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具服務品質保證之下世代光纖網路訊務控制機制 
 

研究生：唐文祥   指導教授：張仲儒 博士 
 

國立交通大學電機工程學系博士班 
 
 

摘  要 
 

本論文的主要專注在下一世代光纖網路的訊務控制機制，其中討論的網路系統包含有光群

聚交換骨幹網路(optical burst switching backbone network)、高速都會區域網路(metropolitan area 
network, MAN)中的封包彈性環(resilient packet ring, RPR)、以及橋接式封包彈性環(bridged 
resilient packet ring, BRPR)。 

我們首先探討光群聚交換骨幹網路中的訊務控制機制。該交換系統兼具光電路交換系統

(optical circuit switching, OCS)和光封包交換系統(optical packet switching, OPS)的優點，且所需

相關的光處理器也已開發，因以此交換機制比較受青眛。在光群聚交換骨幹網路中，頻寬的

分配只要是以預先保留(Reservation)的方式來處理巨集封包(Burst)，再加入了光的緩衝器(Fiber 
Delay Line)可以使的比較晚到或具較低優先權的封包可以順利的傳送出去。在這樣架構下的考

量，我們設計一種具光緩衝器分配的權限群聚排程演算法(priority burst scheduling with FDL 
assignment, PBS-FA)。其主要設計理念是想讓具較高優先權的群聚必要情況下可以強制取代已

保留給低優先權群聚或群聚長度較短但高優先群聚的頻寬，之後再對被犧牲的群聚進行了補

償。 

在本篇論文的第二部份，探討高速都會區域網路中的彈性分封環(Resilient Packet Ring)。
在彈性分封環中訊務控制所需考慮的議題主要希望可以達到公平性的頻寬分配並且可以快速

穩定各訊務流。我們提出一個高效能乏晰公平流速產生器(fuzzy local fairRate generator, 
FLAG)，藉著乏晰運作機制產生一個準確的本地公平流速來抑制壅塞情況並且達成上述考

量。所提出的機制，是由三個部份所組成，適應性公平流速計算器(adaptive fairRate calculator, 
AFC)、乏晰壅塞偵測器(fuzzy congestion detector, FCD)、與乏晰公平流速計算器(fuzzy fairRate 
generator, FFG)。適應性公平流速計算器產生一個評估過的公平流速而乏晰壅塞偵測器根據次

級傳輸緩衝器(STQ)的容納量與接收到的流量大小來指出當前的壅塞程度。乏晰公平流速計算

器經由考量兩項由適應性公平流速計算器與乏晰壅塞偵測器輸出的結果來得到反映真實流量

狀況的本地公平流速。藉由適應性公平流速計算器與乏晰壅塞偵測器的使用，乏晰公平流速

產生器可產生較小的收斂時間，再者當與其它演算法相比，在不同大小的壅塞區域中皆獲得

極好的效果。 

最後，我們探討由橋接器(bridge)鍵連多個彈性分封環而成的橋接式封包彈性環(bridged 
resilient packet ring, BRPR)中的路由問題。在此環境中，我們基於載量均衡原則(the load 
balancing principle)提出一個智慧型跨環路由控制法。該智慧型跨環路由控制法不只同時考慮

橋接器以及下游擷點雍塞的情況並且同時考量橋接器的服務速率以及訊務終點站與橋接器的
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距離。此路由控制法主要包含三個部分:一個是乏晰橋接器雍塞指示器(fuzzy bridge-node 
congestion indicator, FBCI)、一個是平行串列遞迴類神經網路下游擷點公平性預測器(pipeline 
recurrent neural networks (PRNN) downstream-node fairness predictor, PDFP)、一個是乏晰由路控

制器(fuzzy route controller, FRC)。從模擬結果來看，該智慧型跨環路由控制法明顯改善佇列長

度閾控制器(queue length threshold route controller, QTRC)以及最短路徑控制器(the shortest path 
route controller, SPRC)很多。 
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Abstract

This dissertation is aimed at traffic control issue in the next-generation optical

network for the optical burst switching (OBS) core network, the resilient packet

ring (RPR), which is a metropolitan area network (MAN), and the bridged resilient

packet ring (BRPR).

First, we propose a priority burst scheduling with fiber delay line (FDL) assign-

ment (PBS-FA) for the OBS core network. It allows not only high-priority bursts

to preempt low-priority ones but also longer high-priority bursts to preempt shorter

high-priority ones. Meanwhile it schedules or reschedules these bursts by using FDL

assignment. Simulation results reveal that the PBS-FA achieves the higher system

throughput and the less average system dropping probability less than a preemptive

latest available unused channel with void filling (PLAUC-VF) scheme.

Second, we propose a local fairRate generator using fuzzy logics and moving

average technique for the RPR to achieve the congestion control. The fuzzy lo-

cal fairRate generator (FLAG) is designed to achieve both low convergence time

and high system throughput, besides fairness. It contains three functional blocks:

iii



an adaptive fairRate calculator (AFC) to properly pre-produce a local fairRate by

moving average technique; a fuzzy congestion detector (FCD) to intelligently esti-

mate the congestion degree of station; finally, a fuzzy fairRate generator (FFG) to

precisely generate the local fairRate. Simulation results show that only the FLAG

can stabilize all flows in parking lot scenarios with different finite traffic demands,

compared to conventional the aggressive mode (AM) and distributed bandwidth

allocation (DBA) fairness algorithms.

Finally, we propose an intelligent inter-ring route control, employed in the bridges

which connect two resilient packet rings (RPRs), for the BRPR. The intelligent inter-

ring route controller (IIRC) is designed according to the load balancing principle,

where the IIRC considers not only the congestion degree of both bridge and its

downstream nodes but also the service rate and the number of hops to destination.

It contains three functional blocks implemented by fuzzy logic systems or pipeline re-

current neural networks (PRNN). A fuzzy bridge-node congestion indicator (FBCI)

is to detect the congestion degree of the bridge, a PRNN downstream-node fairness

predictor (PDFP) is to predict the mean received fairRate from downstream nodes,

and a fuzzy route controller (FRC) is to determine a preference value of route accord-

ing to the congestion indication, the predicted mean received fairRate, the service

rate of the bridge, and the number of hops to destination. Simulation results show

that the IIRC improves the performances in the packet dropping probability, the

average packet delay, and the throughput over the queue length threshold route

controller (QTRC) and the shortest path route controller (SPRC).
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Chapter 1

Introduction

1.1 Motivation

In development of the Internet, the technology of the wavelength division multi-

plexing (WDM) has impacted the designment and realization of the next gerneration

network. From the point-to-point transport technology, the next generation network

can be mainly divided into two types: long haul backbone (core) network and the

metropolitan area networks (MAN). For the first network type, long haul backbone

(core) network, the main challenge is how to keep data in the optical domain as

much as possible. For the second network type, how to support the QoS, allocate

bandwidth based on fairness, and avoid or solve congestion are the main problems.

Several approaches have proposed to take advantage of optical communication

to develop the long haul backbone (core) network. Three of these approaches are

the Optical Circuit Switching (OCS), the Optical Packet Switching (OPS), and the

Optical Burst Switching (OBS) [1]-[10]. The main attraction of optical switching is

that it should enable routing of optical data signals without the need for conversion

to electrical signals and, therefore, should be independent of data rate and data
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protocol. Also, the three optical switchings could promise for the gradual migration

of the switching functions from electronics to optics. While OCS provides bandwidth

at a granularity of a wavelength, OPS can offer an almost arbitrary fine granularity,

comparable to currently applied electrical packet switching, and OBS lies between

them.

Unfortunately, the Optical Circuit Switching (OCS) inevitably suffers from

various shortcomings. For example, at the network edge, sophisticated traffic aggre-

gation (or grooming) mechanisms are needed to support applications requiring only

sub-wavelength bandwidth cost-efficiently by fully utilizing the optical pipes. If the

number of client nodes connected to an optical network increases, the number of

wavelengths required to provide a full mesh (i.e., all-to-all connectivity), as well as

the corresponding size of the wavelength switches (or cross-connects), may exceed

technological limits.

In the Optical Packet Switching (OPS), the data (payload) is sent along with

its control (header). Because the natural statistics of the OPS shares the resources,

it can efficiently support bursty traffic. Unfortunately, the Optical Packet Switching

(OPS) still faces many cost and technological hurdles. More specifically, one major

challenge is the current lack of optical random access memory. When the header

is being processed, the payload needs to be buffered which requires O/E and E/O

conversions along with electronic buffer or the use of fiber delay lines (FDLs). No-

tice that O/E conversion is used to convert optical signals to electrical form and,

on the contrary, E/O conversion is used to convert electrical signals to optical form.

Another major challenge is the stringent requirement for synchronization, both be-

tween multiple packets arriving at different input ports of an optical switching, and

2



between a packet header and its payload. It is due to the fact that the processing

time at the intermediate nodes varies. There is still one problem in OPS that the

size of the payload is usually too small when considering the high channel bandwidth

of optical networks thus normally resulting in a relatively high control overhead.

The optical burst switching (OBS) is viewed as an optical switching paradigm

to combine the best of optical circuit and packet switching while avoiding their

shortcomings [3, 10]-[13]. The OBS has received considerable attention in the past

few years, and various solutions have been proposed and analyzed in an attempt to

improve its performance. However, in OBS, a key problem is thus to design efficient

algorithms for scheduling bursts (or more precisely their bandwidth reservation).

An ideal scheduling algorithm could process a control burst fast enough before the

burst arrives, and yet find a suitable void interval (or a suitable combination of a

FDL and a void interval) for the burst as long as there exists one. Otherwise, a

burst may be unnecessarily discarded either that a reservation cannot be completed

before the burst arrives or the scheduling algorithm is not smart enough to make

the reservation.

The ring network with the natural advantage, such as simple archtechure, eas-

ily adding or removing nodes, the fault tolerance property, and the needless routing

property, is the prevalent topology used in metropolitan area networks (MANs).

The resilient packet ring (RPR) is a dual-ring-based optical packet network, shown

in Fig.1.1, and has been recently approved as the IEEE 802.17 Standard [17]. The

resilient packet ring (RPR) is constructed by several pairs of two unidirectional

links between stations. The RPR can provide guaranteed quality of service param-

eters and support service monitoring including performance management and fault

3



management [17, 18]. Besides, the RPR has some noticeable properties such as

spatial reuse, fair bandwidth allocation, and fast network failure recovery to get rid

of deficiencies of conventional high-speed Ethernet and SONET [19, 20]. Therefore,

the RPR can not only achieve high bandwidth utilization and fast network failure

recovery but also satisfy the requirements of MANs, such as reliability, flexibility,

scalability, and large capacity [19, 20, 21]. The RPR is a superior candidate for

MANs.

Figure 1.1: RPR structure

The spatial reuse allows a frame to be removed from the ring at its destination

so that the bandwidth on next links can be re-used at the same time. Also, the

fair bandwidth allocation avoids stations at upstream transmitting too many low-

priority frames to cause stations at downstream system congestion. RPR needs

4



congestion control to enhance the fair bandwidth division in the congestion domain

which is defined in the IEEE 802.17 [19, 22]. The congestion control implemented

in each station should periodically generate an advertised fairRate to advertise its

upstream station for regulating the added fairness eligible (FE) traffic flow defined

in IEEE 802.17 [19, 22]. The advertised fairRate should be determined referring to

the local fairRate, the received fairRate, and the congestion degree of the station.

The local fairRate is generated by a fairness algorithm, and the received fairRate is

the advertised fairRate from the downstream station.

Two key factors affect performance of the fair bandwidth allocation: conges-

tion detection and fairness algorithm. If the congestion detection is too rough, it

would lower the networks throughput or raise frame loss. The fairness algorithm

should consider the most important performance issues of FE traffic flows: stabil-

ity, fairness, convergence time, and throughput loss caused by the FE traffic flow

oscillation. The stability would avoid the oscillation of regulated FE traffic flows,

which would cause the throughput loss. If a fairness algorithm referees a ring ingress

aggregated with spatial reuse (RIAS) fairness, it has been proved that the algorithm

will achieve high system utilization [25]. It is because the RIAS has two key prop-

erties. The first property is that an ingress-aggregated (IA) flow fairly shares the

bandwidth on each link, relating to other IA flows on the same link, where an IA

flow is the aggregate of all flows originating from a given ingress station. The second

property is that the maximal spatial reuse subjecting to the first property. Thus,

the bandwidth can be reclaimed by IA flows when it is unused. In summary, the

RIAS is a max-min fairness with traffic granularity of IA flow. The convergence

time is the time interval between the instant of starting the congestion occurence

5



and the instant that the amount of arriving specified traffic flow approaches the

ideal fairRate which meets the the RIAS fairness. Therefore, a fairness algorithm

should achieve not only high stability based on the RIAS fairness but also low con-

vergence time and flow oscillation. There are two conservative modes (CM) [19, 25]

and the aggressive mode (AM) [19, 20] fairness algorithms, which have been pro-

posed in IEEE 802.17. Actually, the AM fairness algorithm performs better than

the CM fairness algorithm. Unfortunately, the AM suffers from severe oscillations

and bandwidth utilization degradation [19, 22]-[24]. It is due to the fact that the

AM issues an un-limited fairRate, called FullRate, as its advertised fairRate when

the station is released from congestion.

Multiple RPR rings can be bridged together to form a larger network, named

bridged-RPR network (BRPR), by a bridge which forwards packets from one RPR

to another RPR, shown in Fig.1.2. A spatially aware sublayer (SAS), which is a

part of the MAC layer, in the bridge is used to decide which ringlet interface the

packet should be routed to [17, 26]. Current research on SAS, including the IEEE

802.17b Working Group, is mainly focusing on how to modify this sublayer in order

to avoid flooding the entire bridged network when transmitting inter-ring packets

[17, 26]-[28].

1.2 Paper Survey

1.2.1 Burst Scheduling in Optical Burst Switching Networks

In OBS networks, there is a strong separation between the control and data planes,

which allows for great network manageability and flexibility. In addition, the ingress
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Figure 1.2: BRPR structure

node assembles a number of IP packets, which go to the same egress node, into a

data burst (DB). For each DB, there is a control burst (CB) associated with it. In

the following, we shall use a burst to indicate that it consists of CB and DB. In OBS

networks, DBs are sent on data wavelengths which do not go through optical-to-

electronic-to-optical conversions at any intermediate node, whereas their associated

CBs are sent on one or more control wavelengths and converted to electronic signals

for processing at every intermediate node. This could facilitate efficient electronic

control while retaining the advantages of all optical communications such as allevi-

ation of the bottleneck, and support for transparent data rates, coding formats, and

protocols [4].

Two kinds signaling protocols, called just-enough-time (JET) and just-in-time

(JIT), were proposed in [11, 12, 14], for OBS network. The JIT can be considered

a variant of tell-and-wait signaling protocol as it requires each burst transmission
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request to be sent to a central scheduler. The scheduler then informs each requesting

node the exact time to transmit the data burst. Here, the term just-in-time means

that by the time a CB arrives at an intermediate node, the switching fabric has

already been configured. In the JIT protocol, the ingress node of a burst sends a

CB to the next intermediate to make wavelength reservation. Such packet performs

resource reservation at each node belonging to the burst path. As soon as the

control packet arrives at a node, wavelength reservation and switch configuration

are performed, and then the packet is forwarded to the next node. Since burst

transmission needs to happen only when resources have been configured along the

entire path, an initial transmission delay is necessary at the ingress node.

The JET is a reserve-a-fixed duration (RFD) scheme that reserves resources

exactly for the transmission time of the burst. Particularly, the JET protocol is

considered most effective, a control packet for each burst payload is first transmitted

out-of-band, allowing each switch to perform just-in-time configuration before the

burst arrives. In JET protocol, the CB is first transmitted to the next node to

reserve the bandwidth and then the DB is sent after an offset time. The duration

of offset time is dependent on the number of intermediate OBS nodes in its routing

path, and the routing path is determined by the ingress node, which would be the

shortest path from source to destination. Two new prioritized signaling protocols,

called prioritized JET (PJET) [15] and preemptive prioritized JET (PPJET) [16],

were proposed to provide quality of service. The PJET introduces a significant

amount of delay, called extra-offset-time, to let the high-priority traffic isolate from

the low-priority traffic by that the higher priority burst has the longer extra-offset-

time. The PPJET serves different traffic classes on the basis of a strict priority order.
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It makes high-priority bursts preempt low-priority bursts, even if the low-priority

burst was scheduled, and does not need the excessive delay.

There are several burst scheduling schemes proposed and applied with PJET,

which are the Horizon [29], the latest available unused channel with void filling

(LAUC-VF) [48], and the efficient burst scheduling algorithms using geometric tech-

niques [31]. The Horizon chooses a wavelength whose latest available time is the

most close to the arrival time of the new burst. The LAUC-VF first chooses, among

all the proper voids between two scheduled bursts, the one whose latest available

time is the most close to the arrival time of the new burst and whose length is larger

than the new burst length. If there is no available void, then the LAUC-VF works

the same as the Horizon. The scheduling algorithms in [31] are similar to the Horizon

and LAUC-VF except they use an efficient data structure to reduce the computing

complexity. Another new prioritized signaling protocol, called preemptive priori-

tized JET (PPJET), was proposed in [16]. It serves different traffic classes on the

basis of a strict priority order. A new scheduling scheme using PPJET, called pre-

emptive latestavailable unused channel with void filling (PLAUC-VF), can provide

better service for high-priority traffic by dropping reservations belonging to lower-

priority traffic. It is similar to the LAUC-VF except it could let the high-priority

burst preempt the low-priority burst.

1.2.2 Traffic control in Resilient Packet Ring

Since the Resilient Packet Ring (RPR), unlike legacy technologies, supports des-

tination packet removal so that a packet will not traverse all ring nodes and spatial

reuse can be achieved. However, allowing spatial reuse introduces a challenge to
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ensure fairness among different nodes competing for ring bandwidth [25]. The RPR

defines two fairness algorithms, conservative mode (CM) [19, 25] and the aggressive

mode (AM) [19, 20] fairness algorithms, that specify how upstream traffic should

be throttled according to downstream measurements, named an advertised fairRate.

The upstream nodes would appropriately configure their rate limiters to throttle the

rate of injected traffic to its fair rate. Unfortunately, both the two RPR fairness

algorithms have a number of important performance limitations. First, they are

prone to severe and permanent oscillations in the range of the entire link bandwidth

in simple unbalanced traffic network environment, in which all flows do not demand

the same bandwidth. Second, they could not fully achieve spatial reuse and fairness.

Third, they must take much time to stabilize all flows [25, 32]. The operations of

the two algorithms are described as follows.

In AM, the congested station also calculates and advertises a fairRate estimate

periodically without waiting to evaluate the received traffic which is regulated by

the previously transmitted advertised fairRate. Also, the calculation of the fairRate

is based solely on preset parameters and the station’s added rate which is the traffic

added in ringlet. The frequent advertisement of new fairRate brings a more ”aggres-

sive” algorithm, thus more quickly attempts to adapt to changing traffic conditions.

However, the faster response as compared to the conservative mode induces the risk

of instabilities that flows oscillate permanently, when rate adjustments are made

faster than the system is able to respond. In CM, the congested station transmits

an advertised fair rate to upstream, and then waits to see the change in traffic from

upstream stations. If the observed effect is not the fair division of rates, then the

congested station calculates a new fair rate estimate again, and distributes it to
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upstream.

Several fairness algorithms were proposed to solve this problem and some of

them were designed based on the RIAS fairness [25, 32]-[37]. The distributed virtual-

time scheduling (DVSR) [25] is proposed by Gambiroza et al. and it mainly com-

putes a simple lower bound of temporally and spatially aggregated virtual time

using per-ingress counter of packet arrival. The aggregated information propagates

along the ring to let each station know the traffic condition of downstream stations.

Therefore, each node is capable of limiting its output rate to satisfy RIAS fairness.

Unfortunately, it is at the expense of a high computational complexity O(NlogN),

where N is the number of stations in the ring.

Alharbi and Ansari proposed a distributed bandwidth allocation (DBA) fair-

ness algorithm with a low computational complexity O(1) [32, 33]. The DBA mea-

sures the arrival rate so as to calculate the effective number of ingress-aggregated

(IA) flows, where IA flow represents the aggregate of all flows originating from a

given ingress station, transiting over the local station. By a recursive method, DBA

uses the effective number of IA flows and the remaining bandwidth to obtain the

advertised fairRate. After some rounds of recursion, an advertised fairRate which

satisfies RIAS fairness can be obtained. However, whenever the effect of propaga-

tion delay is severe, the DBA would not be a stable local fairRate algorithm. It is

because the local fairRate generated by DBA is related only with the amount of the

arriving transit FE traffic flows measured during a short frame time. This short-

term amount is easily influenced by the effect of the propagation delay, which starts

from a station sending its advertised fairRate and ends the corresponding transit

traffic flows arriving the station. If the propagation delay is large, the short-term
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arriving transit FE traffic flows would be largely varied and make the generation of

local fairRate unstable (incorrect).

Moreover, Yilmaz and Ansari investigated weighted fairness in IEEE802.17

but found one unexpected phenomenon [35]. When a station with a larger weight

becomes a head of congestion domain, it leads to an undesirable result of bandwidth

allocation and oscillation. However, after modifying a little in original fairness al-

gorithm of AM, it can work correctly under weighted fairness.

1.2.3 Traffic control in Bridged Resilient Packet Rings

Settawong and Tanterdtid proposed an enhancement by using a topology discovery

and spanning tree algorithm [27]. The algorithm can manage traffic between rings

more efficiently and can remove the need for flooding. The shortest path route

controller (SPRC) was widely considered for metro rings [38]-[40] as it can maximize

the spatial reuse and thus the achievable packet throughput for uniform traffic.

However, as traffic load increases, incoming call requests could pile up at a node

before being processed, and these would result in a potential bottleneck in network

performance [40]. Also, Heiden et. al. analyzed the capacity of bidirectional optical

packet ring networks, such as RPR, which employs the SPRC for multicast hotspot

traffic [41]. They found that when the multicast traffic originating at the hotspot

exceeds a critical threshold, the SPRC leads to a significant capacity reduction.

Intuitively, the route selection would be closely related with the congestion

degree of the ringlet so as to follow the load balancing principle. Generally, RPR

uses a queue length threshold to detect the congestion and a nodes adding rate

limitation to avoid the network congestion [17]. Therefore, an intuitive queue-length
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threshold route controller (QTRC) would be better than the SPRC. However, the

correlation function between the congestion degree and these variables is nonlinear

and complicated.

1.3 Dissertation Organization

In this dissertation, we first discuss the prioritized burst scheduling in OBS net-

work, then the effective local fairRate generating in RPR network, and finally, the

inter-ring route control.

In Chapter 2, we propose a new scheduling scheme, named priority burst schedul-

ing with FDL assignment (PBS-FA) [42]. The PBS-FA scheme considers the pre-

emptions because the high priority burst is more important than the low-priority

one and the shorter burst is more easily to be rescheduled into the void. Therefore,

it allows high-priority bursts to preempt low-priority ones and longer high-priority

bursts to replace shorter ones. Meanwhile, FDL assignment is used when scheduling

these bursts.

In Chapter 3, we propose an effective local fairRate generator based on fuzzy

logic theory [43, 44] and moving average technique [45]. The effective local fairRate

generator, named fuzzy local fairRate generator (FLAG), can meet the RIAS fair-

ness and reflect timely the congestion status of station. The FLAG is sophisticatedly

configured into three functional blocks: adaptive fairRate calculator (AFC), fuzzy

congestion detector (FCD), and fuzzy fairRate generator (FFG). It first preproduces

a local fairRate to meet the RIAS fairness and diminish the effect of propagation

delay by AFC. Also, the FLAG evaluates the congestion degree of a station, denot-

ing the forwarding capacity of added FE traffic flows at the station and buffering
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capacity of the STQ, by FCD. Finally, the FLAG generates a precise local fairRate

by FFG. The FFG finely adjusts the pre-produced local fairRate from AFC accord-

ing to the congestion degree of the station from FCD, using fuzzy logics based upon

domain knowledge.

In Chapter 4, we propose intelligent inter-ring route control for bridged resilient

packet rings in this paper [47]. Either CW or CCW ringlet at bridge will be properly

chosen for an incoming new call request from one RPR to the other RPR. The

selection is based on the load balancing principle which is in the sense that the

selected ringlet would be with lower congestion degree and higher service rate [46].

An intelligent inter-ring route controller (IIRC) is designed to contain a fuzzy bridge-

node congestion indicator (FBCI) to intelligently detect the congestion degree of

bridge, and a pipeline recurrent neural networks (PRNN) downstream-node fairness

predictor (PDFP) to effectively predict the mean received fairRate. Besides, the

IIRC consists of a fuzzy router controller (FRC) to determine preference values of

route of CW and CCW ringlets according to the congestion indication provided by

FBCI, the predicted mean received fairRate provided by PDFP, the number of hops

to destination, and the service rate of the bridge. A ringlet with a larger route

preference value would be more proper to be selected.

Finally, some concluding remarks and future research topics are addressed in

Chapter 5.
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Chapter 2

Priority Burst Scheduling with
FDL Assignment for Optical Burst
Switching Networks

2.1 Introduction

Optical burst switching (OBS) is a new data transmission/switching method to

realize IP over WDM. It strikes a balance between optical circuit switching and

optical packet switching [13, 29]. In OBS networks, the ingress node assembles a

number of IP packets, which go to the same egress node, into a data burst (DB).

For each DB, there is a control burst (CB) associated with it. A signaling protocol,

called just-enough-time (JET), was proposed [12], where the CB is first transmitted

to the next node to reserve the bandwidth and then the DB is sent after an offset

time. The duration of the offset time is dependent on the number of intermediate

OBS nodes in the routing path, and the routing path is a shortest path which is

determined by the ingress node. A prioritized signaling protocol, called prioritized

JET (PJET) [15], was proposed to decrease the dropping probability of high-priority

bursts. The PJET introduces a longer offset time for the high-priority burst to make

the reservation earlier than the low-priority one.
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There are several burst scheduling schemes proposed and applied with PJET,

which are the Horizon [29], the latest available unused channel with void filling

(LAUC-VF) [48], and the efficient burst scheduling algorithms using geometric tech-

niques [31]. The Horizon chooses a wavelength whose latest available time is the

most close to the arrival time of the new burst. The LAUC-VF first chooses, among

all the proper voids between two scheduled bursts, the one whose latest available

time is the most close to the arrival time of the new burst and whose length is larger

than that of the new burst. If there is no available void, then the LAUC-VF works

the same as the Horizon. The scheduling algorithms in [31] are similar to the Horizon

and LAUC-VF except they use an efficient data structure to reduce the computing

complexity. Another new prioritized signaling protocol, called preemptive prioritized

JET (PPJET), was proposed in [16]. It serves different traffic classes on the basis

of a strict priority order. A new scheduling scheme using PPJET, called preemptive

latest-available unused channel with void filling (PLAUC-VF), can provide better

service for high-priority traffic by dropping reservations belonging to lower-priority

traffic [16]. It is similar to the LAUC-VF except it could let the high-priority burst

preempt the low-priority burst.

This chapter proposes a new scheduling scheme, named priority burst schedul-

ing with FDL assignment (PBS-FA). The PBS-FA scheme considers the preemptions

because the high-priority burst is more important than the low-priority one and the

shorter burst is more easily to be rescheduled into the void. Therefore, it allows

high-priority bursts to preempt low-priority ones and longer high-priority bursts to

replace shorter ones. Meanwhile, FDL assignment is used when scheduling these

bursts.
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The rest of this chapter is organized as follows. In Section 2.2, the architecture

of intermediate OBS node is introduced. Section 2.2 presents the proposed schedul-

ing PBS-FA and Section 2.4 presents simulation results. Finally, some concluding

remarks are given in Section 2.5.

2.2 Architecture of Intermediate OBS Node

Suppose that the intermediate OBS node is an N × N router connecting N in-

coming and N outgoing fibers. Each fiber contains W + 1 wavelengths; one is the

control channel transmitting CBs, and others are data channels transmitting DBs.

The architecture of an intermediate OBS routing node, shown in Fig. 2.1, con-

sists of receiver equipment (RX), transmitter equipment (TX), N input FDLs, N

wavelength converters (WC), an NW ×NW non-blocking optical switching matrix

(OSM), a control buffer (CBF), and a central processor embedded with the PBS-FA

scheduler [48].

The RX receives a DB from a data channel and forwards it to the input FDLs

if the DB could be scheduled into an available channel; otherwise, the RX drops it.

Also, the RX receives CBs from the control channel and forwards them to the central

processor. The TX transmits DBs (CBs) into the data (control) channel. When a CB

arrives the cental processor, the PBS-FA scheduler properly determines a suitable

scheduling result (for the associated DB) which will be sent to the RX, input FDLs,

WC, and OSM. Also, the central processor generates a new CB containing the new

scheduling result and sends it to CBF, which will inform the next router to cancel

the last reservation and to make a new reservation. The input FDLs consists of a

number of FDLs with different units of length. The WC converts the wavelength of
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Figure 2.1: Architecture of the OBS node

a DB to the new one which is assigned for it.

The CBF is used to buffer CBs. If a DB is initially needed to be delayed by

an FDL, the CBF will buffer its CB for a span whose length is the same as the

FDL. If a DB is rescheduled and buffered by an FDL, the CBF buffers the new CB

for a period of time. The duration of the time period is the difference between the

residual time and the offset time if the residual time is larger than the offset time,

where the residual time is defined as the time interval between the current time and

the time the DB will be sent out in this reschedule. Otherwise, the duration is zero,

denoting the new CB will be sent immediately. In this way, The offset time can be

still kept the same as the original one and the router can easily know how many

routers the burst still needs to pass through.
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2.3 Priority Burst Scheduling with FDL Assign-

ment (PBS-FA)

The priority burst scheduling with FDL assignment (PBS-FA) scheme is shown

in the Fig. 2.2. When a CB arrives, the PBS-FA denotes its corresponding DB

as b, empties the set of replaced burst, denoted by BR, initializes the number of

DB’s reassignment, denoted by t , and checks b’s priority. The BR is the set used

to collect the preempted bursts. If b is with low-priority, the PBS-FA finds whether

a channel CA with a minimal free FDL is available (the free FDLs are used from

the shortest to the longest). If CA exists, b will be assigned into CA; otherwise, b

will be droped. If b is with high-priority, the PBS-FA first finds whether a channel

CA with a minimal free FDL is available. If CA does exist, b is assigned into CA.

Otherwise, the PBS-FA further finds whether a channel CL with a minimal free FDL

is available for b, where CL is the channel given to a set of the low priority bursts,

denoted by BL, which block b and have the shortest burst’s sum length. If CL

exists, the PBS-FA allocates CL to b and removes the bursts in BL from CL into

BR. Noticeably, the FDL which has been assigned to a burst will be released when

the burst is replaced or dropped. If there is no CL, the PBS-FA looks into whether

a channel CH with the minimal free FDL is available, where CH is the channel

given to a set of the bursts, denoted by BH , which block b and have the minimum

sum length but the sum length of the high-priority bursts is smaller than b. If CH

exists, the PBS-FA removes the bursts in BH from CH into BR, and assigns b

into CH ; otherwise b will be dropped. Next if BR is not empty, the PBS-FA will

perform the rescheduling and check whether the number t+1 is smaller than T and

free FDLs are available, where T is used to limit the reassignment times between
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Figure 2.2: The flowchart of the PBS-FA scheme
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two successive new CBs and its value is determined according to the processing time

of the PBS-FA scheme. If they do exist, the PBS-FA reschedules the bursts in BR

on the order of the burst priority and length; the higher-priority burst with the

longest length will be rescheduled first. Otherwise, the scheme ends.

We illustrate an example in Fig. 2.3, where the class 0 (class 1) denotes the

high-priority (low-priority). In Fig. 2.3 (a), assume that six bursts have been

scheduled and the low-priority burst 7 with length is |te − ts| will arrive at the ts.

Since there is no available channel for the burst 7, the burst 7 will be dropped. If

the burst 7 is with high-priority as in Fig. 2.3 (b), then the PBS-FA first searches a

channel CL which has given to a set of the scheduled low-priority bursts BL which

blocks the burst 7 and has the minimum sum burst length. It is found that CL is

the channel C1 and BL consists of the burst 4 with low-priority. Then, the scheme

schedules the burst 7 into C1 and reschedules the burst 4 with FDL, which is shown

in Fig. 2.3 (c). If the scheduled bursts which block the burst 7 are with high-priority,

as in Fig. 2.3 (d), the PBS-FA makes the burst 7 to preempt the burst 5 because

the burst 5 has the least amount of length. The result is shown in Fig. 2.3 (e).
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Figure 2.3: The flowchart of the PBS-FA scheme
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Figure 2.4: The system throughput

2.4 Simulation Results

We compare the PBS-FA scheme with the PLAUC-VF scheme in the performance

measures of system throughput and average system dropping probability. Assume

two classes of bursts, namely class 0 and class 1, in the simulations, where class 0(1)

burst corresponds to the high (low)-priority. An 8×8 OBS routing node is considered

and each burst coming from any input fiber goes to a considered output fiber with

the 5/16 probability. Suppose that a fiber contains 9 separate wavelengths, one

(eight) for control (data) channel. The transmission speed per wavelength is 2.5

Gbit/s (OC-48). The burst arrival process is in Poisson distribution with a mean

which is changed to show various traffic loads, and the burst length is in exponential

distribution with a mean 16 KB. Class 0 and class 1 bursts share the total offered

load in 9/16 and 7/16 perentages, respectively. The FDL length is measured in units

of 10μs, and the longest one is 200μs.

Fig. 2.4 shows the system throughputs of the PBS-FA and the PLAUC-VF
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Figure 2.5: The average system dropping probability

schemes. The result reveals that the PBS-FA achieves the throughput higher than

the PLAUC-VF by an amount of 3% - 10% at traffic load 0.5 - 0.8. It is because

the PBS-FA makes the longer high-priority bursts preempt not only the low-priority

bursts but also the shorter high-priority bursts. This results in that the longer high-

priority bursts can be successfully scheduled with higher probability and thus the

total sum length of the served bursts would be larger, in PBS-FA. Also, the PBS-FA

reschedules the preempted bursts into an available channel, while the PLAUC-VF

takes no action.

Fig. 2.5 shows the average system dropping probability. It can be seen that

the PBS-FA attains a smaller dropping probability than the PLAUC-VF by about

30% to 45% at the traffic load 0.4 to 0.8. The reasons are that the PBS-FA preempts

bursts with the shortest total sum length first whenever necessary and reschedules

the preempted short bursts with FDL assignment. Noticeably, the short bursts are

more easily to be rescheduled, not blocked, whenever the high-priority burst needs
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to preempt the low-priority burst. The PLAUC-VF does not choose the bursts with

the smallest total length to replace.

2.5 Concluding Remarks

In this chpater we propose a new channel-scheduling scheme called priority burst

scheduling with FDL assignment (PBS-FA) with PPJET for OBS networks. The

PBS-FA allows high-priority bursts to preempt low-priority ones and longer high-

priority ones to replace shorter ones due to that the high-priority is more important

than the low-priority and the shorter one is more easily to be scheduled into the void.

Also, it reschedules those preempted bursts by using FDL assignment. Simulation

results reveals that the PBS-FA improves the system throughput by 3% to 10% and

reduces the average system dropping probability by about 30% to 45% at the traffic

load 0.4 to 0.8 over the PLAUC-VF.
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Chapter 3

FLAG: A Fuzzy Local FairRate
Generator for Resilient Packet
Ring

3.1 Introduction

The resilient packet ring (RPR) is a ring based network for high-speed metropoli-

tan area networks (MANs) [17]. It is a packet transport layer can provide guaranteed

quality of service parameters and support service monitoring including performance

management and fault management [17, 18]. Besides, the RPR has some noticeable

properties such as spatial reuse, fair bandwidth allocation, and fast network failure

recovery to get rid of deficiencies of conventional high-speed Ethernet and SONET

[19, 20]. Therefore, the RPR can not only achieve high bandwidth utilization and

fast network failure recovery but also satisfy the requirements of MANs, such as reli-

ability, flexibility, scalability, and large capacity [19, 20, 21]. The RPR is a superior

candidate for MANs.

The spatial reuse allows a frame to be removed from the ring at its destination

so that the bandwidth on next links can be re-used at the same time. Also, the

fair bandwidth allocation avoids stations at upstream transmitting too many low-
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priority frames to cause stations at downstream system congestion. RPR needs

congestion control to enhance the fair bandwidth division in the congestion domain

which is defined in the IEEE 802.17 [19, 22]. The congestion control implemented

in each station should periodically generate an advertised fairRate to advertise its

upstream station for regulating the added fairness eligible (FE) traffic flow defined

in IEEE 802.17 [19, 22]. The advertised fairRate should be determined referring to

the local fairRate, the received fairRate, and the congestion degree of the station.

The local fairRate is generated by a fairness algorithm, and the received fairRate is

the advertised fairRate from the downstream station.

Two key factors affect performance of the fair bandwidth allocation: conges-

tion detection and fairness algorithm. If the congestion detection is too rough, it

would lower the network’s throughput or raise frame loss. The fairness algorithm

should consider the most important performance issues of FE traffic flows: stability,

fairness, convergence time, and throughput loss caused by the FE traffic flow oscil-

lation. The stability would avoid the oscillation of regulated FE traffic flows, which

would cause the throughput loss. If a fairness algorithm referees a “ring ingress

aggregated with spatial reuse (RIAS)” fairness, it has been proved that the algo-

rithm will achieve high system utilization [25]. It is because the RIAS has two key

properties. The first property is that an ingress-aggregated (IA) flow fairly shares

the bandwidth on each link, relating to other IA flows on the same link, where an

IA flow is the aggregate of all flows originating from a given ingress station. The

second property is that the maximal spatial reuse subjecting to the first property.

Thus, the bandwidth can be reclaimed by IA flows when it is unused. In summary,

the RIAS is a max-min fairness with traffic granularity of IA flow. The convergence
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time is the time interval between the instant of starting the congestion occurence

and the instant that the amount of arriving specified traffic flow approaches the ideal

fairRate which meets the the RIAS fairness. Therefore, a fairness algorithm should

achieve not only high stability based on the RIAS fairness but also low convergence

time and flow oscillation.

The aggressive mode (AM) fairness algorithm has been proposed in IEEE

802.17. It would suffer from severe oscillations and bandwidth utilization degra-

dation [19, 22, 24, 25, 32]. It is because AM issues a un-limited fairRate, called

FullRate, as its advertised fairRate when the station is released from congestion.

Several fairness algorithms were proposed to solve this problem and some of them

were designed based on the RIAS fairness [24, 25, 32, 33, 35, 34, 36, 37]. Gambiroza

et al. proposed a distributed virtual-time scheduling in rings (DVSR) [25]. Unfortu-

nately, it is at the expense of a high computational complexity O(N log N), where

N is the number of stations in the ring. Alharbi and Ansari proposed a distributed

bandwidth allocation (DBA) fairness algorithm with a low computational complex-

ity O(1) [24, 32, 33]. However, whenever the effect of propagation delay is severe,

the DBA would not be a stable local fairRate algorithm. It is because the local fair-

Rate generated by DBA is related only with the amount of the arriving transit FE

traffic flows measured during a short frame time. This short-term amount is easily

influenced by the effect of the propagation delay, which starts from a station sending

its advertised fairRate and ends the corresponding transit traffic flows arriving the

station. If the propagation delay is large, the short-term arriving transit FE traffic

flows would be largely varied and makes the generation of local fairRate unstable

(incorrect).
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Recently, fuzzy logics system, which is a kind of intelligent techniques,has

been widely applied to control nonlinear, time-varying, and well-defined systems

for that fuzzy logic control can provide effective solutions with small computational

complexity. Fuzzy set theory appears to be able to support a robust mathematical

framework for dealing with real-world imprecision, and exhibits a soft behavior,

which means a greater ability to adapt itself to dynamic, imprecise, and bursty

environments [43].

In this chapter, we propose an effective local fairRate generator based on fuzzy

logic theory [43] and moving average technique [45]. The effective local fairRate gen-

erator, named fuzzy local fairRate generator (FLAG), can meet the RIAS fairness

and reflect timely the congestion status of station. The FLAG is sophisticatedly

configured into three functional blocks: adaptive fairRate calculator (AFC), fuzzy

congestion detector (FCD), and fuzzy fairRate generator (FFG). It first pre-produces

a local fairRate to meet the RIAS fairness and diminish the effect of propagation

delay by AFC. Also, the FLAG evaluates the congestion degree of a station, denot-

ing the forwarding capacity of added FE traffic flows at the station and buffering

capacity of the STQ, by FCD. Finally, the FLAG generates a precise local fairRate

by FFG. The FFG finely adjusts the pre-produced local fairRate from AFC accord-

ing to the congestion degree of the station from FCD, using fuzzy logics based upon

domain knowledge. Simulation results show that the FLAG has better performance

than AM and DBA in various scenarios in the aspects of lower convergence time,

more fairness, and higher throughput. Take a small parking lot scenario with short

propagation delay as an instance. The FLAG improves by more than 7 times over

AM and by 2 times over DBA, in the convergence time of traffic flows.
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The remaining of this chapter is organized as follows. Section 3.2 introduces

the RPR system model. The concept of fuzzy logic system (FLS) and the most

basic and popular architectures of a fuzzy logic controller are stated in section 3.3.

Section 3.4 describes the proposed FLAG. Section 3.5 shows simulation results and

discussions. Finally, concluding remarks are given in Section 3.6.

3.2 RPR System Model

Assume that a resilient packet ring (RPR) with N stations, shown in Fig. 3.1,

is constructed by two unidirectional, counter-rotating ringlets, named ringlet-0 and

ringlet-1. Each station has two pairs of input and output ports to communicate with

neighbor stations. Station X (Y) is said to be a upstream (downstream) node of sta-

tion Y (X) on ringlet-0 or ringlet-1 if the station Y (X) traffic becomes the received

traffic of station X (Y) on the referenced ringlet. There are three classes of service

for RPR. The classA is used for real-time services and it has subclassA0 for reserved

bandwidth and subclassA1 for reclaimable bandwidth. The classB is targeted for

near real-time services, and it also has two subclasses: classB-CIR (committed in-

formation rate) which requires the bounded delay and guaranteed bandwidth, and

classB-EIR (excess information rate) which does not guarantee bandwidth or delay

bound. The classC is intended for best effort services and has the lowest priority.

Each station only reserves bandwidth for subclassA0, and the remaining bandwidth

is provided for other traffic classes according to the order of subclassA1, classB-CIR,

classB-EIR, and classC. The latter two low priority traffics are called the fairness

eligible (FE) traffic and are controlled by a fairness algorithm [17, 18, 19, 20, 21, 22].
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Figure 3.1: Resilient packet ring structure

Fig. 3.2 shows the station structure for ringlet-0 transmisson, which contains

an ingress queue with ClassA, ClassB, and ClassC queues, a transit queue with

primary transit queue (PTQ) and secondary transit queue (STQ), a scheduler, the

fuzzy local fairRate generator (FLAG), and a fairness control unit. The ClassX

queue, X = A, B, or C, stores the added classX traffic to the station. The PTQ

(STQ) stores the transiting classA and classB-CIR (classB-EIR and classC) frames.

The scheduler decides the transmitting order. If the STQ occupancy is less than the

stqHighthreshold defined in the IEEE802.17 [17], the order is PTQ, ClassA, ClassB,

ClassC, and STQ; otherwise, it is PTQ, ClassA, ClassB, STQ, and ClassC. The

FLAG generates a local fairRate at every time nT , denoted by fl(n), where n is

a positive integer and T is the duration of an agingInterval. Notice that fl is also

generated per agingInterval in DBA but is generated only when the station is in
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Figure 3.2: RPR station structure

congestion in AM. The fairness control unit usually refers to both fl(n) and the

received fairRate, denoted by fr(n), to determine an advertised fairRate, denoted

by fv(n), and then sends fv(n) to upstream stations to regulate traffic flows, at every

agingInterval time nT .

The advertised fairRate generated by the fairness control unit are described

as follows. The fv would be set to be fl if fr is smaller than fl and larger than the

bandwidth rate of the transit FE traffic flows which will pass through the originally

congested station. Otherwise, it is set to be min(fl, fr). Here we also describe the

advertised fairRate generated by AM below. When the station is congestion free,

the fv is set to be the FullRate if the fr is larger than the bandwidth rate of the

transit FE traffic flows which will pass through the originally congested station; to

be fr, otherwise. The FullRate is a specially advertised fairRate to indicate that

the station does not need to limit its added FE traffic flow. When the station is in
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congestion, the fv is set to be fl if the fr is FullRate; to be min(fl, fr), otherwise.

Note that the congestion is occurred at a station for AM if the STQ occupancy of

the station is larger than the stqLowthreshold, defined in IEEE802.17 [17]. Also, the

originally congested station is known to the observation station since the message

of the advertised fairRate contains a field to record it [17]; the fl is the added FE

traffic flow rate to the network.

3.3 Fuzzy Logic System

Fuzzy logic system is mimicked the behaviors of human brain: fuzzy logic operates

on the way the brain deals with vague information [43]. Fuzzy logic system is

numerical model-free estimators and dynamical system and, also, it has been shown

to have the capability of modelling complex nonlinear processes to arbitrary degrees

of accuracy. Fuzzy logic systems employ linguistic if-then fuzzy rules as a kind of

expert knowledge to formalize insights about the structure of categories founding

the real world. Fuzzy logic systems combine the mathematical theory of fuzzy sets

with fuzzy rules to produce overall complex nonlinear behavior.

3.3.1 Fuzzy Inference System (FIS)

Fuzzy logic is based on the concepts of linguistic variables and fuzzy sets theory.

A fuzzy set in a universe of discourse U is characterized by a membership function

μ(·) which takes values in the interval [0, 1]. A fuzzy set F is represented as a

set of ordered pairs, each made up of a generic element u ∈ U and its degree of

membership μ(u). A linguistic variable x in a universe of discourse U is characterized

by T (x) = {T 1
x , ..., T i

x, ..., T
K
x } and M(x) = {M1

x(u), ...,M i
x(u), ...,MK

x (u)}, where
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T (x) is the fuzzy term set, i.e., the set of linguistic values’ names T i
x the linguistic

variable x can take, and M i
x(u) is a membership function with respect to the term

T i
x. If, for instance, x indicates the temperature, T (x) could be the set as {Low,

Medium, High}, and each element in T (x) is associated with a membership function.

The fuzzy inference system (FIS) is a popular computing framework based

on the concept of fuzzy logic and fuzzy reasoning. As shown in Fig. 3.3, a fuzzy

inference system consists of four fundamental blocks [51]: fuzzifier, fuzzy rule base,

inference engine, and defuzzifier. The fuzzifier performs a mapping function from

the observed value of each input linguistic variable xi to a fuzzy term set T (xi) with

associated set of membership degree M(xi), i = 1, . . . , m. The fuzzy rule base is a

knowledge base characterized by a set of linguistic statements in a form of “if-then”

rules that describe a fuzzy logic relationship between the m-dim input linguistic

variables {xi} and the n-dim output linguistic variables {yj}. The inference engine

performs an implication function according to the pre-condition of the fuzzy rule

with the input linguistic terms. It is a decision-making logic that acquires the input

linguistic terms of T (xi) from the fuzzifier and uses an inference method to obtain

the output linguistic terms of T (yj) [50]. The defuzzifier adopts a defuzzification

function to convert T (yj) into a non-fuzzy (crisp) value that represents the decision

yj. Several implementation ways have been introduced to build a fuzzy inference

system as a fuzzy logic controller, such as the Mamdani fuzzy model, Tsukamoto

fuzzy model, and Sugeno fuzzy model [49]. Briefly speaking, these fuzzy models (or

said implementation ways) differ on the high-level linguistic expression form of the

fuzzy rule and the consequent reasoning way. Because the Mamdani fuzzy model is

the most basic and popular one, some descriptions about the Mamdani fuzzy model
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Figure 3.3: The basic structure of fuzzy inference system

are given in the following subsection.

3.3.2 Mamdani Fuzzy Model

The Mamdani fuzzy model is a way to implement a fuzzy inference system to

serve as a controller. It was proposed as the first attempt to control a system by a

set of linguistic control rules obtained from experienced human knowledge. Fig. 3.4

shows an example of Mamdani fuzzy model, where the overall output Z is derived

from two linguistic variables X and Y . Here, the fuzzy rule is expressed by

if X is Ai and Y is Bi, then output Z is Ci with μ(Ci), i=1 and 2

where Ai, Bi and Ci are all fuzzy terms, and μ(Ci) is the membership value on

Ci. In the Mamdani model, each input linguistic variable is firstly fuzzified by the

membership function μ(·). Then, the inferred value of the output of each fuzzy rule

is determined by a pre-defined inference method. In this example, the min-max

method is applied. That is, the inferred value of each fuzzy rule is obtained by

min operator and the inferred value of the same fuzzy term is obtained by max

operator. Finally, the overall crisp output is derived by a pre-defined defuzzification

method. There are diverse defuzzification methods such as: centroid of area (COA),

bisector of area (BOA), mean of maximum (MOM), smallest of maximum (SOM),
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Figure 3.4: An example of Mamdani fuzzy model

and largest of maximum (LOM), among which COA is the most popular one.

Additionally, the membership functions for terms in the term set should be

defined with the proper shape and position. In general, a triangular function

f(x; x0, a0, a1) or a trapezoidal function g(x; x0, x1, a0, a1) is chosen as the member-

ship function because of the advantage of simple computational complexity. This

feature makes these functions are suitable for real-time application [50]. As shown
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in Fig. 3.5, f(x; x0, a0, a1) and g(x; x0, x1, a0, a1) are given by

f(x; x0, a0, a1) =

⎧⎨⎩
x−x0

a0
+ 1 for x0 − a0 < x ≤ x0

x0−x
a1

+ 1 for x0 < x ≤ x0 + a1

0 otherwise,

(3.1)

g(x; x0, x1, a0, a1) =

⎧⎪⎪⎨⎪⎪⎩
x−x0

a0
+ 1 for x0 − a0 < x ≤ x0

1 for x0 < x ≤ x1
x1−x0

a1
for x1 < x ≤ x1 + a1

0 otherwise,

(3.2)

where x0 in f(·) is the center of the triangular function; x0 (x1) in g(·) is the left

(right) edge of the trapezoidal function; and a0 (a1) is the left (right) width of the

triangular or the trapezoidal function.

Figure 3.5: Definitions for functions f(·) and g(·)

3.4 Fuzzy Local FairRate Generator

The proposed fuzzy local fairRate generator (FLAG), shown in Fig. 3.6, is com-

posed of an adaptive fairRate calculator (AFC), a fuzzy congestion detection (FCD),

and a fuzzy fairRate generator (FFG). During the nth agingInterval which is from

time (n − 1)T to time nT , the FLAG determines fl(n) by referring to the arriving

FE traffic flows to STQ, denoted as As(n), the added FE traffic flow to the network,
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denoted as Aa(n), and STQ occupancy, denoted as Ls(n). The AFC pre-generates

a local fairRate, called p-fairRate and denoted by fp(n), which satisfies the RIAS

fairness. Its design imitates the DBA’s generation of local fairRate, but it would

overcome the unstable (incorrect) local fairRate generation by DBA when the prop-

agation delay is significant. Instead of using the short-term arriving transit FE

traffic flows, it calculates a proper average of the arriving transit FE traffic flows by

moving average technique to mitigate the effect of the propagation delay. The FCD

appraises the congestion status of station using fuzzy logics. Its design can softly de-

tect the congestion degree of the station in each agingInterval n, denoted by Dc(n),

considering not only the STQ occupancy but also the amount of the arriving transit

FE traffic flows at the queue. The latter term denotes the change rate of the STQ

occupancy which would play an important role in the congestion detection. Finally,

the FFG generates a precise local fairRate by fine-tuning the p-fairRate from AFC,

referring to the congestion degree from FCD, and further using domain knowledge

designed by fuzzy logics. The FLAG would avoid serious regulating FE traffic flows

to decrease the throughput or excessive relaxing the traffic flows to increase the

frame losses.

3.4.1 Adaptive fairRate Calculator (AFC)

The adaptive fairRate calculator (AFC) adopts the moving average technique

[45] on the short-term arriving FE traffic flows, trying to mitigate the effect of

propagation delay on the generation of local fairRate by the DBA [24, 32]. During

the n-th agingInterval, the AFC first takes the moving average of arriving transit
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Figure 3.6: Functional blocks of FLAG

FE traffic flows to STQ, As(n). Denote the average by Ãs(n) and give it by

Ãs(n) = Σn
i=n−k+1As(i)/k, (3.3)

where k is the size of observation window. The k is the sum of two kinds of the

data frame trip time: one is the time from the furthest source to this observation

station, and the other is the time from this station to originally congested station.

It is because the FE traffic flow of a station in this interval would be regulated by an

advertised fairRate which is sent out from one of the stations in the interval. The

Ãs(n) will not vary too much and become more stable.

Then the AFC computes the effective number of IA flows during the n-th

agingInterval, denoted by M(n), which is obtained by

M(n) =
Ãs(n) + Aa(n)

fp(n− 1)
. (3.4)

The AFC fairly allocates the remaining bandwidth to these effective IA flows, which

would be 1
M(n)

(C − (As(n) + Aa(n))). Finally, the AFC calculates the fp(n) by

adding up the previous p-fairRate, fp(n− 1), and the fairly shared bandwidth. The
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fp(n) is given by

fp(n) = min

{
C, fp(n− 1) +

1

M(n)

[
C − (As(n) + Aa(n))

]}
, (3.5)

where C is the unreserved bandwidth for FE traffic flows per agingInterval used to

denote the upper bound of the local fairRate.

3.4.2 Fuzzy Congestion Detector (FCD)

The FCD refers not only the occupancy of STQ, Ls(n), as defined in the IEEE802.17

[17], but also the arriving FE traffic flows to STQ, As(n), to determine the conges-

tion degree, Dc(n). The As(n) can be viewed as the change rate of STQ, which is

also an important variable in the detection of congestion degree. We define the term

set for Ls(n) as T (Ls(n)) = {Short (S), Long (L)}; for As(n) as T (As(n)) = {Low

(L), Medium (M), High (H)}; for Dc(n) as T (Dc(n)) = {Very Low (V L), Low (L),

Medium (M), High (H), Very High (V H)}.
The corresponding membership functions of S and L in T (Ls(n)) are denoted

by

μS(Ls(n)) = g(Ls(n); 0, 0.125Q, 0, 0.25Q), (3.6)

μL(Ls(n)) = g(Ls(n); 0.35Q, Q, 0.25Q, 0), (3.7)

where Q is the size of STQ. As defined in IEEE 802.17 [17] standard, we take 0.125

of the STQ size as the stqLowthreshold to judge the light congestion degree, and

0.25 of the STQ size as the stqHighthreshold to judge the heavy congestion degree.

The corresponding membership functions of L, M , and H in T (As(n)) are denoted

by

μL(As(n)) = g(Ls(n); 0, 0.125C, 0, 0.375C), (3.8)
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Figure 3.7: The membership functions of the term set (a) T (Ls(n)) (b) T (As(n))
(c) T (Dc(n))

μM(As(n)) = f(As(n); 0.5C, 0.25C, 0.25C), (3.9)

μH(As(n)) = g(As(n); 0.875C,C, 0.375C, 0). (3.10)

For the reason of simplicity in computation of defuzzification, the corresponding

membership functions of V L, L, M, H, and V H in T (Dc(n)) are defined as

μV L(Dc(n)) = f(Dc(n); 0, 0, 0), (3.11)

μL(Dc(n)) = f(Dc(n); 0.25, 0, 0), (3.12)

μM(Dc(n)) = f(Dc(n); 0.5, 0, 0), (3.13)

μH(Dc(n)) = f(Dc(n); 0.75, 0, 0), (3.14)

μV H(Dc(n)) = f(Dc(n); 1, 0, 0). (3.15)

There are 6 fuzzy rules for FCD. As shown in Table 3.1, the order of significance

of the input linguistic variables is Ls(n) then As(n). The station with high occupancy
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Table 3.1: The rule base of FCD

Rule Ls(n) As(n) Dc(n) Rule Ls(n) As(n) Dc(n)
1 S L V L 4 L L M
2 S M V L 5 L M H
3 S H L 6 L H V H

of STQ would be in high congestion degree, and it would be in higher (medium)

congestion degree if the arriving FE traffic flows to STQ is also high (low).

The fuzzy congestion detector adopts the max-min inference method for in-

ference engine because it is suitable for real-time operation. To explain max-min

inference method, we take rule 1 and rule 2, which have the same control action

”Dc(n) is V L”, as an example. Applying the ”min” operator, we obtain the mem-

bership function values of the control action ”Dc(n) is V L” of rule 1 and rule 2,

denoted by m1(n) and m2(n), respectively, by

m1(n) = min{μS(Ls(n)), μL(As(n))}, (3.16)

m2(n) = min{μS(Ls(n)), μM(As(n))}. (3.17)

Subsequently, applying the ”max” operator yields the overall membership function

value of the control action ”Dc(n) is V L”, denoted by wV L(n), by

wV L(n) = max{m1(n), m2(n)}. (3.18)

The fuzzy inference results of the output indication L, M , H, and V H, denoted by

wL(n), wM(n), wH(n), and wV H(n), respectively, can be obtained by the same way.

Finally, the fuzzy inference results are to be defuzzified to become usable values.

The defuzzification method adopted is the center of area defuzzification method,

42



and a crisp value of the congestion degree Dc(n), denoted by z0, can obtained by

z0 =
0.0× wV L(n) + 0.25× wL(n) + 0.5× wM(n) + 0.75× wH(n) + 1.0× wV H(n)

wV L(n) + wL(n) + wM(n) + wH(n) + wV H(n)
.

(3.19)

3.4.3 Fuzzy fairRate Generator (FFG)

The FFG refers to the p-fairRate, fp(n), and the congestion degree, Dc(n), as

the input variables to generate a proper and robust local fairRate, fl(n). The local

fairRate fl(n) affects both the fairness performance and the bandwidth utilization.

Define the term set with six terms for fp(n) as T (fp(n)) ={Extremely Low (EL),

Pretty Low (PL), Slightly Low (SL), Slightly High (SH), Pretty High (PH), Ex-

tremely High (EH)}; the term set with three terms for Dc(n) as T (Dc(n)) ={Low

(L), Medium (M), High (H)}; and the term set with eleven terms for fl(n) as

T (fl(n)) ={Extremely Low (EL), Very Low (V L), Pretty Low (PL), Low (L),

Slightly Low (SL), Medium (M), Slightly High (SH), High (H), Pretty High (PH),

Very High (V H), Extremely High (EH)}. Note that the number of the terms in

T (fl(n)) would be larger than that of T (fp(n)) for better performance. The mem-

bership functions for terms EL,PL, SL, SH, PH, and EH in T (fp(n)) are defined

as

μEL(fp(n)) = f(fp(n); 0, 0, 0.3C), (3.20)

μPL(fp(n)) = f(fp(n); 0.2C, 0.2C, 0.2C), (3.21)

μSL(fp(n)) = f(fp(n); 0.4C, 0.2C, 0.2C), (3.22)

μSH(fp(n)) = f(fp(n); 0.6C, 0.2C, 0.2C), (3.23)

μPH(fp(n)) = f(fp(n); 0.8C, 0.2C, 0.2C), (3.24)
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μEH(fp(n)) = f(fp(n); C, 0.3C, 0). (3.25)

The membership functions for terms L, M, and H in T (Dc(n)) are defined as

μL(Dc(n)) = g(Dc(n); 0, 0.125, 0, 0.375), (3.26)

μM(Dc(n)) = f(Dc(n); 0.5, 0.25, 0.25), (3.27)

μHDc(n)) = g(Dc(n); 0.875, 1, 0.375, 0). (3.28)

The membership functions for terms in T (fl(n)) are defined as fuzzy singletons,

denoted by

μT (fl(n)) = f(fl(n); xT , 0, 0), (3.29)

where T = EL, V L, PL, L, SL, M, SH, H, PH, V H, or EH, and xEL = 0, xV L =

0.1C, xPL = 0.2C, xL = 0.3C, xSL = 0.4C, xM = 0.5C, xSH = 0.6C, xH =

0.7C, xPH = 0.8C, xV H = 0.9C, xEH = C. Notice that the center value of the

triangular membership function f of each term for fp(n) is the same as the center

value of the singleton function f of the same term for fl(n), where these terms are

EL,PL, SL, SH, PH, and EH. Fig. 3.8 illustrates all membership functions of

FFG.

There are 18 fuzzy rules for FFG. As shown in Table 3.2, the order of signifi-

cance of the input linguistic variables is fp(n) then Dc(n). These fuzzy rules are set

in such a way that the generation of fl(n) mainly refers to fp(n) but slightly adjusted

by Dc(n) so as to achieve lower convergence time and thus higher the throughput.

When fp(n) is ��EL′′ or ��PL′′, fl(n) is designed to raise two levels more than fp(n)

(EL → PL or PL → SL) if Dc(n) is ��L′′ and fl(n) remains unchanged if Dc(n) is

��H ′′. This intends to increase the throughput. When fp(n) is ��SL′′,�� SH ′′, or ��PH ′′,

fl(n) decreases one level less than fp(n) if Dc(n) is ��H ′′ and fl(n) increases one level
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Figure 3.8: The membership functions of the term set (a) T (fp(n)) (b) T (Dc(n))
(c) T (fl(n))
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Table 3.2: The rule base of FFG

Rule fp(n) Dc(n) fl(n) Rule fp(n) Dc(n) fl(n)
1 EL L PL 10 SH L H
2 EL M V L 11 SH M SH
3 EL H EL 12 SH H M
4 PL L SL 13 PH L V H
5 PL M L 14 PH M PH
6 PL H PL 15 PH H H
7 SL L M 16 EH L EH
8 SL M SL 17 EH M V H
9 SL H L 18 EH H PH

larger than fp(n) if Dc(n) is ��L′′. When fp(n) is ��EH ′′, fl(n) should be decreased

two levels less than fp(n) (EH → PH) if Dc(n) is ��H ′′ and fl(n) remains unchanged

if Dc(n) is ��L′′. This intends to achieve RIAS fairness. Finally, the defuzzifier uses

the min-max method mentioned in Section 3.4.2 to generate a crisp-valued local

fairRate.

3.5 Simulation Results and Discussions

In the simulations, settings for the environment include 10 Gbps link capacity, 100

μs propagation delay between stations, 4 Mbytes STQ size, and 100 μs agingInterval.

The value of the stqHighthreshold is 1 Mbytes and the value of the stqLowthresh-

old is 0.5 Mbytes. Simulations for the proposed FLAG, DBA with moving average

technique (DMA), DBA [24, 32, 33], and AM [17, 22] also conducted for perfor-

mance comparison. Simulation results are recorded per agingInterval. Also, assume

that the reserved bandwidth is zero, and only fairness eligible (FE) traffic flow is

considered.

Fig. 3.9(a) shows a small parking lot scenario where there are 5 (0 ∼ 4) greedy
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stations, and Figs. 3.9(b), 3.9(c), 3.9(d) and 3.9(e) present the throughput of each

flow by AM, DBA, DMA, and FLAG, respectively. This small parking lot scenario

assumes that flows are generated from station 0, 1, 2, and 3 but terminated at

station 4. The propagation delay is small. It can be seen that FE flows of AM, DBA,

DMA, and FLAG take 49ms, 14ms, 13.5ms, and 7ms to stabilize, respectively. Thus

FLAG improves by 7 times over AM and by 2 times over DBA, in the convergence

time of traffic flows. The reasons are given as follows. The fuzzy logics provides

a robust mathematical method to solve problems which are complicated to find a

proper mathematical model for them. Especially, the FLAG contains sophisticated

functional blocks, which combine advantages of AM and DBA. It fine-tunes the

so-called p-fairRate generated by AFC, according to the congestion degree softly

determined by the FCD using the fuzzy logic and the effective fuzzy rules designed

in FFG by expert’s domain knowledge. On the other hand, the DBA and DMA

generate the local fairRate depending only on the short-term (average) arriving FE

traffic flow, or equivalently the change rate of the STQ, without considering the

STQ occupancy which usually used to determine the congestion degree of station

given in [17]. This would incorrectly limit the amount of the passing transit FE

traffic flow to the next station and cause DBA make error decision. For example, if

the amount of the short-term arriving transit FE traffic flow is large but the STQ

occupancy of a station is short, the station should not seriously regulate the FE

traffic flow of its upstream stations. Also, AM generates a local fairRate which is

equal to the added FE traffic flow rate of the station to regulate the flow when the

station is in congestion. AM immediately sets the advertised fairRate as FullRate to

allow the upstream stations to un-limitedly send traffic flow when the congestion is
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Figure 3.9: (a) Small parking lot scenario with greedy traffic, and the throughput
of (b) AM, (c) DBA, (d) DBA with moving average (DMA), and (e) FLAG.

released. This too-much variation of the advertised fairRate would cause the station

congestion again and thus make the flow of AM damping the longest.

Fig. 3.10(a) shows a large parking lot scenario where there are containing 8

(0 ∼ 7) greedy stations, and Figs. 3.10(b), 3.10(c), 3.10(d) and 3.10(e) present

the throughput of flow(0, 7), flow(2, 7), flow(4, 7), and flow(6 ,7) at station 7 by

AM, DBA, DMA, and FLAG, respectively. This scenario differs from the previous
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one of Fig. 3.9 in that the propagation delay would be large. It can be seen that

the FLAG and the AM take 11ms and 27ms to stabilize the flows, respectively;

unfortunately, DBA and DMA take quite a long time to stabilize the traffic flows.

It is because that DBA computes the number of the effective IA flows referring to

both the short aggregating traffic (per agingInterval) and the pervious local fairRate

to generate the current local fairRate. However, due to the large propagation delay,

the correlation between the short aggregating traffic and the pervious local fairRate

becomes low. Therefore, DBA cannot generate a correct local fairRate to regulate

flows. Thus the flows oscillate and converge slowly; the convergence time takes

about 0.15s which is not shown here. The DMA uses the moving average technique

to lessen the effect of propagation delay. The flow oscillation of the DMA is half

smaller than the DBA but still exists. Since without considering the STQ occupancy

for the congestion degree of station, the DMA incorrectly limits the amount of the

passing transit FE traffic flow to the next station. On the other hand, the FLAG

can correctly generate the p-fairRate to meet the RIAS fairness and diminish the

effect of the propagation delay to some extent. Also, the FLAG finely adjusts the

p-fairRate to a precise local fairRate according to both the congestion degree and

the effective fuzzy rules well designed by domain knowledge. The main reason that

AM in this scenario takes less time to stabilize all flows than AM in the previous

scenario shown in Fig. 3.9(b) is given below. Since, here in Fig. 3.10(a), there are

more stations with greedy traffic, more aggregated traffic per agingInterval will be

caused. This more aggregated traffic and the larger propagation delay would make

the station congestion always occur earlier. Afterwards, the station would not have

the chance to set the advertised fairRate as FullRate. Thus the convergence time is
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shorter.

Figure 3.10: (a) Large parking lot scenario with greedy traffic, and the throughput
of (b) AM, (c) DBA, (d) DMA, and (e) FLAG.

Fig. 3.11(a) shows a large parking lot scenario where there are containing 8

(0 ∼ 7), such as in Fig. 3.10(a) but with various finite traffic demands, greedy

stations, and Figs. 3.11(b), 3.11(c), 3.11(d), and 3.11(e) present throughputs of

flow(0, 7), flow(2, 7), flow(4, 7), and flow(6, 7) at station 7 by AM, DBA, DMA,

and FLAG, respectively. Assume that flow(0, 7) and flow(1, 7) require 2.1 Gpbs,

flow(4, 7) and flow(5, 7) require 1.5 Gpbs, and flow(2, 7), flow(3, 7) and flow(6,
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Figure 3.11: (a) Large parking lot scenario with greedy traffic, and the throughput
of (b) AM, (c) DBA, (d) DMA, and (e) FLAG in a large parking lot scenario with
various finite traffic flows.
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7) require 1.0 Gbps. It would be facts that station 6 will be the first one to incur

congestion, and the added FE traffic flow to network at each station cannot always

match its received fairRate due to the finite traffic demand at each station. Also,

flow(0,7) and flow(1,7) will have the highest throughput when station 6 is in free-

congestion or the remaining bandwidth is large because of their largest required

traffic demands. It can be seen that at the first beginning, all flows just oscillate

slightly, and then AM, DBA, and DMA oscillate all the ways, while FLAG can

make all flows converge but takes 30 ms. It is because that FLAG indeed diminishes

the effect of the propagation delay and generates the correct local fairRate at each

agingInterval. Also, since each traffic flow is with different finite traffic demand and

is much less than that of the greedy case in Fig. 3.10(e), the damping amplitude

is smaller than that in Fig. 3.10(e). Moreover, the FLAG stably realizes the RIAS

fairness and has higher throughput by about 2.8%, 3.5%, and 2.4% than AM, DBA

and DMA, respectively. On the other hand, the advertised fairRate by AM is

often set as FullRate in this scenario because the bandwidth of the total demand

traffic is 10.2 Gbps, slightly higher than the link capacity but much less than that

of the greedy case in Fig. 3.10(b). In this situation, the aggregated traffic per

agingInterval would be smaller, and the congestion, if any, could be solved by AM

most of time. Thus, the flows by AM oscillate always and the flow(0,7) seriously

oscillates due to its largest traffic demand. By DBA, its generation accuracy of local

fairRate is susceptible to the propagation delay, as seen in Fig. 3.10. Also, in this

scenario, station 0 and station 1 are the farthest ones to station 6 and flow(0,7) and

flow(1,7) are with the largest traffic demand. These facts result in that flow(0,7)

and flow(1,7) cannot be regulated by the station 6 quickly. This violent varying
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Figure 3.12: The throughputs of (a) AM, (b) DBA, (c) DMA, and (d) FLAG in a
large parking lot scenario containing 8 stations, where each flow is with truncated
Pareto traffic model.

aggregation traffic per agingInterval and the effect of the propagation delay thus

result in DBA generating the local fairRate improperly. Notice that if flow(0,7)

requires less traffic demand, the oscillation amplitude of flows will be smaller. The

DMA has the same phenomenon but its performance is better than DBA by 1.5%

due to using the moving average technique.

Figs. 3.12 (a), 3.12 (b), 3.12 (c), and 3.12 (d) present throughputs of flow(0,

7), flow(2, 7), flow(4, 7), and flow(6, 7) at station 7 by AM, DBA, DMA, and FLAG,

respectively, in a large parking lot scenario containing 8 stations as in Fig. 3.10(a),
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where each flow is with truncated Pareto traffic model [52]. Assume that flow(0,

7) and flow(1, 7) require 2.1 Gbps, flow(4, 7) and flow(5, 7) require 1.5 Gbps, and

flow(2, 7), flow(3, 7) and flow(6, 7) require 1.0 Gbps. We can see that the phenomena

of all flows are the same as those in Fig. 3.11, where all algorithms oscillate all the

ways but FLAG makes all flows be with the smallest oscillation comparing with

the other three algorithms. Thus we can claim that, due to the robustness and

the sophisticate of the proposed FLAG for the fairness control, the FLAG can still

perform better than the other schemes in the cases of realistic traffic models.

Fig. 3.13(a) shows an available bandwidth reclaiming scenario where there are

9 stations with finite traffic demand and a spatial reuse of flow(a,2) occurs, and

Figs. 3.13(b), 3.13(c), 3.13(d) and 3.13(e) present the throughput of flow(a,2) at

station and flow(0,7), flow(1,7), flow(2,7), and flow(6,7) at station 7 by AM, DBA,

DMA, and FLAG, respectively. In this scenario, the flow(a, 2) requires 5.9 Gpbs,

and similar to Fig. 3.11, flow(0, 7) and flow(1, 7) require 2.1 Gpbs, flow(4, 7) and

flow(5, 7) require 1.5 Gpbs, and flow(2, 7), flow(3, 7), and flow(6, 7) require 1.0

Gbps. It can be seen that, just as in Fig. 3.11, at the beginning, all flows of all

algorithms oscillate slightly, and finally FLAG makes all flows stabilize but takes

78 ms, while AM, DBA, and DMA oscillate all the ways. The reasons that all

algorithms in this scenario behave worse than in the large parking lot scenario with

various finite traffic flows, given in Fig. 3.11, are as follows. Since flow(a,2) is sunk at

station 2, station 1 would have more transient FE traffic flows than station 2, where

station 1 has 10.1 Gbps traffic flow maximum, while station 2 has 5.2 Gbps traffic

flow maximum. This phenomenon is conversed in Fig. 3.11, where station 1 has 4.2

Gbps traffic flow maximum, while station 2 has 5.2 Gbps maximum. Therefore, the
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Figure 3.13: (a) Available bandwidth reclaiming scenario with finite traffic demand,
and the throughput of (b) AM, (c) DBA, (d) DMA, and (e) FLAG.
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station 1 in Fig. 3.13 will more frequently and heavily regulate its station 0, which

has 5.9 Gbps transient traffic flow and 2.1 Gbps local traffic flow, than the station

1 in Fig. 5 will regulate its station 0, which has only 2.1 Gbps local traffic flow.

Thus it can be believed that all flows in Fig. 3.13 would oscillate worse than in Fig.

3.11 for all schemes. Moreover, according to our computation, the throughput at

station 6 by FLAG is about 0.990, which is higher than AM’s 0.825, DBA’s 0.914,

and DMA’s 0.933. The reasons would be the same as those given before and are not

mentioned again here.

Fig. 3.14(a) shows an available bandwidth reclaiming scenario with reuse traffic

flows, where there are 9 stations with finite traffic demand and two spatial reuses

of flow(a, 3) and flow(0, 3). Figs. 3.14(b), 3.14(c), 3.14(d), 3.14(e) and 3.14(f)

present throughputs of flow(a, 3) and flow(0, 3) at station 3 and throughputs of

flow(1, 7), flow(4, 7), and flow(6, 7) at station 7 by AM, DBA, AFC, FLAG, and

M-FLAG, respectively, where the M-FLAG denotes the modified FLAG with DBA

to replace AFC. In this scenario, flow(a, 3) and flow(0, 3) require 3.0 Gbps, flow(1,

7) and flow(2, 7) require 2.1 Gbps, flow(3, 7) and flow(6, 7) require 1.0 Gbps,

and flow(4,7) and flow(5, 7) require 2.0 Gbps. It can be seen that, similar to the

phenomena illustrated in Fig. 3.11, at the beginning, all flows of all algorithms

oscillate slightly, and finally FLAG and M-FLAG make all flows stabilized and take

48 ms and 46 ms, respectively, but M-FLAG has osillations much larger than FLAG

during the transitional period, while AFC converges at about 1129 ms and AM and

DBA oscillate all the ways. Also, all algorithms in this scenario behave worse than

in the large parking lot scenario with various finite traffic flows given in Fig. 3.11.

The reasons are as follows. Since flow(a, 3) and flow(0, 3) are sunk at station 3,
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Figure 3.14: (a) Available bandwidth reclaiming scenario with finite traffic demand
and two reuse traffic flows, and the throughput of (b) AM, (c) DBA, (d) DMA, (e)
FLAG and (f) M-FLAG.
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station 2 would have more transient FE traffic flows than station 3, where station

2 has 10.2 Gbps traffic flow maximum, while station 3 has 5.2 Gbps traffic flow

maximum. This phenomenon is conversed in Fig. 5, where station 2 has 5.2 Gbps

traffic flow maximum, while station 3 has 6.2 Gbps maximum. Therefore, the station

2 in Fig. 3.14 will more frequently and heavily regulate its station 1, which has 6.0

Gbps transient traffic flow and 2.1 Gbps local traffic flow, than the station 2 in

Fig. 3.11 will regulate its station 1, which has 2.1 Gbps transient traffic flow and

2.1 Gbps local traffic flow. Thus it can be believed that all flows in Fig. 6 would

oscillate worse than those in Fig. 5 for all algorithms. Also, that the M-FLAG has

oscillations larger than the FLAG during the transitional periods shows that the

AFC can indeed diminish the effect of the propagation delay once occurred in DBA.

Moreover, according to our computation, the throughput at station 6 by FLAG

is about 0.993, which is higher than AM’s 0.842, DBA’s 0.921, AFC’s 0.943, and

M-FLAG’s 0.988.

3.6 Concluding Remarks

In this chapter, an effective fuzzy local fairRate generator (FLAG) is proposed

for resilient packet ring (RPR). The FLAG is sophisticatedly composed of three

function blocks: an adaptive fairRate calculator (AFC), a fuzzy congestion detector

(FCD), and a fuzzy fairRate generator (FFG). The AFC pre-generates a fairRate,

which meets RIAS fairness and can diminish the effect of the propagation delay. The

FCD softly detects the congestion degree of station, considering STQ queue length

and its change rate which is the arriving transit FE traffic flows to STQ. Subse-

quently, the FFG generates a suitable local fairRate by intelligently fine-tuning the
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pre-generated fairRate, using fuzzy logics, based on the congestion degree of the sta-

tion. The FLAG can make traffic flows satisfy RIAS fairness criterion and converge

to an ideal fairRate in an efficient way. Simulation results show that each flow by

FLAG is indeed close to the designated rate with the smallest damping amplitude

and the least convergence time in the parking lot scenarios and the available band-

width reclaiming scenario, compared to conventional AM, DBA, and DBA fairness

algorithms. These prove that the configuration of FLAG is indeed sophisticated,

where AFC pre-generates the local fairRate using the moving average technique;

FCD determines the congestion degree of station using fuzzy logics, considering not

only the STQ length but also change rate of STQ length; and finally the FFG adopts

the fuzzy logics and the expert’s domain knowledge to precisely generate the local

fairRate by fine-tuning the pre-generated local fairRate by AFC according to the

congestion degree by FCD. Also, the performance superiority of DMA over DBA

proves that the moving average technique is indeed effective to diminish the effect

of propagation delay on the stability of traffic flows.
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Chapter 4

Intelligent Inter-Ring Route
Control in Bridged Resilient
Packet Rings

4.1 Introduction

The resilient packet ring (RPR) is a dual-ring-based network protocol and has

been recently approved as the IEEE 802.17 Standard [17]. A RPR network consists

of a clockwise (CW) and a counter-clockwise (CCW) ringlets, giving each station on

the ring a full duplex connection to its neighbors. It can be used for implementing

local area networks (LAN) and metropolitan area networks (MAN) at rates scalable

to many gigabits per second. More than one RPR can be interconnected by a

bridge which forwards packets from one RPR to another. A spatially aware sublayer

(SAS), which is a part of the MAC layer, in the bridge is used to decide which ringlet

interface the packet should be routed to [17, 26]. Current research on SAS, including

the IEEE 802.17b Working Group, is mainly focusing on how to modify this sublayer

in order to avoid flooding the entire bridged network when transmitting inter-ring

packets [17, 26, 27, 28].

Settawong and Tanterdtid proposed an enhancement by using a topology dis-
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covery and spanning tree algorithm [27]. The algorithm can manage traffic between

rings more efficiently and can remove the need for flooding. The shortest path route

controller (SPRC) was widely considered for metro rings [38, 39, 40] as it can maxi-

mize the spatial reuse and thus the achievable packet throughput for uniform traffic.

However, as traffic load increases, incoming call requests could pile up at a node be-

fore being processed, and these would result in a potential bottleneck in network

performance [40]. Also, Heiden et. al. analyzed the capacity of bidirectional optical

packet ring networks, such as RPR, which employs the SPRC for multicast hotspot

traffic [41]. They found that when the multicast traffic originating at the hotspot

exceeds a critical threshold, the SPRC leads to a significant capacity reduction.

Intuitively, the route selection would be closely related with the congestion

degree of the ringlet so as to follow the load balancing principle. Generally, RPR

uses a queue length threshold to detect the congestion and a node’s adding rate

limitation to avoid the network congestion [17]. Therefore, an intuitive queue-length

threshold route controller (QTRC) would be better than the SPRC. However, the

correlation function between the congestion degree and these variables is nonlinear

and complicated.

Recently, intelligent techniques such as fuzzy logics and neural networks have

been widely applied to control nonlinear, time-varying, and well-defined systems

for that fuzzy logic and neural network control can provide effective solutions with

small computational complexity. Fuzzy set theory appears to be able to support

a robust mathematical framework for dealing with real-world imprecision, and ex-

hibits a soft behavior, which means a greater ability to adapt itself to dynamic,

imprecise, and bursty environments [53]. Fuzzy and neural fuzzy implementations
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of the two-threshold congestion control method and the equivalent capacity admis-

sion control method were once studied in the literature [53, 54]. Results have shown

that the proposed fuzzy logic and neural network approaches significantly improve

system performance, compared to conventional approaches. Moreover, fuzzy logic

and neural network systems are easily implemented in a chip. This will greatly

reduce the computational time and make fuzzy logic and neural network control

feasible for real applications.

Therefore, we propose intelligent inter-ring route control for bridged resilient

packet rings in this paper. Either CW or CCW ringlet at bridge will be properly

chosen for an incoming new call request from one RPR to the other. The selection

is based on the load balancing principle which is in the sense that the selected

ringlet would be with lower congestion degree and higher service rate [46]. An

intelligent inter-ring route controller (IIRC) is designed to contain a fuzzy bridge-

node congestion indicator (FBCI) to intelligently detect the congestion degree of

bridge, and a pipeline recurrent neural networks (PRNN) downstream-node fairness

predictor (PDFP) to effectively predict the mean received fairRate. Besides, the

IIRC consists of a fuzzy router controller (FRC) to determine preference values of

route of CW and CCW ringlets according to the congestion indication provided

by FBCI, the predicted mean received fairRate provided by PDFP, the number of

hops to destination, and the service rate of the bridge. A ringlet with a larger route

preference value would be more proper to be selected. Simulation results show that

the IIRC can effectively attain the load balancing property and improve the packet

dropping probability (average packet delay, throughput) by 10% and 220% (13%

and 18%, 6% and 19%) over QTRC and SPRC [38], respectively, in a scenario.
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This is due to the fact that the IIRC sophisticatedly detects the system congestion

degree and correctly predicts the mean received fairRate using fuzzy system and

neural network. Also, IIRC achieves higher throughput by 7% and 6.7% than IIRC

itself but without considering the prediction of the received fairRate and without

considering the amount of the reserved bandwidth as well as the equivalent capacity

for a new call request, respectively.

The rest of this chapter is organized as follows. In section 4.2, the system

model is described. The neural networks and learning mechanism are presented in

section 4.3, along with two popular architectures for implementing a neural net-

work controller. The intelligent inter-ring route controller (IIRC) and its functional

blocks: FBCI, PDFP, and FRC, are designed in Section 4.4. Section 4.5 presents

simulation results and compares the proposed IIRC scheme to the QTRC and SPRC

schemes. Finally, concluding remarks are given in Section 4.6.

4.2 System Model

4.2.1 Architecture of Bridge Node

Fig. 4.1 shows a bridge node connecting R0 and R1 RPR rings, where each ring

contains a clockwise (CW) ringlet and a counter-clockwise (CCW) ringlet and there

are M nodes on the ring. Assume that the fiber link capacity of the ringlet is C

Gbps and the distance between every two consecutive nodes in the ringlet is the

same. The proposed intelligent inter-ring route controller (IIRC) is installed in a

spatially aware sublayer (SAS). As a new call request coming from one ring to the

other, the IIRC will determine an appropriate ringlet for the inter-ring new call

request. Also, the SAS forwards packets of existing calls to their interface in the
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Figure 4.1: Architecture of the bridge node

bridge node based on the determined route. The bridge node has one interface

associated each ringlet, and as shown in Fig. 4.2, each interface has two transit

buffers: the ringlet and ingress buffers. The packets to the same ring are stored

in the ringlet buffer, and those to the other ring are buffered in the ingress buffer.

Each buffer contains a primary transit queue (PTQ) and a secondary transit queue

(STQ). The high- (low-) priority packets, such as Class A and Class B-CIR (Class

B-EIR and Class C ), are stored in the PTQ (STQ). Voice packets, video packets

of I-frame, video packets of B- or P-frames, and data packets are classified as Class

A, Class B-CIR, Class B-EIR, and Class C, respectively. The bridge node always

reserves bandwidth for the high-priority traffic. The scheduler in the bridge first

serves the PTQs exhaustively with the round robin policy, and then serves the two

STQs with the proportional round robin policy associated with their queue lengths

[55].
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Figure 4.2: Architecture of the interface

4.2.2 Fairness Algorithm

There are two fairness algorithms, called aggressive mode (AM) and conservative

mode (CM), proposed in IEEE 802.17 standard [17], and another fairness algorithm,

called distributed bandwidth allocation (DBA), proposed by Alharbi and Ansari

[24, 32, 33]. For simplicity, we adopt the AM fairness algorithm in each node for

simulations. The AM fairness algorithm is described as follows. As specified in

[17], if a node finds that its STQ queue length is longer than a threshold, it regards

that congestion occurs and will initiate the AM fairness algorithm to limit its upper

node’s add rate of the low-priority traffic to relieve congestion. The AM generates a

limited value, called fairRate whose value is the available add rate of the low-priority

traffic of node, each frame time period 100 μs. If a node finds that its upper node’s

forward rate is less than its received fairRate, it will release the upper node’s add

rate limitation by sending a fairRate with a special value, called FullRate, and the

service rate of the node is the total link capacity C. If the received fairRate is not

a FullRate, the node will limit its adding rate, which is bounded by the received

fairRate, into the ring, and the service rate of the node is the summation of the
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arrival rate to the STQ, its received rate, and the reserved rate for high-priority

traffic.

4.3 Neural Network Controller

4.3.1 Neural Networks and its Learning Capability

Neural networks are inspired by modeling networks of real (biological) neurons in

the brain. It has a large number of highly interconnected processing elements which

correspond to biological neurons and thus also be called artificial neurons, or simply

neurons. The nodes are configured in regular architectures and can usually operate

in parallel to make the whole network as a parallel distributed information process-

ing structure. The collective behavior of an neural network, like a human brain,

demonstrates the ability to learn, recall, and generalize from training pattern or

data. The building blocks of neural network consists of three basic entities: neurons

model, connectionist structures (among neurons) and learning rules [43]. Neurons

are the basic information processing elements and can be viewed as consisting of two

parts in the mathematical model: input part and output part. Associated with the

input of a neuron is an integration function f which serves to combine information,

activation, or evidence from an external source or other neurons into a net input to

the neuron. The integration function f is usually a linear function of the input. A

second action of each neuron is to output an activation value as a function of its net

input through an activation function or transfer function a(f). The step function,

unipolar sigmoid function and bipolar sigmoid function are commonly used exam-

ples of the activation function. The connectionist structures are then applied to link

neurons to mimic how the human brain works while the learning rules are applied

66



Figure 4.3: The basic structure of neural network

to adaptively modify the behavior of the neural networks through past experience.

Fig. 4.3 shows the basic concept of neural network. In the figure, X is the input

signal, Y is the actual output, Z is the reference signal, and M is the training signal.

The connectionist neurons block computes the output signal Y for input signal X

and then the training signal generator block will generate a training signal according

to a specified learning rules. The training signal is used to update the weighting of

the nodes in the neural networks.

Generally speaking, the learning rules can be classified into three kinds of cate-

gories: supervised learning, reinforcement learning, and unsupervised learning. For

different learning rules, there are different sets of Z and M . In the following, the

main concepts of three learning rules are briefly described.
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• Supervised Learning

In supervised learning, each input signal X has its own desired output D. Here,

the reference signal Z is equal to desired output D. When the actual output Y is

different from reference signal Z, an error occurs. Then, the training signal will be

generated to adjust the weighting of the nodes in the neural network so that the

actual output will approach the reference signal. Therefore, the supervised learning

can be considered as a input/output mapping machine or a function approximation

tool.

• Reinforcement Learning

In the reinforcement learning, there is no desired output, only a reinforcement

signal R. The reinforcement signal is an evaluation value of the actual output Y .

For example, in the control problems, the reinforcement signal may be “good” or

“bad”. Here, the reference signal Z is equal to reinforcement signal R. Using the

reinforcement signal R, a training signal is generated to update the weighting so that

the actual output will achieve a better evaluation value in the future. Therefore, the

reinforcement learning is learning with a teacher. Using the reinforcement learning,

the neural network acts as a controller to make the system work better according

to a pre-defined evaluation function.

• Unsupervised Learning

Unlike the previous two learning rules, there is no feedback information from

the environment in the unsupervised learning. Neither the desired output or rein-

forcement signal are available. Instead, the training signal is generated from actual

output Y and the internal weighting of the neural network. The training signal here
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is used to increase the weighings of the nodes that connect to the actual output.

That is, the correlation between the chosen input nodes and output data will be en-

hanced. In the unsupervised learning, the neural network discovers its patterns and

the correlation through experiments, which is called self-organizing. Therefore, the

unsupervised learning are usually applied to deal with the classification or clustering

problems.

Like the condition in fuzzy logic controller, there are also diverse implementation

ways to build a neural network as a controller.

4.3.2 Multilayer Feedforward Neural Networks

Multilayer feedforward neural networks, as shown in Fig. 4.4, is a typical model for

implementing a neural network controller. The neural network controller possesses

an ability to perfectly approximate a generic function from input/output data pairs

{X, Y }. Consider a multilayer feedforward neural network NN(X, W ), with input

vector X and a set of (link) weight vector W which will be updated by some learning

rules; denote a continuous function by Z = f(X) : D ⊆ Rni → Rno , where D is

a compact metric space on R, and ni (no) is the input (output) space dimension.

The Stone-Weierstrass theorem [56] showed that NN(X, W ) (actual output) can be

trained to asymptotically approach any continuous desired output function f(X)

as close as possible. That is, an NN(X, W ) with appropriate weight W can be

found so that ||NN(X, W ) – f(X)||X < ε for an arbitrary ε > 0, where ||e||X =∑
X∈D ||e(X)||2 and || · || is a vector norm. The neural network is a non-structured

network, which cannot incorporate knowledge about system.

A back-propagation learning algorithm [57], which is a kind of supervised learn-
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Figure 4.4: The structure of multilayer feedforward neural network

ing, is usually employed to train the neural network controller. Let X(i) denote the

vector randomly sampled from D and used as an input to the neural network con-

troller at time instant ti, let NN(X(i), W ) = ẑ(i) denote the corresponding decision

of the neural network controller, and let f(X(i)) = z(i) denote the desired decision.

The objective of the back-propagation learning algorithm is to minimize decision

error E by recursively adjusting its weight in each layer, where E is defined as

E =
1

2
||NN(X(i), W )− f(X(i))||2

=
1

2
(ẑ(i)− z(i))2. (4.1)

Consider an M -layer feedforward neural network. Each layer has a number of

processing elements (neurons) which are fully interconnected with the neurons in

neighboring layers via adaptive weights. Neurons in the input layer (layer k = 1)

do not process the input data; they simply store input data values. Neurons in the

hidden layers (2 ≤ layer k ≤ M − 1) and output layer (layer k = M) perform two

operations. The jth neuron in the kth layer, for example, first calculates a weighted
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sum, denoted by S
(k)
j , of all outputs o

(k−1)
i of the (k − 1)th layer. S

(k)
j is given by

S
(k)
j =

{
xj if k = 1,∑nk−1

i=1 w
(k)
ji o

(k−1)
i if 2 ≤ k ≤ M,

(4.2)

where xj is the input variable of the jth neuron in the input layer, nk−1 is the number

of neurons in layer (k− 1), and w
(k)
ji is the weight of the link connected from the ith

neuron in layer (k − 1) to the jth neuron in layer k. After that, the neuron further

transforms S
(k)
j into output o

(k)
j via an activation function G(·). o

(k)
j is expressed as

o
(k)
j =

{
S

(k)
j if k = 1,

G(S
(k)
j ) if 2 ≤ k ≤ M.

(4.3)

The adjustment of weights is based on a steepest-descent algorithm [57]. It

can be expressed as

w
(k),new
ji = w

(k),old
ji − η

∂E

∂w
(k)
ji

|
w

(k)
ji =w

(k),old
ji

, (4.4)

where η is a gain term that determines the learning rate of the link weight. η is

usually set equal to a positive constant less than unity. In order to obtain the partial

derivative for the quadratic error E, an error term produced by the jth neuron in

layer k, denoted by δ
(k)
j , is obtained from

δ
(k)
j = − ∂E

∂S
(k)
j

, 1 ≤ k ≤ M, 1 ≤ j ≤ nk. (4.5)

It was shown in [57] that the error signals δ
(k)
j ’s can be computed according to a

recursive procedure of the generalized delta learning rule [57] described as follows,

δ
(k)
j =

⎧⎪⎨⎪⎩
G′(S(k)

j )
∑

l δ
(k+1)
l w

(k+1)
lj for 2 ≤ k ≤ M − 1,

(z − ẑ)G′(S(k)
j ) for k = M.

(4.6)
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Once these error signal terms have been determined, the partial derivative for the

quadratic error can be computed directly by

∂E

∂w
(k)
ji

=
∂E

∂S
(k)
j

∂S
(k)
j

∂w
(k)
ji

= −δ
(k)
j o

(k−1)
i . (4.7)

And the update rule for the back-propagation algorithm is then given by

w
(k),new
ji = w

(k),old
ji − η

∂E

∂w
(k)
ji

= w
(k),old
ji + ηδ

(k)
j o

(k−1)
i . (4.8)

4.3.3 Radial Basis Function Neural Networks

The radial basis function neural networks (RBFN), which was suggested by

Moody and Darken in [58], is another implementation of the neural network to

serve as a controller. It has the architecture of the instar-outstar neural network

model and uses the hybrid unsupervised and supervised learning scheme. It offers

a viable alternative to the two-layer neural network in many applications of signal

processing, pattern recognition, control, and function approximation. The structure

of RBFN is showed in Fig. 4.5. Unlike the instar-outstar neural network model in

which the hidden nodes are linear winner-take-all nodes, the hidden nodes in the

RBFN have normalized Gaussian activation function

zq = gq(x) =
Rq(x)∑
k Rk(x)

=
exp[− |x−mq |2

2σ2
q

]∑
k exp[− |x−mk|2

2σ2
k

]
, (4.9)

where x is the input vector. Thus, hidden node q gives a maximum response to

input vectors close to mq. Each hidden node q is said to have its own receptive filed

Rq(x) in the input space, which is a region centered on mq with size proportional

to σq, where mq and σq are the mean (an m-dimensional vector) and variance of

the qth Gaussian function. The Gaussian function is a particular example of radial
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basis functions. The output of the RBFN, denoted by y, is simply the weighted sum

of the hidden node output, which is given by

y = a(
l∑

q=1

wqzq + θ ), (4.10)

where a(·) is the output activation function and θ is the threshold value. Generally,

a(·) is an identity function (i.e., the output node is a linear unit) and θ = 0.

Figure 4.5: The structure of RBFN controller

The purpose of the RBFN is to pave the input space with overlapping receptive

fields. For an input vector x lying somewhere in the input space, the receptive fields

with centers close to it will be appreciably activated. The output of the RBFN is

then the weighted sum of the activation of these receptive fields.
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The training rule of RBFN is hybrid. It includes unsupervised learning in the

input layer and supervised learning in the output layer. The unsupervised part of

the learning involves the determination of the receptive field centers mq and widths

σq, q = 1, 2, · · · , l. The proper centers mq can be found by unsupervised learning

rules such as the vector quantization approach, competitive learning rules, or simply

the Kohonen learning rule; that is

Δmclosest = η(x−mclosest), (4.11)

where mclosest is the center of the receptive field closest to the input vector x and

the other centers are kept unchanged. In simple case, the widths σq are determined

by

σq =
|mq −mclosest|

γ
, (4.12)

where mclosest is the closest vector to mq and γ is an overlap parameter.

According to the delta learning rule, the weights in the output layer can be

updated by

Δwq = η(d− y)zq. (4.13)

When averaged over the p training pairs, the objective is to minimize the following

mean squared error cost function:

E(wq) =
1

2

∑
k

[dk − yk]2 (4.14)

=
1

2

∑
k

[dk −
l∑

q=1

wqz
k
q ]2 (4.15)

=
1

2

∑
k

[dk −
l∑

q=1

wqgq(x
k)]2. (4.16)
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Although RBFN generally cannot quite achieve the same accuracy as the mul-

tilayer feedforward neural network, it can be trained several orders of magnitude

faster than the the multilayer feedforward neural network with back-propagation

learning. This is due to the advantage of hybrid-learning networks which have only

one layer of connections trained by supervised learning. It is suitable for the ap-

plication where the neural network controller is necessary to be on-line trained to

adaptively capture the dynamic features of a system.

4.4 Intelligent Inter-Ring Route Controller

The intelligent inter-ring route controller (IIRC) is to determine a proper ringlet

(CW or CCW) for an incoming inter-ring new call request at bridge. The deter-

mination of ringlet is based on the load balancing principle, in which the CW or

CCW ringlet with lower congestion degree and higher service rate will be chosen.

The congestion may come from the bridge node or the CW (CCW) downstream

node. The former is related with the two STQ lengths of the associated interface

in the bridge node given in Figs. 4.1 and 4.2. Thus as shown in Fig. 4.6, the IIRC

designs a fuzzy bridge-node congestion indicator (FBCI) to intelligently detect this

congestion. The latter is related with the received fairRate from the downstream

node of the associated ringlet. Therefore, the IIRC designs a PRNN (pipeline re-

current neural networks) downstream-node fairness predictor (PDFP) to predict the

CW or CCW downstream-node congestion degree. Finally, the IIRC designs a fuzzy

route controller (FRC) to determine a proper ringlet for the incoming inter-ring

new call request. It receives the congestion indication from FBCI, denoted by CI ,

and the predicted mean received fairRate from PDFP, denoted by R̂f , as input lin-
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Figure 4.6: Intelligent inter-ring route controller (IIRC)

guistic variables. Also, it considers the service rate of the CW or CCW ringlet at

the bridge node, denoted by R, and the number of hops between the bridge and

the destination, denoted by H, as input linguistic variables. Notice that the ringlet

service rate at the bridge node, defined in Section 4.2.2, is related with the received

fairRate and more hops consume more system bandwidth. The FRC calculates the

preference value of route, denoted by Pv, for CW and CCW interfaces and selects

the ringlet with larger Pv as the proper ringlet route for the incoming inter-ring new

call request.

4.4.1 Fuzzy Bridge-Node Congestion Indicator (FBCI)

The fuzzy bridge-node congestion indicator (FBCI) considers four measures as the

input linguistic variables to determine the congestion degree of the bridge node at

the CW or CCW interface. They are STQ lengths in the ingress buffer and the

ringlet buffer, denoted by QSI and QSR, respectively, the amount of the reserved
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bandwidth for high class traffic (which are stored in PTQ), denoted by BA, and

the equivalent capacity of the incoming inter-ring new call [59], denoted by Ec.

Note that the equivalent capacity for a new call can be estimated from its traffic

description parameters: the peak rate, mean rate, and peak rate duration of packets

[53, 59]. Among the four measures, the two STQ lengths are the more essential

measures to indicate the degree of the congestion in the RPR bridge node. The

BA occupancy is highly correlated with the STQ due to the fact that the system

bandwidth is allocated to high priority traffic first. Also, the amount of Ec can

cause the increment of the STQ length. The output linguistic variable of the FBCI

is the congestion degree of the CW or CCW interface of the bridge, denoted by CI .

Term sets for the four input linguistic variables and the output linguistic variable

are defined as T (QSI(QSR)) = {Short (S), Medium (M), Long (L)}; T (BA) = {Few

(Fw), Many (Ma)}; T (Ec) = {Small (S), Large (L)}, and T (CI) = {Very Low (V L),

Low (L), Medium (M), High (H), Very High (V H)}.
Membership functions for each term T in the term set of input/output linguistic

variable X, denoted by μT (X), should be defined with a proper shape and position.

The determination for the membership function is subjective in nature; however, it

cannot be selected arbitrarily [43]. Usually, a triangular function f(x; x0, a0, a1) or

a trapezoidal function g(x; x0, x1, a0, a1) is chosen as membership function because

they are simple and thus suitable for real-time operation [53, 54]. The two functions

are given by

f(x; x0, a0, a1)=

⎧⎨⎩
x−x0

a0
+1, for x0 − a0 < x≤ x0,

x0−x
a1

+1, for x0 < x< x0 + a1,

0, otherwise,

(4.17)
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and

g(x;x0,x1,a0,a1)=

⎧⎪⎪⎨⎪⎪⎩
x−x0

a0
+1, for x0−a0< x≤ x0,

1, for x0< x≤ x1,
x1−x

a1
+1, for x1< x< x1 + a1,

0, otherwise,

(4.18)

where x0 in f(·) is the center of the triangular function; x0 (x1) in g(·) is the left

(right) edge of the trapezoidal function; and a0 (a1) is the left (right) width of the

triangular or the trapezoidal function. The center, edge, or width of the triangular

or trapezoidal membership function is set intuitively but based on the characteristics

of the linguistic variables.

Membership functions for S, M and L in T (QSI) are expressed as

μS(QSI) = g(
QSI

Ls

; 0, 0.25lth, 0, 0.25lth), (4.19)

μM(QSI) = f(
QSI

Ls

; 0.5lth, 0.5lth, 0.5lth), (4.20)

μL(QSI) = g(
QSI

Ls

; lth, 1, 0.5lth, 0), (4.21)

where Ls is the STQ queue size, and lth is the threshold in percentage. Note that

if the STQ length is larger than lth · Ls, the bridge is in congestion and the fairness

algorithm will be enabled. Membership functions for S, M and L in T (QSR) are

similar to S, M and L in T (QSI), respectively. Membership functions for Fw and

Ma in T (BA) are defined as

μFw(BA) = g(BA; 0, C/40, 0, C/40), (4.22)

μMa(BA) = g(BA; C/10, C, 3C/40, 0), (4.23)

where C is the link capacity. Membership functions of terms in T (Ec), are defined

as

μS(Ec) = g(Ec; 0, Rvoice, 0, Rvideo), (4.24)
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Table 4.1: The Fuzzy Rule base of FBCI

Rule QSI QSR BA Ec CI Rule QSI QSR BA Ec CI

1 S S X X V L 13 M M Ma S M
2 S M Fw X V L 14 M M Ma L H
3 S M Ma S V L 15 M L Fw X H
4 S M Ma L L 16 M L Ma S H
5 S L Fw S L 17 M L Ma L V H
6 S L Fw L M 18 L S Fw X M
7 S L Ma S M 19 L S Ma S M
8 S L Ma L H 20 L S Ma L H
9 M S Fw X V L 21 L M Fw S H
10 M S Ma X L 22 L M Fw L V H
11 M M Fw S L 23 L M Ma X V H
12 M M Fw L L 24 L L X X V H

μL(Ec) = g(Ec; Rh, C, Rvideo, 0), (4.25)

where Rvoice and Rvideo are the minimum demand of the mean rates of the voice and

video traffics, respectively, and Rh is the maximum demand of the mean rate of the

video traffic to provide the high quality video. Membership functions for terms of

output linguistic variable CI are defined as

μV L(CI) = f(CI ; 0.1, 0, 0), (4.26)

μL(CI) = f(CI ; 0.3, 0, 0), (4.27)

μM(CI) = f(CI ; 0.5, 0, 0), (4.28)

μH(CI) = f(CI ; 0.75, 0, 0), (4.29)

μV H(CI) = f(CI ; 1, 0, 0). (4.30)

As shown in Table 4.1, there are 24 fuzzy rules for FBCI, where the notation

”X” in this table represents ”don’t care” of the linguistic variable. The order of

significance of the input linguistic variables for the FBCI would be QSI , QSR, BA,

79



and Ec in sequence. The bridge will be in high degree of congestion if its two STQ

queue lengths are close to or longer than the threshold (the corresponding terms of

QSI and QSR are Medium or Long).

FBCI adopts the max-min method for fuzzy inference. In Tabel 4.1, there

are the 4th, 5th, 10th, 11th, and 12th rules which have the same output congestion

indication CI = L. The provisional results after applying the min operation on rule

4 for inference is

w4 = min(μS(QSI), μM(QSR), μMa(BA), μL(Ec)). (4.31)

w5 = min(μS(QSI), μL(QSR), μFw(BA), μS(Ec)). (4.32)

w10 = min(μM(QSI), μS(QSR), μMa(BA), X), (4.33)

w11 = min(μM(QSI), μM(QSR), μFw(BA), μS(Ec)), (4.34)

w12 = min(μM(QSI), μM(QSR), μFw(BA), μL(Ec)), (4.35)

Similarly, provisional results of w5, w10, w11, and w12 can be obtained. According to

these provisional results, the max operator is applied to yield fuzzy inference result

of the output indication CI = L, denoted by wL, and is given by

wL = max(w4, w5, w10, w11, w12). (4.36)

The fuzzy inference results of the output indication V L, M , H, and V H, denoted

by wV L, wM , wH and wV H , respectively, can be obtained by the same way. Finally,

the fuzzy inference results of FBCI are defuzzified to become a crisp value. The

defuzzification method adopted is the center of area defuzzification method. Thus

the crisp value of the congestion degree CI is obtained by

CI =
0.1 · wV L+ 0.3 · wL+ 0.5 · wM + 0.75 · wH + 1 · wV H

wV L + wL + wM + wH + wV H

, (4.37)
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where the coefficient for wT denotes the center value of the term T ’s triangular

membership function, and the term T is V L, L, M , H, or V H; 0 ≤ CI ≤ 1.

4.4.2 PRNN Downstream-Node Fairness Predictor (PDFP)

The bridge uses the received fairRate from associated ringlet of downstream node

to discern the congestion degree of the downstream node. If the received fairRate

is high, it means that the downstream nodes’s STQ can accept more flows and the

bridge can raise its service rate. Otherwise, it means that the downstream nodes’s

STQ is going to be full or has overflowed and the bridge should decrease its service

rate. However, by the AM fairness algorithm [17] considered in this paper, the

received fairRate would vary. This high variation of the received fairRate would

make the bridge not easily detect if its downstream node is in congestion or not.

Therefore, we originally choose an average received fairRate over the past m periods

from the current nth period, denoted by Rf (n), as the input variable, where m is

the size of the observation window, m ≥ 1. The Rf (n) could be appropriate to

detect the congestion situation of the downstream nodes during a period and it is

expressed by

Rf (n)=
Rf (n)+Rf (n− 1) + · · ·+ Rf (n−m + 1)

m
, (4.38)

where Rf (n) is the received fairRate at time n. Also, since the bridge node routes

the traffic flows call by call, the next-step mean received fairRate could be more

appropriate to determine the route for an accepted new call. Here, a pipeline recur-

rent neural networks (PRNN) [60] is adopted to design the PRNN downstream-node

fairness predictor (PDFP). The fairRate with one-step prediction as a function of p

received fairRates and q previously predicted fairRate, denoted by R̂f (n + 1) or R̂f
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for convenience, is given by

R̂f (n+1)=H
(
Rf(n),· · ·,Rf(n−p+1); R̂f(n),· · ·, R̂f(n−q+1)

)
, (4.39)

where R̂f (i) is the previously predicted mean fairRate at ith period, n−q+1 ≤ i ≤ n,

and H(·) is an unknown nonlinear function to be determined. The pipeline recurrent

neural network (PRNN) prediction is a fast, low-complexity, and non-linear one that

can approximate the function H(·) [60, 61, 62].

The architecture of PRNN can be referred to [61, 62]. The incremental change

of synaptic weights is according to the steepest decent method. Also, the training

of PRNN consists of two stages. During the off-line training phase, the PRNN, fed

with the received fairRates, adjusts the synaptic weights recursively until the root

mean square error (RMSE) of the desired prediction output is lower than the criteria.

During the on-line training phase, the PRNN fairness predictor obtains the fairRate

predictions at (n+1)th period, R̂f (n+1), from the output of the first neuron of the

first module, and receives the new fairRate Rf (n + 1); then it adjusts the synaptic

weights using the real time recurrent learning (RTRL) algorithm. Due to the on-line

learning capability, PDFP can adapt its wights to the current load conditions other

than those set in the off-line training phase [61]. If a PRNN contains q modules and

M neurons per module, the computational complexity would be O(qM4). However,

when the system is in operation and the PRNN has determined each parameter by

learning, the computational complexity is reduced to O(1) [61, 62].

4.4.3 Fuzzy Route Controller (FRC)

The fuzzy route controller (FRC) is to determine the route preference values,

Pvs, for both of CW and CCW ringlets. The determination is based on four input
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linguistic variables of ringlet: the congestion indication of the bridge node, CI , the

predicted mean received fairRate, R̂f , the current service rate of the ringlet, R, and

the number of hops to destination, H. The higher value Pv of a ringlet means that

the ringlet is more suitable to accept the incoming new call request. Term sets for

the input and output linguistic variables are defined as T (CI) = {Low (Lo), Medium

(Me), High (Hi)}, T (R̂f ) = {Small (Sm), Medium (Me), Large (La)}, T (R) = {Low

(Lo), High (Hi)}, T (H) = {Few (Fw), Many (Ma)}, and T (Pv) = {Unsuitable (U),

Weakly Unsuitable (WU), Weakly Suitable (WS), Suitable (S)}.
Membership functions for terms of Lo, Me, and Hi in T (CI) are defined as

μLo(CI) = g(CI ; 0,
1

4
, 0,

1

4
), (4.40)

μMe(CI) = f(CI ;
1

2
,
1

4
,
1

4
), (4.41)

μHi
(CI) = g(CI ;

3

4
, 1,

1

4
, 0). (4.42)

Membership functions for terms of Sm, Me, and La in T (R̂f ) are expressed as

μSm(R̂f ) = g(R̂f ; 0,
v

5
, 0,

v

4
), (4.43)

μMe(R̂f ) = f(R̂f ;
v

2
,
v

4
,
v

4
), (4.44)

μLa(R̂f ) = g(R̂f ;
3v

5
, v,

v

10
, 0), (4.45)

where v denotes the unreserved bandwidth for the low priority traffic at the bridge

node and v = C − BA. Here, we set v
5
, v

2
, and 3v

5
as the right edge, center, and

left edge of membership functions for terms Sm, Me, and La of R̂f , respectively.

Similarly, membership functions for T (R) are defined as

μLo(R) = g(R; 0,
1

4
C, 0,

1

4
C), (4.46)
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μHi
(R) = g(R;

3

5
C,C,

C

5
, 0), (4.47)

where C is the total capacity of the fiber link. Here, we set C
4

and 3C
5

as the right

edge and left edge of membership functions for terms Fw and Ma of R. Membership

functions for terms of Fw and Ma in T (H) are defined as

μFw(H) = g(H; 0,
1

3
N, 0,

1

3
N), (4.48)

μMa(H) = g(H;
2

3
N, N,

1

3
N, 0), (4.49)

where N is the total number of nodes in a RPR network. Finally, membership

functions for terms in T (Pv) are defined as

μU(Pv) = f(Pv; 0.1, 0, 0), (4.50)

μWU(Pv) = f(Pv; 0.4, 0, 0), (4.51)

μUS(Pv) = f(Pv; 0.7, 0, 0), (4.52)

μS(Pv) = f(Pv; 1, 0, 0). (4.53)

As shown in Table 4.2, there are 21 fuzzy rules. The notation ”X” in Table 4.2

represents ”don’t care” of the linguistic variable. The rules are designed according

to the load balancing principle for FRC, and the order of significance of the input

linguistic variables for the FRC is CI , R̂f , R, and H. The low congestion degree of

ringlet interface (CI = Lo) and the large or medium predicted mean received fairRate

(R̂f = La or Me) would make the inter-ring new call have more chance to enter

the interface. However, the low congestion degree of ringlet interface (CI = Lo),

but the small predicted mean received fairRate (R̂f = Sm) which means that the

downstream nodes may incur congestion, and the high ringlet service rate (R = Hi)
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Table 4.2: The Fuzzy Rule Base of FRC

Rule CI R̂f R H Pv Rule CI R̂f R H Pv

1 Lo La X X S 12 Me Me Lo Ma WU
2 Lo Me Hi X S 13 Me Sm Hi X WU
3 Lo Me Lo X S 14 Me Sm Lo X U
4 Lo Sm Hi Fw WS 15 Hi La Hi Fw WS
5 Lo Sm Hi Ma WU 16 Hi La Hi Ma WU
6 Lo Sm Lo X WU 17 Hi La Lo X WU
7 Me La Hi X S 18 Hi Me Hi Fw WU
8 Me La Lo Fw S 19 Hi Me Hi Ma U
9 Me La Lo Ma WS 20 Hi Me Lo X U
10 Me Me Hi X WS 21 Hi Sm X X U
11 Me Me Lo Fw WS

would make the variable of the number of hops to destination H significant. If H
is Few, the new call will be weakly suitable for the ringlet, while if H is Many,

the new call will be weakly unsuitable for the ringlet. On the other hand, the

high congestion degree of ringlet interface (CI = Hi) and the small predicted mean

received fairRate (R̂f = Sm) would make the inter-ring new call have less chance to

enter the interface. However, the high congestion degree of ringlet interface (CI =

Hi), but the large predicted mean received fairRate (R̂f = La) which means that the

downstream nodes are free of congestion, and the high ringlet service rate (R = Hi)

would similarly make the variable of the number of hops to destinationH significant.

The fuzzy inference algorithm also adopts the max-min inference method, and the

defuzzification method, the center of area defuzzification method.

4.5 Simulation Results

Simulations are here conducted to compare the performances of proposed IIRC,

and SPRC [38]. Also, an intuitive queue-length threshold route controller (QTRC)
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is included, which determines a proper ringlet depending on the shorter STQ length

of ingress buffer. Traffic flows from R1 to R0 at the bridge node are considered.

Referring to Fig. 4.1, assume that there are M = 16 non-bridge nodes on R0, the

link capacity is C = 10.0 Gbps, and sizes of the two PTQs and the two STQs are 40

Mbyte with threshold lth = 1/4. Three kinds of calls are considered in the system:

voice, video, and data. The two-state Markov chain is used to model packet traffic

flow of calls with two different arrival rates and two state transition rates. Then

the peak rate Rp, the mean rate Rm, and the mean burst period Tp with the four

previous rates can be obtained [59].

For voice packet generation process, during the ON (talkspurt) state, voice

packets are generated with rate 21×10−4; during the OFF (silence) state, no packets

are generated. A voice source has two transition rates of 4× 10−5 and 8 × 10−5 in

the ON and OFF states, respectively. The packet size is fixed at 70 bytes, and

thus the generation rate is constant bit rate (CBR) during ON state. The arrival

process of a voice source was assumed that Rp = 21 × 10−4, Rm = 7 × 10−4,

and Tp = 1.3s. Two kinds of video packet generation processes are assumed: the

intraframe and interframe generation processes. The intraframe (I-frame) generation

process is similar to the voice packet generation process with generating rate 5×10−2,

and two transition rates of 4 × 10−5 and 8 × 10−5 in the ON and OFF states,

respectively. The arrival process of the I-frame of video packet source was assumed

that Rp = 5 × 10−2, Rm = 1 × 10−2, and Tp = 0.1s. The interframe (B- and

P-frames) generation process includes B-frame-bit-rate and P-frame-bit-rate video

services, and their generation was characterized by Bernoulli processes with rates

θB and θP , respectively. For B-frame-bit-rate of the B-frame of video packet source,
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it was assumed that Rp = 2 × 10−2, Rm = 2 × 10−3, and Tp = 0.01s, which is

given θB = 0.1; for P-frame-bit-rate of the P-frame of video packet source, it was

assumed that Rp = 1×10−2, Rm = 2×10−4, and Tp = 0.01s, which given θP = 0.02.

The I-frame packet size is fixed at 1000 bytes, and the generation rate is CBR;

the B-frame, and P-frame packet sizes are uniformly distributed over 100 and 1518

bytes and the generation rates are with generation of variable bit rate (VBR). The

data packet generation process includes high-bit-rate and low-bit-rate data services,

and the generation of high-bit-rate data packets and low-bit-rate data packets are

characterized by Bernoulli processes with rates θ1 and θ2, respectively. For high-

bit-rate of data source, it was assumed that Rp = 7 × 10−2, Rm = 7 × 10−3, and

Tp = 0.03s, which is given θ1 = 0.1; for low-bit-rate of data source, it was assumed

that Rp = 3.5 × 10−2, Rm = 7 × 10−4, and Tp = 0.03s, which is given θ2 = 0.02.

The data packet sizes are uniformly distributed over 100 and 1518 bytes and the

generation rates are with generation of variable bit rate (VBR). The parameters,

Rvoice, Rvideo, and Rh, are set to 64kbps, 640kbps, and 6.4Mbps, respectively.

Fig. 4.7(a), (b), and (c) show the average packet dropping probability, the av-

erage packet delay, and the throughput, respectively, for the proposed IIRC, QTRC,

and SPRC, versus the traffic intensity from the R1 to R0 at the bridge in a balanced

scenario. The traffic intensity at the bridge is here defined as the total arrival packet

rate over the capacity of the fiber link. In this balanced scenario, in R0, both the

local CW ringlet traffic intensity from node 16 to bridge and the local CCW ringlet

traffic intensity from node 1 to bridge are fixed at 0.6, and the varying inter-ring

traffic intensity is from 0.3 to 0.7; the add traffic intensity of node 1 in CW ringlet

and the add traffic intensity of node 16 in CCW ringlet are both fixed at 0.2; the
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Figure 4.7: The performance comparison for IIRC, SPRC, and QTRC in the bal-
anced scenario
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probability of the destination of the incoming new calls is uniformly distributed over

nodes on R0. It is found that the packet dropping probability and the average packet

delay of both CW ringlet and CCW ringlet are almost the same for IIRC, QTRC,

and SPRC. The results show that IIRC, QTRC and SPRC can achieve the load

balancing in this balanced scenario. It is because the probability of the destination

for the new call request is uniformly distributed over nodes; the routing policy of

QTRC is simply according to a shorter STQ length of ingress buffers and the routing

policy of SPRC is based on the shortest path. Also, this justifies that the IIRC,

which chooses a suitable ringlet with lower congestion degree and higher service rate,

is well designed. Furthermore, IIRC has the lower packet dropping probability by

about 16% and 29%, the smaller average packet delay by about 9% and 21%, and

the higher throughput by 5.1% and 7% in heavy bridge traffic intensity than QTRC

and SPRC, respectively. It is because QTRC does not consider the number of hops

to destination, and thus QTRC would route calls to pathes with more nodes and

then consume more bandwidth. Also, in the situation that many incoming new calls

just happen to have the same destinations, SPRC’s routing policy would make the

STQ overflow. However, IIRC decides a suitable route for each call independently

based on congestion degree and service rate.

Fig. 4.8(a), (b), and (c) show the average packet dropping probability, the

average packet delay, and the throughput, respectively, versus the bridge traffic

intensity in an unbalanced scenario. Here, the probability of destination of nodes

for new calls is non-uniformly distributed, where node 1 (9) to node 8 (16) are

with the same probability 1/40 (1/10). It can be found that the packet dropping

probabilities and the average packet delays of CW and CCW ringlet by IIRC and
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Figure 4.8: The performance comparison for IIRC, SPRC, and QTRC in the unbal-
anced scenario
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QTRC are still almost the same, while these by SPRC are quite different. We can

deduce that the IIRC can indeed perceive the congestion degree of CW and CCW

ringlets and sophisticatedly achieve the load balancing by overall considering the

congestion degree, the received fairRate, the ringlet service rate, and the number

of hops to destination. QTRC could avoid enlarging a longer STQ length of the

ingress buffer due to its routing policy. Moreover, IIRC improves by about 10% and

220% in packet dropping probability, and by about 13% and 18% in average packet

delay, by about 6% and 19% in throughput in heavy traffic intensity over QTRC

and SPRC, respectively. It is because the SPRC scheme would route most calls via

the CCW ringlet for most destinations of incoming new calls that are on the up side

of the bridge. This will make the STQ occupancy of CCW interface in R0 exceed a

threshold and thus SPRC gets a worse throughput.

Fig. 4.9 shows the bridge throughputs of IIRC and IIRC without prediction

in a balanced scenario as given in Fig. 4.7, where different m sizes for the average

received fairRate Rf given in (6) are considered. The IIRC without prediction means

that the FRC uses the received fairRat instead of the predicted received fairRate. It

can be found that the IIRC achieves higher system throughput than IIRC without

prediction by an amount of 7%, generally speaking, and the larger m-size for the

average received fairRate would be better. It justifies that the information of the

congestion degree of downstream nodes for the determination of proper route for the

incoming new call should be timely. The obsolete information of congestion degree

is not suitable. A proper number for the average could be more effective. It can be

seen that a proper value of m, such as m = 10, is good enough. As shown in the

Fig. 4.9, the size of m = 20 performs better than that of m = 10 by only an amount
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Figure 4.9: The bridge throughput versus the inter-ring traffic intensity under dif-
ferent m size of observing window

of 1.1%.

Fig. 4.10 shows the bridge throughputs under IIRC, IIRC without considering

EC and/or BA in a balanced scenario as given in Fig. 4.7 It is found that the

IIRC has the largest throughput; it improves by about 1.5%, 3.6%, and 6.7% over

IIRC without considering EC , IIRC without considering BA, and IIRC without

considering BA and EC , respectively. These can justify that, as the statements

made in Section III. A, the input linguistic variables BA and EC are essential, and

the BA input linguistic variable is more important than EC .
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Figure 4.10: The comparison of bridge throughputs under different schemes versus
the inter-ring traffic intensity

4.6 Concluding Remarks

This chapter proposes an intelligent inter-ring route controller (IIRC) for bridged

resilient packet rings (RPRs). The IIRC uses not only the two STQ lengths but

also the reserved bandwidth for highest priority traffic and the equivalent band-

width of an incoming new call to indicate the congestion degree of the interface

of the bridge node. It specially predicts the mean received fairRate to detect the

congestion degree of downstream-node. Moreover, IIRC further considers the num-

ber of hops to destination and the service rate of the bridge, besides the indication

of the congestion degree of bridge-node by FBCI and the prediction of the mean

received fairRate by PDFP, to decide a route preference value of the interface by

FRC. The rule structure of FRC is based on the load balancing principle. Finally,

the IIRC chooses a ringlet with higher preference value of route to forward the call
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to the destination. Simulation results show that the IIRC effectively follows the

load balancing principle and achieves the better performance than the queue length

threshold route controller (QTRC) and the shortest path route controller (SPRC).

If the probability of destination nodes is non-uniformly distributed over all node in a

ring, IIRC improves by about 10% and 220% in the packet dropping probability, by

about 13% and 18% in the average packet delay, and by about 6% and 19% in the

throughput over QTRC and SPRC. Also, IIRC achieves more gain in throughput

by about 8% and 6.7% than IIRC itself without considering the prediction of the

average received fairRate and without considering the amount of the reserved band-

width as well as the equivalent capacity for a new call request, respectively. These

justify that the IIRC is sophisticatedly configured and well designed in choosing the

input linguistic variables, defining membership functions, and designing rule base

to deter mine a proper ringlet for an incoming new call. The design philosophy of

IIRC can be applied to any kind of bridged optical packet rings.

Moreover, the IIRC is feasible for real applications for that the computational

complexity and the cost of IIRC are simple and effective, respectively. As mentioned

previously, the IIRC is designed using fuzzy logic and neural networks and can be

implemented in a chip.
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Chapter 5

Conclusions and Future Works

The thesis provides a channel scheduling scheme, a bandwidth allocation,and

a route control to improve the performance of the optical burst switching network

of all the optical backbone (core) network, an optical packet ring network, which

is called the resilient packet ring (RPR) and specified in IEEE 802.17 [17] and a

bridged optical packet ring network based on the resilient packet ring, which is

called bridged resilient packet rings (BRPR), respectively.

In chapter 2, we propose a new channel-scheduling scheme, called priority

burst scheduling with FDL assignment (PBS-FA), for the OBS networks when the

signal protocol is preemptive prioritized JET (PPJET) [16]. It is due to the fact

that the high-priority burst is more important than the low-priority one and the

shorter burst is more easily to be rescheduled into the void. Therefore, the PBS-FA

scheme allows high-priority bursts to preempt low-priority ones and longer high-

priority ones to replace shorter ones. Also, it reschedules those preempted bursts

by using FDL assignment. Simulation results reveal that the PBS-FA improves

the system throughput by about 3% to 10% 2.4 and reduces the average system

dropping probability by about 30% to 45% 2.5 at the traffic load 0.4 to 0.8 over the
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PLAUC-VF.

In chapter 3, an effective fuzzy local fairRate generator (FLAG) is proposed for

RPR. The FLAG is sophisticatedly composed of three function blocks: an adaptive

fairRate calculator (AFC), a fuzzy congestion detector (FCD), and a fuzzy fairRate

generator (FFG). The AFC pre-generates a fairRate, which meets RIAS fairness

and can diminish the effect of the propagation delay. The FCD softly detects the

congestion degree of station, considering STQ queue length and its change rate which

is the arriving transit FE traffic flows to STQ. Subsequently, the FFG generates a

suitable local fairRate by intelligently fine-tuning the pre-generated fairRate, using

fuzzy logics, based on the congestion degree of the station. The FLAG can make

traffic flows satisfy RIAS fairness criterion and converge to an ideal fairRate in an

efficient way. Simulation results show that each flow by FLAG is indeed close to

the designated rate with the smallest damping amplitude and the least convergence

time in the parking lot scenarios and the available bandwidth reclaiming scenario,

compared to conventional AM, DBA, and DBA fairness algorithms, shown in 3.5.

These prove that the configuration of FLAG is indeed sophisticated, where AFC pre-

generates the local fairRate using the moving average technique; FCD determines

the congestion degree of station using fuzzy logics, considering not only the STQ

length but also change rate of STQ length; and finally the FFG adopts the fuzzy

logics and the expert’s domain knowledge to precisely generate the local fairRate

by fine-tuning the pre-generated local fairRate by AFC according to the congestion

degree by FCD. Also, the performance superiority of DMA over DBA proves that

the moving average technique is indeed effective to diminish the effect of propagation

delay on the stability of traffic flows.
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In chapter 4, we proposes an intelligent inter-ring route controller (IIRC) for

BRPR. The IIRC uses not only the two STQ lengths but also the reserved bandwidth

for highest priority traffic and the equivalent bandwidth of an incoming new call

to indicate the congestion degree of the interface of the bridge node. It specially

predicts the mean received fairRate to detect the congestion degree of downstream-

node. Moreover, IIRC further considers the number of hops to destination and the

service rate of the bridge, besides the indication of the congestion degree of bridge-

node by FBCI and the prediction of the mean received fairRate by PDFP, to decide

a route preference value of the interface by FRC. The rule structure of FRC is based

on the load balancing principle. Finally, the IIRC chooses a ringlet with higher

preference value of route to forward the call to the destination. Simulation results

show that the IIRC effectively follows the load balancing principle and achieves the

better performance than the queue length threshold route controller (QTRC) and

the shortest path route controller (SPRC). If the probability of destination nodes is

non-uniformly distributed over all node in a ring, IIRC improves by about 10% and

220% in the packet dropping probability, by about 13% and about 18% in the average

packet delay, and by about 6% and 19% in the throughput over QTRC and SPRC

4.8. Also, IIRC achieves more gain in throughput by about 8% and 6.7% than IIRC

itself but without considering the prediction of the average received fairRate and

the amount of the reserved bandwidth as well as the equivalent capacity for a new

call request, respectively. These justify that the IIRC is sophisticatedly configured

and well-designed in choosing the input linguistic variables, defining membership

functions, and designing rule base to determine a proper ringlet for an incoming

new call. The design philosophy of IIRC can be applied to any kind of bridged
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optical packet rings.

Moreover, the IIRC is feasible for real applications for that the computational

complexity and the cost of IIRC are simple and effective, respectively. As mentioned

previously, the IIRC is designed using fuzzy logic and neural networks and can be

implemented in a chip.

Finally, in the bridged RPR, there are two critically accompanied issues. First,

congestion easily happenes at bridge for inter-ring traffic whose source and destina-

tion nodes are on different rings. Second, there is no mechanism which can guarantee

global fairness for inter-ring traffic while obeying local fairness. Consequently, it is

possible to have packet loss at bridge and unfair bandwidth allocation for inter-ring

traffic. In the future work, we could design a global fairness algorithm for the inter-

ring traffic in the BRPR based on the ideal of the propored fuzzy local fairRate

generator (FLAG) under the assumption that the inter-ring traffic is routed by the

intelligent inter-ring route controller (IIRC).
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