中文摘	要·	•••••••••••••••••••••••••••••••••••••••	i
英文摘	要·		ii
誌谢·			iv
目錄·			V
表目錄	••••		vii
圖目錄	••••		V111
符號表	••••		xii
第一章	緒	込 ·····	1
	1.1	簡介	1
	1.2	微混合器的分類	2
	1.3	文獻回顧	3
		1.3.1 被動式微混合器	3
		1.3.2 主動式微混合器	9
	1.4	研究目的	10
第二章	數	學模式	12
	2.1	物理模型	12
	2.2	基本假設及統御方程式	12
	2.3	邊界條件	14
	2.4	無因次化	14
	2.5	混合指數(mixing index)的定義 ······	17
第三章	數值	i方法 ·····	18
	3.1	離散化傳輸(transport)方程式	18
		3.1.1 對流項(convection term)	18
		3.1.2 擴散項(diffusion term)	19

	3.1.3 源項(source term)	20
	3.2 代數方程式系統	21
	3.3 SIMPLE Algorithm 壓力和速度的偶合關係	22
	3.3.1 解動量方程式	22
	3.3.2 解壓力修正方程式	24
	3.4 鬆弛因子(under-relaxation factor)	26
	3.5 解題步驟	27
第四章	結果與討論	29
	4.1 簡介	29
	4.2 數值方法的驗證	30
	4.2.1 格點測試與實驗結果的比較	30
	4.2.2 不同 Peclet number 和實驗結果的比較	31
	4.2 直形斜凹槽混合器(SRM)性能分析	32
	4.3 雙邊斜凹槽混合器(Double SRM)性能分析	34
	4.4 人字形凹槽混合器(SHM)性能分析	35
	4.5 傾斜阻塊人字形凹槽混合器(OBSHM)性能分析	36
	4.6 阻塊結構混合器性能分析	37
	4.7 各型態混合器壓降比較	40
第五章	結論	42
參考文)	獻	

表目錄

表	4-1	SRM 於每個凹槽相對位置的速度 u 的相對誤差比較	49
表	4 - 2	SRM 於每個凹槽相對位置的速度 v 的相對誤差比較	49
表	4 - 3	SRM 於每個凹槽相對位置的速度 w 的相對誤差比較	50
表	4-4	SRM 格點分佈	50
表	4 - 5	SHM 格點分佈	51
表	4-6	各型態壓力梯度整理(無因次)	51
表	4 - 7	SRM $Pe=2\times10^5$, $Re=1$ 不同凹槽參數時的壓力梯度(無因次) …	51
表	4-8	各型態壓力梯度整理(N/m ³)	52
表	4-9	SRM $Pe = 2 \times 10^5$, $Re = 1$ 不同凹槽參數時的壓力梯度 (N/m^3) …	52

圖目錄

圖	1-1	Gobby 等人所設計微混合器[6]	53
圖	1-2	Schwesinger 等人所設計的微混合器[7] ······	53
圖	1 - 3	Miyake 等人所設計的微型噴嘴[9]	53
圖	1 - 4	Johnson 等人所設計微混合器[12]	54
圖	1 - 5	Stroock 等人所的微混合器[13]	54
圖	1-6	Kim 等人所設計的微混合器[14]	54
圖	1 - 7	Schonfeld 和 Hardt 所設計的微混合器[16] ······	54
圖	1-8	Howell 等人所設計的微混合器[18]	55
圖	1 - 9	Lin 等人所設計的微混合器[19]	55
圖	1-10	Vijayendran 等人所設計的微混合器[20] ······	55
圖	1-11	Chen 和 Meiners 所設計的微混合器[21]	56
圖	1-12	Park 等人所設計的混合器[22]	56
圖	1-13	Jen 等人所設計的微混合器[23]	56
圖	1-14	Wang 等人所設計的微混合器[24]	57
圖	1-15	Mengeaud 等人所設計的微混合器[26]	57
圖	1-16	Oddy 等人所設計的混合器 [30]	57
圖	2-1	SRM 物理模型	58
圖	2-2	Double SRM 物理模型 ······	58
圖	2-3	SHM 物理模型	59
圖	2-4	OBSHM 物理模型 ·······	59
圖	2-5	阻塊結構物理模型	60
圖	2-6	傾斜阻塊結構物理模型	60
圖	3-1	對流通量示意圖	61
圖	3-2	over-relaxed approach 示意圖	61
圖	3-3	邊界和鄰近格點中心示意圖	62
圖	4-1	獲得週期性速度場示意圖	62
圖	4 - 2	週期性計算示意圖	63
圖	4 - 3	SRM 於 Pe = 2×10 ⁵ 格點測試結果	63
圖	4-4	SHM 於 Pe = 2×10 ⁵ 格點測試結果 ······	64
圖	4 - 5	SHM 截面濃度和 Stroock 等人[13]實驗的比較	64
圖	4 - 6	SHM 於 <i>Pe</i> =2×10 ³ 時的測試結果	65
圖	4 - 7	SHM 於 Pe=2×10 ⁴ 時的測試結果	65
圖	4-8	SHM 不同 Pe 與混合指數的關係	66
圖	4-9	SRM 不同 Pe 與混合指數的關係	66
圖	4-10	SRM 截面觀測位置示意圖	67
圖	4-11	SRM 於位置的 Y-Z 截面流場型態	67
圖	4-12	SRM 於 B~E 位置的截面速度場	68

圖 4-13	SRM 從入口到 1cm 之間截面濃度分佈	69
圖 4-14	SRM 下游 1~2cm 之間截面濃度分佈	69
圖 4-15	SRM 下游 2~3cm 之間截面濃度分佈	70
圖 4-16	SRM 外型參數示意圖	70
圖 4-17	SRM 不同凹槽深度時於 F 及 G 位置截面速度場	71
圖 4-18	SRM 不同凹槽深度時截面 F 中心的横向速度分佈	71
圖 4-19	SRM 不同凹槽深度時截面 G 中心的横向速度分佈	72
圖 4-20	$SRM_{G_w} = 0.2h$,從入口到 1cm 之間截面濃度分佈	73
圖 4-21	SRM G _d = 0.2h, 下游 1~2cm 之間截面濃度分佈	73
圖 4-22	SRM G _d = 0.2h, 下游 2~3cm 之間截面濃度分佈	- 74
圖 4-23	$SRM_{G_d} = 0.86h$,從入口到 1cm 之間截面濃度分佈	· 75
圖 4-24	SRM 於 $Pe = 2 \times 10^5$ 時凹槽深度 G_a 對混合指數的影響	75
圖 4-25	SRM不同凹槽寬度時於位置F及G截面速度向量	- 76
圖 4-26	SRM 不同凹槽寬度時截面 F 中心的横向速度分佈	- 76
圖 4-27	SRM 不同凹槽寬度時截面 G 中心的横向速度分佈	77
圖 4-28	SRMG _w =0.36h,從入口到1cm之間截面濃度分佈	· 78
圖 4-29	SRMG _w =0.36h,下游1~2cm之間截面濃度分佈	- 78
圖 4-30	SRMG_=0.36h,下游2~3cm之間截面濃度分佈	- 79
圖 4-31	SRMG _w =1.44h,從入口到1cm之間截面濃度分佈	· 80
圖 4-32	SRM 於 $Pe = 2 \times 10^5$ 時凹槽寬度 G_{ω} 對混合指數的影響	80
圖 4-33	SRM 不同凹槽傾角時於位置 F 及 G 截面速度場	81
圖 4-34	SRM 不同凹槽傾角時截面 F 中心的横向速度大小分佈	82
圖 4-35	SRM 不同凹槽傾角時截面 G 中心的横向速度大小分佈	82
圖 4-36	SRM α = 30°,從入口到 1cm 之間截面濃度分佈	83
圖 4-37	SRM <i>α</i> = 30°, 下游 1~2cm 之間截面濃度分佈	84
圖 4-38	SRM α = 30°, 下游 2~3cm 之間截面濃度分佈	84
圖 4-39	SRMα=60°,從入口到1cm之間截面濃度分佈	85
圖 4-40	SRMα=60°,下游1~2cm之間截面濃度分佈	86
圖 4-41	SRMα=75°,從入口到1cm之間截面濃度分佈	87
圖 4-42	SRMα=75°,下游1~2cm之間截面濃度分佈	87
圖 4-43	SRMα=75°,下游 2~3cm 之間截面濃度分佈	88
圖 4-44	SRM 於 $Pe = 2 \times 10^5$ 時凹槽傾角 α 對混合指數的影響	88
圖 4-45	Double SRM 觀測截面位置示意圖	89
圖 4-46	Double SRM 於位置 A 的截面流場型態	89
圖 4-47	Double SRM 於位置 B~E 的截面速度場	90
圖 4-48	Double SRM 入口到 1cm 之間截面濃度分佈	91
圖 4-49	Double SRM 下游 1~2cm 之間截面濃度分佈	92
圖 4-50	Double SRM 和 SRM 混合指數的比較	92
圖 4-51	Double SRM 和凹槽加深及加寬混合指數比較	93

圖	4-52	SHM截面觀測位置示意圖	93
圖	4 - 53	SHM 於位置 A~H 截面速度場	94
圖	4-54	SHM 從入口到 1cm 之間 C 及 G 截面濃度分佈	95
圖	4-55	SHM 主流道中心截面濃度分佈	96
圖	4-56	OBSHM 截面觀測位置示意圖 ······	97
圖	4-57	OBSHM 主流道中心截面速度場	97
圖	4-58	OBSHM 於位置 A~H 截面速度場	98
圖	4 - 59	OBSHM 截面濃度分佈	99
圖	4-60	OBSHM 主流道中心截面濃度分佈 ······	100
圖	4-61	SHM 和 OBSHM 從入口到 1cm 之間於 J 截面濃度分佈	101
圖	4-62	於 Pe = 2×10 ⁵ OBSHM 和 SHM 混合指數的比較	102
圖	4-63	於 Pe = 2×10 ³ OBSHM 和 SHM 混合指數的比較	102
圖	4-64	四種阻塊結構示意圖	103
圖	4-65	Type 1 阻塊中心截面速度場	104
圖	4-66	Type 1 阻塊從入口到 1cm 之間截面濃度分佈	105
圖	4 - 67	Type 1 阻塊下游 1~3cm 之間截面濃度分佈	107
圖	4-68	Type 1 阻塊在不同 X 位置的截面濃度分佈	107
圖	4-69	Type 2 阻塊中心截面速度場	108
圖	4-70	Type1及Type2 阻塊中心截面速度 u-contour	108
圖	4-71	Type 1 及 Type 2 阻塊中心截面速度 v-contour	109
圖	4 - 72	Type 2 阻塊從入口到 1cm 之間中心截面濃度分佈	110
圖	4 - 73	Type 2 阻塊下游 1~2cm 之間中心截面濃度分佈	111
圖	4 - 74	Type 2 阻塊不同 X 位置的截面濃度分佈	111
圖	4 - 75	Type 3 阻塊中心截面速度場	112
圖	4 - 76	Type 3 阻塊從入口到 1cm 之間中心截面濃度分佈	113
圖	4 - 77	Type 3 阻塊在不同 X 位置的截面濃度分佈	114
圖	4 - 78	Type 4 阻塊中心截面速度場	114
圖	4 - 79	Type 3 及 Type 4 阻塊中心截面速度 u-contour	115
圖	4-80	Type 3 及 Type 4 阻塊中心截面速度 v-contour	115
圖	4-81	Type 4 阻塊從入口到 3cm 之間中心截面濃度分佈	117
圖	4-82	Type 4 阻塊在不同 X 位置的截面濃度分佈	117
圖	4-83	Pe=2×105時四種阻塊於不同X位置的濃度分佈	118
圖	4-84	Pe=2×103時四種阻塊於截面中心的濃度分佈	119
圖	4-85	Pe=2×103時四種阻塊於不同X位置的濃度分佈	119
圖	4-86	Pe=2×10 ⁵ 四種阻塊和各型態的混合指數比較	120
圖	4-87	Pe=2×103四種阻塊和各型態的混合指數比較	120
圖	4-88	SRM 於不同雷諾數時平均壓降的關係	121
圖	4-89	SHM 於不同雷諾數時平均壓降的關係	121
圖	4-90	Double SRM 與平均壓降的關係, $Re=1$, $Pe=2\times10^5$	122
圖	4-91	SRM 凹槽深度改變時與平均壓降的關係, Re=1, Pe=2×10 ⁵ …	122

圖 4-92	SRM 凹槽寬度改變時與平均壓降的關係, Re=1, Pe=2×105	$\cdots 123$
圖 4-93	SRM 凹槽傾角改變時與平均壓降的關係, Re=1, Pe=2×105	··· 123
圖 4-94	各型態平均壓降比較, Re=1, Pe=2×10 ⁵	···· 124
圖 4-95	各型態平均壓降比較, Re=0.01, Pe=2×10 ³	···· 124

