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Abstract

In modern CAD/CAM systems profiles or curves for parts like dies, vanes,
aircraft turbines, shoes, mobile phones, etc., are usually represented in
parametric forms. As conventional ‘CNC machines only provide linear and
circular interpolators. The parametric curve-is approximated by a lot of line
segments and sent to CNC systems. It causes a lot of computer memories. Thus,
it is necessary to embed the’parametric interpolation inside CNC machine to
achieve real-time parametric interpolation.

There are a lot of researches about parametric curves, like position
interpolation, constant speed interpolation, acceleration and deceleration control,
reducing the chord error, and or concerning about the arc length of the curves.
But these researches didn’t consider the issues of both achieving minimal chord
error and maintaining the constant speed. This article proposes a method to
decrease the chord errors while maintaining a constant speed under a radial error.
The simulation and the experimental results show that the proposed method
effectively improves the interpolation accuracy in terms of the contouring

position error and maintains speed accuracy at the specified level.

Keywords: parametric interpolator, chord height error, speed control, CNC
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Chapter 1 Introduction

In modern CAD/CAM(computer aided design/manufacturing) systems, such
as Pro/ENGINEER, SolidWorks, etc., profiles or curves for parts like dies, vanes,
aircraft models, shoes, mobile phones, etc., are usually represented in parametric
forms. As conventional CNC (Computer Numerical Control) machines only
provide linear and circular interpolators, the CAD/CAM systems have to
transfer a curve into a lot of line segments, and sent to CNC systems. Such
linearized-segmented contours processed on traditional CNC systems are
undesirable in real applications as follows:
® The transmission error betweensCAD/CAM and CNC systems for a lot of

data may be happened, i.€. lost data and noise perturbation;
® The discontinuity of segmentation deteriorates surface accuracy;
® The motion speed becomes ‘unsmooth because of the linearization of the

curve in each segment, especially in acceleration and deceleration.
As the generated curves or profiles may be in a parametric from, there is only
parametric curve information is required to be efficient transferred among

CAD/CAM/CNC systems as shown in Fig.1.1.

1.1 Literature review

There are a lot researches about parametric curves interpolation. Hartley and
Judd [2] and Bedi et al. [3] proposed position interpolation, Huang and Yang [5]
developed first order approximation interpolation using Taylor expansion. Yang

and Kong [6] proposed a parametric interpolator of second order approximation.



By analysis of CNC machine kinematics and the cutter path geometry, an
improved interpolation algorithm in position, velocity, and acceleration was
proposed by Chou and Yang [4] if the CNC machine kinematics model is known
exactly. The speed controlled interpolation is proposed by Yeh and Hsu [8].
Concerning with the chord error, Yeh and Hsu [9] proposed adaptive feedrate
interpolation. Furthermore, Tsehaw Tong et al. [10] developed an interpolator
concerning the acceleration and deceleration during the adaptive feedrate. There
are also researches concerned about arc length of the curve, such as those of
Farouki et al.[11] and Richard et al. [12], and Brian Guenter and Richard
Pareent [13].

1.2 Motivation

Aforementioned researches didn’t consider the issues of both achieving
minimal chord error and maintaining‘the constant speed. Thus, this article
proposes a method to decrease the chord errors while maintaining a constant
speed under an allowable radial error. Regarding the chord error should be less
than the error bound, we reference the previous research, adaptive feedrate
interpolation[9], to limit the chord error. That makes the higher speed at the

cutting, with concerning an error bound.



Chapter 2 Interpolation methods

The definition of interpolation in CNC systems [15] is the passing of a
curve or surface precisely through a set of data points, and/or by the insertion of
intermediate information based on an assumed order or computation (for
example, cutter paths are controlled by interpolation between fixed points by
assuming intermediate points are on a line, a circle, or a parabola). Internal
interpolation is the calculation of the points on a linear, circular, or parabolic
contour carried out within the numerical controller itself. The start and end point
of the contour, plus any necessary auxiliary points, are the only input data
required by CNC systems.

A common requirement;of all manufacturing system is generate coordinated
movement of the separately driven axes of:motion in order to achieve the
desired path of tool relative to the work-piece. This involves the generation of
signals prescribing the shape of the produced part and their transmission as
reference input to the corresponding control loops. Generation of these reference
signals is accomplished by interpolators. NC systems contain hardware
interpolators, which consist of digital circuits, whereas in CNC systems the
interpolator is implemented in software.

The interpolation method depends basically on the machining application.
Machine tools that perform their operation in a stationary position need only
point-to-point information without trajectory interpolation (e.g., boring or spot
welding). For machining of cylindrical, axis-parallel or axis-vertical surfaces,
simple one-axis controls without interpolation can be used (e.g., for milling and

turning machines). For complicated piece part contour surfaces, interpolation



algorithms that calculate the relative movement between the tool and the
work-piece are applied, Fig.2.1

The requirements for interpolation algorithms can be summarized as
follows:

1. The interpolated curve has to approximate the desired piece part contour

as close as possible.

2. Lines and circles must to be interpolated very accurately.

3. The cutter velocity has to be curve independent.

4. The number of selected trajectory parameters should be as low as
possible. Typical parameters are (a) start and finish positions, (b) circle
center and radius, (c) path velocity, and (d) sample data rate.

5. Each final position must be reached .accurately to avoid divergence from
the desired cuter path.

6. The interpolation algorithms _should be as simple as possible to allow
high interpolation frequencies.

The task of interpolation consists of two parts. First, the continuous
Cartesian time history of the desired trajectory is calculated. The inputs to this
part are parameters that are needed by analytical algorithm for trajectory from
the Cartesian coordinate space into the machine-specific coordinate space. This
produces the time history for movement to calculate the final machine
coordinates to filter and smooth the axis movements. For NC machines the
following interpolation algorithms are used:

Linear interpolation

Circular interpolation

Quadratic interpolation

Cubic interpolation



Interpolation with high-order polynomials

High-order polynomials are used to generate complex contours and surfaces.
Manipulator devices and industrial robots need sophisticated interpolation
algorithms to perform finishing and assembly operations.

Classical NC machines have hardwired interpolators made from logic
circuits. For each interpolation method a dedicated algorithm is design and
implemented. Usually, only a limited number of algorithms (i.e., linear and
circular), in the form of hardwired logic circuits, are implemented. More flexible
interpolators can be realized with fast, sophisticated computers. The type of
interpolation, the sample data rate, and the desired accuracy are variable
parameters. Software interpolators offer a high flexibility. Their use is of
particular interest for the CNC concept, which was introduced in the early

1970s.

2.1 Errors

For two-axis control systems, the error occurred can be classified into
contour error and tracking error. A measure of the accuracy is the contour error,
which is defined as the distance difference between the required and actual path.
The tracking error is the position between the reference point and the actual
point.

As the cutter moves in a straight path between contiguous interpolated
points, two types of position errors may occur during parametric curve motion,
the radial error and the chord error [8, 19], as shown in Fig.2.2. The radial error
is the perpendicular distance between the interpolated points and the parametric

curve. The chord error is the maximum distance between the interpolated line



and the parametric curve. The radial error is due to the truncation effect. With
the development of computer for high precision applications, nowadays, the

radial error can be ignored.
2.2 Traditional interpolation method[19]

With CNC, a computer is provided as part of controller to perform the basic
NC functions. These functions include data processing, feedrate calculations,
and interpolation between data point, leaving only the position- and
velocity-control loops to the hardware controller. Interpolation is performed by
means of a special routine that generates command signals for each segment of
the produced part based upon the initial and final points and the type of
curvature of the segment. Typical interpolators are capable of generating linear,
circular, and occasionally .parabolic.and parametric curve paths. Elliptic
interpolation is inapplicable in' NC of maching€ tools but may be useful in other
manufacturing systems such‘as laser-beam cutters.

Basically there are two typestof CNCs: the reference-pulse, and the
sampled-data systems (Fig.2.3). In the reference-pulse system, the computer
produces a sequence of reference pulse for each axis of motion, each pulse
generating a motion of one BLU (basic length unit). The accumulated number of
pulse represents position, and the pulse frequency is proportional to the axis
velocity. These pulses can either actuate a stepping motor in an open-loop
system, or be fed as reference to a closed-loop system (Fig.2.4). With the
sampled-data technique, the control loop of each axis is closed through the
computer itself, which generates reference binary words. These two types
require distinct interpolation routines in the control program to generate their

corresponding reference signals (pulses or binary words). We will discuss the



interpolation by software.

2.2.1 Linear interpolator
As Fig.2.5 shown, given the start point (P;) and the end point (P.) the
constant speed or feedrate V. The axial velocities satisfy the following equations:

Xe_XS V — Ye_YS (2_1)

Jox -x )P+ -rf 7 Jx-xf +(n-n)

V.=

Xig =X +V, T

Yi+l = Yi + Vy ) Ts (2_2)
2.2.2 Circular interpolator
V_(¢) =V sin(6(¢) )
V (t) =V cos(O(t)) (2-3)
y

Vit ) : A
Where 6(t) = %) and R is:the radmsrof the circular arc.

The velocity components Viiand V, are computed by the circular
interpolator and are supplied as reference inputs to the computer closed loops.
The circle generated in this case is actually comprised of straight line segment.
At the beginning of each segment the references are supplied by the interpolator
and the end of the segment is located with the aid of a feedback signal.
Increasing the number of these segments improves the accuracy of the generated
circle but increases the number of iterations, thus requiring more computer time.
The optimal number of segments is the smallest one which maintains the path
error within the required limit of one BLU.

Each iterations of algorithm correspond to an angle a, as is illustrated in

Fig.2.6. The choice of the angle a depends on the interpolation method. All



methods employ the difference equation:
c0s(6).,) = Acos(6)) - Bsin(6))
sin(6,,) = Asin(6,) + Bcos(6)) (2-4)

Where the coefficients A and B are given by
A=cosa B =sina (2-5a)
0., =0 +a (2-5b)

The corresponding segment is terminate at the point X+, Yi, which is

approximated by
Xi+1 = Ri COS(Q‘H)
Yi+1 = Ri Sin(giﬂ) (2_6)

Substituting Eqn.(2-4) into Eqn.(2-6) yields

Xy = 4X, - BY,
Y, =AY, +BX, @7
Eqn.(2-9) is the basic relationship.which permits the calculation of a successive
point based on the present one.

The main differences between the various interpolation methods are in the
determination of a and in the approximation of the coefficients A and B in
Eqgn.(2-5a). Once the angle a is chosen, the interpolator routine proceeds, for
each iteration, as follows:

1. At each point Xj, Y; the interpolator calculate the coordinates of

successive point Xi.,Yi+1 according to Eqn.(2-7). The segment

lengths are

DX, =X, -X,=(4-D)X, - BY,
DY, =Y, - ¥, = (4-1)Y, - BX,

i+1

(2-8)

and the corresponding velocities are



V DX, VDY,
V .= ! V — ! -
= =05 2-9)
where DS, = \/DX,-2 + DY}’
2. The values obtained from Eqn.(2-8) are the incremental positions,

and those of Eqn.(2-6) are the velocities, or the reference words, for
the present segment. These values are supplied to the software control
loops.
3. Upon completion of the segment, the routine increments the
coordinates X; and Y;.
Since the angle o is relatively small, the chord length DS can be
approximated by its arc length Ro, and the calculation of the velocities Vy
and Vy can be simplified.to
V. =K DX,
v, =KDY, (2-10)
where K = V/ (Ra).
The error happened in linear interpolation is shown in Fig2.7(a) and the

error happened in circular interpolation is shown in Fig.2.7(b).
2.3 Parametric curves interpolation

There are a lot of researches had been proposed about parametric curves
interpolation. Shapitalni et al. [1] proposed the cure segments transfer between
CAD and CNC systems. Huang and Yang [5] developed a generalize
interpolation algorithm for different parametric cures with improve speed
fluctuation. Yang and Kong [6] studied both linear and parametric interpolators
for machining process. Speed-controlled interpolation algorithms proposed by

Yeh and Hsu [8]. Adaptive-feedrate interpolation confined cord error is also



proposed by Yeh and Hsu [9]. In this chapter we will concern about this papers.
In these CNC systems, parametric curves are profiles in different formats
like the Bezier curve, B-spline, cubic spline, and NURB (Non-Uniform Rational

B-spline). The general parameter iteration method used is
Uy =u; + Au;)
Where u; is the present parameter, u;; is the next parameter, and A(uy;) is the

incremental value.

Suppose C(u) is the parametric curve representation function and time

function u is the curve parameter as u(t,)=u, and u(t,, )=u,,

By using Taylor’s expansion, the approximation up to the second derivative

1 d2
t., —to)+—
( i+l 1) dt

t:ti

. u
is Yin =W T

(t,, —t)"+HOT. o)

=t
As the contouring speed along the curve or the curve speed V(u;) can be
represented as

dC(u)
dt

_ |dC(u)|
‘ du

du|
it L:ti (2-12)

V(u,) = H

u=u u=u;

If we know V(u;), we can represent the first derivative of u with t as

du|  V(u)
dt|_, ||dC(w) (2-13)
dt u=u;

1

By taking the derivative of Eqn.(2-12), the second derivative of u with t is

S

d2u| _ -1
dr*|,, HdC(uf
dt

(2-14)

u

U

10



where

d(HdC“” ). (Hd“‘” ).
u-y, dul
Tl
(H“‘” ). (H‘“*‘” J\
.- v V()
H i) (2-15)
dt .,

By substituting Eqn.(2-15) into Eqn.(2-14), the second derivative of u becomes

(Hd“‘” .
d’u _ —V*(u,) ue 516
di*|_, HdC(uf (2-16)
dt |,
where
(Hdcw)j dC(u) dzc(u)
du | HdC(u) (2-17)

By substituting Eqn.(2-19) into Eqn.(2-18), the second derivate of u becomes

V()

dc(u)|’
dt

dC(u) d*C(u)
d*u du du?

dt?

(2-18)

The first- and second-order approximation interpolation algorithms are obtained
by substituting Eqn.(2-13) and (2-18) into Eqn.(2-11).
By neglect the high order term, the interpolation algorithms in Eqn.(2-11) can be

processed as follows:

11



The first-order approximation algorithm [1, 4]

u —u. + V(uz)Ts
i+l T % Hdc(u) (2-19)

du

where T, =t —1t,
The second-order approximation algorithm [4]

dC(u) d*C(u)

VZ(”;‘) ( )
_ V(uz )Ts du duz u=u; T 2
ui+1 - ui + dC o 4 s (2'20)
H () HdC(u)
2.
du dt

u=u; u=uy;

2.3.1 Chord error [9]

Although the first-ordet approximation interpolation algorithm makes the
curve speed almost equal to- therdesired value V(u;), the chord error, exists and
may become unacceptable if an‘improper curve speed V(u;) is given. In order to
keep the chord error within a tolerance range, the curve speed V(u;) has to be
changed adaptively depending on the curvature during the interpolation process.

To determine the relation between the chord error and the curve speed, the

circular approximation is thus applied. Suppose the section curve of u €[u; u,,,)

1s an arc of circle with the radius p;at u = u; as shown in Fig.2.8. Where, p; =

1/I<1 1S

dC,(u) d°C,() dC,() d°C, ()
du du’ du du’ |

K; = Hdc(”) 3 (2-21)

du

u=u,

12



where P(u;) denotes the interpolated point on circle at u = u;, P(uiy) the
estimated interpolated point on curve at u = u;+;, C(u;) the interpolated point on

curve at u = u;, and C(u;+;) the interpolated point on curve at u =u;; .

Since, C(u;)=P(u,), and defining L; as |P(u,,,) - P(u,)| = L,, the chord error

ER; is derived as

2
ER = p, - | p? —(%j (2-22)

where L; can be referred to the curve speed. It can be seen that the chord error is
functional of the curve speed and the curvature of the curve. Taking partial
derivatives with respect to the two parameters yields the change of the chord

Crrofr.

2
AER, ~ g + Eap LBy () (2-23)
api 6Li Pi _51' 2(,0[ - 5[)

2.3.2 Radial error

In case that the interpolation point P(x;) does not lie on the parametric curve,
the radial error occurs. The radial error g; 1s defined as the minimum distance
between the interpolation point and the parametric curve. As shown in Fig.2.9, it

follows the curve offset condition [16] that

P(u,)=C(u)+¢&,Ku) (2-24)
where
dlcw-Pu)| _, 225
du

Unlike the chord error, the radial error defined in Eqn.(2-24) may sometimes be
negative which indicates an opposite direction from the normal vector of the

nearest point C(u).

13



2.4 Introducing B-Spline[17]

In order to apply B-spline curves, the B-spline curve is briefly introduced in
this section. There are some basic equations of B-spline as follows:

The B-spline is defined as that

Cw)| ¢
C, (u)} =Y N, W)C, (2-26)

Clu) = {

i=0
where u is the parameter of the curve, and k is the degree of the curve. C;is the
control point of the curve, and Njx(u) 1s the i-th of order k basis function. In
order to describe a B-spline curve, we should have a series of control points [C,,
Cy,...,Cy,], a series of control knots [u, uy,..., uy], and the degree of the curve.
Using the knot vector and the degree, the basis function can be decided. The

basis function is definition as‘follows:

I, u, <u<ug,

N o(u) = { (2-27)

0, otherwise

Uu-—u, U .,—u
Nl.,k (u) :—lNi,k—l (u)+— - Ni+1,k—1 (u) (2-28)

itk ~ Y ui+k+1 _ui+l

After evaluating the basis function, the point C(u) can be find by substituted u
into the Eqn.(2-26). It also can use the de Boor algorithm to find the point on
curve.

Using Eqn.(2-21), and Eqn.(2-22) to find the chord error, the first order
derivative and second order derivative should be found first. Taking the first

derivative of Eqn.(2-26) yields

dC noo
diu) = ZON i @)C, (2-29)

Since the control points is not function of u, that the first derivative of k-th order

14



basis function should be determined. And the first order derivative is

, k k
Ni,k (u) = —Ni,k—l (u) - Ni+1,k—1 (u)

Uik i Uipr — Uiy

In the same way, the second order derivative can be found as

d*C(u ro
g ) = ZNi,k(u)Ci
du i=0
14 k !/ k !/
Ni,k (u) = Ni,k—l (u) - Ni+1,k—1 (u)
U, —U; Uij — U

(2-30)

(2-31)

(2-32)

After finding first order derivative and second order derivative of the curve, the

curvature can be determined by using eqn.(2-21), and the chord error can be

determined by using eqn.(2-22).
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Chapter3 A Parametric Interpolator with Minimal

Contouring Position Error for NC Machining

Interpolation for constant speed has been solely achieved in the following
way. As shown in Fig3.1, the interpolation points can be determined by using a
small circle, intersecting the parametric curve consecutively. If the points must
lie on the curve, the interpolation points are uniquely determined by above
discussion. Smaller the radius corresponds to smaller interpolation error. If the
speed is bounded in a range then the smallest chord error is achieved using the
smallest speed allowed. For a prescribed constant speed, we should allow
interpolation points be deviated from the curve to minimize the error. A
conceptual example is shown iniFig3.2:.In the case of no over cut, the inner
rectangle is the best solution: But in the case of the smallest contour error, it may
be not the best. The outer rectangle 1s better than the inner one, since it has less
chord error. If there is an allowable tolerance in the curve, such as the surface
roughness, we can find the better interpolation with less chord error at the same

speed, as shown in Fig3.3.

3.1 Contouring Position Error

The maximum contouring position error may be defined as the maximum
error between the cutter path and the parametric curve to be machined. The
contouring position error shall include not only the chord error but also the
radial error. In a particular case that an unit circle is made of parametric curve,
as shown in Fig.3.4(a), the chord error is 1 — cos(n/8) = 0.07612, the chord
length is sin(w/8) = 0.38268, and when radial error is 0. The maximum

contouring position error is 0.07612 as well. When a nonzero radial error is
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allowed, the interpolation points may no longer be located on the parametric
curve. For instance, the interpolation points are located so that the absolute value
of radial error is equal to the chord error, as shown in Fig.3.4(b). The resulting
chord error is 0.03957, radial error is -0.03957, and the maximum contouring
position error is 0.03957 as well. The corresponding chord length is 0.39782. As
a comparison, the second method yields a (0.07612 — 0.03957) / 0.07612 = 48%

improvement at the maximum contouring position error.

3.2 Minimum contouring position error

Following the idea from the previous chapter, one may locate the

interpolation point on the offset curye of the parametric curve
P(ui)zc(ui)+8iK(ui) (3'1)

The radial error is added:to minimize the: contouring position error. It is
convenient to set the equivalence of the absolute value of the radial error and the
chord error as shown in Fig.3.5. The next interpolation point is located with the

following equation.

Pu,,)=C(u,,) - 6;K(u,,) (3-2)
The contouring position error o' derived from C((u+u;+;)/2) is different

fromo, in Eqn.(2.24) providing thate,,, =-¢/. In Fig.3.5, the point 4(u;) on the

chord is defined that

u +u u, +u

A(;)=C (’Ti“) + /K (= (3-3)

2
It may be assumed for now that

N P(u,)+P(u,,,)

. (3-4)

Aw,)
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The validity of assumption made in Eqn.(3-4) will be verified against different

cases in the following sections. Combining Eqns.(3-1) to (3-4), we have

C(ui +ui+l)+§i/K(u +u1+l) C(ui)+C(ui+l)+€iK(ui)_5iK(ui+l) (3_5)
2 2 2
According to Fig.3.5, it is found that
5;‘ (1/[ + uz+1 ) C(uz) +2C(ui+1) _ (u + uz+1 ) (3_6)
Substituting Eqn.(3-5) into Eqn.(3-6), we have
5(1{(” +uz+l) K(uzﬂ)) 5 (Z/l +u1+1) &‘K(u ) (3_7)

3.2.1 Pseudo-inverse method
Since there are three normal vectors of different directions, Eqn.(3-7) can
only be solved by a pseudo-inverse method {.18] as follows.

£ (B"B) B K (u,)

u+u

5~ 5 (BTB)*IBTK( Syt : (3-8)
where
B=K (u + Z’l1+1 ) K(;Hl) (3_9)
Combined with ¢,, =—-0, Eqn.(3-7) yields a vector form as follows.
z_d+l5iB'K(ui+1)_5iB'K(u[) (3-10)

RN

3.2.2 Half-Tangent method
Eqn.(3-7) may be solved by projecting to an arbitrary vector, for instance

the normal vectors K(u;). Let the angle made by made by normal vectors K(u;)

u, +u

and K(——=- 5 ——=1) be denoted by 0; As a result the angle made by normal vectors

K (u +2u’“) and K(u;+1) will also be closed to 0,. Eq. (3-7) is then written into

cos 29

o!(cosb, + L)~ &, cosb, +E (3-11)
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Let v denote the square of half-tangent of 0; that

v, =tan’ & (3-12)
2

The sinusoidal functions in Eqn. (3-11) may be expressed as follows.

cosd, = 17,

1+v,
and
2
cos20, = L=t V)
1+v,)

Substituting the above relations into Eqn.(3-11), we obtain that

_5,.(2—2vf)+g,‘(1+vi)2

=5~ 3-13
gH—l i 3 —6\/1. _Viz ( )
For small angle of 0;, Eqn.(3-13).miay be expressed into
-2 |
R0 ——&, 3-14
gz+1 3 i 3 gl ( )

3.2.3 Verification Example
In a case that the unit circle, i.e. 6, = 1, is perfectly matched with the

parametric curve in the closed interval [C(y;), C(u;+;)] as shown in Fig.3.6(a). It

is obtained that &, = (1-cosé,)p, = " i p.. For a given radial errore, =—v,p,, it 1s
+v,

obtained from Eqn.(3-10) as well as Eqn. (3-13) that ¢, =-6",=-v,p, which is
agreed with the case as shown in Fig.3.4(b) that 6 = =n/8 and

g =g, =-0,=03957p,. Thus the validity of Eqn.(3-7) as well as the assumption

made in Eqn.(3-4) are verified for perfect second-order approximation cases

providing thate, =—v,p,. It is shown in Fig.3.7 that result of Eqn.(3-14) yields

less than 5% error from that of Eqn.(3-10) for 6; < 22°. Eqn. (3-14) provides a
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good approximation of Eqn.(3-10) and Eqn.(3-13).

Let a parameter 7, denote the ratio between & and v,p, that
& =7NV,p; (3-15)
where 0<7, <. It is obtained from Eqn.(3-14) and S, ~ 2v,p, for small angle of

that

£ =—0; z_w (3-16)

where v, is defined in Eqn.(3-12). Since the radial errorse¢,, and ¢ are
mismatched, the true chord error may vary from &', to §", as shown in Figure
3.6(b). It is possible to find a point P'(u,,,), which results a matched radial error
as & , along the extension line from- P(y;) and P(u;+;). The angle

ZP'(u,,,)OP(u,,,) 1s denotedby ¢. The true chord error §", may be determined

from a direction rotated from K(Lzu”‘) by an angle ¢/ 2. The true chord

error 6" =(1-sin(¢/2))o", is less than the radial error ¢, thus the contouring

i+l
position error is not higher than ¢, derived from Eqn.(3-16).
It 1s shown in Fig.3.8 that result of Eqn.(3-16) match very well to that of

Eqn.(3-10) and Eqgn.(3-13). Due to simplicity of Eqn.(3-16) for real-time

application, Eq.(3-16) is then used in the following derivation.

3.3 Confining contouring position error

Eqn.(3-12) shows the relation between v, and 6, where 6, 1is the

intersection angle between K(u;) and K(Lzu"“). Following the previous
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assumption that the angle betweenK(L;f“) and K(u;+1) 1s approximately 6,,

6, 1s then determined by

o, :sinl%:sinll/(;—;jn (3-17)
and
. tanz[sinl (V(u,-2>11. /<2pi>>J (3-18)

The contouring position error derived from Eqn.(3-14) and &, ~2v,p, for small

angle of 0 yields

5= Bvipite) %[4,01« tanz(Sinl Vw1, /(pr))J + €ij (3-19)

l 3 2

The curve speed V(u;) corresponding tothe contouring position error ER; is then

derived as

I}(ui) = %sin[Ztan1 3E§‘—_8‘J (3-20)
Pi

s

By setting ER; as the tolerance value of the contouring position error, V(u;)
is thus obtained as the acceptable curve speed. Eqn.(3-20) implies that the curve
speed V(u;) should be changed according to the tolerance value of the contouring
position error ER; and the curvature p;. The following feedrate control law is

proposed for parametric curves:

V(ul.):{f itV (u)> F (3-21)
V) ifVw)<F

where F'is the given feedrate command. If the instantaneous radius of curvature
1s small enough, the curve will lead to exceed the tolerance and the proposed

interpolation algorithm will automatically reduce the feedrate F as

2p. ER —¢. . . .
%sin(zwm‘1 3 4‘ % J to meet the specified contouring position error.
Pi

s
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Chapter 4 Simulation and Discussions

The simulation of the proposed interpolator is implemented in Visual C++
6.0 and is executed on a personal computer with Intel(R) Pentium(R) 4 CPU
1500MHz and 640MB RAM. Figure 4.1 shows the flowchart of the proposed
interpolator, where the yellow region is referred to the algorithm of adaptive
feedrate. The proposed interpolator is applied to a B-spline parametric curve, an
“8” figure path, with three degrees as shown in Fig.4.2. The control points, and
vector of B-spline for provided example are assigned as follows:

® The ordinal control points are

0[|—150|—150]| 0L} 15044150 |({0|]|—-150 —-150
{O}{—ISO}{ 150 }’[O}L150}{150}{0}{—150}%6{ 150 }(mm)

® The knot vector is using uniform knot

The sampling time in the‘interpolation interval is 0.025 second. The feedrate
command is given as 200 mm/sec (12m/min), 400 mm/sec (24m/min), and 800
mm/sec (48m/min).

Figure 4.3(a) shows results in terms of chord error for three algorithms, the
uniform interpolation, the first order approximation interpolation, and the
minimal contouring position error (MCPE) interpolation, with feedrate 12
m/min. And Fig.4.3(b) shows results in terms of chord error for the adaptive
feedrate (AD) interpolation and the minimal contouring position error
interpolation with adaptive feedrate (ADMCPE)with feedrate 12 m/min and the
error bound 0.05 mm. Figure 4.4(a) and (b) show the speed fluctuation, and
Fig.4.5(a) and (b) show the acceleration fluctuation. Figure 4.6(a)(b),
Fig.4.7(a)(b), and Fig.4.8(a)(b) illustrate the simulation results of the error,
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speed and acceleration fluctuation with feedrate 24 m/min, and Fig.4.9(a)(b),

Fig.4.10(a)(b), and Fig.4.11(a)(b) for feedrate 48 m/min, respectively. Results

are summarized in Table 4.1 and Table 4.2. Discussions of the simulation results

are listed as follows:

1. The proposed interpolation algorithm achieves better interpolation accuracy
than first approximation interpolation algorithm. According to Fig.4.3(a) and
Fig.4.6(a), it found that the proposed algorithm yields less contouring error at
almost all corresponding positions. Also shown in Table 4.1, it can be found
that the proposed algorithm has been improved about 40%~45% at the
root-mean-square accuracy. The reason for the 48 m/min is sampling rate for
the speed is too low. The proposed algorithm is better in accuracy than first
approximation interpolation:

2. The proposed interpolation,algorithm-achieves less speed changes. According
to Fig.4.4(a), Fig.4.7(a) and Fig.4.10(a), it found that the proposed algorithm
and the first approximation interpolation are better than uniform interval
interpolation.

3. Compared the proposed interpolation algorithm with adaptive feedrate with
the adaptive feedrate interpolation, it can be found the proposed interpolation
achieves less path time as shown in Fig.4.3(b), Fig.4.6(b), and Fig.4.9(b). It
is also shown in Table 4.2 the proposed interpolation algorithm performs
higher speeds. And it causes the proposed algorithm need less time to finish
the figure. Compared with different feedrate, it can be found that with the
feedrate increasing, the chord error increasing, and the path time difference
between the adaptive feedrate interpolation and the proposed interpolation
with adaptive feedrate become more and more apparent.

4. The acceleration and deceleration of different algorithms, the proposed
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interpolation with adaptive feedrate and adaptive feedrate interpolation, are
compared in Fig.4.5(b), Fig.4.8(b) and Fig.4.11(b). It can be found that the
acceleration and deceleration time is less than adaptive feedrate, and this
caused the maximum value is lightly bigger.

. The computer time is shown in Table 4.3. It can be found the uniform
interval interpolation and first approximation interpolation is very fast. And
the minimal contouring position error interpolation spends more time. It is
because these algorithms need extra time to find the minimal contouring

position errors.
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Chapter 5 Experiments

Experiments have been setup to demonstrate the performance of proposed
interpolator. The experimental layout consists of two pairs of motors and motor
drives, a motion card (HAL-8504) and an industrial PC with 2.4GHz P4. By
using a Windows-based universal programmable control software suite, Hurco
WINPC32 2.1 (SP8), experiments are performed on a Windows XP-Embedded
(SP2) platform.

The process of experiment is described as follows:
1. Reading position data form proposed algorithm program.
2. Using the interface program’to ‘input,command to drive of motors.
3. Reading the feedback signals of encodes.

The experimental layout is shown in-Fig.5.1as well as Fig.5.2.

The sampling period time.of motor command is 500us (i.e. 2000Hz), and
the sampling time of receiving encoder data is 2ms (i.e. 500Hz). In order to find
the result, a sampling period 25ms (i.e. 40Hz) is chosen since 500/40 > 4 for
Nyquist sampling theory. In order to fit motor command frequency, 49 points are
inserted between adjacent point. The chord error is confined to within 50pm
during the interpolation process.

Figure 5.3(a) and (b) show the speed profile of the experimental results at
the speed 12m/min, and Fig. 5.4(a) and (b) at the speed 24 m/min, and Fig.5.5(a)
and (b) at the speed 48 m/min. Compared these figures with Fig.4.4(a)(b),
Fig.4.7(a)(b), and Fig.4.10(a)(b), it can be found that the profile is similar but
with a little time delay. Taking 48 m/min, for example, to plot the x-y diagram is

shown in Fig.5.6(a), and a certain region is zoomed as shown in Fig.5.6(b) to
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illustrate the detail. It can be found that the chord error of proposed interpolation
is less than first approximation interpolation.

We want to find the chord error to verify the algorithm. An approximated
method [20] is applied to estimate the chord error from data of experimental
results. Using uniform interval interpolation with smaller Au to generate the
curve data. Projection the curve data on the motor moving path, as shown
Fig.5.7. If projection is out of the moving path segment, projection on the next
moving segment. By doing so, it can be found several distance between the
curve and the moving segment. Therefore, choosing the maximum distance is
the chord error of the segment. The Fig.5.8(a) shows the chord error at 12 m/min
using the first approximation interpolation, and Fig.5.8(b) shows the chord error
using the minimal contouring position ertor interpolation. The Fig.5.9(a)(b) is
the chord error at 24 m/min. observing the Fig5.8(a)(b) and 5.9(a)(b), it can be
found that the chord error of the ptoposed algorithm is really less than the first

approximation interpolation.
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Chapter 6 Conclusion

For parametric curves, the contouring position error in terms of position is
mainly determined by the radial error and the chord error. With the computer
becomes much powerful, it is usually achieved very small radial error that can
be ignored. For the reason, the chord error is the main concern in general
interpolation algorithm. The proposed interpolation achieves better machining
precision by considering minimization of the contouring position error. The
simulation as well as the experimental results show that the proposed
interpolation algorithm effectively improves the interpolation accuracy in terms
of the contouring position error-and maintains speed accuracy at the specified

level.
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Fig.2.1 Interpolation algorithms and their applications.
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Fig.3.1 Constant speed parametric curve interpolation.
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Fig.3.3 Interpolating a circle confining to a tolerance.
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Fig.4.1. The flowchart of program.
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Fig.4.3. The chord errors of simulation results at 12 m/min (a) without adaptive
feedrate (b) with adaptive feedrate.
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Fig.4.4. The speed profile of simulation results at 12 m/min (a) without adaptive
feedrate (b) with adaptive feedrate.
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Fig.4.5. The Acceleration profile of simulation results at 12 m/min (a) without
adaptive feedrate (b) with adaptive feedrate.
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Fig.4.7. The speed profile of simulation results at 24 m/min (a) without adaptive
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Fig.4.9. The chord errors of simulation results at 48 m/min (a) without adaptive
feedrate (b) with adaptive feedrate.

50



‘0 ——unifarm

—— first approx.
—— MCPE

60

Bl

40

)

yl

10

il —=AD

== ADMCPE

0

40

30

Jil

(b)

Fig.4.10. The speed profile of simulation results at 4824 m/min (a) without
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52



_____ X-axis

Position
command

__ 1 Y-axis
? ]
1

Motion Card

Pulse

Fig.5.1. The hardware layout of the experiment.
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Fig.5.2 The equipment of experiment
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Fig.5.3. The encoder speed of experimental results at 12 m/min (a) without

adaptive feedrate (b) with adaptive feedrate.
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Fig.5.4. The encoder speed of experimental results at 24 m/min (a) without
adaptive feedrate (b) with adaptive feedrate.
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Fig.5.5. The encoder speed of experimental results at 48 m/min (a) without
adaptive feedrate (b) with adaptive feedrate.
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Fig.5.6. The encoder position of experimental results at 48 m/min (a) first
approximation interpolation and minimal contour position error
interpolation (b) the detail region.
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Fig 5.7 Chord error estimation
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Fig 5.8 Chord error estimation at 12 m/min (a) first approximation interpolation
(b) minimal contour position error interpolation
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Fig 5.9 Chord error estimation at 24 m/min (a) first approximation interpolation
(b) minimal contour position error interpolation
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Tables

Table 4.1 Simulation results for different algorithms.

Interpolation|  Chord error (um) Speed (m/min) | Path

Curve speed . . :
type Max | Min | RMS [Max | Min [RMS| Time (s)

Au=0.0535 | Uniform | 55.64 |0.144| 29.82 |13.54|6.0610.33| 4.675
F=12 m/min | First approx. | 149.050.020 | 49.36 [10.49{9.54|10.03] 4.7
F=12 m/min| MCPE 80.44 10.023 | 25.44 |10.51]9.57110.03| 4.7
Au=0.0107 | Uniform [228.20] 0 [123.21]27.36[12.25[20.91| 2.325
F=24 m/min | First approx. | 600.57 | 1.370 ]| 196.48 |22.00{18.30[{20.11} 2.325
F=24 m/min| MCPE 344.0910.338 | 107.34 |122.12|18.43]20.14| 2.325
Au=0.0217 | Uniform [949.62]9.784|508.25]55.2324.75|42.44] 1.15
F=48 m/min | First approx. [2405.99| 4.894 | 792.81 [48.10[34.23}40.55| 1.15
F=48 m/min| MCPE [|2451:320.395 | 779.08 |48.42[35.04/40.83| 1.15

Table 4.2 Simulation results for different algorithms with adaptive feedrate.

Interpolation | ‘Chordetror (um) | Speed (m/min) Path
Curve speed :
type Max | Min [RMS | Max [Min | RMS | Time (s)
F=12 m/min AD 53.2210.016]129.95110.3415.7719.128| 5.05
F=12 m/min | ADMCPE |57.69]0.017]21.49{10.50(8.07| 9.83 | 4.75
F=24 m/min AD 54.5310.411[44.74|20.53|5.77] 14.64| 3.45
F=24 m/min | ADMCPE |61.38|0.30338.53|21.00{8.05|17.21| 2.825
F=48 m/min AD 59.2115.308148.64140.3415.75]17.95| 3.05
F=48 m/min | ADMCPE |65.10]2.365]48.82141.23]8.05]|23.50] 2.225

Table 4.3 Simulation results of computer time for different algorithms.

uni

form!

First approx.

MCPE

AD

ADMCPE

Average step

time (ms)

0.0241

0.0234

0.159

0.126

0.194
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