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摘要 

圓弧型曲線齒齒輪（circular-arc curvilinear-tooth gear）係指一種由圓弧型盤狀刀具

所創成，具有曲線型齒線及圓弧型齒形特徵的齒輪。 

不同於以往傳統正齒輪與螺旋齒輪的線接觸型的傳動運轉方式，具曲線型齒線特徵

的齒輪組是以點接觸的接觸型態來傳輸動力。點接觸的接觸型態不僅能使齒輪組避免齒

緣的接觸及降低由軸向組裝誤差所引起的運動誤差和振動噪音，更可增強齒輪的接觸強

度。除此之外，具有曲線型齒線之齒輪在運轉時亦不會產生軸向的推力。 

具圓弧型齒形的螺旋齒輪因為具有較一般傳統螺旋齒輪為高的負載能力及更佳的

潤滑效果等特性，故常被使用於需傳輸高負載的情況，但是圓弧型螺旋齒輪對於中心距

離的組裝誤差是十分敏感的。 

本研究係將漸開線型曲線齒齒輪的齒形改以圓弧型外形之齒刀來創成齒輪，亦即應

用一把虛擬的圓弧型齒刀依循一曲線路徑而創成出該齒輪之齒面，並根據齒輪原理建立

圓弧型曲線齒齒輪之齒面數學模式，同時也以轉位修正的方式來避免齒形過切的情況發

生，亦利用齒輪接觸分析技術來探討具有裝配偏差時，齒輪組運動誤差、接觸比及接觸

齒印。 



 
ii

Mathematical Model and Tooth Contact Analysis of Gears with 

Curvilinear-Teeth Generated by a Disk-Type Circular-Arc Cutter 

 

Student: Yi-Zheng Wu           Advisor: Ray-Quan Hsu, Chung-Biau Tsay 

 

Department of Mechanical Engineering 

National Chiao Tung University 

 

Abstract 

The circular-arc curvilinear-tooth gear, which has curvilinear trace with circular-arc 

profile, is generated by a circular-arc disk-type cutter.  

Gears with curvilinear traces ensure that the gear pair is operated in a point contact 

condition, which is different from the line contact type of a helical gear pair or spur gear pair. 

The point contact condition can not only avoid the tooth edge contact, decreases the 

kinematical errors and vibro-acoustic due to axial misalignments, but also increases the 

bearing strength of the contact gears. Moreover, a gear pair with curvilinear-tooth traces 

operates without axial thrust force. 

The helical gears with circular-arc profile are used for transmitting with high load 

circumstance, because their loading capacity and lubricity are better than those of 

conventional helical gears. However, the circular-arc helical gear pair is quite sensitive to the 

central distance assembly errors. 
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This study adopts the rack cutter with circular-arc profile to modify the profile of 

involute-type curvilinear-tooth gear pair. The gear surface is generated by an imaginary 

circular-arc rack cutter with a curvilinear trace. According to theory of gearing, a 

mathematical model of the gears with circular-arc profile and curvilinear-tooth trace is 

developed. The undercutting of the gears can be avoided by a positive profile-shifted 

modification during the gear set generation process. The tooth contact analysis technique is 

utilized to the investigation on kinematical errors, contact ratios and contact patterns of the 

gear set under axial misalignments.  
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CHAPTER 1  

Introduction 

1.1 Background 

Gears play a very important role in transmissions. One of the first documented uses of 

gears can be traced back to more than forty centuries ago when the Egyptians used gear 

transmissions in their camel-driven watering facilities. Today, gears are widely used in 

industry for power transmissions because of their high efficiency. Gear transmissions are used 

in a wide variety of products, such as printer mechanism, mechanical watches, power plants, 

vehicle transmissions, etc. 

 

 

Fig. 1-1 Classification of gears 
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There are a lot of kinds of gears, such as spur gear, bevel gear, helical gear, worm gear 

and so on, which are used in many different ways. Gears are used to transmit the power 

between two shafts, and their classifications, are shown in Fig. 1-1, which are sorted by the 

axis relations. The classifications of the gears are parallel axes, intersecting axes, and crossed 

axes [1]. 

Cylindrical gears, such as spur gear, helical gear and herringbone gear, are widely used 

to transmit powers between parallel shafts and the shafts are rotated in opposite directions. 

The tooth traces of the spur gear are parallel to the rotational axis as shown in Fig. 1-2(a). The 

advantages of spur gears are easy to manufacture and inexpensive, but the spur gear pair tends 

to be noisy at high speed and is sensitive to the axial misalignments. Step gear has two or 

more spur gears fastened together and each gear is advanced relative to the adjacent one by a 

small amount of screw motion. Helical gear can be viewed as a stepped gear with an infinite 

number of steps. The tooth trace of the helical gear is shown in Fig. 1-2(b). The major 

advantage of helical gears is that they are engaged with a gradual contact between the teeth 

compared with spur gear, which make contact across the entire face at once during operation. 

This gradual contact results in less noisy and longer life cycle of the gear pair during 

operation. 

Whereas the contact force of helical gear pair is not perpendicular to its rotational axis, 

an axial thrust force is produced to push the gears apart. The herringbone gear made by two 

opposite directions helical gears are bolted together, has been developed to reduce or 

eliminate the axial thrust force. The trace of the herringbone gear is shown in Fig. 1-2(c). The 

advantages of herringbone gear include the advantages of helical gear and also have no axial 

thrust force during operation because of the balance of thrust force. A herringbone gear is 

bolted by two helical gears, thus the manufacture cost is higher. 
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(a) Spur Gear (b) Helical Gear (c) Herringbone Gear

 

Fig. 1-2 Various types of tooth traces for parallel axis gears 

 

1.2 Literature Reviews 

Curvilinear-tooth gear has many excellent performances, such as higher bending 

strength, lower noise, better lubrication effect, no axial thrust force, etc. It will be introduced 

in the next chapter. The generation method is first proposed by Liu [2] with a face mill-cutter 

on a special machine. Tseng and Tsay [3] developed a mathematical model of cylindrical 

gears with curvilinear shaped teeth by using an imaginary rack cutter and investigated the 

tooth undercutting of curvilinear-tooth gears. However, in modern gear practice and 

manufacturing, the gears are usually generated by a hobbing or CNC cutting process. Tseng 

and Tsay [4] proposed a generating process of using a hob cutter which has a higher cutting 

efficiency than a rack cutter, the mathematical model for generation, the theoretical analysis 

on the tooth undercutting and secondary cutting of the gear teeth in the generation process 

were investigated with numerical examples.  

The kinematical errors (KE) induced by gear axial misalignments is an efficient factor to 

predict the contact behaviors of gear pair, such as the noise, vibration, etc. Tsay [5] applied 
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TCA (tooth contact analysis) techniques to simulate the meshing conditions for involute 

helical gears. The TCA technique was also used in cylindrical gears with curvilinear shaped 

teeth by Tseng and Tsay [6]. 

The circular-arc tooth gear is a kind of gears with a higher loading compatibility. 

Circular-arc helical gears have been proposed by Wildhaber [7] in 1926 and Nobikov [8] in 

1956. These types of gears became very popular in 1960s because of their low contact stress. 

Litvin and Tsay [9] investigated the mathematical model and TCA for the circular-arc helical 

gears by considering the gears were generated by imaginary circular-arc rack cutters. 

Recently, Litvin et al. [10][11][12][13] proposed a concept of tooth surface topology 

that will reduce the KE and localize the bearing contact. The KE can be reduced by imposing 

a pre-designed parabolic-like KE on the gear tooth surfaces, which may absorb discontinuous 

KE caused by axial misalignments [10]. Meanwhile, the localization of bearing contact can be 

achieved by tooth modifications to obtain point contacts instead of line contacts, whether 

under an ideal or a misaligned meshing condition. 

 

1.3 Motivations 

Curvilinear-tooth gear pair can be used to transmit powers between two parallel shafts. 

It can sustain a higher bending and contacting strength, and can operate quietly and smoothly. 

Besides, no axial thrust force occurs for the curvilinear-tooth gear pair is during its operation. 

Tseng [3] also investigated the TCA simulation of the curvilinear-tooth gear. 

The gear designers and manufacturers always aspire to design and manufacture a gear 

with a high loading capacity and low sensitivity to assembly errors. In order to achieve this 

goal, researchers focus on the development of advanced materials and new methods of heat 
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treatment or on design of stronger tooth profiles and methods of gear manufacturing. There 

are many methods to design for a stronger tooth profile, such as adding circular root fillets 

[14], predicting the power loss for high contact ratio spur gears with nonstandard addendum 

proportions by using cutter elongation of tool shifting [15], or modifying the straight edge 

rack cutter into a circular-arc profile [16][17], etc. A gear pair with a higher loading can be 

designed by a higher contact ratio or a larger contact area of tooth surfaces. A higher contact 

ratio can reduce the stress by distributing load among neighboring teeth. It is good practice to 

maintain a gear contact ratio larger than 1.2. With a higher contact ratio, loadings on the gear 

teeth surface can be dispersed by more contact gear teeth. The contact area on tooth surface 

can efficiently disperse the contact stress during contact.  

It is said that the curvilinear-tooth gear has several advantages and characteristics. In 

order to obtain a curvilinear-tooth gear set which can endure a higher contacting strength, the 

profile of the involute curvilinear gear can be considered to be modified. The normal section 

of the rack cutter is designed as a circular-arc to produce the tooth profile. The tooth which 

generated by a circular-arc rack cutter is called a circular-arc tooth. Comparing the 

circular-arc tooth with involute tooth, the minor axis of the contact ellipse of the tooth 

generated by a circular-arc cutter is larger than that of an involute tooth. It means that there is 

a larger contact area for the modified curvilinear-tooth gear and this result in a smaller contact 

stress. In this thesis, two conjugate circular-arc rack cutters are used to generate the 

curvilinear gear pair respectively with circular-arc teeth to improve the bearing contact of the 

curvilinear gear. 

 

1.4 Thesis Overviews 

In this thesis, a gear with curvilinear teeth generated by a disk-type circular-arc cutter is 
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briefly proposed. In all, this thesis includes seven chapters, and the contents of each chapter 

are described as follows: 

1. CHAPTER 1 is the introduction of the background, motivations, literature reviews 

and a brief overview of this thesis. 

2. CHAPTER 2 introduces the curvilinear-tooth gear and the circular-arc tooth gear. 

Advantages and disadvantages of these two gears are briefly discussed. 

3. The mathematical model of the circular-arc curvilinear-tooth gear set has been 

developed in CHAPTER 3. The circular-arc profile on its curvilinear-tooth gear is 

generated by a disk-type rack cutter with circular-arc normal section geometry. 

However, the generation method of the circular-arc curvilinear-tooth gear is 

simulated by a circular-arc profile rack cutter. Equations of the circular-arc 

curvilinear-tooth gear can be obtained by applying the theory of gearing and the 

equations of the cutter. Computer graph illustrates the shape of the gear pair, and it 

also proves the correctness of the developed mathematical model. In addition, the 

equations of the gear set are the bases for further investigations, such as tooth 

contact analysis, contact ratio and contact ellipses. 

4. CHAPTER 4 includes the study of tooth undercutting of the proposed gear pair. The 

undercutting points are the singular points on the generated tooth surface. 

Consequently, it can be derived according the theory of gearing. Some tables and 

graphs are built up by applying the developed computer programs to give 

suggestions for the manufactures and designers to prevent the tooth undercutting. 

5. The TCA technique is applied to find the KE of the circular-arc curvilinear-tooth 

gear in CHAPTER 5. Tooth contact simulation model includes the center distance 
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variation, horizontal axial misalignment and vertical axial misalignment of the gear 

set. The KE curve are tried to pre-design into a parabolic form in order to prevent 

the jump of the junction. Several numerical examples are presented to demonstrate 

the influences of gear design parameters and assembly errors on the KE and contact 

analysis of the mating gear pair. 

6. Contact pattern is an important symbol of gear loading capability. The contact 

pattern can be simulated based on the developed mathematical model of the gear set. 

Some numerical examples express the relationships between the design parameters 

and contact patterns. In this thesis, the contact patterns are evaluated by applying the 

surface topology method. 

7. CHAPTER 7 concludes this thesis by summarizing the major findings of the 

accomplished work, and also discusses some potential topics for future study. 
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CHAPTER 2  

The Curvilinear-Tooth Gear and the Circular-Arc Tooth Gear 

2.1 Introduction 

The shape of a gear can be described into two ways: one mentioned the profile of the 

cross section of gear. Fig. 2-1(a) is the involute-shape gear profile of a spur gear shown in Fig. 

2-1(b). As everyone knows that most applications of the gear profiles are in the involute 

shape. 

 

Fig. 2-1 Schema of gear profile and gear tooth trace of a spur gear 

 

The other description for a gear shape is the trace of its tooth, e.g. gears with trace 

parallel to the rotational axis as marked with shadow zones in Fig. 2-1(b) is called a spur gear. 

Different profiles and traces of gears have their own characteristics, the usage of gear is 

according to there characteristics. In this chapter, two kinds of gear types will be introduced. 
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One is the curvilinear-tooth trace gear and another one is the circular-arc tooth profile gear. 

 

2.2 The Curvilinear-Tooth Gear 

Curvilinear-tooth gear is one kind of cylindrical gears as shown in Fig. 2-2, and has 

circular-arc tooth traces. Since the circular arc tooth trace is symmetrical, thus gear axial 

thrust force may be eliminated. Besides, the curvilinear-tooth gear has the characteristics as 

follows [2]: 

1. Curvilinear-tooth gears endure a higher bending and contacting strength; thus, the 

size of transmission gear boxes may be reduced while transmitting the power or 

torque. 

2. The teeth of curvilinear-tooth gear pair engaged simultaneously smoothly with low 

noise. 

3. Lubrication oil is retained within the concave tooth surfaces, therefore there is 

always an oil film between the two engaged surfaces, resulting in good lubrication 

qualities. 

The spur, helical, and herringbone gear pairs with parallel axes are in line contact. 

However, the line contact of gear tooth surfaces can be realized only for an ideal contact of 

the gear drive. In reality, the gear assembly errors of axial misalignments and errors of lead 

angles result in the so-called edge contact, a specific instantaneous contact caused by 

curve-to-surface tangency as shown in Fig. 2-3. Therefore, the stress is concentrated at the 

contact edge. Gear manufacturers always cut gears with tooth crowning to make the line 

contact become a point contact, and to avoid the edge contact of gears as shown in Fig. 2-4. 

The point contact of gears will spread over a contact ellipse with loadings. When a gear set 
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has an axial misalignment without crowning, tooth edge contact will occur and this will 

induce a serious stress concentration. In this circumstance, the noise and vibration of the gear 

pair may occur during the gear meshing. The curvilinear-tooth gear also has a characteristic 

similar to a crowned tooth, as shown in Fig. 2-5. The contact type of the curvilinear-tooth gear 

is in a point contact situation no matter there is an axial misalignment or not. 

 

 

Fig. 2-2 Schema of curvilinear-tooth gear [3] 

 

2.3 The Circular-Arc Tooth Gear 

The theory of circular-arc tooth gears is first proposed by Wildhaber [7] in U.S. patent, 

1926. Later, Novikov [8], also proposed another patent for helical gears with circular-arc teeth. 

Therefore, the circular-arc tooth gear is also called the Wildhaber-Novikov (W-N) gear. The 

profiles of the Wildhaber’s and Novikov’s are quite similar to each other. It is noted that the 

circular-arc tooth gears are generated by two imaginary rack cutters, described in two  
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Fig. 2-3 Contact region of a helical gear pair
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Fig. 2-4 Contact region of a crowned teeth gear pair
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Fig. 2-5 Contact region of a curvilinear-tooth gear pair 
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circular-arc curves as shown in Fig. 2-6, where the ( )pR  and ( )gR  are the radii of the two 

cutters, where ( )p
RO  and ( )g

RO  are the center of these circular-arc. In order to generate a pair 

of conjugate gear surfaces, the rack cutters can be considers as two separate rack cutters 

which may be imagine as a mold and its corresponding cast express in Fig. 2-7. One of these 

rack cutters generates the pinion and the other generates gear. 

 

R

Rack cutter Σp Rack cutter Σg

OR

R

OR

(p) (g)

(p) (g)

 

Fig. 2-6 Schema of the normal section of rack cutters 
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Fig. 2-7 Imaginary of the separating rack cutters 
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Since the normal section of each rack cutter has circular-arc edges, thus the tool needs a 

higher precision requirement. However, the technology is brilliant enough to produce high 

precision circular-arc cutter now. 

It is known that a circular-arc gear has the following two major advantages: 

1. Reducing the contacting stress. Theoretically, the gear surfaces are contact when two 

gears are meshed with each other. However, the contact area spread over a contact 

ellipse due to elastic deformation under loading. After operating for a period of time, 

the two meshing surfaces fit each other into a suitable shape for meshing. It is said 

that the curvatures on the contact point of these two gears tend to equal gradually. 

The contact surfaces enlarge quickly with the operation loading. Hence, the loading 

limit is three to five times higher than an involute gear pair [18]. 

2. Better conditions of lubrication. The sliding velocity of every point on the gear 

surface are equal in a slight value, it means the wear problem of the circular-arc 

tooth gear is not serious. Rotation speed of the circular-arc tooth gear is high on the 

vertical direction of the gear surface, so the oil- membrane can be formed easily. 

Thus the lubrication of the circular-arc gear pair is ten times better than an involute 

gear pair [19]. With the better lubrication, the life time of this type of gears becomes 

longer and abrasion becomes less serious.  

The circular-arc gear can provide power transmission with a high loading, and it is 

widely used in the transmission system of hoists, elevators, mechanisms for mining industry, 

and many transmission systems with a high load/weight ratio. Although the circular-arc gear 

tooth surfaces are in point contact at every instant, the contact area is also larger than that of 

involute gear pair under load with elastic deformation. 
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Nevertheless, there are also three major disadvantages of the circular-arc gear as below: 

1. The profile of the rack cutter is in a circular-arc shape, and it is manufactured by 

several processes requiring high precision, and the heat treatment process may 

somewhat cause distortion of the cutter shape. Therefore, the menufacturing cost of 

this cutter is higher. 

2. There are no international standards for the circular-arc gears, e.g.. the radius of 

circular-arc edge. Hence, the circular-arc gear cannot be exchanged facilely. It 

means the comparability with the circular-arc gear is not good. 

3. The kinematical error occurs if there has error of center distance. However, the 

variation of center distance takes no effects for involute gear pair. 

 

2.4 Remarks 

Gears are used in power transmissions. Therefore, good gears always include two 

essential factors: high loading capacity and low sensitivity to assembly errors. The goal can be 

achieved by designing the profile and tooth-trace for the gear pair. Two types of gears are 

introduced in this chapter, one is the curvilinear-tooth gear which has a curvilinear tooth-trace, 

and the other one is the circular-arc tooth gear which is generated by two conjugate rack 

cutters. Both of these two gears benefit to developing the performance of the gear pair. 
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CHAPTER 3  

Mathematical Model of Gears with Curvilinear-Teeth  

Generated by a Disk-Type Circular-Arc Cutter 

3.1 Introduction 

In this chapter, the mathematical model of curvilinear-teeth generated by the disk-type 

circular-arc cutter will first be developed. Based on the theory of gear [10][20], the surface 

equation of circular-arc gears with curvilinear-teeth is derived as the envelope of the locus of 

circular-arc cutter. Hence, an imaginary rack cutter surface with circular-arc normal section will 

be first established to simulate the generation of the gear tooth.  

 

3.2 Mathematical Model of Circular-Arc Gears with Curvilinear-Teeth 

3.2.1 Generation Method 

The curvilinear-tooth gear is generated by the cutting machine as shown in Fig. 3-1. 

Gear teeth are produced by a rotating disk-type cutter. The spindle of the disk-type cutter with 

radius abR  rotates on the axis B B−  with an angular velocity tω  and translating velocity 

1 1rω  to the right, where 1r  is the pitch radius of the gear blank and 1ω  is the angular 

velocity of it. The cutting process of a curvilinear-tooth gear was developed by Liu [2] as 

steps below: 

1. The gear blank rotates with an angular velocity 1ω  in clockwise. At this moment, 

the disk-type cutter rotates with an angular velocity tω  in counterclockwise and 

translates with a velocity 1 1rω  to right. A curvilinear-tooth space may be generated 

on the gear blank by this process. 
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Fig. 3-1 The cutting process of a curvilinear-tooth gear with a disk-type tool [2] 
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2. After generating the tooth space of the gear, the gear blank stop rotating and then 

spin to the next working position with considering adjustment for the backlash blδ . 

3. In order to cut the other tooth space, the disk-type cutter rotates with an angular 

velocity tω  in clockwise and translates with a velocity 1 1rω  to left, the gear blank 

rotates in the counterclockwise with angular velocity 1ω  in the mean time (contrary 

to the Fig. 3-1), then the other tooth space is generated by this process. In order to 

prevent the interfering, the radius of the disk-type cutter used to generate the 

different side of the tooth surface should be modified. In this thesis, the difference 

between the different side of the gear tooth is defined as GS . 

4. Generating cycle is repeated and this sequence is continued until all the spaces and 

teeth are formed. 

Obviously, the structure of cutting machine to produce the curvilinear-tooth gear is 

complex, and the assembling of the cutter is so inconvenient. Adjusting and grinding is also 

arduous for the curvilinear-tooth gear because of its special trace. Therefore, the 

manufacturing cost of curvilinear-tooth gears is higher than that of spur gears or helical gears. 

In this thesis, the cutting machine is adopted and the straight line cutter shape is replaced by 

the circular-arc cutter shape. Gears made by this process are called the curvilinear-tooth gears 

generated by a disk-type circular-arc cutter. 

Although the gear is generated by a disk-type cutter, however it can be considered that the 

gear is generated by an imaginary rack cutter as shown in Fig. 3-2. The surfaces of the two 

cutters are labeled as g∑  and p∑ , and we may imagine that the two surfaces are rigidly 

connected to each other and are in tangency along the curve a a−  as shown in Fig. 3-3. The 

normal section of each rack cutter is a circular arc. Fig. 3-4 shows the relationships among the 
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pitch plan of rack cutter and the axode of the two gears. The locus of an instantaneous axis of 

rotation represented in a coordinate system that is attached to a movable body is known as the 

body axode. 

 

 

 

 

ω1r1

r1ω1

 

 

Fig. 3-2 The relationship between imaginary rack cutter and blank 
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Fig. 3-3 Surfaces of the imaginary cutters g∑  and p∑  
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Fig. 3-4 The axodes of the gears 
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The two gears are rotating with an angular velocity 1ω  and 2ω  in opposite directions 

about their respective rotation axes. The radii of the two axodes are 1
1

Vr
ω

= , 2
2

Vr
ω

= . The 

tangent line I I−  of the two axodes is called the instantaneous axis of rotation. The tangent 

plane to the axodes is also the pitch plane of the rack cutters. The gear is generated by the 

cutter g∑  and the pinion is generated by the cutter p∑ . Namely, the mathematical model of 

the gear is generated by the surface g∑ , and another one is generated by p∑ . Finally, the 

mathematical model of the generated gear tooth surface is the combination of the meshing 

equation and the locus equation of imaginary rack cutter surface. Points on gear surface can 

be calculated by solving the developed gear mathematical model by using numerical methods. 

3.2.2 Equation of the Disk-Type Circular-Arc Cutter 

The teeth surfaces of a pair of conjugate circular-arc with curvilinear-teeth gear can be 

generated by two imaginary circular-arc rack cutters with curvilinear trace. These two rack 

cutters of g∑  and p∑  are shown in Fig. 3-5(a). The normal sections of the cutters are also 

shown in Fig. 3-5(b). Parameters A  and B  determine the initial and end points of the 

circular-arc curve, respectively, as shown in Fig. 3-6. ( )g
RO  is the center of the circular-arc 

MN  with a radius of ( )gR ; GS  is the tooth thickness measured along the pitch line of the 

rack cutter; ( )gθ  is the design parameter of the rack cutter which determines the point on the 

circular arc MN . The normal section of the circular-arc rack cutter is rigidly attached to 

coordinate system ( ) ( ) ( ) ( )( , , )g g g g
r r r rS X Y Z  with its origin ( )g

rO , as shown in Fig. 3-6. The 

circular-arc curve MN  can be represented in coordinate system ( ) ( ) ( ) ( )( , , )g g g g
r r r rS X Y Z  as 

follows: 

( )( ) ( ) ( )sin sing g g
rx R α θ= − − ,  
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( )( ) ( ) ( )cos cos
2

G
g g g

r
Sy R α θ

⎧ ⎫
= ± − −⎨ ⎬

⎩ ⎭
, (3.1) 

( ) 0g
rz = , 

and  

( ) ( ) ( )
min max

g g gθ θ θ≤ ≤ , 
( )

( ) 1
min ( )

sinsin
g

g
g

R B
R

αθ − ⎡ ⎤−
= ⎢ ⎥

⎣ ⎦
, 

( )
( ) 1
max ( )

sinsin
g

g
g

R A
R

αθ − ⎡ ⎤+
= ⎢ ⎥

⎣ ⎦
, (3.2) 
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Fig. 3-5 Imaginary circular-arc rack cutters g∑  and p∑  
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Fig. 3-6 Normal section of the circular-arc rack cutter g∑  

 

where ( )gθ  is a design parameter of the circular-arc rack cutter, ranging from ( )
min

gθ  to ( )
max

gθ , 

and α  denotes the normal pressure angle defined in Fig. 3-6, and ( )gR  represents the radius 

of the circular-arc MN . The symbol “± ” represents the different side of the cutter g∑ , 

where “− “ indicates the right side circular-arc rack cutter gR∑  and “+ “ indicates gL∑ . 

To form a circular-arc rack cutter with curvilinear-trace, the normal section of the 

circular-arc (Fig. 3-6) should attach to coordinate system ( )( ) ( ) ( ) ( ), ,g g g g
r r r rS X Y Z , as shown in 

Fig. 3-7. It is noted that the circular-arc ab  is the cutting path of the disk-type rack cutter. 

The cutting path of the cutter consequently causes a crowning effect on the generated tooth 

flank. Coordinate system ( )( ) ( ) ( ) ( ), ,g g g g
c c c cS X Y Z  is rigidly attached to the middle of transverse 

section of the imaginary rack cutter. Coordinate system ( )( ) ( ) ( ) ( ), ,g g g g
r r r rS X Y Z  is attached to 
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coordinate system ( )( ) ( ) ( ) ( ), ,g g g g
c c c cS X Y Z  with a variable angle ( )gγ . The center of the 

curvilinear-trace is located at point ( )gC  with a radius of abR  and W  represents the width 

of the gear pair. 

The imaginary rack cutter surface g∑  represented in coordinate system 

( )( ) ( ) ( ) ( ), ,g g g g
c c c cS X Y Z  can be obtained by applying the following homogeneous coordinate 

transformation matrix equation as follows: 

( ) ( )g g
c cr r=R M R , (3.3) 

where 
( ) ( ) ( )

( ) ( ) ( )

1 0 0 0
0 cos sin (1 cos )
0 sin cos sin
0 0 0 1

g g g
ab

cr g g g
ab

R
R

γ γ γ
γ γ γ

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

M . (3.4) 

Matrix crM  is a homogeneous coordinate transformation matrix transforming from 

coordinate system ( ) ( ) ( ) ( )( , , )g g g g
r r r rS X Y Z  to ( )( ) ( ) ( ) ( ), ,g g g g

c c c cS X Y Z . Using the Eq.(3.1), 

Eq.(3.3), and Eq.(3.4) the mathematical model of the disk-type circular-arc cutter represented 

in coordinate system ( )( ) ( ) ( ) ( ), ,g g g g
c c c cS X Y Z  can be obtained as following: 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

cos sin (1 cos )
sin cos sin

1 1

g g
c r

g g g g g g
g c r r ab

c g g g g g g
c r r ab

x x
y y z R
z y z R

γ γ γ
γ γ γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ + −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥+ +
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

R , (3.5) 

and  

( ) ( ) ( )
min max

g g gγ γ γ≤ ≤ , ( ) 1
min sin

2
g

ab

W
R

γ − ⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
, ( ) 1

max sin
2

g

ab

W
R

γ − ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
. (3.6) 
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Substituting Eq.(3.1) into Eq.(3.5) yields the imaginary rack cutter surface represented 

in coordinate system ( ) ( ) ( ) ( )( , , )g g g g
r r r rS X Y Z  is as follows: 

( )

( ) ( )

( )

( ) ( )

( )
( ) ( ) ( ) ( )

( )
( )

( )

( ) ( ) ( )

sin sin

1 cos cos cos cos
2

sin cos cos1 2

1

ab

g g

g G
c g g g g

g
g c

c g Gc g g g
ab

R

x SR R
y
z SR R

α θ

γ γ α θ

γ α θ

⎡ ⎤− −
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎛ ⎞

− ± − + −⎢ ⎥⎢ ⎥ ⎜ ⎟
⎝ ⎠⎢ ⎥⎢ ⎥= =

⎢ ⎥⎢ ⎥ ⎛ ⎞⎛ ⎞⎢ ⎥⎢ ⎥ ± − −⎜ ⎟⎜ ⎟⎣ ⎦ ⎢ ⎥⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥⎣ ⎦

R . (3.7) 

The normal cross section of rack cutter pΣ  is shown in Fig. 3-8. Similarly, the 

mathematical model of the rack cutter surface pΣ  can be established by following the 

above-mentioned steps: 
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Fig. 3-7 Formation schema of the imaginary rack cutter p∑  and g∑  
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Fig. 3-8 Normal section of the circular-arc rack cutter p∑  

 

( )

( ) ( )

( )

( ) ( )

( )
( ) ( ) ( ) ( )

( )
( )

( )

( ) ( ) ( )

sin sin

1 cos cos cos cos
2

sin cos cos1 2

1

ab

p p

p G
c p p p p

p
p c

c p Gc p p p
ab

R

x SR R
y
z SR R

α θ

γ γ θ α

γ θ α

⎡ ⎤− −
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎛ ⎞

− ± − + −⎢ ⎥⎢ ⎥ ⎜ ⎟
⎝ ⎠⎢ ⎥⎢ ⎥= =

⎢ ⎥⎢ ⎥ ⎛ ⎞⎛ ⎞⎢ ⎥⎢ ⎥ ± − −⎜ ⎟⎜ ⎟⎣ ⎦ ⎢ ⎥⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥⎣ ⎦

R . (3.8) 

and the unit normal vector of the generating surface ( )g
cR  is obtained by: 

( ) ( )
( )

( ) ( )

g g
g c c

c g gθ γ
∂ ∂

= ×
∂ ∂
R RN . (3.9) 

and   
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( )
( )

( )

g
g c

c g
c

=
Nn
N

. (3.10) 

Eqs.(3.7), (3.9) and (3.10) result in the unit normal vector of the generating surface 

represented in the coordinate system ( )( ) ( ) ( ) ( ), ,g g g g
c c c cS X Y Z  as follow: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

sin
( cos cos )

sin cos

g g
Xc

g g g g
c Yc

g g g
Zc

θ
γ θ
γ θ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = ± −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥±⎣ ⎦ ⎣ ⎦

n
n n

n
, (3.11) 

where the upper sign of symbol “± ” indicates the left-side of the rack cutter surfaces. 

Similarly, the unit normal vector of the rack cutter surface p∑  can be also obtained by 

following the similar process: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

sin
( cos cos )

sin cos

p p
Xc

p p p p
c Yc

p p p
Zc

θ
γ θ
γ θ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = ± −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥±⎣ ⎦ ⎣ ⎦

n
n n

n
. (3.12) 

The relative velocity of the gear with respect to the rack cutter g∑  can be obtained by 

considering the gear generation mechanism as shown in Fig. 3-9. The rack cutter translates to 

the left tangent to the axode of the gear. Therefore, the velocity of the point on the rack cutter 

represented in coordinate system ( ), ,f f f fS X Y Z  is: 

(1)
1 1

0

0
f rω

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

V , (3.13) 

where 1r  is the pitch radius of the gear blank, and 1ω  is the rotation speed of the gear blank 

during its generation.  
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Fig. 3-9 Kinematical relationship between the imaginary rack cutter gΣ  and the gear
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The velocity of the point on the rack cutter g∑  can be expressed in the coordinate 

system ( ), ,f f f fS X Y Z  as follow: 

( )
( )

( )
1 1 1

( ) ( ) ( ) ( )
1 1 1 1

0

g
c

g g g g
f c c f c

y r

R O O x r

φ ω

ω ω ω

⎡ ⎤−
⎢ ⎥
⎢ ⎥= × + × = − +
⎢ ⎥
⎢ ⎥
⎣ ⎦

V . (3.14) 

The relative velocity of the gear with respect to the left and right side of the cutter g∑  

can be attained by subtracting Eq.(3.13) and Eq.(3.14): 

( )( )
1 1 1

( 1) ( ) (1) ( )
1

0

p
c

p p p
f f f c

r y

x

φ ω

ω

⎡ ⎤−
⎢ ⎥

= − = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

V V V , (3.15) 

where 

( )( ) ( ) ( )sin sing g g
cx R α θ= − − , (3.16) 

( ) ( )( ) ( ) ( ) ( ) ( )1 cos cos cos cos
2ab

G
g g g g g

c
Sy R Rγ γ α θ

⎛ ⎞
= − ± − + −⎜ ⎟

⎝ ⎠
. 

Similarly, the relative velocity of the pinion with respect to the left and right sides of the 

rack cutter p∑  can also be attained by applying the same steps according to the kinematical 

relationships shown in Fig. 3-10: 

( )( )
2 2 2

( 2) ( ) (2) ( )
2

0

p
c

p p p
f f f c

r y

x

φ ω

ω

⎡ ⎤−
⎢ ⎥

= − = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

V V V , (3.17) 

where, 

( )( ) ( ) ( )sin sinp p p
cx R α θ= − − , (3.18) 
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( ) ( )( ) ( ) ( ) ( ) ( )1 cos cos cos cos
2ab

G
p p p p p

c
Sy R Rγ γ θ α

⎛ ⎞
= − ± − + −⎜ ⎟

⎝ ⎠
. 

Fig. 3-11 illustrates the geometrical relationship between the contact surfaces and 

tangent point. The contact points on gear surfaces 1∑ , 2∑  are 1M  and 2M , respectively. 

T is the tangent plane of these two surfaces. Relative velocity (12)V  is defined in physical 

terms as the velocity of point 1M  of 1∑  as seen by an observer at point 2M  of 2∑ . 

Theoretically, in the generation process, gear and cutter are in pure rolling or sliding on the 

contact surfaces. It means that these two contact surfaces never embed into each other. Thus, 

the relative velocity of the gear with respect to the cutter along their common normal direction 

is equal to zero. Then, it can be said that the relative velocity (12)V  lies on the common 

tangent surface and perpendicular to the unit normal vector n  at the common tangent point. 

Therefore, the following equation must be observed: 

0⋅ =(12)n V . (3.19) 

Eq.(3.19) is called the “meshing equation”. Based on the meshing equation, parameters 

1φ  and 2φ  can be expressed in the following implicit form:  

and 
( )
( )

( ) ( )
1

( ) ( )
2

, , 0

, , 0

g g

p p

f

f

θ γ φ

θ γ φ

=

=
,  (3.20) 

where 1φ  and 2φ  are the rotation angle of the gear and the pinion, respectively. 

The meshing equation of the rack cutter g∑  with the gear can be obtained by solving 

the equation: 

( ) ( 1) 0g g
f f⋅ =n V , (3.21) 
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Fig. 3-10 Kinematical relationship between the imaginary rack cutter pΣ  and the pinion
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Fig. 3-11 Relationship between two tangent surfaces 

 

substituting Eqs.(3.11) and (3.15) into Eq.(3.21) yields: 

( )
( )

( ) ( ) ( ) ( ) ( )
1, , ( 2 2 cos 2 cos )

4

g
g g G g g g

ab
Rf R S R Rγ θ φ α θ= − − + −∓  

 { ( ) ( ) ( ) ( )
1 1 12 cos ( 1 ) cos sin( )g g g gr Rγ ω θ ω α θ⎡ ⎤− + + −⎣ ⎦  

 }( ) ( )
1 1 1 1sin 2 2 ( 2 ) cos 0g G g

ab abR r R Sθ ω φ ω γ⎡ ⎤+ ± + ± + =⎣ ⎦∓ . (3.22) 

Similarly, the equation of meshing about the rack cutter p∑  and the gear can be 

obtained by the same step: 

( )
( )

( ) ( ) ( ) ( ) ( )
2, , ( 2 2 cos 2 cos )

4

p
p p G p p p

ab
Rf R S R Rγ θ φ α θ= − − + −∓  

 { ( ) ( ) ( ) ( )
2 2 22 cos ( 1 ) cos sin( )p p p pr Rγ ω θ ω α θ⎡ ⎤− + + −⎣ ⎦  

 }( ) ( )
2 2 2 2sin 2 2 ( 2 ) cos 0p G p

ab abR r R Sθ ω φ ω γ⎡ ⎤+ ± + ± + =⎣ ⎦∓ . (3.23) 

According to the gear theory, the gear mathematical model can be obtained by 

representing the locus equation of the rack cutter on the coordinate system of the generated gear 
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and the meshing equation. The locus equation of the rack cutter represented in the gear 

coordinate system ( )1 1 1 1, ,S X Y Z  can be attained by applying the following homogeneous 

coordinate transformation from the coordinate system ( )( ) ( ) ( ) ( ), ,g g g g
c c c cS X Y Z  to 

( )1 1 1 1, ,S X Y Z  is: 

( )
1 1

g
c c=R M R , (3.24) 

and the homogeneous coordinate transformation matrix: 

( )
( )

1 1 1 1 1 1

1 1 1 1 1 1
1

cos sin 0 cos sin
sin cos 0 sin cos

0 0 1 0
0 0 0 1

c

r
r

φ φ φ φ φ
φ φ φ φ φ

⎡ − + ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M . (3.25) 

Using the equations Eqs.(3.18), (3.24) and (3.25), the locus of the rack cutter 

represented in the gear coordinate system ( )1 1 1 1, ,S X Y Z  can be obtained as:  

( )
( )

( )
1 1 1 1 1 1

( )
( ) 1 1 1 1 1 1

1 1 ( )

cos sin 0 cos sin
sin cos 0 sin cos

0 0 1 0
0 0 0 1 1

g
c

g
g c

c c g
c

r x
r y

z

φ φ φ φ φ
φ φ φ φ φ

⎡ ⎤⎡ − + ⎤
⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

R M R , 

thus 

( )
( )

( )
2 1 3 1 11

( )
1 3 1 1 2 1

1
( )1

1

cos cos sin

cos cos sin

sin
1 1

g

g

g

F F Fx
y F F F
z F

φ γ φ

γ φ φ

γ

⎡ ⎤⎡ ⎤+ − +⎡ ⎤ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥− +⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

R , (3.26) 

where  
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( )( ) ( )
1 cos cos

2

G
g g

ab
SF R Rθ α

⎡ ⎤
= ± ± − +⎢ ⎥
⎣ ⎦

, 

( )( ) ( ) ( )
2 1 sin sing g gF r R Rα θ= − + , 

and ( )3 1 1abF R rφ= − . 

The mathematical model of the gear with curvilinear-teeth generated by a disk-type 

circular-arc rack cutter can be attained by solving the locus equation Eq.(3.26) with the 

meshing equation Eq.(3.22).  

Similarly, the locus of the rack cutter surface p∑  represented in the pinion coordinate 

system ( )2 2 2 2, ,S X Y Z  can be obtained as follows: 

( )
( )

( )
2 2 3 1 2

( )
( ) 3 1 2 2 2

2 2
( )

1

cos cos sin

cos cos sin

sin
1

p

p
p

c c
p

G G G

G G G

G

φ γ φ

γ φ φ

γ

⎡ ⎤⎡ ⎤+ −⎣ ⎦⎢ ⎥
⎢ ⎥− −= = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

R M R , (3.27) 

where  

( )( ) ( )
1 cos cos

2

G
p p

ab
SG R Rθ α

⎡ ⎤
= ± ± − +⎢ ⎥
⎣ ⎦

, 

( )( ) ( ) ( )
2 2 sin sinp p pG r R Rα θ= − − + , 

( )3 2 2abG R r φ= − . 

 

and the homogeneous coordinate transformation matrix is: 

( )
( )

2 2 2 2 2 2

2 2 2 2 2 2
2

cos sin 0 cos sin
sin cos 0 sin cos

0 0 1 0
0 0 0 1

c

r
r

φ φ φ φ φ
φ φ φ φ φ

⎡ − + ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M . (3.28) 
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The mathematical model of the gear with curvilinear-teeth generated by a disk-type 

circular-arc cutter can be attained by solving the locus equation Eq.(3.27) with the equation of 

meshing Eq.(3.23).  

 

3.2.3 Computer Graphs 

The equations of the circular-arc gear and pinion with curvilinear-teeth generated by a 

disk-type circular-arc cutter are expressed in Eqs.(3.26) and (3.27) with meshing equations 

Eqs.(3.22) and (3.23), respectively. Table 3-1 lists the major design parameters of a circular-arc 

gear pair with curvilinear-teeth generated by disk-type circular-arc cutters. Base on the 

developed gear mathematical models, three-dimensional tooth profiles of the gear and pinion 

are plotted by commercial software CATIA® as displayed in Fig. 3-12 and Fig. 3-13, 

respectively.  

 

Table 3-1 Some major design parameters for the gear set 

Design parameters Pinion Gear 

Number of Teeth ( ( )iT ) 18 36 
Normal Module (M) 3mm/tooth 
Normal Pressure Angle (α ) 20∘ 
Radius of the Disk-Type Cutter 

( abR ) (Fig. 3-7) 
30mm 

Radius of Rack Cutter Normal 
Section ( ( )iR ) (Fig. 3-6 & Fig. 3-8)

40mm 40mm 

Face Width (W ) (Fig. 3-7) 30mm 

 



 
37

In addition, Fig. 3-14 illustrates the tooth surface deviation of various radii of the 

circular-arc rack cutters. Fig. 3-14(a) depicts the tooth surface deviation of the normal profile 

at the middle section of the tooth flank ( 0Z = mm) with different radii of convex rack cutter 

pΣ , and Fig. 3-14(b) depicts the tooth surfaces of concave rack cutter gΣ . 

 

3.3 Remarks 

The normal section of the rack cutter is designed as a circular-arc for the generation of 

circular-arc gears with curvilinear-teeth gear. A new topology for tooth surfaces has been 

achieved by applying the imaginary circular-arc rack cutter with a curvilinear-trace generation 

mechanism. The mathematical model of the circular-arc gear with curvilinear-teeth generated 

by a disk-type circular-arc cutter has been derived based on the theory of gearing. 

Furthermore, a computer program applicable to the generation of the tooth profile has been 

developed on the basis of the derived equations. Further characteristics of the circular-arc 

curvilinear-tooth gear, such as TCA and contact patterns, can also be performed with the aid 

of the developed mathematical models. 

Based on the study of this chapter, the following geometric characteristics of the 

circular-arc curvilinear-tooth gear can be drawn: 

1. The involute gear is a special case of the circular-arc gear when the radius of the 

rack cutter profile ( )gR  tends to infinity.  

2. The spur gear and helical gear is a special case of the curvilinear-tooth gear when 

the radius of the disk-type rack cutter (i.e. the abR  in Fig. 3-1 and Fig. 3-7) tends to 

infinity, the curvilinear-tooth gear becomes a spur gear. 
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Fig. 3-12 Computer graph of the circular-arc gear with curvilinear-teeth 
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Fig. 3-13 Computer graph of the circular-arc pinion with curvilinear-teeth 
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Fig. 3-14 Tooth surface profiles with different radii of circular-arc rack cutters
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3. The curvilinear-tooth gear has no axial thrust force during operation similar to the 

herringbone gear because of its symmetrical geometric characteristic.  

4. The transverse gear chordal thickness measured at the middle section is larger than 

those of other sections as shown in Fig. 3-15. 
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Fig. 3-15 Normal profiles at different cross sections of the gear 
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CHAPTER 4 

Tooth Undercutting Analysis 

4.1 Introduction 

Tooth undercutting is an important issue for gear manufacture and design. When tooth 

undercutting occurs, the gear thickness near the tooth fillet will be decreased. The load 

capacity and the length action line are consequently reduced. Undercutting also induced noise 

and vibration. Besides, the contact ratio also decreases with undercutting.  

Actually, tooth undercutting is the singular points appeared on the tooth surface. Thus, 

the problem of tooth non-undercutting is the existence of singular points on the generated gear 

tooth surface. However, gear with a bit of tooth undercutting sometimes can be a benefit for 

solving the gear interference problem and storing of lubricating oil. 

In this chapter, the tooth undercutting conditions among the cutting parameters and gear 

design parameters on the generated tooth profiles are investigated based on the theory of 

gearing proposed by Litvin [10][20]. 

 

4.2 Conditions of Tooth Undercutting 

The concept for checking the undercutting of a gear tooth surface is to check the 

appearance of singular points on the generated gear tooth surfaces. Singularities of the 

generated surface 1∑  occurs when the relative velocity of the contact point over the 

generated surface equals to zero. The gear surface of the circular-arc curvilinear-tooth gear is 

generated by the imaginary rack cutter g∑ . The position vectors of 1∑  and g∑  at the 

instantaneous contact points should equal to each other if they are expressed in the same 



 
43

coordinate system in the process of generation. Therefore, if the rack cutter surface g∑  and 

the generated gear surface 1∑  are expressed in the fixing coordinate system ( , , )f f f fS X Y Z  

shown in Fig. 3-9, the relationship will be found: 

( ) (1)g
f f=R R . (4.1) 

By differentiating Eq.(4.1) with respect to time, it results in: 

( ) ( ) (1) (1)g g
tr r tr r+ = +V V V V . (4.2) 

After transposition, the (1)
rV  can be expressed as: 

(1) ( ) ( ) (1) ( ) ( 1)g g g g
r tr r tr r tr= + − = +V V V V V V , (4.3) 

where ( )g
trV  and (1)

trV  are the transfer velocities move of the cutter and blank at the contact 

point, respectively, and ( )g
rV  and (1)

rV  represent the relative velocity of  the cutter surface 

and tooth surface at the contact point, respectively. 

A singular point is occurred when the derivatives of (1)
rV  becomes to zero. Therefore, 

the necessary conditions of tooth undercutting which allows the determination of the limit on 

the rack cutter surface g∑  can be expressed by: 

( ) ( 1) 0g g
r tr+ =V V , (4.4) 

and the differential meshing equation: 

( )( ) ( )
1, , 0g gd f

dt
γ θ φ = . (4.5) 
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Tooth undercutting curve can be found by solving Eqs.(4.4) and (4.5). This undercutting 

curve is expressed on the rack cutter surface. To avoid tooth undercutting of the generated 

gear tooth surfaces, the generating rack cutter surface must be limited with the constraints. 

Now, Eqs.(4.4) and (4.5) yield that: 

( ) ( )( ) ( )
1

( ) ( )

g gg g
Fc c
cg g

d d
dt dt
θ γ

θ γ
∂ ∂

+ = −
∂ ∂
R R V , (4.6) 

( ) ( )
1

( ) ( )
1

g g

g g

df d f d f
dt dt dt

φθ γ
θ γ φ
∂ ∂ ∂

+ = −
∂ ∂ ∂

. (4.7) 

In Eqs.(4.6) and (4.7), ( )g
cR  represents the equation of rack cutter surface g∑  

expressed in coordinate system ( )( ) ( ) ( ) ( ), ,g g g g
c c c cS X Y Z , and 1F

cV  means the relative velocity 

between two surfaces g∑  and 1∑  at the contact point. Eqs.(4.6) and (4.7) can be also 

expressed by the matrix form as follow: 

( )( )

( )( ) ( 1)
( ) ( )( )

( 1)
( )( )

( 1)
( )( ) ( )

1( ) ( )

1

( ) ( )

gg cc gg g
xcg gg

gcc
ycgg

g
zcgg g

c c
g g

g g

xx

V
y dy V

dt V
dz z

f d
dt

dtf f

γθ
θ

γθ
γ

φ
θ γ

φ

θ γ

⎡ ⎤∂∂⎢ ⎥∂∂⎢ ⎥ ⎡ ⎤−
⎢ ⎥∂ ⎢ ⎥⎡ ⎤∂ −⎢ ⎥ ⎢ ⎥⎢ ⎥∂∂⎢ ⎥ ⎢ ⎥⎢ ⎥ = −⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂

∂⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦∂ ∂⎢ ⎥ ⎢ ⎥∂⎣ ⎦⎢ ⎥∂ ∂
⎢ ⎥∂ ∂⎣ ⎦

. (4.8) 

Based on the theory of Linear Algebra, the sufficient conditions for Eq.(4.8) existing, 

the only solution is the rank of the augmented matrix of Eq.(4.8) is two. It means the 

following four equations must be conformed in the meantime: 
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( ) ( )

( ) ( )
( 1)

( ) ( )

( ) ( )
( 1)

1 ( ) ( )

1

1

0

g g

g g
gc c

xcg g

g g
gc c

ycg g

x x V

y y V

dff f
dtθ γ

θ γ

θ γ
φ

φ

⎡ ⎤∂ ∂
−⎢ ⎥∂ ∂⎢ ⎥

⎢ ⎥∂ ∂
Δ = − =⎢ ⎥

∂ ∂⎢ ⎥
⎢ ⎥∂

−⎢ ⎥
∂⎢ ⎥⎣ ⎦

, (4.9) 

( ) ( )

( ) ( )
( 1)

( ) ( )

( ) ( )
( 1)

2 ( ) ( )

1

1

0

g g

g g
gc c

xcg g

g g
gc c

zcg g

x x V

z z V

dff f
dtθ γ

θ γ

θ γ
φ

φ

⎡ ⎤∂ ∂
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Eq.(4.12) is the meshing equation of gear C exactly. Eq.(4.9) to (4.12) are the conditions 

of tooth undercutting, and they can also be expressed as: 

( )( ) ( ) 2 2 2
1 1 2 3, , 0g gF θ γ φ = Δ + Δ + Δ = , (4.13) 

and ( )( ) ( )
1, , 0g gf γ θ φ = . (4.14) 
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With a similar process, tooth undercutting conditions of the circular-arc 

curvilinear-tooth pinion can be obtained as follows: 

( )( ) ( ) 2 2 2
2 1 2 3, , 0p pF θ γ φ = Δ + Δ + Δ = , (4.15) 

( )( ) ( )
2, , 0p pf γ θ φ = , (4.16) 
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Tooth undercutting means the singular points locates in the range of 
min

( )gθ  to 
max

( )gθ , 

where 
min

( )gθ  and 
max

( )gθ  are relative to the design parameters of tools A , B  and they are 

defined in Fig. 3-6. However, the range of parameter ( )gθ  is not identical with every case. It 

depends on the radius ( )gR  of the circular-arc curve of the rack cutter. For example, if 

( ) 30gR = mm, then ( )gθ  varies from 14.01  to 26.23 , but if ( ) 200gR = mm, ( )gθ  varies 

from 20.92  to 21.22 . Thus, a new parameter ( )
c

gl  is defined as: min

( ) ( )
( ) ( ) ( )

cos
uc

c

g g
r rg x x

l
θ θ

α
−

=  

and ( )
uc

gθ  is the angle of ( )gθ  illustrated in Fig. 4-1. The ( )
uc

gθ  indicates the position where 

singular point is appeared. The working range of the rack cutter is ( )0
cosc

g A Bl
α

+
≤ ≤ , 

parameter ( ) 0.0
c

gl = mm means the starting point of the generating line. If the singular point 

occurs in the working range of the rack cutter, it indicates that the gear tooth is undercut. 

Similarly, parameter ( )
c

pl  can be defined by the same process. 

rX

rY(g)R

minθ

αθ

maxθ (g)

(g)

(g)

(g)

(g)

rO(g)

RO(g)

lc
(g)

(xr(θ  ), yr(θ  ))(g) (g)

 

Fig. 4-1 Schema of normal cross section of the circular-arc rack cutter g∑  
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4.3 Numerical Examples for Tooth Undercutting of Circular-Arc Curvilinear-Tooth 
Gears 

Some examples are given to find the relationships between the design parameters of the 

gears and the conditions of undercutting. 

Example 4-1 

A numerical example here is given to find a set of singular points on the tooth surface of 

circular-arc curvilinear-tooth gear. The main design parameter is given as listed in Table 4-1. 

Based on the undercutting conditions discussed in last section 4.2, the singular points of 

the gear can be obtained and shown in Table 4-2. Positions of undercutting points are 

illustrated in Table 4-2. Symbol ( )
cL

gl  represents the parameter of the surface coordinate of the 

convex tooth surface, while ( )
cR

gl  means the surface coordinate of the concave tooth surface. 

It is found that the distributions of undercutting points are symmetrical with the surface 

1 0Z = mm because of its symmetrical shape, and the undercutting is most easily occurred on 

cross section 1 0Z = mm. The locations of the singular points on these two surfaces are not 

the same since the two surfaces are different. The undercutting is first occurred on the middle 

region of the tooth flank. Table 4-2 indicates that the convex tooth (right side tooth surface) 

surfaces are easier to undercut. However, the locations of singular points of these two surfaces 

are almost the same near the middle section of the tooth flank. The undercutting line of the 

gear is also shown in Fig. 4-2.  
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Table 4-1 Some major design parameters of the generated gear 

Design Parameters Gear 

Number of Teeth ( ( )iT ) 36 
Normal Module( M ) 3mm/tooth 
Normal Pressure Angle (α ) 20∘ 
Radius of the Disk-Type Cutter Rab (Fig. 3-7) 30mm 
Radius of Rack Cutter Normal Section ( ( )iR ) (Fig. 3-6) 50mm 
Face Width (W ) (Fig. 3-7) 30mm 
Tool Settings of Rack Cutter (Fig. 3-6) A = 1.25M, B = 1.25M 

 

 

Table 4-2 Location of singular points on tooth surface 1Σ  

Cross section 
( 1Z ) mm 

( )
cL

gl mm ( )
cR

gl  

-15.0 -0.209 -0.001 
-12.0 0.067 0.184 
-9.0 0.254 0.314 
-6.0 0.375 0.400 
-3.0 0.444 0.450 
0.0 0.466 0.466 
3.0 0.444 0.263 
6.0 0.375 0.226 
9.0 0.254 0.162 
12.0 0.067 0.067 
15.0 -0.209 -0.066 
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Fig. 4-2 Position of the undercutting line 

 

Example 4-2 

In this example, the study focuses on the undercutting with design parameters of 

pressure angle α  and the radius 
ab

R  of the disk-type cutter. 

The design parameters of the gear are given as shown in Table 4-3 and the undercutting 

points are shown in Fig. 4-3. The undercutting condition is simply cared about the ( )
cR

gl  since 

the convex tooth surfaces are easier to undercut. With the increase of the pressure angle value, 

tooth undercutting is avoided efficiently. However, the tooth undercutting is first occurs on the 

middle region of the tooth flank no matter what the value of pressure angle is. Fig. 4-4 shows 

the location of singular points on different tooth cross sections of the convex tooth surface 

when the curvilinear-tooth gear is generated by radii 
ab

R = 20mm, 30mm, 40mm and 

5000mm, respectively. When 
ab

R =20mm, the tooth undercutting appears at cross section 

1 10.04Z ≤ mm.  
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Table 4-3 Some major design parameters of gear 

Design Parameters Gear 

Number of Teeth ( ( )iT ) 36 
Normal Module ( M ) 3mm/tooth 
Radius of Rack Cutter Normal Section ( ( )iR ) (Fig. 3-6) 50mm 
Face Width (W ) (Fig. 3-7) 30mm 
Tool Settings of Rack Cutter (Fig. 3-6) A = 1.25M, B = 1.25M 
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Fig. 4-3 Locations of undercutting points with different α  
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Fig. 4-4 Locations of undercutting points with different 
ab

R  

 

When 
ab

R  approaches to infinity, the tooth trace of the gear becomes a straight line. 

Therefore, locations of the undercutting point on every cross section tend to the same as 
ab

R  

approaches to infinity. The phenomenon verifies the mathematical model by setting 

ab
R = 5000mm. 

Example 4-3 

The undercutting condition is also related to the teeth number of the gear. The design 

parameters are listed in Table 4-4 with different number of teeth Fig. 4-5 shows the locations 

of tooth undercutting points. It is found that gears with fewer teeth are easier to undercut.  
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Table 4-4 Some major design parameters of the gear with different number of teeth 

Design Parameters Gear C 

Normal Module ( M ) 3mm/tooth 
Normal Pressure Angle (α )   20∘ 
Radius of the Disk-Type Cutter (Rab) (Fig. 3-7) 30mm 
Radius of Rack Cutter Normal Section ( ( )iR ) (Fig. 3-6) 40mm 
Face Width (W ) (Fig. 3-7) 30mm 
Tool Settings of Rack Cutter (Fig. 3-6) A = 1M, B = 1M 
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Fig. 4-5 Locations of undercutting points with different number of teeth 
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Recall that the profile of cutters g∑  and p∑  are different, as shown in Fig. 2-6. Pressure 

angle of the circular-arc profile cutter is varying from the gear tip to gear root as shown in Fig. 

4-6, where ptipα  is defined as the instance pressure angle on the tip of p∑  and gtipα  indicates 

the instance pressure angle on the tip of g∑ . Example 4-1 showed that the undercutting first 

appears on the gear root which is generated by the tip of the cutter. Example 4-2 proved that 

undercutting is avoided efficiently with the increase of the pressure angle value. As shown in 

Fig. 4-6, ptipα  is greater than gtipα  and pressure angle α  due to the circular-arc profile cutters. 

Therefore, cutter g∑  is easier to undercut. 

 

Fig. 4-6 Pressure angles of rack cutters g∑  and p∑  

 

Gears with fewer teeth are easier to undercut. Consequently, the minimum teeth number 

can be found to prevent tooth undercutting. Tooth undercutting is first occurs on the middle 

region of the tooth flank. Thus, if tooth undercutting is not occurred on the middle section 

( 1 0Z = mm) of the curvilinear gear, then there is no singular point on the tooth surface 
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anymore. The minimum teeth number of circular-arc curvilinear tooth gear can be obtained by 

following the flowchart shown in Fig. 4-7.  

Fig. 4-8 shows the minimum number of gear teeth to avoid tooth undercutting. It 

denotes a smaller pressure angle value and a smaller radius value of the circular-arc profile of 

the rack cutter, a higher number of teeth are acceptable for non-undercutting. 

Example 4-4 

Tooth undercutting decreases the strength of the gear root seriously. The circular-arc 

curvilinear-tooth gear is easy to occur tooth undercutting on the middle cross section when the 

circular-arc profile cutter has a smaller radius or a smaller pressure angle. Besides, 

cutter-shifting is a method to prevent tooth undercutting. 

As shown in Fig. 4-9, the basic line of the rack cutter (axis ( )g
cY ) is tangent to the pitch 

circle of the gear blank at point I . Shifted cutting means to remove a distance of xM  from 

the rotated center of the gear blank, where x  means the shifting coefficient, and M  is the 

normal module of the gear. Gears generated by the cutter with shifting can reduce the tooth 

undercutting efficiently. Axis ( )g
cY  and ( )g

aY overlap when cutting the standard circular-arc 

curvilinear-tooth gear. The equations of the cutter surface and tooth surface can be obtained 

by the same process in section 3.2 only with consideration of the shifting coefficient xM . 

The sufficient conditions of the singular point appears on the tooth surface 1Σ  are 

shown in Eqs.(4.13) and (4.14). With the consideration of the shifting coefficient x , there are 

four unknowns in the Eqs.(4.13) and (4.14): x , ( )gθ , ( )gγ  and 1φ , and there are only two 

equations. Obviously, in order to solve these non-linear equations, two unknowns must be set 
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Fig. 4-7 Flowchart for determination of the minimum teeth number  
without tooth undercutting
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Fig. 4-8 The minimum teeth number for non-undercutting 

 

as given values. Based on the analysis results in previous section, the tooth undercutting is 

first occurs on the middle cross section of 1 0Z = mm. It means if the tooth undercutting can 

be avoided for the middle section, then there is no singular point on the tooth surface 

anymore.  

Based on the tooth undercutting analysis model with the shifting coefficient, the tooth 

undercutting conditions can be obtained by the following flowchart as shown in Fig. 4-10. Fig. 

4-11 shows the minimum shifting coefficient x  versus number of gear teeth to avoid 

undercutting under different radii and pressure angles of the circular-arc profile rack cutter. A 

higher shifting coefficient can be used to prevent the undercutting with a smaller value of 

( )gR  and α . The proper shifting coefficient can be easily chosen by using Fig. 4-11. 
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Fig. 4-9 The schematic of shifted cutting 



 
59

( )
( )

( ) ( ) 2 2 2
1,2 1 2 3

( ) ( )
1,2

, , 0

, , 0

i i

i i

F

f

θ γ φ

γ θ φ

⎧ = Δ + Δ + Δ =⎪
⎨

=⎪⎩

Solve the undercutting equations:

Yes

Determine Singular Points
at Cross Section Zi=0mm

Start at Shifting Coefficient        

Determine Singular Points
at Cross Section Zi=0mm

Start at Shifting Coefficient        0x =

UpdateUpdate
x x dx= +

No

Record the   Record the   x

ENDEND

Input: Gear Design Variables

Singular Point on 
the tooth Surface?

Solve by
Mathematica®Solve by

Mathematica®
( )
( )

( ) ( ) 2 2 2
1,2 1 2 3

( ) ( )
1,2

, , 0

, , 0

i i

i i

F

f

θ γ φ

γ θ φ

⎧ = Δ + Δ + Δ =⎪
⎨

=⎪⎩

Solve the undercutting equations:

Yes

Determine Singular Points
at Cross Section Zi=0mm

Start at Shifting Coefficient        

Determine Singular Points
at Cross Section Zi=0mm

Start at Shifting Coefficient        0x =

UpdateUpdate
x x dx= +

No

Record the   Record the   x

ENDEND

Input: Gear Design Variables

Singular Point on 
the tooth Surface?

Solve by
Mathematica®Solve by

Mathematica®

 

 

Fig. 4-10 Flowchart for determination of the shifting coefficient x   
without tooth undercutting 
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Fig. 4-11 The minimum shifting coefficient x  versus number of gear teeth 
to avoid undercutting 

 

4.4 Remarks 

The conditions of tooth undercutting for the circular-arc curvilinear-tooth gear are 

investigated utilizing the undercutting conditions and the mathematical model. A computer 

program applicable to check the tooth undercutting has been developed based on the derived 

mathematical model and tooth undercutting analysis. The undercutting characteristics of the 

gears generated by the rack cutter gΣ  and pΣ  are quite different. Tooth undercutting can be 

predicted by applying the developed undercutting computer program. Designers and 

manufactures can choose the proper design parameters from the developed equations and 

figures when manufacturing the circular-arc curvilinear-tooth gear. 
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CHAPTER 5  

Tooth Contact Analysis 

5.1 Introduction 

The kinematical errors (KE) of a gear set, is defined as the difference between the actual 

and the ideal rotation angle of the output shaft with reference to the input shaft. In the past, 

there were mainly two important factors in determining the performance of gear units: load 

capacity and fatigue life. In recent years, however, the noise radiations of running gears 

become important. Designers now must design gears with significantly consideration the 

significance of this extra factor. There are several factors may cause the noise of a gearbox, 

such as the misalignment of assembly; the precision of the profile, the roughness of the tooth 

surface and so on. All of these factors may cause the KE of the gear. Therefore, it can be said 

that the KE is the main reason to cause the noise of the gear. 

Computerize simulation of meshing and bearing contact is a significant achievement 

that could substantially improve the technology and quality of gears. The mathematical model 

of the circular-arc curvilinear-tooth gear has been presented in CHAPTER 3. The contact and 

meshing analyses can be attained by applying the developed mathematical and the tooth 

contact analysis (TCA) program. The TCA investigates the meshing characteristics of gear 

drives based on the knowledge of gear geometry. When performing TCA, the following 

assumptions have been made: 

1. Only rigid body motion is considered, i.e., no elastic deformation is considered; 

2. The effect of temperature, friction, and dynamic loading are neglected; 

3. Thermal expansion and inertial force due to gear rotation are also ignored. 
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The KE can be predicted by the TCA, the contact ratio of the gear pair can also be 

obtained by the results of TCA. The contact ratio is an important design index for gear tooth 

bending, load sharing and contact stress. Namely, increasing the contact ratio can develop the 

loading capacity of the gear set. 

In this chapter, the mathematical model of the circular-arc curvilinear-tooth gear will be 

first transformed to a fixed coordinate system. The different conditions for the gear set will be 

considered. The KE will also be studied and illustrated by numerical examples and computer 

graphs. 

 

5.2 Analysis on Kinematical Errors. 

The gear is generated by an imaginary rack cutter that has a circular-arc normal section 

and moves along a curved-template guide during the gear manufacturing process. Owing to 

the gear tooth surface of the gear set is in point contact rather than in line contact, it can be 

presumed that the contact point will fall on the middle region of the gear tooth surface. 

The mathematical model and the unit normal vectors of the circular-arc curvilinear-tooth 

gear should be expressed in the same coordinate system for the tooth contact analysis. As 

shown in Fig. 5-1, coordinate systems 1 1 1 1( , , )S X Y Z  and 2 2 2 2( , , )S X Y Z  is attached to the gear 

and pinion separately, in which 1Z  and 2Z  stands for the rotation-axis of the gear and pinion. 

'
1φ  and '

2φ  represent the actual rotation-angle of the gear and pinion under assembly errors, 

respectively. Coordinate system ( , , )f f f fS X Y Z  is the fixed coordinate system, and coordinate 

systems ( , , )v v v vS X Y Z  and ( , , )h h h hS X Y Z  are setup for simulation with the horizontal 

misaligned angle hγΔ  and vertical misaligned angle vγΔ , as shown in Fig. 5-1. C  is the ideal 

center distance of the gear pair, and CΔ  is the center distance error. 
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In CHAPTER 3, the mathematical models and the unit normal vectors of the gear and 

pinion, expressed in Eqs.(3.11), (3.12), (3.22), (3.23), (3.26) and (3.27), are represented in 

their corresponding coordinate systems 1 1 1 1( , , )S X Y Z  and 2 2 2 2( , , )S X Y Z , respectively. The 

position vector and unit normal vector can be transformed from coordinate systems 

1 1 1 1( , , )S X Y Z  to the fixed coordinate system ( , , )f f f fS X Y Z  by applying homogeneous 

coordinate transformation matrix equations:  

(1)
1 1f fh hv v=R M M M R , (5.1) 

and  

(1)
1 1f fh hv v=n L L L n , (5.2) 

Xf
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Yv,
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Fig. 5-1 Coordinate systems for simulation of a gear pair meshed with assembly errors 
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0 cos sin
0 sin cos

fh h h

h h

γ γ
γ γ

⎡ ⎤
⎢ ⎥= Δ Δ⎢ ⎥
⎢ ⎥− Δ Δ⎣ ⎦

L , (5.6) 

cos 0 sin
0 1 0

sin 0 cos

v v

hv

v v

γ γ

γ γ

Δ Δ⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− Δ Δ⎣ ⎦

L , (5.7) 

' '
1 1

' '
1 1 1

cos sin 0
sin cos 0
0 0 1

v

φ φ
φ φ

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

L   (5.8) 

Therefore, the position vector and the unit normal vector of the circular-arc 

curvilinear-tooth gear surface can be expressed in coordinate system ( , , )f f f fS X Y Z  as 

follows: 

(1)

(1) (1)

(1)

f

f f

f

x
y
z

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

R  (5.9) 
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' '
1 1 1 1 1

' ' ' '
1 1 1 1 1 1 1 1 1

' ' ' '
1 1 1 1 1 1 1 1 1

( cos sin )cos sin
( sin cos )cos [ ( cos sin )sin cos ]sin
( sin cos )sin [ ( cos sin )sin cos ]cos

v v

h v v h

h v v h

x y z
x y x y z
x y x y z

φ φ γ γ
φ φ γ φ φ γ γ γ
φ φ γ φ φ γ γ γ

⎡ ⎤+ Δ + Δ
⎢ ⎥= − + Δ + − + Δ + Δ Δ⎢ ⎥
⎢ ⎥− − + Δ + − + Δ + Δ Δ⎣ ⎦

, 

and 

(1)

(1) (1)

(1)

fx

f fy

fz

n
n
n

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

n  (5.10) 

' '
1 1 1 1 1

' ' ' '
1 1 1 1 1 1 1 1 1

' ' ' '
1 1 1 1 1 1 1 1 1

( cos sin )cos sin
( sin cos )cos [ ( cos sin )sin cos ]sin
( sin cos )sin [ ( cos sin )sin cos ]cos

x y v z v

x y h x y v z v h

x y h x y v z v h

n n n
n n n n n
n n n n n

φ φ γ γ
φ φ γ φ φ γ γ γ
φ φ γ φ φ γ γ γ

⎡ ⎤+ Δ + Δ
⎢ ⎥= − + Δ + − + Δ + Δ Δ⎢ ⎥
⎢ ⎥− − + Δ + − + Δ + Δ Δ⎣ ⎦

. 

Similarly, the position vector and the unit normal vector of the circular-arc 

curvilinear-tooth pinion surface, originally represented in coordinate system 2 2 2 2( , , )S X Y Z , 

can be transformed to the fixed coordinate system ( , , )f f f fS X Y Z  by applying the following 

equations: 

(2)
2 2f f=R M R , (5.11) 

and  

(2)
2 2f f=n L n , (5.12) 

where  

' ' '
2 2
' '
2 2

2

cos sin 0
sin cos 0 0

0 0 1 0
0 0 0 1

f

Cφ φ
φ φ

⎡ ⎤−
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M , (5.13) 



 
66

' '
2 2
' '

2 2 2

cos sin 0
sin cos 0

0 0 1
f

φ φ
φ φ

⎡ ⎤−
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

L , (5.14) 

and 'C C C= + Δ . Based on Eq.(5.11) to (5.14), the position vector and the unit normal vector 

of the pinion can be represent in the coordinate system ( , , )f f f fS X Y Z  as follows: 

' ' '
2 2 2 2

(2) ' '
2 2 2 2

2

cos sin
sin cosf

x y C
x y

z

φ φ
φ φ

⎡ ⎤− +
⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦

R , (5.15) 

and, 

' '
2 2 2 2

(2) ' '
2 2 2 2

2

cos sin
sin cos

x y

f x y

z

n n
n n

n

φ φ
φ φ

⎡ ⎤−
⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦

n . (5.16) 

When the gear pair is meshed with each other, as shown in Fig. 5-2, the mating surfaces 

1Σ  and 2Σ  must satisfy the conditions of tooth continuous tangency at the instant contact 

point P . The conditions of tooth continuous tangency can be expressed by considering that 

the position vectors and unit vectors of the two mating surfaces coincide with each other at 

the common contact point at any instant. Thus: 

(1) (2)
f f=R R , (5.17) 

and  

(1) (2) 0f f× =n n . (5.18) 
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Fig. 5-2 Schematic of the relationship between two meshing gear tooth surfaces 
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Eq.(5.17) means the position vector of the contact point of the gear and pinion tooth 

surfaces are equal to each other, and Eq.(5.18) indicates their surface unit normal vectors are 

also collinear. 

In a three-dimensional space, Eq.(5.17) contains three independent equations. However, 

Eq.(5.18) contains only two independent equations since (1) (2) 1f f= =n n . Recall that there are 

two independent meshing equations during the generation of the gear and pinion by rack 

cutter gΣ  and pΣ . Generally, the rotation angle '
1φ  is considered as an input variable in 

solving these non-linear equations. Hence, the output rotation angle '
2φ  is a function of '

1φ . 

The relationship between '
1φ  and is an inverse ratio to their number of teeth under the ideal 

meshing condition (i.e. ( ) ' ( ) '
2 1

p gT Tφ φ= ,). Nevertheless, manufacturing errors and assembly 

misalignments are inevitable in practical situations. Therefore, under a real meshing condition, 

the KE of the mating gear pair can be expressed as follow: 

( )
' ' ' ' '
2 1 2 1 1 ( )( ) ( )

g

p

T
T

φ φ φ φ φΔ = − ,  (5.19) 

where ( )gT  and ( )pT  indicates the number of teeth of the gear and pinion, and ' '
2 1( )φ φΔ  is 

the KE of the gear set induced by the assembly errors. 

 

5.3 Contact Ratio 

The contact ratio of a gear set is defined as the average number of teeth in contact 

during the gear meshing. A higher contact ratio of a gear set can increase its load capacity 

efficiently and decrease the impact force per tooth. Virtually, the increase of contact ratio can 

be achieved by the decrease of the pressure angle of the gear set. However, the bending and 
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compressive stresses will be increased with the decrease of the pressure angle since the tooth 

thickness of the gear fillet is reduced. 

In general, a gear set with a minimum contact ratio of 1.4 is desirable, and it should 

never be less than 1.2 [21]. However, the contact ratio can be defined by the gear’s rotation 

angle, measured from the starting point of contact to the end point of contact. Thus, the value 

of contact ratio can be obtained from the result of the teeth contact analysis and expressed by 

the following equation [10]: 

( ) 1 1( )
360

g E S
cm T φ φ−
= , (5.20) 

where 1 1E Sφ φ−  denotes the rotation angle of the gear while one pair of teeth is in mesh 

within the range of tooth surface. The angle 1Eφ  and 1Sφ  can be determined based on the 

TCA simulation results. Table 5-1 illustrates the contact ratios versus different major design 

parameters. Contact ratio decreases with the decreasing of the radius of the cutter’s 

circular-arc profiles and an acuter pressure angle. However, the contact ratio takes no effect 

with the variations of the radii abR  of the disk-type tool. 

 

5.4 Numerical Examples for Kinematical Errors of Circular-Arc Curvilinear-Tooth 
Gears 

Several examples are used to present the KE characteristics of the gear pair. Example 

5-1 shows the positions of contact points on the gear pair with or without misalignments. 

Relationships between pressure angle and KE are also discussed in this example. Example 5-2 

and Example 5-3 clarify the effects of the KE and the radii of the cutter’s circular-arc profile. 

Example 5-4 explains the relations between KE and the radius of the disk-type cutter.  
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Table 5-1 Contact Ratios under different design parameters 

Design parameters 
( 3 / , 0.8 , 0.8M mm tooth A M B M= = =  

( ), 36gT = teeth, ( ), 18pT = teeth) 

abR  
(mm) 

( )gR  
(mm) 

( )pR  
(mm) 

α  

(deg) 

Contact 
Ratio 

30 80 80 14.5 undercutting 

30 80 80 20 1.66 

30 80 80 25 1.42 

30 40 40 20 1.70 

20 80 80 20 1.66 

 

Example 5-1 

Some major design parameters of the circular-arc curvilinear-tooth gear pair are given in 

Table 5-2. According to the developed TCA computer simulation program, Table 5-3 to Table 

5-6 list the analysis detail results of bearing contacts and KE of the gear pair. The contact 

points under ideal and error assembly conditions are distributed over the middle region of the 

gear tooth surface, because of tooth surfaces of the gear set have crowning effect and are in 

point contact. It can be said that the gear edge contact is efficiently avoided. However, the 

circular-arc curvilinear-tooth gear set is sensitive to the center distance assembly error CΔ .  

KE of the circular-arc curvilinear-tooth gear under different pressure angles with 

assembly errors are shown in Fig. 5-3, Fig. 5-4 and Fig. 5-5. The circular-arc curvilinear-tooth 

gear set possesses no KE under ideal assembly conditions, and the KE is insensitive to the 

axial assembly misalignments hγΔ  and vγΔ . When the gear pair has assembly errors with 

distance variation CΔ , where 0.1CΔ = mm is 0.12% of center distance variation, the contact 
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points are still located on the contact line of ( ) 0gγ = , and it takes an acute effect of the KE 

for the gear pair. However, center distance variation CΔ  will not induce KE for involute 

gear pairs. KE under the axial misalignment 0.1hγΔ =  takes no effect with variations of the 

pressure angle. However, KE increases under assembly errors conditions 0.1CΔ = mm and 

0.1vγΔ =  with a larger pressure angle value. 

 

 

 

Table 5-2 Some major design parameters of the circular-arc curvilinear-tooth gear pair 

Design parameters Pinion Gear 

Number of Teeth ( ( )iT ) 18 36 
Normal Module ( M ) 3mm/tooth 3mm/tooth 
Normal Pressure Angle (α ) 20∘ 

Radius of the Disk-Type Cutter (Rab) (Fig. 3-7) 30mm 

Radius of Rack Cutter Normal Section (R(i))  
(Fig. 3-6 & Fig. 3-8) 

80mm 80mm 

Face Width (W ) (Fig. 3-7) 30mm 
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Table 5-3 Bearing contacts and kinematical errors  
of the gear pair under ideal assembly condition 

'
1(deg.)φ  '

2 (deg.)φ  ( )gθ (deg.) ( )pθ (deg.) ( )gγ (deg.) ( )pγ (deg.) KE(arc-sec.) 

-5.000 -10.000 19.438 19.438 0.000 0.000 0.00 
-4.000 -8.000 19.659 19.659 0.000 0.000 0.00 
-3.000 -6.000 19.885 19.885 0.000 0.000 0.00 
-2.000 -4.000 20.116 20.116 0.000 0.000 0.00 
-1.000 -2.000 20.352 20.352 0.000 0.000 0.00 

0.000 0.000 20.594 20.594 0.000 0.000 0.00 

1.000 2.000 20.841 20.841 0.000 0.000 0.00 

2.000 4.000 21.093 21.093 0.000 0.000 0.00 
3.000 6.000 21.352 21.352 0.000 0.000 0.00 
4.000 8.000 21.617 21.617 0.000 0.000 0.00 
5.000 10.000 21.888 21.888 0.000 0.000 0.00 

 

Table 5-4 Bearing contacts and KE of the gear pair  
under center distance assembly error 0.1CΔ = mm 

'
1(deg.)φ  '

2 (deg.)φ  ( )gθ (deg.) ( )pθ (deg.) ( )gγ (deg.) ( )pγ (deg.) KE(arc-sec.) 

-5.000 -9.995 19.477 19.403 0.000 0.000 17.36 
-4.000 -7.996 19.698 19.623 0.000 0.000 14.06 
-3.000 -5.997 19.924 19.849 0.000 0.000 10.67 
-2.000 -3.998 20.155 20.079 0.000 0.000 7.21 
-1.000 -1.999 20.391 20.314 0.000 0.000 3.65 
0.000 0.000 20.633 20.555 0.000 0.000 0.00 
1.000 1.999 20.880 20.801 0.000 0.000 -3.74 
2.000 3.998 21.133 21.053 0.000 0.000 -7.59 
3.000 5.997 21.392 21.310 0.000 0.000 -11.54 
4.000 7.996 21.657 21.574 0.000 0.000 -15.60 
5.000 9.995 21.928 21.844 0.000 0.000 -19.77 
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Table 5-5 Bearing contacts and kinematical errors  
of the gear pair under axial misalignments 0.1hγΔ =  

'
1(deg.)φ  '

2 (deg.)φ  ( )gθ (deg.) ( )pθ (deg.) ( )gγ (deg.) ( )pγ (deg.) KE(arc-sec.) 

-5.000 -10.000 19.438 19.438 -0.787 -0.687 0.75 
-4.000 -8.000 19.659 19.659 -0.767 -0.667 0.59 
-3.000 -6.000 19.885 19.885 -0.747 -0.647 0.44 
-2.000 -4.000 20.116 20.116 -0.727 -0.627 0.29 
-1.000 -2.000 20.352 20.352 -0.707 -0.607 0.14 
0.000 0.000 20.593 20.593 -0.687 -0.587 0.00 
1.000 2.000 20.840 20.840 -0.667 -0.567 -0.14 
2.000 4.000 21.093 21.093 -0.647 -0.547 -0.27 
3.000 6.000 21.352 21.352 -0.627 -0.527 -0.40 
4.000 8.000 21.616 21.616 -0.607 -0.507 -0.52 
5.000 10.000 21.887 21.887 -0.587 -0.487 -0.64 

 

Table 5-6 Bearing contacts and kinematical errors  
of the gear pair under axial misalignments 0.1vγΔ =  

'
1(deg.)φ  '

2 (deg.)φ  ( )gθ (deg.) ( )pθ (deg.) ( )gγ (deg.) ( )pγ (deg.) KE(arc-sec.) 

-5.000 -10.000 19.438 19.437 -0.868 -0.904 -0.20 
-4.000 -8.000 19.659 19.658 -0.872 -0.908 -0.17 
-3.000 -6.000 19.885 19.884 -0.876 -0.912 -0.13 
-2.000 -4.000 20.116 20.115 -0.880 -0.916 -0.09 
-1.000 -2.000 20.352 20.351 -0.884 -0.921 -0.04 
0.000 0.000 20.593 20.593 -0.888 -0.925 0.00 
1.000 2.000 20.840 20.840 -0.892 -0.930 0.04 
2.000 4.000 21.093 21.092 -0.896 -0.935 0.09 
3.000 6.000 21.351 21.351 -0.901 -0.940 0.14 
4.000 8.000 21.616 21.616 -0.906 -0.945 0.19 
5.000 10.000 21.887 21.887 -0.910 -0.950 0.24 
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Fig. 5-3 Kinematical errors of the gear pair with different pressure angles  
under ideal assembly condition and assembly error CΔ = 0.1mm 
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Fig. 5-4 Kinematical errors of the gear pair with different pressure angles  
under axial assembly misalignment 0.1hγΔ =  and 0.1vγΔ =  
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Fig. 5-5 Kinematical errors of the gear pair with different pressure angles  
under mixed assembly errors with CΔ = 0.1mm , 0.1hγΔ =  and 0.1vγΔ =  

 

Example 5-2 

The relationships between KE and the radius ( )iR  of the circular-arc cutter profile are 

investigated in this example. The design parameters of the gear pair are the same as those 

listed in Table 5-2 with varying values of ( )iR . The example aims to investigate the gear pair 

meshing under different ( )iR , and it is defined that ( ) ( )g pR R=  in this example. 

The KE curves under different meshing conditions are shown in Fig. 5-6, Fig. 5-7 and 

Fig. 5-8. They illustrate that KE caused by 0.1CΔ = mm is decreased with the increase of 

( )iR . Because gears with a involute profiles induce no KE with center distance assembly 

errors, it means ( )iR  approaches to infinity for the involute profiles. However, KE caused by  
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Fig. 5-6 Kinematical errors of the gear pair with different ( )iR  
under ideal assembly condition and assembly error CΔ = 0.1mm 
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Fig. 5-7 Kinematical errors of the gear pair with different ( )iR  
under axial assembly misalignment 0.1hγΔ =  and 0.1vγΔ =  
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Fig. 5-8 Kinematical errors of the gear pair with different pressure angles  
under mixed assembly errors with CΔ = 0.1mm , 0.1hγΔ =  and 0.1vγΔ =  

 

axial misalignment 0.1vγΔ =  increases with the increase of ( )iR . Fig. 5-8 shows the mixed 

assembly misalignment conditions for the gear pair with a higher ( )iR , the results in a lower 

level of KE is caused by the center distance 0.1CΔ = mm error. 

Example 5-3 

Example 5-1 and Example 5-2 are designed with the same radius ( ( ) ( )g pR R= ) for the 

rack cutter’s circular-arc profile. A parameter RΔ  is pre-designed in this example, and RΔ  is 

defined as ( ) ( )( )p gR R RΔ = − . The major design parameters of the gear set are the same as 

shown in Table 5-2. KE under different meshing conditions with RΔ  as illustrated in Fig. 5-9 

to Fig. 5-11, where RΔ  is defined as 0mm, 4mm and 8mm. There is no KE under ideal 

assembly conditions with 0RΔ = mm because the gear pair is generated by conjugate-shape 

rack cutters [10][20].  
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Fig. 5-9 Kinematical errors of the gear pair with different RΔ  
under ideal assembly condition and assembly error CΔ = 0.1mm  
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Fig. 5-10 Kinematical errors of the gear pair with different RΔ  
under axial assembly misalignment 0.1hγΔ =  and 0.1vγΔ =  
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Fig. 5-11 Kinematical errors of the gear pair with RΔ  
under mixed assembly errors with CΔ = 0.1mm , 0.1hγΔ =  and 0.1vγΔ =  

 

However, the gear pair with design parameter 0RΔ ≠  possesses a parabolic type of KE 

under the ideal assembly condition. Relationships between KE and RΔ  under different 

meshing conditions are shown in these figures. Center distance error CΔ  has a great 

influence on the KE of the gear pair with its circular-arc profile. The KE caused by the center 

distance variation CΔ  is decreased effectively with the parabolic type of KE by the 

pre-designing the design value RΔ . 

Example 5-4 

The relationships between KE and ( )iR  has been discussed before with considerations 

of different radii ( )gR , ( )pR  of the circular-arc rack cutters even a difference RΔ  between 

them. In this example, the focus aims to investigate the KE of the gear pair with different radii  



 
83

0

10

20

30

-10

-20

-30
-20 -15 -10 -5 0 5 10 15 20

K
E 

(a
rc

-s
ec

.)

40 R    = 20mmab

R    = 30mmab

R    = 40mmab

f' (deg.)1

0

10

20

30

-10

-20

-30
-20 -15 -10 -5 0 5 10 15 20

K
E 

(a
rc

-s
ec

.)

40 R    = 20mmab

R    = 30mmab

R    = 40mmab

f' (deg.)1

(a) Ideal Assembly Condition

(b) ΔC = 0.1mm

 

Fig. 5-12 Kinematical errors of the gear pair with different abR  
under ideal assembly condition and assembly error CΔ = 0.1mm 
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Fig. 5-13 Kinematical errors of the gear pair with different abR  
under axial assembly misalignment 0.1hγΔ =  and 0.1vγΔ =  
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Fig. 5-14 Kinematical errors of the gear pair with RΔ  
under mixed assembly errors with CΔ = 0.1mm , 0.1hγΔ =  and 0.1vγΔ =  

 

abR  of the disk-type cutter under assembly misalignments. 

The design parameters in this example are shown in Table 5-2 but the radius abR  of the 

disk-type cutter is changed. The KE curves of the gear pair under different meshing conditions 

are shown in Fig. 5-12, Fig. 5-13 and Fig. 5-14. 

The gear pair has no KE with conjugate-shape rack cutter under ideal assembly 

conditions, and the KE caused by the center distance error is the same as that of changing 

value abR . It can be considered that the contact point on the gear pair is on the cross section 

of ( ) 0iZ = mm (or ( ) 0iγ = ) under the ideal assembly condition and with center distance 

error. Therefore, the KE is depend on the profile of the gear pair and has no relationship with 

the trace of the gear pair. KE is decreased with the decreasing of the abR  under a horizontal 
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misaligned angle hγΔ , it means the larger curvature (i.e. a smaller abR ) of the tooth-trace 

enlarges the tolerance to the horizontal misaligned angle hγΔ . However, KE is increased with 

the decreasing of the abR  under an horizontal misaligned angle hγΔ . The main portion of 

KE of the circular-arc curvilinear-tooth gear pair is caused by the center distance error. 

Consequently, the value of abR  is not sensitive to the KE of the gear pair.  

 

5.5 Remarks 

In this chapter, computer simulation programs have been developed for the TCA of the 

proposed circular-arc curvilinear-tooth gear pair. Therefore, the effects of the gear design 

parameters and assembly errors on the KE of the mating gear pair can be predicted by the 

computer simulations. According to the numerical results, the following conclusions can be 

drawn: 

1. The contact ratio of the gear pair is related to the radius of the generated rack cutter. 

A higher contact ratio of the gear pair can be obtained with a smaller radius of the 

cutter. 

2. The bearing contact is localized near the middle region of the tooth flank by means 

of the curvilinear tooth trace. The gear pair is insensitive to axial misalignments 

because the contact type of the proposed gear pair is in point contact. Thus, edge 

contact can be efficiently avoided by the proposed gear pair. 

3. The circular-arc curvilinear-tooth gear it is sensitive to the center distance assembly 

errors because of the profile of he mating gear pair is not in the involute type. 

4. The resultant KE curve of the gear pair can be modified into a parabolic type by 

appropriately choosing the design parameter RΔ . 
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CHAPTER 6  

Contact Pattern  

6.1 Introduction 

Owing to elasticity of tooth surfaces, the instantaneous contact of gear tooth surfaces at 

a point is spread over an elliptical area. The center of symmetry of the instantaneous contact 

ellipse coincides with the theoretical contact point. The bearing contact is formed as the set of 

contact ellipses. The goal for this chapter is to determine the orientation of the contact ellipse 

on the contact surface. 

Spur gears, helical gears with parallel axes, and worm-gear drives are initially in line 

contact. However, the instantaneous line contact of gear tooth surfaces exists only 

theoretically for an ideal gear train without assembly and manufacturing errors. In practice, 

the line contact becomes point contact due to gear axial misalignments. Usually, the contact 

pattern can be measured by the gear pattern testing machine. The method is smeared with 

some coatings on the gear tooth surface, and the diameter of the coatings is 6.32 μm [10]. 

Then, the gear set is meshing and running for a period of time. The coatings on the deformed 

area will be scraped out, and the contact pattern is formed. It’s said that the contact pattern is 

considered for the case when the gears are under a small load with a 6.32 μm elastic 

deformation. However, the contact pattern can be obtained by numerical simulation method. 

In this chapter, the contact patterns of this type of gear set will investigated by using the 

surface topology method [21]. Moreover, Litvin [10][20][23] proposed methodologies to 

directly evaluate the principal directions and curvatures of the generated surfaces in terms of 

design parameters of their corresponding generating tool surfaces. 
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6.2 Surface Topology Method 

Fig. 6-1(a) displays the relationship among the tooth surfaces and common tangent 

plane, where point TO  means the instantaneous contact point of the two gear surfaces 1Σ  

and 2Σ . Vector n  is the common unit normal vector of these two tooth surfaces, and T  

indicates the common tangent plane to the mating tooth surfaces. A new coordinate system 

( ), ,T T T TS X Y Z  is defined on the tangent plane by considering that the origin of coordinate 

system ( ), ,T T T TS X Y Z  is coincided with the instantaneous contact point TO . Besides, axis 

TZ  of the coordinate system ( ), ,T T T TS X Y Z  coincides with the common unit normal vector 

n  of two mating surfaces at their common tangent point TO . Axes TX  and TY  of the 

coordinate system ( ), ,T T T TS X Y Z  form the common tangent plane T  to both mating tooth 

surfaces. 

The main purpose of the surface topology method is to simulate the scraping of coatings 

near by to the contact point. The perpendicular distances measured from a point P  on the 

tangent plane T  to the mating tooth surfaces 1Σ  and 2Σ  are designated as 1d  and 2d , as 

illustrated in Fig. 6-1(b). Thus, the total distance of these two separated surfaces can be 

expressed as 1 2d d d= + . The coatings proximity to the contact point will be scraped because 

of 0.00632d < mm. The scraped region is formed the contact pattern. 

When performing the surface topology method, the coordinate system ( ), ,T T T TS X Y Z  

on the tangent plane is first established and the equations of the tooth surfaces are transformed 

to the coordinate system ( ), ,T T T TS X Y Z  by applying the homogeneous coordinate 

transformation method. Obviously, since axis TZ  coincides with the unit common normal 

vector n  at the tangent point TO , the absolute value of the coordinates ( ) ( 1, 2)i
Tz i =   



 
89

O

Z

Σ

T

Σ

n

X

Y

θ
r

ω(2) 

ω(1) 

O

Z 

n

P
d
d r

coating

Σ

T

Σ

(a)

(b)

0.00632 mm

T
1

2
T

T

T

T

1

2

T

1

2

T

 

 

Fig. 6-1 Schematic relationship between the tooth surface and tangent plane 
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represents the distance measured from the common tangent plane T  to both gear tooth 

surfaces, respectively.  

In order to search the equal distance separation points of the mating surfaces around the 

neighborhood of the tangent point TO , a polar coordinate system on the tangent plane T  

can be represented by two parameters Tθ  and r , and the origin of polar coordinate system 

coincides with the contact point TO . As shown in Fig. 6-1(b), r  represents the distance 

measured outward from the contact point TO  to the searched separation point; Tθ  is the 

angular position, and the range of Tθ  is from 0 to 2π  as searching the equal separation 

lines. Any point on the tangent plane can be represented by polar coordinates r  and Tθ . The 

perpendicular distance measured from the tooth surface 1Σ  to the point ( , )Tr θ  on the 

common tangent plane T  is the absolute value of (1)
Tz . Similarly, the perpendicular distance 

measured from the  tooth surface 2Σ  to the point ( , )Tr θ  on the common tangent plane T  

is the absolute value of (2)
Tz . Hence, the distance between these two mating surfaces 1Σ  and 

2Σ  can be determined by the absolute value of (1)
Tz  and (2)

Tz . 

In practice, the equations of the mating tooth surfaces are transformed to the coordinate 

system ( ), ,T T T TS X Y Z  of the tangent plane. The geometrical relationships among coordinate 

systems ( ), ,f f f fS X Y Z , ( ), ,m m m mS X Y Z , ( ), ,m m m mS X Y Z  and ( ), ,T T T TS X Y Z  are 

shown in Fig. 6-2, where coordinate system ( ), ,f f f fS X Y Z  is the fixed coordinate system 

and ( ), ,m m m mS X Y Z  and ( ), ,n n n nS X Y Z  are the auxiliary coordinate systems. δ  is the 

angle formed by axis mZ  and nZ , and ε  is the include angle of axis nZ  and TZ . The 

position vector ( )i
TR  of the gear tooth surface represented in coordinate system 

( ), ,T T T TS X Y Z  can be obtained by applying the homogeneous coordinate transformation 
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matrix equation as follows: 

( ) ( )i i
T Tn nm mf f=R M M M R   (6.1) 

( )i
Tf f= M R , (i=1, 2), 

where  

1 0 0
0 1 0
0 0 1
0 0 0 1

x

y
mf

z

p
p
p

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

M ,  (6.2) 

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

nm

δ δ
δ δ

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M ,  (6.3) 

and 

cos 0 sin 0
0 1 0 0

sin 0 cos 0
0 0 0 1

Tn

ε ε

ε ε

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M .  (6.4) 

Therefore, the homogeneous coordinate transformation matrix for transforming from 

coordinate system ( ), ,f f f fS X Y Z  to coordinate system ( ), ,T T T TS X Y Z  becomes: 

cos sin sin sin cos cos sin ( sin cos )
0 cos sin cos sin

sin cos sin cos cos sin cos ( sin cos )
0 0 0 1

x y z

y z
Tf

x y z

p p p
p p

p p p

ε ε δ ε δ ε ε δ δ
δ δ δ δ

ε ε δ ε δ ε ε δ δ

− − − + +⎡ ⎤
⎢ ⎥− − +⎢ ⎥=
⎢ ⎥− − +
⎢ ⎥
⎣ ⎦

M . 

  (6.5) 

The equations for the gear and pinion can be expressed in the coordinate system 
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( ), ,T T T TS X Y Z  as follows: 

(1)

(1) (1)

(1)

T

T T

T

x
y
z

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

R  (6.6) 

(1) (1) (1)

(1) (1)

(1) (1) (1)

cos sin sin sin cos cos sin ( sin cos )
cos sin cos sin

sin cos sin cos cos sin cos ( sin cos )

f f f x y z

f f y z

f f f x y z

X Y Z p p p
Y Z p p

X Y Z p p p

ε ε δ ε δ ε ε δ δ
δ δ δ δ

ε ε δ ε δ ε ε δ δ

⎡ ⎤− − − + +
⎢ ⎥= − − +⎢ ⎥
⎢ ⎥+ + − − +⎣ ⎦

 

, and 

(2)

(2) (2)

(2)

T

T T

T

x
y
z

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

R  (6.7) 

(2) (2) (2)

(2) (2)

(2) (2) (2)

cos sin sin sin cos cos sin ( sin cos )
cos sin cos sin

sin cos sin cos cos sin cos ( sin cos )

f f f x y z

f f y z

f f f x y z

X Y Z p p p
Y Z p p

X Y Z p p p

ε ε δ ε δ ε ε δ δ
δ δ δ δ

ε ε δ ε δ ε ε δ δ

⎡ ⎤− − − + +
⎢ ⎥= − − +⎢ ⎥
⎢ ⎥+ + − − +⎣ ⎦

, 

where the xp , yp , and zp  designate the coordinates of the contact point of the two surfaces 

represented in the fixed coordinate system ( ), ,f f f fS X Y Z . Position vectors (1)
fR  and (2)

fR  

has already derived and expressed in Eqs.(6.9) and (6.15). Since the unit normal vector n  at 

the contact point is in the same direction with axis TZ , the angle δ  and ε  can be obtained 

by the geometrical relationship shown which can be expressed as follows in Fig. 6-2: 

1tan y

z

n
n

δ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, (6.8) 

1

2 2
tan x

y z

n
n n

ε −
⎛ ⎞
⎜ ⎟=
⎜ ⎟+⎝ ⎠

, (6.9) 
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Fig. 6-2 Schematic relationship among the coordinate systems and tangent plane 

 



 
94

where xn , yn  and zn  is the three components of the unit normal vector on the contact point. 

Based on the above-mentioned algorithm, a computer program is developed to determine the 

points when the amount of surface separation distance is chosen as the thickness of the 

coating for contact pattern tests. 

 

6.3 Numerical Simulation of Contact Ellipses of Circular-Arc Curvilinear-Tooth Gears 

Example 6-1 

Table 6-1 Some major design parameters of the circular-arc curvilinear-tooth gear pair 

Design parameters Pinion Gear 
Number of Teeth (T(i)) 18 36 
Normal Module (M) 3mm/tooth 
Normal Pressure Angle (α ) 20∘ 

Radius of the Disk-Type Cutter (Rab) (Fig. 3-7) 30mm 

Radius of Rack Cutter Normal Section (R(i)) 
(Fig. 3-6 & Fig. 3-8) 

40mm 40mm 

Face Width (W ) (Fig. 3-7) 30mm 

 

The major design parameters of the proposed gear set are listed in Table 6-1. The 

contact patterns under different assembly conditions are acquired by the computer programs 

based on TCA. Fig. 6-3 depicts the contact path and the contact ellipses on the gear tooth 

surfaces under ideal and error assembly conditions. The contact ellipses are plotted when the 

gear rotates every 1˚ from -5˚ to 5˚. It is found that the bearing contact points of the gear set 

are localized in the middle region of the tooth flank due to the curvilinear tooth trace. The 

contact ellipse moves upward with assembly error of 0.1CΔ = mm. The contact ellipses 

under axial misalignments hγΔ  and vγΔ  are also shown in Fig. 6-4 and Fig. 6-5, 
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respectively. It is noted that the positions of the contact points of the gear set are located near 

the middle region of the tooth flank even under the axial misalignments.  

 

(a) Ideal assembly condition 

 

(b) With assembly error 0.1CΔ = mm 

 
Fig. 6-3 Contact patterns of the gear tooth surface under ideal and 

 error assembly conditions (Example 6-1)
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(a) Horizontal axial misalignment 0.1hγΔ =  

 

(b) Horizontal axial misalignment 0.5hγΔ =  

 

Fig. 6-4 Contact patterns of the gear tooth surface under  
horizontal axial misalignments (Example 6-1) 
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(a) Vertical axial misalignment 0.1vγΔ =  

 

(b) Vertical axial misalignment 0.5vγΔ =  

 

Fig. 6-5 Contact patterns of the gear tooth surface under  
vertical axial misalignments (Example 6-1) 
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Example 6-2 

The instantaneous contact of tooth surfaces at a point is spread over an elliptical area, as 

shown in Fig. 6-6. Symbol a  and b  represent the semi-major and semi-minor length of the 

ellipse. The relationship between the radii abR  of the disk-type tool (Fig. 3-7) and 

semi-minor axis of the contact ellipse b  will be discussed in this example. 

2a

2b

X

YT

T

 

Fig. 6-6 Orientation and dimension of the contact ellipse 

 

The major design parameters of the gear pair are the same as list in Table 6-1 except the 

value of abR . Fig. 6-7 shows the contact ellipses of the gear surface with 20abR = mm, 

30abR = mm and 40abR = mm under ideal assembly condition. The contact points of the gear 

pair are all located on the middle region of the gear flank no matter 20abR = mm, 

30abR = mm or 40abR = mm, and the length of the major axis of contact ellipses increases 

evidently with the increase of the abR . This is due to the fact that a large radius abR  induces 

a smaller crowning effect on the tooth flank. If the radius abR  tends to infinity, the 

curvilinear-tooth gear becomes a spur gear, and the ellipse becomes a line contact. Fig. 6-8 

shows the effects of design parameters abR  and the semi-major axis length b  of the contact 

ellipse. It is found that the semi-major axis length b  is proportional to the abR . Gear 

designers can select the proper gear design parameters for their needs. 
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Gear with 20abR = mm under ideal assembly condition  

 

Gear with 30abR = mm under ideal assembly condition 

 

Gear with 40abR = mm under ideal assembly condition 

 

Fig. 6-7 Contact patterns of the gear tooth surfaces under ideal assembly condition with 
different value of abR  (Example 6-2) 
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Fig. 6-8 Effects of design parameters abR  versus  
the semi-major axis length a  of contact ellipse 

 

Example 6-3 

The main advantage of the circular-arc gear pair is efficiently to reduce the contact 

stress by a larger contact area on the contact tooth surfaces. However, contact ellipse is the 

key index to predict the contact situation. The area of the contact pattern depends on the 

lengths of major and minor axes. The gear parameters are chosen to investigate their effects 

on the corresponding contact patterns, while the radius of the disk-type cutter is fixed as 

30abR = mm. 



 
101

As the tooth undercutting condition of the gear generated by rack cutter gΣ  is severer 

than the pinion generated by rack cutter pΣ  discussed in CHAPTER 2, because the profiles 

of the circular-arc cutters gΣ  and pΣ  are different. According to the analysis results of 

Example 4-3, a larger number of teeth can effectual prevent the tooth undercutting. Therefore, 

the gear with a higher number of teeth is suggested and the gear pair should be generated by a 

concave rack cutter as shown in Fig. 3-6 to prevent tooth undercutting. 

Major design parameters for this example are shown in Table 6-2. According to Fig. 6-9, 

the length of the minor-axis of contact ellipse is inverse proportional to the radius ( )gR . 

However, the dimension of the contact pattern is insensitive to the variation of ( )gR . 

Relationships between the design parameters ( )gR  to the length of semi-major axis and 

semi-minor axis under ideal assembly condition are shown in Fig. 6-10. Length of the 

semi-minor axis of contact ellipse increases significantly conspicuously with a smaller value 

of ( )gR , but the length of semi-major axis of contact ellipse nearly takes no effect with the 

variation of ( )gR . However, as stated in Example 6-2, the length of semi-major axis can be 

adjusted by the radii abR  of the disk-type cutter.  

 

Table 6-2 Some major design parameters of the circular-arc curvilinear-tooth gear pair 

Design parameters Pinion Gear 
Number of Teeth(T(i)) 18 72 
Normal Module(M) 3mm 
Normal Pressure Angle(α ) 20∘ 
Radius of the Disk-Type Cutter  
(Rab) (Fig. 3-7) 

30mm 

Face Width (W ) (Fig. 3-7) 30mm 
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Fig. 6-9 Contact ellipses on the gear tooth surface (Example 6-3) 
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Fig. 6-10 Relationship of design parameter ( )gR  to the length of the contact ellipse 
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6.4 Remarks 

In this chapter, the contact patterns are obtained by surface topology method. The 

instantaneous contact of tooth surface at a point is spread over an elliptical area. The effects of 

the assembly errors and major gear design parameters to the shape of contact ellipses are 

acquired by the developed computer simulation programs. According to the analysis results of 

numerical examples, some conclusions can be drawn as follows: 

1. The contact patterns of the circular-arc curvilinear-tooth gear pair are localized near 

the middle region of the tooth flank due to the curvilinear tooth trace even the gear 

pair is meshing under axial misalignments. 

2. Length of the major axis of the contact ellipse is highly related to the radius of the 

disk-type rack cutter. 

3. Length of the minor-axis of the contact ellipse is related to the radii of the 

circular-arc profile of rack cutters. 
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CHAPTER 7  

Conclusions and Future Works 

Gears are widely used in industry for power transmissions. A new type of gear called 

circular-arc curvilinear-tooth gear, which is generated by a disk-type cutter with the normal 

cross section of circular-arc profiles, has been proposed in this thesis. 

The mathematical model of the circular-arc curvilinear-tooth gear is developed in this 

study. Tooth undercutting is investigated based on the mathematical model of the gear. 

Besides, the contact characteristics of the gear pair such as KE and contact ellipses can also be 

investigated by computer simulation programs based on the developed mathematical model 

and the TCA. 

 

7.1 Conclusions 

Based on the analysis results obtained in the previous chapters, some conclusions can be 

made as follows: 

1. The circular-arc curvilinear-tooth gear is generated by a disk-type cutter with the 

normal cross section of the circular-arc profiles. However it can be considered that 

the gear is generated by an imaginary rack cutter. The mathematical model of 

circular-arc curvilinear-tooth gear can be derived based on the theory of gearing. The 

transverse gear chordal thickness measured at the middle section is larger than those 

of other sections. 

2. The tooth undercutting condition is developed based on the mathematical model of 

the circular-arc curvilinear-tooth gear. According to the undercutting analysis results, 
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the occurrence of tooth undercutting at the middle sections of face width of the 

curvilinear-tooth gear is much easier than other sections. Compared with the 

concave tooth surfaces, convex tooth surfaces are mush easier to undercut. Tooth 

undercutting can be avoided by the design of gears with a larger number of teeth, 

pressure angle and radii of the circular-arc profile of the rack cutter. 

3. Gear pairs with a higher contact ratio can be achieved by designing a smaller radius 

of the circular-edge of the cutter. The circular-arc curvilinear-tooth gear pair is 

insensitive to axial misalignments. However, it is sensitive to the center distance 

assembly error. The KE of a gear pair can be pre-design to a parabolic type by 

properly selecting the design parameters RΔ . 

4. The bearing contact of a gear pair is localized near the middle region of the tooth 

flank by means of the curvilinear tooth trace, and the edge contact efficient be 

avoided. The instantaneous contact of tooth surfaces at a point is spread over an 

elliptical area. Besides, the shape of the contact ellipse can be adjusted by the radii 

abR  of the disk-type cutter and the radii ( )iR  of circular-arc profile of the cutter. 

Length of the minor-axis of the contact ellipse can be increased by the design of a 

smaller radius ( )iR  of the circular-arc profile. 

5. Gear pairs generated by cutters with smaller radii of the circular-arc profiles can 

efficiently enhance the gear strength because a larger contact area is induced. 

However, the cutter with a concave normal section is much easier to undercut the 

gear with a smaller radius of the circular-arc profile than a convex one. It is 

suggested that the gear with a higher number of teeth of the gear pair should be 

generated by a concave rack cutter. 
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7.2 Future Works 

The mathematical model, undercutting condition and tooth contact analysis of the 

circular-arc curvilinear-tooth gear have been studied in this thesis. In the future, some future 

works can be studied are listed as follows: 

1. The proposed theorems and computer simulated results can be verified by setting up 

suitable experiments by the following researchers. 

2. When calculating TCA, the tooth surfaces are assumed to be rigid in the developed 

mathematical model. The effects of loads and elastic deformations of tooth surfaces 

are all neglected. The finite element analysis (FEA) may be implemented to attain 

more realistic TCA results. 

3. The mathematical model is developed based on the consideration of an imaginary 

rack cutter with the circular-arc profile on its normal section and the rack cutter is 

moving along a circular trace. However, in practice manufacturing, the gears are 

usually generated CNC hobbing process. Therefore, the mathematical model of 

circular-arc curvilinear-tooth gear cut by a hob cutter may be developed in the 

future. 

4. The tooth profile and trace of the circular-arc curvilinear-tooth gear are all in the 

form of circular-arc. It can be further extended to derive the mathematical model 

with a noncircular-arc curve, e.g. parabolic or elliptical curves. 
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