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中文摘要 

韻律模式可使用在許多語音處理應用上，如語音合成及語音辨認。一般傳統

建構韻律模式的方法，是先對語音信號標示出韻律標記以表示重要的韻律訊息，

進而建構韻律模式。傳統韻律標記的方法是以人工觀察並聆聽語音信號進行標

記，此方法之缺點為：（1）因為不同標記人的主觀認定不同造成標記結果不一

致，（2）即使是同一個標記人進行標記，長時間進行下來，亦難以保持一致性，

（3）耗時。上述所論及的不一致性，進而可能使得韻律模式在語音處理應用上

的表現不佳。為了改善以上缺點，在本研究中，我們設計出一個包含四個子模型

的「非監督式中文韻律標記及韻律模式」(Unsupervised joint prosody labeling and 

modeling, UJPLM)演算法，自動化地對語料同時進行韻律模式以及韻律標記，試

圖更客觀且一致地標記出韻律標記。本研究標記的韻律標記為停頓標記及韻律狀

態，其中停頓標記表示韻律單位的邊界，而韻律狀態的序列代表上層韻律單位(韻

律詞、韻律短語以及呼吸組/韻律句組)的音高變化。實驗語料由一位專業女播音

員朗讀中文文稿，文稿內容則從「中央研究院詞庫小組－中文句結構樹資料庫」

中選出的短篇文章。透過分析訓練出的模型參數，我們探討此語者之：（1）音

節的音高輪廓變化、韻律標記及語言參數的關係，（2）停頓標記、韻律參數及

語言參數的關係，（3）由韻律狀態所表示的上層韻律單位之音高變化。藉由停

頓標記和其對應詞關係之深入分析，除了探討韻律參數與語言參數的連結，同時

也驗證本研究所提出方法之標記能力。另外，經由和人工停頓標記之比較，發現

以本研究方法標記出來的停頓標記，其對應的韻律參數擁有較一致的統計特性，

相較傳統以人工標記所造成的不一致統計特性，本研究的方法更能真實地（或客
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觀地）描述語者之韻律特性。基於UJPLM演算法，本研究接著提出「進階非監

督式中文韻律標記及韻律模式」(Advanced-UJPLM, A-UJPLM)演算法，增加一個

次要停頓韻律標記及同時對於音高、音長和音強進行模式建立。實驗結果顯示此

方法可以更豐富地描述語者之韻律特性，停頓標記的結果顯示在主要停頓及無停

頓的標示上，與UJPLM標示的結果相當一致，而A-UJPLM能夠標記出較多的次

要停頓，使得次要停頓標記結果與人工標記結果更一致。最後本研究提出一個以

A-UJPLM演算法為基礎之語音合成韻律產生法，實驗結果顯示此方法產生之韻

律參數大致符合實際語音的韻律參數，驗證A-UJPLM演算法在韻律標記及韻律

模式上擁有不錯的表現。 
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Abstract 

An unsupervised joint prosody labeling and modeling method (UJPLM) for 

Mandarin speech is proposed, a new scheme intended to construct statistical prosodic 

models and to label prosodic tags consistently for Mandarin speech. Two types of 

prosodic tags are determined by four prosodic models designed to illustrate the 

hierarchy of Mandarin prosody: the break of a syllable juncture to demarcate prosodic 

constituents and the prosodic state of a syllable to represent any prosodic domain’s 

pitch level variation resulting from its upper-layered prosodic constituents’ influences. 

The performance of the proposed method was evaluated using an unlabeled 

read-speech corpus articulated by an experienced female announcer. Texts of the 

corpus were selected from The Sinica Treebank Corpus. Experimental results showed 

that the estimated parameters of the four prosodic models were able to explore and 

describe the structures and patterns of Mandarin prosody. Besides, certain 

corresponding relationships between the break indices labeled and the associated 

words were found, and manifested the connections between prosodic and linguistic 

parameters, a finding further verifying the capability of the method presented. A 

quantitative comparison in labeling results between the proposed method and human 

labelers indicated that the former was more consistent and discriminative than the 

latter in prosodic feature distributions, a merit of the method developed here on the 

applications of prosody modeling. In virtue of the success of UJPLM, the advanced 
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UJPLM (A-UJPLM) method was designed based on UJPLM to jointly label seven 

prosodic tags and model syllable pitch contour, duration and energy level. 

Experimental results showed that A-UJPLM performed quite well. The break labeling 

result showed that A-UJPLM inserted more minor breaks than UJPLM to result in a 

more consistent labeling of minor breaks to the human labeling. Lastly, an application 

of A-UJPLM to the prosody generation for Mandarin TTS is proposed. Experimental 

results showed that the proposed method performed well. Most predicted values of 

syllable pitch mean, duration and energy level matched well to their original 

counterparts. This also reconfirmed the effectiveness of the A-UJPLM method. 
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Chapter 1 Introduction 

1.1 Background 
The term prosody refers to certain inherent suprasegmental properties that carry 

melodic, timing, and pragmatic information of continuous speech, encompassing 

accentuation, intonation, rhythm, speaking rate, prominences, pauses, and attitudes or 

emotions intended to express. Prosodic features are physically encoded in the 

variations in pitch contour, energy level, duration, and silence of spoken utterances. 

Prosodic studies have indicated that these prosodic features are not produced 

arbitrarily, but rather realized after a hierarchically organized structure which 

demarcates speech flows into domains of varying lengths by boundary or break cues 

such as pre- and post-boundary lengthening, pitch and energy change, pauses, etc. 

Therefore, prosodic structure in English, for example, functions to set up syntagmatic 

contrasts to mark a prosodic word, an intermediate phrase, or an intonational 

boundary [1-3]. On the other hand, the prosodic structure of Mandarin Chinese also 

parses continuous speech into different prosodic constituents by breaks that reflect 

different levels of Chinese linguistic processing: phonetic, lexical, syntactic, and 

pragmatic. As a result, successive words with related prosodic feature variations are 

aggregated to form prosodic phrases, and contiguous prosodic phrases are, in turn, 

integrated to form prosodic phrases of a higher level. 

Many literatures on Chinese prosody have shown that the prosody of Mandarin 

speech can be organized into hierarchical structures [4-7]. Figure 1.1 displays a 

commonly agreed and used prosody hierarchy structure consists of four layers, 

including, from the lowest layer to the highest one, syllable layer, prosodic word layer, 

prosodic phrase layer (or intermediate phrase), and intonation phrase. As far as the 

major prosodic information relevant to each of the layers is concerned, given that 

Mandarin is a monosyllabic and tonal language, where each syllable with its inherent 

tone contains a lexical meaning, and each tone carries a lexically contrastive role, the 

features of every syllabic tone of an utterance are the most important prosodic 

information for the lowest layer; besides, tone along with syllable constituents affects 

syllable duration and energy level as well. As for the second prosodic layer, a 
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prosodic word refers to di-syllabic and multi-syllabic words or phrases composed of 

words syntactically and semantically closely related or most frequently collocated, so 

the words or phrases are uttered as a single unit as in 霧(wu) “fog” + 的(de) + 形成

(xing-cheng) “to form” (the formation of fog). As for the third prosodic layer, 

prosodic phrase is composed of one or several prosodic words and it usually ends 

with a perceptible but unobvious break. Finally, intonation phrase is at the top layer of 

the Mandarin prosodic structure. It determines the pitch contour of the intonation of a 

sentence containing one or several prosodic phrases and it ends with an obvious break. 

Basically, the four-layer prosodic structure interprets the pitch and duration variations 

of syllable well for sentential utterances. Some recent studies [8,9] proposed to 

integrate prosodic phrases into prosodic phrase groups to interpret the contributions of 

higher-level discourse information to the wider-range and larger variations on the 

prosodic features of utterances of long texts. In the science of speech processing, to 

model prosody is to exploit a framework or a computational model to represent a 

hierarchy of prosodic phrases of speech and to describe its relationship with the 

syntactic structure of the associated text.  

 
Figure 1.1: A commonly agreed and used prosody hierarchy structure that consists of 
four layers, including, syllable layer (SYL), prosodic word layer (PW), prosodic 
phrase layer (PP), and intonation phrase (IP). (Note: this figure is excerpted and 
modified from Ref. [6]) 

In the past, many prosody modeling methods have been proposed for various 

applications, including generation of prosodic information for text-to-speech (TTS) 

[10-12], segmentation of untranscribed speech into sentences or topics [13-15], 

generation of punctuations from speech [16-18], detection of interrupt points in 

spontaneous speech [13,19-21], automatic speech recognition (ASR) [22-28], and so 

forth. It can be found from those prosody modeling studies that four main issues have 

been intensively addressed. The first one is concerning representing a hierarchical 

prosodic phrase structure indirectly by tags marking important prosodic events. 
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Among various prosodic events explored in the relevant literature [29-35], break type 

and tone pattern are the most important ones: the break types of all word boundaries 

can determine the hierarchical prosodic phrase structure of an utterance, and the tonal 

patterns of all syllables/words can indicate the accented syllables/words of an 

utterance, and may specify the pitch contour patterns of the prosodic constituents. 

Several prosody representation systems have been proposed in the past. They include 

ToBI (Tones and Breaks Indices, a standard prosody transcription system for 

American English utterances) [29], PROSPA [31], INTSINT [32], and TILT [33]. 

Among them, ToBI and its modifications to other languages, such as Pan-Mandarin 

ToBI [34] and C-ToBI [35], are most popular conventions for Mandarin Chinese 

prosodic tagging. The second main issue is about realizing the constituents of a 

hierarchical prosodic phrase structure by using prosodic feature patterns. This is 

mainly used in TTS for the generation of prosodic information from prosodic tags. A 

common approach is to use a multi-component representation model to superimpose 

several prototypical contours of multi-level prosodic phrases for each prosodic feature 

[36-38]. In Ref. [36], three components of sentence-specific contours, word-specific 

contours, and tone-specific contours are superimposed to form the synthesized 

contours of pitch and syllable duration for Mandarin TTS. 

The third main issue is relating to exploring the relationship between prosodic 

tags (or boundary types) and the acoustic features surrounding the associated word 

juncture. Patterns of pause duration, pitch, and energy around word junctures are 

modeled for each prosodic tag or boundary type to help speech segmentation [13-15], 

topic identification [15], punctuation generation [16-18], interrupt point detection 

[13,19-21], and ASR [22-28] based on word-based features. The last issue is upon 

modeling the relationship between prosodic structure and syntactic structure. It is 

known that prosodic structure is closely related to syntactic structure although they 

are not identical. Usually, only the relationship between a prosodic tag, such as break 

or prominence, and contextual linguistic features of syntactic structure is built. A 

good break-syntax model should be very useful in predicting breaks of various levels 

from input text for TTS. Main methods of building a break-syntax model for TTS are 

hierarchical stochastic model [39,40], N-gram model [41], classification and 

regression tree (CART) [40,42-45], Markov model [46], artificial neural networks 

[47], maximum entropy model [48-51], etc. In the popular Markov model-based 
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approach, emission probabilities can be generated by CART [44] or maximum 

entropy model [51]. 

1.2 Motivation 
Prosody modeling has been proved to be useful in above-mentioned applications, 

and the most commonly adopted approach by the previous studies is a supervised one 

to construct prosodic model from an annotated speech database with tags marking 

prosodic events being pre-labeled manually. However, the supervised prosody 

modeling based on human labeling unavoidably arises such problems as diseconomy 

due to labeler training and manual labeling labor, and inter-labelers’ and 

intra-labeler’s inconsistency caused by individual subjectivity and fatigue during long 

time labeling, respectively. This inconsistency may mislead prosody modeling to 

obtain erroneous results, and hence lead to unwanted degradation of modeling 

performance. Even in the studies where prosody labeling can be automatically done 

by machine, their model is still trained with a manually-annotated speech corpus 

[52-57], so the performance of machine labeling is still subject to the quality of 

human prosody labeling. 

To tackle the problems arising from the supervised prosody modeling with 

manual labeling, this dissertation presents a new unsupervised approach of prosody 

modeling to jointly perform prosody modeling and labeling for Mandarin speech 

based on an unlabeled speech database. It is an extension of the previous work by 

Chen et al. [58,59] which will be introduced in Section 1.3. The basic idea of this 

work is to properly model the observed features and then let the modeled-features 

objectively determine prosodic tags by themselves rather than by human perception 

with audio and visual aid in conventional prosody labeling works. The task 

automatically determines two types of prosodic tags for all utterances of a corpus and 

to build four prosodic models simultaneously. The two types of prosodic tags are: (1) 

the break types of inter-syllable locations (or syllable junctures) which can be used to 

demarcate the constituents of a hierarchy of Mandarin speech prosody; and (2) the 

prosodic states of syllables which can be used to construct the pitch contour, syllable 

duration and energy level patterns of the prosodic constituents. The four prosodic 

models are introduced to describe the various relationships between the two types of 

prosodic tags and all available information sources including acoustic prosodic 



 

 5

features and syntactic structure features. Three advantages of the proposed method 

can be found. First, prosody modeling and labeling are accomplished jointly and 

automatically without using human-labeled training corpus. Second, all information 

sources, including acoustic and linguistic features, are systematically used (via 

introducing the four prosodic models) in the prosody labeling. We therefore expect 

that the result of the prosodic labeling is more consistent than that done by human, 

which will in turn make the four prosodic models more accurate. Third, the four 

prosodic models constructed address all the four main issues of prosody modeling 

discussed above. So they are useful models and may be directly used or extended to 

be used in those applications mentioned above. 

1.3 Overview of Unsupervised Joint Prosody Labeling and 

Modeling 

Since the proposed unsupervised joint prosody labeling and modeling method is 

an extension of the previous works by Chen et al. [58,59], these previous works will 

be introduced in Subsection 1.3.1 to give a clearer concept of the prosodic states 

defined. Then the prosody hierarchy adopted in this study and its relationship to the 

defined prosody tags, i.e. break types and prosodic states, are described in Subsection 

1.3.2. In Subsection 1.3.3, we present the general concept of the four prosodic models 

which are the core of this dissertation. Lastly, the database used in our experiments is 

introduced in Subsection 1.3.4. 

1.3.1 Previous Works 

Two statistical prosody models for Mandarin speech using unlabeled speech 

corpora were proposed by Chen et al. [58,59]. These two models consider several 

affecting factors on the variations in syllable pitch contour and syllable duration, 

respectively, including lexical tones, initial-final or base-syllable type, and prosodic 

state. Here, prosodic state is conceptually defined as the state in a prosodic phrase and 

used as a substitution for the effects from high-level linguistic features, such as a 

word, a phrase or a syntactic tree. Prosodic states are also assumed to account for the 

prosodic variation contributed by para-linguistic features, such as intention, attitude 

and style of the speaker, and even by non-linguistic features, such as physical and 
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emotional conditions of the speaker. They therefore treat the high-level linguistic 

features, para-linguistic features and non-linguistic features as high-level affecting 

factors on prosodic variation. On the other hands, low-level affecting factors refer to 

some syllable-level linguistic features which represent intrinsic characteristics of 

Mandarin prosody, such as lexical tones and base-syllable type, and so forth. For the 

syllable duration model, a companding factor (CF) is hence defined to control the 

compression/increase or stretch/increase of syllable duration/pitch associated with 

each of the above low- and high-level affecting factors. Based on the assumption that 

all CFs are combined multiplicatively or additively, the multiplicative and additive 

syllable duration models are expressed respectively by 

n n n n nn n t y j l sZ X γ γ γ γ γ=                                                   (1.1) 

and 

n n n n nn n t y j l sZ X γ γ γ γ γ= + + + + +                                           (1.2) 

where nZ  and nX  are the observed and normalized durations of the n-th syllable; 

xγ  represents duration CF of the affecting factors x; nt , ny , nj , nl  and ns  

respectively represent the lexical tone, duration prosodic state, base-syllable type, 

utterance, and speaker of the n-th syllable; and the residual nX  is modeled by a 

normal distribution with mean μ  and variance v, i.e. 
2 2 2 2 2( , | ) ( ; , )

n n n n n n n n n nn n n t y j l s t y j l sp Z y Z vλ μγ γ γ γ γ γ γ γ γ γ= Ν . Notice that the prosodic state is 

treated as a latent variable hence the Expectation-Maximization (EM) algorithm is 

introduced to train the multiplicative or additive syllable duration models based on the 

maximum likelihood (ML) criterion. After training, each syllable can be labeled a 

prosodic state index by 

* max ( | , )
n

n n ny
y p y Z λ=                                                (1.3) 

Then, the CF sequence of prosodic state { *
nyγ } of each utterance can represent the 

syllable-duration variation of the utterance primarily resulted from high-level 

linguistic features. 
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Based on the same idea, the syllable pitch mean and shape models are 

respectively expressed by 

n n n n n nn n t pt ft i f pY X β β β β β β= + + + + + +                                 (1.4) 

and 

n n n n nn n tc q s i f= + + + + +Z X b b b b b                                      (1.5) 

where nY / nZ  and nX / nX  are observed and normalized pitch mean/shape of the 

n-th syllable; xβ /b  represents the pitch mean/shape CF of the affecting factors x; 

npt , nft , ni , nf , np , ntc  and nq  are, correspondingly, previous lexical tone, 

following lexical tone, initial type, final type, pitch mean prosodic state, tone 

combination and pitch shape prosodic state of the n-th syllable. The training and 

labeling of the pitch mean/shape models are similar to the way in syllable duration 

modeling. 

The main purpose of using prosodic state to replace conventional high-level 

linguistic information is to decompose the effects of low-level and high-level 

linguistic features on speech prosody. Through this modeling approach, some 

unsolved problems, such as the inconsistency between prosodic and syntactic 

structures, the ambiguity of word segmentation and word chunking for Mandarin 

Chinese, can be avoided. Hence, this modeling scheme can more focus on modeling 

the global effect of mapping high-level linguistic features to the prosodic state and 

break indices, since interference caused by low-level linguistic feature has been 

properly removed. The following are some key observations and conclusions of the 

proposed models evaluated by a speech corpus consisted of paragraphic utterance of 

five speakers: 

1. The variances of syllable duration, pitch mean and pitch shape were greatly 

reduced as the observed prosodic features are normalized with the CFs for 

considered affecting factors. 

2. The quantitative influence of each affecting factor is directly obtained from their 

corresponding CFs. 
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3. The obtained CFs for low-level linguistic features generally agreed with the prior 

knowledge of Mandarin prosody. 

4. By investigating the relationship between the labeled prosodic states and their 

associated texts, the prosodic states labeled seemed to be linguistically 

meaningful. For example, the prosodic states with larger CFs are usually labeled 

on the last syllable of a sentence illustrating syllable duration lengthening effect; 

pattern of a prosodic phrase is more apparent when it is represented by a 

sequence of pitch mean prosodic state CFs than when observed in original pitch 

mean. 

5. Experiments on prosody generation for Mandarin TTS system showed that the 

hybrid-regression model that normalized the observed prosodic features with 

CFs for syllable level linguistic features in advanced achieved a better prediction 

result than a conventional regression method that take observed prosodic features 

and all levels of linguistic features as targets and inputs. The results implied the 

proposed models can properly decompose the influences of high-level and 

low-level linguistic features on prosody. 

6. A simple rule-based break labeling method is proposed. Large and medium 

sudden low-to-high pitch prosodic state transitions indicated minor and major 

breaks boundaries. 

As discussed above, the two models proposed by Chen et al. could generate 

linguistically meaningful prosodic state tags and they can give a better representation 

of prosodic phrase patterns. However, a well-defined prosody hierarchy is not 

considered in these previous studies. Besides, the relationship between prosodic states 

and high-level linguistic features are still untouched. Some important acoustic 

features related to prosodic breaks are also not incorporated in those models. We 

therefore intend the new proposed unsupervised joint prosody labeling and modeling 

method in this dissertation to address those missing research fields mentioned above 

based on the previous works by Chen et al. 
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1.3.2 Prosody Hierarchy and Prosody Tags 

Recently, Tseng et al. [8] proposed to integrate contiguous prosodic phrases into 

prosodic phrase groups to interpret the contributions of higher-level discourse 

information to the wider-range and larger variations in syllable pitch and duration of 

long utterances in paragraphs. Figure 1.2 displays the hierarchical prosodic phrase 

grouping (HPG) model of Mandarin speech proposed by Tseng. It is a five-layer 

structure. The first three layers in the hierarchy are the same as those of the four-layer 

prosodic structure introduced in Section 1.1, which are referred to as Syllable (SYL), 

Prosodic Word (PW), and Prosodic Phrase (PPh) in the system of Tseng et al., 

respectively. The fourth layer, Breath Group (BG), is formed by combining a 

sequence of PPhs, and a sequence of BGs, in turn, constitutes the fifth layer, Prosodic 

Phrase Group (PG). The above five prosodic units are delimited by different type of 

the six breaks proposed by Tseng et al. Firstly, B0 and B1 are defined for SYL 

boundaries within PW. Here, B0 represents reduced syllabic boundary and B1 

represents normal syllabic boundary. Usually no identifiable pauses exist for both B0 

and B1. Secondly, B4 and B5 are defined for BG and PG boundaries, respectively. B4 

is a breathing pause and B5 is a complete speech paragraph end characterized by final 

lengthening coupled with weakening of speech sounds. Thirdly, B2 and B3 are 

perceivable boundaries defined for PW and PPh boundaries, respectively. 

 

Figure 1.2: A conceptual prosody hierarchy of Mandarin speech proposed by Tseng et 
al. in Ref. [8]. 
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In this dissertation, we adopt the prosodic structure of Tseng et al. because our 

speech database also consists of long Mandarin utterances of paragraphs. However, 

we modify the break type labeling scheme of HPG model by dividing B2 into two 

types, B2-1 and B2-2, and combining B4 and B5 into one denoted simply by B4. Here, 

B2-2 represents syllabic boundary of B2 perceived by pause, while B2-1 is B2 with F0 

movement. The reason of dividing B2 into B2-1 and B2-2 is due to the difference of 

their acoustic cues to be modeled. On the contrary, the combination of B4 and B5 is 

owing to the similarity of their acoustic characteristics. So, the break-type tags used is 

in =Λ {B0, B1, B2-1, B2-2, B3, B4}. These six break-type tags can be used to delimit 

four types of prosodic units: SYL, PW, PPh, and BG/PG. These four units are the 

constituents of our hierarchical prosodic structure. 

To further specify the four-layer prosodic structure, a representation of its 

constituents using prosodic features is needed. Two main approaches of 

representation can be considered. One is direct representation approach to represent 

each individual prosodic constituent by multiple prototypical patterns for each 

prosodic feature of syllable pitch contour, duration, or energy level [8,10,11]. The 

other is indirect representation approach by using some tags which carry the 

information of prosodic constituents and are treated as hidden, i.e. the prosodic states. 

Due to the following two reasons, we do not adopt direct representation approach in 

the prosody modeling and labeling study. First, the technique of direct representation 

approach is still not mature enough to produce a good direct representation for the 

hierarchy of Mandarin speech prosody. The modeling errors, defined as the ratio of 

mean square errors of direct representations to the variances of the raw data, are still 

as high as about 30% for the multi-layer representations of syllable duration, and 

energy using the HPG model [8]. Second, a good direct representation is not easy to 

be realized for the case of joint prosody modeling and labeling using an unlabeled 

speech corpus in which the prosodic structures of all utterances are not well 

determined in advance. Degeneration may occur because break labeling errors may 

produce inaccurate representation patterns of prosodic constituents, which in turn may 

cause more break labeling errors to occur. Instead, we adopt an indirect representation 

approach to employ the defined prosodic states discussed in Subsection 1.3.1 to 

represent the aggregative contributions of the constituents of the upper three layers on 

syllable pitch level. Similar to the definition of the previous works by Chen et al., the 
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prosodic state tag is defined as a quantized and normalized syllable pitch level, 

duration and energy level with the effects from base-syllable or final types, the 

current tone and the two nearest neighboring tones being properly eliminated. So it 

carries mainly the prosodic information of the upper three layers of the prosodic 

structure, i.e. PW, PPh, and BG/PG. We call it prosodic state to roughly mean the 

state in a prosodic phrase (PW, PPh, or BG/PG). Two advantages of using the 

prosodic-state tag can be found. First, the tag is defined for each individual syllable so 

that the effect of a labeling error is limited to the current syllable only. No 

degeneration in the joint prosody modeling and labeling process will occur. Second, 

the tag carries the full prosodic information in the upper three layers of the prosodic 

structure. In experimental results, we will show the capability of the prosodic-state tag 

on constructing the pitch contour patterns of PW, PPh, and BG/PG. It is worth to note 

that the pitch prosodic state, duration prosodic state and energy prosodic state are 

correspondingly defined for syllable pitch mean, syllable duration, and syllable 

energy level variations of high-level prosodic constituents ( i.e. PW, PPh, and 

PG/BG). In this dissertation, for simplicity, we first only consider the pitch prosodic 

state in unsupervised joint prosody labeling and modeling. Then the duration prosodic 

state and the energy prosodic state are added to the proposed method to perform an 

advanced unsupervised joint prosody labeling and modeling. 

1.3.3 The Four Prosodic Models 
The four prosodic models are designed to model the prosody hierarchy 

illustrated in Subsection 1.3.2 and perform unsupervised joint prosody labeling and 

modeling given with both acoustic and linguistic features. Two types of acoustic 

features can be considered. One is the prosodic features which carry the information 

of prosodic constituents. Primary features of this type include syllable pitch contour, 

syllable duration, and syllable energy level. Another is the acoustic features used to 

specify the break type of syllable juncture. Primary features of this type include pause 

duration and energy-dip level of syllable juncture, energy and pitch jumps across 

syllable juncture, lengthening factor of syllable duration, etc. The linguistic features 

used span a wide range from syllable level, word level to syntactic tree level. 

The first model, referred to as the syllable prosodic model, describes the 
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variations in syllable prosodic features, including syllable pitch contours, duration 

and energy level, controlled by several major affecting factors, such as syllable-level 

linguistic features and prosodic tags. The next one, referred to as the break-acoustics 

model, describes the relationship between the break type of a syllable juncture and 

nearby acoustic features, such as pause duration and energy-dip level of syllable 

juncture. The third one describes the relationship between the break type of a syllable 

juncture and contextual linguistic features. It is referred to as the break-syntax model. 

Finally, the last model describes the relationship between the prosodic states of 

syllables and the break types of neighboring syllable junctures, and is referred to as 

the prosodic state model. We can then regard the proposed unsupervised joint prosody 

labeling and modeling method which is based on the four prosodic models as a 

clustering problem. With proper initializations of break types and prosodic states, a 

designed sequential optimization training algorithm is conducted to iteratively 

estimate parameters of the four prosodic models, and find all prosodic tags using an 

unlabeled speech corpus. 

1.3.4 Experimental Database 

An unlabeled read Mandarin speech database was used to evaluate the proposed 

unsupervised joint prosody labeling and modeling method. The database contained 

425 utterances with 56237 syllables uttered by a female professional announcer in a 

sound-proof booth. All speech signals were digitally recorded in a form of 16kHz 

sampling rate and 16-bit resolution. Its associated texts were all short paragraphs 

composed of several sentences selected from the Sinica Treebank Version 3.0 [60]. 

There are six files in the Sinica Treebank Version 3.0 as listed in Table 1.1. All the 

texts used in this study were extracted from the “news.check” file. Those texts were 

automatically parsed and manually checked. The tone and base-syllable type of each 

syllable were transcribed by a linguistic processor with a 130,000-word lexicon and 

then manually error-corrected. All syllable segmentation and F0 detection were first 

done automatically using the Hidden Markov Model Toolkit (HTK) [61] and 

WaveSurfer [62], respectively, and then error corrected manually. The database is 

further divided into two parts: a training set of 379 utterances with 52192 syllables 

and a test set of 46 utterances with 4801 syllables. 
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    Table 1.1: The content of the Sinica Treebank corpus 

File name Content
news.check, travel.check News papers, books, or internet articles 
ko.check, ev.check Elementary school text books 

oral.check Text from phonetic balanced speech 

sino.check Text from Taiwan Panorama 

1.4 Organization of the Dissertation 
The dissertation is organized as follows. Chapter 1 gives the background, 

motivation, review of related previous works and description on the experimental 

databases used in this study. Chapter 2 presents the proposed unsupervised joint 

prosody labeling and modeling method which employs four prosodic models to 

describe relationship between prosodic tags, acoustic features and associated 

linguistic features. For simplicity we only consider the modeling of syllable pitch 

contour in this chapter and will extend the modeling to include the other two syllable 

prosodic features, i.e. syllable duration and syllable energy level, in Chapter 3. The 

experimental results on the training set of the Sinica Treebank corpus are discussed. 

Then, an extension to joint modeling of syllable pitch contour, duration and energy 

level is presented in Chapter 3. An application of the proposed model to prosody 

generation for TTS is discussed in Chapter 4. Some conclusions and related future 

research topics are given in the last chapter. 
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Chapter 2 Unsupervised Joint Prosody Labeling 

and Modeling 

2.1 Introduction 
The proposed method first treats the problem as a model-based prosody labeling 

problem to define four prosodic models to describe various relationships between the 

prosodic tags to be labeled and the available information sources of acoustic and 

syntactic features. It then extends the formulation for the joint prosody labeling and 

modeling problem and applies a sequential optimization procedure to jointly label 

prosodic tags and estimate the model parameters using an unlabeled speech corpus. 

This chapter is organized as follows. Section 2.2 presents the four prosodic models 

which is the core of this dissertation. The training algorithm for the four prosodic 

models is given in Section 2.3. Sections 2.4 and 2.5 give the experimental results and 

the detail analysis of model-labeled break, respectively. Lastly, some conclusions and 

remarks are given in Section 2.6. 

2.2 The Design of the Four Models 
The prosody labeling problem can be generally formulated as a parametric 

optimization problem to find the best prosodic tag sequence ∗T  given with the 

acoustic feature sequence A of the input speech utterance and the linguistic feature 

sequence L of the associated text: 

argmax ( | , )=argmax ( , | )P P∗ =
T T

T T A L T A L          (2.1) 

Two types of prosodic tags which carry the information of prosodic structure of 

Mandarin speech are considered in this study. One is the break type of syllable 

juncture. A set of six break types, defined in Subsection 1.3.2, is used. It is denoted as 

{B0, B1, B2-1, B2-2, B3, B4}. These six break types are used to define a hierarchy of 

speech prosody comprising four constituents of SYL, PW, PPh, and BG/PG. Another 

is the prosodic state of syllable defined as a quantized and normalized syllable pitch 

level with the effects of the current tone and the two nearest neighboring tones being 
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properly eliminated. As discussed in Subsection 1.3.2, it is an indirect representation 

of the prosodic constituents to carry the pitch level information of PW, PPh, and 

BG/PG. So, T can be refined to comprise a break-type sequence B and a prosodic 

state sequence p. 

Two types of acoustic features can be considered. One is the prosodic features 

which carry the information of prosodic constituents. Acoustic features of this type 

are assumed to be closely related to the prosodic-state tags and loosely related to or 

independent of the break-type tags. Primary features of this type include syllable pitch 

contour, syllable duration, and syllable energy level. For simplicity we only consider 

syllable pitch contour in this chapter and will extend the study to include the other 

two in next chapter. Another is the acoustic features used to specify the break type of 

syllable juncture. Acoustic features of this type are assumed to be closely related to 

the break-type tags, and loosely related to or independent of the prosodic-state tags. 

Primary features of this type include pause duration and energy-dip level of syllable 

juncture, energy and pitch jumps across syllable juncture, lengthening factor of 

syllable duration, etc. Among them, pitch jump has been implicitly considered via the 

use of prosodic-state tag, energy jump is somewhat a redundant feature as energy-dip 

level is used, and lengthening factor will be considered together with the syllable 

duration modeling in next chapter. We therefore only consider the two features of 

pause duration and energy-dip level here. From above discussions, A can be refined to 

comprise a syllable pitch contour sequence sp, a pause duration sequence pd, and an 

energy-dip level sequence ed. 

The linguistic features used span a wide range from syllable level, such as 

syllable tone and initial type; word level, such as syllable juncture type (intra-word 

and inter-word), word length, part of speech (POS), and type of punctuation mark 

(PM); to syntactic tree level, such as size of syntactic phrase and syntactic juncture 

type (intra-phrase and inter-phrase). Since syllable tone is an important linguistic 

feature and mainly used in the modeling of syllable pitch contour, we separate it from 

other linguistic features. So, L is refined to include a syllable tone sequence t and a 

reduced linguistic feature set l. 

Based on above discussions, we rewrite ( , | )P T A L  by  

( , | ) ( , , , , | , ) ( , , | , , , ) ( , | , )P P P P= =T A L B p sp pd ed l t sp pd ed B p l t B p l t                (2.2) 
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where ( , , | , , , )P sp pd ed B p l t  is a general prosodic feature model describing the 

variations in acoustic prosodic features ( , ,sp pd ed ) controlled by the prosodic tags 

(B,p) representing the prosodic structure and the linguistic features (l, t) representing 

the syntactic structure; and ( , | , )P B p l t  is a general prosody-syntax model which 

describes the relationship between (B,p) and (l, t). 

Since the break type tag sequence, B, has already carried the prosodic cues 

related to syllable junctures, we therefore assume that the observed syllable-based 

acoustic feature, sp, and the juncture-based acoustic features, ( ,pd ed ), are 

independent as B is given. So we split ( , , | , , , )P sp pd ed B p l t  into two terms: 

( , , | , , , )  ( , , , ) ( , , , , )P P P≈sp pd ed B p l t sp|B p l t pd ed|B p l t                        (2.3) 

Here ( , , , )P sp|B p l t  is a syllable pitch contour model describing the variation in 

syllable pitch contour controlled by ( , , ,B p l t ) and ( , , , , )P pd ed|B p l t  is a break- 

acoustics model describing the acoustic cues of syllable junctures for different break 

types. The syllable pitch contour model is realized using a modified version of the 

syllable pitch contour model proposed previously by Chen et al [58]. It models the 

pitch contour of each syllable separately and considers four main affecting factors, 

including the current prosodic state np , the current tone nt , and the coarticulations 

from the two nearest neighboring tones, 1nt −  and 1nt + , conditioned, respectively, on 

the break types, -1nB  and nB , of the syllable junctures on both sides. Specifically, the 

model is expressed by 

1
-1 -1

1
( , , , )  ( , , )  ( | , , )

N
n n

n n n n
n

P P P p B t +

=
≈ ≈ ∏sp|B p l t sp|B p t sp                      (2.4) 

where 

1 -1, ,          for 1
n n n n n n

r f b
n n t p B tp B tp n N

−
= + + + + + ≤ ≤sp sp β β β β μ                   (2.5) 

is the observed pitch contour of n-th syllable (referred to as syllable n hereafter) 

represented by the first four orthogonally-transformed parameters of syllable log-F0 

contour [63]; -1 -1=( , )n
n n nB B B ; 1

-1 -1 1( , , )n
n n n nt t t t+

+= ; r
nsp  is the normalized (or residual) 

version of nsp ; xβ  represents the affecting pattern (AP) of affecting factor x . Here 

AP means the effect of a factor on increase or decrease of the observed syllable pitch 

contour vector nsp . 
nt

β  and 
npβ  are the APs of affecting factors nt  and np , 
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respectively; ntp  is tone pair 1
+1( , )n

n n nt t t+ = ; 
1 -1,n n

f
B tp−

β  and ,n n

b
B tpβ  are the APs of 

forward and backward coarticulation contributed from syllable n-1 and syllable n+1, 

respectively; and μ  is the AP of global mean. For taking care of utterance 

boundaries, two special break types, and b eB B , are assigned to the two ending 

locations of all utterances, i.e., 0  and b N eB B B B= = ; and two special APs of 

coarticulation, 
1 0 0, ,b

f f
B t B tp=β β  and , ,e N N N

b b
B t B tp=β β , are accordingly adopted to represent 

the effects of utterance onset and offset, respectively. 
npβ  is set to have nonzero 

value only in its first dimension in order to restrict the influence of prosodic state 

merely on the log-F0 level of the current syllable. Figure 2.1 displays the relationship 

of nsp  with these affecting factors. By assuming that r
nsp  is zero-mean and 

normally distributed, i.e. ( ; , )r
nN sp 0 R , we have  

1 -1

1
-1 -1 , ,( | , , ) ( ; , )      for 1

n n n n n n

n n f b
n n n n n t p B tp B tpP p B t N n N

−

+ = + + + + ≤ ≤sp sp β β β β μ R         (2.6) 

 

1n−sp nsp 1n+sp1nB − nB

1 1,n n
f
B tp− −

β

,n n
b
B tpβ

ntβ

npβ  
Figure 2.1: The relationship of observed syllable pitch contour with its APs. 

 

It is noted that the effect from l is assumed to be implicitly included in the effect of p 

and hence is neglected. We also note that the coarticulation effect is elegantly treated 

to consider different degrees of coupling between two neighboring syllables via 

letting it depend on the break type of the syllable juncture. 

The break-acoustics model ( , , , , )P pd ed|B p l t  is further elaborated via assuming 

that ( ,pd ed ) is independent of (p,t) which mainly carries information of prosodic 

constituents rather than that of syllable juncture. So we have 
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1

1
( , , , , )  ( , , )  ( , | , )

N

n n n n
n

P P P pd ed B
−

=
≈ ≈ ∏pd ed|B p l t pd ed|B l l                  (2.7) 

where npd  and ned  are the pause duration and energy-dip level of the juncture 

following syllable n (referred to as juncture n hereafter); and nl  is the contextual 

linguistic feature vector around juncture n. For mathematically tractable, 

( , | , )n n n nP pd ed B l  is further simplified and realized by the product of a gamma 

distribution for pause duration and a normal distribution for energy-dip level: 

2
, , , ,( , | , ) ( ; , ) ( ; , )

n n n n n n n nn n n n n B B n B BP pd ed B g pd N edα β μ σ= l l l ll                   

(2.8) 

In this study, , ,( ; , )
n n n nn B Bg pd α βl l  and 2

, ,( ; , )
n n n nn B BN ed μ σl l  are concurrently 

generated by the decision tree method for each break type. 

Similarly, we simplify the general prosody-syntax model ( , | , )P B p l t  via 

assuming the independency of ( , )B p  and t, and decomposing it into two models, i.e.  

( , | , ) ( , | ) ( | , ) ( | ) ( | ) ( | )P P P P P P≈ = ≈B pl t B p l p B l B l p B Bl                        (2.9) 

where ( | )P p B  is a prosodic state model describing the dynamics of p given with B, 

and ( | )n nP B l  is a break-syntax model describing the relationship between B and the 

contextual linguistic feature sequence l. In this study, we realize ( | )P p B  by a 

Markov model: 

1 1 1
2

( | ) ( ) ( | , )
N

n n n
n

P P p P p p B− −
=

⎡ ⎤≈ ⎢ ⎥⎣ ⎦∏p B                                     (2.10) 

where 1( )P p  is the initial prosodic-state probability for syllable 1 and 

1 1( | , )n n nP p p B− −  is the prosodic-state transition probability from syllable n-1 to 

syllable n given 1nB − . We also simplify ( | )P B l  by separately modeling it for each 

syllable juncture: 

1

1
( | )= ( | )

N

n n
n

P P B
−

=
∏B l l .                                               (2.11) 

Here ( | )n nP B l  is implemented by the decision tree method. 
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2.3 Joint Prosody Labeling and Modeling 
A sequential optimization procedure based on the ML criterion is proposed to 

jointly label the prosodic tags for all utterances of the training corpus and to estimate 

the parameters of the four prosodic models. It is divided into two main parts: 

initialization and iteration. The initialization part determines initial prosodic tags of 

all utterances and estimates initial parameters of the four prosodic models by a 

specially designed procedure. The iteration part first defines an objective likelihood 

function for each utterance by 

( )

1
-1 1 1 1 1

1 2
1

1

( | , , ) ( ) ( | , )

                                               ( , | , ) ( | )

N N
n n

n n n n n n n
n n

N

n n n n n n
n

Q P p B t P p P p p B

P pd ed B P B

+
− − −

= =
−

=

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∏ ∏

∏

sp

l l
.          (2.12) 

It then applies a multi-step iterative procedure to update the labels of prosodic tags 

and the parameters of the four prosodic models sequentially and iteratively. In the 

following subsections, we discuss the sequential optimization procedure in detail. 

2.3.1 Initialization 

The initialization part is further divided into two sub-parts: (a) a specially 

designed procedure to determine initial break labels of all syllable junctures; and (b) a 

ML estimation process to estimate initial parameters of the four prosodic models and 

to determine the initial prosodic-state labels of all syllables using the information of 

initial break labels determined in the first sub-part. 

(a) Initial labeling of break indices 

The initial break index of each syllable juncture is determined by a decision tree 

(see Figure 2.2) designed based on a prior knowledge about break labeling/modeling 

gained in previous studies [8,28,40,52-58,64,65]. It is known that pause duration is 

the most important acoustic cue to specify breaks. Most word junctures with PM have 

long pauses so that they are most likely labeled as major break, or in our case B3 and 

B4. On the other hand, most intra-word syllable junctures have very short pause 

duration so that they are generally labeled as non-break, or in our case B0 and B1. 

Moreover, B0 represents tightly coupled syllable juncture so that it is distinguished 
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from B1 by having very short pitch pause duration and high energy-dip level. 

In-between these extreme situations, non-PM inter-word junctures with medium 

pause duration and with medium pitch jump are likely labeled as B2-2 and B2-1, 

respectively. By using the prior knowledge, we develop the algorithms to determine 

all thresholds of the decision tree (Th1~ Th6) in a systematic way to avoid doing it 

manually or by trial and error. Detail of the algorithms is given in Appendix A. 

1npd Th≥

2npd Th≥

3npd Th≥

6 andned Th≥

6 andned Th≥

  
Figure 2.2: The decision tree for initial break type labeling. 

(b) Estimation of the initial parameters of the four prosodic models and 
prosodic-state indices 

The initializations of the break-acoustics model and the break-syntax model can 

be done independently with initial break indices of all syllable junctures being given. 

We realize them by the CART algorithm [66]. For the initialization of the 

break-acoustics model, the CART algorithm with the node splitting criterion of 

maximum likelihood gain is adopted to classify pause duration npd  and energy-dip 

level ned  for each break type B according to a question set 1Θ  derived from the 

contextual linguistic features nl . Each leave node represents the product of a gamma 

distribution , ,( ; , )
n nn B Bg pd α βl l  and a normal distribution 2

, ,( ; , )
n nn B BN ed μ σl l . For the 

initialization of the break-syntax model ( | )n nP B l , a decision tree is built by using 

another question set 2Θ  derived also from nl  to classify break types. The details of 

nl , 1Θ , and 2Θ  used in this study are listed in Appendixes B, C.1, and C.2, 

respectively. 



 

 21

The initializations of the syllable pitch contour model and prosodic-state indices 

are integrated together and performed by a progressive estimation procedure. Since 

the syllable pitch contour model is a multi-parametric representation model to 

superimpose several APs of major affecting factors to form the surface syllable pitch 

contour, the estimation of an AP may be interfered by the existence of the APs of 

other types. It is therefore improper to estimate all initial parameters independently. 

We hence adopt a progressive estimation strategy to first determine the initial APs 

which can be estimated most reliably and then eliminate their effects from the surface 

pitch contours for the estimations of the remaining APs. In this study, the order of 

initial AP estimation is listed as follows: global mean μ , five tones tβ , 

coarticulation { ,
f
B tpβ , ,

b
B tpβ , 

1,b

f
B tβ  and ,e N

b
B tβ }, and prosodic states pβ . Notice that 

the initial prosodic-state indices are assigned by vector quantization (VQ) of the 

pitch-level components of the residue pitch contours; and the APs are set to be the 

codewords obtained by VQ. Lastly, the initialization of the prosodic state model 

( | )P p B  is done using the labeled prosodic-state indices and break indices. 

2.3.2 Iteration 

The iteration is a multi-step iterative procedure listed below: 

Step 1: Update the APs of five tones tβ  with all other APs being fixed. 

Step 2: Update the APs of coarticulation { ,
f
B tpβ , ,

b
B tpβ , 

1,b

f
B tβ  and ,e N

b
B tβ } with all 

other APs being fixed, and then update R . 

Step 3: Re-label the prosodic state sequence of each utterance by using the Viterbi 

algorithm so as to maximize Q defined in Eq. (2.12). Then, update the APs 

of prosodic state pβ , the prosodic state model ( | )P p B  and R . 

Step 4: Re-label the break type sequence of each utterance by using the Viterbi 

algorithm so as to maximize Q. Then, update the prosodic state model 

( | )P p B  and R . 

Step 5: Re-construct the decision trees to update ( , | , )n n n nP pd ed B l  and ( | )n nP B l  

by the CART algorithm using the question sets 1 2and Θ Θ , respectively. 

Step 6: Repeat Steps 1 to 5 until a convergence is reached. 
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2.4 Experimental Results 

The experiment was conducted on the training set which consisted of 379 

utterances with in total 52192 syllables. The number of prosodic states was properly 

set to be 16 because the root mean squared error (RMSE) of VQ saturated when the 

number of prosodic states was greater than 16. As shown in Figure 2.3, the sequential 

optimization procedure took 69 iterations to reach a convergence. Following is 

examinations and interpretations of the parameters of the four prosodic models. 

 
Figure 2.3: The plot of total log-likelihood versus iteration number. 

2.4.1 The Syllable Pitch Contour Model 
We first examined the parameters of the syllable pitch contour model 

1
-1 -1( | , , )n n

n n n nP p B t +sp . The covariance matrices of the original and normalized syllable 

log-F0 contour feature vectors are shown below: 

4

565.4 23.9 -25.6 -0.5
23.9 90.5 9.7 -8.2

 10
-25.6 9.7 17.8 -0.9
-0.5 -8.2 -0.9 5.0

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= × ⇒
⎢ ⎥
⎢ ⎥
⎣ ⎦

spR  4

3.5 0.2 -0.2 0.0
0.2 31.9 2.6 -1.5

 10
-0.2 2.6 11.1 0.6
0.0 -1.5 0.6 3.7

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ×
⎢ ⎥
⎢ ⎥
⎣ ⎦

rsp
R  

Obviously, all elements of rsp
R  were much smaller than those of spR . This showed 

that the influences of the affecting factors considered were indeed essential to the 

variation of sp.  
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Figure 2.4 displays the APs of five tones. We find from the figure that the APs 

of the first four tones conformed well to the standard tone patterns found by Chao 

[67]. As for tone 5, its low dipping pattern resembles the pattern of tone 3 to some 

degree. This also matched the finding in the previous study about tone 5 [68].  

 

Figure 2.4: The APs of five tones 

Table 2.1 displays the APs (log-F0 levels) and the distribution of the 16 

prosodic states. It can be seen from Table 2.1 that these 16 log-F0 levels spanned 

widely to cover the whole dynamic range of log-F0 variation with lower indices of 

prosodic state corresponding to lower log-F0 levels; and the prosodic states 

distributed normally with relatively few located at the two extremes of high and low 

prosodic states. 

Table 2.1: The APs (log-F0 levels, (1)pβ ) and the distribution ( ( )P p ) of the 
16 prosodic states. 

State index 1 2 3 4 5 6 7 8 
(1)pβ  -0.77 -0.50 -0.37 -0.28 -0.22 -0.16 -0.10 -0.05 

( )P p  0.00 0.01 0.02 0.04 0.07 0.10 0.11 0.12 
State index 9 10 11 12 13 14 15 16 

(1)pβ  0.01 0.06 0.12 0.17 0.24 0.31 0.38 0.49 
( )P p  0.12 0.10 0.09 0.08 0.06 0.05 0.03 0.01 

Figures 2.5(a) and 2.5(c) display the APs of forward and backward 

coarticulations, ,
f
B tpβ  and ,

b
B tpβ , for the three break types of B0, B1, and B4. These 

three break types were chosen on purpose to show extreme cases of inter-syllable 
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coarticulation: B0 for tightly coupling, B1 for normal coupling, and B4 for no 

coupling. Some interesting phenomena can be observed from the figure. First, it can 

be seen from Figure 2.5(a) that most APs of forward coarticulation for B0 and B1, 

0,
f
B tpβ  and 1,

f
B tpβ , were bended in their beginning parts. These bendings were to 

compensate the level mismatch between the beginning and ending parts of the log-F0 

contours of the tone pairs for highly coarticulated preceding and current syllables, so 

as to make their log-F0 contours be concatenated more smoothly. For example, the 

upward bending at the beginning parts of ,{ | (1, 2), (1,3), (2,2), (2,3), (1,5)}f
B tp tp =β  

were due to H-L mismatches, while the downward bending at the beginning parts of 

,{ | (3,1), (3, 4), (5,1), (5, 4), (4,1)(4, 4)}f
B tp tp =β  corresponded to L-H mismatches. 

Similarly, it can be observed from Figure 2.5(c) that the ending parts of the APs of 

backward coarticulation for B0 and B1, 0,
b
B tpβ  and 1,

b
B tpβ , were bended. But the 

degrees of their upward and downward bendings were generally smaller. This 

conformed to the observation reported in Ref. [69] that the carry-over effect on the 

syllable F0 contour influenced by the preceding syllable is much larger than the 

anticipation effect caused by the following syllable. Second, it can be found from 

Figures 2.5(a) and 2.5(c) that most APs of forward and backward coarticulations for 

B4 with the same current tone looked similar and hence were nearly independent of 

their respective preceding and succeeding tones. This showed that the inter-syllable 

coarticulation across a B4 break was relatively low as compared with those of B0 and 

B1. Moreover, many APs of forward and backward coarticulations for B4 were 

downward bended in their beginning and ending parts, respectively. They exhibited 

the onset and offset phenomena at the beginning and ending syllables of BG/PG. 

Furthermore, we find from Figures 2.5(b) and 2.5(d) that most utterance initial and 

final patterns, ,b

f
B tβ  and ,e

b
B tβ , looked very similar to those of 4,

f
B tpβ  and 4,

b
B tpβ , 

respectively, to show the same onset and offset phenomena at the two types of 

utterance boundaries. We also find that ,3e

b
Bβ  and ,5e

b
Bβ  were two exceptional 

patterns which had lower levels. These probably resulted from the total relaxation of 

pronunciation at the utterance ending for these two tones. Third, it can be found from 

Figure 2.5(c) that the APs of 0,(3,3) 1,(3,3)and b b
B Bβ β  were upward bended drastically in 

their ending parts. As combining with the AP of tone 3 shown in Figure 2.4, these 



 

 25

bendings would make the integrated log-F0 patterns of the first syllable in a (3,3) tone 

pair change from middle-falling tone-3 shape to middle-rising tone-2 shape to fulfill 

the well-known 3-3 tone sandhi rule which says that the first tone 3 of a 3-3 tone pair 

will change to a tone 2. On the contrary, we find that the pattern 4,(3,3)
b
Bβ  did not bend 

upward. This showed that the 3-3 tone sandhi rule did not apply when the syllable 

juncture was a B4. Last, we made some comments to the APs of forward and 

backward coarticulation for B2-1, B2-2 and B3. Basically, the APs of B2-1 and B3 

resembled to those of B4 but with smaller upward and downward bendings, and B2-2 

had similar patterns to those of B1 but with smaller upward and downward bendings. 

 

 

 
Figure 2.5: The (a) forward and (c) backward coarticulation patterns, ,

f
B tpβ  and ,

b
B tpβ , 

for B0 (point line), B1(solid line), and B4(dashed line); and the (b) onset and (d) 
offset patterns, ,b

f
B tβ  and ,e

b
B tβ , for bB  and eB . Here tp = (i, j) and t = i or j. 

(c) (d) 

(b) 

(a) 
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From above analyses, we find that the inferred syllable pitch contour model 

provides a meaningful interpretation to the variation in syllable pitch contour 

controlled by several major affecting factors. With this capability, the model can be 

used in Mandarin TTS to generate pitch contour if all tags of prosodic-state and break 

type can be properly predicted from the input text. It can also be used in Mandarin 

ASR to manipulate pitch information for tone discrimination. 

2.4.2 The Break-Acoustics Model 
The two break-acoustics models, , ,( ; , )

n n n nn B Bg pd α βl l  and 2
, ,( ; , )

n n n nn B BN ed μ σl l , 

were built by the decision tree method using the question set 1Θ . One decision tree 

was constructed for each break type. Figure 2.6 displays the distributions of pause 

duration and energy-dip level for the root nodes of these six break types. It can be 

found from the figure that the break types of higher level were generally associated 

with longer pause duration and lower energy-dip level. B0 had very short pause 

duration and wide-spread energy-dip level with very high mean value. B1 and B2-1 

had similar distributions of short pause durations and wide-spread high energy-dip 

level. B2-2 had medium long pause duration and medium high energy-dip level. Both 

B3 and B4 had wide-spread long pause duration and low energy-dip level. These 

conformed to the prior knowledge about break types [4,8,70,71]. 

 
                  (a)                                  (b) 

Figure 2.6: The pdfs of (a) pause duration and (b) energy-dip level for the root nodes 
of these 6 break types. Numbers in () denote the mean values. 

To further examine the model, we show its decision trees for the five break 

types of B4, B3, B2-2, B2-1 and B1 in Figure 2.7. It is noted here that no tree split for 
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B0 due to the relative uniformity on the acoustic prosodic features of its samples. 

Generally, the questions used to split trees of higher-level break types (B4 and B3) 

tended to be related to higher-level syntactic features, such as PM ( 12.4Q ) and 

syntactic phrase size ( 13.1.3Q , 13.3.2Q , 13.3.11Q , and 13.3.18Q ). On the contrary, 

the questions of lower-level phonetic features ( 11.1Q , 11.3Q , and 11.4Q ) tended to 

split trees of lower-level break types (B1 and B2-1). 

                    
 

                  

 

  
 

Figure 2.7: The decision trees of the break-acoustics model for (a) B4, (b) B3, (c) 
B2-2, (d) B2-1, and (e) B1. The numbers in a bracket denote average pause duration 
in ms (left), energy-dip level in dB (middle) and sample count (right) of the associated 
node. Solid line indicates positive answer to the question and dashed line indicates 
negative answer. 

 

From above discussions, we find that the inferred break-acoustics model 

describes the relationship of the break type of syllable juncture with the two 

inter-syllable acoustic features and some contextual linguistic features very well. So it 

seems that the model can be used to predict major and minor breaks from acoustic and 

linguistic cues for some applications, such as segmenting speech into sentences and 

generation of punctuations from speech. 

i1(514, 21.1, 189) 
i2(599, 21.0, 851) 

i3(324, 21.5, 1286) 
i4(296, 21.3, 312) 
i5(248, 21.6, 1324) 
i6(227, 21.6, 817) 
i7(273, 21.4, 256) 

i8(101, 26.6, 276)

i9(75, 30.0, 293) 
i10(97, 24.5, 292) 
i11(85, 25.1, 319) 

i12(1, 43.9, 1114) 

i13(8, 39.0, 863) 

i14(23, 31.4, 3324) 

i15(2, 44.0, 8206) 
i16(17, 30.3, 6770) 
i17(10, 34.7, 11973)

(a) (b) 

(c) (d) 

(e)  
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2.4.3 The Prosodic State Model 

We then examined the prosodic state model. Figure 2.8 displays some most 

significant transitions of 1 1( | , )n n nP p p B− −  for six break types. For B0 and B1, the 

general high-to-low, nearby-state transitions showed that the syllable log-F0 level 

declined slowly within PWs. We also find that some low-to-high, nearby-state 

transitions occurred within PWs of low pitch level. This demonstrated the sustaining 

phenomenon of the log-F0 trajectory at the ending part of some PPhs.  

 

 
Figure 2.8: The most significant prosodic state transitions for (a) B0, B1 and B2-1, 
and (b) B2-2, B3 and B4. Here, the number in each node represents the index of the 
prosodic state. Note that bold and thin lines denote the primary and secondary state 
transitions, respectively. 

 

(a) 

(b) 
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For B2-2, it had both high-to-low and low-to-high state transitions. For B2-1, B3, 

and B4, their low-to-high state transitions showed clearly the phenomena of syllable 

log-F0 level resets across PWs, PPhs, and BG/PGs. Comparing with these clear 

log-F0 level resets, the resets of B2-2 were insignificant. Combining the results 

shown in Figures 2.6 and 2.8, we find that B2-1 and B2-2 had different acoustic 

characteristics: B2-1 had significant log-F0 reset with very short pause duration, 

while B2-2 had longer pause duration with low or no log-F0 reset.  

From above findings, since the prosodic states defined in our study mainly carry 

the full information of pitch-level variation in the upper three layers of prosodic 

structure (PW, PPh, or BG/PG), the prosodic state model can roughly represent 

dynamic patterns of PW, PPh, and BG/PG and may be applied to pitch contour 

generation in Mandarin TTS. 

2.4.4 The Break-Syntax Model 

The break-syntax model ( | )n nP B l  was built by the decision tree method using 

the question set 2Θ . Figure. 2.9 displays the decision tree of the break-syntax model. 

The tree was divided into four sub-trees, T3-T6, by the three questions of 2 2.1.1Q  

(PM?), 2 2.1.3Q  (minor PM?) and 21.3Q  (intra-word?). It can be seen from the 

figure that the root node of sub-tree T3, which corresponded to syllable juncture with 

minor PM, was mainly composed of B3 and B4. Similarly, the root nodes of sub-trees 

T4 and T5, corresponding to major PM and intra-word syllable juncture, were mainly 

composed of B4 and B0/B1, respectively. Due to the fact that the break-type 

constituents of both T4 and T5 were pure, they had very simple tree structures. On the 

contrary, sub-tree T6 was a miscellaneous collection of all other types of syllable 

juncture without PM. So, it had the most complex tree structure.  
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Figure 2.9: The decision tree of the break-syntax model. The bar plot associated with 
a node denotes the distributions of these six break types (B0, B1, B2-1, B2-2, B3, B4, 
from left to right) and the number is the total sample count of the node. 

Figure 2.10 displays the more detailed structures of these four sub-trees up to 

the fourth layer. From Figures 2.10(a) and 2.10(b), we find that nodes in T3 and T4 

were mainly split by questions related to high-level linguistic features such as 

23.3.19Q  (Is the length of the following syntactic phrase/sentence greater than 6?) 

and 23.3.29Q  (Is the length of the preceding syntactic phrase/sentence greater than 

7?). As shown in Fig. 2.10(c), T5 had two leaf nodes split by 21.1Q  (Does the 

following syllable have a null initial or initial in {m, n, l, r}?). The set associated with 

positive answer was mainly composed of B0, while another set was mainly composed 

of B1. As shown in Figure 2.10(d), T6 was constructed by questions related to 

features of various levels, including 21.1Q , 2 2.4.18Q  (Is the preceding word “DE”?), 

2 2.3.2Q  (Is the preceding word a function word?), 23.3.24Q  (Is the length of the 

preceding syntactic phrase greater than 2?), and so on. We also find from Figure 2.10 

that the purities of the break-type constituents were high for leaf nodes of T4 and T5, 

medium high for nodes of T3, and relatively low for most nodes of T6. This implies 

that it is difficult to correctly label (or predict) the break types of syllable junctures 

other than intra-word and those with major PM by the break-syntax model using only 

linguistic features without the help of acoustic cues. 
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Figure 2.10: The more detailed structures of sub-trees of (a) T3, (b) T4, (c) T5 and (d) 
T6. Solid line indicates positive answer to the question and dashed line indicates 
negative answer. 
 
 
 
 
 
 

(a) 

(b) (c) 

(d) 
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2.5 Analyses of the Labeled Breaks and Prosodic 

Constituents 
To further evaluate the performance of the proposed method, explorations in the 

relationships between prosodic breaks and linguistic features of texts, the length of 

prosodic constituents, and the general pitch patterns of prosodic constituents obtained 

in our method were described in Subsections 2.5.1 through 2.5.3. Besides, to further 

verify the labeling outcomes generated by our models, a comparison conducted 

between human labeling and our labeling was given in Subsections 2.5.4 and 2.5.5. 

2.5.1 Analyses of the Labeled Break Types 
Since the purpose of announcers’ broadcasting is to propagate information 

accurately to the audience relying exclusively on their audio perception, our 

well-trained informant skillfully manipulated as many segmental and prosodic cues as 

possible, such as clear and precise articulation, strategic variations in the fundamental 

frequency, volume, syllable length, and types of breaks. These prosodic information 

carried in the utterance speech, in turn, reflects the informant’s mental grammar, 

his/her Mandarin linguistic competence that determines when to form a semantically 

appropriate word chunk, a prosodic phrase, or a larger unit, and hence where and how 

long a break in an utterance should be so that the informant’s speech would sound 

natural, informative, and attention attracting to the audience. 

As a research based on our informant’s speech data rich in the Mandarin 

prosodic cues, our break-type-labeling model also can generate appropriate break 

types consistent with native speakers’ psychological reality. To verify this point, we 

examined the relationship between some special groups of words/morphemes and 

their concurring break types that both our break-type-labeling model and the ordinary 

Mandarin native speakers would consistently produce. These special groups of 

words/morphemes include (1) affix morpheme; (2) DE; (3) Ng, Di, and T; (4) VE; (5) 

Caa and Cb; and (6) P [72]. The results are discussed in more detail as follows. 

1. Set of Affix Morpheme  

It is well-known that prefixes and suffixes are bound morphemes that attach to 

their preceding or following heads to form units of complex words. Since the resultant 

form after combining the head and the affix is a unit, it is reasonable to predict that 
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the breaks at the boundaries between the head and the affix tend to fall in B0 or B1 

types. These phenomena were observed in our corpus. We found that some Mandarin 

Chinese mono-syllabic prefixes, such as bu- “不 not, un-, dis-, in-,” ke- “可 -able,” 

wu- “無 not, -less, un-,without,” etc. [67,73], tend to join the following roots to form 

legitimate words as in bu-li “不利 unfavorable,” bu-fang-bian “不方便 inconvenient,” 

ke-wu “可惡 detestable,” ke-sing “可行 feasible,” wu-sian “無限 limitless,” 

wu-shuang “無雙 unparalleled.” Similarly, by attaching mono-syllabic suffixes, such 

as -bian “邊 side,” -zhe “者 -er, -or,” -hua “化 -ize,” etc., to the preceding roots, we 

can derive complex words as in lu-bian “路邊 roadside, curb,” he-bian “河邊 

riverside,” zuo-zhe “作者 author, writer,” sing-zhe “行者 religious practicer,” 

gung-yie-hua “工業化 industrialize,” min-zhu-hua “民主化 democratize.” 

Table 2.2 lists the statistics of the break types labeled for the syllable boundaries 

of 121 prefixes and 195 suffixes. It can be seen from the table that 79.6% of the 

post-syllable boundaries of these 121 prefixes and 98.5% of the pre-syllable 

boundaries of these 195 suffixes were labeled as B0 or B1. These prosodic findings 

reflect the fact that morphologically the combination of head and affix generates a 

lexical unit, and thus the break between them is determined to be the break type of 

intra-PW category by our method. The results were also consistent with some rules 

found in Refs. 64, 65, and 68. 

Table 2.2: Statistics of break types labeled for 121 prefixes and 195 suffixes. 
Labeled break type B0 B1 B2-1 B2-2 B3 B4 Total count 

Pre-boundary 94 1289 460 545 193 5 2586 Prefix 
Post-boundary 584 1475 344 178 5 0 2586 
Pre-boundary 1046 2466 31 20 3 0 3566 Suffix Post-boundary 307 1479 272 482 568 458 3566 

2. Word Set of DE 

The words in the DE set particularly refer to de, zhe, and di, which serve 

multi-functions including a possessive marker, an adjective marker, and an adverbial 

marker [72]. They are characterized by the fact that a DE word can combine with a 

wide range of preceding syntactic constituents to form a possessive adjective as in an 

noun phrase (NP)-de structure: xue-sheng-de quan-li “學生的權力 students’ right,” 

to derive an adjective phrase as in a verb phrase (VP)-de structure: se-siang-zhe qin 
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“思鄉之情 nostalgia,” or to function as an adverbial phrase as in a DM-de structure: 

ke-ren yi-bo-bo-di yong-jin-dien-lai “客人一波波地湧進店來 guest were flocking to 

the shop.” Despite the variety of the preceding constituent, a DE word, similar to a 

suffix, builds closer connection with its preceding constituent to form a larger 

syntactic unit; consequently, it is predictable that the break at the DE words’ 

pre-boundary position tends to fall into B0 and B1, which means a pause is hardly to 

be perceived at this juncture. It is also reasonable to infer that due to a looser 

connection between the DE words and the following constituent, less B0 and B1 

would occur at the post-boundary position. 

The statistics in Table 2.3 indicates that the distribution of the break types 

labeled by our model just conformed with our anticipation; while 92.3% pre-boundary 

breaks of the DE words were B0 and B1, only 65% post-syllable boundaries of the DE 

words fell into the same types, which suggests that for the DE words, the majority of 

the neighboring breaks are unperceivable, and in most cases only at the post-boundary 

position can perceivable breaks be sensed. This result also matched the findings in 

Refs. 64, 65, and 68. Two examples are given below for illustration: 

Ex.1: …。因為(because, Cbaa) 女性(women, Nad) 在(in, P21) 社會(society, Nac) 
B1 的(DE) B1 地位(position, Nad) 提高(raise, VC2)，… 

(… Because women’s social status has been improved, …) 

Ex.2: …。目前(now, Nddc) 我(I, Nhaa) 是 (am, V_11) 三十一歲(thirty one year 
old, DM) B1 的(DE) B2-2 單身(single, VH11) 女郎(woman, Nab)， 

(…. Now, I am a thirty-one-year-old single woman.) 

Table 2.3: Statistics of break types labeled for the DE words. 
Labeled break type B0 B1 B2-1 B2-2 B3 B4 Total count 

Pre-boundary 168 1600 146 1 0 0 1915 
Post-boundary 210 1035 331 294 41 4 1915 

3. Word Sets of Ng, Di, and T 

Ng, Di, and T represent the word sets of Mandarin Chinese localizers, aspectual 

adverbs, and particles [72], respectively. The distinctive shared feature of these sets of 

words is that almost all the words are no longer than two syllables in length and that 

when combining with other syntactic constituent to form a larger phrase, they are all 

positioned at the end of the derived phrase, such as san-tian hoNg “三天後 three days 
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latter,” kai-hui dang-zhungDi “開會當中 while the meeting is being held,” and bu-qu 

le-maT “不去了嗎? Not going?.” Due to the characteristic of being post-positioned in 

a phrase, these words are inclined to be incorporated with their preceding constituents, 

and predictably barely any pauses can be perceived at the pre-boundary position. 

The statistic results listed in Table 2.4 indicate that our model’s break-labeling 

performance just exactly met our expectation. As high as 94%, 93%, and 87% of the 

pre-syllable boundaries of the words in this category were labeled as B0 or B1. Three 

examples are given below: 

Ex.3: …，牠(it, Nhaa) 跟(and, Caa) 婦人(woman, Nab) 和(and, Caa) 相命(tell 
one's fortune, VB11) 者(person, Nab) B1 之間(between, Ng) B3 並(Dbb) 無(no, 
VJ) 勾串(conspire, Nv1) 作弊(cheat, Nv4)，… 
(…. There is no conspiracy to cheat among it, the woman and the fortune teller.) 

Ex.4: …，忘記(forget, VK1) B0 了(Di) B1 婚後(after marriage, Ndc) 現實(realistic, 
VH11) 的(DE) 環境(environment, Nac)。Be 
(… have forgotten the realistic environment after marriage.) 

Ex.5: …，因為(because, Cbaa) 我(I, Nhaa), 永遠(always, Dd) 有(have, V_2) 看
(read, VC2) 不完(have no limit, VC2) 的(DE) 書(book, Nab) B1 啊(“ah”, Tc) 
B4！ 
(… for I always have books to read!) 

On the other hand, it is also interesting to find that for the breaks at the 

post-syllable boundaries, 67% and 96% of them were labeled as B3 /B4 especially for 

the Ng-set and T-set words, respectively. Further investigation reveals that most of 

the longer breaks were caused by a following PM, an index representing the 

occurrence of a detectable pause. Besides, because the T-set words are phrasal or 

sentential final particles and hence are highly likely to be followed by a PM, a much 

higher ratio of B3/B4 could be found. Two examples are given in the following:  

Ex.6: Bb 對(to, P31)人類(human, Naeb) B0 來說(in some sense, Ng) B3，… 
(…To human beings, …) 

Ex.7: …，想(think, VE2) 辦法(idea, Nac) 解決(to solve, VC2) B0 而已(nothing but, 
Tb) B4！… 
(…just figured out the solution …) 
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Table 2.4: Statistics of break types labeled for the word sets of Ng, Di, and T. 
Labeled break type B0 B1 B2-1 B2-2 B3 B4 Total count 

Pre-boundary 97 420 19 12 0 2 550 Ng Post-boundary 26 81 17 58 245 123 550 
Pre-boundary 107 83 12 1 0 2 205 Di Post-boundary 30 68 36 41 11 19 205 
Pre-boundary 89 84 14 11 0 0 198 T Post-boundary 0 5 1 2 22 168 198 

 

4. Word Set of VE 

VE represents a class of transitive verbs that take a sentence as the object, such 

as ren-wei “認為 to suppose/think/believe (that),” gan-dao “感到 to feel (that),” 

biao-she “表示 to show/indicate/mean/suggest (that),” etc [72]. It is evident that 

since the message carried in a sentential object, compared to a NP object for example, 

demands longer time to process mentally before being accurately expressed, a longer 

pause is reasonably anticipated to occur after a VE verb for information operation. 

Based on the statistic results listed in Table 2.5, on the whole 72% post-word 

boundaries of the VE verbs were labeled as breaks with distinctly audible pauses, 

namely B2-1, B2-2, B3, or even B4, another quite favorable evidence that the break 

types labeled by our model were consistent with the pause duration people usually 

take in their utterances. A typical example is given in Ex. 8.  

      Table 2.5: Statistics of break types labeled for word set of VE. 
Labeled break 

type B0 B1 B2-1 B2-2 B3 B4 Total 
count 

Post-boundary 63 177 99 108 159 234 840 
 

Ex.8: …。 當局(government , Nad) B1 說(proclaim, VE2) B3 他(he, Nhaa) 違反

(violate, VJ1) 市政府(city government, Ncb) 一戶(one, DM) 人家(family, Nab) 不
能(can not, Dbab) 儲存(store, VC33) 二千五百雙(2,500, DM) 鞋子(shoes, Nab) 
的(DE) 規定(rule, Nac)，… 
( …City government proclaimed that he violated the rule that no more than 2,500 
pairs of shoes were allowed to be stored in a family…. ) 
 

However, it cannot be neglected that no less than 28% post-word boundaries of 

the VE verbs were labeled as B0 or B1, implying that seemingly our model still 
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generated quite a few unexpected break types for the VE verbs. Further observation of 

the data, nevertheless, found two main reasons to account for this discrepancy of 

labeling. First, besides a sentential object, part of the VE verbs could also take a NP 

object, so the breaks occurring before a NP object were predictably shorter than 

before a sentential object. A typical example is given below: 

Ex.9: …，因(because, Cbaa) 你(you, Nhaa) 可(can, Dbab) 從(from, P19) 過去(past, 
Ndda) 經驗(experience, Nac) 中(in the course of, Ng) B2-2 檢討(examine, VE2) 
B1 成敗(success and failure, Nad)，… 
(…because you can examine your success and failure based on the past experience…) 

 The other reason for the occurrence of B0/B1 after a VE verb is that to express 

attitudinal, temporal, spatial, or manner information about a VE verb, a small word 

from the DE, Di, Ng, or T sets (such as de, zhe, le, guo, etc.) was attached to the verb, 

and this attachment and the close connection between the small word and the VE verb 

caused no need to pause at the juncture. However, the originally expected long pause 

(B3/B4) after the VE verb did not actually disappear; it was retained and only lagged 

behind to occur after the VE verb, for instance: 

Ex.10: …，以(with, P11) 行動(action, Nad) 說明(prove, VE2) B1 了(Di) B3 他(he, 
Nhaa) 在乎(care, VK1) 妳(you, Nhaa) 的(DE) 感覺(feeling, Nac) 與(and, Caa) 
期望(expectation, Nac) 。… 
(…his actions have already proved that he cares about your feeling and 

expectation….) 

5. Word Sets of Caa and Cb 

Caa and Cb are two subcategories of Mandarin conjunctions, representing 

conjunctive conjunctions and correlative conjunctions [72], respectively. In the case 

of Caa, the arguments linked by the Caa conjunctions are words or phrases of 

identical syntactic categories and are usually associated in their meaning as in fengN 

heCaa yuN “風和雨 wind and rain,” reVH hia-shiCaa lengVH “熱還是冷 hot or cold,” 

siNeu zhiCaa shiNeu suiNf “四至十歲 from four to ten years old,” and the like. Upon 

observation, we found that people usually tend to take a longer pause at pre-word 

boundary than at the post-word context, forming a sensible rhythmic variation and 

hence facilitating message delivery. 
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The statistics of the labeling results in Table 2.6 informs us that 90% of the Caa 

pre-boundary breaks were not shorter than B2-2, while, on the contrary, 98% of the 

post-word breaks were not longer than B2-2, a labeling outcome verifying our 

observation of the Caa words’ neighboring breaks; that is, longer pauses tended to 

occur at the boundary between the preceding argument and the conjunction. The 

results matched some findings in Ref. 40. One example is given below for illustration: 

Ex.11: …。生活(life, Nad) 緊張(stress, VH21) B3 與(and, Caa) B1 結婚(marriage, 
Nv4) 延後(put off, VC2) 的(DE) 問題(problem, Nac)，… 
(…the problems of stressful life and postponed marriage….) 

On the other hand, the Cb conjunctions function to join two clauses – a 

syntactic unit much larger than Caa’s arguments – into a compound sentence, and 

therefore have higher potential to be preceded or followed by a PM in written texts to 

delimit the domain of a clause or a sentence; in read speech the occurrence of a PM 

elicits the announcer to take a longer pause to index a message transition or a piece of 

new message is coming. Our statistic results show that in the case of Cb conjunctions 

80% of the pre-word boundaries and 20% of the post-word boundaries were labeled 

as B3/B4, which means much more PMs occurred before Cb conjunctions than 

afterward. One typical example is given below for demonstration: 

Ex.12: …，B4 因為(because, Cbaa) B2-1 學歷(academic credential, Nad) 並(Dbb) 
非(not, VG2) 擇偶(choose spouse, VA4) 的(DE) 絕對(absolute, A) 條件(condition, 
Nac)。 
(…, because the academic credentials are not absolute conditions of choosing 
spouse.) 

 

Table 2.6: Statistics of break types labeled for word sets of Caa and Cb. 
Labeled break type B0 B1 B2-1 B2-2 B3 B4 Total count 

Pre-boundary 5 32 1 127 214 26 405 Caa Post-boundary 52 104 157 85 7 0 405 
Pre-boundary 61 46 23 39 168 512 849 Cb Post-boundary 135 284 166 95 150 19 849 

6. Word set of P 

P represents the class of Chinese prepositions, which precede a required 

argument and together play several semantic roles and indicate various relationships 
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such as time, location, tool, purpose, etc. Although Chinese Knowledge Information 

Processing (CKIP) categorizes prepositions into 65 types [73], only 13 types are 

active in the Sinica Treebank corpus. As for the adjacent pause of a preposition, it is 

reasonable to expect that due to the close connection of a preposition and its 

following argument, the pause at the post-word boundary tends to be short. For 

convenience of illustration, only ba/jiang “把,將” (labeled as P07) and zai “在” 

(labeled as P21), two typical and most frequently used prepositions, are selected out 

as the representative examples for discussion. 

The statistic results in Table 2.7 show that on the whole for both ba/jiang “把,

將” and zai “在” about 90% of the post-word boundaries were labeled as breaks no 

longer than B2-1 (a break type caused by a pitch jump instead of lengthened pause 

duration), which indicates that the pauses at this juncture were either unperceivable or 

tending to be very short, again another confirmation of our model’s sound labeling 

job. Besides, a closer look at the distribution of break type percentages reveals that as 

high as 49% and 69% of the post-word breaks were B2-1 for ba/jiang “把,將” and zai 

“在”, respectively. This statistics reflected our informant’s idiosyncratic style of 

articulating prepositional phrase; namely, besides leaving no pauses (Ex. 13), she 

often made a pitch jump between a preposition and the following argument to cause a 

sensible short pause (Ex. 14). 

Ex.13: ，B4 把(P07) B1 孩子(children, Nab) 當做(regard as, VG1) 一塊(a piece of, 
DM) 璞玉(uncut jade, Nab)， 
(….treat children as unpolished jade….) 

Ex.14: 曾(at one time, Dd) 探詢(investigate, VE2) 他(he, Nhaa) B3 在(among , 
P21) B2-1 過去(past, Ndda) 眾多(a large number of, VH11) 的(DE) 著作(works, 
Nab) 中(among, Ng) 
(…has investigated that among a large number of works he wrote…) 

On the other hand, as far as the labeling at the pre-word boundary is concerned, 

most labels were either B1 or B3/B4; that is, 46% and 41% of the labels were B3/B4 

and 44% and 49% of them were B1 for ba/jiang “把,將” and zai “在,” respectively, 

which suggests that our informant either took quite a long pause or just no pause at 

the pre-word position. To explain this phenomenon, further examination on the data 

containing these two prepositions revealed that the informant’s long breaks (B3/B4) 
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before a preposition were contributed by a left PM (Ex. 15), and in the remained cases 

she usually took no pause at this position (Ex. 16). 

Ex.15: …，B4 將(P07) B2-1 卷證(document, Nab) 移送(transfer, VC32) 桃園

(Taoyan, Nca) 地院(district court, Ncb) 審理(process, VC2)。 
( …transfer the documents to Taoyan District Court to process….) 

Ex.16: ，協會(association, Nac) 就(an auxiliary confirming, Dd) 設(establish, VC33) 
B1 在(at, P21) B1 他(his, Nhaa) 家(home, Ncb) 。 
(….The association is established at his home….) 

Table 2.7: Statistics of break types labeled for word sets of P07 and P21. 
Labeled break type B0 B1 B2-1 B2-2 B3 B4 Total count 

Pre-boundary 0 39 0 9 32 9 89 P07 Post-boundary 8 38 34 9 0 0 89 
Pre-boundary 1 168 12 24 88 53 346 P21 Post-boundary 27 79 208 28 4 0 346 

2.5.2 Analyses of Prosodic Constituents 

Based on the break type labeling, we can divide the syllable sequence of each 

utterance into three types of prosodic constituents (i.e., PW, PPh, and BG/PG) to form 

a four-layer prosodic structure. Statistics in Table 2.8 shows that the average lengths 

for these three types of prosodic constituents are, respectively, 3.17 syllables or 1.85 

lexical words (LWs) for PWs; 6.98 syllables, 4.02 LWs, or 1.69 PWs for PPhs; 16.69 

syllables, 9.62 LWs, 4.07 PWs, or 1.94 PPhs for BG/PGs.  

Table 2.8: Statistics of three types of prosodic constituents. Value in 
parentheses denotes standard deviation. 

Prosodic constituent Average length 
in PW PPh BG/PG 

syllable 3.17(1.74) 6.98(3.48) 16.69(9.49) 

LW 1.85(1.03) 4.01(2.17) 9.62(5.43) 

PW 1.00  1.69(1.55 ) 4.07(2.90) 
PPh X 1.00  1.94(1.75) 

 

According to the histograms displayed in Figure 2.11, the length of each of these 

three prosodic constituents spans, respectively, from 1 to 12 syllables for PWs, from 1 

to 33 syllables for PPhs, and from 1 to 99 syllables for BG/PGs. Besides, the 
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histograms also reveal that quite a few PPhs and BG/PGs, whose average lengths are 

supposed to be about 6.98 and 16.69 syllables, respectively, are nevertheless no 

longer than three syllables in length. Further investigation into these oddly short PPhs 

and BG/PGs indicates that the main reason lies in several special structure patterns of 

these constituents that require a long pause to highlight their prominence for 

successful information processing. First of all, in the case of short BG/PGs, defined as 

a sequence of syllables bounded by a B4 on both sides, many of the particularly short 

BG/PGs actually consisted of a mono-syllabic subject and VE verb, which, as 

discussed in Subsection 2.5.1, due to its sentential object was tending to be followed 

by a long break up to B4; accordingly, bounded by a B4 on both sides, the structure 

pattern of a subject plus a VE verb, both mono-syllabic in length, could generate as 

many short BG/PGs as possible. 

 

Figure 2.11: Histograms of lengths for BG/PG, PPh, and PW. 
 

As for the cases of short PPhs, defined as a sequence of syllables delimited by (1) 

a B3 at both sides or (2) a B3 and a B4 at each side, respectively, most of the B3s or 

B4s bounding the very short PPhs were actually caused by the existence of PMs that 

cued long pause duration. Table 2.9 shows the statistic results of the short PPh 

instances with respect to the existence of PMs at their two endings. As shown in the 

table, 66% of one-syllable PPhs were bounded by PMs on both sides, and most of 

them were numbers that were used to enumerate events. On the other hand, in the case 

of two- or three-syllable PPhs, on the whole about 84% of them were delimited at 

least by a left-sided PM, which means that the majority of these PPhs occurred at the 

beginning of a sentence. In terms of the internal structure of the two-syllalbe PPhs, 

91% of them were bi-syllabic LWs functioned to express transitional relationships 
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like contrast, comparison, reinforcement, or addition. As for the three-syllable PPhs, 

the structure of them were either a topicalized tri-syllabic noun, or any phrasal 

structure composed of two smaller syntactic elements as in a subject-VE structure (wo 

ren-wui “我認為 I suppose”), a preposition-noun structure (由重慶 you Chung-qing 

“from Chung-qing”), a noun-localizer structure (hun-zhan zhong “混戰中 in the 

scuffle”), etc., and the long pauses adjacent to these PPhs were, on the informant’s 

part, strategies to cause prominent stress on these short phrases, and on the audience’s 

part, offered the listeners longer time to process and catch the information with least 

distortion. 

Table 2.9: Count of short PPh instances with respect to the 
existence of PM at their two endings. 

PPh Length in Syllable 
Count of PPh instances  

1 2 3 
No PMs on both sides 5 38 56 
PM on right side only 1 8 28 
PM on left side only 6 254 178 
PMs on both sides 23 159 121 

Total 35 459 383 

2.5.3 Pitch Patterns of Prosodic Constituents 

We then explored the log-F0 patterns of the three prosodic constituents of PW, 

PPh, and BG/PG. First, we extracted the prosodic state patterns from the observed 

pitch contour, nsp , by eliminating the influence of the current tone, the 

coarticulations from the two nearest neighboring tones, and the global mean, i.e., 

1 1, ,(1) (1) (1) (1) (1)          for 1    
n n n n n

f b
n n t B tp B tppm n N

− −
= − − − − ≤ ≤sp β β β μ       (2.13) 

where (1)x  denotes the first dimension of vector x. A sequence of npm  delimited 

by B2-1/B2-2/B3/B4 at both sides is regarded as a prosodic state pattern formed by 

integrating the log-F0 mean patterns of the three prosodic constituents we considered. 

A model of prosodic state pattern is therefore defined by 

/n n n

r
n n PW PPh BG PGpm pm β β β= + + +             (2.14) 

where r
npm  is the residual of log-F0 mean at syllable n; 

nPWβ , 
nPPhβ  and 

n/BG PGβ  
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are the log-F0 patterns of PW, PPh and BG/PG, with ( , )nPW i j= ,  ( , )nPPh i j=  and 

/ ( , )nBG PG i j=  denoting that syllable n is located at the jth place of an i-syllable PW, 

PPh and BG/PG, respectively. The model was trained by a sequential optimization 

procedure. After well-training, the variances of (1)nsp , npm  and r
npm  were 

4565.4 10−× , 4359.1 10−× , and 4191.2 10−× , respectively. Hence, the total residual 

error (TRE), which is the percentage of sum-squared residue over the observed 

sum-squared log-F0 mean, is about 33.8% by the current representation. 

Figure 2.12 displays the patterns of ,  
n nPW PPhβ β , and / nBG PGβ  with different 

lengths. It is noted that only the patterns calculated using more than 20 instances of 

prosodic state patterns are displayed because we want to know their general log-F0 

patterns. It can be found from Figure 2.12(a) that all /BG PGβ  had declining patterns 

with dynamic range spanning approximately from -0.1 to 0.1. Moreover, most of them 

had short ending resets. From Figure 2.12(b), we find that short PPhβ  had 

rising-falling patterns, while long PPhβ  had rising-falling-sustaining-falling patterns. 

Moreover, they had smaller dynamic range spanning approximately in [-0.07, 007]. 

Lastly, we find from Figure 2.12(c) that short PWβ  showed high-falling patterns, 

while long PWβ  showed falling-sustaining-falling patterns. Their dynamic range 

spanned approximately from -0.1 to 0.1.  

From above analyses, we find that the prosodic-state tags possess rich 

information to represent the high-level prosodic constituents of the four-layer 

prosodic structure defined in this study. All these three types of log-F0 patterns 

generally agree with the findings of previous studies on intonation patterns of 

Mandarin speech [58,68,74,75]. The superposition patterns /PPh BG PGβ β+ , and all 

these three patterns ( PWβ , PPhβ  and /BG PGβ ) resembled the intonation patterns 

reported in the studies of Tseng and co-workers [9,76-78] and the study of Chen et al. 

[36], respectively. Furthermore, with this prosodically meaningful finding, these 

quantitative prosodic constituent patterns combining with the APs of tone and 

coarticulation (i.e., tβ  and ,
f
B tpβ / ,

b
B tpβ ) can be used in Mandarin TTS to generate 

pitch contour if all break type can be properly predicted from the input text. However, 

due to the fact that the errors of the current representation are still high, a further 
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study to explore a more efficient representation is worthwhile doing in the future. 

 
Figure 2.12: The log-F0 patterns of (a) BG/PG, (b) PPh, and (c) PW. The special 
symbol “□” in (a) indicates the ending syllable of a log-F0 pattern. 

2.5.4 Comparison with Human Labeling 

To further evaluate the performance of break labeling of the proposed method, a 

part of the Sinica Tree-Bank corpus used in this study was labeled cooperatively by 

two experienced labelers working in the Phonetics Laboratory, Department of Foreign 

Languages and Literatures of National Chiao Tung University. The annotated dataset 

consisted of 42 utterances with 5326 syllables. The labeling system used was a 

ToBI-like one developed by the laboratory, which represents the Mandarin speech 

prosody by a four-layer structure containing syllable, PW, intermediate phrase, and 

intonation phrase. These four prosodic constituents are delimited by four break types 

of b1, b2, b3, and b4, respectively. Here b1 represents an implicit non-break index, b2 

(a) 

(b) 

(c) 
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is a perceivable break index for PW boundary, b3 is a minor-break index, and b4 is a 

major-break index. 

Table 2.10 displays the correlation matrix of the break indices labeled by the two 

methods. It can be found from Table 2.10 that 97.8% of human-labeled b4s, i.e., 

major breaks, were labeled as break indices of phrase or utterance boundaries (i.e., B3, 

B4, or Be) in our method, and 96.5% of b1s, i.e., non-breaks, were labeled as indices 

of SYL boundaries within PW (i.e., B0 or B1). This indicates that the two labeling 

methods were consistent for the two extreme cases of non-break and major break. It is 

also observed from the table that b3s mainly (73.6%) corresponded to break 

indices≥B2-2, suggesting that the intermediate phrase boundaries in manual labeling, 

defined and perceived by the labelers as a minor-break, were, to quite a certain extent, 

consistently judged as a clearly perceived short pause (B2-2) or medium pause (B3) in 

our labeling. However, in the cases of b2, 69.7% of them, defined as perceivable 

breaks, inconsistently corresponded to non-breaks (B0 or B1) in our scheme. To 

account for such inconsistency, a statistics on the internal morphological and syntactic 

structures of the PWs delimited by B2 and b2 shows that (1) while as high as nearly 

69.3% of PW-LW correspondence occurred in the human labeling, 40.0% of such 

correspondence was found in our method, and (2) while 41.2% of the PWs labeled by 

our method was cases of compound words or long phrases composed of at least four 

syllables, only 2.2% of the PWs in the similar types was judged by the labelers. This 

significant discrepancy in the demarcation of PWs between these two methods 

suggests that labelers, though trained to listen to the prosodic cues with visual aids of 

graphic user interface to label the breaks, tended to subjectively treat LWs as PWs or 

as pronunciation units rather than objectively and exclusively relied on the actual 

prosodic features in prosodic labeling. This inclination obviously resulted in shorter 

average lengths of prosodic constituents in human labeling. Figure 2.13 displays the 

histograms of length of the prosodic constituents formed by the two labeling methods. 

It can be found from the figure that the average lengths of PWs, PPhs, and BG/PGs 

labeled by our method were indeed longer than human-labeled PWs, intermediate 

phrases, and intonational phrases, respectively. 
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Table 2.10: Correlations between unsupervised 
and human labeled breaks 

Human
 
Unsupervised 

b1 b2 b3 b4 total

B0 836 207 9 0 1052
B1 1970 726 70 0 2766

B2-1 81 313 53 1 448
B2-2 20 93 227 12 352
B3 0 0 137 260 397
B4 0 0 4 265 269
Be 0 0 0 42 42 

total 2907 1339 500 580 5326
 

 

 

 
Figure 2.13: The histograms of length of the prosodic constituents formed by (a) the 
human labelers and (b) the proposed methods. The numbers in () represent the 
average length of prosodic constituents. 

 

 

From the perspective of prosodic features, it can be found from Figures 2.14(a) 

and 2.14(b) that the similar histograms of pause duration and normalized pitch jump 

in the same rows represented labeling consistency in our method, while the 

distinguishable histograms in the same columns expressed labeling inconsistency in 

(a) 

(b) 

(4.79) (9.21) 

(3.27) (7.13) (17.13) 

(2.12) 
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human labeling. Furthermore, Table 2.11 displays symmetric Kullback-Leibler 

distances (KL2) [79] for the two break labeling methods to measure the difference 

between two acoustic feature distributions that belong to different break indices 

labeled by the same method. It can be found from Table 2.11 that the KL2 distances 

for the proposed unsupervised method were generally greater than those of human 

labeling. Moreover, we find from Table 2.11(a) that the KL2 distances of pause 

duration were relatively large for all break index pairs of the proposed method except 

(B1,B2-1); nevertheless the KL2 distances of normalized pitch jump for (B1,B2-1) 

were large. On the contrary, we find from Table 2.11(b) that the KL2 distances of 

both acoustic features were low for (b1,b2) of human labeling. This confirms that the 

six break types 0 - 4B B  in our labeling have distinct characteristics of acoustic 

features but the break types in human labeling have less discriminated ones. 

Specifically, B4 has very large pause duration and significant pitch reset; B3 has large 

pause duration and pitch reset, B2-2 has medium pause duration, B2-1 and B1 have 

small pause duration but B2-1 has significant pitch reset and B0 has almost no pause 

duration. This property will be advantageous to our labeling method on those prosody 

modeling applications using acoustic features. 
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Figure 2.14: The histograms of (a) pause duration (in sec) and (b) normalized pitch 
jump (in log-F0) for syllable-juncture instances belonging to sub-groups with 
different break-index pairs labeled by the two methods. 
 
 
 

(a) 

(b) 
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Table 2.11: Distances measuring the difference between two acoustic feature 
distributions that belong to different break indices labeled by the same method: (a) the 
proposed method, and (b) human labeling. Upper and lower triangular matrices 
represent KL2 distances for pause duration and normalized pitch jump, respectively.  

      (a) 
B0 B1 B2-1 B2-2 B3 B4 

B0  2.63 3.39 23.59 23.42 22.77 
B1 0.19  0.16 14.21 23.28 22.66 

B2-1 4.59 4.87  11.92 21.17 20.62 
B2-2 0.52 0.72 2.79  13.84 18.85 
B3 1.66 2.12 1.25 1.43  12.71 
B4 3.69 4.18 0.36 2.50 0.88  

     
 b1 b2 b3 b4 

(b) 

b1  0.12 6.83 23.16 

 

 b2 0.24  6.07 22.10  
 b3 0.60 0.36  10.56  
 b4 2.05 1.20 0.82   

 

2.5.5 A Labeling Example 
A typical example displaying the labeling results of the beginning part of a long 

utterance by the two methods is given in Figure 2.15. We first examined the labeling 

results of our method. From Figure 2.15(a), we find that the three PMs were labeled 

as two B3 and one B4. One other B3 without PM appeared at the right boundary of a 

nine-syllable NP. Besides, there existed five B2-1 and four B2-2. They all appeared at 

inter-word junctures. We also find from Figure 2.15(b) that all three B3 and five B2-1 

had clear normalized log-F0 reset. Moreover, the curve of integrating APs of prosodic 

state and the global-mean of pitch level showed smoother PW patterns derived via 

removing the tone and coarticulation effects from the observed zigzag curve of log-F0 

mean. We then compared the results of the two labeling methods. It can be found 

from Figure 2.15(a) that aside from giving indices of breaks to all the 

above-mentioned breaks labeled by our method, human labelers gave four additional 

breaks to divide the nine-syllable-NP (行政院 主計處 的 統計 xing-zheng-yuan 

zhu-ji-chu de tong-ji) PW into three PWs, and the two four-syllable compound-word 

PWs, “進口  jin-kou(import) 金額 jin-e(the amount of money)” and “去年

qu-nian(last year) 同期 tong-qi(the same period)”, into four two-syllable words. To 

justify whether the deletions of these four human-labeled breaks were reasonable, we 
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examined the pause durations of these four word junctures and the normalized pitch 

patterns of the three integrated PWs. The pause durations were 12 ms, 40 ms, 22 ms, 

and 1ms. Obviously, they were all not significant. Besides, as seen in Figure 2.15(b) 

all the three normalized pitch patterns of none-syllable-NP PW and two four-syllable 

compound-word PWs were smooth. So the deletions of these four breaks by our 

method seemed reasonable. 

 

 
Figure 2.15: An example of the automatic prosody labeling. (a) Syntactic trees with 
prosodic tags: upper case B and lower case b for break-index labeled by our method 
and the human labeler, respectively; and (b) syllable log-F0 means: observed (open 
circle) and prosodic state+global mean (close circle). Solid/dash/dot lines represent 
B3/B2-1/B2-2 respectively. The utterance is “yi-ju(according to) xing-zheng-yuan(the 
Executive Yuan) zhu-ji-chu(Directorate-General of Budget, Accounting and Statistics) 
de(DE) tong-ji(statistics), shi-yue-fen(October) yi(1st) dao(to) er-shi-ri(20th), 
wo-guo(our country) chu-kou(export) ji(and) jin-kou(import) jin-e(the amount of 
money) bi-qi(in comparison with) qu-nian(last year) tong-qi(the same period) 
jun(both) you(to have some) zeng-jia(increase).” 
 

(a) 

(b) 
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2.6 Conclusions 
In this chapter, a new approach of joint prosody labeling and modeling for 

Mandarin speech has been proposed. It first employed four prosodic models to 

describe the relationship of two types of prosodic tags to be labeled with the input 

acoustic prosodic features and linguistic features, and then used a sequential 

optimization procedure to determine all prosodic tags and estimate the parameters of 

the four prosodic models jointly using the Sinica Treebank speech corpus. 

Experimental results showed that the estimated parameters of the four prosodic 

models were able to penetratingly explore and appropriately describe the hierarchy of 

Mandarin prosody. First, the syllable pitch contour model was able to interpret the 

variation in syllable pitch contour controlled by such affecting factors as lexical tones, 

adjacent breaks, and prosodic state. Next, the prosodic state model was developed to 

clearly describe the declination effect of log-F0 level within PW and the resets across 

PW, PPh, and BG/PG, and hence to extract the pitch patterns of each prosodic 

constituent. Then, the break-acoustics model could demonstrate the distinct acoustic 

characteristics for each of the six break types. The last model, the break-syntax model, 

was built to express the general relationship between the break type and the linguistic 

features of various levels. Besides, the performance of our models was further 

confirmed by the corresponding relationships found between the break indices labeled 

and their associated words which served as evidences to manifest the connections 

between prosodic and linguistic parameters, and it was also verified by our more 

consistent and discriminative prosodic feature distributions than those in human 

labeling by a quantitative comparison. In conclusion, the method we proposed to 

develop the joint prosody labeling and modeling for Mandarin speech was able to 

construct interpretive prosodic models and generate prosodic tags that were 

automatically and consistently labeled. 
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Chapter 3 Advanced Unsupervised Joint 

Prosody Labeling and Modeling 

3.1 Introduction 
Motivated by the success of the unsupervised joint prosody labeling and 

modeling method (referred to as the UJPLM method hereafter) on the modeling of 

syllable pitch contour discussed in Chapter 2, we extend the study to include the other 

two important prosodic features, syllable duration and energy level, in this chapter. 

The study will jointly model syllable pitch contour, duration and energy level using 

the same method presented in the previous chapter. For simplicity, this extension is 

referred to as the advanced UJPLM (A-UJPLM) method.  

3.2 The New Prosodic Model 

In the A-UJPLM method, a new prosodic model to jointly consider the modeling 

of syllable pitch contour, duration, and energy level is first proposed. The new model 

considers more acoustic features, more prosodic tags, and more affecting factors. We 

discuss the new prosodic model in detail in the following subsections. 

3.2.1 Features and Parameters Used in the New Prosodic Model 

Aside from the prosodic features { , , }=A sp pd ed  used in the previous study of 

pitch modeling, we consider more features in this study, including syllable duration 

sequence sd , syllable energy-level sequence se , normalized inter-syllable pitch 

jump sequence pj  defined by 

( ) ( )+1+1(1) (1) (1) (1)
n nn n t n tpj = − − −sp β sp β ,                                 (3.1) 

and normalized syllable duration lengthening factor sequences dl  and df  defined 

by 

( ) ( )-1 -1-1n n n nn n t s n t sdl sd sdγ γ γ γ= − − − − −                                     (3.2) 

and 
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( ) ( )1 11n n n nn n t s n t sdf sd sdγ γ γ γ
+ ++= − − − − − ,                                  (3.3)     

where tγ  and sγ  represent respectively the syllable duration APs of tone and 

base-syllable type (to be defined latter). Hence, the acoustic feature set becomes 

{ , , , , , , , }=A sp sd se pd ed pj dl df . For a better presentation of these acoustic features, we 

divide them into three classes: syllable prosodic features { , , }=X sp sd se , 

inter-syllable prosodic features { , }=Y pd ed , and differential syllable prosodic 

features { , , }=Z pj dl df . 

As for prosodic tags, two new types of prosodic states, the duration prosodic 

state q  and the energy prosodic state r , are introduced for the modeling of syllable 

duration and energy level to consider the effects contributed from high-level prosodic 

constituents of PW, PPh and PG/BG. Besides, a new break type B2-3 is added to 

represent the syllabic boundary of B2 with perceived lengthening of the preceding 

syllable. So, the complete prosodic tag set becomes { , }=T B PS , where =B {B0, B1, 

B2-1, B2-2, B2-3, B3, B4} is the break-type set and { , , }=PS p q r  represents the 

prosodic-state tag set. 

The linguistic features used in the new prosodic model are similar to those used 

in the old model with the following modifications. Firstly, in the syllable level, we 

separate base-syllable and final types from the linguistic feature L because they are 

two important linguistic features, other than syllable tone, that seriously affect the 

variations of syllable duration and energy level. Secondly, all syntactic tree-level 

features are removed to consider that they can not be extracted reliably in practical 

applications. Lastly, two utterance-level normalization factors are added to consider 

respectively the variation in syllable duration due to the speaking rate and the 

variation in syllable energy level due to the recording volume. Hence, the linguistic 

feature L  is refined to include a syllable tone sequence t, a base-syllable type 

sequence s, a final type sequence f, an utterance sequence u, and a reduced linguistic 

feature set l. To give a clearer picture of notations used in this study, we summarize 

them in Table 3.1. 
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Table 3.1: The notations of prosodic tags, prosodic features and linguistic features 

B : break type 
p : pitch prosodic state 
q : duration prosodic state 

T : prosodic tag 
PS : prosodic state 

r : energy prosodic state 
sp : syllable pitch contour 
sd : syllable duration 

X : syllable prosodic feature 

se : syllable energy level 
pd : pause duration Y : inter-syllabic prosodic feature
ed : energy-dip level 
pj : normalized pitch jump 
dl : normalized duration 

lengthening factor 1 

A : prosodic feature 

Z : differential prosodic features 

df : normalized duration 
lengthening factor 2  

l: reduced linguistic feature set  
t: syllable tone sequence 
s: base-syllable type sequence  
f: final type sequence 

L : linguistic feature 

u: utterance sequence 
 

3.2.2 Design of the New Prosodic Model 
Based on above discussions, we reformulate ( , | )P T A L  by  

( , | ) ( | , ) ( | ) ( , , | , , ) ( , | )
                ( | , , ) ( , | , ) ( | ) ( | )
P P P P P

P P P P
= =
≈

T A L A T L T L X Y Z B PS L B PS L
X B PS L Y Z B L PS B B L

                 (3.4) 

where ( | , , )P X B PS L  is a syllable prosodic model describing the variation in syllable 

prosodic features controlled by B, PS, and L; ( , | , )P Y Z B L  is a break-acoustic model 

describing the inter-syllable acoustic characteristics specified for different break type 

and surrounding linguistic features; ( | )P PS B  is a prosodic state model describing 

the dynamics of prosodic states controlled by break types; and ( | )P B L  is a 

break-syntax model describing the dependence of break occurrence on the 

surrounding linguistic features. 

( | , , )P X B PS L  is further elaborated by modeling syllable log-F0 contour 

sequence sp , syllable duration sequence sd , and syllable energy level sequence se  

separately, and assuming that their variations are controlled by five main affecting 

factors of lexical tone t , base-syllable type s , final type f , utterance u, prosodic 

state { , , }=PS p q r , and break B, to obtain  
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1
-1 -1

1 1 1

( | , , ) ( | , , ) ( | , , , ) ( | , , , )

( | , , ) ( | , , , ) ( | , , , )
N N N

n n
n n n n n n n n n n n n n n

n n n

p p p p

p B p t p sd q t s u p se r t f u+

= = =

≈

≈∏ ∏ ∏

X B PS L sp B p t sd q t s u se r t f u

sp
                (3.5) 

where 

1 1

1
-1 -1 , ,

( | , , ) ( ; , )
n n n n n n

n n f b
n n n n n t p B tp B tp

p B p t N
− −

+ = + + + +sp sp β β β β μ R                     (3.6) 

models the variation in syllable log-F0 contour nsp , represented by the first four 

orthogonally-transformed parameters, with 
nt

β ,
npβ , 

1 -1,n n

f
B tp−

β , and ,n n

b
B tpβ  denoting, 

respectively, the APs of tone nt , the pitch prosodic state np , and the forward 

(carryover) and backward (anticipatory) coarticulations contributed from syllable n-1 

and syllable n+1, respectively, and μ  and  R  denoting the global mean and the 

covariance matrix of residual; 

( | , , , ) ( ; , )
n n n nn n n n n n t q s u d dp sd q t s u N sd Rγ γ γ γ μ= + + + +                      (3.7) 

models the variation in syllable duration nsd  with ' sγ  denoting various APs, and 

dμ  and dR  denoting the global mean and the variance of residual; and 

( | , , , ) ( ; , )
n n n nn n n n n n t r f u e ep se r t f u N se Rα α α α μ= + + + +                      (3.8) 

models the variation in syllable energy level nse  with ' sα  denoting various APs, 

and eμ  and eR  denoting the global mean and the variance of residual. 

The break-acoustic model ( , | , )P Y Z B L  is further elaborated by 

1
( , | , ) ( , | , ) ( , , , , | , )

N

n n n n n n n
n

P P p pd ed pj dl df B
=

≈ ≈∏Y Z B L Y Z B l l                   (3.9) 

where ( , , , , | , )n n n n n n np pd ed pj dl df B l  is derived by the CART algorithm with the node 

splitting criterion of maximum likelihood gain. The CART algorithm jointly classifies 

the samples of pause duration npd , energy-dip level ned , normalized pitch jump 

npj , and normalized duration lengthening factors ndl  and ndf  for each break type 

according to a question set derived from the contextual linguistic features nl . A joint 

pdf formed by the product of a gamma distribution for pause duration and four normal 

distributions for energy-dip level, normalized pitch jump, and the two duration 

lengthening factors is generated for each leaf node. 
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The prosodic state model ( | )p PS B  is further divided into three sub-models for 

the three types of prosodic states and expressed by 

( | ) ( | ) ( | ) ( | )p p p p≈PS B p B q B r B                                       (3.10) 

where ( | )p p B , ( | )p q B  and ( | )p r B  are all represented by bigram models as 

1 1 1
2

( | ) ( ) ( | , )
N

n n n
n

P P p P p p B− −
=

⎡ ⎤≈ ⎢ ⎥⎣ ⎦∏p B ,                                    (3.11) 

1 1 1
2

( | ) ( ) ( | , )
N

n n n
n

P P q P q q B− −
=

⎡ ⎤≈ ⎢ ⎥⎣ ⎦∏q B ,                                     (3.12) 

and 

1 1 1
2

( | ) ( ) ( | , )
N

n n n
n

P P r P r r B− −
=

⎡ ⎤≈ ⎢ ⎥⎣ ⎦∏r B .                                      (3.13) 

The break-syntax model ( | ) ( | )P P≈B L B l  is elaborated in the same way as the old 

model discussed in Chapter 2 (see Eq. (2.11)). 

3.3 Model Training by the A-UJPLM Method 
Like the UJPLM method, the A-UJPLM method employs a sequential 

optimization procedure based on the ML criterion to jointly label the prosodic tags for 

all utterances of the training corpus and estimate the parameters of the new prosodic 

model. It is divided into two main parts: initialization and iteration. The initialization 

part determines initial prosodic tags of all utterances and estimates initial parameters 

of the new prosodic model, which is composed of eight sub-models as discussed in 

Subsection 3.2.2, by a specially designed procedure. The iteration part first defines an 

objective likelihood function for each utterance by 
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It then applies a multi-step iterative procedure to update the labels of prosodic tags 
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and the parameters of the eight prosodic sub-models sequentially and iteratively. In 

the following subsections, we discuss the sequential optimization procedure in detail. 

3.3.1 Initialization 

The initialization part is further divided into two sub-parts: (a) a specially 

designed procedure to determine initial break labels of all syllable junctures; and (b) a 

ML estimation process to estimate initial parameters of the eight prosodic sub-models 

and determine the initial prosodic-state labels of all syllables using the information of 

initial break labels determined in the first sub-part. 

(a) Initial labeling of break indices 

The determination initial break index of each syllable juncture is similar to the 

method described in Chapter 2. As shown in Fig. 3.1, the decision rules for 

determining B4, B3, B2-2 and B2-1 are the same as the ones illustrated in Fig. 2.2. 

Non-PM inter-word junctures with apparent duration lengthening at the preceding 

syllable are likely labeled as B2-3. Intra-word junctures and non-PM inter-word 

junctures failed to be judged as B2-1, B2-2, and B2-3 are most likely to be labeled as 

B0 or B1. The thresholds Th1~ Th6 are set in the same way as those used in Chapter 2. 

The algorithms to determine Th7 and Th8 are given in Appendix A. 

1npd Th≥

2npd Th≥

3npd Th≥

6 andnYe Th≥

6 andned Th≥

  
Figure 3.1: The decision tree for initial break type labeling. 
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(b) Estimation of the initial parameters of the eight prosodic sub-models and 
prosodic-state indices 

The initializations of the break-acoustics model and the break-syntax model can 

be done independently with initial break indices of all syllable junctures being given 

in previous step. We realize them by the CART algorithm with the node splitting 

criterion of maximum likelihood gain given the question sets 3Θ  and 4Θ . The 

details of 3Θ  and 4Θ  used in this study are listed in Appendixes D.1 and D.2, 

respectively. The initializations of the syllable pitch contour, duration and energy 

level models and prosodic-state indices are integrated together and performed by a 

progressive estimation procedure. A progressive estimation strategy is adopted to first 

determine the initial APs which can be estimated most reliably and then eliminate 

their effects from the surface syllable prosodic features for the estimations of the 

remaining APs. In this study, the order of initial AP estimation is listed as follows: 

global mean {μ , dμ , eμ }, utterance { uγ , uα }, five tones { tβ , tγ , tα }, base-syllable 

and final types { sγ , fα  }, coarticulation { ,
f
B tpβ , ,

b
B tpβ ,

1,b

f
B tβ , ,e N

b
B tβ }, and prosodic states 

{ pβ , qγ , rα }. Notice that the initial prosodic-state indices are assigned by performing 

VQs separately to the three features of pitch-level components of the residue pitch 

contours, the residual syllable durations and the residual syllable energy levels. The 

APs are set to be the corresponding codewords. Lastly, the initialization of the 

prosodic state sub-models ( | )P p B , ( | )P q B  and ( | )P r B  are done using the labeled 

prosodic-state indices and break indices. 

3.3.2 Iteration 
The iteration is a multi-step iterative procedure listed below. 

Step 1: Update the APs of utterance uγ  and uα  with all other APs being fixed. 

Step 2: Update the APs of five tones tβ , tγ  and tα  with all other APs being 

fixed. 

Step 3: Update the APs of coarticulation { ,
f
B tpβ , ,

b
B tpβ , 

1,b

f
B tβ  and ,e N

b
B tβ } with all 

other APs being fixed, and then update R . 
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Step 4: Update the APs of base-syllable type and final, sγ  and fα  with all other 

APs being fixed, and then update dR  and eR . 

Step 5: Re-label the prosodic state sequence of each utterance by using the Viterbi 

algorithm so as to maximize Q defined in Eq. (3.14). Then, update the APs of 

prosodic states pβ , qγ  and rα , the prosodic state sub-models ( | )P p B , 

( | )P q B , ( | )P r B , R , dR  and eR . 

Step 6: Re-label the break type sequence of each utterance by using the Viterbi 

algorithm so as to maximize Q. Then, update ( | )P p B , ( | )P q B , ( | )P r B , R , 

dR  and eR . 

Step 7: Re-construct the decision trees to update ( , , , , | , )n n n n n n np pd ed pj dl df B l  and 

( | )n nP B l  by the CART algorithm using the question sets 1 2 and Θ Θ , 

respectively. 

Step 8: Repeat Steps 1 to 7 until a convergence is reached. 

3.4 Experimental Results 
The same Treebank database was used to evaluate the A-UJPLM method. The 

numbers of the three types of prosodic state were all empirically set to 16. As shown 

in Figure 3.2, the sequential optimization procedure took 109 iterations to reach a 

convergence. Following is examinations and interpretations of the parameters of the 8 

prosodic sub-models. 
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Figure 3.2: The plot of total log-likelihood versus iteration number. 
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3.3.1 The Syllable Prosodic Model 

We first examined the parameters of the syllable prosodic model ( | , , )p X B PS L . 

The covariance matrices/variances of the original and residual syllable log-F0 contour, 

duration and energy level are shown below: 

4

565.4 23.9 -25.6 -0.5
23.9 90.5 9.7 -8.2

 10
-25.6 9.7 17.8 -0.9
-0.5 -8.2 -0.9 5.0

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= × ⇒
⎢ ⎥
⎢ ⎥
⎣ ⎦

spR  4

3.8 0.2 -0.2 0.0
0.2 31.9 2.6 -1.5

 10
-0.2 2.6 11.1 0.6
0.0 -1.5 0.6 3.7

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ×
⎢ ⎥
⎢ ⎥
⎣ ⎦

rsp
R  

-5382.1 10sdR = ×   ⇒   -53.7 10rsd
R = ×  

48.43seR =   ⇒   0.26rse
R =  

Obviously, all components of covariance and variances of the three residuals were 

much smaller than their counterparts of the original features. This showed that the 

influences of the affecting factors considered were indeed essential to the variation of 

sp, sd and se.  

Table 3.2 displays the APs of five tones. These results generally agreed with 

those of previous studies [58,59,67,68]. 

Table 3.2: APs of five tones 
Tone 1 2 3 4 5 
Pitch mean 0.153 -0.080 -0.175 0.088 -0.145 
Syllable duration 0.012 0.015 -0.008 -0.001 -0.075 
Energy level 0.367 -1.015 -1.272 1.500 -1.940 

  

Figure 3.3 displays the decision tree analysis of the duration APs of base-syllable 

type. It can be found from the figure that the syllables with initial in {b, d, g} are 

much shorter in average than other combinations of initial-final. Generally, syllables 

with initial in {q, ch, c, f, h, x, sh, s, p, t, k} are longer while syllables with final of 

single vowel are shorter. The results generally confirmed to those of previous studies 

[59]. The decision tree analysis of energy-level APs of final type is shown in Figure 

3.4. It can be seen from the figure that the average energy level, from large to small, 

are those of open, mid and close vowels. Besides, the energy level of final with 

medial is generally smaller than others. 
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Figure 3.3: Decision tree analysis of duration APs of base-syllable type. Number in () 
represents the average length (ms) of the APs in the leaf node. Solid line indicates 
positive answer to the question and dashed line indicates negative answer.  
 

 

Figure 3.4: Decision tree analysis of energy-level APs of final. Number in () 
represents the average energy level (dB) of the APs in the leaf node. Solid line 
indicates positive answer to the question and dashed line indicates negative answer. 
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Table 3.3 displays the APs of the pitch, duration and energy prosodic states. It 

can be seen from Figure 3.5 that, for each of the three prosodic features, the APs of 16 

prosodic states spanned widely to cover the whole dynamic range. 

 

      Table 3.3: APs of prosodic states   
p/q/r 1 2 3 4 5 6 7 8 

(1)pβ  -0.87 -0.58 -0.42 -0.33 -0.26 -0.20 -0.14 -0.09 
qγ  -0.12 -0.09 -0.08 -0.06 -0.05 -0.03 -0.02 -0.01 
rα  -18.49 -13.25 -10.50 -8.40 -6.57 -4.96 -3.47 -2.12 

p/q/r 9 10 11 12 13 14 15 16 
(1)pβ  -0.03 0.03 0.09 0.15 0.21 0.28 0.37 0.48 

qγ  0.00 0.02 0.03 0.05 0.07 0.09 0.12 0.17 
rα  -0.80 0.58 1.98 3.46 5.05 6.82 9.03 12.15 
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Figure 3.5: Distributions of normalized prosodic features and the APs of prosodic 
states (vertical lines). 
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Table 3.4 displays the total residual errors (TREs) of the prosodic modelings for 

syllable pitch contour, duration, and energy level with respect to the use of different 

combinations of APs. It can be seen from the table that the TREs reduced as more 

APs were considered and the most significant one is prosodic state. This result 

suggested that higher-level prosodic constituents (i.e., PW, PPh and PG/BG) may 

account for great amount of prosodic variations. More detail analysis of prosodic state 

will be given in Subsection 3.3.3.  

 

Table 3.4: TREs of the prosodic modelings for syllable pitch contour, duration and 
energy level w.r.t. the use of different combinations of affecting factors. 

Pitch Duration Energy level 
APs TRE APs TRE APs TRE 

  + Utterance 98.8% + Utterance 77.8%
+ Tone 71.6% + Tone 88.1% + Tone 74.5%
+ Coarticulation 60.3% + Base-syllable 62.9% + Final 48.0%
+ Prosodic state 1.1% + Prosodic state 1.1% + Prosodic state 1.0% 
 

3.3.2 The Break-Acoustics Model 
Figure 3.6 displays the distributions of pause duration, energy-dip level, 

normalized pitch jump, and normalized duration lengthening factors for the root 

nodes of these seven break types. As can be seen from the figure, the break types of 

higher level were generally associated with longer pause duration, lower energy-dip 

level, greater normalized pitch jump, and larger duration lengthening factors. The 

distributions of pause duration and energy-dip level were similar to those obtained in 

the previous study shown in Fig. 2.5. Notice that B2-3 was similar to B1 and B2-1 in 

the distributions of pause duration, and energy-dip level. B2-1, B2-2, B3, and B4 had 

positive normalized pitch jumps in average while B0, B1, and B2-3 had negative ones. 

This result illustrated the declination and reset effects of log-F0 at intra-PW and 

inter-PW syllable boundaries, respectively. Normalized duration lengthening factors 

of B2-2, B2-3, B3, and B4 were relatively larger than those of B0, B1, and B2-1. 

These distributions showed the lengthening effect for the last syllable of PW, PPh, 

and PG/BG. 
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  (e) 
Figure 3.6: The pdfs of (a) pause duration, (b) energy-dip level for the root nodes, (c) 
normalized pitch jump, (d) normalized duration lengthening factor 1 and (e) 
normalized duration lengthening factor 2 of these seven break types. Numbers in () 
denote the mean values. 

3.3.3 The Prosodic State Model 
Figure 3.7 displays some most significant transitions of pitch prosodic state 

1 1( | , )n n nP p p B− −  for seven break types. It can be found that the prosodic state 

transitions of B0, B1, B2-1, B2-2, B3 and B4 generally agree with the results 

illustrated in Subsection 2.4.3. The transition of B2-3 is similar to those of B0 and B1. 

This implies no apparent pitch reset exists at the duration-lengthening juncture of 

B2-3.  
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Figure 3.7: The most significant pitch prosodic state transitions, 1 1( | , )n n nP p p B− − , for 
each break types. Notice that the darker lines represent the more primary prosodic 
state transitions. 

 

Figure 3.8 illustrates the transitions of duration prosodic state 1 1( | , )n n nP q q B− − . 

Generally, larger break types made more significant high-to-low transitions. It can be 

observed from the transitions of B3 and B4 that PPhs and PG/BGs usually begun with 

lower states and ended with higher states to manifest the significant duration 

lengthening effect before major break junctures. Compared with the transitions of B3 

and B4, those of B2-2 and B2-3 had less high-to-low dynamics implying less syllable 

duration lengthening before minor break junctures. As for B0, B1 and B2-1, they had 

small nearby-state transitions without preferred direction. 
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Figure 3.8: The most significant duration prosodic state transitions, 1 1( | , )n n nP q q B− − , 
for each break types. Notice that the darker lines represent the more primary prosodic 
state transitions. 
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The energy prosodic state transitions are shown in Figure 3.9. Apparently, 

low-to-high transitions were primarily found in major breaks (i.e., B3 and B4), while 

high-to-low and level transitions were mainly observed in non-break and minor break. 

These results demonstrated the declination of energy level within a PPh or PG/BG, 

and the reset when restarted a PPh or PG/BG. 
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Figure 3.9: The most significant energy prosodic state transitions, 1 1( | , )n n nP q q B− − , 
for each break types. Notice that the darker lines represent the more primary prosodic 
state transitions. 

 

 

 

3.3.4 The Break-Syntax Model 
Figure 3.10 displays the decision tree of the break-syntax model. It can be seen 

from the figure that the root nodes of the two sub-trees T3 and T4, which 

corresponded to syllable juncture with PM, were mainly composed of major break 

types of B3 and B4. T4 contained more B4 because it corresponded to major PMs. T6 

which corresponded to intra-word was mainly composed of non-break. T5 had much 

more complex tree structure than other sub-trees. By further analyzing the entropies 

of the leaf nodes in sub-trees T3-6, we find that T6 had the largest entropy. This 

implies that it is more difficult to correctly predict the break types of non-PM 

inter-word junctures. 
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Figure 3.10: The decision tree of the break-syntax model. The bar plot associated with 
a node denotes the distributions of these six break types (B0, B1, B2-1, B2-2, B3, B4, 
from left to right) and the number is the total sample count of the node. 

 

More detailed structures of these four sub-trees up to the fourth layer are shown 

in Figure 3.11. It is found from Figures 3.11(a) and (b) that nodes in T3 and T4 were 

mainly split by questions related to sentence-level linguistic features such as LFS>=7 

(Is the length of the following sentence equal to or greater than 7?). Generally, the 

juncture of PM was more likely to be B4 when the previous/following sentence was 

long. It is also found from Figure 3.11(b) that the minor PM “dun hao” (or “、”) was 

likely to be labeled as B3 and B2-2 other than B4. We find from Figure 3.11(c) that in 

T6 Type-2 intra-word junctures, which are anticipated as potential break positions, 

were more likely to be minor breaks than Type-1 intra-word junctures which were 

simply labeled as B0 and B1. For the most complex sub-tree T5 (see Figure 3.11(d)), 

the labeling of non-PM inter-word juncture could be firstly discriminated as tending 

to B0 or B1 by the initial type of the following syllable {null initial, m, n, l ,r}. The 

junctures with non-sonorant initial could be further discriminated as non-break by the 

following word with POS “DE”. This result matched with the previous finding 

presented in Subsection 2.5.1. It was also found that the distance to previous PM 

(DPP>=2, DDP>=11, DFP>=3) and the distance to next PM (DFP>=3) were used to 
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discriminate other sub-trees of T5. Generally speaking, a non-PM inter-word juncture 

had higher potential to be labeled as minor breaks as its distance to the nearby PM 

was longer. 
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LPS>=8LFS>=5

LPS>=13LPS>=5

3574

2754820

1882872444376

8741008509363  

dun hao?

LPS>=9

1106

281825

500325

     

Type-2 intraword?

Initial in null or (m, n, l, r)?

Initial in (b, d, g)?

22187

25021937

671215225

354311682
 

 Initial in null or (m, n ,l , r)?

DFP>=3FWPOS=DE

PWL=1Null initial?DPP>=11DPP>=2

24946

648718459

53171170197416485

246628515486225881386151891296

 
 
 
Figure 3.11: The more detailed structures of sub-trees of (a) T3, (b) T4, (c) T6 and (d) 
T5. Solid line indicates positive answer to the question and dashed line indicates 
negative answer. 
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(b) (c) 
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3.4 Analyses of the Labeled Breaks and Prosodic 

Constituents 

3.4.1 Comparison Between A-UJPLM and UJPLM 

Table 3.5 shows the cooccurrence matrix for the break types labeled by 

A-UJPLM and by UJPLM. Some findings from the table are discussed as follows. 

Firstly, the labeling results of these two methods were roughly consistent to each 

other. This is especially true for non-breaks and major breaks. Secondly, about 83% 

of the new break type B2-3 labeled by A-UJPLM corresponded to the tags of B0 and 

B1 labeled by UJPLM. This implies A-UJPLM inserted more minor breaks than 

UJPLM by re-labeling non-breaks into B2-3. Thirdly, by more detailed analysis we 

find that the two most inconsistent pairs (B2-2,B3) and (B1,B2-1) were owing to the 

similarities in the distributions of their inter-syllable acoustic features. 

 
Table 3.5: Cooccurrence matrix for the break types labeled by 
A-UJPLM and by UJPLM 

UJPLM
Advanced UJPLM B0 B1 B2-1 B2-2 B3 B4 Count 

B0 82.7 16.3 1.0 0 0 0 10311
B1 3.0 94.3 1.1 1.6 0 0 23892

B2-1 3.8 11.6 76.2 8.3 0.1 0 4812
B2-2 0 3.9 2.7 76.4 17.0 0 3464
B2-3 16.4 66.8 5.8 10.9 0 0 3065
B3 0 0 0.1 3.2 87.7 9.0 3549
B4 0 0 0 0 10.6 89.3 2720

 
 
 

Figure 3.12 displays the histograms of length for the three high-level prosodic 

constituents of BG/PG, PPh and PW. Compared with Fig. 2.10, we find that both 

histograms of BG/PG and PPh looked similar for these two methods, while the 

histogram of PW for A-UPJLM shrank significantly. Table 3.6 shows the statistics of 

length for the three prosodic constituents. As can be seen from the table, the average 

length of PW (2.8 syllables) was shorter than that of UJPLM (3.17 syllables, see 

Table 2.8) due to the insertions of B2-3s. The average length of PPh (7.46 syllables) 
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was longer than that of UJPLM (6.98 syllables) due to the substitutions of B3s with 

B2-2s. The average length of PG/BG (16.85 syllables) was slightly longer than that of 

UJPLM (16.69 syllables). 
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Figure 3.12: Histograms of lengths for BG/PG, PPh and PW. 

 

 

Table 3.6: Statistics of three types of prosodic constituents. Value in 
parentheses denotes standard deviation. 

Prosodic constituent Average 
length in PW PPh BG/PG 
Syllable 2.80(1.40) 7.46(3.66) 16.85(9.38) 

LW 1.64(0.84) 4.30(2.29) 9.75(5.44) 

PW 1.00  2.31(1.79 ) 5.28(3.38) 
PPh X 1.00  1.77(1.66) 

 

 

Table 3.7 displays the cooccurrence matrix of the break indices labeled by 

A-UJPLM and by human. Basically, the cooccurrence matrix is similar to that of 

UJPLM shown in Table 2.10. It is found that 94.7% of human-labeled b4s, i.e. major 

breaks, were labeled as break indices of phrase or utterance boundaries (i.e. B3, B4 or 

Be) in A-UJPLM; and 94.4% of b1s, i.e. non-breaks, were labeled as indices of SYL 

boundaries within PW (i.e. B0 or B1). It is also observed that b3s still corresponded 

mainly to break indices of short or medium pause, i.e. B2-2 and B3. The most 

significant difference lies in the tags of b2. It is found that many b2s were 

inconsistently labeled to non-break tags of B0 and B1. By adding the new break type 

B2-3, A-UJPLM reduced the inconsistency rate from 69.7% for UJPLM to 53.5%. 
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Table 3.7: Cooccurrence matrix of break tags 
labeled by A-UJPLM and human 

Human

Unsupervised b1 b2 b3 b4 total

B0 884 167 5 0 1056
B1 1860 549 31 1 2441

B2-1 81 361 66 1 509
B2-2 17 54 212 29 312
B2-3 65 208 52 0 325
B3 0 0 129 242 371
B4 0 0 5 265 270
Be 0 0 0 42 42 

Total 2907 1339 500 580 5326

3.4.2 Patterns of Prosodic Constituents 
To explore the general patterns of syllable pitch contour, duration, and energy 

level for high-level prosodic constituents of PW, PPh, and BG/PG, we first extract the 

prosodic state patterns from the observed syllable prosodic features (i.e. nsp , nsd  

and nse ) by eliminating the influences of utterance, current tone, coarticulations from 

the two nearest neighboring tones, base-syllable type, final type, and the global mean, 

i.e., 

1 1, ,          for 1    
n n n n n

f b
n n t B tp B tp n N

− −
= − − − − ≤ ≤pm sp β β β μ               (3.15) 

          for 1    
n n nn n u t s ddm sd n Nγ γ γ μ= − − − − ≤ ≤                         (3.16) 

          for 1    
n n nn n u t f eem se n Nα α α μ= − − − − ≤ ≤                         (3.17) 

Sequences of npm , ndm  and nem  delimited by B2-1/B2-2/B3/B4 at both sides are 

regarded as prosodic state patterns formed by integrating the log-F0/syllable 

duration/energy level patterns of the three prosodic constituents we considered. Three 

superposition models for prosodic state patterns are therefore defined by 

/n n n

r
n n PW PPh BG PG= + + +pm pm β β β             (3.18) 

/n n n

r
n n PW PPh BG PGdm dm γ γ γ= + + +             (3.19) 

/n n n

r
n n PW PPh BG PGem em α α α= + + +             (3.20) 
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where r
npm , r

ndm  and r
nem  are respectively the residuals of log-F0, syllable 

duration and syllable energy level at syllable n; xβ , xγ  and xα  represent APs of 

affecting factor x for log-F0, syllable duration and syllable energy level, respectively; 

( , )nPW i j= ,  ( , )nPPh i j= , and / ( , )nBG PG i j=  denote that syllable n is located at the 

jth place of an i-syllable PW, PPh, and BG/PG, respectively. A sequential 

optimization procedure based on the MMSE criterion is adopted to train these three 

models. The error functions for each utterance are defined by 

2

/
1

n n n

N

p n PW PPh BG PG
n

E
=

= − − −∑pm β β β                                      (3.21) 

( )2/
1

n n n

N

d n PW PPh BG PG
n

E dm γ γ γ
=

= − − −∑                                      (3.22) 

( )2/
1

n n n

N

e n PW PPh BG PG
n

E em α α α
=

= − − −∑                                      (3.23) 

Then, with proper initializations, it sequentially updates the patterns of PW, PPh and 

BG/PG to minimize pE / dE / eE  until a convergence is reached. 

Figures 3.13, 3.14, and 3.15 display, respectively, the general patterns of pitch 

level, duration and energy level for PW, PPh and PG/BG with different lengths. It is 

noted that the patterns with more instances are displayed in darker lines and dots. As 

shown in Figure 3.13, these log-F0 patterns matched the results of the previous study 

shown in Figure2.11. It can be clearly observed from Figure 3.14 that the last 

syllables of all duration patterns of PPh and PW were lengthened significantly, while 

those of most BG/PG duration patterns were shortened. Interestingly, the shortening 

of the antepenultimate syllable in PPh, which is an important feature of tempo 

structure in Mandarin Chinese, is also found. These phenomena completely matched 

with the findings of Tseng [8]. From Figure 3.15, we find that both short /BG PGα  and 

PPhα  had falling patterns, while long /BG PGα  and PPhα  had, respectively, 

falling-sustaining-falling and falling-sustaining patterns. Compared with /BG PGα  and 

PPhα , PWα  is more flat and had smaller dynamic range. It is worth to note that the 

last syllables of all energy level patterns had small resets illustrating a special stress 

style of Mandarin speech. 
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Figure 3.13: The log-F0 patterns of BG/PG, PPh and PW. 
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Figure 3.14: The duration patterns of BG/PG, PPh and PW. 
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Figure 3.15: The energy level patterns of BG/PG, PPh and PW. 
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Table 3.8 displays the TREs of the prosodic modeling results for syllable pitch 

contour, duration, and energy level with respect to different combinations of affecting 

factors. It can be found from the table that TREs reduced as more affecting factors 

were used. The low-level affecting factors/linguistic features (i.e., utterance, tone, 

coarticulation, base-syllable, and final type) accounted for 39.7%, 37.1%, and 50.0% 

of prosodic variation in pitch, duration, and energy level, respectively; while the three 

high-level prosodic constituents (i.e. PW+ PPh + BG/PG) contributed another 22.9% 

(60.3% - 37.4%), 20.8%, and 22.0 % of prosodic variation in pitch, duration, and 

energy, respectively. Among the three high-level prosodic constituents, we find that 

the most significant one is PW for both pitch and duration, and PPh for energy level. 

However, the TREs are still high. More sophisticated representations of PW, PPh, and 

BG/PG are worthwhile investigating in the future. 

 

Table 3.8: Total residual errors (TREs) w.r.t. the use of different combinations 
of affecting factors for pitch/duration/energy level modeling 

Pitch Duration Energy level 
APs TRE APs TRE APs TRE 
  + Utterance 98.8% + Utterance 77.8% 
+ Tone 71.6% + Tone 88.1% + Tone 74.5% 
+ Coarticulation 60.3% + Base-syllable 62.9% + Final 48.0% 
+ PW 51.7% + PW 48.6% + PW 46.9% 
+ PPh 44.6% + PPh 45.0% + PPh 32.7% 
+ BG/PG 37.4% + BG/PG 42.1% + BG/PG 26.0% 
+ Prosodic state 1.1% + Prosodic state 1.1% + Prosodic state 1.0% 
 

3.4.3 A Labeling Example 
A typical example of the labeling results by A-UJPLM is given in Figure 3.16. 

Compared with the labeling result by UJPLM shown in Figure 2.14, most breaks 

labeled were the same except for an inserted B2-3 and a substitution of B3 with B4 at 

the end of the first PP. The insertion of B2-3 seemed to be reasonable because there 

existed an apparent syllable duration lengthening on the syllable “院”. For each 

prosodic feature of syllable log-F0 mean, duration and energy level, the curve formed 

by integrating the prosodic-state APs and global mean showed smoother PW patterns 

as compared with those of the observed zigzag curve. The last syllables of all PWs 

had longer syllable duration illustrating the pre-boundary duration lengthening effect. 
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It is also found that apparent resets existed on the energy prosodic state of the last 

syllables of most PWs manifesting clear stress patterns. 

 

B2-1 B2-3 (B1) B4(B3) B2-2 B2-1 B3B2-1 B2-2 B2-1 B3 B2-1 B2-2 B4

(依據)  (行政院)  (主計
處 的 統計)  ，

(十月份)  (一 到)  
(二十日)  ，

(我國)  (出口) 
(及)  (進口 金額)

(比起)  (去年 同期) 
(均 有 增加)  ，

PP NP S  
Figure 3.16: An example of the automatic prosody labeling by A-UJPLM. Upper, 
middle and lower panels represent observed (open circle) and prosodic state+global 
mean (solid diamond) of syllable log-F0 means, syllable duration and syllable energy 
level, respectively. The utterance is “yi-ju(according to) xing-zheng-yuan(the 
Executive Yuan) zhu-ji-chu(Directorate-General of Budget, Accounting and Statistics) 
de(DE) tong-ji(statistics), shi-yue-fen(October) yi(1st) dao(to) er-shi-ri(20th), 
wo-guo(our country) chu-kou(export) ji(and) jin-kou(import) jin-e(the amount of 
money) bi-qi(in comparison with) qu-nian(last year) tong-qi(the same period) 
jun(both) you(to have some) zeng-jia(increase).” 

 

 

 

 

 

 

 

 



 

 77

3.5 Conclusions 
In this chapter, the A-UJPLM method designed based on the UJPLM method 

discussed in Chapter 2 is proposed. It employs a new prosodic model to incorporate 

more acoustic features, more prosodic tags, and more affecting factors. Basically, 

A-UJPLM functions like UJPLM to perform the works of prosodic labeling and 

modeling jointly. It extends the UJPLM method to additionally model syllable 

duration and energy level. Besides, it adds a new break type B2-3 to take care of 

minor break with pre-break syllable lengthening. Besides, some additional 

inter-syllable acoustic features, including normalized pitch jump, and normalized 

duration lengthening factors, are also incorporated to help the labeling and modeling 

task. Experimental results on the same Sinica Treebank corpus showed that 

A-UJPLM performed very well. The parameters of the eight prosodic sub-models are 

all linguistically/prosodically meaningful. A comparison with the results of UJPLM 

showed that their break labeling results were quite matched for the cases of non-break 

and major break. On the other hand, A-UJPLM could insert more minor breaks than 

UJPLM via introducing the new minor break B2-3 and resulted in a more consistent 

labeling of minor breaks to the human labeling. So, A-UJPLM is a promising method. 
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Chapter 4 An Application to Prosody 

Generation for TTS 

4.1 Introduction 
Prosody generation plays a very importance role on the naturalness of the 

synthesized speech in a TTS system. The main concern is to explore an appropriate 

mapping from the linguistic features of various levels extracted from the input text to 

the prosodic features representing the prosody hierarchy of the synthesized speech. 

Many methods have been proposed in the past, including the conventional rule-based 

approach [68,80,81], the linear regressive method [82], the decision tree-based 

method [83], the recurrent neural network-based method [12], the template tree-based 

approach [84], etc. Prosodic features can be divided into two types: numerical and 

categorical (or symbolic). For Mandarin speech, numerical prosody features can be 

some explicit values such as duration/pitch contour/energy level of each syllable and 

inter-syllable pause duration, while categorical features can be parameters 

representing the prosody hierarchy such as break indices on syllable junctures. Many 

existing TTS systems [8,10,11,37,82,85,86,87] generate prosody in two steps. First, 

symbolic prosodic features such as inter-syllable break types are predicted from the 

input linguistic features. A prosody hierarchical structure of the input text is then 

derived from the labeled symbolic prosodic features. Last, numerical prosodic 

features are obtained by superimposing prosodic patterns of various levels pre-stored 

or generated from a model, or by selecting prosodic templates from a speech 

inventory. 

In this chapter, an A-UJPLM-based approach is proposed for prosody generation. 

Figure 4.1 displays the schematic diagram of the approach. It is composed of two 

steps: break prediction and prosodic feature prediction. In the break prediction step, a 

break type sequence is predicted for each input text by the break-syntax model 

( | )p B L  using some linguistic features extracted from the input text. The break type 

sequence implicitly forms a representation of the prosody hierarchy with PW as the 

basic synthesis unit of prosody generation. It has been suggested that a synthesized 
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utterance concatenated by PWs sounds more natural and pleasant than one by LWs 

[45]. Hence break prediction plays an importance role to properly parse the input text 

into strings of PWs, PPhs, and BG/PG. In the prosodic feature prediction step, four 

types of prosodic features, including syllable pitch contour, syllable duration, syllable 

energy level, and inter-syllable pause duration, are generated from input linguistic 

features and the break-type sequence generated in the first step by using the syllable 

prosodic model ( | , , )p X B PS L , the prosodic state model ( | , )p PS B L , and the 

break-acoustic model ( , | , )P Y Z B L . 

 
Figure 4.1: The proposed prosody generation method. 

To evaluate the performance of the proposed break prediction and prosodic 

feature prediction methods, the test set of the Sinica Treebank corpus is adopted. The 

dataset consists of 46 utterances with 4801 syllables. It is labeled in advance with 

seven types of break =B {B0, B1, B2-1, B2-2, B2-3, B3, B4} and three types of 

prosodic states { , , }=PS p q r  by a Viterbi decoding algorithm which maximizes the 

objective function Q defined in Eq. (3.14). The prosodic models used in Eq. (3.14) are 

learned from the training set of the Sinica Treebank corpus discussed in Chapter 3. In 

the labeling process, all model parameters except the utterance APs are fixed. Steps of 

the labeling process are listed below: 

Step 1: Initialize the utterance APs, uγ  and uα , by simply averaging syllable 

durations and syllable energy levels of each utterance. 

Step 2: Re-label the prosodic state and break-type sequences of each utterance by 

using the Viterbi algorithm that maximizes Q defined in Eq. (3.14). 

Step 3: Update the utterance APs with all other APs being fixed. 

Step 4: Repeat Steps 2 to 3 until a convergence is reached. 
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In this study, the labeling process took 15 iterations to reach a convergence.  

This Chapter is further organized as follows. Section 4.2 presents the proposed 

break prediction method. Then the proposed prosodic feature prediction method is 

discussed in Section 4.3. Some conclusions are given in the last section.  

 

4.2 The Proposed Break Prediction Method 

4.2.1 Linguistic Features 

The linguistic features used for break prediction span a wide range from syllable 

level, such as initial type, and syllable juncture type (intra-word or inter-word); word 

level, such as, word length, POS, and type of punctuation mark (PM); to sentence 

level, such as length of sentence. They are discussed in more detail as follows. 

 

(1) Syllable level 

As illustrated in Subsection 2.4.4, we find that some syllable-level linguistic 

features are very useful for predicting break types. These features include the initial 

type of the following syllable and the syllable juncture type. Seven initial types are 

used in this study, including null initial, {m, n, l, r}, {b, d, g}, {f, s, sh, shi, h}, {ts, ch, 

chi}, {p, t, k}, and {tz, j, ji}; and three types of syllable juncture are used, including 

inter-word, Type-1 intra-word and Type-2 intra-word. Here, Type-1 intra-words 

represent normal intra-word locations, while Type-2 intra-words are special 

intra-word locations of some specific long words, which have high potential to be 

pronounced with pauses such as “百分之*三十二 bai-fen-zhi san-shi.” 

 

(2) Word level 

Word-level linguistic features used in this study are POS, word length, and PM. 

Four POS sets are used in this study, i.e. broad class word, level-1, level-2, and 

level-3 POS sets. The details of the four POS sets are listed in Appendix B. Word 

length is also an important feature for break prediction. It is observed in Subsection 

2.5.1 that some short words are easy to be combined with its previous or following 

word. We categorize word length into fiver classes: 1 syllable, 2 syllables, 3 syllables, 
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4 syllables, and >4 syllables. A window up to six words is adopted in this study to 

extract the POS and word length features for the break prediction of the current word 

juncture: three words before and three words after the juncture. PM is the most 

significant feature to predict major break. Five types of PM are used in this study, 

including comma, period, question mark, dun hao“、,” and others. 

 

(3) Sentence level 

The sentence-level features used are length of sentence, distance to the beginning 

of the current sentence, and distance to the end of the current sentence. By 

investigating the correlation between the length and the number of major/minor 

breaks in a sentence, we find that the number of minor/major breaks increases as the 

sentence becomes longer. It is also found that a major break is more likely to be 

inserted in a syllable juncture if it is far away from the beginning or end of a sentence. 

Table 4.1 summarizes the linguistic features used in this study. 

 

Table 4.1: Summary of linguistic features used and their abbreviations 

FI Type of following syllable’s initial: null initial, {m, n, l, r}, {b, d, g}, {f, s, 
sh, shi, h}, {ts, ch, chi}, {p, t, k}, {tz, j, ji} 

SB Type of syllable boundary: inter-word, Type-1 intra-word, Type-2 
intra-word. 

POS0 Broad class of preceding/following word: substantive word, function word 
POS1 11-type POS: A, C, D, N, I, P, T, V, DE, SHI, DM 

POS2 19-type POS : A, C, Dfa, Dfb, D, N, Nd, Ne, Ng, Nh, P, T, VA, VC, VH, 
V_2, DE, SHI, DM 

POS3 

47-type POS : A, Caa, Cab, Cba, Cbb, Da, Dfa, Dfb, Di, Dk, D, Na, Nb, Nc, 
Ncd, Nd, Neu, Nes, Nep, Neqa, Neqb, Nf, Ng, Nv, Nh, I, P, T, VA, VAC, 
VB, VC, VCL, VD, VE, VF, VG, VH, VHC, VI, VJ, VK, VL, V_2, DE, 
SHI, DM 

WL Length of word in syllable: 1, 2, 3, 4, >4 
PM Type of PM: comma, period, question mark, dun hao and others 
LS Length of sentence in syllable 
LPS Length of previous sentence 
LFS Length of following sentence 
DPP Distance to previous PM (the beginning of the sentence) 
DFP Distance to following PM (the end of the sentence) 
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4.2.2 Prediction Methods 
In this study, three break prediction methods are discussed, namely (1) the 

baseline all-in-one CART-based method, (2) the two-stage method, and (3) the 

Markov model-based method. 

 

(1) The baseline all-in-one CART-based method 

As shown in Figure 4.2, this method predicts seven break types according to the 

question set formed from the linguistic features discussed in Subsection 4.2.1 by a 

single decision tree trained by the CART algorithm. The split criterion used in the 

CART algorithm is the maximum information gain. 

 
Figure 4.2: All-in-one CART for break prediction. 

 

Table 4.2 displays the prediction result by the baseline method. It can be found 

from the table that the prediction rates were high for B1 and B4, medium for B3 and 

B0, and low for B2-1, B2-2 and B2-3. The overall prediction accuracies were 76.2% 

and 73.7% for the inside and outside tests, respectively. The low prediction accuracies 

of the three types of minor break mainly resulted from their confusions with B1 

caused in part by the relatively large counts of B1 in many leaf nodes of the trained 

decision tree. B0s were also easily confused with B1s. Since both B0 and B1 are 

defined as intra-PW boundary, this type of confusion may not harmful to the 

following prosodic feature prediction. B3s were mainly confused with B2-2 and B4. 

This result seemed reasonable because the acoustic characteristics of B2-2, B3 and B4 

are overlapped with apparent inter-syllable pause duration.   

Table 4.3 displays the confusion matrix of the target and predicted break types 

which are reduced to three broad classes of break, i.e. non-break {B0, B1}, minor 

break {B2-1, B2-2, B2-3} and major break {B3, B4}. It can be seen from the table that 

the overall prediction accuracies were 87.5% and 85.8% for the inside and outside 

tests, respectively. Although the overall prediction accuracies were high, the 
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accuracies for minor break were still too low. This may result in parsing the input text 

into too long PWs so as to make an over-smoothed intonation to lose pleasant rhythm. 

The prediction ability for minor break certainly needs to be improved. 

 

Table 4.2: The confusion matrix of the target and predicted break types (%) using the 
baseline all-in-one CART-based method for (a) the inside and (b) outside tests. 

(a)         
Tar\Pre B0 B1 B2-1 B2-2 B2-3 B3 B4 Total

B0 74.1 19.9 3.5 1.2 0.9 0.3 0.0 10247
B1 4.8 89.8 2.8 1.3 1.0 0.3 0.0 23744

B2-1 5.4 26.0 56.4 7.5 3.4 1.2 0.0 4782
B2-2 2.9 15.7 14.1 52.9 3.7 10.5 0.1 3443
B2-3 4.9 34.5 17.5 10.6 29.9 2.5 0.0 3046
B3 0.8 4.6 3.3 8.6 0.9 72.8 9.0 3527
B4 0.0 0.2 0.1 0.3 0.0 13.9 85.4 2703

Avg = 76.2 
(b)         

Tar\Pre B0 B1 B2-1 B2-2 B2-3 B3 B4 Total
B0 73.0 20.3 4.5 1.1 0.5 0.6 0.0 626
B1 5.8 87.3 3.8 1.5 1.2 0.4 0.0 2107

B2-1 2.4 26.8 51.8 12.0 4.5 2.4 0.0 332
B2-2 0.9 20.3 15.7 51.1 2.8 9.2 0.0 325
B2-3 7.0 39.3 20.4 12.9 16.9 3.5 0.0 201
B3 0.4 6.0 4.3 16.7 1.1 58.9 12.8 282
B4 0.0 0.0 0.0 1.2 0.0 12.3 86.4 162

Avg = 73.7 

 

Table 4.3: The confusion matrix of the break prediction for the 
baseline method evaluated using 3 broad classes of break: (a) The 
inside and (b) outside tests. (NB: non-break, MiB: minor break, MB: 
major break) 

(a) 
Tar\Pre NB MiB MB Total 

NB 94.4 5.3 0.3 33991 
MiB 29.7 65.9 4.4 11271 
MB 3.1 7.4 89.4 6230 

Avg = 87.5 
(b) 

Tar\Pre NB MiB MB Total 
NB 93.1 6.4 0.5 2733 
MiB 30.2 64.6 5.2 858 
MB 4.1 14.4 81.5 444 

Avg = 85.8 
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(2) The two-stage method 

By detailed analysis of the break prediction results of the baseline method, we find 
that minor breaks are easily confused with non-breaks. The deletion of a minor break 
may make the synthesized speech too hasted so as to degrade its naturalness. To 
improve the break prediction accuracy of minor break, a two-stage method is 
proposed. Figure 4.3 shows its block diagram. In the first stage, a three-class CART is 
trained to classify the three broad classes of major break, minor break, and non-break. 
In the second stage, each syllable juncture is further classified by one of other three 
decision trees into seven-class break type. For example, if a syllable juncture is 
determined as a major break in the first stage, then it is fed into B3/B4 classification 
to be classified as B3 or B4. 
 

 
Figure 4.3: A block diagram of the two-stage break prediction method. 

 

The performance of the method is listed in Tables 4.4 and 4.5. It can be seen 

from Table 4.4 that the first stage achieved 12.7% and 13.3% improvements on the 

minor break prediction in the inside and outside tests, respectively, as compared with 

the baseline method. Although the detection accuracies of both non-break and major 

break degraded slightly, the overall accuracies were improved. For the second-stage 

prediction, as shown in Table 4.5 the overall predictions of seven break types were 

improved in both inside and outside tests, especially in the predictions of B2-1, B2-2, 

and B2-3. 
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Table 4.4: The confusion matrix of target and predicted reduced three 
classes break types using the two-stage approach: (a) inside test (b) 
outside test. 
(a) 

Tar\Pre NB MiB MB Total 
NB 94.0 5.7 0.3 33991 
MiB 18.4 78.6 2.9 11271 
MB 1.8 11.0 87.2 6230 

Avg = 89.8 
(b) 

Tar\Pre NB MiB MB Total 
NB 92.4 7.4 0.2 2733 
MiB 18.4 77.9 3.7 858 
MB 1.6 16.4 82.0 444 

Avg = 88.2 
 

 

 

Table 4.5: The confusion matrix of target and predicted seven break types using the 
two-stage approach: (a) inside test and (b) outside test. 

(a)         
Tar\Pre B0 B1 B2-1 B2-2 B2-3 B3 B4 Total

B0 74.7 20.1 2.8 1.0 1.2 0.3 0.0 10247
B1 4.8 88.8 2.8 1.5 1.7 0.3 0.0 23744

B2-1 4.5 16.1 62.4 8.5 7.5 0.9 0.0 4782
B2-2 1.6 7.8 17.1 59.2 7.1 6.8 0.3 3443
B2-3 3.7 21.4 17.1 13.5 43.0 1.3 0.0 3046
B3 0.8 2.3 4.5 12.2 2.5 68.4 9.3 3527
B4 0.0 0.1 0.1 0.1 0.0 12.8 86.8 2703

Avg = 77.4 
(b)         

Tar\Pre B0 B1 B2-1 B2-2 B2-3 B3 B4 Total
B0 70.6 22.8 3.7 1.0 1.9 0.0 0.0 626
B1 5.8 86.3 4.0 1.5 2.1 0.3 0.0 2107

B2-1 2.1 18.1 58.4 10.8 8.7 1.8 0.0 332
B2-2 0.6 10.5 22.8 52.3 7.4 5.8 0.6 325
B2-3 1.0 26.4 22.9 15.4 31.8 2.0 0.5 201
B3 0.0 2.5 3.2 18.1 4.3 61.0 11.0 282
B4 0.0 0.0 0.0 0.6 0.0 9.9 89.5 162

Avg = 74.5 
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(3) The Markov model-based method  

The third method we tested is the Markov model-based method. Compared with 

the two methods illustrated above, the Markov model-based method not only takes 

linguistic features but also incorporates contextual information to predict break type. 

The general form of break prediction in this method can be expressed by  

* 1
1

1

arg max ( | ) arg max ( | , )
N

n
n n

n

p p B B −

=

= = ∏B B
B B L L                         (4.1) 

Many methods can be used to generate the probability 1
1( | , )n

n np B B − L . They include 

the HMM method [46,49] and the CART algorithm, etc. In this study, we adopt the 

CART algorithm to train a decision tree for generating the probability 
1

1( | , )n
n np B B − L . Here we only consider the classification of the three broad classes of 

break. The decision tree is a refinement of the decision tree trained in the first stage of 

the two-stage method. We further split the leaf nodes of the previous-trained decision 

tree using a question set containing the information of previous breaks. The optimal 

break sequence can be obtained by the Viterbi decoding algorithm solving Eq. (4.1). 

The experimental results are shown in Table 4.6. Compared with the results of the 

two-stage method shown in Table 4.4, the overall accuracies of break prediction were 

slightly higher for both inside and outside tests. However, the improvement was not 

significant for the outside test. This may suggest that the break prediction mainly 

relies on the linguistic features rather than the contextual information of break. 

 

Table 4.6: The confusion matrix of target and predicted reduced three 
classes break types using the Markov model: (a) inside test (b) outside 
test. 

(a) 
Tar\Pre NB MiB MB Total 

NB 94.2 5.5 0.3 33991 
MiB 18.4 78.6 2.9 11271 
MB 1.9 10.6 87.6 6230 

Avg = 90.1 
(b) 

Tar\Pre NB MiB MB Total 
NB 92.5 7.3 0.2 2733 
MiB 18.3 78.0 3.7 858 
MB 1.6 16.4 82.0 444 

Avg = 88.4 
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4.3 Prosodic Feature Prediction 
The prosodic features to be predicted include syllable prosodic features (sp, sd, 

se) and inter-syllable pause duration (pd). Among them, the inter-syllable pause 

duration of each syllable juncture can be simply predicted by the break-acoustic 

model trained in Chapter 3, i.e. 

* *= arg max ( | , )
n

n n n npd
pd p pd B l                                           (4.2) 

where *
nB  represents the optimal break type of syllable n predicted by the 

break-syntax model discussed in Section 4.2. The syllable prosodic features, 

including syllable pitch contour sp, syllable duration sd, and syllable energy level se, 

are predicted by the models formulated basing on the minimum mean squared error 

(MMSE) criterion. Given with the predicted break sequence *B  and linguistic 

features l , the MMSE predictors for sp, sd, and se are * *[ | , ]n nE=sp sp B l , 

* *[ | , ]n nsd E sd= B l , and * *[ | , ]n nse E se= B l , respectively. Since sp, sd, and se are 

predicted in the same way, we only present the prediction model of sp here for 

simplicity. The MMSE predictor for sp can be elaborated by 

* *
1 1

* *

*

* 1 *
1 1
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sp sp B l
sp sp B l
sp sp B l

β β β β μ B l

.                       (4.3) 

It can be seen from Eq. (4.3) that the predicted syllable pitch contour is a weighted 

sum of the reconstructed patterns formed by superimposing various APs with weights 

being the a posterior probabilities of prosodic state np . The a posterior probability 

*( | , )nP p B l  can be formulated as 

*
*

*

( , , ) ( ) ( )( | , )
( , , ) ( ) ( )

n n n
n

n n n
j j

P p i a i b iP p i
P p j a j b j

=
= = =

=∑ ∑
B lB l

B l
                           (4.4) 

where * *
1( ) ( , | )n n na i P B B p i= = l  and * *

1( ) ( | , )n n N nb i P B B p i+= = l  are the forward and 

backward probabilities, respectively. ( )na i  and ( )nb i  can be calculated by the 
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forward and backward algorithm with the probability 1 1( | , , )n
n n n nP p p B− − l  which is 

similar to the prosodic state model 1 1( | , )n n nP p p B− − . The probability 1 1( | , , )n
n n n nP p p B− − l  

strengthens the influences of linguistic features and break nB  on the current prosodic 

state np . In practical realization, since the space of the histories { 1 1, n
n np B− − } and 

linguistic features { nl } is too large, we partition the space into several classes 

1 1( , , )n
n n nC p B− − l  to calculate the conditional probabilities 1 1( | ( , , ))n

n n n nP p C p B− − l  by 

the decision tree method. The detail of the question set for constructing the decision 

tree is listed bellow: 

 

(1) Current word length in syllable: {1, 2, 3, 4, >4}. 
(2) Current syllable position in word: {1st, intermediate, last, mono-syllable word}. 
(3) Sentence length in syllable: {1, [2,5], [6,10], [11,15], [16,20], >20}. 
(4) Current syllable position in sentence: {1st, 2nd, 3rd, [4th, 5th], [6th, 7th], [8th, 

11th], last, 2nd last, 3rd last, [5th last, 4th last], [7th last, 6th last], [11th last, 8th 
last], others}; Smaller count number from the beginning or end wins. 

(5) PM after the current syllable (five types). 
(6) POS3: 47-types POS. 
(7) Break type of juncture n, n-1, n-2 
(8) Prosodic state of (n-1)-th syllable. 
 

    The proposed prediction method is conducted with the break sequence given by 

the two-stage method. We choose the two-stage method because it performs better. 

Table 4.7 displays the TREs of the prosody prediction results for syllable pitch 

contour, duration and energy level. Since the performance of the proposed method 

should not consider the influence of utterance, the TREs of syllable duration and 

energy level are respectively the ratios of the sum-squared prediction errors of 

syllable duration and energy level over the sum-squared normalized ones with the 

influences from utterance being removed. The performances were acceptable. To 

separate the effect of break prediction on the prosodic feature prediction, we do the 

same experiment using the correct break labels. Table 4.8 displays the experimental 

results. By comparing the results shown in the two tables, we find that the latter 

performed better. This shows that the break prediction plays an important role in the 

prediction of prosodic features. Erroneous breaks predicted will make gross shifts of 
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PW patterns and may result in large prediction errors of prosodic features. Hence, to 

improve the prosodic feature generation, the break prediction task is essential and 

worthwhile further investigating in the future. 

 
 

Table 4.7: TREs of the prosodic feature prediction results. 
 sp sd se pd 

Inside 42.39% 45.60% 37.61% 18.50% 
Outside 42.73% 46.24% 35.98% 18.92% 

 
Table 4.8: TREs of the prosodic feature prediction using 
correct break labels. 

 sp sd se pd 
Inside 32.72% 34.80% 32.13% 8.64% 

Outside 39.10% 41.74% 33.33% 7.00% 
 

 

 

 

Figure 4.4 displays an example of the predicted prosodic features by the 

A-UJPLM-based approach. It illustrates the prosodic feature variations of two 

sentential utterances extracted from a long utterance. It can be found from the figure 

that the predicted prosodic features matched well with their original counterparts for 

most syllables. Some large errors can be found to occur on the syllable durations and 

inter-syllable pause durations of the first sentence. They were mainly resulted from a 

series of break prediction errors. For example, the two contiguous break prediction 

errors (predict (B2-2,B1) as (B1,B3)) in the first sentence caused a gross shift of the 

first PW showing a move of the phrase-ending lengthening from the 4th syllable to the 

6th syllable. The after-phrase long pause also shifted two syllables to the right 

synchronously. By using correct break labels, these large prosodic feature prediction 

errors disappeared. This confirmed that break prediction errors are responsible for 

prosodic feature prediction errors. So break prediction plays an important role on 

prosodic feature prediction. 
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Figure 4.4: An example of the prosodic feature prediction by the A-UJPLM-based 
approach. The panels from up to bottom represent, respectively, syllable log-F0 
means, syllable duration, syllable energy level and inter-syllable pause duration. Solid 
lines, open circles, and closed circles denote, correspondingly, the original features, 
the predicted features using predicted breaks, and the predicted features using correct 
break labels. Vertical dash lines represent erroneous major/minor break prediction 
boundaries while vertical solid lines represent correct ones. Notice that break labels in 
() represent erroneous breaks predicted. 
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4.4 Conclusions 
In this chapter, a model-based prosody generation method for TTS is discussed. 

The method contains two steps: break prediction and prosodic feature prediction. In 

the break prediction, three methods are investigated. They include the baseline 

all-in-one CART-based method, the two-stage method and the Markov model-based 

method. Among them, the Markov model-based method achieves the highest accuracy 

in predicting three-class break types of non-break, minor break and major break, 

while the baseline all-in-one CART-based method has the worst performance. 

However, compared with the two-stage method, the Markov model-based method can 

only bring negligible improvement on the outside test. We therefore conclude that the 

linguistic features rather than the contextual break information are primary features in 

break prediction. 

Based on the break prediction result by the two-stage method, four prosodic 

features, including syllable pitch contour, syllable duration, syllable energy level, and 

inter-syllable pause duration, are predicted by the proposed A-UJPLM-based prosody 

generator. Experimental results showed that the performance of the proposed method 

is acceptable. An upper bound of performance obtained in the oracle experiment using 

correct break labels confirms that the break prediction task is essential in prosodic 

feature generation. Further elaboration of the break prediction model is worthwhile 

studying in the future. 
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Chapter 5   Conclusions and Future Works 

5.1 Conclusions 
In this dissertation, an unsupervised joint prosody labeling and modeling method 

(UJPLM) for Mandarin speech has been proposed. Unlike the conventional prosody 

labeling task that is fulfilled by trained human labelers with audio-visual aids, the 

proposed method not only intended to objectively/consistently label prosodic tags but 

also to concurrently construct interpretive prosodic models. Two types of prosodic 

tags are determined by four prosodic models designed to illustrate the hierarchy of 

Mandarin prosody: the break of a syllable juncture to demarcate prosodic constituents 

and the prosodic states to represent any prosodic domain’s pitch level variation 

resulting from its upper-layered prosodic constituents’ influences. The four prosodic 

models are (1) the syllable pitch contour model which describes the variations in 

syllable pitch contour controlled by the prosodic tags and syllable-level linguistic 

features, (2) the break-acoustics model which describes the relationship between the 

break type of a syllable juncture and nearby acoustic features, (3) the break-syntax 

model which constructs the relationship between the break type of a syllable juncture 

and contextual linguistic features and (4) the prosodic state model which describes the 

relationship between the prosodic states of syllables and the break types of 

neighboring syllable junctures. An experiment on the Sinica Treebank corpus uttered 

by an experienced female announcer showed that the four prosodic models learned 

were all linguistically and/or prosodically meaningful. The corresponding relationship 

between the break indices labeled by UJPLM and their associated words were 

investigated to confirm the performance of UJPLM. The prosodic state labeled could 

be used to extract the general log-F0 patterns of PW, PPh and BG/PG. Besides, a 

quantitative comparison between the break labeling results by UJPLM and human 

labelers showed that the breaks labeled by UJPLM were more consistent and 

discriminative than those by human in prosodic feature distributions, a further 

verification of the proposed method. 

Motivated by the success of UJPLM, the A-UJPLM method was designed basing 

on the same idea to incorporate more acoustic features and more prosodic tags. The 
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new prosodic features added included syllable duration, syllable energy level, 

normalized pitch jump, and normalized duration lengthening factors, while the new 

prosodic tags are the break type B2-3 introduced to take care of the PW boundary 

with pre-break syllable lengthening, the duration prosodic state and the energy 

prosodic state. Experimental results on the same Sinica Treebank corpus showed that 

A-UJPLM performed very well. The parameters of the eight prosodic sub-models 

were all linguistically/prosodically meaningful. A comparison with the results of 

UJPLM showed that their break labeling results were quite match for non-breaks and 

major breaks. However, A-UJPLM could insert more minor breaks than UJPLM via 

introducing the new minor break B2-3 and resulted in a more consistent labeling of 

minor breaks to the human labeling. Besides, the general duration and energy level 

patterns of PW, PPh, and BG/PG could also be explored using the labeled duration 

and energy prosodic states. So, a more substantial prosody labeling and modeling for 

Mandarin speech was achieved by the A-UJPLM method. 

Lastly, an A-UJPLM-based prosody generation method for TTS was proposed. It 

is composed of two steps: break prediction and prosodic feature prediction. In the 

break prediction, three prediction methods were discussed: the baseline all-in-one 

CART-based method, the two-stage method and the Markov model-based method. 

Based on the break prediction result by the two-stage method, four types of prosodic 

features, including syllable pitch contour, syllable duration, syllable energy level, and 

inter-syllable pause, were generated from input linguistic features and the break-type 

sequence generated in the first step by using the syllable prosodic model, the prosodic 

state mode and the break-acoustic model. Experimental results showed that the 

performance of the proposed method was acceptable. 

In conclusion, the proposed unsupervised joint prosody labeling and modeling 

method was able to construct interpretive prosodic models and generate proper 

prosodic tags automatically. Therefore, it is a promising prosodic labeling and 

modeling approach for Mandarin speech. 
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5.2 Future Works 
Some future works are worth doing. First, the four prosodic models can be 

directly used or further elaborated to provide useful prosodic information to assist in 

some applications of spoken language processing, including ASR, punctuation 

generation from unprescribed speech utterance, prosody generation for TTS, prosody 

pattern conversion for different speakers, and prosodic error detection in 

computer-assisted Mandarin Chinese learning. Second, the speech database with 

prosodic tags being properly labeled can be used to exploit the hierarchical structure 

of Mandarin prosody in more detail, especially for high-layer prosodic constituents. 

Third, via prosody labeling and modeling of large multi-speaker, emotional, and 

multi-speaking rate speech databases, the influences of different speaking styles on 

prosody can be explored. 
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Appendix A 
(1) Determinations of Th1, Th2, and Th3 

Th1, Th2, and Th3 are pause-duration thresholds set to sequentially distinguish B4, 

B3, and B2-2/B1 with significant pause duration from other break types. Firstly, the 

two gamma distributions for B3 and B4 are estimated using two clusters of pause 

duration samples of syllable juncture with PM clustered by VQ. The one with larger 

mean is regarded as the distribution for B4, and another is for B3. We then construct 

an empirical gamma distribution of pause duration 0/ 1( )B Bf pd  for 0 / 1B B  by using 

all samples of intra-word juncture. An empirical distribution of pause duration 

2-2 ( )Bf pd  for B2-2 is then constructed by using all samples of inter-word juncture 

without PM but with apparent pause. Here, the condition of apparent pause is 

evaluated based on the criterion of 3 0 / 1( ) ( )B n B B nf pd f pd>  which can exclude 

non-PM inter-word samples with pause duration similar to those of 0 / 1B B . Lastly, 

the thresholds Th3, Th2 and Th1 are set as the equal-probability intersections of 

0/ 1( )B Bf pd , 2-2 ( )Bf pd , 3 ( )Bf pd  and 4 ( )Bf pd .  

(2) Determination of Th5 

The pitch jump threshold Th5 is set to distinguish between B2-1 and B0/B1. We 

first define the normalized log-F0 level jump by 

11( (1) (1)) ( (1) (1))
n nn n t n tξ
++= − − −sp β sp β         (A1) 

where (1)x  denotes the first dimension of vector x. It is noted that the APs of five 

tones, tβ , can be estimated in advance before break-type labeling by simply 

averaging all samples of each tone. Then two empirical Gaussian distributions of 

normalized log-F0 level jump, intra ( )f ξ  and PM ( )f ξ , for intra-word and PM 

junctures are constructed using all samples of intra-word syllable junctures and all 

PM junctures, respectively. We then construct an empirical Gaussian distribution of 

normalized log-F0 level jump 2 1( )Bf ξ−  for B2-1 by using all samples of inter-word 

junctures without PM but with apparent normalized log-F0 level jump. The condition 

of apparent normalized log-F0 level jump is evaluated based on the criterion of 
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PM intra( ) ( )n nf fξ ξ>  which can exclude non-PM inter-word junctures with normalized 

log-F0 level jump similar to intra-word juncture. Lastly, the threshold Th5 is set as 

the equal-probability intersection of intra ( )f ξ  and 2 1( )Bf ξ− .  

(3) Determinations of Th4 and Th6 

The F0 pause duration threshold Th4 and the energy-dip level threshold Th6 are 

set to distinguish between B0 and B1. Basically, B0 should have very short F0 pause 

duration and large energy-dip level because it represents tightly coupling syllable 

juncture. So, we simply set Th4 to be 1 frame (= 10ms). For Th6, the two Gaussian 

distributions for B0 and B1 are estimated using two clusters of energy-dip level 

samples of intra-word juncture clustered by VQ. Then, the threshold Th6 is set as the 

equal-probability intersection of the two Gaussian distributions. 

(4) Determination of Th7 and Th8 

The normalized syllable duration lengthening thresholds, Th7 and Th8, are set to 

distinguish between B2-3 and B0/B1 for inter-word junctures with normalized syllable 

duration lengthening factors 1 and 2 (i.e. ndl  and ndf ) greater than Th7 and Th8. 

Four empirical Gaussian distributions of normalized duration lengthening factors, 

{ intra ( )dlf τ / intra ( )dff τ } and { PM ( )dlf τ / PM ( )dff τ }, for intra-word and PM junctures are 

constructed using all samples of intra-word syllable junctures and all PM junctures, 

respectively. We then construct an empirical Gaussian distributions of normalized 

syllable duration lengthening factors { B2-3 ( )dlf τ / B2-3 ( )dff τ } for B2-3 by using all 

samples of inter-word junctures without PM but with apparent normalized duration 

syllable lengthening factors. The condition of apparent normalized syllable duration 

lengthening factors are evaluated based on the criterion of PM intra( ) ( )dl dl
n nf dl f dl>  and 

PM intra( ) ( )df df
n nf df f df>  which can exclude non-PM inter-word junctures with normalized 

syllable duration lengthening factors similar to intra-word juncture. Lastly, the 

threshold Th7 and Th8 are set as the equal-probability intersection of { intra ( )dlf τ  and 

B2-3 ( )dlf τ } and { intra ( )dff τ  and B2-3 ( )dff τ }, respectively. 
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Appendix B 
Table B.1: The contextual linguistic features considered in this study. Note that the 
notations of POS symbols follow Ref. [72]. 
Type of following syllable’s initial: null initial, {m, n, l, r}, {b, d, g}, {f, s, sh, shi, 
h}, {ts, ch, chi}, {p, t, k}, {tz, j, ji} 
Type of syllable boundary: inter-word, Type-1 intra-word, Type-2 intra-word. 
Here, Type-1 intra-words represent normal ones, while Type-2 intra-words are 
specific intra-word locations of some special long words which have potential to be 
pronounced with pauses. 
Type of PM: period, exclamation mark, semicolon, and question mark, comma, dun 
hao, colon 
Length of preceding/following word in syllable: 1, 2, 3, 4, >4  
Broad class of preceding/following word: substantive word, function word 
Level-1 POS of preceding/following word: A (adjective), C (conjunction), D 
(adverbial), N (noun), I (interjection), P (preposition), T (particle), V (verb), DE (de, 
zhi, di), SHI (shi), DM (determiner-measure compound) 
Level-2 POS of preceding/following word: Ca (coordinate conjunction), Cb 
(correlative conjunction), Da (adverb of quantity), Db (adverb of evaluation), Dc 
(negation), Dd (adverb of time), Df (adverb of degree), Dg (adverb of place), Dh 
(adverb of manner), Di (aspectual adverb), Dj (interrogative adverb), Dk (sentential 
adverb), Na (general noun), Nb (special noun), Nc (place noun), Nd (time noun), Ne 
(determiner), Nf (measure), Ng (localizer), Nh (pronoun), VA (active intransitive 
verb), VB (active pseudo-transitive verb), VC (active transitive verb), VD 
(ditransitive verb), VE (active verb with a sentential object), VF (active verb with a 
verbal object), VG (classificatory verb), VH (stative intransitive verb), VI (stative 
pseudo-transitive verb), VJ (stative transitive verb), VK (stative verb with a sentential 
object), VL (stative verb with a verbal object), V_2 (you) 
Level-3 POS of preceding/following word: Caa (conjunctive conjunction), Cab 
(listing conjunction), Cba (movable before correlative conjunction), Cbb (unmovable 
before correlative conjunction), Dfa (pre-verbal degree adverbs), Dfb (post-verbal 
degree adverbs), Ncd (localizer), Neu (numeral determiner), Nes (specific 
determiner), Nep (anaphoric determiner), Neq (quantitative determiner), VA2 (active 
intransitive verb), VC1 (active transitive verb), VH16 (stative intransitive verb), 
VH22 (stative intransitive verb) 
Position of following syllable in a syntactic phrase: beginning, otherwise 

Position of preceding syllable in a syntactic phrase: ending, otherwise 

Number of syntactic phrase levels that preceding/following word 
terminates/initiates: 0, >0, >1, >2 
Length of the smallest syntactic phrase covering both preceding and following 
words in syllable : 2≤ , >2, >3, >4,…,>15 
Length of the largest syntactic phrase covering the following word but not the 
preceding word in syllable: 2≤ , >2, >3, >4,…,>10 
Length of the largest syntactic phrase covering the preceding word but not the 
following word in syllable: 2≤ , >2, >3, >4,…,>10 
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Appendix C 

C.1 The question set 1Θ  
The question set 1Θ  used to construct the decision trees for building the 

break-acoustics model n( , | , )n n nP pd ed B l  is listed below: 

1. Syllable Level 

11.1Q : Is the initial of the following syllable a null one or in {m, n, l, r}? 

11.2Q : Is the initial of the following syllable a null one? 

11.3Q : Is the initial of the following syllable in {b, d, g}? 

11.4Q : Is the initial of the following syllable in {f, s, sh, shi, h}? 

11.5Q : Is the initial of the following syllable in {m, n, l, r}? 

11.6Q : Is the initial of the following syllable in {ts, ch, chi}? 

11.7Q : Is the initial of the following syllable in {p, t, k}? 

11.8Q : Is the initial of the following syllable in {tz, j, ji}? 

11.9Q : Is the inter-syllable location an inter-word? 

11.10Q : Is the inter-syllable location a Type-1 intra-word? 

11.11Q : Is the inter-syllable location a Type-2 intra-word? 

 

2. PM 

In the following questions, we define major PMs = {period, exclamation mark, 

semicolon, question mark} and minor PMs={comma, dun hao(a mark in Chinese 

punctuation used to set off items in a series), colon}. 

12.1Q : Does a PMs exist at the inter-syllable location? 

12.2Q : Does a major PM exist at the inter-syllable location? 

12.3Q : Does a minor PM exist at the inter-syllable location? 

12.4Q : Does a comma exist at the inter-syllable location? 

12.5Q : Does a dot or colon exist at the inter-syllable location? 
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3. Questions related to tree-level linguistic features 

All the following questions are subject to a prerequisite condition that the 

current inter-syllable location is an inter-word. 

3.1 Phrase beginning or ending 

13.1.1Q : Are the preceding and following words at the same level of a tree?  

13.1.2Q : Does the following word initiate a syntactic phrase? Here syntactic phrases 

include noun phrase (NP), verb phrase (VP), preposition phrase (PP), geographic 

phrase (GP), and clause (S). 

13.1.3Q : Does the preceding word terminate a syntactic phrase? 

3.2 Number of syntactic phrase levels 

13.2.1~ 3Q : If the following word initiates a syntactic phrase, is the number of 

syntactic phrase levels greater than or equal to n∈{1, 2, 3}? 

13.2.4 ~ 6Q : If the preceding word terminates a syntactic phrase, is the number of 

syntactic phrase levels greater than or equal to n∈{1, 2, 3}? 

3.3 Number of syllable in a syntactic phrase 

13.3.1~14Q : Is the length of the smallest syntactic phrase covering both the 

preceding and following words in syllable greater than n∈{2, 3, 4, …, 15}? 

13.3.15 ~ 23Q : Is the length of the largest syntactic phrase covering the following 

word but not the preceding word in syllable greater than n∈{2, 3, 4, …, 10}? 

13.3.24 ~ 32Q : Is the length of the largest syntactic phrase covering the preceding 

word but not the following word in syllable greater than n∈{2, 3, 4,….10}? 

C.2 The question set 2Θ  
The question set 2Θ  used to construct the decision trees for building the 

break-syntax model ( | )n nP B l  is listed below: 

1. Syllable Level 

21.1Q : Is the initial of the following syllable a null one or in {m, n, l, r}? 

21.2Q : Is the inter-syllable location an inter-word? 
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21.3Q : Is the inter-syllable location a Type-1 intra-word? 

21.4Q : Is the inter-syllable location a Type-2 intra-word? 

 

2. Word Level 

All the following questions are subject to a prerequisite condition that the 

current inter-syllable location is an inter-word. 

2.1 PM 

2 2.1.1~5Q : The same questions as 12.1~5Q . 

2.2 Word length 

2 2.2.1~ 4Q : Is the preceding word an n∈{1, 2, 3, 4}-syllable word? 

2 2.2.5 ~ 8Q : Is the following word an n∈{1, 2, 3, 4}-syllable word?  

2 2.2.9Q : Is the length of the preceding word in syllable greater than 4? 

2 2.2.10Q : Is the length of the following word in syllable greater than 4? 

2.3 Substantive/function words 

2 2.3.1~ 2Q : Is the preceding word a substantive word/function words? 

2 2.3.3~ 4Q : Is the following word a substantive word/function words? 

2.4 Level-1 POS and special tags 

2 2.4.1~11Q : Is the POS of the preceding word A/C/D/N/I/P/T/V/DE/SHI/DM? 

2 2.4.12 ~ 22Q : IS the POS of the following word A/C/D/N/I/P/T/V/DE/SHI/DM? 

2.5 Level-2 POS 

2 2.5.1~ 33Q : Is the POS of the preceding word 

Ca/Cb/Da/Db/Dc/Dd/Df/Dg/Dh/Di/Dj/Dk/Na/Nb/Nc/Nd/Ne/Nf/Ng/Nh/VA/VB/VC/V

D/VE/VF/VG/VH/VI/VJ/VK/VL/V_2? 

2 2.5.34 ~ 66Q : Is the POS of the following word 

Ca/Cb/Da/Db/Dc/Dd/Df/Dg/Dh/Di/Dj/Dk/Na/Nb/Nc/Nd/Ne/Nf/Ng/Nh/VA/VB/VC/V

D/VE/VF/VG/VH/VI/VJ/VK/VL/V_2? 

2.6 Level-3 POS 

2 2.6.1~15Q : Is the POS of the preceding word 

Caa/Cab/Cba/Cbb/Dfa/Dfb/Ncd/Neu/Nes/Nep/Neq/VA2/VC1/VH16/VH22? 
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2 2.6.16 ~ 30Q : Is the POS of the following word 

Caa/Cab/Cba/Cbb/Dfa/Dfb/Ncd/Neu/Nes/Nep/Neq/VA2/VC1/VH16/VH22? 

2.7 Combination of POS 

2 2.7.1~ 7Q : Does the POS of the preceding word belong to {Da, Db, Dc, Dd, Dg, Dh, 

Di, Dj, Dk}/{Na, Nb, Nc}/{Ncd, Ng}/{I, T}/{VA, VG}/{VB, VC, VD, VE, VF, VJ, 

VK, VL}/{VH, VI}? 

2 2.7.8 ~14Q : Does the POS of the following word belong to {Da, Db, Dc, Dd, Dg, 

Dh, Di, Dj, Dk}/{Na, Nb, Nc}/{Ncd, Ng}/{I, T}/{VA, VG}/{VB, VC, VD, VE, VF, 

VJ, VK, VL}/{VH, VI}? 

 

3. Tree-level features 

 All tree-level features here are the same as the tree-level features used in the 

question set 1Θ , i.e., 2 13.1.1~3 3.1.1~3Q Q= , 2 13.2.1~6 3.2.1~6Q Q=  and 

2 13.3.1~32 3.3.1~32Q Q= . 
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Appendix D 

D.1 The question set 3Θ  
The question set 3Θ  used to construct the decision trees for building the 

break-acoustics model ( , , , , | , )n n n n n n np pd ed pj dl df B l  is listed below: 

1. Syllable Level 

31.1~11Q : The same questions as 11.1~11Q . 

 

2. PM 

3 2.1~5Q : The same questions as 12.1~5Q . 

 

3. Questions related to sentence level features 

All the following questions are subject to a prerequisite condition that the 

current inter-syllable location is an inter-word. 

3.1 Length of sentence 

33.1.1~30Q : Is the length of the current sentence greater or equal to 1~30? 

33.1.31~60Q : Is the length of the previous sentence greater or equal to 1~30? 

33.1.61~90Q : Is the length of the following sentence greater or equal to 1~30? 

3.2 Distances to PM 

33.2.1~15Q : Is the distance to the nearest previous PM in syllable greater or equal to 

1~15? 

33.2.16~30Q : Is the distance to the nearest following PM in syllable greater or equal 

to 1~15? 

D.2 The question set 4Θ  
The question set 4Θ  used to construct the decision trees for building the 

break-syntax model ( | )n nP B l  is listed below: 

1. Syllable Level 

All the syllable level questions are identical to the syllable level question in Appendix 

C.2. 
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2. Word Level 

All the word level questions are identical to the word level question in Appendix C.2. 

 

3. Questions related to sentence level features 

All the sentence level questions are identical to the sentence level question in 

Appendix D.1. 
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