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Abstract

Chaos, chaos synchronization and anticontrol for integral and fractional modified
heartbeat systems are studied in thesthesis. By applying numerical results, phase portrait,
Poincaré maps and bifurcation diagrams, a-variety of the phenomena of the periodic and
chaotic motion can be presented. The synchronizations of two uncoupled integral and
fractional order chaotic modified. heartbeat systems are accomplished by parameter
excited synchronization. Anticontrol ‘of ichaes ‘of fractional order modified heartbeat
systems can be obtained by addition of a constant term and addition of a nonlinear term.
Chaotization of integral and fractional order modified heartbeat systems by parameter
excited method, replacement of the parameter of first system by the function of the

chaotic state variables of a second chaotic system, is successfully accomplished.
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Chapter 1

Introduction

Chaos is desirable under certain circumstances and chaotic phenomena are quite
useful in many applications such as fluid mixing [1], human brain [2], and heart beat
regulation [3], etc. But like many other theories in science, the theory of chaos did not get
enough attention for almost two decades, ever since Edward Lorenz reported his
discovery of the theory in 1963. However, the invention of high-speed computers in the
late 1970s and early 1980s brought about a major revolution in nonlinear dynamical
theories in general, and chaos theory in particular that is why chaos theory developed in
the natural sciences during the 1970s, and the social sciences during the 1980s.

Chaos synchronization [4-12] is a very important topic in the nonlinear [13-15]
science and it has been developed extensively. Recently many scientists in various fields
have been attracted to investigate chaos synchronization due to its application in a variety
of fields such as secure communications, chemical, physical, and biological systems,
neural networks, etc. So various synchronization schemes, such as variable structure
control [16], parameters adaptive control [17-24], 0bserver based control [25, 26], active
control [27-33], nonlinear control [34, 35] and so on have been successfully applied to
the chaos synchronization.

Fractional calculus is a 300-year-old mathematical topic. Although it has a long
history, the applications of fractional calculus to physics and engineering are just a recent
focus of interest [36]. In recent years, many scholars have devoted themselves to study
the applications of the fractional order system to physics and engineering such as
viscoelastic systems [37], dielectric polarization, and electromagnetic waves. More
recently, there is a new trend to investigate the control [38] and dynamics [39-46] of the
fractional order dynamical systems [47-49]. In [37] it has been shown that nonlinear
chaotic systems still have chaotic behavior when their models become fractional. In [47],
chaos control was investigated for fractional chaotic systems by the ““back-stepping”
method of nonlinear control design. In [48] and [49], it was found that chaos exists in a
fractional order Chen system with order less than 3. Linear feedback control of chaos in



this system was also studied. In [41], chaos synchronization of fractional order chaotic
systems was studied. The existence and uniqueness of solutions of initial value problems
for fractional order differential equations have been studied in the literature [50-53].

In addition, anticontrol [54-60] of chaos have received great attention for many
research activities in recent years and it is an interesting, new and challenging
phenomenon [61-63]. As a reverse process of suppressing or eliminating chaotic
behaviors in order to reduce the complexity of an individual system or a coupled system,
anticontrol of chaos aims at creating or enhancing the system complexity for some
special applications. More precisely, anticontrolling chaos is to generate some chaotic
behaviors from a given system, which is non-chaotic or even is stable originally. By fully
exploiting the intrinsic nonlinearity, this “control” technique provides another dimension
for feedback systems design. Its potential applications can be easily found in many fields,
including typically physics, biology, engineering, and medical as well as social sciences.

In this thesis, integral and fractional order modified heartbeat systems, i.e., van der
Pol systems, are investigated. Chapter 2 presents.a fractional derivative and the model of
modified Van der Pol system. In Chapter 3, the dynamics of integral and fractional order
modified van der Pol systems aré investigated and the numerical results of periodic and
chaotic phenomena are presented. The. synchronizations of two uncoupled integral and
fractional order chaotic modified van der Pol systems are achieved by parameter excited
synchronization in Chapter 4. Anticontrol of chaos of fractional order modified van der
Pol systems by addition of a constant term and addition of k|x|sinx term are discussed in
Chapter 5. The parameter excited chaotization of integral and fractional order modified
van der Pol systems is studied in Chapter 6. Finally, the conclusions are draw.



Chapter 2

A Fractional Derivative and a Modified Heartbeat System

2.1 Afractional derivative and its approximation

There are several definitions of fractional derivatives. The commonly used
definition for a general fractional derivative is the Riemann-Liouville definition [64],
which is given by

d'f@) 1 d" J‘t f(z) ;
dt*  T(n—q)dt"Jo(t—7)" " (2.1)

where T'(-)is the gamma function and n is an integer such that n—-1<qg<n. This

definition is different from the usual intuitive definition of derivative. Fortunately, the
basic engineering tool for analyzing linear systems, the Laplace transform, is still
applicable and works as one would expect:

dq f (t) n-1 . d g=1-k f (t)
dt oy =0, “forall q,

k=0

(2.2)
where n is an integer such that n—=1<g<n-. Upon considering the initial conditions to

be zero, this formula reduces to the more expected-form

dof))
L{ e }—s L{f ()

: (2.3)
An efficient method is to approximate fractional operators by using standard integer order
operators. In [65-69], an effective algorithm is developed to approximate fractional order
transfer functions. Basically the idea is to approximate the system behavior based on
frequency domain arguments. By utilizing frequency domain techniques based on Bode
diagrams, one can obtain a linear approximation of the fractional order integrator, the
order of which depends on the desired bandwidth and discrepancy between the actual and

the approximate magnitude Bode diagrams. In Table 1 (See Appendix) of [70],

approximations for iq with @ = 0.1 ~ 0.9 in steps 0.1 are given, with errors of
S

approximately 2 dB. These approximations are used in the following simulations.



2.2 A modified heartbeat system and the corresponding fractional order

system

Firstly, a heartbeat system, i.e. a van der Pol oscillator[71-73], driven by a periodic

force is considered. The equation of motion can be written as:
X+ @oX + ax(x?-1)-bsin ot =20 (2.4)
In Eq. (2.4), the linear term stands for a conservative harmonic force which determines
the intrinsic oscillation frequency. The self-sustaining mechanism which is responsible
for the perpetual oscillation rests on the nonlinear term. Energy exchange with the
external agent depends on the magnitude of displacement |x| and on the sign of velocity
X . During a complete cycle of oscillation, the energy is dissipated if displacement x(t) is
large than one, and that energy is fed-in if [x| < 1. The time-dependent term stands for the
external driving force with amplitude b and frequency .Eq. (2.4) can be rewritten as
two first order equations:

X =y
{y:—gpx+a(1—x2)y+bsin ot 29)

The modified heartbeat system, i.e. the modified van-der Pol system, and its fractional

order system studied in this paper are

d“x y

dt”

d’y =—x+a(l-x*)y+bz (2.6)
dt” '
1=W

W=—cz-dz*

where «, are integer numbers and fractional numbers respectively.
System (2.6) can be separated into two parts:
d“x
dt”
d’y
dt”

and

y
(2.7)

=—x+a(l—x?)y+bz



=W
{v‘v= —cz—dz° (2:8)
In Eq. (2.5) changing the integral order derivatives to the fractional order derivations and
replaceing sinwt by z which is the periodic time function solution of the nonlinear
oscillator (2.8), we obtain system (2.7). In Eq. (2.8) if d = 0, z is a sinusoidal function of
time. Now d # 0, z is a periodic motion of time but not a sinusoidal function of time.
As a result, system (2.7) can be considered as a honautonomous system with two states,
while system (2.6) consisting of Eq. (2.7) and Eq. (2.8) can be considered as an

autonomous system with four states. When « = =1, Eq.(2.6) is the modified van der

Pol system.



Chapter 3
Chaos in a Modified Heartbeat System and in Its Fractional

Order Systems

Chaos in a modified van der Pol system and in its fractional order systems is studied
in this chapter. It is found that chaos exists both in the system and in the fractional order
systems with total order from 1.8 down to 0.8 much less than the number of states of the
system, two. By phase portraits, Poincaré maps and bifurcation diagrams, the chaotic
behaviors of integral and fractional order modified van der Pol systems are presented.

In this chapter, phase portraits and bifurcation diagrams are studied for  system

(2.6) for a+ B <2 and three parameters a, c, d are chosen asa =5, ¢ = 0.01, d = 0.001.

A time step of 0.001 is used.

3.1 Chaos in a integral order modifiedrheartbeat system
Let =/ =1. Fig. 3.1 shows the bifurcation diagram of the 2 order system. It is

shown that chaos exists when b &[0, 1.0}=Fig=3:2 is'the phase portrait of chaotic motion

with b = 1.0. Fig. 3.3 ~ 3.5 are phase portraits-of periodic motions with b=1.1, 1.5, 3,

respectively.

3.2 Chaos in a fractional order modified heartbeat system

Casel Let =09, £=09.
Fig. 3.6 shows the bifurcation diagram of the 1.8 order system. It is shown that
chaos exists when be[0,9.7]. Fig. 3.7 is the phase portrait of chaotic
motion with b = 9.7. Fig. 3.8 ~ 3.11 are phase portraits of periodic motions
with b=9.8, 14, 23, 40 respectively.

Case2 Let =09, p=028.
Fig. 3.12 shows the bifurcation diagram of the 1.7 order system. It is shown
that chaos exists when b e[0, 9.8]. Fig. 3.13 is the phase portrait of chaotic

motion with b = 9.8. Fig. 3.14 ~ 3.17 are phase portraits of periodic motions



Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

with b=9.9, 12, 25, 30, respectively.

Let =08, #=009.

Fig. 3.18 shows the bifurcation diagram of the 1.7 order system. It is shown
that chaos exists when b e[0,10.1]. Fig. 3.19 is the phase portrait of chaotic
motion with b = 10.1. Fig. 3.20 ~ 3.24 are phase portraits of periodic motions
with b=10.2, 15, 23, 30, 45 respectively.

Let =08, f=08.

Fig. 3.25 shows the bifurcation diagram of the 1.6 order system. It is shown
that chaos exists when b [0,10.1]. Fig. 3.26 is the phase portrait of chaotic
motion with b = 10.1. Fig. 3.27 ~ 3.31 are phase portraits of periodic motions
with b=10.2, 14.5, 20, 35, 40 respectively.

Let =07, f=0.7.

Fig. 3.32 shows the bifurcation diagram of the 1.4 order system. It is shown
that chaos exists when be|[0, 7.9]. Fig.:3.33 is the phase portrait of chaotic
motion with b = 7.9. Fig,.3.34 ~ 3.37 are phase portraits of periodic motions
with b =8.0, 15, 35, 40 respectively.

Let =06, 8#=06.

Fig. 3.38 shows the bifurcation‘diagram of the 1.2 order system. It is shown
that chaos exists when b <0, 6.0]. Fig. 3.39 is the phase portrait of chaotic
motion with b = 6.0. Fig. 3.40 ~ 3.44 are phase portraits of periodic motions
with b=6.1, 6.5, 9.5, 20, 45 respectively.

Let «=0.5, g=05.

Fig. 3.45 shows the bifurcation diagram of the 1.0 order system. It is shown
that chaos exists when b e]0, 4.2]. Fig. 3.46 is the phase portrait of chaotic
motion with b = 2. Fig. 3.47 ~ 3.49 are phase portraits of periodic motions
with b=6.0, 10, 15 respectively.

Let =04, =04,

Fig. 3.50 shows the bifurcation diagram of the 0.8 order system. It is shown

that chaos exists when b e[0,1.8]. Fig. 3.51 is the phase portrait of chaotic
motion with b = 0.7. Fig. 3.52 -~ Fig. 3.53 are phase portraits of periodic



motions with b=0.7, 1.3 respectively. When we tried to reduce the total
order to 0.6, the phase portraits become periodic motions, as shown in Fig.
3.54 and Fig. 3.55, for any b value.

Chaos in modified van der Pol system and in its fractional order systems is studied
in this chapter. It is found that the range of the chaos in the system gradually decreases as

the total order number « + 8 decreases. Nine cases for 0.8<(a+)<2.0 are studied,

The lowest total order for chaos existence in the system is found to be 0.8.
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Fig. 3.2 The phase portrait for « = =1, b=1.0.
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Fig. 3.3 The p;hase portraif for o =Tﬁ =1, b=1.1.
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Fig. 3.4 The phase portrait for « = =1, b=1.5.
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Fig. 3.7 The phase portrait for ¢ =09, £=0.9,b=9.7.
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Fig. 3.9 The phase portrait for « =09, #=0.9,b=14.
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Fig. 3.10 The phase portrait for. -z =0.9, =09, b=23.

Fig. 3.11 The phase portrait for ¢ =0.9, £=0.9, b =40.



Fig 3.13 The phase portrait for ¢« =0.9, f=0.8,b=9.8.
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Fig. 3.15 The phase portrait for ¢« =0.9, f=0.8,b =12,

-16 -



10+

-10+

.15 I I I I I I I ]
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Fig. 3.16 The phase portraitfon «=0.9, £=0.8,b=25.

Fig. 3.17 The phase portrait for ¢ =0.9, £=0.8,b=30.
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Fig. 3.19 The phase portrait for « =0.8, =09, b=10.1.
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Fig. 3.21 The phase portrait for ¢ =0.8, f=0.9,b=15.
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Fig. 3.22 The phase portrait for“a =08, 5 =0.9,b=23.

Fig. 3.23 The phase portrait for ¢ =0.8, £ =0.9,b=230.
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Fig. 3.25 The bifurcation diagram for « =0.8, =0.8.
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Fig. 3.26 The phase portrait for « =0.8, #=0.8,b=10.1.
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Fig. 3.28 The phase portrait for «=0.8, f#=0.8,b=145.
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Fig. 3.29 The phase portrait for . =0.8, £ =0.8,b = 20.

Fig. 3.30 The phase portrait for «=0.8, f=0.8,b=35.
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Fig. 3.31 The phase portrait for ¢ =0.8, 5=0.8,b =40
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Fig. 3.33 The phase portrait for «=0.7, f=0.7,b=7.9.
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Fig. 3.35 The phase portrait for «=0.7, f=0.7,b=15.
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Fig. 3.36 The phase portrait for . =0.7, f=0.7,b=35.

Fig. 3.37 The phase portrait for ¢« =0.7, £=0.7,b =40.
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Fig. 3.39 The phase portrait for « =0.6, =0.6,b=6.0.
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Fig. 3.41 The phase portrait for « =0.6, f=0.6,b=6.5.
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Fig. 3.42 The phase portrait for, = 0.6, s =0.6,b=95.

Fig. 3.43 The phase portrait for « =0.6, f=0.6,b=20.
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Fig. 3.46 The phase portrait for ¢ =0.5, f=05,b=2.
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Fig. 3.47 The phase portrait for =05, #=05,b=6.

Fig. 3.48 The phase portrait for ¢« =0.5, £=0.5, b = 10.
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Fig. 3.49 The phase portrait for“e =05, f=05,b=15.
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Fig. 3.52 The phase portrait for -« =04, S=0.4,b=35.
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Fig. 3.53 The phase portrait for « =0.4, f=0.4,b=6.0
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Fig. 3.54 The phase portrait for ‘@ =0.3, =0.3,b=0.7.
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Fig. 3.55 The phase portrait for « =0.3, f=0.3,b=1.3.
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Chapter 4
Parameter Excited Chaos Synchronizations of Integral and

Fractional Order Modified Heartbeat Systems

In this chapter, the synchronizations of two uncoupled integral and fractional order
chaotic modified heartbeat systems, i.e. modified van der Pol systems, are achieved by
replacing the corresponding parameters of two systems by the same function of the
chaotic state variables of a third chaotic system. It is named parameter excited
synchronization which can be successfully obtained for very low total fractional order 0.2.
Numerical simulations are illustrated by phase portraits, Poincaré maps and state error

plots.

4.1 The scheme of parameter excited chaos’synchronizations
In this section, both parameters b of . two identical modified fractional order van der

Pol systems with different initial conditions

d“x,

i

d’y

dt—ﬂl:_xl +a(l-x,")y, +bz, (4.1)
=W

W, = —cz, —dz,°

d“x,

qt =Y

d?y

dtﬂz =—x, +a(l-x,’)y, +bz, (4.2)
2, =W,

W, = —cz, —dz,’

are replaced by the same cosine function of state variables of a third system (2.6). We
study the parameter excited chaos synchronization for various« , 5. The parameters a, ¢
of systems (4.1) and (4.2) are adjusted to achieve synchronization for differenta and 5.

d = 0.001 is fixed. Errorse, =X, —X,, €, =Yy, Y, are defined. Ife, >0, e, >0
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when t — oo, synchronization is obtained. A time step of 0.001 is used. Three cases are
studied.

4.2 Parameter Excited Chaos Synchronizations by kcosx ~ kcosy  kcosxcosy

Then, the corresponding parameters b of two uncoupled identical integral and
fractional order chaotic modified van der Pol systems will be replaced by kcosx, kcosy,
kcosxcosy, where X, y are the states of a third identical system (2.6).

4.2.1 Parameter Excited Chaos Synchronizations by kcosx

Let the parameter b of Eqgs. (4.1) and (4.2) be replaced by kcosx where x is the state

variable of system (2.6). Parameter k is chosen as k = 0.5.

Case 1 Let a=p=1. Fig. 4.1 shows that the chaos exists when a = 2, ¢ = 10.

Fig. 4.2 shows the error dynamics for synchronization.

Case 2 Let a=/£=0.9. Fig. 4.3 shows that the chaos exists when a = 5, ¢ = 5.

Fig. 4.4 shows the error«dynamics for synchronization.

Case 3 Let o= p=0.8. Fig. 4.5 shows that the chaos exists when a = 5, ¢ = 5.

Fig. 4.6 shows the error dynamics for synchronization.
Case4 Let a=p=0.7.Fig. 4.7shows-that the chaos exists when a = 2.5, ¢ = 35.

Fig. 4.8 shows the error dynamics for synchronization.
Case 5 Let a=p=0.6.Fig. 4.9 shows that the chaos exists when a = 2.5, ¢ = 50.

Fig. 4.10 shows the error dynamics for synchronization.
Case 6 Let o= p=0.5.Fig. 4.11 shows that the chaos exists when a = 2, ¢ = 35.

Fig. 4.12 shows the error dynamics for synchronization.
Case 7 Let a=p=0.4.Fig. 4.13 shows that the chaos exists when a = 2, ¢ = 65.

Fig. 4.14 shows the error dynamics for synchronization.
Case 8 Let a =/ =0.3.Fig. 4.15 shows that the chaos exists when a = 10, ¢ = 65.

Fig. 4.16 shows the error dynamics for synchronization.
Case 9 Let a=/p=0.2.Fig.4.17 shows that the chaos exists when a = 20, ¢ = 55.

Fig. 4.18 shows the error dynamics for synchronization.
Case 10 Let o¢=p=0.1. Fig. 4.19 shows that the chaos exists when a = 10,

¢ = 0.5. Fig. 4.20 shows the error dynamics for synchronization.
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4.2.2 Parameter Excited Chaos Synchronizations by kcosy

Let the parameter b of Egs. (4.1) and (4.2) be replaced by kcosy where y is the

state variable of system (2.6). Parameter k is chosen as k = 0.5.

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Case 9

Let « = =1. Fig. 4.21 shows that the chaos exists when a = 2, ¢ = 10.

Fig. 4.22 shows the error dynamics for synchronization.
Let «=/£=0.9. Fig. 4.23 shows that the chaos exists when a = 5, ¢ = 5.

Fig. 4.24 shows the error dynamics for synchronization.
Let « = =0.8. Fig. 4.25 shows that the chaos exists when a =5, ¢ = 5.

Fig. 4.26 shows the error dynamics for synchronization.
Let o = =0.7. Fig. 4.27 shows that the chaos exists whena = 2.5, ¢ = 35.

Fig. 4.28 shows the error dynamics for synchronization.
Let « = =0.6. Fig. 4.29 shows that the chaos exists when a = 2.5, ¢ = 50.

Fig. 4.30 shows the error dynamics for synchronization.
Let ¢ = =0.5. Fig.4:31 shows that-the chaos exists when a = 2, ¢ = 35.

Fig. 4.32 shows the error dynamics for synchronization.
Let « =4 =0.4. Fig. 4.33 shows that thé chaos exists when a = 2, ¢ = 65.

Fig. 4.34 shows the error.dynamics for synchronization.
Let = =0.3. Fig. 4.35 shows'that the chaos exists when a = 5, ¢ = 5.

Fig. 4.36 shows the error dynamics for synchronization.
Let o = =0.2. Fig. 4.37 shows that the chaos exists when a = 20, ¢ = 55.

Fig. 4.38 shows the error dynamics for synchronization.

Case 10 Let a = =0.1. Fig. 4.39 shows that the chaos exists when a = 10, ¢ = 1.

Fig. 4.40 shows the error dynamics for synchronization.

4.2.3 Parameter Excited Chaos Synchronizations by kcosxcosy

Let the parameter b of Egs. (4.1) and (4.2) be replaced by kcosxcosy where X, y are

the state variables of system (6). Parameter k is chosen as k = 0.5.

Case 1

Case 2

Let « = =1. Fig. 4.41 shows that the chaos exists when a = 2, ¢ = 10.

Fig. 4.42 shows the error dynamics for synchronization.
Let ¢ =/£=0.9. Fig. 4.43 shows that the chaos exists when a =5, ¢ = 5.

Fig. 4.44 shows the error dynamics for synchronization.
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Case 3 Let o= p=0.8. Fig. 4.45 shows that the chaos exists when a = 10, ¢ = 5.
Fig. 4.46 shows the error dynamics for synchronization.

Case4 Let a=p=0.7.Fig. 4.47 shows that the chaos exists when a = 2.5, ¢ = 35.
Fig. 4.48 shows the error dynamics for synchronization.

Case5 Let a=/p=0.6.Fig.4.49 shows that the chaos exists when a = 2.5, ¢ = 50.
Fig. 4.50 shows the error dynamics for synchronization.

Case6 Let a=/=0.5.Fig. 4.51 shows that the chaos exists when a = 5.5, ¢ = 45.
Fig. 4.52 shows the error dynamics for synchronization.

Case 7 Let o= p=0.4.Fig. 453 shows that the chaos exists when a = 2, ¢ = 65.
Fig. 4.54 shows the error dynamics for synchronization.

Case 8 Let a=p=0.3.Fig. 4.55 shows that the chaos exists when a = 4, ¢ = 35.
Fig. 4.56 shows the error dynamics for synchronization.

Case 9 Let a=/p=0.2. Fig. 4.57,shews that the chaos exists when a = 2, ¢ = 1.
Fig. 4.58 shows the error dynamies-for synchronization.

Case 10 Let a=p=0.1. Fig.4.59 shows that the chaos exists when a = 2, ¢ = 10.

Fig. 4.60 shows the error'dynamics for'synchronization.

In this paper, parameter excited chaos' synchronizations of uncoupled integral and
fractional order modified van der Pol systems are studied by means of phase portraits,
Poincaré maps and error dynamics plots. It is found that this approach is very effective

even for very low total fractional order 0.2.
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Fig. 4.5 The phase portrait for replacingd-by:kcosx witha = f#=0.8,a=5, ¢ =5.
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Fig. 4.6 Error dynamics for Case 3.
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Fig. 4.7 The phase portrait for replacing b by kcosx witha = f#=0.7,a= 2.5, ¢ = 35.
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Fig. 4.10 Error dynamics for Case 5.
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Fig. 4.11 The phase portrait for-replacing h-by kcosx witha = #=0.5,a=2, ¢ = 35.
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Fig. 4.12 Error dynamics for Case 6.
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Fig. 4.15 The phase portrait for replacing-b by keosx-witha = # =0.3, a = 10, ¢ = 65.
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Fig. 4.19 The phase portrait for replacing b by keosx withe = f=0.1,a =10, c =0.5.
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Fig. 4.20 Error dynamics for Case 10.
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Fig. 4.24 Error dynamics for Case 2.
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Fig. 4.25 The phase portrait forreplacing b by kcosy witha = #=0.8,a=5, ¢ = 5.
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Fig. 4.26 Error dynamics for Case 3.
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Fig. 4.29 The phase portrait for replacing b by keosy witha = #=0.6,a = 2.5, ¢ = 50.
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Fig. 4.30 Error dynamics for Case 5.
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Fig. 4.31 The phase portrait for-replacing b-by kcosy witha = f=0.5, a
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=2,c=235.
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Fig. 4.33 The phase portrait for<replacing b-by kcosy witha = #=0.4,a =2, c = 65.
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Fig. 4.34 Error dynamics for Case 7.
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Fig. 4.35 The phase portrait for replacing-b by keosy-witha = # =0.3, a = 10, ¢ = 65.
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Fig. 4.37 The phase portrait for-replacing b by kcosy witha = f#=0.2,a=2,c = 1.
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Fig. 4.39 The phase portrait for<replacing b-by kcosy witha = #=0.1,a=10,c=1.
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Fig. 4.42 Error dynamics for Case 1.
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Fig. 4.45 The phase portrait for replacing b:by-keosxeosy withe = #=0.8,a =10, c =5.
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Fig. 4.47 The phase portrait for replacing b:by kcosxcosy withe = f=0.7,a = 2.5,
c=35.
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Fig. 4.49 The phase portrait for replacingb:by kcosxcosy withe = f=0.6,a = 2.5,
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Chapter 5
Anticontrol of Chaos of the Fractional Order Modified
Heartbeat Systems

Anticontrol of chaos of fractional order modified heartbeat systems is studied.
Anticontrol of chaos is making a non-chaotic dynamical system chaotic, i.e., the regular
behavior will be destroyed and replaced by chaotic behavior. Addition of a constant term
and addition of k|x|sinx term where x is a state of the system are used to anticontrol the
system effectively. By applying numerical results, phase portrait, Poincaré maps and
bifurcation diagrams a variety of the phenomena of the chaotic motion can be presented.

5.1 Anticontrol of chaos by addition of a constant term

We add a constant term k in the second equation of system (2.6) and it become:

d“x

ar Y

d—ﬂy:—x+a(1—x2)y+bz+k (5.1)
dt” '
1=W

W = —cz —dz®

In system (5.1), the parameter b is adjusted to achieve periodic motion for different
aand f when k =0. a, ¢, d are fixed and they are chosen as a= 5, ¢ = 0.01, d = 0.001.
Case 1 Leta=p£=09,b =25, andk €[0.9,1.2]. Fig 5.1(a) shows the bifurcation
diagram of the 1.8 order system. Fig 5.1(b) ~ 5.1(d) are the phase portraits
with k =0, 1.05, 1.1.
Case 2 Leta=p£=08,b =15, andk €[0.6,1.2]. Fig 5.2(a) shows the bifurcation
diagram of the 1.6 order system. Fig 5.2(b) ~ 5.2(d) are the phase portraits
with k =0, 0.87, 1.05.
Case 3 Leta=p4=0.7, b =13, andk €[0.1,1.6]. Fig 5.3(a) shows the bifurcation
diagram of the 1.4 order system. Fig 5.3(b) ~ 5.3(d) are the phase portraits
with k=0, 1.5, 1.6.
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Case 4 Leta=p=0.6,b=1, andk €[1.282,1.312]. Fig 5.4(a) shows the bifurcation
diagram of the 1.2 order system. Fig 5.4(b) ~ 5.4(d) are the phase portraits
with k =0, 1.291, 1.298.
Case 5 Leta=p4=05,b =1, andk €[1.32,1.42]. Fig 5.5(a) shows the bifurcation
diagram of the 1.0 order system. Fig 5.5(b) ~ 5.5(d) are the phase portraits
with k=0, 1.35, 1.38.
Case 6 Leta=p£=04,b=15, andk €[1.88,1.94]. Fig 5.6(a) shows the bifurcation
diagram of the 0.8 order system. Fig 5.6(b) ~ 5.6(d) are the phase portraits
with k =0, 1.915, 1.93.
Case 7 Leta=£=0.3,b=15, andk [1.89,1.98]. Fig 5.7(a) shows the bifurcation
diagram of the 0.6 order system. Fig 5.7(b) ~ 5.7(d) are the phase portraits
with k=0, 1.9, 1.94.
5.2 Anticontrol of chaos by addition of a nonlinear term
We add a non-linear term k|x|sinx in the second equation of system (2.6) and it
become:
d*x
ae )
a7y
dt”
Z=w

=—x+a(l—x?)y+bz+k|x|sinx (5.2)

W=—cz —dz®

In system (5.2), the parameter b is also adjusted to achieve periodic motion for
differenteand 4 whenk =0. a, c, d are fixed as 5.1.

Case 1 Leta=p=009,b =25, andk €[0.2,0.4]. Fig 5.8(a) shows the bifurcation

diagram of the 1.8 order system. Fig 5.8(b) ~ 5.8(d) are the phase portraits
with k =0, 0.35, 0.4.

Case 2 Leta=p=0.8,b =25, andk €[1.0,1.3]. Fig 5.9(a) shows the bifurcation
diagram of the 1.6 order system. Fig 5.9(b) ~ 5.9(d) are the phase portraits
with k=0, 1.03, 1.2.

Case3 Leta=p=0.7,b=0.5 andk €[1.19,1.24] . Fig 5.10(a) shows the bifurcation
diagram of the 1.4 order system. Fig 5.10(b) ~ 5.10(d) are the phase portraits
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with k =0, 1.205, 1.215.

Case 4 Leta=p=0.6,b =1, andk €[0.8,1.3]. Fig 5.11(a) shows the bifurcation
diagram of the 1.2 order system. Fig 5.11(b) ~ 5.11(d) are the phase portraits
with k =0, 0.95, 1.05.

Case 5 Leta=p4=0.5,b=0.5, andk €[0.1,0.7]. Fig 5.12(a) shows the bifurcation
diagram of the 1.0 order system. Fig 5.12(b) ~ 5.12(d) are the phase portraits
with k =0, 0.4, 0.6.

Case 6 Leta=p£=04,b=1,andk €[1.16,1.37]. Fig 5.13(a) shows the bifurcation
diagram of the 0.8 order system. Fig 5.13(b) ~ 5.13(d) are the phase portraits
with k=0, 1.25, 1.3.

Anticontrol of chaos in the fractional order systems of a modified van der Pol
system are studied in the chapter. An efficient way to transform a non-chaotic dynamical
system into a chaotic one is easily made by addition of a constant term or by addition of
k|x|sinx term where X is a state variable of the system: It is found that chaos exists in the
fractional order systems with order from 1.8 down to 0.6 for the addition of constant term,

and from 1.8 down to 0.8 for the additionof K|x|Sinx term.
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Fig 5.9 The bifurcation diagram fora = = 0.8and phase portrait fora = = 0.8 with
k=0, 1.03, 1.2, respectively.
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Chapter 6
Parameter Excited Chaotization of Integral and Fractional

Order Modified Heartbeat Systems

Chaotization of integral and fractional order modified heartbeat systems by
replacing the parameter of modified heartbeat system by the function of the chaotic
state variables of a second chaotic nano resonator system is studied. It is named
parameter excited chaotization which can be successfully obtained for very low total
fractional order 0.2. By phase portraits, Poincaré maps and bifurcation diagrams, the

simulation results of fractional order modified van der Pol systems are presented.

6.1 A nano resonator system and the chaotization scheme

Chaotization, i.e. anticontrel of chaos, is.making a non-chaotic dynamical system
chaotic. This means that the regular-behavior will be destroyed and replaced by
chaotic behavior.

Nano resonator system is a modified form of nonlinear damped Mathieu system
which is obtained when the nano Mathieu oscillator has nonlinear time-dependent
spring constant. The nonlinear damped Mathieu system is a nonautonomous system

with two states x and y:

o y
dt
dy

- —(e+ fsinat)x—(e+ fsinwt)x® — gy + hsinw,t

(6.1)

where a, b, c, d are constant parameters, and @,, @, are circular frequencies. Let
o, =w,=o, and replace sinwt by z which is the periodic time function solution of

the nonlinear oscillator
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dz
=W

dt 6.2)
dw . .,

— =iz |z

dt

where i, j are constants. Then we have the modified nonlinear damped Mathieu

system, i.e. the nano resonator system:

ey
dt
d—i,:—(e+ f2)x — (e + f2)x* — gy + hz

d
o (6.3)

dt

dw . .,
—=-iz—jz
dt

It becomes an autonomous system with four states where e, f, g, h, i and j are
constants of the system. In our numerical simulations, six parameterse=0.2, f =0.2,
g=04, h=50, i=1 and §=0.3 are chosen to make the states x and y of
system (6.3) be a chaotic [74].

Next, let the parameter b of system (2:6) ‘be replaced by ksiny where k is a
constant and y is a chaotic state variable of system (6.3). We study the parameter

excited chaotization of system (2.6) for various« , S5 .

6.2 Chaotization by parameter excited method
The parameter K is adjusted to achieve chaos for differenteand 5. a=5, c=4,

i =0.0001 are fixed andk [0,5].

6.2.1 Chaotization of a integral order modified heartbeat system

Let « = g =1. Fig 6.1(a) shows the bifurcation diagram of the 2 order system.
Fig 6.1(b) is the nonchaotic phase portrait of the system (2.6) with b=2.5. Fig 6.1(c)

shows chaotic phase portrait when k =4.
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6.2.2 Chaotization of a fraction order modified van der Pol system

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Let «=/4=0.9. Fig 6.2(a) shows the bifurcation diagram of the 1.8
order system. Fig 6.2(b) is the nonchaotic phase portrait of the
system (2.6) withb =2.5. Fig 6.2(c) shows chaotic phase portrait when
k=4.

Let « =/ =0.8. Fig 6.3(a) shows the bifurcation diagram of the 1.6
order system. Fig 6.3(b) is the nonchaotic phase portrait of the
system (2.6) withb =1.5. Fig 6.3(c) shows chaotic phase portrait when
k=3.

Let ¢ =4 =0.7. Fig 6.4(a) shows the bifurcation diagram of the 1.4
order system. Fig 6.4(b) is the nonchaotic phase portrait of the
system (2.6) withb =1.3". Fig 6.4(c).shows chaotic phase portrait when
k =3.5.

Let a = =0.6."Fig 6.5(a)_shows the bifurcation diagram of the 1.2
order system. Fig 6:5(b). is..the *nonchaotic phase portrait of the
system (2.6) withb =1. Fig 6.5(c) shows chaotic phase portrait when
k =3.5.

Let « =4 =0.5. Fig 6.6(a) shows the bifurcation diagram of the 1.0
order system. Fig 6.6(b) is the nonchaotic phase portrait of the
system (2.6) withb =1. Fig 6.6(c) shows chaotic phase portrait when
k=3.

Let ¢ =£=0.4. Fig 6.7(a) shows the bifurcation diagram of the 0.8
order system. Fig 6.7(b) is the nonchaotic phase portrait of the
system (2.6) withb =1.5. Fig 6.7(c) shows chaotic phase portrait when
k=2.5.

Let « =4 =0.3. Fig 6.8(a) shows the bifurcation diagram of the 0.6
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order system. Fig 6.8(b) is the nonchaotic phase portrait of the
system (2.6) withb =1.5. Fig 6.8(c) shows chaotic phase portrait when
k =3.5.

Case 8 Let a==0.2. Fig 6.9(a) shows the bifurcation diagram of the 0.4
order system. Fig 6.9(b) is the nonchaotic phase portrait of the
system (2.6) withb=5. Fig 6.9(c) shows chaotic phase portrait when
k=1

Case 9 Let o¢=p=0.1. Fig 6.10(a) shows the bifurcation diagram of the 0.2
order system. Fig 6.10(b) is the nonchaotic phase portrait of the
system (2.6) withb =8. Fig 6.10(c) shows chaotic phase portrait when

k =0.5.

Chaotizations in the integral and fractiopal order systems of a modified van der
Pol systems are studied in the chapter.-An-efficient-way to transform a non-chaotic
dynamics of the system into a chaotic ene_ is.easily made by replacing a parameter of
the system by ksiny where Kk is a adjustable constant and y is a chaotic state variable of
a second system, a modified nano resonator system. It is found that chaos exists in the

integral and fractional order systems with total order from 2 down to 0.2.
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Fig 6.3(a) The bifurcation diagram
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Chapter 7

Conclusions

Chaos is desirable under certain circumstances and chaotic phenomena are quite
useful in many applications such as fluid mixing, human brain, and heart beat
regulation, etc. Thus, this motivates us to investigate anticontrol of chaos. Recently
many scientists in various fields have been attracted to investigate chaos
synchronization due to its application in a variety of fields such as secure
communications, chemical, physical, and biological systems, neural networks, etc.
Many scholars have investigated the control and dynamics of the fractional order
dynamical systems. The results have been shown that nonlinear chaotic systems still
have chaotic behavior and chaos synchronization can be achieved when their models
become fractional.

In this thesis, integral and fractional order modified van der Pol systems are
investigated. Chapter 2 contains afractional derivative and the model of modified van
der Pol system.

In Chapter 3, the dynamics of integral and fractional order modified van der Pol
systems are investigated. The chaotic phenomena exist for O.8£(a+ ,B)S 2.0 and
the range of the chaos gradually decreases as the total order number « + f decreases.
The numerical results of periodic and chaotic phenomena are presented by phase
portraits, Poincaré maps and bifurcation diagrams.

The synchronizations of two uncoupled integral and fractional order chaotic
modified van der Pol systems are achieved by parameter excited synchronization in
Chapter 4. It is found that this approach is very effective even for very low total
fractional order 0.2.

Anticontrol of chaos of fractional order modified van der Pol systems by addition
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of a constant term and addition of k|x|sinx term are discussed in Chapter 5. The results
show that chaos exists in the fractional order systems with total order from 1.8 down
to 0.6 for the addition of constant term, and from 1.8 down to 0.8 for the addition of
k|x|sinx term.

Finally, the parameter excited chaotization of integral and fractional order
modified van der Pol systems is studied in Chapter 6. It is found that chaotization can
be successfully obtained in the integral and fractional order systems with total order

from 2 down to 0.2.
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Appendix

Table 1. FRACTIONAL OPERATORS WITH APPROXIMATELY
2 db ERROR FROM @ =10-2 TO 102 rad/sec

1 220.4s* +5004s° +503s” + 234.5s + 0.484
s 5°+359.8s +5742s° +4247s* +147.7s +0.2099

1 _ 60.95s" +816.95° +582.85° + 23.245+0.04934

2 s° +134s* +956.55° + 383.55% +8.9535 +0.01821
1 23.76s' +224.95° +129.1s* + 4.7335+0.01052

s%% " §°+64.515" +252.25° + 63.61° +1.104s +0.002267

1 255455855 +664.25% + 44.155 +0.1562

% 7 §° 1125.65" +840.65° +317.25° + 7.428s + 0.02343
1 15.97s* +593:2s® + 10805+ 135.45 +1

9% 7 §° 1134.3s* +10725° +-543.452 + 20.1s + 0.1259
1 8579s* +255:68° + 40535 +35:935 + 0.1696

s°® " §% 404.22s" +-472.95 +134.8s2 + 2.:639s + 0.009882

_ 4.406s"* +177.68° + 209.6s%49.179s + 0.0145
s s°+88.12s" +279.25 +33.35° +1.927s +0.0002276

i N 5.235s° +1453s° + 53065 + 254.9
s*® 5% 1+658.15° +5700s° + 658.25 +1

B

1 1.766s” +38.27s+4.914

s%° "~ s%136.1552 +7.789s +0.01
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