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Synthesis and Realization of Frequency-Dependent
Coupled Stepped-Impedance Resonator Filters with a

Quasi-Elliptic Function Response

Student: Ching-Luh Hsu Advisor: Dr. Jen-Tsai Kuo

Department of Communication Engineering

National Chiao Tung University

Abstract

This dissertation aims at synthesis and realization of microstrip coupled- resonator
filters with frequency-dependent cross-coupling. The first part presents the synthesis
of trisection filters incorporating.the frequency-dependent coupling to achieve a
quasi-elliptic function response:, In the admittance matrix of the lowpass prototype,
the coupling is simply modeled by a constant J-inverter;multiplied by the complex
frequency variable s. In realization; tapped-line-input/output is used and more zeros
can be generated in the upper and lower rejection bands. The second part studies
stepped-impedance resonators in a compact inline arrangement. It is found that
certain transmission zeros can be created by nonadjacent frequency-dependent
coupling. Enhanced attenuation rate of transition can then be obtained. Zeros created
by tapped input/output structure are also investigated. For demonstrations, measured

results for experimental filters are compared with simulation data.
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CHAPTER 1

Introduction

High-performance bandpass filters with low loss, high selectivity, linear phase,
compact size, and wide stopband are essential to design of the RF front-ends for
modern wireless/microwave communication systems. For microwave coupled-
resonator filters, frequency selectivity and phase responses are related to the
arrangement of resonators, source, and load. Extensive research has been drawn to
this study for decades. A suryeysof the major development can be found in [1-11].

It is well-known' that ‘coupled-resonators in a ‘sequence can be only used to
realize the filters.with'a maximally=flat or equal-ripple response [12]. If a number of
routes can be arranged between the input and output terminations in the filter, the
sum of the ‘transmitted signals through different routes may vanish on the output port
at certain_frequencies. Therefore, transmission zeros can be, generated at these
frequencies.and the rgjection lével of the stopband can be. then improved. For
example, a single transmission zero can be produced in a thtee-resonator filter if the
first resonator is simultaneously coupled to the second and the third resonators [13].
The zero can be placed in either the upper or the lower rejection band depending on
the phase relationship of the signals through different routes. A second well-known
example is the quadruplet, which has a pair of transmission zeros on each side of the
passband. Coaxial resonators [14] and circular cavities [15] are proposed to realize
this configuration by bridging the first and the fourth resonating elements with
negative cross-coupling, respectively. It is worth pointing out that there are four

resonators in the equivalent circuit of the filter in [15] although there are only two



physical cavities. In fact, each circular cavity is a dual-mode resonator. This
dual-mode cavity filter has several advantages including lower loss, reduced weight,
and multiple transmission zeros. Eventually, filters of this type become a standard in
satellite communication industry [16]. In [17-18], it is revealed that the in-band
phase can be equalized if the pair of zeros is placed on the real axis in the complex
frequency plane. For obtaining such zeros, positive cross-coupling must be
established between the first and the fourth resonators.

Many complex structures for coupled-resonator filters have been proposed to
achieve more stringent responses. Nowadays, applications can be found in virtually
any type of micrOwave communication systems inecluding satellite, terrestrial, and
mobile communications. In-—section 1.1, the structures .suitable for microwave
coupled-resonator filters arebriefly surveyed. The motivation-and the contribution of
this research are¢ addressed in section 1.2.:and1.3, respectively. Finally, the outline of

the dissertation is given in section 1.4:

1.1 The Structures of Coupled-Resonator Filters

Generally speaking, a'lumped-element equivalent circuit can be used to model a
coupled-resonator filter. Fig. 1.1° shows the equivalent circuit of a direct-coupled
waveguide filter with N cavities [12]. Each mutual inductive coupling is used to
model an iris on the conductive wall between cavities. It is noted that only adjacent
resonators are mutually coupled. Filter based on this structure can have a
maximally-flat or Chebyshev response, i.e. an all-pole response, since there is no
finite transmission zero in the 1S;;| response. The impedance matrix of the equivalent

circuit can be easily derived and expressed as
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Fig. 1.1. The equivalent circuit of a direct-coupled waveguide filter with an all-pole

response.
v [Ry+jQ joM, 0 0 0 i ]
0 j i,
0 I
= (1.1.1)
0 Iy
0] [ 1L iy |
where i, I , @, =1/\/LC . For

narrow-band a

1*. ;j can | proximately by anyM;; [12].

Equation (1.1.1) ca expressed as

v,| [gotie@ J 0 0 0 i
J jg.Q 0 0 i
0 0 jjgQ 0 0 i
= (1.1.2)
0 0 0 0 jgN—lQ ] iN—l
oy L 0 0 0 J Syn I8N iy



The equivalence of (1.1.1) and (1.1.2) can be established if R;/Z,=g,8,/A .

RL/ZO=gNgN+1/A,Mi,j=A/,/gl.gj for i# j, where Z, is the port impedance.

The values of g, for 0<n <N +1can be determined by the maximally-flat insertion

loss and return loss functions:

(1.1.3a)

(1.1.3b)

(1.1.4a)

(1.1.4b)

where the ripple level of the in-band 1S, response is 1010g(1+82) dB since the

Chebyshev polynomial Cy(€2) oscillates when —1<Q <1. Design formulas for the
gnin (1.1.2) based on (1.1.3) and (1.1.4) can be found in [1] and [12].
Fig. 1.2 shows the equivalent circuit incorporating multiple mutual inductive

coupling, and its impedance matrix can be expressed as [16]



Fig. 1.2. The equivalent circuit of a direct-coupled waveguide filter incorporating

multiple inductive coupling.

Vg _Rs +JQ M, MG M M, I
0 M, 7 Mo b M M, I
0 JM 5 JM 5 JQ e M s LM Iy
= J . . feaits } ; . (1.1.5)
0 JM o g Mo M S QM |y
10+ JM:, M3y My = e My Ry jQ__ Iy |

Each resonator is not only coupled.to-the neighboring resonators in sequence, but
also non-adjacent resonators by cross-coupling. The matrix in (1.1.5) can be written
in a compact form:

[z]=[r]+ j(@[U]+[M]) (1.1.6)

where [U] is an N X N identity matrix, [R] has all zero entries except for (1, 1) and (&,
N) elements. Matrix [M] is called the coupling matrix and has elements of M;; for

i # j. This structure is particularly useful for the filters with pairs of transmission



zeros [14-19]. It is known that an impedance K-inverter, which can be equivalent to

an inductive coupling element, is defined as [12]

0 JK|i
v, JK 0 |1,
By using the impedance K-inverter, the coupling between source/load and resonators

can be taken into account by an extended (N+2)x(N+2) matrix. In addition, it may be

necessary to replace the frequen variable +X;) for the (7, 1) element 1n
y to replace the freq iable jQ by j(Q+X;) for the (i, i) el i

I

(1.1.5) if transmission 5211 response is asymmetric with

v, I

0 A

0 I
= (1.1.8)

0 NN+ || Iy

L O _ _iN+l |
This matrix can be written 1

[z]=[r]+ j(eu]+[K]) (1.1.9)

where [R] has all zero elements except the (1, 1) and (N+2, N+2) elements, and
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Fig. 1.3. The K-inverter equivalent circuit of a third-order filter.

K K

L 0,841

KO,N KI,N

LN+l

K

K2,N

2,N+lL

KO,N+1
KI,N+1
KZ,N-H

NN+l

(1.1.10)

This matrix:is frequently employed for synthesis of the, waveguide filters since iris

coupling between waveguide cavities'can be properly modelled by the K-inverter. If

the frequency wvariable Q2 is viewed as a 1-H inductor, the lowpass prototype of a

lossless filter ean be obtamed. For exaniple, Fig. 1.3 shows the equivalent circuit of a

lossless third-order filter with non-adjacent impedance inverter K;3.

For strip-transmission-line filters, however, the admittance

J-inverters may be more suitable and can be expressed as [20]

_VS 10
o
0 o
0 Mo
L 0 | _j‘IO,N+1

jJOI
j(Q+B,)
j‘]12

iy
jJI,N+1

oy
jJZ,N-H

jJO,N+1
j‘]l,N+l
jJZ,N+l

J(Q+By) Ty

j‘IN,N+1

1

matrix with

(1.1.11)



where the J-inverter is defined as [12]

T
i JJ 0 v,
The matrix in (1.1.11) can be expressed as
rl=l6l+ j@ul+[7) (1.1.13)
where [G] has all zero eleme (ce ¢ and (N+2, N+2) elements, and
(1.1.14)

dual of the circuit in Fig. 1.3.

The structures proposed to realize the filters with transmission zeros can be

expressed by the coupling matrix [M] in (1.1.5), the K-inverter matrix [K] in (1.1.10),

or the J-inverter matrix [J] in (1.1.14). Since the matrix [J] is particularly suitable for

strip-transmission-line filters, and microstrip filters are used in the experiment in this

study, the J-inverter equivalent circuit are adopted.
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Fig. 1.4. The J-inverter equivalent circuit of a third-order filter.

(b) ©

Fig. 1.5. The quadruplet filter. (a) The simplified form of the equivalent circuit. (b)

The alternative equivalent circuit. (c) The coupling diagram.

For most of the practical microwave filters with transmission zeros, only a few
non-adjacent coupling elements are required to establish. Take the quadruplet filter
as an example [14, 15, 17-19, 21-23], Fig. 1.5(a) shows the simplified form of the

equivalent circuit with six J-inverters: Jo;(J4s=Jo1), J12(J34=J12), J14 and J»3. Note that
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Ji3 and Jp4 inverters are not necessary in this network. Fig. 1.5(b) shows the
alternative equivalent circuit, where the Jy; and Ji,-inverters are normalized to unity

and the capacitances are changed accordingly. The equivalence between Fig. 1.5(a)
and 1.5(b) can be established if J, =1/\/g_1 I =1/ 2.8, »J,=J'/g,, and

J.,=J',/g, . They can be obtained from the operations on the rows and columns of

the following matrix.

/1=

(1.1.15)

Fig. 1.5(c)"plots the coupling diagram of the quadruplet, whete the solid and the
dashed lines represent mainline.and.cross.couplingsrespectively.

A number of eoupling.configurations based on the' quadruplet (CQ) are devised
for achieving a response with multiple pairs of transmission zeros [24-25]. The
examples include the canonical form [24] and cascaded quadruplet (CQ) [25]. Fig.
1.6(a) and (b) plot the coupling diagrams, respectively. In these structures, multiple
pairs of transmission zeros can be placed on the real axis or the imaginary axis. It is
noted that no reactive element is added to the diagonal elements of the matrix [/], i.e.
B; =0 for 1<i< N, since the distribution of transmission zeros are symmetric with

respect to the real axis in the complex frequency plane.
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Fig. 1.6 Various coupling diagrams. (a) The canonical form of a sixth-order filter. (b)
An eighth-order CQ filter. (c) The trisection filter. (d) A fifth-order CT filter. (e) A
third-order filter with the source coupled to resonators 1 and 3. (f) A second-order
filter with the he source coupled to resonators 1 and 2. (g) A second-order filter with
source-load coupling. (h) The canonical form of a fourth-order filter with source-load

coupling. (i) An extended doublet.
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When the response is asymmetric with respect to the center frequency, the
extracted-pole structure [26] and the trisection [27, 28] are proposed to realize a
single transmission zero, respectively. The cascade trisection (CT) is useful for the
higher order filters with an asymmetric response and multiple transmission zeros.
Such filters can be applied to cellular base stations since the rejection on one side is
more stringent than the other. Fig. 1.6(c) and (d) shows the coupling diagrams of the
single trisection and a fifth-order CT filter, respectively.

In [29-31], the coupling from source/load to two resonators is proposed. For a
third order network, a pair of transmission zeres_can be generated if the source is
simultaneously coupled to the first and the third resendtors, as shown in Fig. 1.5(e)
[29]. Compared with the quadsuplet, the number of the resonators is reduced by one.
For a second order network; a single transmission'zero canibecreated if the source is
coupled to'two resonators, as shown in Fig..1.5(f) [30]. Compared with a trisection,
the number of resonators is.‘reduced by one. An adaptive synthesis of
coupled-resonator filters with.source/load to-multi:resonator.coupling can be found
in [31].

If direct coupling eXists between source and load, it is shown that at most N/2
pairs of zeros can be generated for the canonical form with an N-even order [32-34].
Fig. 1.6(g) and (h) shows the coupling diagrams of the second-order and the
fourth-order canonical form, respectively. The extended-doublet structure shown in
Fig. 1.6(1) is a second realization of a third order filter with a pair of zeros [35, 36]. It
consists of a main doublet attached by an additional resonator. The source and the
load are coupled to two resonators in the main double. It is noted that the sign of one

of the four coupling elements must be opposite to the others for generating a pair of
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zeros. Waveguide cavities [35] and microstrip resonators [36] have been proposed to

realize this structure.

1.2 Motivations

The motivation of this work roots in noting that many innovative
coupled-resonator bandpass filters have been proposed to generate plural
transmission zeros with fewer resonators [29-38]. Increasing number of transmission
zeros around the passband can enhance the frequency selectivity so that the number
of resonators can be reduced. This is accompanied-with several advantages including
lower insertion less and -4 more compact circuit size. Many techniques have been
proposed, which include-source/load to multi-resonator ecoupling [29-31, 35, 36],
source-load coupling [32-34], non-resonating nodes [35] and frequency-dependent
coupling [37, 38].

In [29]; a particular coupling scheme is arranged for source/load terminations
and a triplezmode cavity. to realize a third-order filter withia pair of zeros. In [30], the
source and the load of a dual-mode resonator. filter ‘are designed to couple
simultaneously to two resonators for creating:two independently controllable zeros.
In [34], fourth-order canonical ‘microstrip filters with source-load coupling are
developed to two pairs of zeros. In [35, 36], it is shown that an extended-doublet can
generate a pair of zeros for a third-order filter. In [35], second and third-order
coupled-cavity structures that can generate a pair of zeros can be cascaded by
non-resonating nodes for higher-order waveguide filters with plural zeros. Note that
all the structures involve source/load to multi-resonators coupling or source-load

coupling. Theoretically, for a coupled-resonator filter of order N with
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frequency-independent coupling, the maximum number of finite transmission zeros
is at most N [32].

However, the number of transmission zeros can be increased by one if
frequency-dependent coupling is used [37, 38]. In [37], a third-order waveguide filter
is reported to have four zeros. The frequency-dependent coupling element consists of
iris and waveguide stub element. Unfortunately, this structure can not be easily
applied to transmission-line resonators. In [38], a second-order combline filter with a
frequency-dependent dielectric capacitor between source and load is reported to have
three zeros. It is noted that a generals synthesis for the filters with
frequency-dependent. coupling has not been reported” yet. This research aims at
exploring frequency-dependent coupling structures eapable of generating
transmission zeros. In addition, filter synthesis with frequency-dependent coupling is
developed.

From cost and circuit integration consideration, microstrip realization of
bandpass filters has gained .much-attention=[10]. The: reduction of number of
resonators is .especially important to microstrip resonators since they have a
relatively low quality (@) factor. Many coupling diagrams have been applied to
microstrip filters [22, 23, 28, 34, 36]. |In"[22, 23], a microstrip quadruplet is
achieved by open-loop resonators. In [28], a fifth-order cascade trisection filter is
realized by hairpin resonators. In [34], a short coupled-line is placed between input
and output ports to introduce source-load coupling. In [36], a particular microstrip
two-mode resonator accompanied by a hairpin resonator is proposed to realize a

third-order filter with a pair of zeros.
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In this work, microstrip frequency-dependent coupling structure is devised.
Based on this structure, a microstrip trisection filter can have a pair of transmission
zeros without using via-hole grounding, dual-mode resonating elements, and
non-resonating nodes. Besides, source/load to multi-resonator coupling and
source-load coupling are not required at all. Furthermore, the third-order filter can

have two additional zeros created by tapped-line.

1.3 Contributions

A novel zero-generating structure with frequency-dependent coupling structure
is developed. It has several attractive properties.-First, the design is simple since the
condition of’ zeros| involves —only  two  elements: a resonator and a
frequency-dependent admittance inverter. Second, in.the admittance matrix of the
lowpass prototype, all diagonal elementss‘are not required to add any reactive
elements. Third, the trisectionscan” be directly cascaded te. other resonators by
cross-coupling for higher order filters without using non-resonating nodes [35] or
external components [38]. The formula of the lowpass prototypes with the proposed
structure is developed. Microstrip filters of order N =3 and 4 is designed to have at
most four and five zeros, respectively.

It is found that this frequency-dependent coupling also exists among
stepped-impedance resonators [39, 40] in a compact inline arrangement. All
resonators form an in-line array so that the circuit occupies a compact area. When
order is increased, the circuit size grows only in the direction of the width, which is
usually much smaller than the length of the resonator. Furthermore, certain

transmission zeros in the filter response can be generated by the nonadjacent
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frequency-dependent coupling. Transmission zeros on both sides of the passband for
fourth-, sixth-order filters are created by using proper non-adjacent coupling.
Enhanced attenuation rate in transition bands is thus obtained.

Although the circuit layout looks quite similar to that of a combline structure, it
needs neither lumped element nor grounding via, so that filter fabrication is easier
and more reliable. The price paid for the full-length resonators is that circuit area is
slightly larger than twice the size of a quarter-wave combline counterpart. The use of
full-length resonators, however, brings one more degree of freedom to circuit
designers in choosing symmetric or skew-symmetric feed [41]. It will be shown that
existence and location of certain zeros are subjectto the’'symmetry used in the tapped
input/output arrangement. It-is.demonstrated for the particular in-line structure that
the extra zero can be placed in“lower 'and upper:stopbands by symmetric and

skew-symmetric feeds, respectively.

1.4 Organization of the Dissertation

Chapter 2jreviews the derivation of the general Chebyshev filtering function and
the synthesis of several basic coupling schemes$ including quadruplet, trisection, and
extended doublet. A novel zero-generating structure with frequency-dependent
coupling is described in chapter 3. Three novel lowpass prototypes with a pair of
transmission zeros are developed based on this structure. The design of the
microstrip frequency-dependent J-inverter is given. The comparison of measured
responses of experimental circuits with simulation data is also presented. In chapter 4,
inline stepped-impedance resonator filters are explored. The existence of the zeros is

studied in terms of Y-parameter matrix by taking the adjacent and nonadjacent



17

coupling into account. Creation of zeros by the tapped input/output structure is also
investigated. Experiment is conducted to validate the theory. Finally, chapter 5 gives

the conclusion.
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CHAPTER 2

Fundamental of Admittance Matrix Synthesis

In this chapter, synthesis of the admittance matrix for a filter with the general
Chebyshev function is reviewed. Section 2.1 describes the technique for generating
the Chebyshev polynomials with finite transmission zeros [11, 42]. Section 2.2
describes how to derive the ABCD matrix from the general Chebyshev filtering
function. Finally, section 2.3 gives the synthesis of the admittance matrices for some

basic coupling diagrams including quadruplet; trisection, and extended-doublet.

2.1 General Chebyshev-Filtering Function

The general Chebyshev filtering function canbe described by

C,(w)= cos[gcos_l (x, (w))} Ja<1 (2.1.1)
C,(w)= cosh[zi;cosh—1 (x, (w))} Jo =1 (2.1.2)
x ()= 270 (2.1.3)

-0/,

where j@, = s, is the location of the nth transmission zero in the complex plane.
Since x,(1) = 1 and x,(-1) = —1, it is easily verified that Cy(@) oscillates between —1
and 1. It is noted that Cy(@) degenerates to the conventional Chebyshev function

when all the transmission zeros are moved to the infinity. The number of finite
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transmission zeros np must be <N . The general Chebyshev function can be

transformed to a polynomial by the operations as follows.

C. ()= cosh[ﬁcosh—l (v, (a)))} _ cosh[ﬁm(an ‘b, )} 2.1.4)

n=1

n=1

! (2.1.5)

C, (@)=—=|e : : T (a; ] (2.1.6)

Il -5,).

n=1

(2.1.7)
Equation (2.1.7) can be further transformed into
N N
T, +d)+ TG, -d,)
C, (w):a - =] (2.1.8)
[[1-ve,)
n=1

¢ =w-—— and d, =&’ -1,1-1/a? (2.1.9)
.

n
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It can be seen that the roots the denominator of Cy(®@) are the transmission zeros.
The numerator of Cy(@) can be easily derived when N <4.If N = 3, the numerator

of Cp(@) can be written as

Num|C,, (@)]= (c,c, +d,d, )c, + (c,d, +c,d,)d, (2.1.10)

If a transmission zero is placed at s = jay, it is obtained that c; =, = 0, d) =dr = W,

+i (2.1.11)

@

Thus, the inserti ion-for a e er wi 1ssion zero can

(2.1.12)

3 2
b, +b,w" +bw+b,

(2.1.13)

C.(w)=
(@) a,0+a,

where the coefficients area, =1, a,=-1/®,, b,=1/®,, b, = —1—241—1/(012 ,

b,=—2/w, ,and b, =2+2\1-1/a} .
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If a pair transmission zeros are symmetrically placed at s=%jw on the

. . . 1 , 1
imaginary axis in the complex plane, then ¢, =0+— , d =@ [1-— ,
o, \} ;

1
1 , 1 ,
c,=0-——, d, =0 |[I1-—, ¢;=w,and d;=w . Then,
[0} o,
3 1 1 1
Num[C, (@)]=@’| 2-—+2 [I-— |- 1+2 [I-— (2.1.14)
o o o

The general Chebyshe

function for a third-order fi a pair of zeros at

s == jw, can be thu

(2.1.15)

by=2-1/ @ +2,1-1/f .
If the pair of zeros is placed on the real axis ats =@, it is easy to obtain the

coefficient:a, =1,a, =1/@} , b =—1-2\/1+1/@} ,and b, =2+1/@} +2,/1+1/a] .
The general Chebyshev function for a fourth-order filter with a pair of zeros at

s == jw, can be derived in a similar manner and be expressed as

4 2
b,o" +b,w" +b,
2
a,w +a,

C,(w)= (2.1.16)
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where a,=1, a,=-1/@}, by=1, b,=—4+1/a} —4,/1-1/@} , and

b, =2+2(1-1/@ )+41-1/a} .

In fact, the higher order Chebyshev polynomials with plural transmission zeros

can be obtained by a recursive procedure [42]. The algorithm starts with

U (@)= 0——— and V(@) = 1—% (2.1.17)
[0)

1 1

where the s = j@y is tf : § process continues with

(2.1.18)

(2.1.19)

If the order of the general Chebyshev function is N, the numerator can be expressed

as

Num[C,, (@)]=U , (®) (2.1.20)

This algorithm can be programmed for computers without difficulties. In summary,
the general Chebyshev filtering function with a total of n zeros can be expressed by

a rational form with denominator and numerator polynomials.
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2.2 Synthesis of the ABCD Matrix

The next step to synthesize the admittance matrix of a filter is to obtain the
ABCD parameters, which are assumed functions of complex frequency variable s.
The derivation starts from obtaining the S,;(s) from the insertion loss function by

substituting (—js) for @

1
15,5, (s)° (2.2.1)
To form the function ! G, half-plane poles are
rejected, and t
(2.2.2)

where polynomial P (s) are normalized so tha highest coefficients are

g =L (s) (2.2.3)
F(s)s=j
In a similar manner, the function S11(s) can be obtained from
£C: (w)
S (s) === 224
$1,(5) 1+£°C% ()| w=—js 24
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Noting that S»;(s) and S;;(s) must have the same denominator, Si;(s) can be

expressed as

(2.2.5)

where the polynomial E(s) is also normalized so that the highest coefficients are
unity. If there are zeros at infinity, i.e. ns < N, it can be seen that S, (s)=*1 when

s approaches infinity. Thus, we have &, since the highest coefficients of E(s)

and F(s) are unity. This dit [ 1T es studied in this research.

(2.2.6)

The polynomials A
A(s)= jIm(ey + fyy )s” +Reley , + fu +iImley , + fy,)s" 7+ (227)
B(s)=Reley + fy )s" + jIm(e,_, + fy_ )s" " +Reley, + fryo)s" > +... (2.2.8)
C(S) = Re(ezv —fu )SN + jIm(eN—l — o )SN_1 + Re(ezv—z — v )SN_Z +.. (2.2.9)

D(s)= jIm(e, — fy, )s" +Reley_, — fy )s" "+ jImle,, — fy,)s" > +... (2.2.10)

where e;an f;, i =0, 1, 2, ..., N-1 are the coefficients of E(s) and F(s), respectively.



26

E(s)=s"+e, s" " +..+e,s" +es+e, (2.2.11)

F(s)=s"+fy s" "+ + fo8° + fis+ f, (2.2.12)
Noting that & =1 in (2.2.5), it can be observed that B(s) is of degree N, A(s) and D(s)
are of degree N-1. Since the network is reciprocal, the degree of C(s) must be N-2.
This matrix is suitable for a network of even-N degree. If the coefficient & = —1, A(s)
and D(s) are still of degree N—1. However, C(s) and B(s) become the polynomials
of degree N and N-2, respectively. This matrix is used for a network of odd-N
degree.

If a pair of transmission zeros is specified at s =% j3 and in-band ripple is
0.1dB for a filter.of N = 3, the polynomials can be derived as A(s) = D(s) = 1.90075s*
+ 1.73596, B(s)' = 1.7877s, and C(s) = 25%4+3.3167s. For the purpose of network
synthesis, the“product of the constant terms .in A(s) and D(s) is intentionally

normalized to‘unity: This normalization leads to

1S,,1,IS,,I(dB)

1 1 i 1 1 1 1 1 | 1 1
6 54 -3-2-101 2 3 4 5 6
Normalized Frequency

Fig. 2.1. The responses of lowpass prototype networks.
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A(s) = D(s) = 1.09495” + 1 (2.2.13)
B(s) = 1.0298s (2.2.14)
C(s) = 1.15215+1.9106s. (2.2.15)

Fig. 2.1 plots the IS, and IS};] responses of this filter. Also shown in Fig. 2.1 is the
responses for a filter of N = 4 with a pair of transmission zeros at s = + j2.3 and
in-band ripple is 0.1dB, the polynomials are as follows: A(s) = D(s) = 1.7807s> +
2.0487s, B(s) = 25" + 3.63785” + 1.0559, C(s) = 1.5854s” + 0.7791. For enforcing the
product of the constantsterms in B(s) and C(s) to-unity, all the polynomials are

multiplied by a constant 1.1025. Then,.we obtain

A(s) = D(s) = 1.9633s°> + 2.2588s (2.2.16)
B(s) = 2.2051s* +4.01085> + 1.1642 (2.2.17)
C(s)= 1.74825*+0.85896 (2.2.18)

It is noted that all the coefficients are real since the distribution of the roots of E(s)

and F(s) is symmetric withirespect to thereal axis of the'complex plane.

2.3 Synthesis of the Admittance Matrix

2.3.1 Quadruplet and Its Variants

Fig. 2.2 shows the generic block which is the basic structure for a quadruple to
generate a pair of transmission zeros. The creation of transmission zeros is explained
as follows. The circuit in Fig. 2.2 has two signal paths between input and output
ports. One is by the J-inverter, which is realized by cross-coupling, and its

Y-parameter matrix can be expressed as
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- o
- Hoo

(a) (b)

Fig. 2.2. The basic structure of a quadruplet. (a) The J-inverter circuit. (b) The

simplified schematic.

(2.3.1)
The other pat ascade A erters ipacitors g with an
in-between J,; ter. ate ‘ ' frlom the input to the output
can be expressed

(2.3.2)

The transmission zeros can be obtained by enforcing Y,; = Y}, of the entire network

to zero. The condition can be explicitly expressed as [21-23]

, J,A-J J,)
§T =

233
J.g’ (233

It is evident that a pair of zeros can be symmetrically generated on the imaginary
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axis in the complex frequency plane at s = £jQ, if the relation J,/J; < 0 holds since
1-J.J; > 0. On the other hand, the zeros can be shifted to s = £Q, by simply

reversing the sign of J,/J,. The ABCD matrix of the whole circuit can be expressed

as

. 8 8 2.t
{A B}_ J J K JK K 2.34)
= . 3.
C D] Jg . |lig ., K g
K T K . K

where K = J,J,~1. The ABCD matrix cantbe used.in the synthesis of a filter based on
this block.

Fig. 2.3 plots three possible schematics based on the zero-generating block
described by (2.3.4). The eircuit in Fig! 2.3(a) is the conventional, quadruplet, the

ABCD matrix of which can/be expressed as

(a) (b) ()

Fig. 2.3. The quadruplet and its variants. (a) The conventional quadruplet. (b) The
circuit in which the load is simultaneously coupled to two resonators. (c) The circuit

including the source-load coupling.
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2 J
A(s):D(s):f’K s3+(JfK+;ag1]s (2.3.5)
B(s)zglzg2 st + ! (g g+(1+]2)g2+g2.]2)s2+£ (2.3.6)
JK JK* * el o
82 » J
Cl(s)= +ia 2.3.7
(s) e (2.3.7)

element values.

The circuit in Fig. 3 [ air of transmission zeros.

(2.3.8)
(2.3.9)
2.3.10
7 (2.3.10)
82 2 I,
D(s)zJO{J e +?] (2.3.11)

By comparing (2.3.8-11) and (2.2.13-15), the element values can be determined. The
circuit in Fig. 3(c) uses only two resonators to achieve a pair of transmission zeros.
However, this structure can not be directly cascaded with other resonators. In

addition, the design of source-load coupling may not be as well-known as that of the
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inter-resonator coupling. It is noted that & is no longer unity, which will be

determined by the 1S,;l level at infinity.

2.3.2 Extended-Doublet

Another three-resonator structure to produce a pair of zeros is the
extended-doublet, as shown in Fig. 2.4(a). The generic block to produce a pair of
zeros is shown in Fig. 2.4(b). It is noted that the generic block of the extended

doublet requires three resonators. esonator number compared with that

(2.3.12)

(2.3.13)

The transmission zeros can be obtained by enforcing Y, = Y}, of the entire network

to zero. The condition can be explicitly expressed as

2 72
S2_ J01J23

=_01v23 2.3.14
J022_J021 ( )
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(a) (b)

Fig. 2.4. The extended-double. (a) The schematic. (b) The generic block to produce

a pair of zeros.

It can be seen thagthe location of zeros, is-controlled by the.sign of J;, —J.,. The

ABCD matrix of the whole circuit can be expressed as

2 2
+ 1
e | J012 {0252 — s3+—2s
{ :|: 1 Jord Joid i Jo; (2.3.15)
2 2 -
¢ D Jozl ng 241 I Jotdo o 1
Joidas T3 Jod 3

The structures in Fig. 2.3(b) and Fig. 2.4(a) can be used to generate a pair of zeros
for a third-order filter. However, both schematics involve source/load to
multi-resonator coupling. One may wonder whether it is possible to devise a

third-order filter with only inter-resonator coupling to produce a pair of zeros.

2.3.3 Trisection
For completeness of this chapter, the analysis of the trisection is also presented.
Fig. 2.5(a) shows that a shunt-connected pair sg+jB is placed between any two

J-inverters. The generic structure for generating the single transmission zero is
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plotted in Fig. 2.5(b). The Y-parameter of the cross-coupling path can be expressed

as

[v]= jJ{O 1} (2.3.16)
10

The Y-parameter matrix of the other path is

(2.3.17)

The transmission ze 51 = Yo of the entire

network to zero.

(2.3.18)

%GL

(b)

Fig. 2.5. The conventional trisection. (a) The J-inverter circuit. (b) The generic

structure to produce a single transmission zero.
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Since g > 0 and 1-J.B > 0, the single zero can be placed in the upper rejection band
if J, > 0. On the contrary, the single zero can be placed in the lower rejection band

when J, < 0. The ABCD matrix of the structure in Fig. 2.5(b) can be expressed as

A B -1 1 sg+ jB
o . (2.3.19)
C D| jgJs+(1—-J.B)|glls—jJ (2-JB) 1

From (2.1.13), one can derive the ABCD matrix for a third-order filter with 0.1-dB

in-band ripple and a single tran

20955 — j0.3692
> _ j0.2974s +1

(2.3.20)

2.3.21)
3838 s+ j0.0668 j0.9847
0 0 0 j0.9847 1

Then, the coupling coefficients and loaded Q factors for the coupled-resonator filter

can be immediately obtained from (2.3.21).
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CHAPTER 3
Synthesis and Microstrip Realization of Filters with

Frequency-Dependent Admittance Inverters

In this chapter, we explore a novel structure with frequency-dependent
admittance J-inverter to generate a pair of transmission zeros. This configuration
involves only two elements: a resonator and a frequency-dependent admittance
inverter. In the admittance matrix of the lowpass prototype, all diagonal elements are
not required to add any reactive’elements. This property is different from that of a
conventional trisection. Furthermore, the trisection can be directly cascaded to other
resonators by cross-coupling. Section 3.1 explains the generation of a pair of zeros.
Section 3.2 deseribes the synthesis-of‘lowpass prototypes based on the proposed
trisection. Thewelement values are derived by comparing the coefficients of the
polynomials in the two-port ABCD. matrix with those derived from the general
Chebyshev filtering function.:Section=3:3=addresses=the microstrip design of the
J-inverters. Section, 3.4 compares measured responses of-experimental circuits with

simulation data.

3.1 Frequency-Dependent J-Inverter for Generating a Pair of Zeros

Fig. 3.1 shows two possible blocks which can generate a pair of transmission
zeros using frequency-dependent J-inverters. The frequency dependence is
represented by a complex frequency variable s. The generation of transmission zeros
is explained as follows. The circuit in Fig. 3.1(a) has two signal paths between input
and output ports. One is the frequency-dependent J-inverter and the other is a

cascade of two unitary J-inverters with a shunt capacitor C = sg in between. The
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Y-matrix of the upper path is

[r]= SJ{O 1} (3.1.1)
10

The lower path can be expressed as

111
[Y]_EL J (3.1.2)

The condition of transmission zeros can be obtained by enforcing Y, = Y, of the

entire network to zero and 'be

(3.1.3)

It is evident th
axis in the cor y 3 46 g >0 holds andQ. =
1/\Jg. On the othe 7 can be shifted to s | ply inverting the

sign of Jg. The AB n B e ed as

sJ
J=1
sg S8
J=1J_J=1 \
i sJ
S8

(a) (b)

Fig. 3.1. Two circuits with frequency-dependent J-inverter for generating a pair of

zeros. (a) Single trisection. (b) Two trisections.
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A B 1 -1 —sg
S . (3.1.4)
C D| 1+sUg|si2+s57Jg) -1

Fig. 3.1(b) shows an alternative structure for creating a pair of zeros on both
sides of the passband. The zero condition can be derived as follows. As shown in

Fig. 3.1(b), the circuit can be viewed as a four-port. Its Y-matrix can be expressed as

0 j_sJ 0]nvy I

e § s || v I
A e (3.1.5)
sfj sg TV |

0 sJ j 0w, I

where i; represents the current flowing into nodes'; and v; represents the voltage at
nodes j. Then; Reducing the four-pot to a,two-port can be achieved by setting ports 2
and 3 open cireuit by letting i» =.i3 =0. By enforcing.Y>; = 0 of the two-port circuit,

the condition of'the transmission zeros can be obtamed as

iy (3.1.6)
2g) BT

This structure is advantageous for even-order filters since the circuit is
symmetric. Besides, it can be seen from (3.1.6) that the value of the J-inverter is
approximately a half of that in (3.1.3) for a prescribed €2,. The polynomials in the
ABCD matrix of the circuit in Fig. 3.1(b) involve terms of degree n > 2. However,
the polynomials can be simplified when J<<g. This approximation leads to the

expression as
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[A B} j |:s(g—2J) 1 }
= (3.1.7)
C D 1+s2(2Jg—Jz) g’ +1  s(g—-2J)

This matrix is not strictly reciprocal since AD—BC # 1. However, the deviation is

small and the approximation is accurate enough for filter synthesis.

3.2 Synthesis of Lowpass Prototypes

Fig. 3.2 plots three possible ass pprototypes based on the proposed

zero-generating blocks , C ig. 2(a), the ABCD matrix

can be expressed as

(3.2.1)

(3.2.2)

(3.2.3)

(2.2.13-15) that the polynomials are A(s) = D(s) = 1.0949s% + 1, B(s) = 1.0298s, and
C(s) = 1.15215°+1.9106s. Thus, provided g; = g3, the element values g;, g, and J;3
can be analytically derived and the admittance matrix of the network in Fig. 3.2(a)

can be expressed as



39

Fig. 3.2 Three S:p(a) Third-order

circuit. (b) order circuit with

(3.2.4)

o o o  j 1

where source and load nodes are also included. When the sign of Jj; and

Jas-inverters is switched to be negative, (3.2.4) becomes

j 0 0 0]
s1.0632 -  50.1079 0
—j 510298 - 0 (3.2.5)

s0.1079  —j  s1.0632 j
0 0 i1

S O O~ =
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The filter responses will not be changed since (3.1.1) still holds. This means the
performance of the filter based on (3.2.5) is the same as (3.2.4). It will be shown
later that the change of the sign of a J-inverter can be realized by changing the
coupling types.

If Q. is specified at s = £ 1.6 on the real axis and the in-band ripple is 0.1dB, it
can be derived by (2.2.7-10) that the polynomials are A(s) = D(s) =2.1 145* + 1.3797,
B(s) = 2.0893s, and C(s) =25°+3.5037s. When the constant terms of A(s) and D(s)

are normalized to unity, we obtain

A(s) = D(s)==1:53225%+ 1 (3.2.6)
B(s) = 1.51435 (3.2.7)
C(s) =1.44965+2.53965 (3.2.8)

The admittance matrix of the network-with a pair of real zeros can be expressed as

1 j 0 0 0]
j o s1.0118 j 50.2579. 0
0 7 s1.5144 | —=j = 0 (3.2.9)
0 502579 —j  s1.0118
0 0 0 j 1]

Realization of this structure by microstrip resonators will be shown in section 3.3.
The synthesis can be extended to fourth-order prototypes containing one or two

trisections, as shown in Fig. 3.2(b) and 3.2(c), respectively. Fig. 3.2(b) shows that a

fourth-order network is achieved by cascading a trisection with an additional

resonator, the ABCD matrix can be derived as
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+ 2
A(s) = D(s)= 518283 3, & 831 (3.2.10)
‘]12 J12
— 5 +g,-2J
B(s)=g1g283g4 81837 % S4+[81(82 84 24)+112g3g4 24, (32.11)
J12 J12
C(s)=38282 4 L (3.2.12)
J12 J12

(3.2.13)

It is found that g, # g4, g2 # g3, and Ji3 # Js. Thus, the circuit layout of this
configuration is not symmetric.

Fig. 3.2(c) shows that the circuit symmetry can be restored if two trisections are
arranged in the fourth-order network. If g; = g4, g» = g3, and Ji3 = Jo4 holds, the

ABCD matrix can be obtained as
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A(s)=D(s)=g,855> +(g, + g, —2J3)s (3.2.14)
B(s)=g’gs' +g,(g +2g,—4J,;)s" +1 (3.2.15)
C(s)=g3s> +1 (3.2.16)

It is noted that the Jy;- and Jys-inverter (J45 = Jo; = 0.9268) are introduced. The

admittance matrix of the network can be derived as

1 70.9268 0 0 0 0 |
j0.9268  50.9647 j 50.06787 0 0
0 j s1.4266 j 50.06787 0
(3.2.17)
0 50.06787 j 51.4266 J 0
0 0 50.06787 j 50.9647.  /0.9268
0 0 0 0 70.9268 1|

Note that J3 '=0.06787 in (3.2.17) is smaller in magnitude than'J,4 = 0.1701 in
(3.2.13) due to the.use of two trisections in Fig.-3.2(c). Since;the aim of this paper is
to design a high-selectivity filter with a reduced number of resonators, only
synthesis of networks of orden NV < 4'is-considered. However, the proposed trisection
can be used as a building block in cascade for constructing high-order bandpass
filters with plural transmission zeros.

It is known that the admittance matrices in (3.2.9), (3.2.13), and (3.2.17) can be

used to obtain the coupling coefficients between adjacent resonators by [1]

J.
=AM (3.2.18)

Joj+l [
gjgj+l

K
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Fig. 3.3. The equivalent lumped-element circuit of the J-inverter for bandpass

filters.

where A is the fractional bandwidth. For the external Q for the input and output, the

expression is as follows [1].

(Q..), = % (3.2.192)
01

(= o | % (3.2.19b)
N,N+I

The realization of| frequency-dependent coupling ‘will be discussed in the next

section.
3.3 Microstrip Frequency-Dependent Admittance Inverter

By the standard lowpass to bandpass transformation, the coupling coefficient

between j and j+2 resonators can be transformed to

J.
Kj'j+2(£_&j :#ﬂ(ﬁ_&j (3.3.1)
w, V88 \ W @

since complex frequency variable s is changed to j(a@ an-afay)/A. This form

described by (3.3.1) can be modeled by electric and magnetic coupling between two
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coupled resonators as illustrated by the parallel-LC network in Fig. 3.3. There are
magnetic (M) and electric coupling (E) between the inductors and capacitors,
respectively. From the governing equation described in Fig. 3.3, the Y-parameters of

the two-port can be derived as follows:

. JCEw Mo
YV,=—j|—| =———F—— (3.3.2)
L\Co, L o
C L @ @
n=1—{—~_ﬂ (3.3.3)
L\ow, o

where o, = 1/ [[,C and L, =L(1 - M2/L2). Comparing of (3.3.1) and (3.3.2) reveals

that a J-inverter.can be realized if E/C = M/L and

0T
2= _E/C (3.3.4)

T
V88 j2

K

Wy

L, .
-]l

~' Dy,

(a) (b)

Fig. 3.4. Microstrip frequency-dependent J-inverters. (a) Stepped-impedance

coupled section. (b) Uniform-impedance coupled section.



45

In simulation or measurement, the slopes of susceptances by; = Im[Y>,]/Yy and b=

Im[Y11]/Yy, 1.e., dbyi/d@and db,/dw can be used to derive K ;> by

— del dbll
K, = (dw / - (3.3.5)

:wO

where Yy = 1/Zy, and Z, is port impedance. If b;; is not equivalent to by, (3.3.5) is

" dbzl dbll o db22|
K= ldo~ do| o=

The frequency=dependent J-inverter described by«(3.3.1) may. not bé'adequate for the

modified to

(3.3.6)

coupling between adjacent resonators .on the main signal path ‘since it has a
transmission zero at resonance when-@="ay. However, it is useful for non-adjacent
coupling to create finite transmission zeros.. This, frequency-dependent property of
electric/magnetic coupling. is. also found among combline, résonators in [43, 44].
However, in the design -of ‘combline filter, £ or M coupling is intentionally
suppressed in order to be independent of frequency since all the non-diagonal
elements in the matrix are assumed to a constant.

To realize a frequency-dependent J-inverter for microstrip bandpass filters, the
structures in Fig. 3.4 are devised. The E coupling mainly relies on the open ends
while the M coupling on the middle section of the resonator. The lengths L, and L,,
and widths D, and D,, can be determined by fitting the curves of b,; and b;; of the
test circuit to those in (3.3.2). Fig. 3.5 plots the IE3D fullwave simulation results of

by1 and by of the circuit in Fig. 5(a) for D, = 0.19, 0.23, and 0.27 mm. The circuit
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has a dielectric constant & = 2.2, thickness = 0.508 mm, and port impedance Z, = 50
Q. The circuit dimensions are D, = 0.79, Ly =7.79, L, =L, =759, L,,=7.19, Ly =
1.95, Wy = 0.4, W, = 2. From Fig. 3.5(a), it can be obtained that Kj ;,» = 0.102 for D,

=0.27mm from (3.3.5).

(]
-
1
[ B
-
L 8
[ B

1S,,! (dB)

_70 1 1 & | 1 1 1 1 1 1 1 1
1.7 19 21 23 25 27 29
Frequency (GHz)
(b)

Fig. 3.5. The characteristics of the microstrip J-inverter. (a) Normalized

Y-parameters. (b) 1S;| responses.
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It is also noted that the value of [(db,/dw)/(dbii/dw)| increases when the
operating frequency is away from the center frequency fo = 2.5 GHz. It is due to the
effect of the zeros created by tapped-line input/output, which can be seen from the
15211 responses in Fig. 3.5(b). The consequence is a shift of the zeros toward the
center frequency and an increase of the level of the 1S;] lobes in stopband. It is noted
that the dip of 15,;l near 2.5 GHz results from the cancellation of E and M coupling.
When the width D, decreases, Fig. 3.5(a) shows that the value of
I(dby1/d@)/(dby1/d @) increases, especially at high frequencies. It implies that the
upper zero is more sensitive to the variation of D,. Fig. 3.5(b) shows the zero caused
by tapped-line in upper stopband is alsorsensitive to this variation.

The coupling structure of Fig. 3.4(b).1s similar to that used in narrow-band
hairpin-comb filters [40] when the gap width: D,=.0. The purpose of D,is to add a
degree of freedom in designing microstrip J-inverters such.that the cancellation of E

and M coupling can occur at the resonant frequency as required by«(3.3.1).

3.4 Simulation and Measurement

3.4.1 Third-order Filters with Four Transmission Zeros

Fig. 3.6 (a) plots the layout of the microstrip trisection filter based on the
lowpass prototype of Fig. 3.2(a) with the admittance matrix in (3.2.4). The in-band
ripple is 0.1 dB and A = 6%. All experimental circuits are built on a substrate with &
= 2.2 and thickness = 0.508 mm. The frequency-dependent microstrip J-inverter is
the same as that simulated in section 3.3. The gap D, is determined by the coupling
coefficient K, = 0.0573 from (3.2.18). The tap point, indicated by Ly, is chosen to

match the Qy; of a stepped-impedance resonator [34] to Q. = 17.72 from (3.2.19).
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Fullwave software package IE3D is used to simulate the circuits before fabrication.
The theoretic, simulated, and measured responses are shown in Fig. 3.6(c) and (d). It
can be seen that four zeros occur in the stopband. Zeros f;; and f.4 are caused by
tapped-line while f;, and f;; are by the trisection. When the gap width D3 is too large
to provide significant E coupling, it is interesting to note that the Jjs-inverter
eventually becomes frequency-independent with only M coupling, which can
generate only one zero in lower stopband for this trisection configuration. In
measurements, the passband insertion loss is. about 1.75 dB, return loss is better than
15dB, and the lobe levelsin ‘stopband is about -29.5dB. The measured and simulated
group delays (7) are also.given. The.breadband response shows that the measured
20dB-rejection ¢an be'up to 5.75 GHz or 2.3%;. It is found that the'peak at 6.57 GHz
is caused by thefirst spurious mode of resonator 2, which impedance ratio is slightly
lower that of the other resonators and results in lower spurious frequency.

A second realization of thefilter is based on(3.2.9), in which the negative
J-inverter is implemented by, electric couplifig. The responses and, photo are given in
Fig. 3.7. When the gap/width D3 is too large to provide significant E coupling, the
Jis-inverter has only M coupling, and hence the circuit has only a zero in the upper

stopband.
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Fig. 3.6. A third-order filter with four zeros. (a) Layout. Dimensions in mm: Dj, =
047,D13=027,D’13=0.79, L, =7.79,L"1=7.19, L, =7.59, L3 = 8.58, Ly =7.42, Ls
=195 W, =W;=04, W, =2, Wy = 1.74. (b) Photo. (c) ISl and 1S}l responses. (d)

Group delay and broadband responses.
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Fig. 3.7. The alternative third-order filter with four zeros. (a) IS,;1 and IS}, responses.

(b) Photo.

3.4.2 Third-order Filters with a Pair of Real Zeros and Two Other Zeros
Created by Tapped-Line

This circuit demonstrates the design to create a pair of zeros on the real axis.
The zeros are located at s = £ 1.6 and the in-band ripple is 0.1dB. The admittance

matrix can be found in (3.2.6). When the fractional bandwidth A = 5%, it can be
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obtained the coupling coefficients K, = —K»3 = 4.03% and external factors (Q..); =
(Qex)o = 20.38 from (3.2.18) and (3.2.19), respectively. Fig. 3.8(a) shows that two
dips occur at 1.9 and 3.5 GHz in IS,;| response, which are caused by tapped
input/output. As shown in Fig. 3.8(b), the group-delay response is equalized since a
pair of zeros exists on the real axis. From 2.45 to 2.55 GHz, it can be seen that the
group delay is within 4.8 and 5.2 ns. Fig. 3.8(c) shows that the broadband results. It

is found that the 20-dB rejection level in the upper band can reach to about 8GHz
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0 L T T
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<10~ - < - Simulation .
=, =+ Equivalent
@ 20 Circuit
430
Ea
-40
_50 1 1 | 1 1 1 1
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(a)
6 T T T T T T T T T T T
- Measurement
5 ____

Simulation

4 - Equivalent
Circuit

22 2.3 24 2.5 2.6 2.7 2.8
Frequency (GHz)
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(d)
Fig. 3.8. A third-order filter ‘with'two zeros at_teal frequencies and two others at

imaginary frequencies. (a) 1S,;/"and IS;| responses. (b)-Group ‘delay (c) Broadband

response. (d) Photo.

3.4.3 A Fourth-order Filter with Three Transmission Zeros

This section demonstrates a fourth-order filter based on the prototypes in Fig.
3.2(b) with the admittance matrix in (3.2.13) and uniform-impedance resonators.
The Jos-inverter can be designed by the method developed in section 3.3 except one
of the tapped-line in the test circuit is replaced by a coupled feed-line. Equation
(3.3.6) is used in calculating K., since by is not equivalent to by,. The in-band
ripple is 0.1 dB and A = 5%. The layout and filter responses are drawn in Fig. 3.9. It

is noted that one arm of resonator 2 is used to implement J,4-inverter while the other
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arm is used to couple with resonators 1 and 3 by L;; and L,3;, respectively. The
frequency of f;; is 0.4 GHz lower than the prediction because the actual values of
microstrip Jos-inverter at low frequencies are lower than the specified value. In
measurements, the passband insertion loss is about 1.96 dB. Due to the first spurious
harmonic at 2f, the stopband of a rejection level of 30 dB is only to about 4.62 GHz
(1.85 fo). It can be seen that the zero f.3 is determined by the tap point of port 1.
There is an alternative tap-point, labeled by 7”, which has an identical Qy; value and
can produce a zero in lower stopband. Although this circuit has only three zeros, it
can control zero at the frequency f:3 by adjusting the length of Ly with a proper

width of resonator 1 for matching the port impedanee.

_ =D
Jyrinverter] L
|

Resonator'4

{

N\

Port 2
or Irs

Dy,

Resonator 3

(a)
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Fig. 3.9. A fourth-order filter. with three transmission zeros. (a) Dimensions in mm:
Dy, =0.64, Dy; =0.46, D3, =0.3, D, = 0.3, D,, =0.38, D, =8.94, L, = 13.16, L3 =
4.61, L34 =12.6; L, =5.38, Ly =3.35, Bp = 17.12, L, =3.03; W=1.55. (b) Photo. (c)

Group delay, I1S2;1 and IS;,| responses.

3.4.4 A Fourth-order Filter with Five:Transmission Zeros

Fig. 3.10 shows the layout and responses_of a _fourth-order filter based on the
prototype in Fig. 3.2(¢)" " with  the admittance matrix ~in (3.2.17) and
stepped-impedance resonators. Its in-band ripple andsA are the same as those in the
second example. Note that there are two identical frequency-dependent J-inverters,
i.e., Ji3 and Jy4 inverters, in this circuit. For establishing the coupling between
resonators 2 and 3, the two trisections have a back-to-back arrangement with a shift
by a distance S. This shift can result in the split of the upper zero due to tapped-line,
i.e. the zeros at f.4 and f.s. The upper rejection band is broadened and a total of five
zeros are generated accordingly. In measurement, the insertion loss is 2.34 dB at fj,
0.38 dB higher than that of the second circuit due to the use of high-impedance line

in stepped-impedance resonators. It is found that rejection level of better than 40 dB
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can be achieved within the band covering from 2.64 to 4.91 GHz, and the stopband
with a 30dB-rejection level is up to 6.03 GHz (2.4fy). The circuit size is 3.8x3.3 cm?,

about 55% of the area 5.8x3.9 cm? for circuit in section 3.4.3.
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CHAPTER 4
Compact Inline Stepped-Impedance Resonator Filters with

a Quasi-Elliptic Function Response

In this chapter, we explore a simple filter structure using the
stepped-impedance resonators as building blocks. Fig. 4.1 plots two fourth-order
circuits with both symmetric and skew-symmetric feeds. The circuit exhibits several
attractive properties, such as compact size, wide upper stopband, elliptic function
passband response, and plural transmission zeros: In Fig. 4.1, all resonators form an
in-line array so that the circuit.occupies a compact area. When order is increased, the
circuit size grows:only in the direction of the width, which is usually much smaller
than the length of the resonator-Although the analysis becomes more complicated,
creation of certain'transmission zeros in the filter response indeed relies on the
nonadjacent coupling. Besides, it .is found that the nonadjacent coupling is

frequency-dependent. Thus, this filter-can-be-designed by the theory developed in

chapter 3.
;| N —
— — I
[ N 2
[ N 3
[ ] N £
B’ B B’ B

Fig. 4.1. Two in-line fourth-order filters with two tapped input/output schemes:

symmetric (A—B) and skew-symmetric (A-B’) feeds.
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Fig. 4.2. Generic coupling structure of the in-line bandpass filter.

Here, we limit ourselves to exploring in-line stepped- impedance resonator
filters only of orders four, six and,eight. Somegesults for circuits of lower orders can
be referred to [46]. The circuit in [46] also possesses a quasi-elliptic function
response. Its analysis-by the theory of multiple coupled microstrips, however, lacks
for design concept for filter synthesis. In the following, Section 4.1 briefly describes
the passband synthesis procedure and discusses the coupling properties among the
in-line resonators. Section 4.2 explores the existence of the zeros in terms of
Y-parameter matrix, by taking the adjacent and nonadjacent coupling into account.
Section 4.3 addresses. the ereation of zeror by the tapped input/output structure,

Section 4.4 presents ‘measured results for three experimental circuits.

4.1 Passband Synthesis

Fig. 4.2 shows the generic basic coupling structure for the filters in Fig. 4.1.
Each resonator has one high-Z and two low-Z sections. The former has physical
(electric) lengths 2L; (26,) and each of the later has L, (&), and their respective
widths are W; and W, with corresponding characteristic impedances Z; and Z,. In
addition to D,, the gap size D; can be tuned to establish necessary coupling for

synthesizing the passband. Choice of the geometrical dimensions for the resonator
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has been extensively studied in [39, 40]. The impedance ratio R = Z,/Z, and length
ratio u = 6,/(6, + 6) are the key parameters to determine its resonant spectrum. If R
and u are properly chosen, the first spurious resonance can be pushed far beyond
twice the fundamental frequency or 2f, [40]. For example, if the first higher order
resonance occurring at 3f, is desired, u = 0.5 and R = 2.5 can be used. When f, = 2.5
GHz, geometry parameters can be L; = L, = 7.6 mm, W; = 0.4 mm and W, = 2.0 mm
for a substrate with & = 2.2 and thickness = 0.508 mm.

Next step is to determine spacing between.each pair of adjacent resonators. The

coupling coefficient between the jth and (j + 1)th resonators, K ., is given by [1]:

4.1.1)

15

10

Dy =Dy+2(W-W) 7
~/

!
!
!
!
!

, |

!
| I |

1 1 1 1 1
1.0 15 20 25 30 35 40
Distance D; (mm)

N
0.5

Fig. 4.3. Coupling coefficients of two stepped-impedance resonators against D for
various D,. Ly = L, = 7.6, W; = 04, W, = 2.0, all in mm. Substrate: & = 2.2,
thickness = 0.508 mm.
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where g; is the jth element value of the low-pass filter prototype and A the fractional
bandwidth. To realize this coefficient for coupled resonators in Fig. 4.2, the test
method in [10] can be invoked. Through weak gap feeds to the coupled resonators,
the simulated transmission response will present two peaks. If the peaks are at f, and

f», the coefficient can be calculated as

i :% (4.1.2)
! fb +fa

For the fourth-order circuits in Fig. 4.1, the coupling matrix is symmetric about
its two main diagonals, i.e., Kj» = Kj1 = Kzu.= Ku3, Ki3 = K31 = Kou = Ko, K23 = K3
and K4 = K414 Thus, only K5, K3 and K33 need specifying since allidiagonal entries
Kj; are zero and K4 is negligible owing to the relatively large:space between
resonators 1 and 4.

It can be “anticipated .that .change of -Dj-"Will not significantly alter the first
resonance of the resonator; but will change magnitude; and: even polarity of the
coupling coefficient of two'coupled resonators. This property is useful for adjusting
the resonator geometry when more than one coupling coefficients have to be
simultaneously considered in filter synthesis. An example will be given in section
4.3 for such demonstration. For D, (mm) = 0.2 to 1.2, Fig. 4.3 plots coupling
coefficients of two resonators against D;. Except for D; = D,, each curve runs from
positive to negative values when D is increased up to 4 mm. Generally speaking,
the structure consists of both electric and magnetic coupling, called the mixed
coupling. When D; is small, magnitude of magnetic coupling due to current on the

thin sections is larger than that of electric coupling between the low-Z sections at
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both ends. When D; is increased to be large enough for small D,, on the other hand,
electric coupling becomes dominant. The coefficient calculated by (2) is the net
coupling which can be electric (K < 0) or magnetic (K > 0).

The use of curves in Fig. 4.3 can be demonstrated as follows. Suppose we are
designing a fourth-order Chebyshev filter with a 0.1-dB ripple and A = 8%. From
(4.1.1), the three interstage coupling coefficients are K|, = K34 = 0.06648 and K»3; =
0.05261. If D, = 0.2 mm is chosen, we have —0.089 < K < 0.15, and the
zero-crossing point is at D; =_0.856 mm: dt is obvious that both electric and
magnetic coupling can be used to realize each K value. Thus, there are at least two
possible designs: one-uses K, = K34 <0mand K33 >0, and the other uses K, = K34 >
0 and K»3 < 0.”The former and the latter are respectively referred as the M- and
E-type filters herein.

For the input and output coupling, the tap positions, i.e., Ly in Fig. 4.2, should
be determined by matchingfthe singlyloaded O (Q;;) of the tapped resonator with the

passband specification. The singly loaded @ (QOs;) is«defined as

@, dB|
Y9 dw

a)(l

Q0. =R (4.1.3)

where R; is the impedance seen by the resonator looking toward the source, @, is the
operation frequency, and B is the input susceptance of the resonator seen at the tap
point. The derivation of (4.1.3) for a stepped-impedance resonator can be referred to
[40]. Both M- and E-type circuits can be designed with the symmetric (A—B) or the
skew-symmetric (A-B’) feeds [41] with identical Qy values and hence identical

passband responses. In the rejection bands, nevertheless, they exhibit quite different
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characteristics. Figs. 4.4(a) and 4.4(b) show the simulated 1S,;| responses of the

fourth-order M- and E-type filters, respectively.

1S, (dB)

Frequeney (GHz)
(a)

1S,,! (dB)

Frequency (GHz)
(b)

Fig. 4.4. Simulation responses of the two fourth-order filters. (a) M-type: Dy, =
D34 = 028, D23 = 10, Lf: 3.2. (b) E—type: D12 = D34 = 082, D23 = 037, Lf: 32, all

in mm.
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The four passbands, say before 15,1 = —30 dB, show very good agreement. In
Fig. 4.4(a), both the M-type filters have a transmission zero (f;;) in the upper
stopband. The circuit with the symmetric (A—B) feed, however, has one more zero
(fz1) in the lower stopband. In Fig. 4.4(b), the two E-type filters exhibit sharp
transition bands, like those of an elliptic function response, since two zeros, f;; and
f-n, are created on both sides of the passband. In addition, there is an extra
transmission zero f;; in the lower stopband and f, in the upper stopband for the (A-B)
and the (A-B’) feeds, respectively. Obviously, the E-type filters possess better
frequency selectivity in the stopband than the M-type ones. Thus, the E-type filters

are investigated in.detail as follows.

4.2 Transmission Zeros Due to Frequency-Dependent Cross
Coupling
The occurrence of the zeros in-the-quadruplet-relies on the coupling between

the first and the last resonator,swhich causes two split signals:to be out of phase at
the output port. In the E-type filters, however, the elliptic function-like response is
clearly resulted from a different.scheme, since the K4 in Fig. 4.1 can be negligible
while the nonadjacent coupling coefficients K3 and K54 should be taken into account.
In addition, for predicting the zeros of the particular filter configuration, based on
Y-parameter of equivalent circuit of the filter, an analysis method is developed as
follows.

The equivalent lumped-circuit model of a filter with two coupled-resonators is
shown in Fig. 4.5. Each resonator is modeled with a parallel LC network, and there

are magnetic and electric coupling between the inductors and capacitors,
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respectively. From the circuit theory, the two-port Y-parameters can be derived as

follows:
| C
Y, =Y, = J,/L—ﬂ(w) 4.2.1)
| C
Y12=Y21=J,/L—ﬂ(w) (4.2.2)
where

(4.2.3)

4.2.4)

(4.2.5)

(4.2.6)

(4.2.7)

(4.2.8)

+ +
V V,
Resonatorlk ﬁsonamr 2
E

Fig. 4.5. The equivalent circuit of two coupled resonators with coupling.
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The coefficients m in (4.2.6) and e in (4.2.7) respectively represent magnetic and
electric coupling between the two resonators. They are assumed constants over a
certain frequency range centered at the design frequency. The natural frequencies f,
and f}, in (4.1.2) of the coupled system can be determined by two conditions: A @) =
1+4(w), which are obtained by enforcing the determinant of the Y-matrix to zero. It

can be validated that

2 2
k=do T _mme ., (4.2.9)

fb2+fa l—em

The approximationsis valid since em.<<,1.. The result in (4.2.9) means that the net
coupling K calctilated by (4.1.2) should=be m— e.'Note that all Y-parameters in (4.2.1)
and (4.2.2) are purely imaginary since the circuit'is assumed; lossless. In (4.2.2), Y,

has a zero-crossing point at @= m/e¢ @, Thus, its sign over W< m/e @, is
opposite to that.over > Nm/e@,. This property is unusual sinee in conventional

coupling matrix{ non-diagonal. ‘elements™ are “usually asSumed independent of
frequency. For investigating the possible occurrence-of transmission zeros, define

the relative phase between Y, and Y7 as

®0
e——m—
[0 [
QELYZI—LYH:L —ﬁ (4210)
@

It can be deduced from this equation that = 180° when w<< @, or ®>> @, and
6= 0° when @, < ®<m/e @, if m > e (i.e., net coupling is magnetic), orvm/e @, <

w< w, if m < e (i.e., net coupling is electric).
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Fig. 4.6. Responses of ZYy |— Z¥;; for investigating occurrence of the

transmission zeros of the E-type filter in Fig. 4(b). (a) Resonators 1 and 2, D, = 0.82

mm. (b) Resonators 2 and 3, D, = 0.37 mm. (c) Resonators 1 and 3, D, = 3.19 mm.

Fig. 4.6 plots the simulated @responses for the three basic coupled structures of
the E-type filter in Fig. 4.4(b). The Y-parameters are obtained by the software
package IE3D. Each @response shows a jump at f = f, due to the phase change of the
denominator of (4.2.1). Based on Fig. 4.6(a), one can assure that the coupling

between resonators 1 and 2 is magnetic- dominant and K, = m >> e for 2 GHz < f <
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3 GHz. Similarly, the response in Fig. 4.6(b) guarantees K>3 = e >> m. In Fig. 4.6(c)
there are extra phase jumps at 2.08 GHz and 2.75 GHz. Two important properties of
this coupled structure should be identified by the later jump. First, the type of K3
coupling is magnetic, like that is indicated in Fig. 4.6(a). The jump at f = 2.75 GHz
indicates that Y,; changes sign, by (4.2.2), since /(@) > 0 when @ > @,. Also, by

(4.2.2), the m and e values can be extracted sincem/e=2.75/2.5=1.1 and K = m —

e is known by (4.1.2) from simulation data. The jump at 2.08 GHz, however, can not
be explained by (4.2.1). It could.be'due to that'the,equivalent circuit in Fig. 4.5 has a
lower frequency limit for modeling the distributed coupled:tesonators with a relative
large distance in Fig.4.6(c).

Identifying the type of coupling and value of K3 is further investigated for D, =
0.6 mm and 1.5 mm by Figs. 4.7(a) and 4.7(b),respectively. From Fig. 4.7(a), K3 is
electric coupling and /m/e = 2.13/2.5. Similarly, Fig. 4.6(b) indicates that K3 is of
the magnetic type and m/e=:2.58/2.5. It is.important. to identify m and e from the
6 responses of coupled resonators in Figs. 4.6(c) and 4.7, since analysis of the
transmission zeros relies on it. By analyzing the phase relation of two split signals in
the main- and cross-coupled paths, @ zero in the upper stopband can occur at f > 2.75
GHz. This zero can also be validated by the Y-matrix method given below. Let the
filter bandwidth A = 8% and ripple = 0.1 dB, then the external Q (Q.) = 13.86. The

Y-matrix for the circuit, normalized with respect to j,/C/L_, can be expressed as:

/1(0)) K, p) 0
| Ky, Mo) -K, B
- B -K, o) K,
0 B K, /1((0)

[Y,] 4.2.11)
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Fig. 4.7. Z¥35 —' £Y responses for identification type of coupling between

resonators 1 and 3. (a) D, =0.6 mm. (b)D,,= 1.5 mm.

where K, = Kzt = 0:06648.and: K53 = 0.05261: These values are derived from (1).
The entries in the first off-diagonal use the following approximation. For example,
Yo = Kipm/ wsince Ky, = m >>'e and the-last term in (4:2.4) is neglected. Values of
m and e can be obtained by prescribed zeros at (1 £ &) x f,. If the two zeros are
symmetric about f,, m/e = 1 is required. Note that the sign of the elements Y3 (Y24) is
determined by A(@). When & = 0.2 and 0.152, m = ¢ = 0.012 and 0.018 can be
obtained from the 1S;;| responses based on (4.2.11), respectively. Fig. 4.8 shows 1Sl
responses from the matrices with and without the nonadjacent coupling Y3 (= Y24).
Note that when m = e = 0 the response will have no transmission zero. It can be seen

from this example that values of m and e can be varied for controlling these two
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transmission zeros. One possible way to adjust m and e is to slide or deform the
high-Z section of one of the coupled resonators, as shown in Fig. 4.1.

The Y-matrix in (4.2.11) can be easily extended to circuits of order N = 6 and 8
with the quasi-elliptic response. The Y-matrix can be established and the frequencies

of the zeros can be predicted. For example, the coupling matrices for N = 6 are

[Aw) -K, Bw 0 0 0
-K, Mw) K, PBw 0 0
/8(0)) K3 ﬂ(w) —Ky ﬁ(w) 0
0 B -k, Ho) K )
0 0 pw K, Ao =K,
L 0 0 0 blo) =K ﬂ(w)_

4.2.12)

where K, = K56 = 0.07809, K>»3= K5 = 0.05886, and K34 = 0.05662, and m =e¢ =
0.011. Fig. 4.9plots the IS,;| responses for filters-of order N = 6 and' N = 8 with f, =
2.5 GHz, A =10% and a 0.1-dB ripple. For all non-adjacent elements S(@), m = e =

0.011 is used.

0 I I I I I
——m=e=0012_

\——m=e= 0.018

10 ———m=e=0
20+
30+

40

1S,,1 (dB)

50
60— /

70+~ 4

-~/
L R
-80 /"/J//I_\
1.51.7 1.9 21 23 25 27 29 3.1 33 35
Frequency (GHz)

Fig. 4.8. 15,1 responses based on coupling matrices in (4.2.11).
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Fig. 4.9. Responses of higher-order in-line filters with m =e =0.011.

4.3 Transmission Zeros due to Tapped. Input/Output

Fig. 4.10. plots simulation ISyl responses of ithe E-type filters with
skew-symmetrie feed for Lg= 3.1,6 and 9 mm. Impedance transformers are added to
keep the Q,; valug of each tappediresonator unchanged for the three tap positions. It
can be seen that frequencies of f.;, and f.y as well.as the passband do not vary
significantly with the changesiof'L. However, the zero f., moves to higher frequency
when tap point is moved away from the center to the edge of the resonator. It reflects
the fact that determination of f;, can be dominated by L. In the parallel- coupled
stepped-impedance resonator filters in [34], a zero can be created at a frequency
where the electric length of the arm between the open end of the tapped resonator
and the tap point is one quarter wavelength long. The arm used for coupling with
adjacent resonator, however, does not create a zero. For the structure in Fig. 4.1,
both open ends of the input and output resonators are coupled with their adjacent

resonators. Thus, creation of the zero f;, in Fig. 4.10 needs further investigation.
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The four-port network in Fig. 4.11(a) is employed for the prediction. Two more
ports are added to the circuit in Fig. 4.1 since in analysis the whole circuit can be
reduced by half due to the symmetry (dash line). Let 7, be total current flowing into

port n,n =1, 2, 3 or 4. It can be derived that

1
(Zy), = 5[(221)m +(Z31) e (4.3.1)

where the subscript sym repre: ] ind.even and odd denote that the

dash line is a magneti

1 2 3 4 5 6 1
Frequency (GHz)
Fig. 4.10. The moves of the tunable transmission zeros due to the slide of tap point

for the E-type filters with skew-symmetric feed.
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Fig. 4.11 Analysis of f;; and f.,. (a) Four-port network. (b) Responses for X»; of the
E-type filters. For —(X»1)even, Only important part is shown.
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For the skew-symmetric : .11(a) are set to zero. The

(4.3.2)

For both feeds, zeros of tk , y enforcing (16) and (17)
to zero. The conditions are

(Z21)0da = E(Z21)even (4.3.3)

where the plus and minus signs apply to the skew-symmetric and symmetric feeds,
respectively. Obviously, complete formulas of (Z31),4s and (Z31)even Will be tedious
and complicated since four-microstrip structures are involved [42].

The transfer impedances are purely reactive for lossless structures. Let the

reactance be denoted by X and X;; = Im[Z;;]. Simulated (X21)oas and (X21)even
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responses are shown in Fig. 4.11(b), where each intersection point indicates a zero in
the 151 response. Note that the zeros f;; and f;, are in the lower and upper rejection
bands for the symmetric and skew-symmetric feeds, respectively. To further
investigate the property of the zeros, the behaviour of the circuit in Fig. 4.12 (a) is
tested. It is the E-type filter in Fig. 4.4(b) altered by moving the high-Z sections of
resonators 1 and 4 outward. Figs. 4.12(b) and 4.12(c) plot the X;; responses of the
test circuit (solid lines) and the E-type filter (dashed lines). It can be seen that the
E-type filter shows three transmission zeros. For the test circuit, however, both f;;
and f.y disappear, althoughs f;; and f,, exist respectively for symmetric and
skew-symmetric feeds. Based on the.results in Figs. 4.12(b)sand 4.12(c), (X21)odd
must be negative-or (Z>1),4d capacitivefifn the-transition bands for creation of f;; and

f-m in design of the E-type filters. >

1S5,1,1S,,1(dB)

—— Measurement

-——- Simulation

2 3 4 5 6 7
Frequency (GHz)
(a) (b)

Fig. 4.13. (a) Group delay and S-parameter responses of the E-type filters with
symmetric feed. All circuit parameters are in Fig. 4.4(b). (b) Photo.
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4.4 Simulation and Measurement

Fig. 4.13 plots the simulation and measured responses of the E-type filters with
symmetric feed. All geometric parameters are referred to Fig. 4.4(b). The tap points
are chosen to match to the Qy; value for 50-Q reference impedance. The measured
rejection levels are better than -40 dB up to 5 GHz or 2f,. The extra zero f;; is at 1.9
GHz. It is found that rejection levels of better than -60 dB can be achieved within
the bands covering from 1.82 to 2.18 GHz and from 2.9 to 3.01GHz. It can be
observed that 15| has a response with sharpitransition bands and good symmetry
about the center frequency. The measured and simulated group delays (7) are also
given.

The second design demonstrates control,of the transmission zeros f;, -y and f3,.
The center frequency f, = 2.45GHz and fractional bandwidth A = 14% with a 0.1-dB
ripple level. Let f-; = 2.05 GHz and f;n =2.9 GHz, the coupling coefficients K> =
0.1163, K>3 = 0:0921, m = 0.038 and.e-=-0:040--The.geometric dimensions of the end
resonators and the tap.position' Ly are chosen to locate the zero f, at 2f, with no
transformer. For reducing the circuit size, a substrate'with & = 10.2 and thickness =
1.27 mm is used. Fig. 4.14(a) shows the circuit layout with deformed resonators 2
and 3 to simultaneously fulfill required magnitudes of all the coupling coefficients
including m and e. To have K3 = 0.0921, the high-Z sections of two middle
resonators are bent to a U-shape. The distance L4 can be readily determined by the
results shown in Fig. 4.3. At the same time, the low-Z sections are moved inwardly
by a distance to simultaneously realize the specified K3 and K4 values. It could be
due to the right-angled bends in the high-Z sections (linewidth = 0.2 mm) that L, and

Ls are trimmed by increasing 0.105 mm and 0.425 mm, respectively, for recovering



76

the resonant frequency shift by the resonator deformation. In the previous example,
there is no such problem. The simulated and measured filter responses in Fig. 4.14(b)
show good agreement. In measurements, the passband insertion loss is about 2.2 dB
and the 1S5;| notch at 4.9 GHz is about -65 dB. The total circuit size is about 1.5 X

1.5 cm?.

-30 = —— Measurement

- =—-"Simulation
-40 7

1S,,1 1S}, 1(dB)

-50

-60

-70 L 1 L 1 L 1 | L 1
1 2 3 4 5 6 7
Frequency (GHz)

(b)

Fig. 4.14. Layout and performances of the E-type filters with skew-symmetric feed.
(a) Circuit layout. Dimensions in mm: L; = 3.48, L, =3.78, L3 =22, L4 =148, Ls =
4.1, L(, = 15, Lf: 213, W] = 02, W2 = 25, D12 = 06, D23 =0.5. (b) GI'OU.p delay,

IS>11 and 1S7,1 responses.
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Fig. 4.15. Layout and performances of the sixth-order E-type filters with
skew-symmetric feed. (a) Circuit layout. Dimensions in mm: L; = L, = 6.32, Ly= 3.2,
W1 = 0.2, W2 = 2.5, D12 = D56 = 0.14, D23 = D45 = 0.82, D34 =0.23. (b) Photo. (C)

Group delay, 1S,;l and IS}l responses.

The third example is a sixth-order filter built on a substrate with & = 2.2 and
thickness = 0.508 mm. The center frequency f, = 2.45 GHz, ripple = 0.1 dB and A =
10%. The resonator geometry is chosen to push the first spurious to 4f,. In the filter,

the resonators are configured with alternating face-to-face and back-to-back for
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establishing all coupling coefficients with proper magnitudes and phases. Note that
the coupling coefficients K2, K34 and Ks¢ are of electric type. Simulation and
measured results with skew-symmetric feed are plotted in Fig. 4.15. The insertion
loss is 2.5 dB at f,, inband return loss is better than 15 dB, and the stopband with a

rejection level of 50 dB is extended to 7.5 GHz (3f,) and 30 dB to 12.5 GHz (5f,).
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CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

Frequency-dependent admittance J-inverter has been proposed to create a pair
of transmission zeros in a trisection configuration. Direct synthesis of network
elements has been developed for three novel lowpass prototypes by the comparison
of polynomial coefficients in ABCD matrices. The elements in the synthesized
admittance matrices have "been used to-determine the, coupling coefficients and
external (@ for_ “experimental bandpass filters.. Parallel uniform and
stepped-impedance sections have | been _ devised . to implement microstrip
frequency-dependent J-inverters. It has been shown that tapped-line.input/output can
be used to generate plural zeros in the proposed configurations. Filters of order N =
3 and 4 have béen designed to have at most four and five zeros, respectively. For
validation, measured, results  are ‘demonstrated=and compared with simulation and
theoretic prediction.

Stepped-impedance‘resonators-are arranged in an in-line configuration to make
the whole circuit a compact size. The use of the resonators assures a wide upper
stopband and the in-line resonator array facilitates new coupling schemes for
producing a quasi-elliptic function passband response. Creation of transmission
zeros is investigated by Y-matrix parameters of the equivalent circuit of the filter. It
is shown that proper non-adjacent elements Y;;,» are key factors for creating the
transmission zeros on both sides of the passband for fourth- and sixth-order filters.
Enhanced attenuation rate in transition bands can then be obtained. Formulation of

the conditions of the extra zero in rejection bands is also given. It is demonstrated
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for the particular in-line structure that the extra zero can be placed in lower and
upper stopbands by symmetric and skew-symmetric feeds, respectively. For
demonstrations, measured results for three experimental filters are compared with

simulation data.

5.2 Future Work

The proposed frequency-dependent coupling structure will be applied to

canonical form and cascade str igh-order quasi-elliptic function

e filters with multiple

incorporating
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