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Chapter 1 

Introduction 

A heartbeat system, i.e. a van der Pol system, which is a typical nonlinear chaotic system 

have many interesting features, and numerous applications. It has been used for the design of 

various systems including biological ones, such as the heartbeats [1] or the generation of 

action potentials by neurons, acoustic models, the radiation of mobile phones, and as a model 

of electrical systems. Chaos, chaos control and chaos synchronization of nonlinear systems, 

including the van der Pol system have been subject to extensive studies [2-10]. 

Fractional calculus is an old mathematical topic from 17th century. Although it has a long 

history, applications are only recently focus of interest. Many systems are known to display 

fractional order dynamics, such as viscoelastic systems [11], dielectric polarization, 

electrode–electrolyte polarization, and electromagnetic waves. Furthermore, some systems had 

been found with chaotic motions in the fractional orders. There is a new topic to investigate 

the control and dynamics of fractional order dynamical systems recently. The behavior of 

nonlinear chaotic systems when their models become fractional was also investigated widely 

and reported [12-22]. 

Chaos has been extensively studied within the scientific, engineering and mathematical 

communities as an interesting complex dynamic phenomenon [23-26]. Sensitive dependence 

on initial conditions is an important exhibit characteristic of chaotic systems. For this reason, 

chaotic systems are difficult to be synchronized or controlled. Research in the area of the 

synchronization of dynamical systems has been widely explored in a variety of fields 

including physical, chemical and ecological systems, secure communications and so on. There 

are many control methods to synchronize chaotic systems such as adaptive control, sliding 

mode control, observer-based design methods, impulsive control and other control methods. 

There are more advantages in synchronization of uncoupled chaotic systems than that of 

coupled chaotic systems. And a new uncoupled method of synchronization is presented in this 

thesis. Chaos excited chaos synchronizations of generalized van der Pol systems with integral 

and fractional order are studied. Synchronizations of two identified autonomous generalized 

van der Pol chaotic systems are obtained by replacing their corresponding exciting terms by 

the same function of chaotic states of a third nonautonomous or autonomous. Numerical 

simulations, such as phase portraits, Poincaré maps and state error plots are given. It is found 

that chaos excited chaos synchronizations exist for the fractional order systems with the total 
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fractional order both less than and more than the number of the states of the integer order 

generalized van der Pol system. 

Recently, the traditional trend of understanding and analyzing chaos has evolved to a new 

phase of investigation: controlling and utilizing chaos. Sometimes, chaos is not only useful but 

actually important, such as the generation of random numbers in chaotic secure 

communications system. For this purpose, making a non-chaotic dynamical system chaotic is 

called ‘‘anticontrol of chaos ’’. Anticontrol of chaos has received great attention in recent 

years[27-39]. Anticontrol of chaos for integral and fractional order generalized 

nonautonomous van der Pol system is obtained effectively by adding a constant term. By 

numerical analyses, such as phase portraits, Poincaré maps and bifurcation diagrams, periodic, 

and chaotic motions are observed. It is found that the periodic motions of the system are 

transformed to chaotic motions effectively by the proposed anticontrol scheme. 

This thesis is organized as follows. In Chapter 2, a review and the approximation of the 

fractional order operator is presented. Chaos of the generalized van der Pol system and the 

nonautonomous and autonomous fractional order generalized van der Pol systems are given. 

Numerical simulations, such as phase portraits, Poincaré maps and bifurcation diagrams, of 

various nonautonomous and autonomous fractional order generalized van der Pol systems are 

presented. 

In Chapter 3, the schemes of chaos excited chaos synchronization of two generalized van 

der Pol systems by replacing the amplitude or the sine time function of their corresponding 

exciting terms by the same function of chaotic states of a third nonautonomous or autonomous 

generalized van der Pol system are given. Numerical simulations, such as phase portraits, 

Poincaré maps error states plots, of synchronizations of various fractional order generalized 

van der Pol systems are presented. 

In Chapter 4, the scheme of anticontrol of chaos by adding a constant term is presented. 

Numerical simulations, such as phase portraits, Poincaré maps and bifurcation diagrams of 

anticontrol of chaos for generalized nonautonomous van der Pol system are presented.  

In Chapter 5, conclusions are drawn. 
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Chapter 2 

Chaos in a Generalized Heartbeat System and in Its  

Fractional Order System  

2.1. Preliminaries 

In this chapter, chaos of a generalized van der Pol system with fractional orders is studied. 

Chaos in the nonautonomous generalized van der Pol system excited by a sinusoidal time 

function with fractional orders is studied. Next, chaos in the autonomous generalized van der 

Pol system with fractional orders is considered. 

 

2.2. The Review and the Approximation of Fractional-Order Operators 

There are many ways to define a fractional differential operator [18-20]. The commonly 

used definition for general fractional derivative is the Riemann-Liouville definition. The 

Riemann-Liouville definition of the fractional-order derivative is: 
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where ( )Γ ⋅  is a gamma function and n is an integer such that 1n nα− ≤ < . This definition is 

different from the usual intuitive definition of derivative. 

Thus, it is necessary to develop approximations to the fractional operators using the 

standard integer order operators. Fortunately, the Laplace transform which is basic engineering 

tool for analyzing linear systems is still applicable and works: 
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where n is an integer such that 1n nα− ≤ < . Upon considering the initial conditions to be 

zero, this formula reduces to the more expected form 
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Using the algorithm in [13, 21], linear transfer function of approximations of the fractional 

integrator is adopted. Basically the idea is to approximate the system behavior based on 
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frequency domain arguments. From [22], we get the table of approximating transfer functions 

for 1 sα  with different fractional orders, 0.1 0.9α = − , in steps of 0.1, which give the 

maximum error 2 dB in calculations (see appendix). These approximations will be used in the 

following study. 

 

2.3. The Chaos of the Generalized Heartbeat System and Its Fractional 

Order Form 

The van der Pol system [2] was first given to study the oscillations in vacuum tube circuits. 

The equivalent state space formulation has the form of an autonomous system: 

1
2

22
1 1 2( 1)
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dt
dx x x x
dt

ε

=

= − − −
                                                (2.4) 

 

where ε  is a parameter. The generalized van der Pol system [7-10] has the form of a 

nonautonomous system which is written as: 
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                                 (2.5) 

where , , ,a b cε  are parameters, and ω  is the circular frequency of the external excitation 

sinb tω . Fig. 2.1 and Fig. 2.2 shows the bifurcation diagram and Lyapunov exponent diagram 

for the nonautonomous generalized van der Pol system (2.5), and Fig. 2.3~ Fig. 2.6 are the 

phase portraits and Poincaré maps, while Poincaré maps are taken by period 2π
ω

. The 

corresponding nonautonomous fractional order system is 
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where ,α β  are fractional numbers. 

A modified version of Eq.(2.6) is now proposed. The nonautonomous generalized 

fractional order van der Pol system (2.6) with two states is transformed into an autonomous 

generalized fractional order van der Pol system with three states: 
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where , ,α β γ  are fractional numbers, in which the original time t  in Eq.(2.6) is changed to a 

new state 3x . When 31,  x tγ = = , Eq.(2.7) reduces to Eq.(2.6). 

In this thesis, we analyze and present simulation results of the chaotic dynamics produced 

from a new generalized fractional van der Pol system as the fractional order derivatives in the 

state equations of Eq.(2.6) is varied from 0.1 to 1.3. It is observed that the different orders 

have large influences upon the overall system dynamics. 

 

2.4. Numerical Simulations for the Fractional Order Generalized Heartbeat 

Systems 

Our study of system (2.7) consists of three parts: 

Part 1: γ  equals one, and ,α β  take the same fractional numbers. The system is  

equivalent to a nonautonomous fractional order system with two states, Eq. (2.6). 

Part 2: , ,α β γ  take the same fractional numbers. 

Part 3: γ  equals 1.1 or 0.9, and ,α β  take the same fractional numbers. 

 

In Part 1, γ =1, Eq.(2.7) reduces to Eq.(2.6) with two states 1x  and 2x . ,α β  take the 

same fractional numbers and vary from 1.1 to 0.7 in steps of 0.1. Fig. 2.7 shows the bifurcation 

diagram and Fig. 2.8~ Fig. 2.11 are the phase portraits and Poincaré maps with 1.1α β= = , 

while Poincaré maps are taken by period 2π
ω

. Fig. 2.12 shows the bifurcation diagram and Fig. 

2.13~ Fig. 2.16 are the phase portraits and Poincaré maps with 0.9α β= = . Fig. 2.17 shows 

the bifurcation diagram and Fig. 2.18~ Fig. 2.21 are the phase portraits and Poincaré maps with 

0.8α β= = . Fig. 2.22 shows the bifurcation diagram and Fig. 2.23~ Fig. 2.26 are the phase 
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portraits and Poincaré maps with 0.7α β= = . According to the results of simulation in Part 1, 

it is found that the chaotic motions exist in the nonautonomous system with fractional orders. 

The lowest total fractional order for chaos existence in this system is 1.4 ( 2 0.7× ). When the 

total fractional order is 1.2 ( 2 0.6× ), no chaos exists. 

In Part 2, , ,α β γ  take the same fractional numbers, vary from 1.1 to 0.6 in steps of 0.1. Fig. 

2.27 shows the bifurcation diagram and Fig. 2.28~ Fig. 2.31 are the phase portraits and Poincaré 

maps with 1.1α β γ= = = . When α β γ= =  and vary from 0.9 to 0.6 in steps of 0.1, no 

chaos exists. 

In Part 3, 1γ = .1, ,α β  take same fractional numbers and vary from 1.1 to 0.3 in steps of 

0.1. Fig. 2.32 shows the bifurcation diagram and Fig. 2.33~ Fig. 2.34 are the phase portraits and 

Poincaré maps with 0.9 ,  =1.1α β γ= = . Fig. 2.35 shows the bifurcation diagram and Fig. 

2.36~ Fig. 2.37 are the phase portraits and Poincaré maps with 0.8 ,  =1.1α β γ= = . Fig. 2.38 

shows the bifurcation diagram and Fig. 2.39~ Fig. 2.41 are the phase portraits and Poincaré 

maps with 0.7 ,  =1.1α β γ= = . Fig. 2.42 shows the bifurcation diagram and Fig. 2.43~ Fig. 

2.45 are the phase portraits and Poincaré maps with 0.6 ,  =1.1α β γ= = . Fig. 2.46 shows the 

bifurcation diagram and Fig. 2.47~ Fig. 2.50 are the phase portraits and Poincaré maps with 

0.5 ,  =1.1α β γ= = . Fig. 2.51 shows the bifurcation diagram and Fig. 2.52~ Fig. 2.55 are the 

phase portraits and Poincaré maps with 0.4 ,  =1.1α β γ= = . Fig. 2.56 shows the bifurcation 

diagram and Fig. 2.57~ Fig. 2.60 are the phase portraits and Poincaré maps with 

0.3 ,  =1.1α β γ= = . According to the results of simulation in Part 3, it is found that the chaotic 

motions exist when γ  take 1.1 and ,α β  vary from 0.9 to 0.3 in steps of 0.1. When ,α β  

take the fractional number less than 0.3, no chaos is found. 

0.9γ = , ,α β  take the same fractional numbers 1.1, 1.2, 1.3 and 1.4, only periodic motions 

are found, no chaos exists. 

 



 

 7

  
Fig.2.1  The bifurcation diagram of the nonautonomous generalized van der Pol system. 
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Fig. 2.2  Lyapunov exponent diagram of the nonautonomous generalized van der Pol system  

for ω  between 0.1295 and 0.1308 
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Fig. 2.3  The phase portrait and the Poincaré map of the nonautonomous generalized van der 

Pol system. 

  
Fig. 2.4  The phase portrait and the Poincaré map of the nonautonomous generalized van der 

Pol system. 
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Fig. 2.5  The phase portrait and the Poincaré map of the nonautonomous generalized van der 

Pol system. 

  
Fig. 2.6  The phase portrait and the Poincaré map of the nonautonomous generalized van der 

Pol system. 
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Fig. 2.7  The bifurcation diagram of the nonautonomous fractional order system  

with order 1.1 , 1α β γ= = =  

 

Fig. 2.8  The phase portrait and Poincaré map of the nonautonomous fractional order system  
with order 1.1 , 1, 0.435α β γ ω= = = = . 
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Fig. 2.9  The phase portrait and Poincaré maps of the nonautonomous fractional order system  

with order 1.1 , 1, 0.4732α β γ ω= = = = . 

 

Fig. 2.10  The phase portrait and Poincaré maps of the nonautonomous fractional order 
system with order 1.1 , 1, 0.4462α β γ ω= = = = . 
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Fig. 2.11  The phase portrait and Poincaré maps of the nonautonomous fractional order 
system with order 1.1 , 1, 0.445α β γ ω= = = = . 

 
Fig. 2.12  The bifurcation diagram of the nonautonomous fractional order system 

with order 0.9 , 1α β γ= = = . 
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Fig. 2.13  The phase portrait and Poincaré map of the nonautonomous fractional order system  

with order 0.9 , 1, 0.127α β γ ω= = = = . 

 
Fig. 2.14  The phase portrait and Poincaré maps of the nonautonomous fractional order 

system with order 0.9 , 1, 0.1263α β γ ω= = = = . 
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Fig. 2.15  The phase portrait and Poincaré maps of the nonautonomous fractional order 

system with order 0.9 , 1, 0.12624α β γ ω= = = = . 

 

Fig. 2.16  The phase portrait and Poincaré maps of the nonautonomous fractional order 
system with order 0.9 , 1, 0.1275α β γ ω= = = = . 
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Fig. 2.17  The bifurcation diagram of the nonautonomous fractional order system  

 with order 0.8 , 1α β γ= = = . 

 
Fig. 2.18  The phase portrait and Poincaré map of the nonautonomous fractional order system  

with order 0.8 , 1, 0.135α β γ ω= = = = . 
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Fig. 2.19  The phase portrait and Poincaré maps of the nonautonomous fractional order 

systemwith order 0.8 , 1, 0.133α β γ ω= = = = . 

 
Fig. 2.20  The phase portrait and Poincaré maps of the nonautonomous fractional order 

systemwith order 0.8 , 1, 0.13295α β γ ω= = = = . 
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Fig. 2.21  The phase portrait and Poincaré maps of the nonautonomous fractional order 
system with order 0.8 , 1, 0.1315α β γ ω= = = = . 

  
Fig. 2.22  The bifurcation diagram of the nonautonomous fractional order system  

with order 0.7 , 1α β γ= = =  
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 Fig. 2.23  The phase portrait and Poincaré map of the nonautonomous fractional order 
system with order 0.7 , 1, 0.315α β γ ω= = = = . 

 

Fig. 2.24  The phase portrait and Poincaré maps of the nonautonomous fractional order 
system with order 0.7 , 1, 0.32α β γ ω= = = = . 
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Fig. 2.25  The phase portrait and Poincaré maps of the nonautonomous fractional order 
system with order 0.7 , 1, 0.31758α β γ ω= = = = . 

 

Fig. 2.26  The phase portrait and Poincaré maps of the nonautonomous fractional order 
system with order 0.7 , 1, 0.31812α β γ ω= = = = . 
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Fig. 2.27  The bifurcation diagram of the autonomous fractional order system  

with order 1.1α β γ= = =  

 

Fig. 2.28  The phase portrait and Poincaré map of the autonomous fractional order system  
with order 1.1, 0.37α β γ ω= = = = . 
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Fig. 2.29  The phase portrait and Poincaré maps of the autonomous fractional order system  

with order 1.1, 0.36418α β γ ω= = = = . 

 
Fig. 2.30  The phase portrait and Poincaré maps of the autonomous fractional order system  

with order 1.1, 0.36417α β γ ω= = = = . 
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Fig. 2.31  The phase portrait and Poincaré maps of the autonomous fractional order system  

with order 1.1, 0.34α β γ ω= = = = . 

  
Fig. 2.32  The bifurcation diagram of the autonomous fractional order system  

with order 0.9 , 1.1α β γ= = =  
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Fig. 2.33  The phase portrait and Poincaré map of the autonomous fractional order system  

with order 0.9 , 1.1, 0.5498α β γ ω= = = = . 

  
Fig. 2.34  The phase portrait and Poincaré maps of the autonomous fractional order system  

with order 0.9 , 1.1, 0.5531α β γ ω= = = = . 
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Fig. 2.35  The bifurcation diagram of the autonomous fractional order system  

with order 0.8 , 1.1α β γ= = =  

  
Fig. 2.36  The phase portrait and Poincaré map of the autonomous fractional order system  

with order 0.8 , 1.1, 0.2851α β γ ω= = = = . 
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Fig. 2.37  The phase portrait and Poincaré maps of the autonomous fractional order system  

with order 0.8 , 1.1, 0.2807α β γ ω= = = = . 

  
Fig. 2.38  The bifurcation diagram of the autonomous fractional order system  

with order 0.7 , 1.1α β γ= = =  
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Fig. 2.39  The phase portrait and Poincaré maps of the autonomous fractional order system  

with order 0.7 , 1.1, 0.141α β γ ω= = = = . 

  
Fig. 2.40  The phase portrait and Poincaré maps of the autonomous fractional order system  

with order 0.7 , 1.1, 0.1408α β γ ω= = = = . 
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Fig. 2.41  The phase portrait and Poincaré maps of the autonomous fractional order system  

with order 0.7 , 1.1, 0.1404α β γ ω= = = = . 
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Fig. 2.42  The bifurcation diagram of the autonomous fractional order system  

with order 0.6 , 1.1α β γ= = =  
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Fig. 2.43  The phase portrait and Poincaré map of the autonomous fractional order system  

with order 0.6 , 1.1, 0.13α β γ ω= = = = . 

  
Fig. 2.44  The phase portrait and Poincaré maps of the autonomous fractional order system  

with order 0.6 , 1.1, 0.11α β γ ω= = = = . 
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Fig. 2.45  The phase portrait and Poincaré maps of the autonomous fractional order system  

with order 0.6 , 1.1, 0.0107α β γ ω= = = = . 
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Fig. 2.46  The bifurcation diagram of the autonomous fractional order system  
with order 0.5 , 1.1α β γ= = =  
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Fig. 2.47  The phase portrait and Poincaré map of the autonomous fractional order system  
with order 0.5 , 1.1, 0.075α β γ ω= = = = . 

 

Fig. 2.48  The phase portrait and Poincaré maps of the autonomous fractional order system  
with order 0.5 , 1.1, 0.06α β γ ω= = = = .  
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Fig. 2.49  The phase portrait and Poincaré maps of the autonomous fractional order system  
with order 0.5 , 1.1, 0.038α β γ ω= = = = . 

 

Fig. 2.50  The phase portrait and Poincaré maps of the autonomous fractional order system  
with order 0.5 , 1.1, 0.001α β γ ω= = = = . 
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Fig. 2.51  The bifurcation diagram of the autonomous fractional order system  
with order 0.4 , 1.1α β γ= = =  

 

Fig. 2.52  The phase portrait and Poincaré map of the autonomous fractional order system  
with order 0.4 , 1.1, 0.04α β γ ω= = = = . 
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Fig. 2.53  The phase portrait and Poincaré maps of the autonomous fractional order system  
with order 0.4 , 1.1, 0.026α β γ ω= = = = . 

 

Fig. 2.54  The phase portrait and Poincaré maps of the autonomous fractional order system  
with order 0.4 , 1.1, 0.014α β γ ω= = = = . 
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Fig. 2.55  The phase portrait and Poincaré maps of the autonomous fractional order system  
with order 0.4 , 1.1, 0.005α β γ ω= = = = . 
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Fig. 2.56  The bifurcation diagram of the autonomous fractional order system  
with order 0.3 , 1.1α β γ= = =  
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Fig. 2.57  The phase portrait and Poincaré map of the autonomous fractional order system  
with order 0.3 , 1.1, 0.011α β γ ω= = = = . 

 

Fig. 2.58  The phase portrait and Poincaré maps of the autonomous fractional order system  
with order 0.3 , 1.1, 0.0085α β γ ω= = = = . 
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Fig. 2.59  The phase portrait and Poincaré maps of the autonomous fractional order system  
with order 0.3 , 1.1, 0.006α β γ ω= = = = . 

 

Fig. 2.60  The phase portrait and Poincaré maps of the autonomous fractional order system  
with order 0.3 , 1.1, 0.0017α β γ ω= = = = . 
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Chapter 3 

Chaos Excited Chaos Synchronizations of Integral and Fractional 

Order Generalized Heartbeat Systems 

 

3.1. Preliminaries 

In this chapter, chaos excited chaos synchronizations of generalized van der Pol systems 

with integral and fractional order are studied. Synchronizations of two identified autonomous 

generalized van der Pol chaotic systems are obtained by replacing their corresponding exciting 

terms by the same function of chaotic states of a third nonautonomous or autonomous 

generalized van der Pol system. 

 

3.2. Schemes of Chaos Excited Chaos Synchronizations of Integral and 

Fractional Order Generalized Heartbeat Systems 

The generalized van der Pol system [7-10] is a nonautonomous system: 

1
2

2 22
1 1 1 2(1 )( ) sin

dx x
dt
dx x x c ax x b t
dt

ε ω

=

= − − − − +
                                 (3.1) 

where , , ,a b cε  are parameters, and ω  is the circular frequency of the external excitation 

sinb tω . The corresponding nonautonomous fractional order system is 

1
2

2 22
1 1 1 2(1 )( ) sin

d x x
dt
d x x x c ax x b t
dt

α

α

β

β ε ω

=

= − − − − +
                                (3.2) 

where ,α β  are fractional numbers. 

A modified version of Eq.(3.2) is now proposed. The nonautonomous generalized 

fractional order van der Pol system (3.2) with two states is transformed into an autonomous 

generalized fractional order van der Pol system with three states: 
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d x x
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d x x x c ax x b x
dt

d x
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ε ω

=

= − − − − +

=

                              (3.3) 

where , ,α β γ  are fractional numbers, in which the original time t  in Eq.(3.2) is changed to 

a new state 3x . When 31,  x tγ = = , Eq.(3.3) reduces to Eq.(3.2). 

Two methods of chaos excited chaos synchronization[40-67] are proposed. In Case 1, two 
identical generalized fractional order van der Pol systems to be synchronized are  

1
2

2 22
1 1 1 2(1 )( )

d x x
dt
d x x x c ax x Z
dt

α

α

β

β ε

=

= − − − − +
                                   (3.4) 

and 

1
2

2 22
1 1 1 2(1 )( )

d y y
dt

d y y y c ay y Z
dt

α

α

β

β ε

=

= − − − − +
                                   (3.5) 

where the exciting term sinb tω in Eq.(3.2) is replaced in Eqs.(3.4) and (3.5) by Z which is a 

function of the chaotic states of a third nonautonomous chaotic system  

1
2

2 22
1 1 1 2(1 )( ) sin( )

d z z
dt
d z z z c az z b t
dt

α

α

β

β ε ω

=

= − − − − +
                              (3.6) 

Z is chosen as 1,Z bgz=  2 ,Z bgz=  1 sin( ),Z gz tω=  2 sin( )Z gz tω= , respectively, where g is 
a constant with different values. Error states are defined: 1 1 1e x y= − , 2 2 2e x y= − .  
 

In Case 2, two identical generalized fractional order van der Pol systems to be 

synchronized remain unchanged, as Eqs.(3.4) and (3.5). But Z is a function of the chaotic 

states of a third autonomous system 
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Z is chosen as 1,Z bgz=  2 ,Z bgz=  1exp( ),Z bg z=  2exp( ),Z bg z=  1exp( )sin( ),Z g z tω=  

2exp( )sin( )Z g z tω=  respectively. g  is a constant with different values. 
 

3.3. Numerical Simulations for the Synchronization of Fractional Order 

Generalized Heartbeat Systems 

The systems to be synchronized are systems (3.4) and (3.5) in following two cases. The 

parameters a=3, b=1.0091, c=1.2 and d=0.07 of system Eq.(3.4)、Eq.(3.5)、Eq.(3.6) and Eq.(3.7) 

are fixed. Our study of two cases consists of ten parts: 

Case 1: The third system is a nonautonomous system with two states, Eq.(3.6). 

Part (1): 1Z bgz=  where 1z  is the chaotic state of system (3.6), g  is an ajustable 

constant. Fig. 3.1~ Fig. 3.5 show the phase portraits and Poincaré maps of the 

fractional order synchronized systems and time history of error states plot where 

,α β  take the same fractional numbers and vary from 1.1 to 0.7 in steps of 0.1. 

When ,α β  take the fractional number less than 0.7, no chaotic synchronization is 

found. 

Part (2): 2Z bgz=  where 2z  is the chaotic state of system (3.6). Fig. 3.6~ Fig. 3.10 show 

the phase portraits and Poincaré maps of the fractional order synchronized systems 

and time history of error states plot where ,α β  take the same fractional numbers 

and vary from 1.1 to 0.7 in steps of 0.1. When ,α β  take the fractional number 

less than 0.7, no chaotic synchronization is found. 

Part (3): 1 sin( )Z gz tω=  where 1z  is the chaotic state of system (3.6). Fig. 3.11~ Fig. 3.15 

show the phase portraits and Poincaré maps of the fractional order synchronized 

systems and time history of error states plot where ,α β  take the same fractional 

numbers and vary from 1.1 to 0.7 in steps of 0.1. When ,α β  take the fractional 

number less than 0.7, no chaotic synchronization is found. 

Part (4): 2 sin( )Z gz tω=  where 2z  is the chaotic state of system (3.6). Fig. 3.16~ Fig. 
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3.20 show the phase portraits and Poincaré maps of the fractional order 

synchronized systems and time history of error states plot where ,α β  take the 

same fractional numbers and vary from 1.1 to 0.7 in steps of 0.1. When ,α β  take 

the fractional number less than 0.7, no chaotic synchronization is found. 

 

Case 2: The third system is an autonomous system with three states, Eq.(3.7). 

Part (1): 1Z bgz=  where 1z  is the chaotic state of system (3.7). Fig. 3.21~ Fig. 3.28 show 

the phase portraits and Poincaré maps of the fractional order synchronized systems 

and time history of error states plot where γ  takes 1.1, and ,α β  take the same 

fractional numbers and vary from 1.1 to 0.3 in steps of 0.1. When 1γ < , no chaos 

exists in system(3.7). When ,α β  take the fractional number less than 0.3, no 

chaotic synchronization is found.  

Part (2): 2Z bgz=  where 2z  is the chaotic state of system (3.7). Fig. 3.29~ Fig. 3.36 show 

the phase portraits and Poincaré maps of the fractional order synchronized systems 

and time history of error states plot where γ  takes 1.1, and ,α β  take the same 

fractional numbers and vary from 1.1 to 0.3 in steps of 0.1. When 1γ < , no chaos 

exists in system(3.7). When ,α β  take the fractional number less than 0.3, no 

chaotic synchronization is found. 

Part (3): 1exp( )Z bg z=  where 1z  is the chaotic state of system (3.7). Fig. 3.37~ Fig. 3.44 

show the phase portraits and Poincaré maps of the fractional order synchronized 

systems and time history of error states plot where γ  takes 1.1, and ,α β  take 

the same fractional numbers and vary from 1.1 to 0.3 in steps of 0.1. When 1γ < , 

no chaos exists in system(3.7). When ,α β  take the fractional number less than 

0.3, no chaotic synchronization is found. 

Part (4): 2exp( )Z bg z=  where 2z  is the chaotic state of system (3.7). Fig. 3.45~ Fig. 3.52 

show the phase portraits and Poincaré maps of the fractional order synchronized 
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systems and time history of error states plot where γ  takes 1.1, and ,α β  take 

the same fractional numbers and vary from 1.1 to 0.3 in steps of 0.1. When 1γ < , 

no chaos exists in system(3.7).When ,α β  take the fractional number less than 

0.3, no chaotic synchronization is found. 

Part (5): 1exp( )sin( )Z g z tω=  where 1z  is the chaotic state of system (3.7). Fig. 3.53~ 

Fig. 3.56 show the phase portraits and Poincaré maps of the fractional order 

synchronized systems and time history of error states plot where γ  takes 1.1, and 

,α β  take the same fractional numbers and vary from 1.1 to 0.7 in steps of 0.1. 

When 1γ < , no chaos exists in system(3.7). When ,α β  take the fractional 

number less than 0.7, no chaotic synchronization is found. 

Part (6): 2exp( )sin( )Z g z tω=  where 2z  is the chaotic state of system (3.7). Fig. 3.57~ 

Fig. 3.60 show the phase portraits and Poincaré maps of the fractional order 

synchronized systems and time history of error states plot where γ  takes 1.1, and 

,α β  take the same fractional numbers and vary from 1.1 to 0.7 in steps of 0.1. 

When 1γ < , no chaos exists in system(3.7). When ,α β  take the fractional 

number less than 0.7, no chaotic synchronization is found. 

The ranges of g  for various chaos synchronization cases are listed in Table 1. 

 

Table 1. The ranges of g  for various chaos synchronization cases. 

Case 1: The third system is a nonautonomous system with two states, Eq.(3.6). 

 Part (1) 

1Z bgz=  

Part (2) 

2Z bgz=  

Part (3) 

1 sin( )Z gz tω=  

Part (4) 

2 sin( )Z gz tω=

1.1α β= =  0.23~1.64 0.18~4.20 0.51~2.27 0.32~6.51 

1α β= =  0.09~3.43 0.14~7.6 0.15~3.7 0.7~9.8 

0.9α β= =  0.11~6.13 0.05~9.59 0.6~14.9 0.5~6.1 
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0.8α β= =  0.18~8.23 0.1~13.53 0.3~8.5 0.5~14.4 

0.7α β= =  0.07~12.27 0.3~14.65 0.09~14.9 0.12~26.6 

Case 2: The third system is an autonomous system with three states, Eq.(3.7). 

 Part (1) 

1Z bgz=  

Part (2) 

2Z bgz=  

Part (3) 

1exp( )Z bg z=  

Part (4) 

2exp( )Z bg z=  

1.1α β γ= = =  0.8~1.64 0.1~4.16 0.29~0.015 0.12~0.015 

0.9,  1.1α β γ= = =  0.16~0.52 0.2~0.132 0.0001~1.36 0.001~0.18 

0.8,  1.1α β γ= = =  0.1~11.6 0.07~13.5 0.0001~1.9 0.001~0.5 

0.7,  1.1α β γ= = =  0.04~10.4 0.02~19.1 0.0001~3.6 0.001~1.9 

0.6,  1.1α β γ= = =  0.06~6.6 0.05~21.3 0.0001~2.3 0.001~2.0 

0.5,  1.1α β γ= = =  0.05~8.7 0.04~34.2 0.0001~3.2 0.001~3.6 

0.4,  1.1α β γ= = =  0.06~10.1 0.1~38.2 0.02~3.7 0.001~4 

0.3,  1.1α β γ= = =  0.06~11.9 0.04~50 0.01~4.7 0.01~5.5 

 

 Part (5) 

1exp( )sin( )Z g z tω=  

Part (6) 

2exp( )sin( )Z g z tω=  

1.1α β γ= = =  0.44~0.08 0.13~0.01 

0.9,  1.1α β γ= = =  0.03~2.14 0.003~0.33 

0.8,  1.1α β γ= = =  0.06~3.48 0.02~0.63 

0.7,  1.1α β γ= = =  0.05~5.22 0.007~1.93 

 

By the results of simulation, it is found that the chaos excited chaos synchronizations are 

obtained in Case(1) for lowest total fractional order 0.7 2 1.4× = , while synchronizations can be 

achieved in Case(2) for lowest total fractional order 0.3 2 0.6× = . 
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Fig. 3.1  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1Z bgz=  with order 1.1α β= = , ω =0.445, g=1.5 . 
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Fig. 3.2  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1Z bgz=  with order 1α β= = , ω =0.1301, g=1 . 
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Fig. 3.3  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1Z bgz=  with order 0.9α β= = , ω =0.132, g=1 . 
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Fig. 3.4  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1Z bgz=  with order 0.8α β= = , ω =0.1315, g=0.8 . 
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Fig. 3.5  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1Z bgz=  with order 0.7α β= = , ω =0.31812, g=0.3 . 
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Fig. 3.6  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 2Z bgz=  with order 1.1α β= = , ω =0.445, g=0.8 . 
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Fig. 3.7  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 2Z bgz=  with order 1α β= = , ω =0.12961875, g=3 . 
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Fig. 3.8  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 2Z bgz=  with order 0.9α β= = , ω =0.132, g=9 . 
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Fig. 3.9  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 2Z bgz=  with order 0.8α β= = , ω =0.1315, g=13 . 
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Fig. 3.10  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 2Z bgz=  with order 0.7α β= = , ω =0.31812, g=14.65 . 
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Fig. 3.11  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1 sin( )Z gz tω=  with order 1.1α β= = , ω =0.445, g=1.5 . 
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Fig. 3.12  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 1 sin( )Z gz tω=  with order 1α β= = , ω =0.12961875, g=3 . 
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Fig. 3.13  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1 sin( )Z gz tω=  with order 0.9α β= = , ω =0.132, g=0.5 . 
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Fig. 3.14  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1 sin( )Z gz tω=  with order 0.8α β= = , ω =0.1315, g=5 . 
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Fig. 3.15  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 1 sin( )Z gz tω=  with order 0.7α β= = , ω =0.31812, g=10 . 

-4 -2 0 2 4
-10

-5

0

5

10

x1

x2

-4 -2 0 2 4
-10

-5

0

5

10

y1

y2

-4 -2 0 2 4
-10

-5

0

5

10

z1

z2

0 500 1000 1500 2000 2500
-1.5

-1

-0.5

0

0.5

1

1.5
x 10-4

t

e1

 
Fig. 3.16  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 2 sin( )Z gz tω=  with order 1.1α β= = , ω =0.445, g=1 . 
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Fig. 3.17  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 2 sin( )Z gz tω=  with order 1α β= = , ω =0.12961875, g=3 . 
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Fig. 3.18  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 2 sin( )Z gz tω=  with order 0.9α β= = , ω =0.132, g=1 . 
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Fig. 3.19  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 2 sin( )Z gz tω=  with order 0.8α β= = , ω =0.1315, g=0.5 . 
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Fig. 3.20  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 2 sin( )Z gz tω=  with order 0.7α β= = , ω =0.31812, g=0.5 . 
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Fig. 3.21  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1Z bgz=  with order 1.1α β γ= = = , ω =0.34, g=1.5 . 
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Fig. 3.22  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1Z bgz=  with order 0.9,  1.1α β γ= = = , ω =0.62, g=0.5 . 
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Fig. 3.23  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1Z bgz=  with order 0.8,  1.1α β γ= = = , ω =0.2807, g=1 . 
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Fig. 3.24  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1Z bgz=  with order 0.7,  1.1α β γ= = = , ω =0.144, g=5 . 
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Fig. 3.25  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 1Z bgz=  with order 0.6,  1.1α β γ= = = , ω =0.0107, g=6.6 . 
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Fig. 3.26  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 1Z bgz=  with order 0.5,  1.1α β γ= = = , ω =0.001, g=0.5 . 
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Fig. 3.27  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 1Z bgz=  with order 0.4,  1.1α β γ= = = , ω =0.005, g=0.5 . 
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Fig. 3.28  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1Z bgz=  with order 0.3,  1.1α β γ= = = , ω =0.0017, g=1 . 
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Fig. 3.29  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 2Z bgz=  with order 1.1α β γ= = = , ω =0.34, g=4 . 

-4 -2 0 2 4
-15

-10

-5

0

5

10

15

x1

x2

-4 -2 0 2 4
-15

-10

-5

0

5

10

15

y1

y2

-4 -2 0 2 4
-10

-5

0

5

10

z1

z2

0 500 1000 1500
-6

-4

-2

0

2

4
x 10-7

t

e1

 
Fig. 3.30  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 2Z bgz=  with order 0.9,  1.1α β γ= = = , ω =0.62, g=3 . 



 

 58

-4 -2 0 2 4
-20

-10

0

10

20

30

x1

x2

-4 -2 0 2 4
-20

-10

0

10

20

30

y1

y2

-2 -1 0 1 2
-6

-4

-2

0

2

4

6

z1

z2

0 200 400 600 800 1000
-8

-6

-4

-2

0

2

4
x 10-7

t

e1

 
Fig. 3.31  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 2Z bgz=  with order 0.8,  1.1α β γ= = = , ω =0.2807, g=13.5 . 
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Fig. 3.32  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 2Z bgz=  with order 0.7,  1.1α β γ= = = , ω =0.144, g=3 . 
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Fig. 3.33  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 2Z bgz=  with order 0.6,  1.1α β γ= = = , ω =0.0107, g=21.3 . 
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Fig. 3.34  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 2Z bgz=  with order 0.5,  1.1α β γ= = = , ω =0.001, g=1 . 
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Fig. 3.35  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 2Z bgz=  with order 0.4,  1.1α β γ= = = , ω =0.005, g=1 . 
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Fig. 3.36  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 2Z bgz=  with order 0.3,  1.1α β γ= = = , ω =0.0017, g=1 . 
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Fig. 3.37  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of error for 1zZ bge=  with order 1.1α β γ= = = , ω =0.34, g=0.29 . 

 
Fig. 3.38  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1zZ bge=  with order 0.9,  1.1α β γ= = = , ω =0.555, g=1 . 
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Fig. 3.39  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 1zZ bge=  with order 0.8,  1.1α β γ= = = ,ω =0.2807, g=1.8 . 
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Fig. 3.40  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1zZ bge=  with order 0.7,  1.1α β γ= = = , ω =0.144, g=1 . 
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Fig. 3.41  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 1zZ bge=  with order 0.6,  1.1α β γ= = = , ω =0.0107, g=1 . 
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Fig. 3.42  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1zZ bge=  with order 0.5,  1.1α β γ= = = , ω =0.001, g=3 . 
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Fig. 3.43  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 1zZ bge=  with order 0.4,  1.1α β γ= = = , ω =0.005, g=1.5 . 
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Fig. 3.44  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 1zZ bge=  with order 0.3,  1.1α β γ= = = ,ω =0.0017, g=0.1 . 
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Fig. 3.45  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 2zZ bge=  with order 1.1α β γ= = = , ω =0.34, g=0.2 . 
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Fig. 3.46  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 2zZ bge=  with order 0.9,  1.1α β γ= = = , ω =0.555, g=0.1 . 
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Fig. 3.47  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 2zZ bge=  with order 0.8,  1.1α β γ= = = , ω =02807, g=0.1 . 
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Fig. 3.48  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 2zZ bge=  with order 0.7,  1.1α β γ= = = , ω =0.144, g=1.9 . 
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Fig. 3.49  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 2zZ bge=  with order 0.6,  1.1α β γ= = = , ω =0.0107, g=2 . 
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Fig. 3.50  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 2zZ bge=  with order 0.5,  1.1α β γ= = = , ω =0.001, g=1 . 
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Fig. 3.51  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 2zZ bge=  with order 0.4,  1.1α β γ= = = , ω =0.005, g=4 . 
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Fig. 3.52  Phase portraits and Poincaré maps of the synchronized fractional order systems and 
time history of states error for 2zZ bge=  with order 0.3,  1.1α β γ= = = , ω =0.0017,g=0.1 . 
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Fig. 3.53  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1 sin( )zZ ge tω= with 
order 1.1α β γ= = = ,ω =0.445, zω =0.34,g=0.43 . 

-2 -1 0 1 2
-10

-5

0

5

10

x1

x2

-2 -1 0 1 2
-10

-5

0

5

10

y1

y2

-4 -2 0 2 4
-10

-5

0

5

10

z1

z2

0 1000 2000 3000 4000
-1

-0.5

0

0.5

1
x 10

-4

t

e1

 
Fig. 3.54  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1 sin( )zZ ge tω= with 
order 0.9,  1.1α β γ= = = ,ω =0.1275, zω =0.555,g=0.1 . 
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Fig. 3.55  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1 sin( )zZ ge tω=  with 
order 0.8,  1.1α β γ= = = ,ω =0.1315, zω =0.2807,g=0.1 . 
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Fig. 3.56  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 1 sin( )zZ ge tω=  with 
order 0.7,  1.1α β γ= = = ,ω =0.31812, zω =0.144,g=0.1 . 
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Fig. 3.57  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 2 sin( )zZ ge tω= with 
order 1.1α β γ= = = ,ω =0.445, zω =0.34,g=0.1 . 
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Fig. 3.58  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 2 sin( )zZ ge tω= with 
order 0.9,  1.1α β γ= = = ,ω =0.1275, zω =0.555,g=0.1 . 
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Fig. 3.59  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 2 sin( )zZ ge tω=  with 
order 0.8,  1.1α β γ= = = ,ω =0.1315, zω =0.2807,g=0.1 . 
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Fig. 3.60  Phase portraits and Poincaré maps of the synchronized fractional order systems and 

time history of states error for 2 sin( )zZ ge tω=  with 
order 0.7,  1.1α β γ= = = ,ω =0.31812, zω =0.144,g=0.1 . 
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Chapter 4 

Anticontrol of Chaos for Integral and Fractional Order 

Generalized Nonautonomous Heartbeat Systems 

 

4.1. Preliminaries 

In this chapter, anticontrol of chaos for integral and fractional order generalized 

nonautonomous van der Pol system is obtained effectively by adding a constant term to the 

system. By numerical analyses, such as phase portraits, Poincaré maps and bifurcation 

diagrams, periodic and chaotic motions are observed. 

4.2. The Integral and Fractional Order Generalized Nonautonomous 

Heartbeat Systems and Its Anticontrol Forms 

The van der Pol system was first given to study the oscillations in vacuum tube circuits 

[1-10]. The state equations are in the form of an autonomous system: 

1
2

22
1 1 2( 1)

dx x
dt
dx x x x
dt

ε

=

= − − −
                                               (4.1) 

 

where ε  is a parameter. The generalized van der Pol system has the form of a 

nonautonomous system which is written as: 

1
2

2 22
1 1 1 2(1 )( ) sin

dx x
dt
dx x x c ax x b t
dt

ε ω

=

= − − − − +
                                (4.2) 

where , , ,a b cε  are parameters, and ω  is the circular frequency of the external excitation 

sinb tω . The corresponding nonautonomous fractional order system is 

1
2

2 22
1 1 1 2(1 )( ) sin

d x x
dt
d x x x c ax x b t
dt

α

α

β

β ε ω

=

= − − − − +
                              (4.3) 
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where ,α β  are fractional numbers. 

In this thesis, the method of the anticontrol chaos by adding constant term is used. The 

method to control system dynamics from periodic motion to chaotic motion is adding constant 

terms. Eq.(4.3) can be rewritten as   

1
2 1

2 22
1 1 1 2 2(1 )( ) sin

d x x k
dt
d x x x c ax x b t k
dt

α

α

β

β ε ω

= +

= − − − − + +
                           (4.4) 

where 1 2,k k  are constants. 

 

4.3. Numerical Simulations for Anticontrol of Chaos 

The systems to be anticontrol are Eq.(4.4) in following three cases. The parameters a=0.07, 

b=1.0091, c=1.2, ε =3 and 0.1309ω = of system Eq.(4.4) are fixed. The anticontrol chaos 

schemes consists of three cases: 

Case 1: Add a constant term, 1k  is an ajustable constant and 2 0k = . Fig. 4.1 shows the 

bifurcation diagram for the nonautonomous integral order generalized van der Pol 

system (4.4) with 1k  as abscissa, and Fig. 4.2 shows the corresponding phase portrait 

and Poincaré maps. The chaotic phase portraits and Poincaré maps for the fractional 

order systems (4.4) where ,α β  take the same fractional numbers and vary from 1.3 to 

0.2 in steps of 0.1, can be successfully obtained. When ,α β  take the fractional number 

less than 0.2, no chaotic motion is found. In order to save space, only six cases, 

fractional numbers 1.3, 1.1, 0.8, 0.5, 0.3, 0.2, are shown in Fig. 4.3~ Fig. 4.8. 

Case 2: Add a constant term, 2k  is an ajustable constant and 1 0k = . Fig. 4.9 shows the 

bifurcation diagram for the nonautonomous integral order generalized van der Pol 

system (4.4) with 2k  as abscissa, and Fig. 4.10 shows the corresponding phase portrait 

and Poincaré maps. The chaotic phase portraits and Poincaré maps for the fractional 

order systems (4.4) where ,α β  take the same fractional numbers and vary from 1.3 to 

0.7 in steps of 0.1, can be successfully obtained. When ,α β  take the fractional number 
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less than 0.7, no chaotic motion is found. In order to save space, only five cases, 

fractional numbers 1.3, 1.1, 0.9, 0.8, 0.7, are shown in Fig. 4.11~ Fig. 4.15. 

Case 3: Add two constant terms, 1k  and 2k  are ajustable constants. We take 1 2k k= . Fig. 

4.16 shows the bifurcation diagram for the nonautonomous integral order generalized 

van der Pol system (4.4) with 1 2k k=  as abscissa, and Fig. 4.17 shows the 

corresponding phase portrait and Poincaré maps. The chaotic phase portraits and 

Poincaré maps for the fractional order systems (4.4) where ,α β  take the same 

fractional numbers and vary from 1.3 to 1.1 in steps of 0.1, can be successfully obtained. 

When ,α β  take the fractional number less than 0.7, no chaotic motion is found. In 

order to save space, only three cases, fractional numbers 1.3, 1.2, 1.1, are shown in Fig. 

4.18~ Fig. 4.20. 

 

By the results of simulation, it is found that anticontrols of chaos for integral and fractional 

order generalized nonautonomous van der Pol systems by adding one constant term are 

effective. 
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Fig. 4.1  Bifurcation diagram of the integral order system with 1k  as abscissa. 
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Fig. 4.2  Phase portrait and Poincaré maps of the integral order system for 

1 2k 0.088 , k 0= = . 
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Fig. 4.3  Phase portrait and Poincaré maps of the fractional order system for 

1 21.3 , k 1 , k 0α β= = = − = . 
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Fig. 4.4  Phase portrait and Poincaré maps of the fractional order system for 

1 21.1 , k 6 , k 0α β= = = − = . 
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Fig. 4.5  Phase portrait and Poincaré maps of the fractional order system for 

1 20.8 , k 0.02 , k 0α β= = = = . 
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Fig. 4.6  Phase portrait and Poincaré maps of the fractional order system for 

1 20.5 , k 30 , k 0α β= = = = . 



 

 79

4.1425 4.143 4.1435 4.144 4.1445 4.145 4.1455
-34.109

-34.1085

-34.108

-34.1075

-34.107

-34.1065

-34.106

-34.1055

-34.105

x1

x2

 
Fig. 4.7  Phase portrait and Poincaré maps of the fractional order system for 

1 20.3 , k 35 , k 0α β= = = = . 
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Fig. 4.8  Phase portrait and Poincaré maps of the fractional order system for 

1 20.2 , k 22 , k 0α β= = = − = . 
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Fig. 4.9  Bifurcation diagram of the integral order system with 2k  as abscissa. 
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Fig. 4.10  Phase portrait and Poincaré maps of the integral order system for 

1 2k 0 , k 0.3518= = . 
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Fig. 4.11  Phase portrait and Poincaré maps of the fractional order system for 

1 21.3 , k 0 , k 0.005α β= = = = . 
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Fig. 4.12  Phase portrait and Poincaré maps of the fractional order system for 

1 21.1 , k 0 , k 0.052α β= = = = − . 
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Fig. 4.13  Phase portrait and Poincaré maps of the fractional order system for 

1 20.9 , k 0 , k 0.05α β= = = = − . 
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Fig. 4.14  Phase portrait and Poincaré maps of the fractional order system for 

1 20.8 , k 0 , k 0.02α β= = = = . 
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Fig. 4.15  Phase portrait and Poincaré maps of the fractional order system for 

1 20.7 , k 0 , k 0.4α β= = = = − . 

 
Fig. 4.16  Bifurcation diagram of the integral order system with 1 2k k=  as abscissa. 
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Fig. 4.17  Phase portrait and Poincaré maps of the integral order system for 1 2k k= =0.1422. 
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Fig. 4.18  Phase portrait and Poincaré maps of the fractional order system for 

1 21.3 , k k 1α β= = = = . 
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Fig. 4.19  Phase portrait and Poincaré maps of the fractional order system for 

1 21.2 , k k 0.01α β= = = = − . 
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Fig. 4.20  Phase portrait and Poincaré maps of the fractional order system for 

1 21.1 , k k 2α β= = = = − . 
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Chapter 5 

Conclusions 

In this thesis, chaos of a generalized heartbeat system, i.e. a generalized van der Pol 

system, both with integral order and with fractional orders is studied. Both autonomous and 

nonautonomous systems are studied in detail. It is found that chaotic motions exist in the 

nonautonomous generalized van der Pol system excited by a sinusoidal time function. For 

fractional order systems, when 1γ = , ,α β  vary from 1.1 to 0.7 in the steps of 0.1, chaos 

exists. Next, chaotic motions exist when the fraction orders 1.1α β γ= = = . When 1.1γ =  

with α β=  varying from 1.1 to 0.3, chaotic motions also exist. 

Chaos excited chaos synchronization of a generalized van der Pol system with integral and 

fractional order is studied. Synchronizations of two identical generalized van der Pol chaotic 

systems are obtained by replacing the amplitude or the sine time function of their corresponding 

exciting terms by the same function of chaotic states of a third nonautonomous or autonomous, 

respectively. Numerical simulations, such as phase portraits, Poincaré maps and state error plots 

are given. It is found that chaos excited chaos synchronizations exist for the fractional order 

systems with the total fractional order both less than and more than the number of the states of 

the integer order generalized van der Pol system. Synchronizations are obtained for lowest total 

fractional order 0.7 2 1.4× =  where the third system is an autonomous system with three states. 

Synchronizations also can be achieved for lowest total fractional order 0.3 2 0.6× =  where the 

third system is a nonautonomous system with two states. 

Anticontrol of chaos for integral and fractional order generalized nonautonomous van der 

Pol system is obtained effectively by adding a constant term. By numerical analyses, such as 

phase portraits, Poincaré maps and bifurcation diagrams, it is found that the periodic motions 

of the system are transformed to chaotic ones effectively by the proposed anticontrol scheme 

of adding a constant term. Adding two constant terms is not effective for systems with 

fractional order less than one, but is effective for systems with fractional order more than one. 
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APPENDIX 

 
FRACTIONAL OPERATORS WITH APPROXIMATELY  

2 db ERROR FROM    = 10–2 TO 102 rad/sec 
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