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摘 要       

 
  本篇論文探討有關整數階與分數階變革式心搏系統的渾沌、渾沌同步及其反控

制。藉由相圖、龐卡萊圖及分歧圖等數值模擬結果，可以得知週期及渾沌的現象。

另外經由參數激發法使得兩個非耦合的整數階或分數階變革式心搏系統達到同步。

並透過外加常數項或非線性項獲得分數階變革式心搏系統的反控制。最後，成功的

利用參數激發的方式，讓整數階與分數階的變革式心搏系統達到渾沌化。 
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Abstract 
 

Chaos, chaos synchronization and anticontrol for integral and fractional modified 

heartbeat systems are studied in the thesis. By applying numerical results, phase portrait, 

Poincaré maps and bifurcation diagrams, a variety of the phenomena of the periodic and 

chaotic motion can be presented. The synchronizations of two uncoupled integral and 

fractional order chaotic modified heartbeat systems are accomplished by parameter 

excited synchronization. Anticontrol of chaos of fractional order modified heartbeat 

systems can be obtained by addition of a constant term and addition of a nonlinear term. 

Chaotization of integral and fractional order modified heartbeat systems by parameter 

excited method, replacement of the parameter of first system by the function of the 

chaotic state variables of a second chaotic system, is successfully accomplished. 

 

 

 

 

 

 

 

 

 

i 



ACKNOWLEDGMENT 

 

 

  利用兩年的時間完成了本篇論文及碩士學位，其中最感謝的不外乎是給予耐心

指導與教誨的 戈正銘教授。教授不僅傳授在專業領域上的知識，更藉由與教授的

相處，使得學生無論是在看待事物的態度或是在處理事情的方法都有明顯的改變。

此外，教授無論是在專業領域或是文學、史學甚至哲學的博學讓學生深感佩服，並

領會到老師的真智慧。 

  在研究的兩年當中，感謝學長陳炎生、楊振雄、張晉銘在渾沌方面知識的指導

與程式的應用。尤其感謝張晉銘學長的大力幫忙，使得本篇論文得以更加完善。其

次感謝同學易昌賢與歐展義無論在課業上或是論文研討方面的幫忙，使得學生做起

事來事半功倍，充分展現團結的力量。另外，感謝實驗室其他的成員對學生在各方

面的支持與幫忙，讓學生可以心無旁鶩專心致力於課業與論文的研究。 

  在二十幾年來的求學過程中，感謝父母及兩位姐姐在生活上給予全力的支持，

雖然在求學過程中有著諸多的崎嶇，但他們都無怨無悔的付出，讓學生可以不必擔

心課業以外的事與物，得以全心衝刺以造就現今的我。最後，感謝忠翰、柏豪、俊

明、佩珊與依萍，謝謝你們分享我的喜怒哀樂，讓我的心情得以宣洩。再一次感謝

大家的幫忙與支持，在此獻上十二萬分的敬意。 

 

 

 

 

 

 

 

 

 

 

 

 ii



CONTENTS 
ABSTRACT............................................................................................................................... i 

ACKNOWLEDGMEMT ........................................................................................................ ii 

CONTENTS............................................................................................................................. iii 

LIST OF FIGURES ................................................................................................................ iv 

Chapter 1  Introduction..........................................................................................................1 

 

Chapter 2  A Fractional Derivative and a Modified Heartbeat System .............................3 

2.1  A fractional derivative and its approximation 3 

2.2  A modified heartbeat system and the corresponding fractional order system 4 

 

Chapter 3  Chaos in a Modified Heartbeat System and in Its Fractional order 

Systems..................................................................................................................6 

3.1  Chaos in a integral order modified heartbeat system 6 

3.2  Chaos in a fractional order modified heartbeat system 6 

 

Chapter 4  Parameter Excited Chaos Synchronizations of Integral and Fractional 

Order Modified Heartbeat Systems .................................................................39 

4.1  The scheme of parameter excited chaos synchronizations 39 

4.2  Parameter Excited Chaos Synchronization by kcosx、kcosy、kcosxcosy 40 

4.2.1  Parameter Excited Chaos Synchronizations by kcosx 40 

4.2.2  Parameter Excited Chaos Synchronizations by kcosy 41 

4.2.3  Parameter Excited Chaos Synchronizations by kcosxcosy 41 

 

Chapter 5  Anticontrol of Chaos of the Fractional Order Modified Heartbeat 

Systems................................................................................................................73 

5.1  Anticontrol of Chaos by addition of a constant term 73 

5.2  Anticontrol of Chaos by addition of a nonlinear term 74 

 

Chapter 6  Parameter Excited Chaotization of Integral and Fractional Order 

Modified Heartbeat Systems .............................................................................89 

 iii



6.1  A nano resonator system and the chaotization scheme 89 

6.2  Chaotization by parameter excited method 90 

6.2.1  Chaotization of a integral order modified heartbeat system 90 

6.2.2  Chaotization of a fraction order modified heartbeat system 91 

 

Chapter 7  Conclusions .......................................................................................................103 

 

REFERENCES......................................................................................................................105 

 
APPENDIX ............................................................................................................................112 

 

PAPER LIST .........................................................................................................................113 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 iv



LIST OF FIGURES 
Fig. 3.1   The bifurcation diagram for 1== βα . 9 

Fig. 3.2   The phase portrait of chaotic motion for 1== βα  with b=1.0. 9 

Fig.3.3~3.5   The phase portraits of periodic motions for 1== βα  with   b=1.1, 1.5, 

3, respectively. 10~11 

Fig. 3.6   The bifurcation diagram for 9.0== βα . 12 

Fig. 3.7   The phase portrait of chaotic motion for 9.0== βα  with b=9.7. 12 

Fig. 3.8~3.11   The phase portraits of periodic motions for 9.0== βα  with  b=9.8, 

14, 23, 40, respectively. 13~14 

Fig. 3.12   The bifurcation diagram for 9.0=α , 8.0=β . 15 

Fig. 3.13    The phase portrait of chaotic motion for 9.0=α , 8.0=β  with b=9.8. 15 

Fig. 3.14~3.17   The phase portraits of periodic motions for 9.0=α , 8.0=β  with 

b=9.9, 12, 25, 30, respectively. 16~17 

Fig. 3.18   The bifurcation diagram for 8.0=α , 9.0=β . 18 

Fig. 3.19   The phase portrait of chaotic motion for 8.0=α , 9.0=β  with b=10.1. 18 

Fig. 3.20~3.24   The phase portraits of periodic motions for 8.0=α , 9.0=β  with 

b=10.2, 15, 23, 30, 45, respectively. 19~21 

Fig. 3.25   The bifurcation diagram for 8.0== βα . 22 

Fig. 3.26   The phase portrait of chaotic motion for 8.0== βα  with b=10.1. 22 

Fig. 3.27~3.31   The phase portraits of periodic motions for 8.0== βα  with  b=10.2, 

14.5, 20, 35, 40, respectively. 23~25 

Fig. 3.32   The bifurcation diagram for 7.0== βα . 26 

Fig. 3.33   The phase portrait of chaotic motion for 7.0== βα  with b=7.9. 26 

Fig. 3.34~3.37  The phase portraits of periodic motions for 7.0== βα  with  b=8.0, 

15, 35, 40, respectively. 27~28 

Fig. 3.38  The bifurcation diagram for 6.0== βα . 29 

Fig. 3.39  The phase portrait of chaotic motion for 6.0== βα  with b=6.0. 29 

Fig. 3.40~3.44  The phase portraits of periodic motions for 6.0== βα  with  b=6.1, 

 v



6.5, 9.5, 20, 45 respectively. 30~32 

Fig. 3.45  The bifurcation diagram for 5.0== βα . 33 

Fig. 3.46  The phase portrait of chaotic motion for 5.0== βα  with b=2. 33 

Fig. 3.47~3.49  The phase portraits of periodic motions for 5.0== βα  with  b=6, 10, 

15 respectively. 34~35 

Fig. 3.50  The bifurcation diagram for 4.0== βα . 36 

Fig. 3.51  The phase portrait of chaotic motion for 4.0== βα  with b=0.7. 36 

Fig. 3.52、3.53   The phase portraits of periodic motions for 4.0== βα  with  b=3.5, 

6.0, respectively. 37 

Fig. 3..54、3.55   The phase portraits of periodic motions for 3.0== βα  with  b=0.01, 

4.0, respectively. 38 

Fig. 4.1   The phase portrait for replacing b by kcosx with 1== βα , a = 2, c = 10 43 

Fig. 4.2   Error dynamics for Case 1. 43 

Fig. 4.3   The phase portrait for replacing b by kcosx with 9.0== βα , a = 5, c = 5 44 

Fig. 4.4   Error dynamics for Case 2. 44 

Fig. 4.5   The phase portrait for replacing b by kcosx with 8.0== βα , a = 5, c = 5 45 

Fig. 4.6   Error dynamics for Case 3. 45 

Fig. 4.7   The phase portrait for replacing b by kcosx with 7.0== βα , a = 2.5, c = 35. 46 

Fig. 4.8   Error dynamics for Case 4. 46 

Fig. 4.9   The phase portrait for replacing b by kcosx with 6.0== βα , a = 2.5, c = 50 47 

Fig. 4.10   Error dynamics for Case 5. 47 

Fig. 4.11   The phase portrait for replacing b by kcosx with 5.0== βα , a = 2, c = 35. 48 

Fig. 4.12   Error dynamics for Case 6. 48 

Fig. 4.13   The phase portrait for replacing b by kcosx with 4.0== βα , a = 2, c = 65. 49 

Fig. 4.14   Error dynamics for Case 7. 49 

Fig. 4.15   The phase portrait for replacing b by kcosx with 3.0== βα , a = 10, c = 65. 50 

Fig. 4.16   Error dynamics for Case 8. 50 

Fig. 4.17   The phase portrait for replacing b by kcosx with 2.0== βα , a = 20, c = 55. 51 

Fig. 4.18   Error dynamics for Case 9. 51 

 vi



Fig. 4.19   The phase portrait for replacing b by kcosx with 1.0== βα , a = 10, c = 0.5. 52 

Fig. 4.20   Error dynamics for Case 10. 52 

Fig. 4.21   The phase portrait for replacing b by kcosx with 1== βα , a = 2, c = 10 53 

Fig. 4.22   Error dynamics for Case 1. 53 

Fig. 4.23   The phase portrait for replacing b by kcosx with 9.0== βα , a = 5, c = 5 54 

Fig. 4.24   Error dynamics for Case 2. 54 

Fig. 4.25   The phase portrait for replacing b by kcosx with 8.0== βα , a = 5, c = 5 55 

Fig. 4.26   Error dynamics for Case 3. 55 

Fig. 4.27   The phase portrait for replacing b by kcosx with 7.0== βα , a = 2.5, c = 35. 56 

Fig. 4.28   Error dynamics for Case 4. 56 

Fig. 4.29   The phase portrait for replacing b by kcosx with 6.0== βα , a = 2.5, c = 50 57 

Fig. 4.30   Error dynamics for Case 5. 57 

Fig. 4.31   The phase portrait for replacing b by kcosx with 5.0== βα , a = 2, c = 35 58 

Fig. 4.32   Error dynamics for Case 6. 58 

Fig. 4.33   The phase portrait for replacing b by kcosx with 4.0== βα ,a = 2, c = 65. 59 

Fig. 4.34   Error dynamics for Case 7. 59 

Fig. 4.35   The phase portrait for replacing b by kcosx with 3.0== βα , a = 10, c = 65. 60 

Fig. 4.36   Error dynamics for Case 8. 60 

Fig. 4.37   The phase portrait for replacing b by kcosx with 2.0== βα , a = 2, c = 1. 61 

Fig. 4.38   Error dynamics for Case 9. 61 

Fig. 4.39   The phase portrait for replacing b by kcosx with 1.0== βα , a = 10, c = 1 62 

Fig. 4.40   Error dynamics for Case 10. 62 

Fig. 4.41   The phase portrait for replacing b by kcosx with 1== βα , a = 2, c = 10 63 

Fig. 4.42   Error dynamics for Case 1. 63 

Fig. 4.43   The phase portrait for replacing b by kcosx with 9.0== βα , a = 5, c = 5 64 

Fig. 4.44   Error dynamics for Case 2. 64 

Fig. 4.45   The phase portrait for replacing b by kcosx with 8.0== βα , a = 10, c = 5 65 

Fig. 4.46   Error dynamics for Case 3. 65 

Fig. 4.47   The phase portrait for replacing b by kcosx with 7.0== βα , a = 2.5, c = 35. 66 

 vii



Fig. 4.48   Error dynamics for Case 4. 66 

Fig. 4.49   The phase portrait for replacing b by kcosx with 6.0== βα , a = 2.5, c = 50 67 

Fig. 4.50   Error dynamics for Case 5. 67 

Fig. 4.51   The phase portrait for replacing b by kcosx with 5.0== βα , a = 5.5, c = 45. 68 

Fig. 4.52   Error dynamics for Case 6. 68 

Fig. 4.53   The phase portrait for replacing b by kcosx with 4.0== βα , a = 2, c = 65. 69 

Fig. 4.54   Error dynamics for Case 7. 69 

Fig. 4.55   The phase portrait for replacing b by kcosx with 3.0== βα , a = 4, c = 35. 70 

Fig. 4.56   Error dynamics for Case 8. 70 

Fig. 4.57   The phase portrait for replacing b by kcosx with 2.0== βα , a = 2, c = 1. 71 

Fig. 4.58   Error dynamics for Case 9. 71 

Fig. 4.59   The phase portrait for replacing b by kcosx with 1.0== βα , a = 2, c = 10. 72 

Fig. 4.60   Error dynamics for Case 10. 72 

Fig. 5.1(a)   The bifurcation diagram for 9.0== βα . 76 

Fig. 5.1(b)~(d)   The phase portrait for 9.0== βα  with k = 0, 1.05, 1.1, respectively. 76 

Fig. 5.2(a)   The bifurcation diagram for 8.0== βα . 77 

Fig. 5.2(b)~(d)   The phase portrait for 8.0== βα  with k = 0, 0.87, 1.05, respectively. 77 

Fig. 5.3(a)   The bifurcation diagram for 7.0== βα . 78 

Fig. 5.3(b)~(d)   The phase portrait for 7.0== βα  with k = 0, 1.5, 1.6, respectively. 78 

Fig. 5.4(a)   The bifurcation diagram for 6.0== βα . 79 

Fig. 5.4(b)~(d)   The phase portrait for 6.0== βα  with k = 0, 1.291, 1.298, 

respectively. 79 

Fig. 5.5(a)   The bifurcation diagram for 5.0== βα . 80 

Fig. 5.5(b)~(d)   The phase portrait for 5.0== βα  with k = 0, 1.35, 1.38, respectively. 80 

Fig. 5.6(a)   The bifurcation diagram for 4.0== βα . 81 

Fig. 5.6(b)~(d)   The phase portrait for 4.0== βα  with k = 0, 1.915, 1.93, respectively.

 81 

Fig. 5.7(a)   The bifurcation diagram for 3.0== βα . 82 

Fig. 5.7(b)~(d)   The phase portrait for 3.0== βα  with k = 0, 1.9, 1.94, respectively. 82 

 viii



Fig. 5.8(a)   The bifurcation diagram for 9.0== βα . 83 

Fig. 5.8(b)~(d)   The phase portrait for 9.0== βα with k = 0, 0.35, 0.4, respectively. 83 

Fig. 5.9(a)   The bifurcation diagram for 8.0== βα . 84 

Fig. 5.9(b)~(d)   The phase portrait for 8.0== βα  with k = 0, 1.03, 1.2, respectively. 84 

Fig. 5.10(a)   The bifurcation diagram for 7.0== βα . 85 

Fig. 5.10(b)~(d)   The phase portrait for 7.0== βα  with k = 0, 1.205, 1.215, 

respectively. 85 

Fig. 5.11(a)   The bifurcation diagram for 6.0== βα . 86 

Fig. 5.11(b)~(d)   The phase portrait for 6.0== βα  with k = 0, 0.95, 1.05, respectively.

 86 

Fig. 5.12(a)   The bifurcation diagram for 5.0== βα . 87 

Fig. 5.12(b)~(d)   The phase portrait for 5.0== βα  with k = 0, 0.4, 0.6, respectively. 87 

Fig. 5.13(a)   The bifurcation diagram for 4.0== βα . 88 

Fig. 5.13(b)~(d)   The phase portrait for 4.0== βα  with k = 0, 1.25, 1.3, respectively. 88 

Fig. 6.1(a)   The bifurcation diagram for 1== βα . 93 

Fig. 6.1(b)   The phase portrait for 1== βα , b = 2.5. 93 

Fig. 6.1(c)   The phase portrait for 1== βα , k = 4. 93 

Fig. 6.2(a)   The bifurcation diagram for 9.0== βα . 94 

Fig. 6.2(b)   The phase portrait for 9.0== βα , b = 2.5. 94 

Fig. 6.2(c)   The phase portrait for 9.0== βα , k = 4. 94 

Fig. 6.3(a)   The bifurcation diagram for 8.0== βα . 95 

Fig. 6.3(b)   The phase portrait for 8.0== βα , b = 1.5. 95 

Fig. 6.3(c)   The phase portrait for 8.0== βα , k = 3. 95 

Fig. 6.4(a)   The bifurcation diagram for 7.0== βα . 96 

Fig. 6.4(b)   The phase portrait for 7.0== βα , b = 1.3. 96 

Fig. 6.4(c)   The phase portrait for 7.0== βα , k = 3.5. 96 

Fig. 6.5(a)   The bifurcation diagram for 6.0== βα . 97 

Fig. 6.5(b)   The phase portrait for 6.0== βα , b = 1. 97 

 ix



Fig. 6.5(c)   The phase portrait for 6.0== βα , k = 3.5. 97 

Fig. 6.6(a)   The bifurcation diagram for 5.0== βα . 98 

Fig. 6.6(b)   The phase portrait for 5.0== βα , b = 1. 98 

Fig. 6.6(c)   The phase portrait for 5.0== βα , k = 3. 98 

Fig. 6.7(a)   The bifurcation diagram for 4.0== βα . 99 

Fig. 6.7(b)   The phase portrait for 4.0== βα , b = 1.5. 99 

Fig. 6.7(c)   The phase portrait for 4.0== βα , k = 2.5. 99 

Fig. 6.8(a)   The bifurcation diagram for 3.0== βα . 100 

Fig. 6.8(b)   The phase portrait for 3.0== βα , b = 1.5. 100 

Fig. 6.8(c)   The phase portrait for 3.0== βα , k = 3.5. 100 

Fig. 6.9(a)   The bifurcation diagram for 2.0== βα . 101 

Fig. 6.9(b)   The phase portrait for 2.0== βα , b = 5. 101 

Fig. 6.9(c)   The phase portrait for 2.0== βα , k = 1. 101 

Fig. 6.10(a)   The bifurcation diagram for 1.0== βα . 102 

Fig. 6.10(b)   The phase portrait for 1.0== βα , b = 8. 102 

Fig. 6.10(c)   The phase portrait for 1.0== βα , k = 0.5. 102 

 

 

 

 

 

 

 

 x



Chapter 1 

Introduction 

 
Chaos is desirable under certain circumstances and chaotic phenomena are quite 

useful in many applications such as fluid mixing [1], human brain [2], and heart beat 

regulation [3], etc. But like many other theories in science, the theory of chaos did not get 

enough attention for almost two decades, ever since Edward Lorenz reported his 

discovery of the theory in 1963. However, the invention of high-speed computers in the 

late 1970s and early 1980s brought about a major revolution in nonlinear dynamical 

theories in general, and chaos theory in particular that is why chaos theory developed in 

the natural sciences during the 1970s, and the social sciences during the 1980s. 

Chaos synchronization [4-12] is a very important topic in the nonlinear [13-15] 

science and it has been developed extensively. Recently many scientists in various fields 

have been attracted to investigate chaos synchronization due to its application in a variety 

of fields such as secure communications, chemical, physical, and biological systems, 

neural networks, etc. So various synchronization schemes, such as variable structure 

control [16], parameters adaptive control [17-24], observer based control [25, 26], active 

control [27-33], nonlinear control [34, 35] and so on have been successfully applied to 

the chaos synchronization. 

Fractional calculus is a 300-year-old mathematical topic. Although it has a long 

history, the applications of fractional calculus to physics and engineering are just a recent 

focus of interest [36]. In recent years, many scholars have devoted themselves to study 

the applications of the fractional order system to physics and engineering such as 

viscoelastic systems [37], dielectric polarization, and electromagnetic waves. More 

recently, there is a new trend to investigate the control [38] and dynamics [39-46] of the 

fractional order dynamical systems [47-49]. In [37] it has been shown that nonlinear 

chaotic systems still have chaotic behavior when their models become fractional. In [47], 

chaos control was investigated for fractional chaotic systems by the ‘‘back-stepping’’ 

method of nonlinear control design. In [48] and [49], it was found that chaos exists in a 

fractional order Chen system with order less than 3. Linear feedback control of chaos in 
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this system was also studied. In [41], chaos synchronization of fractional order chaotic 

systems was studied. The existence and uniqueness of solutions of initial value problems 

for fractional order differential equations have been studied in the literature [50-53]. 

In addition, anticontrol [54-60] of chaos have received great attention for many 

research activities in recent years and it is an interesting, new and challenging 

phenomenon [61-63]. As a reverse process of suppressing or eliminating chaotic 

behaviors in order to reduce the complexity of an individual system or a coupled system, 

anticontrol of chaos aims at creating or enhancing the system complexity for some 

special applications. More precisely, anticontrolling chaos is to generate some chaotic 

behaviors from a given system, which is non-chaotic or even is stable originally. By fully 

exploiting the intrinsic nonlinearity, this “control” technique provides another dimension 

for feedback systems design. Its potential applications can be easily found in many fields, 

including typically physics, biology, engineering, and medical as well as social sciences. 

In this thesis, integral and fractional order modified heartbeat systems, i.e., van der 

Pol systems, are investigated. Chapter 2 presents a fractional derivative and the model of 

modified Van der Pol system. In Chapter 3, the dynamics of integral and fractional order 

modified van der Pol systems are investigated and the numerical results of periodic and 

chaotic phenomena are presented. The synchronizations of two uncoupled integral and 

fractional order chaotic modified van der Pol systems are achieved by parameter excited 

synchronization in Chapter 4. Anticontrol of chaos of fractional order modified van der 

Pol systems by addition of a constant term and addition of k|x|sinx term are discussed in 

Chapter 5. The parameter excited chaotization of integral and fractional order modified 

van der Pol systems is studied in Chapter 6. Finally, the conclusions are draw. 
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Chapter 2 

A Fractional Derivative and a Modified Heartbeat System 
 

2.1  A fractional derivative and its approximation 

There are several definitions of fractional derivatives. The commonly used 

definition for a general fractional derivative is the Riemann-Liouville definition [64], 

which is given by 

10

( ) 1 ( )
( ) ( )

q n t

q n

d f t d f d
dt n q dt t

τ
q n τ

τ − +=
Γ − −∫

                                     (2.1) 

where is the gamma function and n is an integer such that . This 

definition is different from the usual intuitive definition of derivative. Fortunately, the 

basic engineering tool for analyzing linear systems, the Laplace transform, is still 

applicable and works as one would expect: 

)(⋅Γ nqn <<−1

{ }
11
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where n is an integer such that nqn <<−1 . Upon considering the initial conditions to 

be zero, this formula reduces to the more expected form 

{ }( ) ( )
q

q
q

d f tL s L
dt

⎧ ⎫
=⎨ ⎬

⎩ ⎭
f t

.                                               (2.3) 

An efficient method is to approximate fractional operators by using standard integer order 

operators. In [65-69], an effective algorithm is developed to approximate fractional order 

transfer functions. Basically the idea is to approximate the system behavior based on 

frequency domain arguments. By utilizing frequency domain techniques based on Bode 

diagrams, one can obtain a linear approximation of the fractional order integrator, the 

order of which depends on the desired bandwidth and discrepancy between the actual and 

the approximate magnitude Bode diagrams. In Table 1 (See Appendix) of [70], 

approximations for qs
1  with q = 0.1 ~ 0.9 in steps 0.1 are given, with errors of 

approximately 2 dB. These approximations are used in the following simulations. 
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2.2  A modified heartbeat system and the corresponding fractional order          

system 

Firstly, a heartbeat system, i.e. a van der Pol oscillator[71-73], driven by a periodic 

force is considered. The equation of motion can be written as: 

0sin)1( 2 =−−++ tbxxaxx ωϕ &&&                        (2.4) 

In Eq. (2.4), the linear term stands for a conservative harmonic force which determines 

the intrinsic oscillation frequency. The self-sustaining mechanism which is responsible 

for the perpetual oscillation rests on the nonlinear term. Energy exchange with the 

external agent depends on the magnitude of displacement |x| and on the sign of velocity 

. During a complete cycle of oscillation, the energy is dissipated if displacement x(t) is 

large than one, and that energy is fed-in if |x| < 1. The time-dependent term stands for the 

external driving force with amplitude b and frequency 

x&

ω .Eq. (2.4) can be rewritten as 

two first order equations: 

⎩
⎨
⎧

+−+−=

=

tbyxaxy
yx

ωϕ sin)1( 2&

&
                             (2.5) 

The modified heartbeat system, i.e. the modified van der Pol system, and its fractional 

order system studied in this paper are 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−−=

=

+−+−=

=

3

2 )1(

dzczw
wz

bzyxax
dt

yd

y
dt

xd

&

&

β

β

α

α

                                             (2.6) 

where βα ,  are integer numbers and fractional numbers respectively. 

System (2.6) can be separated into two parts: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−+−=

=

bzyxax
dt

yd

y
dt

xd

)1( 2
β

β

α

α

                                             (2.7) 

and 
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⎩
⎨
⎧

−−=

=
3dzczw

wz
&

&
                                                       (2.8) 

In Eq. (2.5) changing the integral order derivatives to the fractional order derivations and 

replaceing sin tω  by z which is the periodic time function solution of the nonlinear 

oscillator (2.8), we obtain system (2.7). In Eq. (2.8) if d = 0, z is a sinusoidal function of 

time. Now d  0, z is a periodic motion of time but not a sinusoidal function of time. 

As a result, system (2.7) can be considered as a nonautonomous system with two states, 

while system (2.6) consisting of Eq. (2.7) and Eq. (2.8) can be considered as an 

autonomous system with four states. When 

≠

1== βα , Eq.(2.6) is the modified van der 

Pol system. 
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Chapter 3 

Chaos in a Modified Heartbeat System and in Its Fractional 

Order Systems 
 

Chaos in a modified van der Pol system and in its fractional order systems is studied 

in this chapter. It is found that chaos exists both in the system and in the fractional order 

systems with total order from 1.8 down to 0.8 much less than the number of states of the 

system, two. By phase portraits, Poincaré maps and bifurcation diagrams, the chaotic 

behaviors of integral and fractional order modified van der Pol systems are presented. 

In this chapter, phase portraits and bifurcation diagrams are studied for   system 

(2.6) for 2≤+ βα  and three parameters a, c, d are chosen as a = 5, c = 0.01, d = 0.001. 

A time step of 0.001 is used. 

 

3.1  Chaos in a integral order modified heartbeat system 

Let 1== βα . Fig. 3.1 shows the bifurcation diagram of the 2 order system. It is 

shown that chaos exists when ]0.1,0[∈b . Fig. 3.2 is the phase portrait of chaotic motion 

with b = 1.0. Fig. 3.3 ~ 3.5 are phase portraits of periodic motions with , 1.5, 3, 

respectively. 

1.1=b

 

3.2 Chaos in a fractional order modified heartbeat system 

Case 1  Let 9.0=α , 9.0=β .  

Fig. 3.6 shows the bifurcation diagram of the 1.8 order system. It is shown that 

chaos exists when ]7.9,0[∈b . Fig. 3.7 is the phase portrait of chaotic  

motion with b = 9.7. Fig. 3.8 ~ 3.11 are phase portraits of periodic motions 

with , 14, 23, 40 respectively. 8.9=b

Case 2  Let 9.0=α , 8.0=β .  

Fig. 3.12 shows the bifurcation diagram of the 1.7 order system. It is shown 

that chaos exists when ]8.9,0[∈b . Fig. 3.13 is the phase portrait of chaotic 

motion with b = 9.8. Fig. 3.14 ~ 3.17 are phase portraits of periodic motions 

 - 6 -



with , 12, 25, 30, respectively. 9.9=b

Case 3  Let 8.0=α , 9.0=β .  

Fig. 3.18 shows the bifurcation diagram of the 1.7 order system. It is shown 

that chaos exists when ]1.10,0[∈b . Fig. 3.19 is the phase portrait of chaotic 

motion with b = 10.1. Fig. 3.20 ~ 3.24 are phase portraits of periodic motions 

with , 15, 23, 30, 45 respectively. 2.10=b

Case 4  Let 8.0=α , 8.0=β .  

Fig. 3.25 shows the bifurcation diagram of the 1.6 order system. It is shown 

that chaos exists when ]1.10,0[∈b . Fig. 3.26 is the phase portrait of chaotic 

motion with b = 10.1. Fig. 3.27 ~ 3.31 are phase portraits of periodic motions 

with , 14.5, 20, 35, 40 respectively. 2.10=b

Case 5  Let 7.0=α , 7.0=β .  

Fig. 3.32 shows the bifurcation diagram of the 1.4 order system. It is shown 

that chaos exists when ]9.7,0[∈b . Fig. 3.33 is the phase portrait of chaotic 

motion with b = 7.9. Fig. 3.34 ~ 3.37 are phase portraits of periodic motions 

with , 15, 35, 40 respectively. 0.8=b

Case 6  Let 6.0=α , 6.0=β .  

Fig. 3.38 shows the bifurcation diagram of the 1.2 order system. It is shown 

that chaos exists when ]0.6,0[∈b . Fig. 3.39 is the phase portrait of chaotic 

motion with b = 6.0. Fig. 3.40 ~ 3.44 are phase portraits of periodic motions 

with , 6.5, 9.5, 20, 45 respectively. 1.6=b

Case 7  Let 5.0=α , 5.0=β .  

Fig. 3.45 shows the bifurcation diagram of the 1.0 order system. It is shown 

that chaos exists when ]2.4,0[∈b . Fig. 3.46 is the phase portrait of chaotic 

motion with b = 2. Fig. 3.47 ~ 3.49 are phase portraits of periodic motions 

with , 10, 15 respectively. 0.6=b

Case 8  Let 4.0=α , 4.0=β .  

Fig. 3.50 shows the bifurcation diagram of the 0.8 order system. It is shown 

that chaos exists when ]8.1,0[∈b . Fig. 3.51 is the phase portrait of chaotic 

motion with b = 0.7. Fig. 3.52 、 Fig. 3.53 are phase portraits of periodic 
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motions with , 1.3 respectively. When we tried to reduce the total 

order to 0.6, the phase portraits become periodic motions, as shown in Fig. 

3.54 and Fig. 3.55, for any b value. 

7.0=b

 

Chaos in modified van der Pol system and in its fractional order systems is studied 

in this chapter. It is found that the range of the chaos in the system gradually decreases as 

the total order number βα +  decreases. Nine cases for ( ) 0.28.0 ≤+≤ βα  are studied. 

The lowest total order for chaos existence in the system is found to be 0.8. 
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Fig. 3.1 The bifurcation diagram for 1== βα . 
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Fig. 3.2 The phase portrait for 1== βα , b=1.0. 
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Fig. 3.3 The phase portrait for 1== βα , b=1.1. 
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Fig. 3.4 The phase portrait for 1== βα , b=1.5. 
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Fig. 3.5 The phase portrait for 1== βα , b=3.  
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Fig. 3.6 The bifurcation diagram for 9.0=α , 9.0=β . 
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Fig. 3.7 The phase portrait for 9.0=α , 9.0=β , b = 9.7. 
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Fig. 3.8 The phase portrait for 9.0=α , 9.0=β , b = 9.8. 
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Fig. 3.9 The phase portrait for 9.0=α , 9.0=β , b = 14. 
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Fig. 3.10 The phase portrait for 9.0=α , 9.0=β , b = 23. 
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Fig. 3.11 The phase portrait for 9.0=α , 9.0=β , b = 40. 
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Fig. 3.12 The bifurcation diagram for 9.0=α , 8.0=β . 
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Fig 3.13 The phase portrait for 9.0=α , 8.0=β , b = 9.8. 
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Fig. 3.14 The phase portrait for 9.0=α , 8.0=β , b = 9.9. 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-10

-8

-6

-4

-2

0

2

4

6

8

10

x

y

 
Fig. 3.15 The phase portrait for 9.0=α , 8.0=β , b = 12. 
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Fig. 3.16 The phase portrait for 9.0=α , 8.0=β , b = 25. 
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Fig. 3.17 The phase portrait for 9.0=α , 8.0=β , b = 30. 
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Fig. 3.18 The bifurcation diagram for 8.0=α , 9.0=β . 
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Fig. 3.19 The phase portrait for 8.0=α , 9.0=β , b = 10.1. 

 - 18 -



-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-8

-6

-4

-2

0

2

4

6

8

x

y

 
Fig. 3.20 The phase portrait for 8.0=α , 9.0=β , b = 10.2. 
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Fig. 3.21 The phase portrait for 8.0=α , 9.0=β , b = 15. 
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Fig. 3.22 The phase portrait for 8.0=α , 9.0=β , b = 23. 
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Fig. 3.23 The phase portrait for 8.0=α , 9.0=β , b = 30. 
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Fig. 3.24 The phase portrait for 8.0=α , 9.0=β , b = 45. 
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Fig. 3.25 The bifurcation diagram for 8.0=α , 8.0=β . 
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Fig. 3.26 The phase portrait for 8.0=α , 8.0=β , b = 10.1. 
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Fig. 3.27 The phase portrait for 8.0=α , 8.0=β , b = 10.2. 
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Fig. 3.28 The phase portrait for 8.0=α , 8.0=β , b = 14.5. 
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Fig. 3.29 The phase portrait for 8.0=α , 8.0=β , b = 20. 
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Fig. 3.30 The phase portrait for 8.0=α , 8.0=β , b = 35. 
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Fig. 3.31 The phase portrait for 8.0=α , 8.0=β , b = 40 
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Fig. 3.32 The bifurcation diagram for 7.0=α , 7.0=β . 
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Fig. 3.33 The phase portrait for 7.0=α , 7.0=β , b = 7.9. 
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Fig. 3.34 The phase portrait for 7.0=α , 7.0=β , b = 8.0. 
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Fig. 3.35 The phase portrait for 7.0=α , 7.0=β , b = 15. 
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Fig. 3.36 The phase portrait for 7.0=α , 7.0=β , b = 35. 
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Fig. 3.37 The phase portrait for 7.0=α , 7.0=β , b = 40. 
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Fig. 3.38 The bifurcation diagram for 6.0=α , 6.0=β . 
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Fig. 3.39 The phase portrait for 6.0=α , 6.0=β , b = 6.0. 
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Fig. 3.40 The phase portrait for 6.0=α , 6.0=β , b = 6.1. 
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Fig. 3.41 The phase portrait for 6.0=α , 6.0=β , b = 6.5. 
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Fig. 3.42 The phase portrait for 6.0=α , 6.0=β , b = 9.5. 
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Fig. 3.43 The phase portrait for 6.0=α , 6.0=β , b = 20. 
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Fig. 3.44 The phase portrait for 6.0=α , 6.0=β , b = 45. 
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Fig. 3.45 The bifurcation diagram for 5.0=α , 5.0=β . 
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Fig. 3.46 The phase portrait for 5.0=α , 5.0=β , b = 2. 
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Fig. 3.47 The phase portrait for 5.0=α , 5.0=β , b = 6. 

-1.5 -1 -0.5 0 0.5 1 1.5
-6

-4

-2

0

2

4

6

x

y

 
Fig. 3.48 The phase portrait for 5.0=α , 5.0=β , b = 10. 
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Fig. 3.49 The phase portrait for 5.0=α , 5.0=β , b = 15. 
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Fig. 3.50 The bifurcation diagram for 4.0=α , 4.0=β . 

 
Fig. 3.51 The phase portrait for 4.0=α , 4.0=β , b = 0.7. 
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Fig. 3.52 The phase portrait for 4.0=α , 4.0=β , b = 3.5. 

 
Fig. 3.53 The phase portrait for 4.0=α , 4.0=β , b = 6.0 
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Fig. 3.54 The phase portrait for 3.0=α , 3.0=β , b = 0.7. 
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Fig. 3.55 The phase portrait for 3.0=α , 3.0=β , b = 1.3. 
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Chapter 4 

Parameter Excited Chaos Synchronizations of Integral and 

Fractional Order Modified Heartbeat Systems 

 

In this chapter, the synchronizations of two uncoupled integral and fractional order 

chaotic modified heartbeat systems, i.e. modified van der Pol systems, are achieved by 

replacing the corresponding parameters of two systems by the same function of the 

chaotic state variables of a third chaotic system. It is named parameter excited 

synchronization which can be successfully obtained for very low total fractional order 0.2. 

Numerical simulations are illustrated by phase portraits, Poincaré maps and state error 

plots. 

 

4.1 The scheme of parameter excited chaos synchronizations 

    In this section, both parameters b of two identical modified fractional order van der 

Pol systems with different initial conditions 
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are replaced by the same cosine function of state variables of a third system (2.6). We 

study the parameter excited chaos synchronization for variousα , β . The parameters a, c 

of systems (4.1) and (4.2) are adjusted to achieve synchronization for differentα and β .  

d = 0.001 is fixed. Errors 121 xxe −= , 122 yye −=  are defined. If ,  01 →e 02 →e
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when , synchronization is obtained. A time step of 0.001 is used. Three cases are 

studied. 

∞→t

 

4.2 Parameter Excited Chaos Synchronizations by kcosx、kcosy、kcosxcosy 

Then, the corresponding parameters b of two uncoupled identical integral and 

fractional order chaotic modified van der Pol systems will be replaced by kcosx, kcosy, 

kcosxcosy, where x, y are the states of a third identical system (2.6). 

4.2.1 Parameter Excited Chaos Synchronizations by kcosx  

Let the parameter b of Eqs. (4.1) and (4.2) be replaced by kcosx where x is the state 

variable of system (2.6). Parameter k is chosen as k = 0.5. 

Case 1  Let 1== βα . Fig. 4.1 shows that the chaos exists when a = 2, c = 10.  

Fig. 4.2 shows the error dynamics for synchronization. 

Case 2  Let 9.0== βα . Fig. 4.3 shows that the chaos exists when a = 5, c = 5.  

Fig. 4.4 shows the error dynamics for synchronization. 

Case 3  Let 8.0== βα . Fig. 4.5 shows that the chaos exists when a = 5, c = 5.  

Fig. 4.6 shows the error dynamics for synchronization. 

Case 4  Let 7.0== βα . Fig. 4.7 shows that the chaos exists when a = 2.5, c = 35. 

Fig. 4.8 shows the error dynamics for synchronization. 

Case 5  Let 6.0== βα . Fig. 4.9 shows that the chaos exists when a = 2.5, c = 50. 

Fig. 4.10 shows the error dynamics for synchronization. 

Case 6  Let 5.0== βα . Fig. 4.11 shows that the chaos exists when a = 2, c = 35. 

Fig. 4.12 shows the error dynamics for synchronization. 

Case 7  Let 4.0== βα . Fig. 4.13 shows that the chaos exists when a = 2, c = 65. 

Fig. 4.14 shows the error dynamics for synchronization. 

Case 8  Let 3.0== βα . Fig. 4.15 shows that the chaos exists when a = 10, c = 65. 

Fig. 4.16 shows the error dynamics for synchronization. 

Case 9  Let 2.0== βα . Fig. 4.17 shows that the chaos exists when a = 20, c = 55. 

Fig. 4.18 shows the error dynamics for synchronization. 

Case 10  Let 1.0== βα . Fig. 4.19 shows that the chaos exists when a = 10,     

c = 0.5. Fig. 4.20 shows the error dynamics for synchronization. 
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4.2.2 Parameter Excited Chaos Synchronizations by kcosy  

Let the parameter b of Eqs. (4.1) and (4.2) be replaced by kcosy where y is the 

state variable of system (2.6). Parameter k is chosen as k = 0.5. 

Case 1  Let 1== βα . Fig. 4.21 shows that the chaos exists when a = 2, c = 10.  

Fig. 4.22 shows the error dynamics for synchronization. 

Case 2  Let 9.0== βα . Fig. 4.23 shows that the chaos exists when a = 5, c = 5. 

Fig. 4.24 shows the error dynamics for synchronization. 

Case 3  Let 8.0== βα . Fig. 4.25 shows that the chaos exists when a = 5, c = 5. 

Fig. 4.26 shows the error dynamics for synchronization. 

Case 4  Let 7.0== βα . Fig. 4.27 shows that the chaos exists when a = 2.5, c = 35. 

Fig. 4.28 shows the error dynamics for synchronization. 

Case 5  Let 6.0== βα . Fig. 4.29 shows that the chaos exists when a = 2.5, c = 50. 

Fig. 4.30 shows the error dynamics for synchronization. 

Case 6  Let 5.0== βα . Fig. 4.31 shows that the chaos exists when a = 2, c = 35. 

Fig. 4.32 shows the error dynamics for synchronization. 

Case 7  Let 4.0== βα . Fig. 4.33 shows that the chaos exists when a = 2, c = 65. 

Fig. 4.34 shows the error dynamics for synchronization. 

Case 8  Let 3.0== βα . Fig. 4.35 shows that the chaos exists when a = 5, c = 5. 

Fig. 4.36 shows the error dynamics for synchronization. 

Case 9  Let 2.0== βα . Fig. 4.37 shows that the chaos exists when a = 20, c = 55. 

Fig. 4.38 shows the error dynamics for synchronization. 

Case 10  Let 1.0== βα . Fig. 4.39 shows that the chaos exists when a = 10, c = 1. 

Fig. 4.40 shows the error dynamics for synchronization. 

4.2.3 Parameter Excited Chaos Synchronizations by kcosxcosy 

Let the parameter b of Eqs. (4.1) and (4.2) be replaced by kcosxcosy where x, y are 

the state variables of system (6). Parameter k is chosen as k = 0.5. 

Case 1  Let 1== βα . Fig. 4.41 shows that the chaos exists when a = 2, c = 10.   

Fig. 4.42 shows the error dynamics for synchronization. 

Case 2  Let 9.0== βα . Fig. 4.43 shows that the chaos exists when a = 5, c = 5.  

Fig. 4.44 shows the error dynamics for synchronization. 
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Case 3  Let 8.0== βα . Fig. 4.45 shows that the chaos exists when a = 10, c = 5.  

Fig. 4.46 shows the error dynamics for synchronization. 

Case 4  Let 7.0== βα . Fig. 4.47 shows that the chaos exists when a = 2.5, c = 35. 

Fig. 4.48 shows the error dynamics for synchronization. 

Case 5  Let 6.0== βα . Fig. 4.49 shows that the chaos exists when a = 2.5, c = 50. 

Fig. 4.50 shows the error dynamics for synchronization. 

Case 6  Let 5.0== βα . Fig. 4.51 shows that the chaos exists when a = 5.5, c = 45. 

Fig. 4.52 shows the error dynamics for synchronization. 

Case 7  Let 4.0== βα . Fig. 4.53 shows that the chaos exists when a = 2, c = 65.  

Fig. 4.54 shows the error dynamics for synchronization. 

Case 8  Let 3.0== βα . Fig. 4.55 shows that the chaos exists when a = 4, c = 35.  

Fig. 4.56 shows the error dynamics for synchronization. 

Case 9  Let 2.0== βα . Fig. 4.57 shows that the chaos exists when a = 2, c = 1.  

Fig. 4.58 shows the error dynamics for synchronization. 

Case 10  Let 1.0== βα . Fig. 4.59 shows that the chaos exists when a = 2, c = 10. 

Fig. 4.60 shows the error dynamics for synchronization. 

 

    In this paper, parameter excited chaos synchronizations of uncoupled integral and 

fractional order modified van der Pol systems are studied by means of phase portraits, 

Poincaré maps and error dynamics plots. It is found that this approach is very effective 

even for very low total fractional order 0.2. 
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Fig. 4.1 The phase portrait for replacing b by kcosx with 1== βα , a = 2, c = 10. 
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Fig. 4.2 Error dynamics for Case 1. 
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Fig. 4.3 The phase portrait for replacing b by kcosx with 9.0== βα , a = 5, c = 5. 
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Fig. 4.4 Error dynamics for Case 2. 

 - 44 -



 
Fig. 4.5 The phase portrait for replacing b by kcosx with 8.0== βα , a = 5, c = 5. 
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Fig. 4.6 Error dynamics for Case 3. 
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Fig. 4.7 The phase portrait for replacing b by kcosx with 7.0== βα , a = 2.5, c = 35. 
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Fig. 4.8 Error dynamics for Case 4. 
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Fig. 4.9 The phase portrait for replacing b by kcosx with 6.0== βα , a = 2.5, c= 50. 
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Fig. 4.10 Error dynamics for Case 5. 
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Fig. 4.11 The phase portrait for replacing b by kcosx with 5.0== βα , a = 2, c = 35. 
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Fig. 4.12 Error dynamics for Case 6. 
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Fig. 4.13 The phase portrait for replacing b by kcosx with 4.0== βα , a = 2, c = 65. 
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Fig. 4.14 Error dynamics for Case 7. 
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Fig. 4.15 The phase portrait for replacing b by kcosx with 3.0== βα , a = 10, c = 65. 
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Fig. 4.16 Error dynamics for Case 8. 
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Fig. 4.17 The phase portrait for replacing b by kcosx with 2.0== βα , a = 20, c = 55. 
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Fig. 4.18 Error dynamics for Case 9. 
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Fig. 4.19 The phase portrait for replacing b by kcosx with 1.0== βα , a = 10, c = 0.5. 
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Fig. 4.20 Error dynamics for Case 10. 
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Fig. 4.21 The phase portrait for replacing b by kcosy with 1== βα , a = 2, c = 10. 
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Fig. 4.22 Error dynamics for Case 1. 
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Fig. 4.23 The phase portrait for replacing b by kcosy with 9.0== βα , a = 5, c = 5. 
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Fig. 4.24 Error dynamics for Case 2. 
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Fig. 4.25 The phase portrait for replacing b by kcosy with 8.0== βα , a = 5, c = 5. 
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Fig. 4.26 Error dynamics for Case 3. 
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Fig. 4.27 The phase portrait for replacing b by kcosy with 7.0== βα , a = 2.5, c = 35. 

0 500 1000 1500 2000 2500 3000
-2

-1.5

-1

-0.5

0

0.5

1
x 10

-9

t

e1

0 500 1000 1500 2000 2500 3000

-2

0

2
x 10

-9

t

e2

 
Fig. 4.28 Error dynamics for Case 4. 
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Fig. 4.29 The phase portrait for replacing b by kcosy with 6.0== βα , a = 2.5, c = 50. 
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Fig. 4.30 Error dynamics for Case 5. 
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Fig. 4.31 The phase portrait for replacing b by kcosy with 5.0== βα , a = 2, c = 35. 
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Fig. 4.32 Error dynamics for Case 6. 
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Fig. 4.33 The phase portrait for replacing b by kcosy with 4.0== βα , a = 2, c = 65. 
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Fig. 4.34 Error dynamics for Case 7. 
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Fig. 4.35 The phase portrait for replacing b by kcosy with 3.0== βα , a = 10, c = 65. 
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Fig. 4.36 Error dynamics for Case 8. 
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Fig. 4.37 The phase portrait for replacing b by kcosy with 2.0== βα , a = 2, c = 1. 
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Fig. 4.38 Error dynamics for Case 9. 
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Fig. 4.39 The phase portrait for replacing b by kcosy with 1.0== βα , a = 10, c = 1. 

0 500 1000 1500 2000 2500 3000
-6

-4

-2

0

2

4

t

e1

0 500 1000 1500 2000 2500 3000
-30

-20

-10

0

10

20

t

e2

 
Fig. 4.40 Error dynamics for Case 10. 
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Fig. 4.41 The phase portrait for replacing b by kcosxcosy with 1== βα , a = 2, c = 10. 
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Fig. 4.42 Error dynamics for Case 1. 
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Fig. 4.43 The phase portrait for replacing b by kcosxcosy with 9.0== βα , a = 5, c = 5. 
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Fig. 4.44 Error dynamics for Case 2. 
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Fig. 4.45 The phase portrait for replacing b by kcosxcosy with 8.0== βα , a = 10, c = 5. 
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Fig. 4.46 Error dynamics for Case 3. 
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Fig. 4.47 The phase portrait for replacing b by kcosxcosy with 7.0== βα , a = 2.5,     

c = 35. 
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Fig. 4.48 Error dynamics for Case 4. 
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Fig. 4.49 The phase portrait for replacing b by kcosxcosy with 6.0== βα , a = 2.5,     

c = 50. 
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Fig. 4.50 Error dynamics for Case 5. 
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Fig. 4.51 The phase portrait for replacing b by kcosxcosy with 5.0== βα , a = 5.5,     

c = 45. 
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Fig. 4.52 Error dynamics for Case 6. 
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Fig. 4.53 The phase portrait for replacing b by kcosxcosy with 4.0== βα , a = 2, c = 65. 

0 500 1000 1500 2000 2500 3000
-6

-4

-2

0

2
x 10

-11

t

e1

0 500 1000 1500 2000 2500 3000

-1

0

1

2

3

x 10
-11

t

e2

 
Fig. 4.54 Error dynamics for Case 7. 
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Fig. 4.55 The phase portrait for replacing b by kcosxcosy with 3.0== βα , a = 4, c = 35. 
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Fig. 4.56 Error dynamics for Case 8. 
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Fig. 4.57 The phase portrait for replacing b by kcosxcosy with 2.0== βα , a = 2, c = 1. 
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Fig. 4.58 Error dynamics for Case 9. 
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Fig. 4.59 The phase portrait for replacing b by kcosxcosy with 1.0== βα , a = 2, c = 10. 
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Fig. 4.60 Error dynamics for Case 10. 
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Chapter 5 

Anticontrol of Chaos of the Fractional Order Modified 

Heartbeat Systems 

 

Anticontrol of chaos of fractional order modified heartbeat systems is studied. 

Anticontrol of chaos is making a non-chaotic dynamical system chaotic, i.e., the regular 

behavior will be destroyed and replaced by chaotic behavior. Addition of a constant term 

and addition of k|x|sinx term where x is a state of the system are used to anticontrol the 

system effectively. By applying numerical results, phase portrait, Poincaré maps and 

bifurcation diagrams a variety of the phenomena of the chaotic motion can be presented. 

 

5.1 Anticontrol of chaos by addition of a constant term 

We add a constant term k in the second equation of system (2.6) and it become: 

⎪
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                                         (5.1) 

In system (5.1), the parameter b is adjusted to achieve periodic motion for different 

α and β  when k = 0. a, c, d are fixed and they are chosen as a= 5, c = 0.01, d = 0.001. 

Case 1  Let 9.0== βα , b = 2.5, and ]2.1,9.0[∈k . Fig 5.1(a) shows the bifurcation               

diagram of the 1.8 order system. Fig 5.1(b) ~ 5.1(d) are the phase portraits 

with k = 0, 1.05, 1.1. 

Case 2  Let 8.0== βα , b = 1.5, and ]2.1,6.0[∈k . Fig 5.2(a) shows the bifurcation 

diagram of the 1.6 order system. Fig 5.2(b) ~ 5.2(d) are the phase portraits 

with k = 0, 0.87, 1.05. 

Case 3  Let 7.0== βα , b = 1.3, and ]6.1,1.0[∈k . Fig 5.3(a) shows the bifurcation 

diagram of the 1.4 order system. Fig 5.3(b) ~ 5.3(d) are the phase portraits 

with k = 0, 1.5, 1.6. 
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Case 4  Let 6.0== βα , b = 1, and ]312.1,282.1[∈k . Fig 5.4(a) shows the bifurcation 

diagram of the 1.2 order system. Fig 5.4(b) ~ 5.4(d) are the phase portraits 

with k = 0, 1.291, 1.298. 

Case 5  Let 5.0== βα , b = 1, and ]42.1,32.1[∈k . Fig 5.5(a) shows the bifurcation 

diagram of the 1.0 order system. Fig 5.5(b) ~ 5.5(d) are the phase portraits 

with k = 0, 1.35, 1.38. 

Case 6  Let 4.0== βα , b = 1.5, and ]94.1,88.1[∈k . Fig 5.6(a) shows the bifurcation 

diagram of the 0.8 order system. Fig 5.6(b) ~ 5.6(d) are the phase portraits 

with k = 0, 1.915, 1.93. 

Case 7  Let 3.0== βα , b = 1.5, and ]98.1,89.1[∈k . Fig 5.7(a) shows the bifurcation 

diagram of the 0.6 order system. Fig 5.7(b) ~ 5.7(d) are the phase portraits 

with k = 0, 1.9, 1.94. 

5.2 Anticontrol of chaos by addition of a nonlinear term 

We add a non-linear term k|x|sinx in the second equation of system (2.6) and it 

become: 
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                                  (5.2) 

In system (5.2), the parameter b is also adjusted to achieve periodic motion for 

differentα and β  when k = 0. , c, d are fixed as 5.1. a

Case 1  Let 9.0== βα , b = 2.5, and ]4.0,2.0[∈k . Fig 5.8(a) shows the bifurcation 

diagram of the 1.8 order system. Fig 5.8(b) ~ 5.8(d) are the phase portraits 

with k = 0, 0.35, 0.4. 

Case 2  Let 8.0== βα , b = 2.5, and ]3.1,0.1[∈k . Fig 5.9(a) shows the bifurcation 

diagram of the 1.6 order system. Fig 5.9(b) ~ 5.9(d) are the phase portraits 

with k = 0, 1.03, 1.2. 

Case 3  Let 7.0== βα , b = 0.5, and ]24.1,19.1[∈k . Fig 5.10(a) shows the bifurcation 

diagram of the 1.4 order system. Fig 5.10(b) ~ 5.10(d) are the phase portraits 

 - 74 -



with k = 0, 1.205, 1.215. 

Case 4  Let 6.0== βα , b = 1, and ]3.1,8.0[∈k . Fig 5.11(a) shows the bifurcation 

diagram of the 1.2 order system. Fig 5.11(b) ~ 5.11(d) are the phase portraits 

with k = 0, 0.95, 1.05. 

Case 5  Let 5.0== βα , b = 0.5, and ]7.0,1.0[∈k . Fig 5.12(a) shows the bifurcation 

diagram of the 1.0 order system. Fig 5.12(b) ~ 5.12(d) are the phase portraits 

with k = 0, 0.4, 0.6. 

Case 6  Let 4.0== βα , b = 1, and ]37.1,16.1[∈k . Fig 5.13(a) shows the bifurcation 

diagram of the 0.8 order system. Fig 5.13(b) ~ 5.13(d) are the phase portraits 

with k = 0, 1.25, 1.3. 

 

    Anticontrol of chaos in the fractional order systems of a modified van der Pol 

system are studied in the chapter. An efficient way to transform a non-chaotic dynamical 

system into a chaotic one is easily made by addition of a constant term or by addition of 

k|x|sinx term where x is a state variable of the system. It is found that chaos exists in the 

fractional order systems with order from 1.8 down to 0.6 for the addition of constant term, 

and from 1.8 down to 0.8 for the addition of k|x|sinx term. 
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Fig 5.1 The bifurcation diagram for 9.0== βα  and phase portrait for 9.0== βα  with 

k = 0, k = 1.05, k = 1.1 respectively. 
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Fig 5.2 The bifurcation diagram for 8.0== βα  and phase portrait for 8.0== βα  with 

k = 0, 0.87, 1.05, respectively.
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Fig 5.3 The bifurcation diagram for 7.0== βα  and phase portrait for 7.0== βα  with 

k = 0, 1.5, 1.6, respectively.
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Fig 5.4 The bifurcation diagram for 6.0== βα  and phase portrait for 6.0== βα  with 

k = 0, 1.291, 1.298, respectively. 
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Fig 5.5 The bifurcation diagram for 5.0== βα  and phase portrait for 5.0== βα  with 

k = 0, 1.35, 1.38, respectively.
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Fig 5.6 The bifurcation diagram for 4.0== βα  and phase portrait for 4.0== βα  with 

k = 0, 1.915, 1.93, respectively.
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Fig 5.7 The bifurcation diagram for 3.0== βα  and phase portrait for 3.0== βα  with 

k = 0, 1.9, 1.94, respectively.
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Fig 5.8 The bifurcation diagram for 9.0== βα and phase portrait for 9.0== βα with   

k = 0, 0.35, 0.4, respectively.
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Fig 5.9 The bifurcation diagram for 8.0== βα and phase portrait for 8.0== βα  with  

k = 0, 1.03, 1.2, respectively. 
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Fig 5.10 The bifurcation diagram for 7.0== βα  and The phase portrait for 7.0== βα  

with k = 0, 1.205, 1.215, respectively.
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Fig 5.11 The bifurcation diagram for 6.0== βα and phase portrait for 6.0== βα  with 

k = 0, 0.95, 1.05, respectively. 
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Fig 5.12 The bifurcation diagram for 5.0== βα  and phase portrait for 5.0== βα  

with k = 0, 0.4, 0.6, respectively.
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Fig 5.13 The bifurcation diagram for 4.0== βα and phase portrait for 4.0== βα  with 

k = 0, 1.25, 1.3, respectively. 
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Chapter 6 

Parameter Excited Chaotization of Integral and Fractional 

Order Modified Heartbeat Systems 

Chaotization of integral and fractional order modified heartbeat systems by 

replacing the parameter of modified heartbeat system by the function of the chaotic 

state variables of a second chaotic nano resonator system is studied. It is named 

parameter excited chaotization which can be successfully obtained for very low total 

fractional order 0.2. By phase portraits, Poincaré maps and bifurcation diagrams, the 

simulation results of fractional order modified van der Pol systems are presented. 

 

6.1 A nano resonator system and the chaotization scheme 

Chaotization, i.e. anticontrol of chaos, is making a non-chaotic dynamical system 

chaotic. This means that the regular behavior will be destroyed and replaced by 

chaotic behavior. 

Nano resonator system is a modified form of nonlinear damped Mathieu system 

which is obtained when the nano Mathieu oscillator has nonlinear time-dependent 

spring constant. The nonlinear damped Mathieu system is a nonautonomous system 

with two states x and y: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−+−+−=

=

thgyxtfextfe
dt
dy

y
dt
dx

2
3

11 sin)sin()sin( ωωω
                  (6.1) 

where a, b, c, d are constant parameters, and 1ω , 2ω  are circular frequencies. Let 

1ω = 2ω =ω , and replace sin tω  by z which is the periodic time function solution of 

the nonlinear oscillator 
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⎪
⎪
⎩

⎪⎪
⎨

⎧

−−=

=

3jziz
dt
dw

w
dt
dz

                                                   (6.2) 

where i, j are constants. Then we have the modified nonlinear damped Mathieu 

system, i.e. the nano resonator system: 

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

−−=

=

+−+−+−=

=

3

3)()(

jziz
dt
dw

w
dt
dz

hzgyxfzexfze
dt
dy

y
dt
dx

                                 (6.3) 

It becomes an autonomous system with four states where e, f, g, h, i and j are 

constants of the system. In our numerical simulations, six parameters , , 

, ,  and 

2.0=e 2.0=f

4.0=g 50=h 1=i 3.0=j  are chosen to make the states x and y of  

system (6.3) be a chaotic [74]. 

Next, let the parameter b of system (2.6) be replaced by ksiny where k is a 

constant and y is a chaotic state variable of system (6.3). We study the parameter 

excited chaotization of system (2.6) for variousα , β . 

 

6.2 Chaotization by parameter excited method 

The parameter k is adjusted to achieve chaos for differentα and β . , , 

 are fixed and . 

5=a 4=c

0001.0=i ]5,0[∈k

6.2.1 Chaotization of a integral order modified heartbeat system  

Let 1== βα . Fig 6.1(a) shows the bifurcation diagram of the 2 order system.  

Fig 6.1(b) is the nonchaotic phase portrait of the system (2.6) with . Fig 6.1(c) 

shows chaotic phase portrait when 

5.2=b

=k 4. 
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6.2.2 Chaotization of a fraction order modified van der Pol system  

Case 1  Let 9.0== βα . Fig 6.2(a) shows the bifurcation diagram of the 1.8 

order system. Fig 6.2(b) is the nonchaotic phase portrait of the    

system (2.6) with 5.2=b . Fig 6.2(c) shows chaotic phase portrait when 

4. =k

Case 2  Let 8.0== βα . Fig 6.3(a) shows the bifurcation diagram of the 1.6 

order system. Fig 6.3(b) is the nonchaotic phase portrait of the    

system (2.6) with 5.1=b . Fig 6.3(c) shows chaotic phase portrait when 

3. =k

Case 3  Let 7.0== βα . Fig 6.4(a) shows the bifurcation diagram of the 1.4 

order system. Fig 6.4(b) is the nonchaotic phase portrait of the    

system (2.6) with 3.1=b . Fig 6.4(c) shows chaotic phase portrait when 

3.5. =k

Case 4  Let 6.0== βα . Fig 6.5(a) shows the bifurcation diagram of the 1.2 

order system. Fig 6.5(b) is the nonchaotic phase portrait of the    

system (2.6) with 1=b . Fig 6.5(c) shows chaotic phase portrait when 

3.5. =k

Case 5  Let 5.0== βα . Fig 6.6(a) shows the bifurcation diagram of the 1.0 

order system. Fig 6.6(b) is the nonchaotic phase portrait of the    

system (2.6) with 1=b . Fig 6.6(c) shows chaotic phase portrait when 

3. =k

Case 6  Let 4.0== βα . Fig 6.7(a) shows the bifurcation diagram of the 0.8 

order system. Fig 6.7(b) is the nonchaotic phase portrait of the    

system (2.6) with 5.1=b . Fig 6.7(c) shows chaotic phase portrait when 

2.5. =k

Case 7  Let 3.0== βα . Fig 6.8(a) shows the bifurcation diagram of the 0.6 
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order system. Fig 6.8(b) is the nonchaotic phase portrait of the    

system (2.6) with 5.1=b . Fig 6.8(c) shows chaotic phase portrait when 

3.5. =k

Case 8  Let 2.0== βα . Fig 6.9(a) shows the bifurcation diagram of the 0.4 

order system. Fig 6.9(b) is the nonchaotic phase portrait of the    

system (2.6) with 5=b . Fig 6.9(c) shows chaotic phase portrait when 

1. =k

Case 9  Let 1.0== βα . Fig 6.10(a) shows the bifurcation diagram of the 0.2 

order system. Fig 6.10(b) is the nonchaotic phase portrait of the     

system (2.6) with 8=b . Fig 6.10(c) shows chaotic phase portrait when 

0.5. =k

 

    Chaotizations in the integral and fractional order systems of a modified van der 

Pol systems are studied in the chapter. An efficient way to transform a non-chaotic 

dynamics of the system into a chaotic one is easily made by replacing a parameter of 

the system by ksiny where k is a adjustable constant and y is a chaotic state variable of 

a second system, a modified nano resonator system. It is found that chaos exists in the 

integral and fractional order systems with total order from 2 down to 0.2. 

 

 

 

 

 

 

 

 

 92



 

(a) 

 

 

(b)  (c) 

 

Fig 6.1(a) The bifurcation diagram for 1== βα .  (b) The phase portrait 

for 1== βα , b = 2.5.  (c) The phase portrait for 1== βα , k = 4. 
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(a) 

 

 

(b)  (c) 

 

Fig 6.2(a) The bifurcation diagram for 9.0== βα .  (b) The phase portrait 

for 9.0== βα , b = 2.5.  (c) The phase portrait for 9.0== βα , k = 4. 
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(a) 

 

 

(b)  (c) 

 

Fig 6.3(a) The bifurcation diagram for 8.0== βα .  (b) The phase portrait 

for 8.0== βα , b = 1.5.  (c) The phase portrait for 8.0== βα , k = 3. 
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(a) 

 

 

(b)  (c) 

 

Fig 6.4(a) The bifurcation diagram for 7.0== βα .  (b) The phase portrait 

for 7.0== βα , b = 1.3.  (c) The phase portrait for 7.0== βα , k = 3.5. 
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(a) 

 

 

(b)  (c) 

 

Fig 6.5(a) The bifurcation diagram for 6.0== βα .  (b) The phase portrait 

for 6.0== βα , b = 1.  (c) The phase portrait for 6.0== βα , k = 3.5. 
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(a) 

 

 

(b) (c) 

 

Fig 6.6(a) The bifurcation diagram for 5.0== βα .  (b) The phase portrait 

for 5.0== βα , b = 1.  (c) The phase portrait for 5.0== βα , k = 3. 
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(a) 

 

 

(b) (c) 

 

Fig 6.7(a) The bifurcation diagram for 4.0== βα .  (b) The phase portrait 

for 4.0== βα , b = 1.5.  (c) The phase portrait for 4.0== βα , k = 2.5. 
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(a) 

 

 

(b)  (c) 

 

Fig 6.8(a) The bifurcation diagram for 3.0== βα .  (b) The phase portrait 

for 3.0== βα , b = 1.5.  (c) The phase portrait for 3.0== βα , k = 3.5. 
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(a) 

 

 

(b)  (c) 

 

Fig 6.9(a) The bifurcation diagram for 2.0== βα .  (b) The phase portrait 

for 2.0== βα , b = 5.  (c) The phase portrait for 2.0== βα , k = 1. 
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(a) 

 

 

(b) (c) 

 

Fig 6.10(a) The bifurcation diagram for 1.0== βα .  (b) The phase portrait 

for 1.0== βα , b = 8.  (c) The phase portrait for 1.0== βα , k = 0.5. 
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Chapter 7 

Conclusions 

Chaos is desirable under certain circumstances and chaotic phenomena are quite 

useful in many applications such as fluid mixing, human brain, and heart beat 

regulation, etc. Thus, this motivates us to investigate anticontrol of chaos. Recently 

many scientists in various fields have been attracted to investigate chaos 

synchronization due to its application in a variety of fields such as secure 

communications, chemical, physical, and biological systems, neural networks, etc. 

Many scholars have investigated the control and dynamics of the fractional order 

dynamical systems. The results have been shown that nonlinear chaotic systems still 

have chaotic behavior and chaos synchronization can be achieved when their models 

become fractional. 

In this thesis, integral and fractional order modified van der Pol systems are 

investigated. Chapter 2 contains a fractional derivative and the model of modified van 

der Pol system. 

In Chapter 3, the dynamics of integral and fractional order modified van der Pol 

systems are investigated. The chaotic phenomena exist for ( ) 0.28.0 ≤+≤ βα  and 

the range of the chaos gradually decreases as the total order number βα +  decreases. 

The numerical results of periodic and chaotic phenomena are presented by phase 

portraits, Poincaré maps and bifurcation diagrams. 

The synchronizations of two uncoupled integral and fractional order chaotic 

modified van der Pol systems are achieved by parameter excited synchronization in 

Chapter 4. It is found that this approach is very effective even for very low total 

fractional order 0.2. 

Anticontrol of chaos of fractional order modified van der Pol systems by addition 
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of a constant term and addition of k|x|sinx term are discussed in Chapter 5. The results 

show that chaos exists in the fractional order systems with total order from 1.8 down 

to 0.6 for the addition of constant term, and from 1.8 down to 0.8 for the addition of 

k|x|sinx term. 

    Finally, the parameter excited chaotization of integral and fractional order 

modified van der Pol systems is studied in Chapter 6. It is found that chaotization can 

be successfully obtained in the integral and fractional order systems with total order 

from 2 down to 0.2. 
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Appendix 
 
 

Table 1. FRACTIONAL OPERATORS WITH APPROXIMATELY  
2 db ERROR FROM    = 10–2 TO 102 rad/sec 
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4 3 2

0.1 5 4 3 2

1 220.4 5004 503 234.5 0.484
359.8 5742 4247 147.7 0.2099

s s s s
s s s s s s

+ + + +
≈

+ + + + +

4 3 2

0.2 5 4 3 2

1 60.95 816.9 582.8 23.24 0.04934
134 956.5 383.5 8.953 0.01821

s s s s
s s s s s s

+ + + +
≈

+ + + + +
4 3 2

0.3 5 4 3 2

1 23.76 224.9 129.1 4.733 0.01052
64.51 252.2 63.61 1.104 0.002267

s s s s
s s s s s s

+ + + +
≈

+ + + + +

4 3 2

0.4 5 4 3 2

1 25 558.5 664.2 44.15 0.1562
125.6 840.6 317.2 7.428 0.02343

s s s s
s s s s s s

+ + + +
≈

+ + + + +
4 3 2

0.5 5 4 3 2

1 15.97 593.2 1080 135.4 1
134.3 1072 543.4 20.1 0.1259

s s s s
s s s s s s

+ + + +
≈

+ + + + +
4 3 2

0.6 5 4 3 2

1 8.579 255.6 405.3 35.93 0.1696
94.22 472.9 134.8 2.639 0.009882

s s s s
s s s s s s

+ + + +
≈

+ + + + +

4 3 2

0.7 5 4 3 2

1 4.406 177.6 209.6 9.179 0.0145
88.12 279.2 33.3 1.927 0.0002276

s s s s
s s s s s s

+ + + +
≈

+ + + + +
3 2

0.8 4 3 2

1 5.235 1453 5306 254.9
658.1 5700 658.2 1

s s s
s s s s s

+ + +
≈

+ + + +

2

0.9 3 2

1 1.766 38.27 4.914
36.15 7.789 0.01

s s
s s s s

+ +
≈

+ + +
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