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Novel Synthesis of One Dimensional Tubular Carbon Materials

from Reactive Template Na@AAO

Student : Lung-Shen Wang Advisor : Dr. Hsin-Tien Chiu

Institute of Applied Chemistry, National Chiao Tung University

Abstract

In this thesis, | present several methods to synthesize the one dimensional materials by
employing bottom-up concept relied on the chemical reduction of the reagents.

In Chapter 2, we have demonstrated a novel-synthesis methodology for nanostructured
materials. The reactive template-Strategy is exemplified by the preparation of Na@AAO and
the use of it to generate high-density ordered arrays/of carbon nanotube (CNT). Applications
of the template structure and the halide source are discussed in the content.

In Chapter 3, we conclude that amorphous carbon tubes were prepared via a
template-assisted synthesis route. First, using AAO as the substrate, short a-CNT arrays are
grown from SiCI3CCl3 at 1073 K by low pressure chemical vapor deposition. Elongation of
the tubes into bundles joined at one end is achieved by filling the AAO channels with Na to
generate the reactive template, followed by the reaction with CgCls. The fabrication of
heterojunctions structure of CNT arrays is discussed.

In Chapter 4, we conclude that the double-shelled amorphous SiO,/C nanotubes were
prepared via the designed synthesis route. First, using AAO as the substrate, Na nanotubes are
grown by decomposing NaH at 623 K to form the Na@AAO reactive template. For the
formation of the outer amorphous carbon shell, hexachlorobenzene (CsClg) is used as the C
source to react with Na@AAO. Following the above Wurtz type reaction, we employed an



analogous route which deposits the Si layer in the pre-grown a-CNT by reacting chlorosilanes
with Na@a-C/AAQO at 623 K. After the removal of AAO by HCI, we generated well-aligned
coaxial double-shelled SiO,/C nanotubes successfully. These noble fabrications of the coaxial
multi-shelled nanotubes in a controlled manner may facilitate probable building of a variety of
nanodevices.

In Chapter 5, graphitization of the a-CNT and the porous CNT generated both tubular
and fibrous products but with different yields. A possible explanation for the phenomenon is
routed in the original structure of the tubes. Apparently, the CNT with a porous structure is
structurally stronger and more resistant to the collapsing of the tube walls than the CNT with
a hollow tubular structure. The later does not have the internal support and probably collapse
more easily to form CF at high temperature. The study shows the importance of the
micromorphology to the structural transformation‘in a high temperature process.

In Chapter 6, we have synthesized highly-ordered CNT arrays over a large area on AAO
from acetylene by CVD. The growth ‘property-of carbon tubes were closely related to the
structure of the deposition temperature-and time. We found that the pyrolysis temperature of
acetylene to deposit carbon atom starts above 773 K. Increasing the temperature of deposition
to 1073 K, CNT with more ordered graphite structure can be obtained. The study provides a
simple low cost, low temperature, and controllable technique to grow CNT. The
highly-oriented and isolated CNT array membranes could be very useful in a variety of
applications.

In Chapter 7, by using Na@AAO as a catalytic template, we developed a novel process
to deposit a-CNT from C,H; in the channels of AAO. Employing sodium metal into the
process lowers the energy barrier of acetylene decomposition, probably by forming stable
intermediates sodium hydride and sodium acetylides. At elevated temperatures, these

intermediates decompose to deposit tubular shaped a-C, to release H; gas, and to regenerate



the Na catalyst. The catalytic template Na@AAO not only assisted the growth of a-C but also

guided the tubular shape development.
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