
國 立 交 通 大 學 
機械工程學系 

碩士論文 
 

 

分數階變革式奈米Duffing共振器系統的渾沌及

其同步與反控制 

 
 

Chaos, Its Synchronization and Anticontrol of 

Fractional Order Modified Nano Duffing 

Resonator Systems 
 
 
 
 

 

           研 究 生：歐展義 

           指導教授：戈正銘  教授 

 

中華民國九十五年六月 

 



分數階變革式奈米Duffing共振器系統的渾沌及

其同步與反控制 

Chaos, Its Synchronization and Anticontrol of 

Fractional Order Modified Nano Duffing 

Resonator Systems 

  

研 究 生：歐展義                       Student：Chan-Yi Ou 

指導教授：戈正銘                       Advisor：Zheng-Ming Ge 

 

國 立 交 通 大 學 

機 械 工 程 研 究 所 

碩 士 論 文  

 

A Thesis 
Submitted to Department of Mechanical Engineering 

College of Engineering 
National Chiao Tung University 

in Partial Fulfillment of the Requirement 
for the Degree of Master of Science 

in 
Mechanical Engineering 

June 2006 
Hsinchu, Taiwan, Republic of China 
中華民國九十五年六月 



分數階變革式奈米 Duffing 共振器系統的渾沌及其

同步與反控制 

 

學生:歐展義                                 指導教授：戈正銘 

 

 

 

 

 

摘要 

 
本篇論文以相圖、龐卡萊映射圖及分歧圖等數值方法研究分數階變革式奈米

Duffing 共振器系統的渾沌行為。基於頻域的觀點，零到一階之間的分數階積分器可以

線性轉移函數的近似計算而得。可以發現系統總階數 1.8、1.9、2.0、2.1 時，系統具

有渾沌現象。兩個沒有耦合的分數階變革式奈米 Duffing 共振器系統之渾沌同步可以藉

以第三渾沌系統的渾沌狀態變數之相同函數取代它們相對應的參數而達成。此方法稱為

參數激發渾沌同步。渾沌同步可成功地以很低的總分數階數 0.2 獲得，數值模擬見於相

圖、龐卡萊映射圖和狀態誤差圖。最後研究分數階變革式奈米 Duffing 共振器系統的反

控制。首先，以第二個全同的系統之狀態變數的函數作為添加項，渾沌反控制即可獲得。

接著以白噪訊、Rayleigh 噪訊、Rician 噪訊、均勻噪訊等分別作為添加項，渾沌反控

制亦可獲得。渾沌反控制可成功地以很低的總分數階數 0.2 達成。數值模擬以相圖、龐

卡萊映射圖表示。 
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ABSTRACT 

   

In this thesis, the chaotic behaviors in a fractional order modified nano Duffing resonator 

system are studied numerically by phase portraits, Poincaré maps and bifurcation diagrams. 

Linear transfer function approximations of the fractional integrator block are calculated for a 

set of fractional orders in (0,1], based on frequency domain arguments. The total system 

orders found for chaos to exist in such systems are 1.8, 1.9, 2.0 and 2.1. The chaos 

synchronizations of two uncoupled fractional order chaotic modified nano Duffing resonator 

systems are obtained. By replacing their corresponding parameters by the same function of 

chaotic state variables of a third chaotic system, the chaos synchronization can be obtained. 

The method is named parameter excited chaos synchronization which can be successfully 

obtained for very low total fractional order 0.2. Numerical simulations are illustrated by phase 

portrait, Poincaré map and state error plots. Anti-control of chaos of a fractional order 

modified nano Duffing resonator system is studied. First, by using the functions of state 

variable of a second identical system as the added term, the anti-control of chaos can be 

obtained. Second, by using the white noise, Rayleigh noise, Rician noise and uniform noise as 

the added term respectively, the anti-control of chaos can be obtained. Anti-control of chaos 

can be successfully obtained for very low total fractional order 0.2. Numerical simulations are 

illustrated by phase portraits and Poincaré maps.  
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Chapter 1 

Introduction 
Fractional calculus is a 300-year-old mathematical topic [1-4]. Although it has a long 

history, the applications of fractional calculus to physics and engineering are just a recent 

focus of interest. Many systems are known to display fractional order dynamics, such as 

viscoelastic systems, dielectric polarization [5], electrode electrolyte polarization [6], and 

electromagnetic waves [7]. More recently, many investigations are devoted to the control 

[8-12] and dynamics [13-26] of fractional order dynamical systems. In [13], it is shown 

that the fractional order Chua’s circuit of order as low as 2.7 can produce a chaotic 

attractor. In [14], it is shown that nonautonomous Duffing systems of order less than 2 

can still behave in a chaotic manner. In [15], chaotic behaviors of the fractional order 

“jerk” model is studied, in which chaotic attractor can be obtained with the system order 

as low as 2.1, and in [16] chaos control of this fractional order chaotic system is 

investigated. In [17], the fractional order Wien bridge oscillator is studied, where it is 

shown that limit cycle can be generated for any fractional order, with a proper value of 

the amplifier gain.  

Since the pioneering work by Pecora and Carroll [28], various effective methods for 

chaos synchronization have been reported [29-63]. However, most of synchronizations 

can only be realized under the hypotheses that there exists coupling between two chaotic 

systems. In practice, such as in physical and electrical systems, sometimes it is difficult 

even impossible to couple two chaotic systems. In comparison with coupled chaotic 

systems, for synchronization between the uncoupled chaotic systems, there are many 

advantages [35, 36]. In this thesis, synchronization of two fractional nano Duffing 

resonator systems whose corresponding parameters are excited by a chaotic signal of a 

third system is studied.  

For continuous time systems, how to design a simple controller that can drive the 

system from nonchaotic to chaotic, and how to prove that such a controlled system is 

indeed chaotic in a rigorous mathematical sense, are important and challenging problems 

for study [64-72]. 

From [73], we can get the integral order nano Duffing resonator system. One way to 
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study fractional order systems is through linear approximations. By utilizing frequency 

domain techniques based on Bode diagrams, one can obtain a linear approximation for 

the fractional order integrator, the order of which depends on the desired bandwidth and 

the discrepancy between the actual and the approximate magnitude Bode diagrams. This 

approach is applied to study the behaviors of the fractional order modified nano Duffing 

resonator equations in this thesis. We use the approximate linear transfer functions for the 

fractional integrator of order that varies from 0.1 to 0.9, and study the resulting behavior 

of the entire system for each case under the effect of different types of nonlinearities. 

Chaotic behaviors in the fractional order modified nano Duffing resonator equations are 

studied by phase portraits, Poincaré maps and bifurcation diagrams. It is found that the 

total system orders for chaos to exist in such systems are 1.8, 1.9, 2.0 and 2.1. 

The chaos synchronizations of two uncoupled fractional order modified nano Duffing 

resonator systems are obtained by replacing their corresponding parameters by the same 

function of chaotic state variables of a third chaotic system. The method is named 

parameter excited chaos synchronization which can be successfully obtained for very low 

total fractional order 0.2. Numerical simulations are illustrated by phase portraits, 

Poincaré maps and state error plots.  

Anti-control of chaos of a fractional order modified nano Duffing resonator system is 

studied. By using the functions of state variable of a second identical system as the added 

term, the anti-control of chaos can be obtained. By using the white noise, Rayleigh noise, 

Rician noise and uniform noise as the added term respectively, the anti-control of chaos 

can be obtained. Anti-control of chaos can be successfully obtained for very low total 

fractional order 0.2. Numerical simulations are illustrated by phase portraits and Poincaré 

maps.  

This thesis is organized as follows. Chapter 2 gives the dynamic equation of modified 

nano Duffing resonator system. The fractional derivative and its approximation are 

introduced. The system under study is described both in its integer and fractional forms. 

Numerical simulation results are presented. 

In Chapter 3, numerical simulations of synchronization scheme based on driving the 

corresponding parameters of two chaotic systems by a chaotic signal of a third system are 

presented.  
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In Chapter 4, numerical simulations of anti-control scheme based on adding the 

function of state variables of a second system are presented. In Chapter 5, numerical 

simulations of anti-control scheme based on adding the white noise, Rayleigh noise, 

Rician noise and uniform noise as the external term respectively are presented. In Chapter 

6, conclusions are drawn. 
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Chapter 2 

Chaos in a Fractional Order Modified Nano 

Duffing Resonator System 
In this chapter, the dynamic equation of modified nano Duffing resonator system is 

given. The fractional derivative and its approximation are introduced. The system under 

study is described both in its integer and fractional forms. Numerical simulation results 

are presented. 

 
2.1  Fractional Derivative and Its Approximation 

Two commonly used definitions for the general fractional differintegral are the 

Grunwald definition and the Riemann-Liouville definition. The Riemann-Liouville 

definition of the fractional integral is given here as [27] 

  0,
)(
)(

)(
1)(

0 1 <
−−Γ

= ∫ + qd
t

f
qdt

tfd t

qq

q

τ
τ
τ                                     (2.1) 

where q can have noninteger values, and thus the name fractional differintegral. Notice 

that the definition is based on integration and more importantly is a convolution integral 

for q < 0. When q > 0, then the usual integer nth derivative must be taken of the fractional 

(q–n)th integral, and yields the fractional derivative of order q as 
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This appears so vastly different from the usual intuitive definition of derivative and 

integral that the reader must abandon the familiar concepts of slope and area and attempt 

to get some new insight. Fortunately, the basic engineering tool for analyzing linear 

systems, the Laplace transform, is still applicable and works as one would expect; that is, 

{ }
0

1

0
1

1 )()()(

=

−

=
−−

−−

∑ ⎥
⎦

⎤
⎢
⎣

⎡
−=

⎭
⎬
⎫

⎩
⎨
⎧

t

n

k
kq

kq
kq

q

q

dt
tfdstfLs

dt
tfdL , for all q                      (2.3) 

where n is an integer such that n - 1 < q < n . If the initial conditions are considered to be 

zero, this formula reduces to the more expected and comforting form 
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{ )()( tfLs
dt

tfdL q
q

q

=
⎭
⎬
⎫

⎩
⎨
⎧ }                                                (2.4) 

An efficient method is to approximate fractional operators by using standard integer 

order operators. In [27], an effective algorithm is developed to approximate fractional 

order transfer functions. Basically, the idea is to approximate the system behavior in the 

frequency domain. By utilizing frequency domain techniques based on Bode diagrams, 

one can obtain a linear approximation of fractional order integrator, the order of which 

depends on the desired bandwidth and discrepancy between the actual and the 

approximate magnitude Bode diagrams. In Table 1 of [13], approximations for qs
1  

with q=0.1~0.9 in steps 0.1 are given, with errors of approximately 2dB. These 

approximations are used in following simulations. 
 

2.2  A Fractional Order Modified Nano Duffing Resonator System 
The famous Duffing system is 

tbxxxax ωcos3 =+++ &&&                                               (2.5) 

where a, b are constant parameters 

It can be written as two first order ordinary differential equations: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−−−=

=

tbayxx
dt
dy

y
dt
dx

ωcos3

                                            (2.6) 

Consider the following modified nano Duffing resonator system: 

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

−−=

=

+−−−=

=

3

3

dzcz
dt
dw

w
dt
dz

bzayxx
dt
dy

y
dt
dx

                                                (2.7) 

It becomes an autonomous system with four states where a, b, c, and d are constant 

parameters of the system. System (2.7) can divide into two parts: 
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⎪
⎪
⎩

⎪⎪
⎨

⎧

+−−−=

=

bzayxx
dt
dy

y
dt
dx

3
                                                (2.8) 

and 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−=

=

3dzcz
dt
dw

w
dt
dz

                                                      (2.9) 

As a nonlinear oscillator, system (2.9) provides the periodic time function to system 

(2.8) as an excitation which produces the chaos in system (2.8). To sum up, system (2.8) 

can be considered as a nonautonomous system with two states 

bz

yx, with as an 

excitation which is a given periodic function of time, while system (2.8) and system (2.9) 

together can be considered as an autonomous system with four states 

bz

wzyx ,,, . We 

focus on system (2.8), while system (2.9) remains an integral order system.  

Now, consider a fractional order modified nano Duffing resonator system. Here, the 

conventional derivatives in Eq.(2.8) are replaced by the fractional derivatives as follows: 

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−=

=

+−−−=

=

3

3
2

2

1

1

dzcz
dt
dw

w
dt
dz

bzayxx
dt

yd

y
dt

xd

q

q

q

q

                                              (2.10) 

where system parameter b is allowed to be varied, and  are two fractional order 

numbers. Simulations are then performed using

21,qq

)2,1( =iqi varied from 0.1~0.9, 

respectively. The approximations from Table 1 of [13] are used for the simulations of the 

appropriate th integrals. When < 1, then the approximations are used directly. It 

should further be noted that approximations used in the simulations for  

iq iq

iqs
1 , when 

> 1, are obtained by using 1/s times the approximation for iq 1
1

−iqs  from Table 1 ( See 
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Appendix). 

 

2.3 Simulation Results 
In this section, all numerical simulations are run by block diagrams in Simulink 

environment, using ode45 solver algorithm, where the fractional integrators have been 

approximated by linear time invariant transfer functions following the procedure in [13]. 

In so far as the attractor shape is concerned, both procedures gave very similar results. In 

numerical simulations, three parameters 05.0=a ,  1=c  and d=0.3 are fixed and  

is varied. The initial states of the modified Duffing system are , 

b

0)0( =x 0)0( =y , 

 and . 10)0( =z 10)0( =w

 Firstly, when the total order 21 qq + is 1.8, chaos is found in the cases: ( ) = 

(1.5, 0.3), ( ) = (1.3, 0.5), ( ) = (0.3, 1.5), and ( ) = (0.5, 1.3). The phase 

portraits, Poincaré maps and the bifurcation diagrams are showed in Fig.2.1~Fig.2.4. 

Secondly, when the total order 

21 ,qq

21 ,qq 21 ,qq 21 ,qq

21 qq + is 1.9, chaos is found in the cases: ( ) = (1.8, 

0.1), ( ) = (1.6, 0.3), ( ) = (1.5, 0.4), ( ) = (1.4, 0.5), ( ) = (1.3, 0.6), 

( ) = (1.1, 0.8), ( ) = (0.1, 1.8), ( ) = (0.3, 1.6), ( ) = (0.4, 1.5), ( ) 

= (0.5, 1.4), ( ) = (0.6, 1.3), and ( ) = (0.8, 1.1) The phase portraits, Poincaré 

maps and the bifurcation diagrams are shown in Fig.2.5~Fig.2.16. When the total order 

is 2.0, chaos is found in the cases: ( ) = (1.9, 0.1), ( ) = (1.8, 0.2), 

( ) = (1.2, 0.8), ( ) = (1.1, 0.9), ( ) = (0.2, 1.8), ( ) = (0.8, 1.2), and 

( ) = (0.9, 1.1). The phase portraits, Poincaré maps and the bifurcation diagrams are 

shown in Fig.2.17~Fig.2.23. Finally, when the total order 

21 ,qq

21 ,qq 21 ,qq 21 ,qq 21 ,qq

21 ,qq 21 ,qq 21 ,qq 21 ,qq 21 ,qq

21 ,qq 21 ,qq

21 qq + 21 ,qq 21 ,qq

21 ,qq 21 ,qq 21 ,qq 21 ,qq

21 ,qq

21 qq + is 2.1, chaos is found in 

the cases: ( ) = (1.2, 0.9), ( ) = (0.2, 1.9), and ( ) = (1.2, 0.9). The phase 

portraits, Poincaré maps and the bifurcation diagrams are showed in Fig.2.24~Fig.2.26. It 

can be seen that when  is larger, the range of y state is also larger. 

21 ,qq 21 ,qq 21 ,qq

1q
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Chapter 3 

Chaos Synchronization of Fractional Order 

Modified Nano Duffing Resonator Systems with 

Parameters Excited by a Chaotic Signal 

3.1 Preliminaries 
The chaos synchronizations of two uncoupled fractional order modified nano 

Duffing resonator systems are obtained by replacing their corresponding parameters 

by the same function of chaotic state variables of a third chaotic system in this chapter. 

The method is named parameter excited chaos synchronization which can be 

successfully obtained for very low total fractional order 0.2. 

3.2 Numerical Simulations for Chaos Synchronization with 

Parameter Driven by a Chaotic Signal 
In this section, two chaotic fractional order modified nano Duffing resontor 

systems 
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and  
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                                       (3.2) 

where  and  are the fractional orders, are synchronized by replacing 

corresponding parameters by the same function of chaotic states of chaotic modified 

nano Duffing resontor system 

1q 2q
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                                             (3.3) 

where a = 0.05, b= 53, c = 1, and d = 0.3 are constant parameters of the system. 

Define the error states as 211 xxe −=  and 212 yye −=  in system (3.1) and (3.2). 

The synchronization scheme is to replace the corresponding parameters b in system 

(3.1) and (3.2) by the same function of chaotic states of system (3.3) such that 

0)( →te as ∞→t . In following simulations, for various derivative orders  and 

, we replace the system parameter b in system (3.1) and (3.2) by x, y, , , xy 

where x and y are state variables in system (3.3). Simulations are performed under 

 in steps of 0.1. In our numerical simulations, four 

parameters , , and 

1q

2q 2x 2y

9.0~1.021 == qq

05.0=a 53=b 1=c 3.0=d  of system (3.3) are fixed. The initial 

states of system (13) are 3)0( =x , 4)0( =y , 1)0( =z  and . The 

numerical simulations are carried out by MATLAB. 

0)0( =w
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Case 1: The parameters , 05.0=a 1=c  and 3.0=d  of system (3.1) and (3.2) 

are fixed. The parameter b of system (3.1) and (3.2) is replaced by the same x, where 

x is the state variable of system (3.3). All synchronizations for  

are successfully obtained. For saving space, only results for 

9.0~1.021 == qq

21 qq = = 0.1 and 0.9 are 

shown in Fig. 3.1 ~ 3.4. 

Case 2: The parameters , 05.0=a 1=c  and 3.0=d  of system (3.1) and (3.2) 

are fixed. The parameter b of system (3.1) and (3.2) is replaced by the same y, where 

y is the state variable of system (3.3). All synchronizations for  

are successfully obtained. For saving space, only results for 

9.0~1.021 == qq

21 qq = = 0.1 and 0.9 are 

shown in Fig. 3.5 ~3.8. 

Case 3: The parameters , 05.0=a 1=c  and 3.0=d  of system (3.1) and (3.2) 

are fixed. The parameter b of system (3.1) and (3.2) is replaced by the same , where 

x is the state variable of system (3.3). All synchronizations for  

are successfully obtained. For saving space, only results for 

2x

9.0~1.021 == qq

21 qq = = 0.1 and 0.9 are 

shown in Fig. 3.9 ~ 3.12. 

Case 4: The parameters , 05.0=a 1=c  and 3.0=d  of system (3.1) and (3.2) 

are fixed. The parameter b of system (3.1) and (3.2) is replaced by the same , where 

y is the state variable of system (3.3). All synchronizations for  

are successfully obtained. For saving space, only results for 

2y

9.0~1.021 == qq

21 qq = = 0.1 and 0.9 are 

shown in Fig. 3.13 ~ 3.16. 

Case 5: The parameters , 05.0=a 1=c  and 3.0=d  of system (3.1) and (3.2) 

are fixed. The parameter b of system (3.1) and (3.2) is replaced by the same xy, where 

x and y are the state variables of system (3.3). All synchronizations for 

 are successfully obtained. For saving space, only results for 

= 0.1 and 0.9 are shown in Fig. 3.17 ~ 3.20. 

9.0~1.021 == qq

21 qq =
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Fig. 3.3 The phase portrait and Poincaré map of the synchronized fractional order modified 
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Fig. 3.5 The phase portrait and Poincaré map of the synchronized fractional order modified 
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Fig. 3.7 The phase portrait and Poincaré map of the synchronized fractional order modified 
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Fig. 3.9 The phase portrait and Poincaré map of the synchronized fractional order modified 

nano Duffing resonator systems (11) and (12) with order 9.021 == qq  for Case 3. 
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Fig. 3.11 The phase portrait and Poincaré map of the synchronized fractional order modified 

nano Duffing resonator systems (11) and (12) with order 1.021 == qq  for Case 3. 
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Fig. 3.13 The phase portrait and Poincaré map of the synchronized fractional order modified 

nano Duffing resonator systems (11) and (12) with order 9.021 == qq  for Case 4. 
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Fig. 3.15 The phase portrait and Poincaré map of the synchronized fractional order modified 

nano Duffing resonator systems (11) and (12) with order 1.021 == qq  for Case 4. 
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Fig. 3.17 The phase portrait and Poincaré map of the synchronized fractional order modified 

nano Duffing resonator systems (11) and (12) with order 9.021 == qq  for Case 5. 
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Fig. 3.19 The phase portrait and Poincaré map of the synchronized fractional order modified 

nano Duffing resonator systems (11) and (12) with order 1.021 == qq  for Case 5. 
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Chapter 4 

Anti-control of Chaos of a Fractional Order 

Modified Nano Duffing Resonator System 
In this chapter, anti-control of chaos is applied by adding various external terms. 

By using the functions of state variables of a second system as the external terms, the 

anti-control of chaos can be obtained. Anti-control of chaos can be successfully 

obtained for very low total fractional order 0.2. 

 

4.1 Regular Dynamics of a Fractional Modified Nano Duffing Resonator System  

In this section, consider the fractional order modified nano Duffing resonator 

system 
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                                            (4.1) 

where a=0.05, b=10, c=1 and d=0.3,  and  are the fractional orders, and the  

initial condition is ,

1q 2q

0)0( =x 0)0( =y , 10)0( =z and 10)0( =w . It can be obtained that 

the motion is periodic for 9.0~1.021 == qq . For saving space, only results for 

=0.1, 0.5 and 0.9 are shown in Fig.4.1. 21 qq =

 

4.2 Anti-control of Chaos 

Creating chaos is called anti-control of chaos at times [74]. In this section, 

addition of a state of another identical system and addition of a periodic sinusoidal 
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function of a state of another identical system enhance the existing chaos of the 

originally system effectively. The results are demonstrated by numerical results, i.e. 

phase portrait and Poincaré map. 

 Now, consider a second identical modified nano Duffing resonator system: 
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where a = 0.05, b= 10, c = 1, and d = 0.3 are constant parameters of the system, and 

the  initial condition is ,3)0(1 =x 4)0(1 =y , 1)0(1 =z and 0)0(1 =w . 

 In order to induce chaotic phenomena of the fractional modified nano Duffing 

resonator system (4.1),  and  are added to system (4.1) respectively, 

where k is a constant. 

1kx 1sin xk

 

4.2.1 Adding the term  1kx

 First, we add an external term  to the first equation of (4.1). Second, we add 

an external term  to the second equation of (4.1). The strengths  and  are 

either positive or negative. For anti-control of chaos all simulations for 

 are obtained successfully. For saving space, only results for 

=0.1, 0.5 and 0.9 are shown as Fig. 4.2-4.5. It can be seen that when total 

order is larger, the range of y state is also larger. 

11xk

12 xk 1k 2k

9.0~1.021 == qq

21 qq =

 From above numerical results, it is shown that whether  and  are either 

positive or negative, the chaotization effects are similar.  

1k 2k
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4.2.2  Adding the term  1sin xk

First, we add an external term  to the first equation of (4.1). Second, we 

add an external term  to the second equation of (4.1). The strengths  and 

 are either positive or negative. For anti-control of chaos all simulations for 

 are obtained successfully. For saving space, only results for 

=0.1, 0.5 and 0.9 are shown as Fig. 4.6-4.9. 

13 sin xk

14 sin xk 3k

4k

9.0~1.021 == qq

21 qq =

 From above numerical results, it is also shown that whether  and  are 

positive or negative, the chaotization effects are similar. It can be seen that when total 

order is larger, the range of y state is also larger. 

3k 4k
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           (a)                     (b) 1.021 == qq 5.021 == qq  

 

            (c) 9.021 == qq  

Fig. 4.1 The phase portraits and Poincaré maps of the fractional order modified nano Duffing 

resonator systems (11) without control term. 
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(a) 1.021 == qq                     (b) 5.021 == qq  

 

(c) 9.021 == qq  

Fig. 4.2 The phase portraits and Poincaré maps of the fractional order modified nano Duffing 

resonator systems (11) with control term , where11xk 101 =k . 
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(a) 1.021 == qq                     (b) 5.021 == qq  

 

(c) 9.021 == qq  

Fig. 4.3 The phase portraits and Poincaré maps of the fractional order modified nano Duffing 

resonator systems (11) with control term , where11xk 101 −=k . 
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(a) 1.021 == qq                     (b) 5.021 == qq  

 

(c) 9.021 == qq  

Fig. 4.4 The phase portraits and Poincaré maps of the fractional order modified nano Duffing 

resonator systems (11) with control term , where12 xk 102 =k . 
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(a) 1.021 == qq                     (b) 5.021 == qq  

 

(c) 9.021 == qq  

Fig. 4.5 The phase portraits and Poincaré maps of the fractional order modified nano Duffing 

resonator systems (11) with control term , where12 xk 102 −=k . 
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(a) 1.021 == qq                     (b) 5.021 == qq  

 

(c) 9.021 == qq  

Fig. 4.6 The phase portraits and Poincaré maps of the fractional order modified nano Duffing 

resonator systems (11) with control term , where13 sin xk 103 =k . 
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(a) 1.021 == qq                     (b) 5.021 == qq  

 

(c) 9.021 == qq  

Fig. 4.7 The phase portraits and Poincaré maps of the fractional order modified nano Duffing 

resonator systems (11) with control term , where13 sin xk 103 −=k . 
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(a) 1.021 == qq                     (b) 5.021 == qq  

 

(c) 9.021 == qq  

Fig. 4.8 The phase portraits and Poincaré maps of the fractional order modified nano Duffing 

resonator systems (11) with control term , where14 sin xk 104 =k . 
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(a) 1.021 == qq                     (b) 5.021 == qq  

 

(c) 9.021 == qq  

Fig. 4.9 The phase portraits and Poincaré maps of the fractional order modified nano Duffing 

resonator systems (11) with control term , where14 sin xk 104 −=k . 
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Chapter 5 

Anti-control of Chaos of a Fractional Order 

Modified Nano Duffing Resonator System by 

Adding Noise 
5.1 Preliminaries 

In this chapter, anti-control of chaos of a fractional order modified nano Duffing 

resonator system is studied by adding noise. By using the white noise, Rayleigh noise, 

Rician noise and uniform noise as the added term respectively, the anti-control of 

chaos can be obtained. Anti-control of chaos can be successfully obtained for very 

low total fractional order 0.2. 

 

5.2 Anti-control of Chaos by Adding Noise 

In this section, addition of the white noise, Rayleigh noise, Rician noise and 

uniform noise as the external term respectively are presented, which can enhance the 

existing chaos of the originally system. All numerical simulations are run by block 

diagrams in Simulink environment. The results are demonstrated by numerical results, 

i.e. phase portraits and Poincaré maps. 

 

5.2.1 Adding the white noise 

We add an external term  to the second equation of (4.1), where  is the 

white noise. The strength  is either positive or negative.  

11Fk 1F

1k

The probability density function of n-dimensional Gaussian noise is 
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)2/)()(exp()det)2(()( 12
1

µµπ −−−= −−
xKxKxf Tn                   (5.1) 

where x is a length-n vector, K is the n-by-n covariance matrix, µ is the mean value 

vector, and the superscript T indicates matrix transpose. The Simulink 

Communications toolbox provides the Gaussian Noise Generator block. The initial 

seed, the mean value and the variance in the simulation must be specified. We take 

the initial seed 41, the mean value 1 and the variance 1 in the simulation. 

For anti-control of chaos, all simulations for 9.0~1.021 == qq  are obtained 

successfully. For saving space, only results for 21 qq = =0.1, 0.5 and 0.9 are shown as 

Fig. 5.1-5.2. 

 From above numerical results, it is shown that when  is either positive or 

negative, the chaotic phase portraits are almost symmetric to the origin. It can be seen 

that when total order is larger, the range of y state is also larger. 

1k

 

5.2.2 Adding the Rayleigh noise 

We add an external term  to the second equation of (4.1), where  is 

Rayleigh noise. The strength  is either positive or negative.  

22Fk 2F

2k

The Rayleigh probability density function is given by 
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where  is known as the fading envelope of the Rayleigh distribution. The 

Simulink Communications toolbox provides the Rayleigh Noise Generator block. The 

initial seed and the sigma parameter in the simulation must be specified. We specify 

the initial seed 47 and the sigma parameter 5 in the simulation. 

2σ

For anti-control of chaos, all simulations for 9.0~1.021 == qq  are obtained 

successfully. For saving space, only results for 21 qq = =0.1, 0.5 and 0.9 are shown as 
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Fig. 5.3-5.4. 

 From above numerical results, it is also shown that when  is either positive or 

negative, the chaotic phase portraits are almost symmetric to the origin. It can be seen 

that when total order is larger, the range of y state is also larger. 

2k

 

5.2.3 Adding the Rician noise 

We add an external term  to the second equation of (4.1), where  is 

Rician noise. The strength  is either positive or negative.  

33Fk 3F

3k

The Rician probability density function is given by 
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where σ is the standard deviation of the Gaussian distribution that underlies the 

Rician distribution noise, , where  and  are the mean values 

of two independent Gaussian components, and  is the modified 0th-order Bessel 

function of the first kind given by   

222
QI mmm += Im Qm

0I

∫
−

=
π

ππ
dteyI ty cos

0 2
1)(                                            (5.4) 

Note that m and σ  are not the mean value and standard deviation for the Rician 

noise. The Simulink Communications toolbox provides the Rician Noise Generator 

block. The initial seed, Rician K-factor and the sigma parameter must be specified in 

the simulation. We specify the initial seed 59, Rician K-factor 10 and the sigma 

parameter 5 in the simulation. 

For anti-control of chaos, all simulations for 9.0~1.021 == qq  are obtained 

successfully. For saving space, only results for 21 qq = =0.1, 0.5 and 0.9 are shown as 
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Fig. 5.5-5.6. 

 From above numerical results, it is also shown that when  is either positive or 

negative, the chaotic phase portraits are almost symmetric to the origin. It can be seen 

that when total order is larger, the range of y state is also larger. 

3k

 

5.2.4 Adding the Uniform noise 

We add an external term  to the second equation of (4.1), where  is the 

uniform noise. The strength  is either positive or negative.  

44Fk 4F

4k

The probability density function of uniform noise is given by 
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The mean of this density function is given by 
2

ba +
=µ  and its variance by 

12
)( 2

2 ab −
=σ . 

The Simulink Communications toolbox provides the Uniform Noise Generator 

block. The initial seed, the noise lower bound and the noise upper bound must be 

specified in the simulation. We specify the initial seed 31, the noise lower bound 0 

and the noise upper bound 5 in the simulation. 

For anti-control of chaos, all simulations for 9.0~1.021 == qq  are obtained 

successfully. For saving space, only results for 21 qq = =0.1, 0.5 and 0.9 are shown as 

Fig. 5.7-5.8. 

 From above numerical results, it is shown that when  is either positive or 

negative, the chaotic phase portraits are almost symmetric to the origin. It can be seen 

that when total order is larger, the range of y state is also larger. 

4k
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(a)                     (b) 1.021 == qq 5.021 == qq  

 
(c) 9.021 == qq  

Fig. 5.1 The phase portraits and Poincaré maps of the fractional order modified nano Duffing 
resonator systems (11) with control term , where11Fk 101 =k ,  is the white noise. 1F
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(a)                     (b) 1.021 == qq 5.021 == qq  

 
(c) 9.021 == qq  

Fig. 5.2 The phase portraits and Poincaré maps of the fractional order modified nano Duffing 

resonator systems (11) with control term , where11Fk 101 −=k ,  is the white noise. 1F
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(a)                     (b) 1.021 == qq 5.021 == qq  

 
(c) 9.021 == qq  

Fig. 5.3 The phase portraits and Poincaré maps of the fractional order modified nano Duffing 

resonator systems (11) with control term , where22Fk 102 =k ,  is Rayleigh noise. 2F
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(a)                     (b) 1.021 == qq 5.021 == qq  

 
(c) 9.021 == qq  

Fig. 5.4 The phase portraits and Poincaré maps of the fractional order modified nano Duffing 

resonator systems (11) with control term , where22Fk 102 −=k ,  is Rayleigh noise. 2F
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(a)                     (b) 1.021 == qq 5.021 == qq  

 
(c) 9.021 == qq  

Fig. 5.5 The phase portraits and Poincaré maps of the fractional order modified nano Duffing 

resonator systems (11) with control term , where33Fk 103 =k ,  is Rician noise. 3F
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(a)                     (b) 1.021 == qq 5.021 == qq  

 
(c) 9.021 == qq  

Fig. 5.6 The phase portraits and Poincaré maps of the fractional order modified nano Duffing 

resonator systems (11) with control term , where33Fk 103 −=k ,  is Rician noise. 3F
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(a)                     (b) 1.021 == qq 5.021 == qq  

 
(c) 9.021 == qq  

Fig. 5.7 The phase portraits and Poincaré maps of the fractional order modified nano Duffing 

resonator systems (11) with control term , where44Fk 104 =k ,  is the uniform noise. 4F
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(a)                     (b) 1.021 == qq 5.021 == qq  

 
(c) 9.021 == qq  

Fig. 5.8 The phase portraits and Poincaré maps of the fractional order modified nano Duffing 

resonator systems (11) with control term , where44Fk 104 −=k ,  is the uniform noise. 4F
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Chapter 6 

Conclusions 
In this thesis we have studied the chaos in the fractional order modified nano 

Duffing resontor system by phase portraits, Poincaré maps and bifurcation diagrams 

in Chapter 2. The total orders of the system for the existence of chaos are 1.8, 1.9, 2.0 

and 2.1. 

In Chapter 3, The chaos synchronizations of two uncoupled fractional order 

modified nano Duffing resonator systems are obtained by replacing their 

corresponding parameters by the same function of chaotic state variables of a third 

chaotic system. The method is named parameter excited chaos synchronization which 

can be successfully obtained for very low total fractional order 0.2. Numerical 

simulations are illustrated by phase portraits, Poincaré maps and state error plots.  

In Chapter 4 and 5, anti-control of chaos of a fractional order modified nano 

Duffing resonator system is studied. By using the functions of state variable of a 

second identical system as the added term, the anti-control of chaos can be obtained. 

By using the white noise, Rayleigh noise, Rician noise and uniform noise as the added 

term respectively, the anti-control of chaos can be obtained. Anti-control of chaos can 

be successfully obtained for very low total fractional order 0.2. Numerical simulations 

are illustrated by phase portraits and Poincaré maps.  
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Appendix 
 

Table 1. FRACTIONAL OPERATORS WITH APPROXIMATELY  
2 db ERROR FROM    = 10–2 TO 102 rad/sec ω

                 4 3 2

0.1 5 4 3 2

1 220.4 5004 503 234.5 0.484
359.8 5742 4247 147.7 0.2099

s s s s
s s s s s s

+ + + +
≈

+ + + + +

                

                

4 3 2

0.2 5 4 3 2

1 60.95 816.9 582.8 23.24 0.04934
134 956.5 383.5 8.953 0.01821

s s s s
s s s s s s

+ + + +
≈

+ + + + +
4 3 2

0.3 5 4 3 2

1 23.76 224.9 129.1 4.733 0.01052
64.51 252.2 63.61 1.104 0.002267

s s s s
s s s s s s

+ + + +
≈

+ + + + +

                

                

                

                4 3 2

0.7 5 4 3 2

1 4.406 177.6 209.6 9.179 0.0145
88.12 279.2 33.3 1.927 0.0002276

s s s s
s s s s s s

+ + + +
≈

+ + + + +

4 3 2

0.6 5 4 3 2

1 8.579 255.6 405.3 35.93 0.1696
94.22 472.9 134.8 2.639 0.009882

s s s s
s s s s s s

+ + + +
≈

+ + + + +

4 3 2

0.5 5 4 3 2

1 15.97 593.2 1080 135.4 1
134.3 1072 543.4 20.1 0.1259

s s s s
s s s s s s

+ + + +
≈

+ + + + +

4 3 2

0.4 5 4 3 2

1 25 558.5 664.2 44.15 0.1562
125.6 840.6 317.2 7.428 0.02343

s s s s
s s s s s s

+ + + +
≈

+ + + + +

                3 2

0.8 4 3 2

1 5.235 1453 5306 254.9
658.1 5700 658.2 1

s s s
s s s s s

+ + +
≈

+ + + +

                2

0.9 3 2

1 1.766 38.27 4.914
36.15 7.789 0.01

s s
s s s s

+ +
≈

+ + +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 79



Paper List 
[1] Zheng-Ming Ge and Chan-Yi Ou, “Chaos in a Fractional Order Modified Duffing 

System.”, Chaos, Solitons and Fractals, Nov. 2005, accepted and proofed.(SCI, 

Impact Factor:1.938) 

[2] Zheng-Ming Ge and Chan-Yi Ou, “Chaos Synchronization of Fractional Order 

Modified Duffing Systems with Parameters Excited by a Chaotic Signal.”, Chaos, 

Solitons and Fractals, May. 2006, accepted. (SCI, Impact Factor: 1.938) 

[3] Zheng-Ming Ge and Chan-Yi Ou, “Anti-control of Chaos of a Fractional Order 

Modified Duffing System.”, submitted to Chaos, Solitons and Fractals, 2006. 

[4] Zheng-Ming Ge and Chan-Yi Ou, “Anti-control of Chaos of a Fractional Order 

Modified Duffing System by Adding Noise.”, submitted to Chaos, Solitons and 

Fractals, 2006. 

 80


	論文封面.pdf
	內文封面.pdf
	中文摘要.pdf
	英文摘要.pdf
	Contents.pdf
	LIST OF FIGURES.pdf
	論文本文.pdf
	REFERENCES


