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摘       要 

隨者產品設計的越來越美觀，使得物品的曲線越來越複雜。電腦輔助

設計(Computer Aided Design, CAD)發展出使用參數化曲線來描述這些複雜

的曲線和曲面。由於輪廓複雜及電腦的進步，加工路徑已多由 CAD 直接轉

換。早期參數化曲線是被轉換成一條條的近似直線，但如此會造成需要大

量的記憶體。因此需要把參數式曲線插值放入電腦數值控制工具機

(Computer Numerical Control, CNC)內部作即時的插補。 

而針對參數式曲線有許多不同方向的研究，如位置插值、或是進而考慮

到速度控制、加減速控制、減少弦長誤差、或考慮曲線弧長。而這些研究

似乎無法兼顧等速及弦長誤差，因此本論文提出了一個不同的曲線插值方

法，在容許徑向誤差下，使曲線降低弦長誤差且又盡量維持等速。數值模

擬與實驗均顯示，這個方法可以有效改善曲線插值的精度。 

 

關鍵字: 曲線插值器、弦高誤差、速度控制、CNC 

 i



 A Parametric Interpolator with Minimal Contouring 

Position Errors for NC Machining 

Student：Shao-En Sun     Advisor：Dr. Wei-Hua Chieng 

 
Institute of Mechanical Engineering 

National Chiao Tung University 

Abstract 

In modern CAD/CAM systems profiles or curves for parts like dies, vanes, 

aircraft turbines, shoes, mobile phones, etc., are usually represented in 

parametric forms. As conventional CNC machines only provide linear and 

circular interpolators. The parametric curve is approximated by a lot of line 

segments and sent to CNC systems. It causes a lot of computer memories. Thus, 

it is necessary to embed the parametric interpolation inside CNC machine to 

achieve real-time parametric interpolation. 

 There are a lot of researches about parametric curves, like position 

interpolation, constant speed interpolation, acceleration and deceleration control, 

reducing the chord error, and or concerning about the arc length of the curves. 

But these researches didn’t consider the issues of both achieving minimal chord 

error and maintaining the constant speed. This article proposes a method to 

decrease the chord errors while maintaining a constant speed under a radial error. 

The simulation and the experimental results show that the proposed method 

effectively improves the interpolation accuracy in terms of the contouring 

position error and maintains speed accuracy at the specified level. 
Keywords: parametric interpolator, chord height error, speed control, CNC 
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Chapter 1 Introduction 

     

   In modern CAD/CAM(computer aided design/manufacturing) systems, such 

as Pro/ENGINEER, SolidWorks, etc., profiles or curves for parts like dies, vanes, 

aircraft models, shoes, mobile phones, etc., are usually represented in parametric 

forms. As conventional CNC (Computer Numerical Control) machines only 

provide linear and circular interpolators, the CAD/CAM systems have to 

transfer a curve into a lot of line segments, and sent to CNC systems. Such 

linearized-segmented contours processed on traditional CNC systems are 

undesirable in real applications as follows: 

 The transmission error between CAD/CAM and CNC systems for a lot of 

data may be happened, i.e. lost data and noise perturbation; 

 The discontinuity of segmentation deteriorates surface accuracy; 

 The motion speed becomes unsmooth because of the linearization of the 

curve in each segment, especially in acceleration and deceleration. 

As the generated curves or profiles may be in a parametric from, there is only 

parametric curve information is required to be efficient transferred among 

CAD/CAM/CNC systems as shown in Fig.1.1. 

 

1.1 Literature review 

There are a lot researches about parametric curves interpolation. Hartley and 

Judd [2] and Bedi et al. [3] proposed position interpolation, Huang and Yang [5] 

developed first order approximation interpolation using Taylor expansion. Yang 

and Kong [6] proposed a parametric interpolator of second order approximation. 
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By analysis of CNC machine kinematics and the cutter path geometry, an 

improved interpolation algorithm in position, velocity, and acceleration was 

proposed by Chou and Yang [4] if the CNC machine kinematics model is known 

exactly. The speed controlled interpolation is proposed by Yeh and Hsu [8]. 

Concerning with the chord error, Yeh and Hsu [9] proposed adaptive feedrate 

interpolation. Furthermore, Tsehaw Tong et al. [10] developed an interpolator 

concerning the acceleration and deceleration during the adaptive feedrate. There 

are also researches concerned about arc length of the curve, such as those of 

Farouki et al.[11] and Richard et al. [12], and Brian Guenter and Richard 

Pareent [13]. 

 

1.2 Motivation 

 Aforementioned researches didn’t consider the issues of both achieving 

minimal chord error and maintaining the constant speed. Thus, this article 

proposes a method to decrease the chord errors while maintaining a constant 

speed under an allowable radial error. Regarding the chord error should be less 

than the error bound, we reference the previous research, adaptive feedrate 

interpolation[9], to limit the chord error. That makes the higher speed at the 

cutting, with concerning an error bound. 
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Chapter 2 Interpolation methods 

The definition of interpolation in CNC systems [15] is the passing of a 

curve or surface precisely through a set of data points, and/or by the insertion of 

intermediate information based on an assumed order or computation (for 

example, cutter paths are controlled by interpolation between fixed points by 

assuming intermediate points are on a line, a circle, or a parabola). Internal 

interpolation is the calculation of the points on a linear, circular, or parabolic 

contour carried out within the numerical controller itself. The start and end point 

of the contour, plus any necessary auxiliary points, are the only input data 

required by CNC systems. 

A common requirement of all manufacturing system is generate coordinated 

movement of the separately driven axes of motion in order to achieve the 

desired path of tool relative to the work-piece. This involves the generation of 

signals prescribing the shape of the produced part and their transmission as 

reference input to the corresponding control loops. Generation of these reference 

signals is accomplished by interpolators. NC systems contain hardware 

interpolators, which consist of digital circuits, whereas in CNC systems the 

interpolator is implemented in software. 

The interpolation method depends basically on the machining application. 

Machine tools that perform their operation in a stationary position need only 

point-to-point information without trajectory interpolation (e.g., boring or spot 

welding). For machining of cylindrical, axis-parallel or axis-vertical surfaces, 

simple one-axis controls without interpolation can be used (e.g., for milling and 

turning machines). For complicated piece part contour surfaces, interpolation 
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algorithms that calculate the relative movement between the tool and the 

work-piece are applied, Fig.2.1 

The requirements for interpolation algorithms can be summarized as 

follows: 

1. The interpolated curve has to approximate the desired piece part contour 

as close as possible. 

2. Lines and circles must to be interpolated very accurately. 

3. The cutter velocity has to be curve independent. 

4. The number of selected trajectory parameters should be as low as 

possible. Typical parameters are (a) start and finish positions, (b) circle 

center and radius, (c) path velocity, and (d) sample data rate. 

5. Each final position must be reached accurately to avoid divergence from 

the desired cuter path. 

6. The interpolation algorithms should be as simple as possible to allow 

high interpolation frequencies. 

 The task of interpolation consists of two parts. First, the continuous 

Cartesian time history of the desired trajectory is calculated. The inputs to this 

part are parameters that are needed by analytical algorithm for trajectory from 

the Cartesian coordinate space into the machine-specific coordinate space. This 

produces the time history for movement to calculate the final machine 

coordinates to filter and smooth the axis movements. For NC machines the 

following interpolation algorithms are used: 

 Linear interpolation 

 Circular interpolation 

 Quadratic interpolation 

 Cubic interpolation 
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 Interpolation with high-order polynomials 

 High-order polynomials are used to generate complex contours and surfaces. 

Manipulator devices and industrial robots need sophisticated interpolation 

algorithms to perform finishing and assembly operations. 

 Classical NC machines have hardwired interpolators made from logic 

circuits. For each interpolation method a dedicated algorithm is design and 

implemented. Usually, only a limited number of algorithms (i.e., linear and 

circular), in the form of hardwired logic circuits, are implemented. More flexible 

interpolators can be realized with fast, sophisticated computers. The type of 

interpolation, the sample data rate, and the desired accuracy are variable 

parameters. Software interpolators offer a high flexibility. Their use is of 

particular interest for the CNC concept, which was introduced in the early 

1970s. 

 

2.1 Errors 

 For two-axis control systems, the error occurred can be classified into 

contour error and tracking error. A measure of the accuracy is the contour error, 

which is defined as the distance difference between the required and actual path. 

The tracking error is the position between the reference point and the actual 

point. 

As the cutter moves in a straight path between contiguous interpolated 

points, two types of position errors may occur during parametric curve motion, 

the radial error and the chord error [8, 19], as shown in Fig.2.2. The radial error 

is the perpendicular distance between the interpolated points and the parametric 

curve. The chord error is the maximum distance between the interpolated line 
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and the parametric curve. The radial error is due to the truncation effect. With 

the development of computer for high precision applications, nowadays, the 

radial error can be ignored. 

2.2 Traditional interpolation method[19] 

With CNC, a computer is provided as part of controller to perform the basic 

NC functions. These functions include data processing, feedrate calculations, 

and interpolation between data point, leaving only the position- and 

velocity-control loops to the hardware controller. Interpolation is performed by 

means of a special routine that generates command signals for each segment of 

the produced part based upon the initial and final points and the type of 

curvature of the segment. Typical interpolators are capable of generating linear, 

circular, and occasionally parabolic and parametric curve paths. Elliptic 

interpolation is inapplicable in NC of machine tools but may be useful in other 

manufacturing systems such as laser-beam cutters. 

 Basically there are two types of CNCs: the reference-pulse, and the 

sampled-data systems (Fig.2.3). In the reference-pulse system, the computer 

produces a sequence of reference pulse for each axis of motion, each pulse 

generating a motion of one BLU (basic length unit). The accumulated number of 

pulse represents position, and the pulse frequency is proportional to the axis 

velocity. These pulses can either actuate a stepping motor in an open-loop 

system, or be fed as reference to a closed-loop system (Fig.2.4). With the 

sampled-data technique, the control loop of each axis is closed through the 

computer itself, which generates reference binary words. These two types 

require distinct interpolation routines in the control program to generate their 

corresponding reference signals (pulses or binary words). We will discuss the 
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interpolation by software. 

 

2.2.1 Linear interpolator 

As Fig.2.5 shown, given the start point (Ps) and the end point (Pe) the 

constant speed or feedrate V. The axial velocities satisfy the following equations: 
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2.2.2 Circular interpolator 
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x
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θ

=
=

            (2-3) 

Where 
R
tVt )()( =θ  and R is the radius of the circular arc. 

 The velocity components Vx and Vy are computed by the circular 

interpolator and are supplied as reference inputs to the computer closed loops. 

The circle generated in this case is actually comprised of straight line segment. 

At the beginning of each segment the references are supplied by the interpolator 

and the end of the segment is located with the aid of a feedback signal. 

Increasing the number of these segments improves the accuracy of the generated 

circle but increases the number of iterations, thus requiring more computer time. 

The optimal number of segments is the smallest one which maintains the path 

error within the required limit of one BLU. 

 Each iterations of algorithm correspond to an angle α, as is illustrated in 

Fig.2.6. The choice of the angle α depends on the interpolation method. All 
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methods employ the difference equation: 
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Where the coefficients A and B are given by  
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The corresponding segment is terminate at the point Xi+1, Yi+1, which is 

approximated by  
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Substituting Eqn.(2-4) into Eqn.(2-6) yields 

iii

iii

BXAYY
BYAXX

+=
−=

+

+

1

1
                (2-7) 

Eqn.(2-9) is the basic relationship which permits the calculation of a successive 

point based on the present one. 

 The main differences between the various interpolation methods are in the 

determination of α and in the approximation of the coefficients A and B in 

Eqn.(2-5a). Once the angle α is chosen, the interpolator routine proceeds, for 

each iteration, as follows: 

1. At each point Xi, Yi the interpolator calculate the coordinates of 

successive point Xi+1,Yi+1 according to Eqn.(2-7). The segment 

lengths are 

iiiii

iiiii
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and the corresponding velocities are 
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ii DSDS
i
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i

xi
DY VV            DX VV ==           (2-9) 

where 22
iii DYDXDS +=  

2. The values obtained from Eqn.(2-8) are the incremental positions, 

and those of Eqn.(2-6) are the velocities, or the reference words, for 

the present segment. These values are supplied to the software control 

loops. 

3. Upon completion of the segment, the routine increments the 

coordinates Xi and Yi. 

Since the angle α is relatively small, the chord length DS can be 

approximated by its arc length Rα, and the calculation of the velocities Vx 

and Vy can be simplified to  

i

i

DY 
DX 

KV
KV

yi

xi

=
=

            (2-10) 

where K = V/ (Rα). 

The error happened in linear interpolation is shown in Fig2.7(a) and the 

error happened in circular interpolation is shown in Fig.2.7(b). 

2.3 Parametric curves interpolation 

There are a lot of researches had been proposed about parametric curves 

interpolation. Shapitalni et al. [1] proposed the cure segments transfer between 

CAD and CNC systems. Huang and Yang [5] developed a generalize 

interpolation algorithm for different parametric cures with improve speed 

fluctuation. Yang and Kong [6] studied both linear and parametric interpolators 

for machining process. Speed-controlled interpolation algorithms proposed by 

Yeh and Hsu [8]. Adaptive-feedrate interpolation confined cord error is also 
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proposed by Yeh and Hsu [9]. In this chapter we will concern about this papers. 

In these CNC systems, parametric curves are profiles in different formats 

like the Bezier curve, B-spline, cubic spline, and NURB (Non-Uniform Rational 

B-spline). The general parameter iteration method used is  

)(1 iii uuu ∆+=+  

Where ui is the present parameter, ui+1 is the next parameter, and ∆(ui) is the 

incremental value. 

 Suppose C(u) is the parametric curve representation function and time 

function u is the curve parameter as ii u  )  tu( =  and 1i1i ++ u  )  tu( =   

By using Taylor’s expansion, the approximation up to the second derivative 
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As the contouring speed along the curve or the curve speed V(ui) can be 

represented as 
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If we know V(ui), we can represent the first derivative of u with t as 
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By taking the derivative of Eqn.(2-12), the second derivative of u with t is 
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By substituting Eqn.(2-15) into Eqn.(2-14), the second derivative of u becomes  
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By substituting Eqn.(2-19) into Eqn.(2-18), the second derivate of u becomes 
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The first- and second-order approximation interpolation algorithms are obtained 

by substituting Eqn.(2-13) and (2-18) into Eqn.(2-11). 

By neglect the high order term, the interpolation algorithms in Eqn.(2-11) can be 

processed as follows: 
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 The first-order approximation algorithm [1, 4] 
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1                                (2-19) 

where iis ttT −= +1  

 The second-order approximation algorithm [4] 

2
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2.3.1 Chord error [9] 

 Although the first-order approximation interpolation algorithm makes the 

curve speed almost equal to the desired value V(ui), the chord error, exists and 

may become unacceptable if an improper curve speed V(ui) is given. In order to 

keep the chord error within a tolerance range, the curve speed V(ui) has to be 

changed adaptively depending on the curvature during the interpolation process. 

To determine the relation between the chord error and the curve speed, the 

circular approximation is thus applied. Suppose the section curve of u  

is an arc of circle with the radius ρ

)u u[∈ 1ii +

i at u = ui as shown in Fig.2.8. Where, ρi = 

1/Ki is 

3

2

2

2

2

)(

)()()()(

i

i

uu

uu

xyyx

i

du
udC

du
uCd

du
udC

du
uCd

du
udC

K

=

=

⋅−⋅

=              (2-21) 
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where P(ui) denotes the interpolated point on circle at u = ui, P(ui+1) the 

estimated interpolated point on curve at u = ui+1, C(ui) the interpolated point on 

curve at u = ui, and C(ui+1) the interpolated point on curve at u = ui+1 . 

 Since, )()(C ii uPu = , and defining Li as iii LuPuP =−+ )()( 1 , the chord error 

ERi is derived as  

2
2

2
⎟
⎠
⎞

⎜
⎝
⎛−−≅ i

iii
L

ER ρρ               (2-22) 

where Li can be referred to the curve speed. It can be seen that the chord error is 

functional of the curve speed and the curvature of the curve. Taking partial 

derivatives with respect to the two parameters yields the change of the chord 

error. 

( ) )(
2

)(
2

V
VT

L
L
FFER

ii

s
i

ii

i
i

i
i

i
i ∆

−
+∆−

−
=∆

∂
∂

+∆
∂
∂

≈∆
δρ

ρ
δρ

δ
ρ

ρ
    (2-23) 

2.3.2 Radial error 

In case that the interpolation point P(ui) does not lie on the parametric curve, 

the radial error occurs. The radial error εi is defined as the minimum distance 

between the interpolation point and the parametric curve. As shown in Fig.2.9, it 

follows the curve offset condition [16] that  

 )()()( uKuCuP ii ε+=    (2-24) 

where 

 0
)()( 1 =

− +

du
uPuCd i    (2-25) 

Unlike the chord error, the radial error defined in Eqn.(2-24) may sometimes be 

negative which indicates an opposite direction from the normal vector of the 

nearest point C(u). 
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2.4 Introducing B-Spline[17] 

 In order to apply B-spline curves, the B-spline curve is briefly introduced in 

this section. There are some basic equations of B-spline as follows: 

The B-spline is defined as that 

∑
=

=⎥
⎦

⎤
⎢
⎣

⎡
=

n

i
iki

y

x CuN
uC
uC

uC
0

, )(
)(
)(

)(           (2-26) 

where u is the parameter of the curve, and k is the degree of the curve. Ci is the 

control point of the curve, and Ni,k(u) is the i-th of order k basis function. In 

order to describe a B-spline curve, we should have a series of control points [C0, 

C1,…,Cn], a series of control knots [u0, u1,…, um], and the degree of the curve. 

Using the knot vector and the degree, the basis function can be decided. The 

basis function is definition as follows: 

⎩
⎨
⎧ <≤

= +

   otherwise     ,0
    ,1

)( 1
0,

ii
i

uuu
uN            (2-27) 
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+++
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+ −
−

+
−

−
=     (2-28) 

After evaluating the basis function, the point C(u) can be find by substituted u 

into the Eqn.(2-26). It also can use the de Boor algorithm to find the point on 

curve. 

 Using Eqn.(2-21), and Eqn.(2-22) to find the chord error, the first order 

derivative and second order derivative should be found first. Taking the first 

derivative of Eqn.(2-26) yields 

∑
=

′=
n

i
iki CuN

du
udC

0
, )()(

             (2-29) 

Since the control points is not function of u, that the first derivative of k-th order 
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basis function should be determined. And the first order derivative is 

)()()( 1,1
11

1,, uN
uu

kuN
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+++
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−
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=′     (2-30) 

In the same way, the second order derivative can be found as 

∑
=

′′=
n

i
iki CuN

du
uCd

0
,2
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)()(
             (2-31) 
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+
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−′
−

=′′       (2-32) 

After finding first order derivative and second order derivative of the curve, the 

curvature can be determined by using eqn.(2-21), and the chord error can be 

determined by using eqn.(2-22). 
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Chapter3 A Parametric Interpolator with Minimal 

Contouring Position Error for NC Machining 

Interpolation for constant speed has been solely achieved in the following 

way. As shown in Fig3.1, the interpolation points can be determined by using a 

small circle, intersecting the parametric curve consecutively. If the points must 

lie on the curve, the interpolation points are uniquely determined by above 

discussion. Smaller the radius corresponds to smaller interpolation error. If the 

speed is bounded in a range then the smallest chord error is achieved using the 

smallest speed allowed. For a prescribed constant speed, we should allow 

interpolation points be deviated from the curve to minimize the error. A 

conceptual example is shown in Fig3.2. In the case of no over cut, the inner 

rectangle is the best solution. But in the case of the smallest contour error, it may 

be not the best. The outer rectangle is better than the inner one, since it has less 

chord error. If there is an allowable tolerance in the curve, such as the surface 

roughness, we can find the better interpolation with less chord error at the same 

speed, as shown in Fig3.3. 

 

3.1 Contouring Position Error 

    The maximum contouring position error may be defined as the maximum 

error between the cutter path and the parametric curve to be machined. The 

contouring position error shall include not only the chord error but also the 

radial error. In a particular case that an unit circle is made of parametric curve, 

as shown in Fig.3.4(a), the chord error is 1 – cos(π/8) = 0.07612, the chord 

length is sin(π/8) = 0.38268, and when radial error is 0. The maximum 

contouring position error is 0.07612 as well. When a nonzero radial error is 
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allowed, the interpolation points may no longer be located on the parametric 

curve. For instance, the interpolation points are located so that the absolute value 

of radial error is equal to the chord error, as shown in Fig.3.4(b). The resulting 

chord error is 0.03957, radial error is -0.03957, and the maximum contouring 

position error is 0.03957 as well. The corresponding chord length is 0.39782. As 

a comparison, the second method yields a (0.07612 – 0.03957) / 0.07612 = 48% 

improvement at the maximum contouring position error. 

 

3.2 Minimum contouring position error 

Following the idea from the previous chapter, one may locate the 

interpolation point on the offset curve of the parametric curve 

 )()()( iiii uKuCuP ε+=     (3-1) 

The radial error is added to minimize the contouring position error. It is 

convenient to set the equivalence of the absolute value of the radial error and the 

chord error as shown in Fig.3.5. The next interpolation point is located with the 

following equation. 

 )()()( 111 +++ ′−= iiii uKuCuP δ     (3-2) 

The contouring position error iδ ′  derived from C((ui+ui+1)/2) is different 

from iδ  in Eqn.(2.24) providing that ii δε ′−=+1 . In Fig.3.5, the point A(ui) on the 

chord is defined that  

)
2

()
2

()( 11 ++ +′+
+

= ii
i

ii
i

uuKuuCuA δ     (3-3) 

It may be assumed for now that 

 
2

)()()( 1++
≈ ii

i
uPuPuA     (3-4) 
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The validity of assumption made in Eqn.(3-4) will be verified against different 

cases in the following sections. Combining Eqns.(3-1) to (3-4), we have 

 
2

)()()()(
 )

2
()

2
( 1111 ++++ ′−++

≈
+

′+
+ iiiiiiii

i
ii uKuKuCuCuu

K
uu
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δ     (3-5) 

According to Fig.3.5, it is found that 
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Substituting Eqn.(3-5) into Eqn.(3-6), we have 

 
2
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2

(  )
2

)()
2

(( 111 iiii
i
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i

uKuuKuKuuK εδδ +
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≈+
+′ +++     (3-7) 

 

3.2.1 Pseudo-inverse method  

Since there are three normal vectors of different directions, Eqn.(3-7) can 

only be solved by a pseudo-inverse method [18] as follows. 

 ( ) ( )
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≈′ ε

δδ     (3-8) 

where 

 
2

)()
2

( 11 ++ +
+

= iii uKuuKB     (3-9) 

Combined with ii δε ′−=+1 , Eqn.(3-7) yields a vector form as follows.  

 2
1

1
)()(

2
1 

B
uKBuKB iiii

ii
⋅−⋅

+−≈ +
+

εδδε    (3-10) 

3.2.2 Half-Tangent method  

Eqn.(3-7) may be solved by projecting to an arbitrary vector, for instance 

the normal vectors K(ui). Let the angle made by made by normal vectors K(ui) 

and )
2

( 1++ ii uu
K  be denoted by θi . As a result the angle made by normal vectors 

)
2

( 1++ ii uu
K  and K(ui+1) will also be closed to θi. Eq. (3-7) is then written into 

  
2

cos  )
2
2cos(cos i

ii
i

ii
εθδθθδ +≈+′    (3-11) 
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Let v denote the square of half-tangent of θi that 

 
2

tan2 i
iv θ

=    (3-12) 

The sinusoidal functions in Eqn. (3-11) may be expressed as follows. 

 
i

i
i v

v
+
−

=
1
1cosθ  
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2

)1(
)61(

2cos
i

ii
i v

vv
+
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=θ  

Substituting the above relations into Eqn.(3-11), we obtain that 

  2

22

1 63
)1()22(  

ii

iiii
ii vv

vv
−−

++−
−≈′−=+

εδδε    (3-13) 

For small angle of θi, Eqn.(3-13) may be expressed into 

 iii εδε
3
1

3
2  1 −

−
≈+     (3-14) 

 

3.2.3 Verification Example 

In a case that the unit circle, i.e. θi = 1, is perfectly matched with the 

parametric curve in the closed interval [C(ui), C(ui+1)] as shown in Fig.3.6(a). It 

is obtained that ( ) i
i

i
iii v

v
ρρθδ

+
=−=

1
2

cos1 . For a given radial error iii v ρε −= , it is 

obtained from Eqn.(3-10) as well as Eqn. (3-13) that iiii v ρδε −=−=+ '1  which is 

agreed with the case as shown in Fig.3.4(b) that iθ  = π/8 and 

iiii ρδεε 3957.0'1 =−== + . Thus the validity of Eqn.(3-7) as well as the assumption 

made in Eqn.(3-4) are verified for perfect second-order approximation cases 

providing that iii v ρε −= . It is shown in Fig.3.7 that result of Eqn.(3-14) yields 

less than 5% error from that of Eqn.(3-10) for θi < 22º. Eqn. (3-14) provides a 
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good approximation of Eqn.(3-10) and Eqn.(3-13). 

Let a parameter iη  denote the ratio between iε  and iiv ρ  that  

 iiii v ρηε −=    (3-15) 

where ∞≤≤ iη0 . It is obtained from Eqn.(3-14) and iii v ρδ 2≈  for small angle of 

　 that 

 
3

)4(
1

iii
ii

v ρη
δε

−
−≈′−=+    (3-16) 

where  is defined in Eqn.(3-12). Since the radial errorsiv 1+iε  and iε  are 

mismatched, the true chord error may vary from i'δ  to i"δ  as shown in Figure 

3.6(b). It is possible to find a point )( 1+′ iuP , which results a matched radial error 

as iε , along the extension line from P(ui) and P(ui+1). The angle 

 is denoted by )()(' 11 ++∠ ii uOPuP φ . The true chord error i"δ  may be determined 

from a direction rotated from )
2

( 1++ ii uuK  by an angle φ / 2. The true chord 

error ii '))2/sin(1(" δφδ −=  is less than the radial error 1+iε , thus the contouring 

position error is not higher than 1+iε  derived from Eqn.(3-16). 

It is shown in Fig.3.8 that result of Eqn.(3-16) match very well to that of 

Eqn.(3-10) and Eqn.(3-13). Due to simplicity of Eqn.(3-16) for real-time 

application, Eq.(3-16) is then used in the following derivation. 

 

3.3 Confining contouring position error 

    Eqn.(3-12) shows the relation between  and iv iθ , where iθ  is the 

intersection angle between K(ui) and )
2

( 1++ ii uuK . Following the previous 
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assumption that the angle between )
2

( 1++ ii uuK  and K(ui+1) is approximately iθ , 

iθ  is then determined by 
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The contouring position error derived from Eqn.(3-14) and iii v ρδ 2≈  for small 

angle of θ yields 

 ⎟
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The curve speed V(ui) corresponding to the contouring position error ERi is then 

derived as 

 ⎟
⎟
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By setting ERi as the tolerance value of the contouring position error, V(ui) 

is thus obtained as the acceptable curve speed. Eqn.(3-20) implies that the curve 

speed V(ui) should be changed according to the tolerance value of the contouring 

position error ERi and the curvature ρi. The following feedrate control law is 

proposed for parametric curves: 

    (3-21) 
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≤
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FuVuV
FuVFuV
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where F is the given feedrate command. If the instantaneous radius of curvature 

is small enough, the curve will lead to exceed the tolerance and the proposed 

interpolation algorithm will automatically reduce the feedrate F as 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−

i

ii

s

i ER
T ρ

ερ
4

3tan2sin2 1  to meet the specified contouring position error. 
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Chapter 4 Simulation and Discussions 

 The simulation of the proposed interpolator is implemented in Visual C++ 

6.0 and is executed on a personal computer with Intel(R) Pentium(R) 4 CPU 

1500MHz and 640MB RAM. Figure 4.1 shows the flowchart of the proposed 

interpolator, where the yellow region is referred to the algorithm of adaptive 

feedrate. The proposed interpolator is applied to a B-spline parametric curve, an 

“8” figure path, with three degrees as shown in Fig.4.2. The control points, and 

vector of B-spline for provided example are assigned as follows: 

 The ordinal control points are 

⎥
⎦

⎤
⎢
⎣

⎡−
⎥
⎦

⎤
⎢
⎣

⎡
−
−

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡−
⎥
⎦

⎤
⎢
⎣

⎡
−
−

⎥
⎦

⎤
⎢
⎣

⎡
150
150

,
150
150

,
0
0

,
150
150

,
150

150
,

0
0

,
150
150

,
150
150

,
0
0

and (mm) 

 The knot vector is using uniform knot 

The sampling time in the interpolation interval is 0.025 second. The feedrate 

command is given as 200 mm/sec (12m/min), 400 mm/sec (24m/min), and 800 

mm/sec (48m/min). 

Figure 4.3(a) shows results in terms of chord error for three algorithms, the 

uniform interpolation, the first order approximation interpolation, and the 

minimal contouring position error (MCPE) interpolation, with feedrate 12 

m/min. And Fig.4.3(b) shows results in terms of chord error for the adaptive 

feedrate (AD) interpolation and the minimal contouring position error 

interpolation with adaptive feedrate (ADMCPE)with feedrate 12 m/min and the 

error bound 0.05 mm. Figure 4.4(a) and (b) show the speed fluctuation, and 

Fig.4.5(a) and (b) show the acceleration fluctuation. Figure 4.6(a)(b), 

Fig.4.7(a)(b), and Fig.4.8(a)(b) illustrate the simulation results of the error, 
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speed and acceleration fluctuation with feedrate 24 m/min, and Fig.4.9(a)(b), 

Fig.4.10(a)(b), and Fig.4.11(a)(b) for feedrate 48 m/min, respectively. Results 

are summarized in Table 4.1 and Table 4.2. Discussions of the simulation results 

are listed as follows: 

1. The proposed interpolation algorithm achieves better interpolation accuracy 

than first approximation interpolation algorithm. According to Fig.4.3(a) and 

Fig.4.6(a), it found that the proposed algorithm yields less contouring error at 

almost all corresponding positions. Also shown in Table 4.1, it can be found 

that the proposed algorithm has been improved about 40%~45% at the 

root-mean-square accuracy. The reason for the 48 m/min is sampling rate for 

the speed is too low. The proposed algorithm is better in accuracy than first 

approximation interpolation. 

2. The proposed interpolation algorithm achieves less speed changes. According 

to Fig.4.4(a), Fig.4.7(a) and Fig.4.10(a), it found that the proposed algorithm 

and the first approximation interpolation are better than uniform interval 

interpolation. 

3. Compared the proposed interpolation algorithm with adaptive feedrate with 

the adaptive feedrate interpolation, it can be found the proposed interpolation 

achieves less path time as shown in Fig.4.3(b), Fig.4.6(b), and Fig.4.9(b). It 

is also shown in Table 4.2 the proposed interpolation algorithm performs 

higher speeds. And it causes the proposed algorithm need less time to finish 

the figure. Compared with different feedrate, it can be found that with the 

feedrate increasing, the chord error increasing, and the path time difference 

between the adaptive feedrate interpolation and the proposed interpolation 

with adaptive feedrate become more and more apparent.  

4. The acceleration and deceleration of different algorithms, the proposed 
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interpolation with adaptive feedrate and adaptive feedrate interpolation, are 

compared in Fig.4.5(b), Fig.4.8(b) and Fig.4.11(b). It can be found that the 

acceleration and deceleration time is less than adaptive feedrate, and this 

caused the maximum value is lightly bigger. 

5. The computer time is shown in Table 4.3. It can be found the uniform 

interval interpolation and first approximation interpolation is very fast. And 

the minimal contouring position error interpolation spends more time. It is 

because these algorithms need extra time to find the minimal contouring 

position errors. 
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 Chapter 5 Experiments 

Experiments have been setup to demonstrate the performance of proposed 

interpolator. The experimental layout consists of two pairs of motors and motor 

drives, a motion card (HAL-8504) and an industrial PC with 2.4GHz P4. By 

using a Windows-based universal programmable control software suite, Hurco 

WINPC32 r2.1 (SP8), experiments are performed on a Windows XP-Embedded 

(SP2) platform. 

The process of experiment is described as follows: 

1. Reading position data form proposed algorithm program. 

2. Using the interface program to input command to drive of motors. 

3. Reading the feedback signals of encodes. 

The experimental layout is shown in Fig.5.1as well as Fig.5.2. 

 The sampling period time of motor command is 500µs (i.e. 2000Hz), and 

the sampling time of receiving encoder data is 2ms (i.e. 500Hz). In order to find 

the result, a sampling period 25ms (i.e. 40Hz) is chosen since 500/40 > 4 for 

Nyquist sampling theory. In order to fit motor command frequency, 49 points are 

inserted between adjacent point. The chord error is confined to within 50µm 

during the interpolation process. 

Figure 5.3(a) and (b) show the speed profile of the experimental results at 

the speed 12m/min, and Fig. 5.4(a) and (b) at the speed 24 m/min, and Fig.5.5(a) 

and (b) at the speed 48 m/min. Compared these figures with Fig.4.4(a)(b), 

Fig.4.7(a)(b), and Fig.4.10(a)(b), it can be found that the profile is similar but 

with a little time delay. Taking 48 m/min, for example, to plot the x-y diagram is 

shown in Fig.5.6(a), and a certain region is zoomed as shown in Fig.5.6(b) to 
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illustrate the detail. It can be found that the chord error of proposed interpolation 

is less than first approximation interpolation. 

 We want to find the chord error to verify the algorithm. An approximated 

method [20] is applied to estimate the chord error from data of experimental 

results. Using uniform interval interpolation with smaller ∆u to generate the 

curve data. Projection the curve data on the motor moving path, as shown 

Fig.5.7. If projection is out of the moving path segment, projection on the next 

moving segment. By doing so, it can be found several distance between the 

curve and the moving segment. Therefore, choosing the maximum distance is 

the chord error of the segment. The Fig.5.8(a) shows the chord error at 12 m/min 

using the first approximation interpolation, and Fig.5.8(b) shows the chord error 

using the minimal contouring position error interpolation. The Fig.5.9(a)(b) is 

the chord error at 24 m/min. observing the Fig5.8(a)(b) and 5.9(a)(b), it can be 

found that the chord error of the proposed algorithm is really less than the first 

approximation interpolation. 
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Chapter 6 Conclusion 

 For parametric curves, the contouring position error in terms of position is 

mainly determined by the radial error and the chord error. With the computer 

becomes much powerful, it is usually achieved very small radial error that can 

be ignored. For the reason, the chord error is the main concern in general 

interpolation algorithm. The proposed interpolation achieves better machining 

precision by considering minimization of the contouring position error. The 

simulation as well as the experimental results show that the proposed 

interpolation algorithm effectively improves the interpolation accuracy in terms 

of the contouring position error and maintains speed accuracy at the specified 

level. 
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Fig.1.1 (a) Conventional method for machining curves (b) Currently more      
  efficient method. 
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Fig.2.1 Interpolation algorithms and their applications. 
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Fig.2.2 Radial and chord errors. 
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(a) 

 
(b) 

Fig.2.3 (a) reference-pulse system and (b) sampled-data system. 
 

 

 
(a) 

 
(b) 

Fig.2.4 (a) Open-loop digital control and (b) closed-loop digital control. 
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Fig.2.5 Linear interpolation. 
 

 

Fig.2.6 Circular interpolation. 
 

 
(a)         (b) 

Fig.2.7 (a) Error in linear interpolation and (b) error in circular interpolation, 
where Pref is the reference and P is the arrived point, e is the tracking error, and ε 
is the contour error. 
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Fig.2.8 Estimation of the next interpolated point. 
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Fig.2.9 Estimation the radial error. 
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Fig.3.1 Constant speed parametric curve interpolation. 
 

 
Fig.3.2 Interpolating a circle. 
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Fig.3.3 Interpolating a circle confining to a tolerance. 
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Fig.3.4. The contouring position error. 
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Fig.3.5 Estimation of the next interpolation point. 
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Fig.3.6. Verification Examples (a) perfect circle approximation and (b) 

mismatched radial errors. 
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Fig.3.7. Comparison of εi+1 evaluations. 
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Fig.3.8. Comparison of εi+1 evaluations 
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Fig.4.1. The flowchart of program. 
 

 

 

 

 

 

 

 

 

 

 
Fig.4.2. The “8” figure path. 
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(a) 

 
 

 
(b) 

 
Fig.4.3. The chord errors of simulation results at 12 m/min (a) without adaptive 

feedrate (b) with adaptive feedrate. 
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(a) 

 
 

 
(b) 

 
Fig.4.4. The speed profile of simulation results at 12 m/min (a) without adaptive 

feedrate (b) with adaptive feedrate. 
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(a) 

 
 

 
(b) 

 
Fig.4.5. The Acceleration profile of simulation results at 12 m/min (a) without 

adaptive feedrate (b) with adaptive feedrate. 
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(a) 
 
 

 
(b) 

 
Fig.4.6. The chord errors of simulation results at 24 m/min (a) without adaptive 

feedrate (b) with adaptive feedrate. 
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(a) 

 
 

 
(b) 

 
Fig.4.7. The speed profile of simulation results at 24 m/min (a) without adaptive 

feedrate (b) with adaptive feedrate. 
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(a) 

 
 

 
(b) 

 
Fig.4.8. The Acceleration profile of simulation results at 24 m/min (a) without 

adaptive feedrate (b) with adaptive feedrate. 
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(a) 

 
 

 
(b) 

 
Fig.4.9. The chord errors of simulation results at 48 m/min (a) without adaptive 

feedrate (b) with adaptive feedrate. 
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(a) 

 
 

 
(b) 

 
Fig.4.10. The speed profile of simulation results at 4824 m/min (a) without 

adaptive feedrate (b) with adaptive feedrate. 
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(a) 

 
 

 
(b) 

 
Fig.4.11. The Acceleration profile of simulation results at 48 m/min (a) without 

adaptive feedrate (b) with adaptive feedrate. 
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Fig.5.1. The hardware layout of the experiment. 

 
 
 
 

 
Fig.5.2 The equipment of experiment 
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(a) 

 

 
(b) 

 
Fig.5.3. The encoder speed of experimental results at 12 m/min (a) without 

adaptive feedrate (b) with adaptive feedrate. 
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(b) 

Fig.5.4. The encoder speed of experimental results at 24 m/min (a) without 
adaptive feedrate (b) with adaptive feedrate. 
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(a) 

 

 
(b) 

Fig.5.5. The encoder speed of experimental results at 48 m/min (a) without 
adaptive feedrate (b) with adaptive feedrate. 
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(b) 

Fig.5.6. The encoder position of experimental results at 48 m/min (a) first 
approximation interpolation and minimal contour position error 
interpolation (b) the detail region. 
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Fig 5.7 Chord error estimation 
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(a) 

 

 
(b) 

 
Fig 5.8 Chord error estimation at 12 m/min (a) first approximation interpolation 

(b) minimal contour position error interpolation 
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(a) 

 

 
(b) 

 
Fig 5.9 Chord error estimation at 24 m/min (a) first approximation interpolation 

(b) minimal contour position error interpolation 

 60



Tables 
Table 4.1 Simulation results for different algorithms. 

 

Chord error (um) Speed (m/min) 
Curve speed Interpolation 

type Max Min RMS Max Min RMS 
Path 

Time (s)

∆u=0.0535 Uniform 55.64 0.144 29.82 13.54 6.06 10.33 4.675 
F=12 m/min First approx. 149.05 0.020 49.36 10.49 9.54 10.03 4.7 
F=12 m/min MCPE 80.44 0.023 25.44 10.51 9.57 10.03 4.7 
∆u=0.0107 Uniform 228.20 0 123.21 27.36 12.25 20.91 2.325 

F=24 m/min First approx. 600.57 1.370 196.48 22.00 18.30 20.11 2.325 
F=24 m/min MCPE 344.09 0.338 107.34 22.12 18.43 20.14 2.325 
∆u=0.0217 Uniform 949.62 9.784 508.25 55.23 24.75 42.44 1.15 

F=48 m/min First approx. 2405.99 4.894 792.81 48.10 34.23 40.55 1.15 
F=48 m/min MCPE 2451.32 0.395 779.08 48.42 35.04 40.83 1.15 

 
 

Table 4.2 Simulation results for different algorithms with adaptive feedrate. 
 

Chord error (um) Speed (m/min) 
Curve speed Interpolation 

type Max Min RMS Max Min RMS 
Path 

Time (s)

F=12 m/min AD 53.22 0.016 29.95 10.34 5.77 9.128 5.05 
F=12 m/min ADMCPE 57.69 0.017 21.49 10.50 8.07 9.83 4.75 
F=24 m/min AD 54.53 0.411 44.74 20.53 5.77 14.64 3.45 
F=24 m/min ADMCPE 61.38 0.303 38.53 21.00 8.05 17.21 2.825 
F=48 m/min AD 59.21 5.308 48.64 40.34 5.75 17.95 3.05 
F=48 m/min ADMCPE 65.10 2.365 48.82 41.23 8.05 23.50 2.225 

 
 

Table 4.3 Simulation results of computer time for different algorithms. 
 

 uniform First approx. MCPE AD ADMCPE
Average step time (ms) 0.0241 0.0234 0.159 0.126 0.194 
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