NB MiB MB Total
NB 92.5 7.3 0.2 2733
MiB 18.3 78.0 3.7 858
MB 1.6 16.4 82.0 444

Avg = 88.4
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4.3 Prosodic Feature Prediction

The prosodic features to be predicted include syllable prosodic features (sp, sd,
se) and inter-syllable pause duration (pd). Among them, the inter-syllable pause
duration of each syllable juncture can be simply predicted by the break-acoustic

model trained in Chapter 3, i.e.

pd,=argmax p(pd, | B,.1,) (42)
p n

where B, represents the optimal break type of syllable n predicted by the

break-syntax model discussed in Section 4.2. The syllable prosodic features,
including syllable pitch contour sp, syllable duration sd, and syllable energy level se,
are predicted by the models formulated basing on the minimum mean squared error
(MMSE) criterion. Given with the predicted break sequence B’ and linguistic
features 1, the MMSE predictors for sp,isd, and se are sp =E[sp,|B’.l],
sd =E[sd,|B,1], and se = E[se | Bl tespectively. Since sp, sd, and se are
predicted in the same way, we only present the prediction model of sp here for

simplicity. The MMSE predictorfor sp‘can be elaborated by

sp, = E[sp, | B',1]
= .[spn P(sp, |B',1) dsp,

- j sp, >.P(sp, | p,. B, .t/ YP(p,IB")) dsp, . (4.3)
Pn
= Z(Bt” +Bpn +B£;,1,fp,,,l +B[;;,tp” +u)P(pn|B 71)
Pn

It can be seen from Eq. (4.3) that the predicted syllable pitch contour is a weighted
sum of the reconstructed patterns formed by superimposing various APs with weights

being the a posterior probabilities of prosodic state p, . The a posterior probability

P(p,/B",]) can be formulated as

P(p,=i,B.)) _ a,(D)b,() (4.4)

p :.B*,l: - =
(p,=i|B.D) 2 P(p,=/B.) > a,()b())

where a (i)=P(B ---B,,p,=i|l) and b (i)=P(B,,---By|p,=i,l) are the forward and

backward probabilities, respectively. a (i) and b,(i) can be calculated by the
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forward and backward algorithm with the probability P(p,|p,,.B.,,1,) which is
similar to the prosodic state model P(p,|p,,.B, ). The probability P(p,|p, .5 ,.1,)
strengthens the influences of linguistic features and break B, on the current prosodic
state p,. In practical realization, since the space of the histories { p, ,,B,} and
linguistic features {1 } is too large, we partition the space into several classes
C(p, ,,B ,1,) to calculate the conditional probabilities P(p, |C(p, ,,B, ,.1,)) by

the decision tree method. The detail of the question set for constructing the decision

tree is listed bellow:

(1) Current word length in syllable: {1, 2, 3, 4, >4}.

(2) Current syllable position in word: {18!, intermediate, last, mono-syllable word}.

(3) Sentence length in syllable: {1, [2,5], [6,10], [11,15], [16,20], >20}.

(4) Current syllable position in sentence: {15t, 2nd, 3rd [4th sthy rgth 7thy rgth
llth], last, ond last, 3rd last, [Sth last, 4th last], [7th last, 6th last], [1 1th last, gth
last], others}; Smaller count:numberfrom'the beginning or end wins.

(5) PM after the current syllable (five types):

(6) POS3: 47-types POS.

(7) Break type of juncture n, n-1,n+2

(8) Prosodic state of (n-1)-th syllable:

The proposed prediction method is conducted with the break sequence given by
the two-stage method. We choose the two-stage method because it performs better.
Table 4.7 displays the TREs of the prosody prediction results for syllable pitch
contour, duration and energy level. Since the performance of the proposed method
should not consider the influence of utterance, the TREs of syllable duration and
energy level are respectively the ratios of the sum-squared prediction errors of
syllable duration and energy level over the sum-squared normalized ones with the
influences from utterance being removed. The performances were acceptable. To
separate the effect of break prediction on the prosodic feature prediction, we do the
same experiment using the correct break labels. Table 4.8 displays the experimental
results. By comparing the results shown in the two tables, we find that the latter
performed better. This shows that the break prediction plays an important role in the

prediction of prosodic features. Erroneous breaks predicted will make gross shifts of

88



PW patterns and may result in large prediction errors of prosodic features. Hence, to
improve the prosodic feature generation, the break prediction task is essential and

worthwhile further investigating in the future.

Table 4.7: TREs of the prosodic feature prediction results.
Sp sd se pd
Inside 42.39% 45.60% 37.61% 18.50%
Outside 42.73% 46.24% 35.98% 18.92%

Table 4.8: TREs of the prosodic feature prediction using
correct break labels.
sp sd se pd
Inside 32.72% 34.80% 32.13% 8.64%
Outside 39.10% 41.74% 33.33% 7.00%

Figure 4.4 displays an ¢xample of the predicted prosodic features by the
A-UJPLM-based approach. It7illustrates the- prosodic feature variations of two
sentential utterances extracted from a long utterance. It can be found from the figure
that the predicted prosodic features matched well with their original counterparts for
most syllables. Some large errors can be found to occur on the syllable durations and
inter-syllable pause durations of the first sentence. They were mainly resulted from a
series of break prediction errors. For example, the two contiguous break prediction
errors (predict (B2-2,B1) as (B1,B3)) in the first sentence caused a gross shift of the
first PW showing a move of the phrase-ending lengthening from the 4™ syllable to the
6" syllable. The after-phrase long pause also shifted two syllables to the right
synchronously. By using correct break labels, these large prosodic feature prediction
errors disappeared. This confirmed that break prediction errors are responsible for
prosodic feature prediction errors. So break prediction plays an important role on

prosodic feature prediction.
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Figure 4.4: An example of the prosodic feature prediction by the A-UJPLM-based
approach. The panels from up to bottom represent, respectively, syllable log-F0
means, syllable duration, syllable energy level and inter-syllable pause duration. Solid
lines, open circles, and closed circles denote, correspondingly, the original features,
the predicted features using predicted breaks, and the predicted features using correct
break labels. Vertical dash lines represent erroneous major/minor break prediction
boundaries while vertical solid lines represent correct ones. Notice that break labels in
() represent erroneous breaks predicted.
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4.4 Conclusions

In this chapter, a model-based prosody generation method for TTS is discussed.
The method contains two steps: break prediction and prosodic feature prediction. In
the break prediction, three methods are investigated. They include the baseline
all-in-one CART-based method, the two-stage method and the Markov model-based
method. Among them, the Markov model-based method achieves the highest accuracy
in predicting three-class break types of non-break, minor break and major break,
while the baseline all-in-one CART-based method has the worst performance.
However, compared with the two-stage method, the Markov model-based method can
only bring negligible improvement on the outside test. We therefore conclude that the
linguistic features rather than the contextual break information are primary features in
break prediction.

Based on the break prediction result by the two-stage method, four prosodic
features, including syllable pitch contour, syllable duration, syllable energy level, and
inter-syllable pause duration, are-predictéd by the proposed A-UJPLM-based prosody
generator. Experimental results-showed that the performance of the proposed method
is acceptable. An upper bound of performance obtained in the oracle experiment using
correct break labels confirms that the break prediction task is essential in prosodic
feature generation. Further elaboration of the break prediction model is worthwhile

studying in the future.
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Chapter 5  Conclusions and Future Works

5.1 Conclusions

In this dissertation, an unsupervised joint prosody labeling and modeling method
(UJPLM) for Mandarin speech has been proposed. Unlike the conventional prosody
labeling task that is fulfilled by trained human labelers with audio-visual aids, the
proposed method not only intended to objectively/consistently label prosodic tags but
also to concurrently construct interpretive prosodic models. Two types of prosodic
tags are determined by four prosodic models designed to illustrate the hierarchy of
Mandarin prosody: the break of a syllable juncture to demarcate prosodic constituents
and the prosodic states to represent any prosodic domain’s pitch level variation
resulting from its upper-layered prosodic constituents’ influences. The four prosodic
models are (1) the syllable pitch contour model which describes the variations in
syllable pitch contour controlled«by the prosodie, tags and syllable-level linguistic
features, (2) the break-acoustics model which describes the relationship between the
break type of a syllable juncture and nearby acoustic features, (3) the break-syntax
model which constructs the relationship between.the break type of a syllable juncture
and contextual linguistic features and (4) the prosodic state model which describes the
relationship between the prosodic states of syllables and the break types of
neighboring syllable junctures. An experiment on the Sinica Treebank corpus uttered
by an experienced female announcer showed that the four prosodic models learned
were all linguistically and/or prosodically meaningful. The corresponding relationship
between the break indices labeled by UJPLM and their associated words were
investigated to confirm the performance of UJPLM. The prosodic state labeled could
be used to extract the general log-FO patterns of PW, PPh and BG/PG. Besides, a
quantitative comparison between the break labeling results by UJPLM and human
labelers showed that the breaks labeled by UJPLM were more consistent and
discriminative than those by human in prosodic feature distributions, a further

verification of the proposed method.

Motivated by the success of UIPLM, the A-UJPLM method was designed basing

on the same idea to incorporate more acoustic features and more prosodic tags. The
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new prosodic features added included syllable duration, syllable energy level,
normalized pitch jump, and normalized duration lengthening factors, while the new
prosodic tags are the break type B2-3 introduced to take care of the PW boundary
with pre-break syllable lengthening, the duration prosodic state and the energy
prosodic state. Experimental results on the same Sinica Treebank corpus showed that
A-UJPLM performed very well. The parameters of the eight prosodic sub-models
were all linguistically/prosodically meaningful. A comparison with the results of
UJPLM showed that their break labeling results were quite match for non-breaks and
major breaks. However, A-UJPLM could insert more minor breaks than UJPLM via
introducing the new minor break B2-3 and resulted in a more consistent labeling of
minor breaks to the human labeling. Besides, the general duration and energy level
patterns of PW, PPh, and BG/PG could also be explored using the labeled duration
and energy prosodic states. So, a more substantial prosody labeling and modeling for

Mandarin speech was achieved by the A-UJPLM method.

Lastly, an A-UJPLM-based prosody generation method for TTS was proposed. It
is composed of two steps: break prediction and presodic feature prediction. In the
break prediction, three prediction methods were discussed: the baseline all-in-one
CART-based method, the two-stage  method and the Markov model-based method.
Based on the break prediction result‘by the two-stage method, four types of prosodic
features, including syllable pitch contour, syllable duration, syllable energy level, and
inter-syllable pause, were generated from input linguistic features and the break-type
sequence generated in the first step by using the syllable prosodic model, the prosodic
state mode and the break-acoustic model. Experimental results showed that the

performance of the proposed method was acceptable.

In conclusion, the proposed unsupervised joint prosody labeling and modeling
method was able to construct interpretive prosodic models and generate proper
prosodic tags automatically. Therefore, it is a promising prosodic labeling and

modeling approach for Mandarin speech.
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5.2 Future Works

Some future works are worth doing. First, the four prosodic models can be
directly used or further elaborated to provide useful prosodic information to assist in
some applications of spoken language processing, including ASR, punctuation
generation from unprescribed speech utterance, prosody generation for TTS, prosody
pattern conversion for different speakers, and prosodic error detection in
computer-assisted Mandarin Chinese learning. Second, the speech database with
prosodic tags being properly labeled can be used to exploit the hierarchical structure
of Mandarin prosody in more detail, especially for high-layer prosodic constituents.
Third, via prosody labeling and modeling of large multi-speaker, emotional, and
multi-speaking rate speech databases, the influences of different speaking styles on

prosody can be explored.
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Appendix A

(1) Determinations of Thl, Th2, and Th3

Thl, Th2, and Th3 are pause-duration thresholds set to sequentially distinguish B4,
B3, and B2-2/B1 with significant pause duration from other break types. Firstly, the
two gamma distributions for B3 and B4 are estimated using two clusters of pause
duration samples of syllable juncture with PM clustered by VQ. The one with larger
mean is regarded as the distribution for B4, and another is for B3. We then construct

an empirical gamma distribution of pause duration f;,, (pd) for B0/Bl by using

all samples of intra-word juncture. An empirical distribution of pause duration

J5.,(pd) for B2-2 is then constructed by using all samples of inter-word juncture

without PM but with apparent pause. Here, the condition of apparent pause is

evaluated based on the criterion of _f,.(pd )> f50,(pd,) which can exclude

non-PM inter-word samples with-pause duration Similar to those of B0/ Bl. Lastly,

the thresholds 7h3, Th2 and Thl._are set as the equal-probability intersections of
Js0m(Pd) s fr2n(Pd), fi;(pd) and 5, (pd).

(2) Determination of Th5

The pitch jump threshold 745 is set to distinguish between B2-1 and B0/B1. We
first define the normalized log-F0 level jump by

i =(sp,, (=B, 1)—G6p,H-B, (1) (A1)

where x(1) denotes the first dimension of vector x. It is noted that the APs of five
tones, P,, can be estimated in advance before break-type labeling by simply

averaging all samples of each tone. Then two empirical Gaussian distributions of

normalized log-FO level jump, f. (&) and f,,(£), for intra-word and PM

junctures are constructed using all samples of intra-word syllable junctures and all
PM junctures, respectively. We then construct an empirical Gaussian distribution of

normalized log-F0 level jump f;, (&) for B2-1 by using all samples of inter-word

junctures without PM but with apparent normalized log-F0 level jump. The condition

of apparent normalized log-F0 level jump is evaluated based on the criterion of
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Jom(&,) > fia (&) which can exclude non-PM inter-word junctures with normalized

log-FO0 level jump similar to intra-word juncture. Lastly, the threshold 745 is set as

the equal-probability intersection of £, (&) and f,, (£).

(3) Determinations of 7h4 and Th6

The FO pause duration threshold 774 and the energy-dip level threshold Th6 are
set to distinguish between B0 and B1. Basically, B0 should have very short /0 pause
duration and large energy-dip level because it represents tightly coupling syllable
juncture. So, we simply set 744 to be 1 frame (= 10ms). For 7h6, the two Gaussian
distributions for BO and Bl are estimated using two clusters of energy-dip level
samples of intra-word juncture clustered by VQ. Then, the threshold 7%6 is set as the

equal-probability intersection of the two Gaussian distributions.

(4) Determination of 747 and Th8

The normalized syllable duration lengthening thresholds, 747 and Th8, are set to
distinguish between B2-3 and B0/B1 [forinter-word junctures with normalized syllable

duration lengthening factors 1and 2 (i.e..dl and “df ) greater than Th7 and ThS.

Four empirical Gaussian distributions’ of normalized duration lengthening factors,

{£8 (@) f2 (7)) and { fi (7) ' fi (@) Js for intra-word and PM junctures are

ntra ntra
constructed using all samples of intra-word syllable junctures and all PM junctures,

respectively. We then construct an empirical Gaussian distributions of normalized
syllable duration lengthening factors { fi (z)/ f¥.(r) } for B2-3 by using all

samples of inter-word junctures without PM but with apparent normalized duration
syllable lengthening factors. The condition of apparent normalized syllable duration

lengthening factors are evaluated based on the criterion of fy, (dl,)> % (dl)) and

ntra

9 (df)> £ (df,) which can exclude non-PM inter-word junctures with normalized

syllable duration lengthening factors similar to intra-word juncture. Lastly, the

threshold Th7 and ThS8 are set as the equal-probability intersection of { £ () and

intra

ws(7) }and { £ (r) and £;7.(7) }, respectively.
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Appendix B

Table B.1: The contextual linguistic features considered in this study. Note that the
notations of POS symbols follow Ref. [72].

Type of following syllable’s initial: null initial, {m, n, [, r}, {b, d, g}, {f, s, sh, shi,
h}, {ts, ch, chi}, {p, t, k}, {1z, ], ji}

Type of syllable boundary: inter-word, Type-1 intra-word, Type-2 intra-word.

Here, Type-1 intra-words represent normal ones, while Type-2 intra-words are
specific intra-word locations of some special long words which have potential to be
pronounced with pauses.

Type of PM: period, exclamation mark, semicolon, and question mark, comma, dun
hao, colon

Length of preceding/following word in syllable: 1, 2, 3, 4, >4

Broad class of preceding/following word: substantive word, function word

Level-1 POS of preceding/following word: A (adjective), C (conjunction), D
(adverbial), N (noun), I (interjection), P (preposition), T (particle), V (verb), DE (de,
zhi, di), SHI (shi), DM (determiner-measure compound)

Level-2 POS of preceding/following word: Ca (coordinate conjunction), Cb
(correlative conjunction), Da (adverb of quantity), Db (adverb of evaluation), Dc
(negation), Dd (adverb of time), Df (adverb of degree), Dg (adverb of place), Dh
(adverb of manner), Di (aspectual adverb); Dj. (interrogative adverb), Dk (sentential
adverb), Na (general noun), Nb=(special noun);:Nc'(place noun), Nd (time noun), Ne
(determiner), Nf (measure), Ng (localizer), Nh (pronoun), VA (active intransitive
verb), VB (active pseudo-transitive-~verb),- VC= (active transitive verb), VD
(ditransitive verb), VE (active verb with a“sentential object), VF (active verb with a
verbal object), VG (classificatoryverb), VH (stative intransitive verb), VI (stative
pseudo-transitive verb), VJ (stative transitive verb), VK (stative verb with a sentential
object), VL (stative verb with a verbal object), V 2 (you)

Level-3 POS of preceding/following word: Caa (conjunctive conjunction), Cab
(listing conjunction), Cba (movable before correlative conjunction), Cbb (unmovable
before correlative conjunction), Dfa (pre-verbal degree adverbs), Dfb (post-verbal
degree adverbs), Ncd (localizer), Neu (numeral determiner), Nes (specific
determiner), Nep (anaphoric determiner), Neq (quantitative determiner), VA2 (active
intransitive verb), VC1 (active transitive verb), VH16 (stative intransitive verb),
VH22 (stative intransitive verb)

Position of following syllable in a syntactic phrase: beginning, otherwise

Position of preceding syllable in a syntactic phrase: ending, otherwise

Number of syntactic phrase levels that preceding/following word
terminates/initiates: 0, >0, >1, >2

Length of the smallest syntactic phrase covering both preceding and following
words in syllable : <2,>2 >3 >4, .>15

Length of the largest syntactic phrase covering the following word but not the
preceding word in syllable: <2, >2 >3 >4, >10

Length of the largest syntactic phrase covering the preceding word but not the
following word in syllable: <2 ,>2 >3 >4 ... >10
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Appendix C

C.1 The question set O,

The question set O, used to construct the decision trees for building the

break-acoustics model P(pd,.ed |B,.1 ) is listed below:

1. Syllable Level

0,1.1: Is the initial of the following syllable a null one or in {m, n, [, r}?
0,1.2: Is the initial of the following syllable a null one?

0,1.3: Is the initial of the following syllable in {b, d, g}?

0O,1.4: Is the initial of the following syllable in {f, s, sh, shi, h}?

0,1.5: Is the initial of the following syllable in {m, n, [, r}?

0,1.6: Is the initial of the followingisyllable in {ts, ch, chi}?

0,1.7: Is the initial of the following syllable in {p, 1, &}?

0,1.8: Is the initial of the following syllable in {7z, j, ji}?

0,1.9: Is the inter-syllable location an ‘inter-word?

0,1.10: Is the inter-syllable location a Type-1 intra-word?

0,1.11: Is the inter-syllable location a Type-2 intra-word?

2. PM

In the following questions, we define major PMs = {period, exclamation mark,
semicolon, question mark} and minor PMs={comma, dun hao(a mark in Chinese
punctuation used to set off items in a series), colon}.

0,2.1: Does a PMs exist at the inter-syllable location?
0,2.2 : Does a major PM exist at the inter-syllable location?
0,2.3: Does a minor PM exist at the inter-syllable location?
0,2.4 : Does a comma exist at the inter-syllable location?

0,2.5: Does a dot or colon exist at the inter-syllable location?
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3. Questions related to tree-level linguistic features

All the following questions are subject to a prerequisite condition that the
current inter-syllable location is an inter-word.
3.1 Phrase beginning or ending

0,3.1.1: Are the preceding and following words at the same level of a tree?

0,3.1.2: Does the following word initiate a syntactic phrase? Here syntactic phrases
include noun phrase (NP), verb phrase (VP), preposition phrase (PP), geographic
phrase (GP), and clause (S).

0,3.1.3: Does the preceding word terminate a syntactic phrase?

3.2 Number of syntactic phrase levels

0,3.2.1~3: If the following word initiates a syntactic phrase, is the number of

syntactic phrase levels greater than or equal to ne {1, 2, 3}?

0,3.2.4~6: If the preceding word terminates a syntactic phrase, is the number of

syntactic phrase levels greater than or equal to_ne {1, 2, 3}?

3.3 Number of syllable in a syntactic phrase

0,33.1~14: Is the length of the smallestysyntactic phrase covering both the

preceding and following words in syllable greater than n € {2, 3,4, ..., 15}?

0,3.3.15~23: Is the length of the largest syntactic phrase covering the following

word but not the preceding word in syllable greater than n e {2, 3,4, ..., 10}?

0,3.3.24~32: Is the length of the largest syntactic phrase covering the preceding

word but not the following word in syllable greater than n e {2, 3, 4,....10}?

C.2 The question set O,

The question set ®, used to construct the decision trees for building the

break-syntax model P(B, |l ) is listed below:

1. Syllable Level

0,1.1: Is the initial of the following syllable a null one or in {m, n, [, r}?

0,1.2: Is the inter-syllable location an inter-word?
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0,1.3: Is the inter-syllable location a Type-1 intra-word?

0,1.4: Is the inter-syllable location a Type-2 intra-word?

2. Word Level
All the following questions are subject to a prerequisite condition that the
current inter-syllable location is an inter-word.
2.1 PM
0,2.11~5: The same questions as Q,2.1~5.

2.2 Word length
0,2.2.1~4: Is the preceding word an ne {1, 2, 3, 4}-syllable word?

0,2.2.5~8: Is the following word an ne {1, 2, 3, 4}-syllable word?
0,2.2.9: Is the length of the preceding word in syllable greater than 4?
0,2.2.10: Is the length of the following word in syllable greater than 4?

2.3 Substantive/function words

0,2.3.1~2: Is the preceding word a substantive word/function words?
0,2.3.3~4: Is the following word a substantive word/function words?

2.4 Level-1 POS and special tags
0,2.4.1~11: Is the POS of the preceding word A/C/D/N/I/P/T/V/DE/SHI/DM?

0,2.4.12~22: 18 the POS of the following word A/C/D/N/I/P/T/V/DE/SHI/DM?

2.5 Level-2 POS
0,2.5.1~33 : Is the POS of the preceding word

Ca/Cb/Da/Db/Dc¢/Dd/Df/Dg/Dh/Di/Dj/Dk/Na/Nb/Nc¢/Nd/Ne/Nf/Ng/Nh/VA/VB/VC/V
D/VE/VF/VG/VH/VI/VI/VK/VL/V_2?

0,2.534~66 : Is the POS of the following word
Ca/Cb/Da/Db/Dc¢/Dd/Df/Dg/Dh/Di/Dj/Dk/Na/Nb/Nc¢/Nd/Ne/Nf/Ng/Nh/VA/VB/VC/V
D/VE/VF/VG/VH/VI/VI/VK/VL/V_27?

2.6 Level-3 POS

0,2.6.1~15 : Is the POS of the preceding word
Caa/Cab/Cba/Cbb/Dfa/Dfb/Ncd/Neu/Nes/Nep/Neq/VA2/VC1/VH16/VH22?
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0,2.6.16~30 : Is the POS of the following word
Caa/Cab/Cba/Cbb/Dfa/Dfb/Ncd/Neu/Nes/Nep/Neq/VA2/VC1/VH16/VH22?

2.7 Combination of POS

0,2.7.1~7: Does the POS of the preceding word belong to {Da, Db, D¢, Dd, Dg, Dh,
Di, Dj, Dk}/{Na, Nb, Nc}/{Ncd, Ng}/{I, T}/{VA, VG}/{VB, VC, VD, VE, VF, VJ,
VK, VL}/{VH, VI}?

0,2.7.8~14: Does the POS of the following word belong to {Da, Db, Dc, Dd, Dg,
Dh, Di, Dj, Dk}/{Na, Nb, Nc}/{Ncd, Ng}/{I, T}/{VA, VG}/{VB, VC, VD, VE, VF,
VI, VK, VL}/{VH, VI}?

3. Tree-level features

All tree-level features here are the same as the tree-level features used in the

question set ©, , ie, 0,3.1.1=3=03.1:1~3 , 0,32.1~6=03.2.1~6 and

0,33.1~32=0,3.3.1~32..
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Appendix D

D.1 The question set ©,

The question set ®@, used to construct the decision trees for building the

break-acoustics model p(pd,.ed,,pj,.dl ,df |B, 1)) 1is listed below:

nd n

1. Syllable Level
0O,1.1~11: The same questions as Q,1.1~11.

2. PM
0,2.1~5: The same questions as Q,2.1~5.

3. Questions related to sentence level features

All the following questions are’subject.to a prerequisite condition that the
current inter-syllable location is an inter-word:
3.1 Length of sentence

0,3.1.1~30: Is the length of the current sentence greater or equal to 1~30?
0,3.1.31~60 : Is the length of the previous sentence greater or equal to 1~30?
0,3.1.61~90 : Is the length of the following sentence greater or equal to 1~30?

3.2 Distances to PM

0,3.2.1~15: Is the distance to the nearest previous PM in syllable greater or equal to

1~15?

0,3.2.16~30: Is the distance to the nearest following PM in syllable greater or equal

to 1~15?

D.2 The question set O,

The question set ®, used to construct the decision trees for building the
break-syntax model P(B, |l ) is listed below:

1. Syllable Level
All the syllable level questions are identical to the syllable level question in Appendix
C.2.
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2. Word Level

All the word level questions are identical to the word level question in Appendix C.2.
3. Questions related to sentence level features

All the sentence level questions are identical to the sentence level question in

Appendix D.1.
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