Chapter 1

Introduction

A heartbeat system, i.e. a van der Pol system, which is a typical nonlinear chaotic system
have many interesting features, and numerous applications. It has been used for the design of
various systems including biological ones, such as the heartbeats [1] or the generation of
action potentials by neurons, acoustic-models; the radiation of mobile phones, and as a model
of electrical systems. Chaos, chaos control and chaoes synchronization of nonlinear systems,
including the van der Pol system have been subject to extensive studies [2-10].

Fractional calculus is an.old mathematical topic from 17th century. Although it has a long
history, applications are only recently feeus,of interest: Many: systems are knewn to display
fractional’ order dynamics, such jas viscoelastic systems [11], dielectric polarization,
electrode=electrolyte polarization, and electromagnetic waves. Furthermore, some systems had
been found with chaotic motions in the fractional orders. There is a new topic to investigate
the control and dynamics of fractional order dynamical systems recently. The behavior of
nonlinear chaotic systems when their models become fractional was also investigated widely
and reported [12-22].

Chaos has been extensively studied within the scientific, engineering and mathematical
communities as an interesting complex dynamic phenomenon [23-26]. Sensitive dependence
on initial conditions is an Important exhibit.characteristicsof.chaotiessystems. For this reason,
chaotici systems are difficult to_be synchronized..or controlled. Research in the area of the
synchronization of dynamical. systems has been widely explored in a variety of fields
including physical, chemical and ecological systems, secure communications and so on. There
are many control-methods to synchronize chaotic systems such./as adaptive control, sliding
mode control, observer-based design. methods, impulsive control and other control methods.
There are more advantages Iin Synchronization of uncoupled chaotic systems than that of
coupled chaotic systems. And a new uncoupled method of synchronization is presented in this
thesis. Chaos excited chaos synchronizations of generalized van der Pol systems with integral
and fractional order are studied. Synchronizations of two identified autonomous generalized
van der Pol chaotic systems are obtained by replacing their corresponding exciting terms by
the same function of chaotic states of a third nonautonomous or autonomous. Numerical
simulations, such as phase portraits, Poincaré maps and state error plots are given. It is found

that chaos excited chaos synchronizations exist for the fractional order systems with the total



fractional order both less than and more than the number of the states of the integer order
generalized van der Pol system.

Recently, the traditional trend of understanding and analyzing chaos has evolved to a new
phase of investigation: controlling and utilizing chaos. Sometimes, chaos is not only useful but
actually important, such as the generation of random numbers in chaotic secure
communications system. For this purpose, making a non-chaotic dynamical system chaotic is
called “‘anticontrol of chaos *’. Anticontrol of chaos has received great attention in recent
years[27-39]. Anticontrol _of 'schaos for integral and fractional order generalized
nonautonomous van der” Pol_system is obtained effectively by adding a constant term. By
numerical analyses, such as phase portraits, Poincaré maps and bifurcation:diagrams, periodic,
and chaotic motions are observed. It is found that the periodic motions: 0f ‘the system are
transformed'to chaotic motions effectively by the proposed anticontrol scheme.

This thesis Is organized as follows. In"Chapter 2, a review and the approximation of the
fractional order operator is presented. Chaos of the generalized van der Pol system and the
nonautonomous and autonomous fractional-order generalized van der Pol systems are given.
Numerical simulations, such as phase portraits, Poincaré maps and bifurcation diagrams, of
various nonautonomous and autonomous fractional order generalized van der Pol systems are
presented.

In Chapter 3, the schemes of chaosrexcited chaos synchronization of two generalized van
der Pol systems by replacing ‘the amplitude or the sine time function of their corresponding
exciting terms by the same function of chaotic states of a third nonautonomous or autonomous
generalized van der Pol system are given. Numerical simulations, such as phase, portraits,
Poincaré maps error states plots, of synchronizations of various fractional order generalized
van der Pol systems are presented.

In Chapter 4,"the;scheme -of anticontrol of chaos by adding a constant term is presented.
Numerical simulations, suchias phase portraits, Poincaré maps and bifurcation diagrams of
anticontrol of chaos for generalized nonautonomous van der‘Pol system are presented.

In Chapter 5, conclusions are drawn.



Chapter 2

Chaos in a Generalized Heartbeat System and in Its

Fractional Order System

2.1. Preliminaries

In this chapter, chaos of a generalizedvan.der Pol system with fractional orders is studied.
Chaos in the nonautonomous generalized van der Pol system excited by a sinusoidal time
function with fractional orders is studied. Next, chaos in the autonomous generalized van der

Pol system with fractional orders is considered.

2.2. The'Review and the Approximation of Fractional-Order Operators

There are many ways to define a fractional differential operator [18-20]. The commonly
used definition for general fractional derivative is the Riemann-Liouville definition. The

Riemann-Liouville definition of the fractional-order derivative is:

DY) = S DY)
.1 d ) y(z) e
C'(n—a) dt?do (t—z)* ™

where _I'(-) is a gamma function.and n is an integer such that n—1< « < n. This definition is
differentfrom the usual intuitive definition of derivative.

Thus, it IS necessary to develop approximations to the fractional operators using the
standard integer order operators. Fortunately, the Laplace transformawhich,is.basic engineering
tool for analyzing linear systemsuis still applicable and works:

d*f (t) nt [det*t ()
L{ e } L{f(t)} z [ v }t_o,forall a, (2.2)

k=

where n is an integer such that n—-1<a <n. Upon considering the initial conditions to be
zero, this formula reduces to the more expected form
L{w} =s“L{f(t)}. (2.3)
dt”
Using the algorithm in [13, 21], linear transfer function of approximations of the fractional

integrator is adopted. Basically the idea is to approximate the system behavior based on



frequency domain arguments. From [22], we get the table of approximating transfer functions
for ]/s“ with different fractional orders, «=0.1-0.9, in steps of 0.1, which give the

maximum error 2 dB in calculations (see appendix). These approximations will be used in the

following study.

2.3. The Chaos of the Generalized Heartbeat System and Its Fractional
Order Form ]
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where «,f are fractional numbers.

A modified version of EQ.(2.6) is now proposed. The nonautonomous generalized
fractional order van der Pol system (2.6) with two states is transformed into an autonomous

generalized fractional order van der Pol system with three states:
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where «, 5,7 are fractional numbers, in which the original time t in Eq.(2.6) is changed to a
new state x,. When y=1, x,=t, Eq.(2.7) reduces to Eq.(2.6).

In this thesis, we analyze and present simulation results of the chaotic dynamics produced
from a new generalized fractional van der Pol system as the fractional order derivatives in the
state equations;0f*'EQ:(2.6) is varied from 0.1 to 1.3. It is observed that the different orders

have large influences upon the overall system.dynamics.

2.4. Numerical Simulations for the Fractional Order‘Generalized Heartbeat

Systems

Our study of system (2.7) consists of three parts:

Part1: » equalsone, and «,f take the same fractional numbers. The system is

equivalent to.a nonautonomous fractional order system with two states, Eq. (2.6).
Part 2. a,f,y takethe same fractional numbers.

Part 3:"  equals1.10r0.9,and «,f take the samefractional numbers.

In Part 1, =1, EqQ.(2.7) reduces to Eq.(2.6) with two states X, and"X,. «,f take the
same fractional numbers and vary from 1.1 to 0.7 in steps of 0.1. Fig. 2.7 shows the bifurcation
diagram and Fig. 2.8~ Fig. 2.11 are“the phase portraits and Poincaré maps with a=/=1.1,

while Poincaré maps are taken by period 2—7[ Fig. 2.12 shows the bifurcation diagram and Fig.
@

2.13~ Fig. 2.16 are the phase portraits and Poincaré maps with « = £=0.9. Fig. 2.17 shows

the bifurcation diagram and Fig. 2.18~ Fig. 2.21 are the phase portraits and Poincaré maps with

a=£=0.8. Fig. 2.22 shows the bifurcation diagram and Fig. 2.23~ Fig. 2.26 are the phase



portraits and Poincaré maps with « = £ =0.7. According to the results of simulation in Part 1,
it is found that the chaotic motions exist in the nonautonomous system with fractional orders.
The lowest total fractional order for chaos existence in this system is 1.4 (2x0.7). When the
total fractional order is 1.2 (2x0.6), no chaos exists.

InPart 2, «,f,y take the same fractional numbers, vary from 1.1 to 0.6 in steps of 0.1. Fig.
2.27 shows the bifurcation diagram and Fig. 2.28~ Fig. 2.3%.are the phase portraits and Poincaré
maps with o =/ =x%=11. When a= /=y and vary from 0.9 to0,0.6 in steps of 0.1, no
chaos exists.

In Part3, =1.1,",[ take same fractional numbers and vary from 1.1t0 0.3 in steps of
0.1. Fig. 2.32 shows the bifurcation diagram and Fig. 2.33~ Fig. 2.34 are the phase portraits and
Poincaré maps with a=£=0.9- y=1.11Fig. 2.35 shows the bifurcation diagram and Fig.
2.36~ Fig. 2.37 are the phase portraits and Poincaré maps with = =0.8, y=1.1. Fig. 2.38
shows the bifurcation diagram and Fig. 2.39~ Fig. 2.41 are the phase portraits and Poincaré
mapswith «=/£=0.7, »=1.1. Fig. 2.42:shows the bifurcation diagram and Fig. 2:43~ Fig.
2.45 are the phase portraits and Poincaré maps with ¢ =£=0.6 , y=1.1. Fig. 2.46 shows the
bifurcation diagram and Fig. 2.47~"Fig. 2.50 are the phase portraits and Poincaré.maps with
a=L4=05, y=1.1. Fig. 2.51 shows the bifurcation diagram-and Fig. 2.52~ Fig. 2.55 are the
phase portraits and Poincaré maps with = =0.4, y=1.1. Fig. 2.56 shows the bifurcation
diagram and Fig. 2.57~ Fig.- 2.60 are the phase portraits and Poincaré maps with
a==03, y=1.1. According to the results of simulation in Part 3, it is found that the chaotic
motions exist when y take 1.1 and“ e, vary from“0.9 to 0.3 in steps of 0.1. When «,f
take the fractional number less than 0.3, no chaos is found.

y=0.9, a,p take the same fractional numbers 1.1, 1.2, 1.3 and 1.4, only periodic motions

are found, no chaos exists.
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Fig.2.1 The bifurcation diagram of the nonautonomous generalized van der Pol system.
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Fig. 2.2 Lyapunov exponent diagram of the nonautonomous generalized van der Pol system
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Fig. 2.3 The phase portrait and the Poincaré map of the nonautonomous generalized van der
Pol system.
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Fig. 2.4 The phase portrait and the Poincaré map of the nonautonomous generalized van der
Pol system.
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Fig. 2.5 The phase portrait and the Poincaré map of the nonautonomous generalized van der
Pol system.
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Fig. 2.6 The phase portrait and the Poincaré map of the nonautonomous generalized van der
Pol system.
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Fig. 2.7 The bifurcation diagram of the nonautonomous fractional order system
with order a=£=1.1, =1
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Fig. 2.8 The phase portrait and Poincaré map of the nonautonomous fractional order system
with order a=£=1.1, y=1,0=0.435.
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Fig. 2.9 The phase portrait and Poincaré maps of the nonautonomous fractional order system
with order a=£=1.1, y=1,©=0.4732.
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Fig. 2.10 The phase portrait and Poincaré maps of the nonautonomous fractional order
system with order «=£=1.1, y=1,0=0.4462.
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Fig. 2.12 The bifurcation diagram of the nonautonomous fractional order system
with order a=£=0.9, y=1.
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Fig. 2.13 The phase portrait and Poincaré map of the nonautonomous fractional order system
with order a=£=0.9, y=1,0=0.127.

w=0.1263

Fig. 2.14 The phase portrait and Poincaré maps of the nonautonomous fractional order
system with order aa=£=0.9, y =1, 0 =0.1263.
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Fig.2.15 The phase portrait and Poincaré maps of the nonautonomous fractional order
system with order a=£=0.9, y=1,0©=0.12624.
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Fig. 2.16 The phase portrait and Poincaré maps of the nonautonomous fractional order
system with order a=£=0.9, y=1,0=0.1275.
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Fig. 2.17 The bifurcation diagram of the nonautonomous fractional order system
with order = £=0.8, y=1.
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Fig. 2.18 The phase portrait and Poincaré map of the nonautonomous fractional order system

with order & =4=0.8, 7 =10 =0.135.
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Fig.2.19 The phase portrait and Poincaré maps of the nonautonomous fractional order
systemwith order «=£=0.8, y =1, 0w =0.133.
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Fig. 2.20 The phase portrait and Poincaré maps of the nonautonomous fractional order
systemwith order ¢ =£=0.8, y =1, w=0.13295.
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w=0.1315

Fig.-2.21 The phase portrait and Poincaré maps of the nonautonomous fractional order
system with order = £=0.8, y=1,0=0.1315.
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Fig. 2.22 The bifurcation diagram of the nonautonomous fractional order system
with order a=£=0.7,y=1
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Fig. 2.23 | The phase portrait and Poincaré map of the nonautonomous fractional order
system with order a=£=0.7, y =1, w=0.315.
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Fig. 2.24 The phase portrait and Poincaré maps of the nonautonomous fractional order
system with order ¢ =£=0.7,y=L0=0.32.
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Fig.2.25 The phase portrait and Poincaré maps of the nonautonomous fractional order
system with order «=£=0.7, y =1, 0 =0.31758.
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Fig. 2.26 The phase portrait and Poincaré maps of the nonautonomous fractional order
system with order a=£=0.7, y=1,0=0.31812.
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Fig. 2.27 The bifurcation diagram of the autonomous fractional order system
with order a=f=y=1.1
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Fig. 2.28 The phase portrait and Poincaré map of the autonomous fractional order system
withorder a=f=y=1.10=0.37.
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Fig.2.:29 © The phase portrait and Poincaré maps of the autonomous fractional order system
with order a=f=y=1.1,0=0.36418.
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Fig. 2.30 The phase portrait and Poincaré maps of the autonomous fractional order system
with order = =y=1.1,0=0.36417.
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Fig.2.31  The phase portrait and Poincaré maps of the autonomous fractional order system
with order a=f=y=1.1,0=0.34.
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Fig. 2.32 The bifurcation diagram of the autonomous fractional order system
withorder a=£=09, y=11

22



w=0.54595
B T T T T T T T

W2
(]
T
1

Fig.2.33 The phase portrait and Poincaré map of the.autonomous fractional order system
with order a=£=0.9, y=1.1, »=0.5498.
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Fig. 2.34 The phase portrait and Poincaré maps of the autonomous fractional order system
with order a=£=0.9, y=1.1, »=0.5531.
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Fig. 2.35 The bifurcation diagram of the autonomous fractional order system
with order a=£=0.8,y=1.1
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Fig. 2.36  The phase portrait and Poincaré map of the autonomous fractional order system
with order a=£=0.8, y=1.1,0®=0.2851.
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w=0.2807

W2

Fig.2.37  The phase portrait and Poincaré maps of the autonomous fractional order system
with order a=£=0.8, y=1.1, »=0.2807.
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Fig. 2.38 The bifurcation diagram of the autonomous fractional order system
withorder ¢ =£=0.7, =11
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Fig.2.39 © The phase portrait and Poincaré maps of the autonomous fractional order system
with order a=£=0.7, y=1.1, w=0.141.
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Fig. 2.40 The phase portrait and Poincaré maps of the autonomous fractional order system
with order a=£=0.7, y=1.1,©=0.1408.
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Fig.2.41 = The phase portrait and Poincaré maps of the autonomous fractional order system
with order a=£=0.7, =11, 0©=0.1404.
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Fig. 2.42 The bifurcation diagram of the autonomous fractional order system
withorder a=£=0.6, y=1.1
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w=0.13

Fig. 2.43 The phase portrait and Poincaré map of the.autonomous fractional order system
with order a=£=0.6, =11, 0=0.13.

Fig. 2.44 The phase portrait and Poincaré maps of the autonomous fractional order system
with order ¢ =£=0.6, y=1.10=0.11.
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Fig.2.45 = The phase portrait and Poincaré maps of the autonomous fractional order system
with order a=£=0.6, y=1.1, ©=0.0107.
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Fig. 2.46 The bifurcation diagram of the autonomous fractional order system
withorder a=£=05, y=11
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Fig. 2.47 The phase portrait and Poincaré map of the.autonomous fractional order system
with order a=£=0.5, y=1.1,0=0.075.
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Fig. 2.48 The phase portrait and Poincaré maps of the autonomous fractional order system
with order a=£=05, y=1.1,0=0.06.
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Fig.2.49 = The phase portrait and Poincaré maps of the autonomous fractional order system
with order a=£=0.5, y=1.1,0=0.038.
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Fig. 2.50 The phase portrait and Poincaré maps of the autonomous fractional order system
with order a=£=0.5, y=1.1,0@=0.001.
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Fig. 2.51 The bifurcation diagram of the autonomous fractional order system
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Fig. 2.52 The phase portrait and Poincaré map of the autonomous fractional order system
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Fig.2.53 ' The phase portrait and Poincaré maps of the autonomous fractional order system
with order a=£=04,y=1.1,0=0.026.

W2

Fig. 2.54 The phase portrait and Poincaré maps of the autonomous fractional order system
with order a=£=04,y=1.1,0=0.014.
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Fig.2.55 ° The phase portrait and Poincaré maps of the autonomous fractional order system
with order a=£=0.4, y=1.1,#=0.005.
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Fig. 2.56 The bifurcation diagram of the autonomous fractional order system
withorder «=£=03,y=11
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Fig. 2,57 The phase portrait and Poincaré map of the.autonomous fractional order system
with order a=£=0.3, y=1.1,0=0.011.
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Fig. 2.58 The phase portrait and Poincaré maps of the autonomous fractional order system
with order a=£=0.3, y=1.1,0=0.0085.
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Fig.2.59 © The phase portrait and Poincaré maps of the autonomous fractional order system
with order a=£=0.3, y=1.1,w=0.006.
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Fig. 2.60 The phase portrait and Poincaré maps of the autonomous fractional order system
with order a=£=0.3, y=1.1,0=0.0017.
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Chapter 3

Chaos Excited Chaos Synchronizations of Integral and Fractional

Order Generalized Heartbeat Systems

3.1. Preliminaries

In this chaptel d van der Pol systems

with integral and, fri ntified autonomous

generalized van nding exciting
i I_ -

terms b onomous

genera

fmiEe=

by (3.1)

dt

where g, a,b

xternal excitation
bsin wt . The correspo

dx _ X,
dt”

d’x,
dt”

where «,f are fractional numbers.

R B (3.2)

==X, — (- x2)(C—ax?)X, +bs

A modified version of Eq.(3.2) is now proposed. The nonautonomous generalized
fractional order van der Pol system (3.2) with two states is transformed into an autonomous
generalized fractional order van der Pol system with three states:
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dx

=X
dt*  ?
% _ 1-x?2 %)X, +bsi 3.3
v =—X —&(l=x")(c—ax")x, +bsinwx, (3.3
d”x, 1
dt”

where «, f,y are fractional numbers, in which the original time t in Eq.(3.2) is changed to

anew state X,. When y=1 x, =t,

: .( §

reduces to Eq.(3.2).

Two methods of chags excites ch n[40-67] are proposed. In Case 1, two
identical generalized : : e "zed are
dd ‘):1 =X, : . _.:: -
t e E | (3.4)
d”x, _

dt”?

is a

d
d’z,
dt” :
Z is chosen a ' ot), ectively, where gis
a constant with different X 5— Y,

In Case 2, two identi der Pol systems to be

synchronized remain unchanged, as Egs.(3.4) and (3.5). But Z is a function of the chaotic

states of a third autonomous system

d“z _

e =Y,
d’z, =-7,—-¢(1-2%)(c—az?)z, +bsin(w,z,) (3.7)
G 2 : P 7 |

dyZS —

dt”

38



Z is chosen as Z =Dbgz,, Z=bgz,, Z=bgexp(z,), Z=Dbgexp(z,), Z=gexp(z)sin(at),

Z =gexp(z,

)sin(wt) respectively. g is a constant with different values.

3.3. Numerical Simulations for the Synchronization of Fractional Order

Generalized Heartbeat Systems

The systems to be synchronized are systems (3.4) and (3.5) in following two cases. The

parameters a=3, b=1.0091, c=1.2 and d=0.07 of system Eq.(3.4)\ Eg.(3.5). Eq.(3.6) and Eq.(3.7)

are fixed. Our study of two cases consists of ten parts:

Case 1: The third system is a nonautonomous system with two states, Eq.(3:6).

Part (d):

Part (2):

Part (3):

Part (4):

Z =bgz, where z__is the chaotic state of system (3.6), g Is an ajustable
constant. Fig. 3.1~ Fig. 3.5 show the“phase portraits and Poincaré maps of the

fractional order synchronized systems and time history of error states plot where

a, [ take the same fractional numbers and vary from 1.1 to 0.7 in steps of 0.1.
When «, f take the fractional number.less than 0.7, no chaotic synchronization is
found.

Z =bgz, where" z, is'the chaotic state of system (3.6). Fig. 3.6~ Fig. 8:10 show
the phase portraits and Poincaré maps.of the fractional order synehronized systems
and time history of error states plot where «, take the same fractional numbers
and vary from 1.1 to 0.7 in steps of 0.1. When «,f _take the fractional number
less than 0.7, no chaetic synchronization is found.

Z =gz, sin(wt)“where z, is the chaotic state of system (3.6). Fig. 3.11~ Fig. 3.15
show the phase portraits and Poincaré maps of the fractional order synchronized
systems and time history of error states plot where «, take the same fractional
numbers and vary from 1.1 to 0.7 in steps of 0.1. When «,f take the fractional

number less than 0.7, no chaotic synchronization is found.

Z =gz,sin(wt) where z, is the chaotic state of system (3.6). Fig. 3.16~ Fig.
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3.20 show the phase portraits and Poincaré maps of the fractional order
synchronized systems and time history of error states plot where «,/f take the

same fractional numbers and vary from 1.1 to 0.7 in steps of 0.1. When «, 3 take

the fractional number less than 0.7, no chaotic synchronization is found.

Case 2: The third system is an autonomous system with three states, Eq.(3.7).

Part (1):

Part (2):

Part (3):

Part (4):

Z =bgz,, where. z, Is the chaotic state of system (3.7). Fig. 3.21~ Fig. 3.28 show
the phase portraits and Poincaré maps of the fractional order synchronized systems
and time -history of error states plot where » .takes 1.1, and «;/ take the same
fractional numbers and vary. from 1.1 t0 0.3 in steps of 0.1. When » <1, no chaos
exists in system(3.7). When e, p take 'the fractional number less than 0.3, no
chaotic synchronization is found.

Z =bgz, where z, is the chaotic state of system (3.7). Fig. 3.29~ Fig. 3.36 show
the phase portraits and Poincaré maps of the fractional order synchronized systems
and time history of error states plot where » takes 1.1, and «, 3  take the same
fractional numbers andvary from 1.1 to 0.3 in steps of 0.1. When' 7 <1, no chaos
exists-in system(3.7). When «,f “take the fractional number less than 0.3, no
chaotic synchronization is found.

Z =bgexp(z,) where z is the chaotic state of system (3.7).'Fig. 3.37~ Fig. 3.44
show the phase portraits and Poincaré maps of the fractional order synchronized
systems and time history of error states plot where y takes 1.1, and «,f take
the same fractional numbers and vary from 1.1 to 0.3 in steps of 0.1. When <1,
no chaos exists in system(3.7). When «, take the fractional number less than
0.3, no chaotic synchronization is found.

Z =bgexp(z,) where z, isthe chaotic state of system (3.7). Fig. 3.45~ Fig. 3.52
show the phase portraits and Poincaré maps of the fractional order synchronized
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Part (5):

Part (6):

systems and time history of error states plot where y takes 1.1, and «,f take
the same fractional numbers and vary from 1.1 to 0.3 in steps of 0.1. When <1,
no chaos exists in system(3.7).When «,f take the fractional number less than
0.3, no chaotic synchronization is found.

Z =gexp(z,)sin(wt) where z, is the chaotic state of system (3.7). Fig. 3.53~
Fig. 3.56 show the.phase portraits and Poincaré maps of the fractional order
synchronized systems and time history of error states plot,where » takes 1.1, and
a; [« take the same fractional numbers and vary from 1.1 to 0.7 in steps of 0.1.
When y7<1, no chaos exists in system(3.7)." When «,f take the fractional
number less than 0.7, no ehaotic synchronization is found.

Z = g exp(z,)sin(wt)- where 'z, is the chaotic state of system (3.7). Fig. 3.57~
Fig. 3.60 show the phase portraits and Poincaré maps of the fractional order
synchronized systems and time history of error states plot where » takes 1.1, and
a, f take the same fractional numbers and vary from 1.1 to 0.7 in stepssof 0.1.
When » <1, no chaos exists in system(3.7). When «,f take the fractional

number less than 0.7, no chaotic synchronization is found.

The ranges of g for various chaos synchronization cases are listed in Table 1.

Table 1. The ranges of g for various chaos synchronization cases.

Case 1: The third system Is @ nonautonomous system with two states, Eq.(3.6).

Part (1) Part (2) Part (3) Part (4)

Z =bgz, Z =bgz, Z =gz sin(mt) | Z =gz,sin(wt)
a=p£=11 0.23~1.64 0.18~4.20 0.51~2.27 0.32~6.51
a=pF=1 0.09~3.43 0.14~7.6 0.15~3.7 0.7~9.8
a=£=09 0.11~6.13 0.05~9.59 0.6~14.9 0.5~6.1
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a=p4=038 0.18~8.23 0.1~13.53 0.3~85 0.5~14.4

a=p4=07 0.07~12.27 0.3~14.65 0.09~14.9 0.12~26.6

Case 2: The third system is an autonomous system with three states, Eq.(3.7).

Part (1) Part (2) Part (3) Part (4)

Z =bgz, Z =bgz, Z =bgexp(z,) | Z=Dbgexp(z,)

0.8~1.6 0.29~0.015 | 0.12~0.015

|
i 2
'F 1~-136 0.001~0.18

1 0.001~0.5

fmIET1"

0.03~2.14 4 0.003-0.33

a=4=08, y=11 © . 0.06~3.48 0.02~0.63

a=p4=07 y=11 r C , + %X 0.007~1.93
p=on s "FFEEEY

By the results of simulation, it is found that the chaos excited chaos synchronizations are
obtained in Case(1) for lowest total fractional order 0.7x2=1.4, while synchronizations can be

achieved in Case(2) for lowest total fractional order 0.3x2=0.6.
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Fig. 3.1 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, with order a=£=1.1, ©»=0.445,9=15.
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Fig. 3.2 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, with order a=£=1, »=0.1301,9=1.
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Fig. 3.3 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, with order a=£=0.9, ©=0.132,9=1.
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Fig. 3.4 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, with order =/£=0.8, »=0.1315,g=0.8.
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Fig. 3.5 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, with order o= £=0.7, ©®=0.31812,9=0.3.
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Fig. 3.6 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, withorder o= /=11, »=0.445,9=0.8.
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Fig. 3.7 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, with order o= =1, ®=0.12961875, g=3.
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Fig. 3.8 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, with order = £=0.9, ©=0.132,9=9.
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Fig. 3.9 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, with order = =0.8, ©=0.1315, g=13.
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Fig. 3.10 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, withorder a=/£=0.7, ©=0.31812, g=14.65.
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Fig. 3.11 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z = gz, sin(wt) with order o= =11, ©»=0.445,9=15.
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Fig. 3.12 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z = gz, sin(wt) with order o= =1, ®»=0.12961875, g=3.
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Fig. 3.13 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z = gz, sin(wt) withorder a=£=0.9, ©=0.132,9=05.
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Fig. 3.14 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z = gz, sin(wt) with order a=£=0.8, ©=0.1315,9=5.
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Fig. 3.15 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z = gz, sin(ot) withorder = £=0.7, ©=0.31812, g=10.
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Fig. 3.16 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z = gz, sin(wt) withorder o =/=1.1, ©=0.445,9=1.
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Fig. 3.127 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z = gz, sin(wt) with order ¢ =f=1, ©=0.12961875, g=3 .
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Fig. 3.18 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z = gz, sin(wt) withorder ¢ =4=0.9, ©»=0.132, g=1.
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Fig. 3.19 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z = gz, sin(wt) withorder a=£=0.8, ©=0.1315,9=05.
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Fig. 3.20 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z = gz, sin(wt) with order o =/=0.7, ©=0.31812,9=0.5.
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Fig. 3.21 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, with order a=f=y=11, ©®=0.34,0=15.
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Fig. 3.22 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, withorder = £=0.9, y=1.1, ©®=0.62,g=0.5.
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Fig. 3.23 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, with order ¢ =4=0.8, y=1.1, ©=0.2807,9=1.
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Fig. 3.24 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, withorder = £=0.7, y =11, ©=0.144,09=5.
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Fig. 3.25 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, with order-a=£=0.6, y=1.1, ©=0.0107,9=6.6 .
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Fig. 3.26 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, withorder =£=0.5, y=1.1, ©=0.001, g=0.5.
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Fig. 3.27 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, with order & =f=0.4, =11, ©=0.005,9=05.
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Fig. 3.28 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, withorder «=£=0.3, y=1.1, ©=0.0017,9=1.
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Fig. 3.29 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, with order a=f=y=11, ©=0.34,0=4.
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Fig. 3.30 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, withorder a=£=0.9, y=1.1, ©=0.62, g=3.
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Fig. 3.31 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error forZ =bgz, withorder a=/£=0.8, y=1.1, »=0.2807,9=135.
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Fig. 3.32 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, withorder a=£=0.7, y =11, ©=0.144,9=3.
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Fig. 3.33 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error forZ =bgz, withorder a= /=06, y=1.1, »=0.0107,9=21.3.
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Fig. 3.34 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, withorder a=£=05, y=1.1, ©=0.001,9=1.
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Fig. 3.35 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, withorder ¢ =£=04, y=1.1, ©=0.005,g=1.
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Fig. 3.36  Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bgz, withorder a=£=0.3, y=1.1, »=0.0017,9=1.
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Fig. 3.37 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of error for Z =bge* with order a=g8=y=11, ©=0.34,9=0.29 .
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Fig. 3.38 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bge® withorder ¢ =£=0.9, y=1.1, »=0.555, g=1.
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Fig. 3.39 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bge* with order & ==0.8, y=1.1, »=0.2807, g=1.8.
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Fig. 3.40 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bge® withorder ¢ =4=0.7, y =11, ©=0.144,9=1.
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Fig. 3.41 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bge® withorder « =8=0.6, y=1.1, »=0.0107, g=1.
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Fig. 3.42 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bge® withorder ¢ =£=0.5, y=1.1, »=0.001, g=3.
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Fig. 3.43 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bge® withorder ¢ =8=0.4, y=1.1, »=0.005, g=15.
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Fig. 3.44 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bge® with order ¢ =£=0.3, y=1.1,®=0.0017, g=0.1.
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Fig. 3.45 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bge” with order a=f8=y=1.1, ©»=0.34,9=0.2.
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Fig. 3.46 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bge” withorder ¢ =/£=0.9, y=1.1, ®=0.555,9=0.1.
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Fig. 3.47 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bge” with order & =5=0.8, y=1.1, »=02807, g=0.1.
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Fig. 3.48 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bge” withorder ¢ =/£=0.7, y=1.1, ©=0.144,9=19.
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Fig. 3.49 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bge” withorder &« =8=0.6, y=1.1, »=0.0107, g=2.
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Fig. 3.50 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bge” with order ¢ =4=0.5, y=1.1, ©»=0.001, g=1.
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Fig. 3.51 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bge” with order «=8=0.4, y =11, »=0.005, g=4 .
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Fig. 3.52 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z =bge” withorder ¢ =/£=0.3, y=1.1, »=0.0017,9=0.1.

68



15 15

10

¥ 0
-5
-10
-15 L L L L -15
-6 -4 -2 0 2 4 -6 4 2 0 2 4
x1 yl
x 10°
10 6
4
5
2
N 0 k)
0
-5
-2
-10 L L L -4 L L L
-4 -2 0 2 4 0 500 1000 1500 2000
z1 t

Fig. 3.53 Phase portraits and Poincare maps of the synchronized fractional order systems and
time history of states error for Z = ge* sin(wt) with
ordera = =y=11,0=0.445, »,=0.34,0=0.43 .
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Fig. 3.54 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z = ge” sin(wt) with
ordera = =0.9, y=1.1,©=0.1275, »,=0.555,g=0.1 .
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Fig. 3.55 Phase portraits and Poincare maps of the synchronized fractional order systems and
time history of states error for Z = ge*sin(wt) with
ordera =4 =0.8, y=1.1,=0.1315, »,=0.2807,9=0.1 .
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Fig. 3.56 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z = ge” sin(wt) with
ordera = =07, y=1.1,©=0.31812, », =0.144,g=0.1 .
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Fig. 3.57 Phase portraits and Poincare maps of the synchronized fractional order systems and
time history of states error for Z = ge sin(wt) with
ordera = =y=11,0=0.445,»,=0.34,0=0.1 .
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Fig. 3.58 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z = ge” sin(wt) with
ordera = =0.9, y=1.1,©=0.1275, »,=0.555,g=0.1 .
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Fig. 3.59 Phase portraits and Poincare maps of the synchronized fractional order systems and
time history of states error for Z = ge®sin(wt) with
ordera =4 =0.8, y=1.1,=0.1315, »,=0.2807,9=0.1 .
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Fig. 3.60 Phase portraits and Poincaré maps of the synchronized fractional order systems and
time history of states error for Z = ge” sin(wt) with
ordera = =07, y=1.1,©=0.31812, », =0.144,g=0.1 .
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Chapter 4

Anticontrol of Chaos for Integral and Fractional Order

Generalized Nonautonomous Heartbeat Systems

4.1. Preliminaries

In this chapter, order generalized

nonautonomousivan der ing a constant term to the

system. By | bifurcation

diagrams, |

> circuits

where & - the” form of a

nonautonomous “ ¢

dt
dx, !

% x—s-#)e-ax')x, whsinet 1

where ¢,a,b,c are parameters, and o is the circular frequency of the external excitation

(4.2)

bsin wt . The corresponding nonautonomous fractional order system is

dx,
dev 7

4.3
dﬁxZ 2 2 . ( )
qt” =-X—¢(l-x")(c-ax")x, +bsinwt
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where «,f are fractional numbers.
In this thesis, the method of the anticontrol chaos by adding constant term is used. The
method to control system dynamics from periodic motion to chaotic motion is adding constant

terms. Eq.(4.3) can be rewritten as

d(l

dtz‘(l =X, +k,

o (4.4)
dtﬂz =—x —&(l—x2)(c—ax’)x, +bsinwt+k,

where k;,k, are constants.

4.3. Numerical Simulations for Anticontrol of Chaes

The,systems to be anticontrol are Eqg.(4.4) in following three cases. The parameters a=0.07,
b=1.0091, c=1.2, ¢=3 and » =10.1309 of system"Eq.(4.4) are fixed. The anticontrol chaos
schemes consists of three cases:

Case 1: Add a ‘constant term, k, IS an ajustable constant and k,=0. Fig. 4.1 shows the
bifurcation diagram for the nonautonomous integral order generalized van der Pol
system (4.4) with. k, @as abscissa; and Fig. 4.2 shows the corresponding phase portrait
and Poincaré maps. The chaotic phase portraits and Poincaré maps for the fractional
order systems (4.4) where «,f take the same fractional numbers and vary from 1.3 to
0.2 in steps of 0.1, can be successfully obtained. When «, S take the fractional number
less than"0.2, no chaetic -motion is found. In order-t0 save space, only six cases,
fractional numbers 1.3, 1.1, 0.8, 0.5, 0.3, 0.2, are shown in Fig. 4.3~ Fig. 4.8.

Case 2: Add a constant term, k, is an ajustable constant and k, =0. Fig. 4.9 shows the
bifurcation diagram for the nonautonomous integral order generalized van der Pol
system (4.4) with k, as abscissa, and Fig. 4.10 shows the corresponding phase portrait
and Poincaré maps. The chaotic phase portraits and Poincaré maps for the fractional
order systems (4.4) where «, take the same fractional numbers and vary from 1.3 to

0.7 in steps of 0.1, can be successfully obtained. When «, 8 take the fractional number
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less than 0.7, no chaotic motion is found. In order to save space, only five cases,
fractional numbers 1.3, 1.1, 0.9, 0.8, 0.7, are shown in Fig. 4.11~ Fig. 4.15.
Case 3: Add two constant terms, k; and k, are ajustable constants. We take k, =k,. Fig.

4.16 shows the bifurcation diagram for the nonautonomous integral order generalized

van der Pol system (4.4) with k =k, as abscissa, and Fig. 4.17 shows the

corresponding phase portrait anc caré “ The chaotic phase portraits and

Poincaré map he fractiona ) ‘where o, take the same

fractio H 1
When' a

essfully obtained.
is found. In

shown in Fig.

fractional

m are

75



x2
o
T

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2 2.5

Fig. 4.2 Phase portrait and Poincaré maps of the integral order system for
k,=0.088,k,=0.
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Fig. 4.4 Phase portrait and Poincaré maps of the fractional order system for
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Fig. 4.9 Bifurcation diagram of the integral order system with k, as abscissa.
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Fig. 4.10 Phase portrait and Poincaré maps of the integral order system for
k,=0,k,=0.3518.
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Phase portrait and Poincaré maps of the fractional order system for
a=p=11,k =0,k,=-0.052.
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a=p£=08,k =0,k,=0.02.
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Fig. 4.16 Bifurcation diagram of the integral order system with k =k, as abscissa.
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Fig. 4.18 Phase portrait and Poincaré maps of the fractional order system for
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Chapter 5
Conclusions
In this thesis, chaos of a generalized heartbeat system, i.e. a generalized van der Pol
system, both with integral order and with fractional orders is studied. Both autonomous and
nonautonomous systems are studied in detail. It is found that chaotic motions exist in the

nonautonomous generalized van der.Pol system excited by a sinusoidal time function. For

fractional order systems,.when »=1, &, vary from 1.1 to 0.7.in the steps of 0.1, chaos
exists. Next, chaotic motions exist when the fraction orders ¢ =g=y7=1.1. When y=1.1
with « =4 varying from 1.1 to 0.3, chaotic motions also exist.

Chaos, excited chaos synchronization of a generalized van der Pol system with,integral and
fractional order is studied. Synchronizations of two.identical generalized van der Pol chaotic
systems are obtained by replacing the amplitude or. the sine time function of their corresponding
exciting terms by the same function of chaotic states of a third nonautonomous or autonemous,
respectively. Numerical simulations, such as phase portraits, Poincaré maps and state error plots
are given. It is found that chaos excited chaos synchronizations exist for the fractional order
systems with the total fractional order both fess than and more than the number of the states of
the integer order-generalized van der Pol system. Synchronizations are obtained for lowest total
fractional'order 0.7 x2=1.4 where the third system is an autonomous system with three states.
Synchronizations also can be achieved for lowest total fractional order 0.3x2=0.6 where the

third system is a nonautonomous system with two states.

Anticontrol of chaos for integral and fractional order generalized nonautonomous van der
Pol system is obtained effectively by adding a constant term. By numerical analyses, such as
phase portraits, Poincaré maps and bifurcation diagrams, it is found that the periodic motions
of the system are transformed to chaotic ones effectively by the proposed anticontrol scheme
of adding a constant term. Adding two constant terms is not effective for systems with

fractional order less than one, but is effective for systems with fractional order more than one.
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APPENDIX

FRACTIONAL OPERATORS WITH APPROXIMATELY
2 db ERROR FROM @ =10-2TO 102 rad/sec
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