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Student : Chan-Yi-Ou Advisor : Zheng-Ming-Ge

ABSTRACT

In this thesis, the chaotic behaviors in a fractional order modified nano Duffing resonator
system are studied numerically by phase portraits, Poincaré maps and bifurcation diagrams.
Linear transfer function approximations:of the.fractional integrator block are calculated for a
set of fractional orders in (0,1],:basedon frequency domain arguments. The total system
orders found for chaos to exist in-such-systems are 1.8, 1.9, 2.0 and 2.1. The chaos
synchronizations of two uncoupled fractional order chaotic modified nano Duffing resonator
systems are obtained. By replacing their corresponding parameters by the same function of
chaotic state variables of a third chaotic system, the chaos synchronization can be obtained.
The method is named parameter excited chaos synchronization which can be successfully
obtained for very low total fractional order 0.2. Numerical simulations are illustrated by phase
portrait, Poincaré map and state error plots. Anti-control of chaos of a fractional order
modified nano Duffing resonator system is studied. First, by using the functions of state
variable of a second identical system as the added term, the anti-control of chaos can be
obtained. Second, by using the white noise, Rayleigh noise, Rician noise and uniform noise as
the added term respectively, the anti-control of chaos can be obtained. Anti-control of chaos
can be successfully obtained for very low total fractional order 0.2. Numerical simulations are

illustrated by phase portraits and Poincaré maps.
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Chapter 1

Introduction

Fractional calculus is a 300-year-old mathematical topic [1-4]. Although it has a long
history, the applications of fractional calculus to physics and engineering are just a recent
focus of interest. Many systems are known to display fractional order dynamics, such as
viscoelastic systems, dielectric polarization [5], electrode electrolyte polarization [6], and
electromagnetic waves [7]. More recently, many investigations are devoted to the control
[8-12] and dynamics [13-26] of fractional order dynamical systems. In [13], it is shown
that the fractional order Chua’s circuit of order as low as 2.7 can produce a chaotic
attractor. In [14], it is shown that nonautonomous Duffing systems of order less than 2
can still behave in a chaotic manner. In [15], chaotic behaviors of the fractional order
“jerk” model is studied, in which chaotic attractor can be obtained with the system order
as low as 2.1, and in [16] chaos.control of this fractional order chaotic system is
investigated. In [17], the fractional order Wien bridge oscillator is studied, where it is
shown that limit cycle can be generated for-any fractional order, with a proper value of
the amplifier gain.

Since the pioneering work by Pecara.and Carroll [28], various effective methods for
chaos synchronization have been reported [29-63]. However, most of synchronizations
can only be realized under the hypotheses that there exists coupling between two chaotic
systems. In practice, such as in physical and electrical systems, sometimes it is difficult
even impossible to couple two chaotic systems. In comparison with coupled chaotic
systems, for synchronization between the uncoupled chaotic systems, there are many
advantages [35, 36]. In this thesis, synchronization of two fractional nano Duffing
resonator systems whose corresponding parameters are excited by a chaotic signal of a
third system is studied.

For continuous time systems, how to design a simple controller that can drive the
system from nonchaotic to chaotic, and how to prove that such a controlled system is
indeed chaotic in a rigorous mathematical sense, are important and challenging problems
for study [64-72].

From [73], we can get the integral order nano Duffing resonator system. One way to



study fractional order systems is through linear approximations. By utilizing frequency
domain techniques based on Bode diagrams, one can obtain a linear approximation for
the fractional order integrator, the order of which depends on the desired bandwidth and
the discrepancy between the actual and the approximate magnitude Bode diagrams. This
approach is applied to study the behaviors of the fractional order modified nano Duffing
resonator equations in this thesis. We use the approximate linear transfer functions for the
fractional integrator of order that varies from 0.1 to 0.9, and study the resulting behavior
of the entire system for each case under the effect of different types of nonlinearities.
Chaotic behaviors in the fractional order modified nano Duffing resonator equations are
studied by phase portraits, Poincaré maps and bifurcation diagrams. It is found that the
total system orders for chaos to exist in such systems are 1.8, 1.9, 2.0 and 2.1.

The chaos synchronizations of two uncoupled fractional order modified nano Duffing
resonator systems are obtained by replacing their corresponding parameters by the same
function of chaotic state variables of:a third chaotic system. The method is named
parameter excited chaos synchronization-which:can be successfully obtained for very low
total fractional order 0.2. Numerical simulations are illustrated by phase portraits,
Poincaré maps and state error plots.

Anti-control of chaos of a fractional order modifted nano Duffing resonator system is
studied. By using the functions of state variable of a second identical system as the added
term, the anti-control of chaos can be obtained. By using the white noise, Rayleigh noise,
Rician noise and uniform noise as the added term respectively, the anti-control of chaos
can be obtained. Anti-control of chaos can be successfully obtained for very low total
fractional order 0.2. Numerical simulations are illustrated by phase portraits and Poincaré
maps.

This thesis is organized as follows. Chapter 2 gives the dynamic equation of modified
nano Duffing resonator system. The fractional derivative and its approximation are
introduced. The system under study is described both in its integer and fractional forms.
Numerical simulation results are presented.

In Chapter 3, numerical simulations of synchronization scheme based on driving the
corresponding parameters of two chaotic systems by a chaotic signal of a third system are
presented.



In Chapter 4, numerical simulations of anti-control scheme based on adding the
function of state variables of a second system are presented. In Chapter 5, numerical
simulations of anti-control scheme based on adding the white noise, Rayleigh noise,
Rician noise and uniform noise as the external term respectively are presented. In Chapter

6, conclusions are drawn.



Chapter 2
Chaos in a Fractional Order Modified Nano

Duffing Resonator System

In this chapter, the dynamic equation of modified nano Duffing resonator system is
given. The fractional derivative and its approximation are introduced. The system under
study is described both in its integer and fractional forms. Numerical simulation results

are presented.

2.1 Fractional Derivative and Its Approximation

Two commonly used definitions for the general fractional differintegral are the
Grunwald definition and the Riemann:Liouville definition. The Riemann-Liouville
definition of the fractional integral is givenshereas [27]

df@) _ 1 [ QI {
dt'  T(-q) (t-7)%

2.1)

where g can have noninteger values, and thus the name fractional differintegral. Notice
that the definition is based on integration‘and 'more importantly is a convolution integral
for g < 0. When g > 0, then the usual integer nth derivative must be taken of the fractional
(g—n)th integral, and yields the fractional derivative of order q as
def d" {dq”f
dt*  dt"| dt?"

} g>0 and n an integer>q (2.2)

This appears so vastly different from the usual intuitive definition of derivative and
integral that the reader must abandon the familiar concepts of slope and area and attempt
to get some new insight. Fortunately, the basic engineering tool for analyzing linear
systems, the Laplace transform, is still applicable and works as one would expect; that is,

L{d(;zq(t)}_sqL f(t)} ZS {dq_lkf(t)} , forall g (2.3)

=1 S

where n is an integer such that n - 1 < g < n . If the initial conditions are considered to be

zero, this formula reduces to the more expected and comforting form



dif()]
L{ e }—s L{f(t)} (2.4)

An efficient method is to approximate fractional operators by using standard integer
order operators. In [27], an effective algorithm is developed to approximate fractional
order transfer functions. Basically, the idea is to approximate the system behavior in the
frequency domain. By utilizing frequency domain techniques based on Bode diagrams,
one can obtain a linear approximation of fractional order integrator, the order of which

depends on the desired bandwidth and discrepancy between the actual and the

approximate magnitude Bode diagrams. In Table 1 of [13], approximations for }éq

with g=0.1~0.9 in steps 0.1 are given, with errors of approximately 2dB. These

approximations are used in following simulations.

2.2 AFractional Order Modified. Nano Duffing Resonator System
The famous Duffing system is
X +ax+ X+ x® =bcosawt (2.5)

where a, b are constant parameters

It can be written as two first order ordinary differential equations:
ax

dt (2.6)

ﬂ:_x—x3 —ay + bcos wt

dt
Consider the following modified nano Duffing resonator system:

ey

dt
d—y=—x—x3—ay+bz
dt

dz

— =W

dt

dw

— =—cz-dz*
dt

2.7)

It becomes an autonomous system with four states where a, b, ¢, and d are constant

parameters of the system. System (2.7) can divide into two parts:



X _

d—y:—x—x3—ay+bz

dt

and

w
dt 2.9)

As a nonlinear oscillator, system (2.9) provides the periodic time function bz to system
(2.8) as an excitation which produces the chaos in system (2.8). To sum up, system (2.8)
can be considered as a nonautonomous system with two states X,y with bz as an
excitation which is a given periodic function of time, while system (2.8) and system (2.9)
together can be considered as an autonomous system with four states X,y,z,w. We
focus on system (2.8), while system (2.9) remains an integral order system.

Now, consider a fractional order modified 'nano Duffing resonator system. Here, the

conventional derivatives in Eq.(2:8) are replaced by the-fractional derivatives as follows:

d®x

dt G

gz
d qzy =-—x-x*—ay+bz
dt (2.10)
dz
— =W
dt
dw

— =—cz-dz®
dt

where system parameter b is allowed to be varied, and q,,q, are two fractional order

numbers. Simulations are then performed using q,(i=12) varied from 0.1~0.9,

respectively. The approximations from Table 1 of [13] are used for the simulations of the

appropriate g, th integrals. When q,< 1, then the approximations are used directly. It

should further be noted that approximations used in the simulations for oy when

g,> 1, are obtained by using 1/s times the approximation for %qi_l from Table 1 ( See



Appendix).

2.3 Simulation Results

In this section, all numerical simulations are run by block diagrams in Simulink
environment, using ode45 solver algorithm, where the fractional integrators have been
approximated by linear time invariant transfer functions following the procedure in [13].
In so far as the attractor shape is concerned, both procedures gave very similar results. In
numerical simulations, three parameters a =0.05, c¢=1 and d=0.3 are fixed and b
is varied. The initial states of the modified Duffing system are x(0)=0, y(0)=0,
2(0)=10 and w(0)=10.

Firstly, when the total order g, +q,is 1.8, chaos is found in the cases: (q,,q,) =
(1.5, 0.3), (q9,,9,) = (1.3, 0.5), (0,,09,) = (0.3, 1.5), and (q,,q,) = (0.5, 1.3). The phase
portraits, Poincaré maps and the bifurcationsdiagrams are showed in Fig.2.1~Fig.2.4.

Secondly, when the total order g, 410, is %9s¢chaos'is found in the cases: (q,,q,) = (1.8,

0.1), (0,.9,) = (1.6, 0.3), (9,,d,) =(1:5, 0.4),40,,d,)- = (1.4, 0.5), (9,,9,) = (1.3, 0.6),
(a,.9,) =(1.1,0.8), (9,,d,) = (01, 1.8); (G G)-= (0.3, 1.6), (q,,9,) = (0.4, 1.5), (0,,9,)
= (0.5, 1.4), (9,,9,) = (0.6, 1.3), and (g,,9,) =(0:8, 1.1) The phase portraits, Poincarée
maps and the bifurcation diagrams are shown in Fig.2.5~Fig.2.16. When the total order
g, +0,is 2.0, chaos is found in the cases: (q,,q,) = (1.9, 0.1), (q,,9,) = (1.8, 0.2),
(9,,9,) = (1.2, 0.8), (q,,9,) = (1.1, 0.9), (q,,09,) = (0.2, 1.8), (q,,9,) = (0.8, 1.2), and
(9,,9,) = (0.9, 1.1). The phase portraits, Poincaré maps and the bifurcation diagrams are
shown in Fig.2.17~Fig.2.23. Finally, when the total order g, +q,is 2.1, chaos is found in
the cases: (q,,9,) = (1.2, 0.9), (q,,9,) = (0.2, 1.9), and (q,,q,) = (1.2, 0.9). The phase
portraits, Poincaré maps and the bifurcation diagrams are showed in Fig.2.24~Fig.2.26. It

can be seen that when q, is larger, the range of y state is also larger.
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Fig. 2.1 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional

order modified nano Duffing resonator system, x versus y and b versus x,(¢;,,0, )=(1.5,0.3).



(a) Period 5, b=195 (b) Period 5, b=199

(d)

Fig. 2.2 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional

order modified nano Duffing resonator system, x versus y and b versus x,(¢;,d, )=(1.3,0.5).



(a) Period 2, b=201 (b) Period 5, b=202

(d)

Fig. 2.3 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional

order modified nano Duffing resonator system, x versus y and b versus x,(¢;,,d, )=(0.3,1.5).
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Fig. 2.4 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (0.5, 1.3).
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(b) Period 6, b=68.1
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Fig. 2.5 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (1.8, 0.1).
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Fig. 2.6 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (1.6, 0.3).
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Fig. 2.7 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (1.5, 0.4).
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Fig. 2.8 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (1.4, 0.5).
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(a) Period 2, b=50.5 (b) Period 4, b=59.9

(d)
Fig. 2.9 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (1.3, 0.6).
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(d)
Fig. 2.10 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (1.1, 0.8).
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(d)

Fig. 2.11 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional

order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (0.1, 1.8).
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Fig. 2.12 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (0.3, 1.6).
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Fig. 2.13 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (0.4, 1.5).
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Fig. 2.14 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (0.5, 1.4).
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(d)
Fig. 2.15 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (0.6, 1.3).
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Fig. 2.16 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional

order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (0.8, 1.1).
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Fig. 2.17 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (1.9, 0.1).
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Fig. 2.18 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (1.8, 0.2).
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(b) Period 6, b=129
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Fig. 2.19 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (1.2, 0.8).
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(d)
Fig. 2.20 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (1.1, 0.9).
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Fig. 2.21 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (0.2, 1.8).
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Fig. 2.22 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (0.8, 1.2).
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Fig. 2.23 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional

order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (0.9, 1.1).
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(a) Period 2, b=68.9 (b) Period 5, b=64
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Fig. 2.24 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (1.2, 0.9).
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Fig. 2.25 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (0.2, 1.9).
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Fig. 2.26 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional
order modified nano Duffing resonator system, x versus y and b versus x, (0,,q,) = (0.9, 1.2).
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Chapter 3
Chaos Synchronization of Fractional Order
Modified Nano Duffing Resonator Systems with
Parameters Excited by a Chaotic Signal

3.1 Preliminaries

The chaos synchronizations of two uncoupled fractional order modified nano
Duffing resonator systems are obtained by replacing their corresponding parameters
by the same function of chaotic state variables of a third chaotic system in this chapter.
The method is named parameter excited chaos synchronization which can be

successfully obtained for very low total fractional order 0.2.

3.2 Numerical Simulations for Chaos Synchronization with

Parameter Driven by a Chaotic-Signal

In this section, two chaotic ‘fractional order modified nano Duffing resontor

systems

dqu]_ B
e =Y

dQZy 3
L=—x —x —ay, +bz,

g2
dt 31)
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3.2)

where g, and q, are the fractional orders, are synchronized by replacing
corresponding parameters by the same function of chaotic states of chaotic modified
nano Duffing resontor system

de_
dt
dy

L = _x-x*-ay+bhz
dt 4

y

(3.3)

where a = 0.05, b= 53, ¢ = 1, and.d = 0.3 are constant parameters of the system.
Define the error states as e, =X, —X, and e, =y, —y, in system (3.1) and (3.2).
The synchronization scheme is to replace the corresponding parameters b in system

(3.1) and (3.2) by the same function of chaotic states of system (3.3) such that

le(t)] — Oas t — oo In following simulations, for various derivative orders ¢, and

g,, we replace the system parameter b in system (3.1) and (3.2) by x, y, x*,y?, xy
where x and y are state variables in system (3.3). Simulations are performed under
g,=0,=01~09 in steps of 0.1. In our numerical simulations, four
parametersa=0.05,b=53,c=1and d =0.3 of system (3.3) are fixed. The initial
states of system (13) are x(0)=3, y(0)=4, z(0)=1 and w(0)=0. The

numerical simulations are carried out by MATLAB.
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Case 1: The parametersa=0.05, c=1 and d =0.3 of system (3.1) and (3.2)
are fixed. The parameter b of system (3.1) and (3.2) is replaced by the same x, where
X is the state variable of system (3.3). All synchronizations for g, =q,=0.1~0.9
are successfully obtained. For saving space, only results for g, =q,= 0.1 and 0.9 are
shown in Fig. 3.1 ~ 3.4.

Case 2: The parametersa=0.05, c=1 and d =0.3 of system (3.1) and (3.2)
are fixed. The parameter b of system (3.1) and (3.2) is replaced by the same y, where
y is the state variable of system (3.3). All synchronizations for ¢, =q, =0.1~0.9
are successfully obtained. For saving space, only results for g, =q,= 0.1 and 0.9 are
shown in Fig. 3.5 ~3.8.

Case 3: The parameters a=0.05, c=1 and d =0.3 of system (3.1) and (3.2)
are fixed. The parameter b of system (3.1) and (3.2) is replaced by the same x?, where
X is the state variable of system (3.3). All synchronizations for g, =q,=0.1~0.9
are successfully obtained. For saving.space,.only results for g, =q,= 0.1 and 0.9 are
shown in Fig. 3.9 ~ 3.12.

Case 4: The parameters a=0.05, c=1 and d =0.3 of system (3.1) and (3.2)
are fixed. The parameter b of system (3.1) and (3.2) is replaced by the same y*, where

y is the state variable of system (3.3). All synchronizations for g, =q, =0.1~0.9
are successfully obtained. For saving space, only results for g, =q,= 0.1 and 0.9 are
shown in Fig. 3.13 ~ 3.16.

Case 5: The parameters a=0.05, c=1 and d =0.3 of system (3.1) and (3.2)
are fixed. The parameter b of system (3.1) and (3.2) is replaced by the same xy, where
X and y are the state variables of system (3.3). All synchronizations for
g,=0,=0.1~0.9 are successfully obtained. For saving space, only results for

g, =0,=0.1and 0.9 are shown in Fig. 3.17 ~ 3.20.
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Fig. 3.1 The phase portrait and Peincaré map' of .the synehronized fractional order modified
nano Duffing resonator systems (11) and\(12)-with-order. g, =g, =0.9 for Case 1.
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Fig. 3.2 The time histories of the errors of the states of the synchronized fractional order
modified nano Duffing resonator systems (11) and (12) with order g, =, =0.9 for Case 1.
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Fig. 3.3 The phase portrait and Poincaré map of the synchronized fractional order modified

nano Duffing resonator systems (11) and (12) with order ¢, =g, =0.1 for Case 1.
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Fig. 3.4 The time histories of the errors of the states of the synchronized fractional order

modified nano Duffing resonator systems (11) and (12) with order g, =q, =0.1 for Case 1.
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Fig. 3.5 The phase portrait and Poincaré map of the synchronized fractional order modified

nano Duffing resonator systems (11) and (12) with order g, =g, =0.9 for Case 2.
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Fig. 3.6 The time histories of the errors of the states of the synchronized fractional order

modified nano Duffing resonator systems (11) and (12) with orderg, =g, =0.9 for Case 2.
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Fig. 3.7 The phase portrait and Poincaré map of the synchronized fractional order modified

nano Duffing resonator systems (11) and (12) with order ¢, =g, =0.1 for Case 2.
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Fig. 3.8 The time histories of the errors of the states of the synchronized fractional order

modified nano Duffing resonator systems (11) and (12) with order g, =q, =0.1 for Case 2.
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Fig. 3.9 The phase portrait and Poincaré map of the synchronized fractional order modified
nano Duffing resonator systems (11) and (12) with order g, =g, =0.9 for Case 3.
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Fig. 3.10 The time histories of the errors of the states of the synchronized fractional order

modified nano Duffing resonator systems (11) and (12) with orderg, =, =0.9 for Case 3.
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Fig. 3.11 The phase portrait and Poincaré map of the synchronized fractional order modified

nano Duffing resonator systems (11) and (12) with order ¢, =g, =0.1 for Case 3.
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Fig. 3.12 The time histories of the errors of the states of the synchronized fractional order

modified nano Duffing resonator systems (11) and (12) with order g, =q, =0.1 for Case 3.
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Fig. 3.13 The phase portrait and Poincaré map of the synchronized fractional order modified

nano Duffing resonator systems (11) and (12) with order g, =g, =0.9 for Case 4.
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Fig. 3.14 The time histories of the errors of the states of the synchronized fractional order

modified nano Duffing resonator systems (11) and (12) with orderg, =, =0.9 for Case 4.
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Fig. 3.15 The phase portrait and Poincaré map of the synchronized fractional order modified

nano Duffing resonator systems (11) and (12) with order ¢, =g, =0.1 for Case 4.
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Fig. 3.16 The time histories of the errors of the states of the synchronized fractional order

modified nano Duffing resonator systems (11) and (12) with order g, =q, =0.1 for Case 4.
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Fig. 3.17 The phase portrait and Poincaré map of the synchronized fractional order modified

nano Duffing resonator systems (11) and (12) with order g, =g, =0.9 for Case 5.
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Fig. 3.18 The time histories of the errors of the states of the synchronized fractional order

modified nano Duffing resonator systems (11) and (12) with orderg, =g, =0.9 for Case 5.
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Fig. 3.19 The phase portrait and Poincaré map of the synchronized fractional order modified

nano Duffing resonator systems (11) and (12) with order ¢, =g, =0.1 for Case 5.
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Fig. 3.20 The time histories of the errors of the states of the synchronized fractional order

modified nano Duffing resonator systems (11) and (12) with order g, =q, =0.1 for Case 5.
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Chapter 4
Anti-control of Chaos of a Fractional Order

Modified Nano Duffing Resonator System

In this chapter, anti-control of chaos is applied by adding various external terms.
By using the functions of state variables of a second system as the external terms, the

anti-control of chaos can be obtained. Anti-control of chaos can be successfully

obtained for very low total fractional order 0.2.

4.1 Regular Dynamics of a Fractional Modified Nano Duffing Resonator System

In this section, consider the fractional order modified nano Duffing resonator

system

d qlx .
dtfh

a2
?jtqzy =-—x—x*—ay+bz

4.1

iz (4.1)
—=Ww

dt

aw_ —cz —dz*

dt
where a=0.05, b=10, c=1 and d=0.3,q, and g, are the fractional orders, and the

initial condition is x(0) =0, y(0) =0, z(0) =10and w(0) =10. It can be obtained that

the motion is periodic forg, =g, =0.1~0.9. For saving space, only results for

¢, =0,=0.1, 0.5and 0.9 are shown in Fig.4.1.

4.2 Anti-control of Chaos
Creating chaos is called anti-control of chaos at times [74]. In this section,

addition of a state of another identical system and addition of a periodic sinusoidal
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function of a state of another identical system enhance the existing chaos of the
originally system effectively. The results are demonstrated by numerical results, i.e.
phase portrait and Poincaré map.

Now, consider a second identical modified nano Duffing resonator system:

dx,

o

d

%:—xl—xf’—ayﬁbz1 4.2)
a, _

dt

dw,

ditl =—cz, —dz}

where a = 0.05, b= 10, ¢ = 1, and d = 0.3 are constant parameters of the system, and
the initial conditionis x;(0) =3,y,(0)=4,z,(0) =1landw,(0) =0.

In order to induce chaotic phenomena of the fractional modified nano Duffing
resonator system (4.1), kx, and ksinx; .are added to system (4.1) respectively,

where k is a constant.

4.2.1 Adding the term kx;

First, we add an external term k;x, to the first equation of (4.1). Second, we add
an external term k,x, to the second equation of (4.1). The strengths k, and k, are
either positive or negative. For anti-control of chaos all simulations for
g,=0,=0.1~0.9 are obtained successfully. For saving space, only results for
g, =0,=0.1, 0.5 and 0.9 are shown as Fig. 4.2-4.5. It can be seen that when total
order is larger, the range of y state is also larger.

From above numerical results, it is shown that whether k, and k, are either

positive or negative, the chaotization effects are similar.
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4.2.2 Adding the term ksin x,

First, we add an external term Kk, sin x, to the first equation of (4.1). Second, we

add an external term k,sin x, to the second equation of (4.1). The strengths k, and

k, are either positive or negative. For anti-control of chaos all simulations for
g,=0,=0.1~0.9 are obtained successfully. For saving space, only results for

g, =0, =0.1, 0.5 and 0.9 are shown as Fig. 4.6-4.9.
From above numerical results, it is also shown that whether k, and k, are

positive or negative, the chaotization effects are similar. It can be seen that when total

order is larger, the range of y state is also larger.
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Fig. 4.1 The phase portraits and Poincaré maps of the fractional order modified nano Duffing

resonator systems (11) without control term.
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Fig. 4.2 The phase portraits and Poincaré maps of the fractional order modified nano Duffing

resonator systems (11) with control term K, X, , wherek, =10.
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Fig. 4.3 The phase portraits and Poincaré maps of the fractional order modified nano Duffing

resonator systems (11) with control term Kk, X, , wherek, = -10.
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Fig. 4.4 The phase portraits and Poincaré maps of the fractional order modified nano Duffing

resonator systems (11) with control term k,X,, wherek, =10.
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Fig. 4.5 The phase portraits and Poincaré maps of the fractional order modified nano Duffing

resonator systems (11) with control term K, X,, wherek, = —10.
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Fig. 4.6 The phase portraits and Poincaré maps of the fractional order modified nano Duffing

resonator systems (11) with control term K, sin x,, wherek, =10.
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Fig. 4.7 The phase portraits and Poincaré maps of the fractional order modified nano Duffing

resonator systems (11) with control term K, sin x,, wherek, = —10.
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Fig. 4.8 The phase portraits and Poincaré maps of the fractional order modified nano Duffing

resonator systems (11) with control term k, sin x,, wherek, =10.
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Fig. 4.9 The phase portraits and Poincaré maps of the fractional order modified nano Duffing

resonator systems (11) with control term kK, sin x,, wherek, = -10.
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Chapter 5
Anti-control of Chaos of a Fractional Order
Modified Nano Duffing Resonator System by
Adding Noise

5.1 Preliminaries

In this chapter, anti-control of chaos of a fractional order modified nano Duffing
resonator system is studied by adding noise. By using the white noise, Rayleigh noise,
Rician noise and uniform noise as the.added term respectively, the anti-control of
chaos can be obtained. Anti-control of chaos can‘be successfully obtained for very

low total fractional order 0.2.

5.2 Anti-control of Chaos by Adding Noise

In this section, addition of the white noise, Rayleigh noise, Rician noise and
uniform noise as the external term respectively are presented, which can enhance the
existing chaos of the originally system. All numerical simulations are run by block
diagrams in Simulink environment. The results are demonstrated by numerical results,

i.e. phase portraits and Poincaré maps.

5.2.1 Adding the white noise
We add an external term k,F, to the second equation of (4.1), where F, is the
white noise. The strength k, is either positive or negative.

The probability density function of n-dimensional Gaussian noise is
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f(x) =((27)" det K)% exp(—(x — )" K*(x—u)/2) (5.1)
where x is a length-n vector, K is the n-by-n covariance matrix, p is the mean value
vector, and the superscript T indicates matrix transpose. The Simulink
Communications toolbox provides the Gaussian Noise Generator block. The initial
seed, the mean value and the variance in the simulation must be specified. We take
the initial seed 41, the mean value 1 and the variance 1 in the simulation.

For anti-control of chaos, all simulations for g, =q, =0.1~0.9 are obtained
successfully. For saving space, only results for g, =q,=0.1, 0.5 and 0.9 are shown as
Fig. 5.1-5.2.

From above numerical results, it is shown that when k; is either positive or
negative, the chaotic phase portraits are almast symmetric to the origin. It can be seen

that when total order is larger, the'range,of ystate is.also larger.

5.2.2 Adding the Rayleigh noise

We add an external term k,F,"toithe 'second equation of (4.1), whereF, is
Rayleigh noise. The strength k, is either positive or negative.

The Rayleigh probability density function is given by

X2

f={pze " *x20 (5.2)
0 x<0

where o? is known as the fading envelope of the Rayleigh distribution. The
Simulink Communications toolbox provides the Rayleigh Noise Generator block. The
initial seed and the sigma parameter in the simulation must be specified. We specify
the initial seed 47 and the sigma parameter 5 in the simulation.

For anti-control of chaos, all simulations for g, =q, =0.1~0.9 are obtained
successfully. For saving space, only results for g, =q,=0.1, 0.5 and 0.9 are shown as
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Fig. 5.3-5.4.
From above numerical results, it is also shown that when k, is either positive or
negative, the chaotic phase portraits are almost symmetric to the origin. It can be seen

that when total order is larger, the range of y state is also larger.

5.2.3 Adding the Rician noise
We add an external term k,F, to the second equation of (4.1), whereF, is
Rician noise. The strength k, is either positive or negative.

The Rician probability density function is given by

X2 +m?

X mx, - 2

0 x<0

(5.3)

where ois the standard deviation of the-Gaussian distribution that underlies the

Rician distribution noise, m? =m{ +'mg,"where.m, and m, are the mean values

of two independent Gaussian components, and 1, is the modified Oth-order Bessel

function of the first kind given by

I, (y) = %]{;ey“’“dt (5.4)
Note that m and o are not the mean value and standard deviation for the Rician
noise. The Simulink Communications toolbox provides the Rician Noise Generator
block. The initial seed, Rician K-factor and the sigma parameter must be specified in
the simulation. We specify the initial seed 59, Rician K-factor 10 and the sigma
parameter 5 in the simulation.

For anti-control of chaos, all simulations for g, =q, =0.1~0.9 are obtained

successfully. For saving space, only results for g, =q,=0.1, 0.5 and 0.9 are shown as
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Fig. 5.5-5.6.

From above numerical results, it is also shown that when K, is either positive or

negative, the chaotic phase portraits are almost symmetric to the origin. It can be seen

that when total order is larger, the range of y state is also larger.

5.2.4 Adding the Uniform noise
We add an external term k,F, to the second equation of (4.1), where F, isthe

uniform noise. The strength k, is either positive or negative.

The probability density function of uniform noise is given by
—— ifa<x<b

f(x)={b-a (5.5)
0 otherwise

The mean of this density function is_given by y:aTer and its variance by

o7 = (b—a)’
12

The Simulink Communications. toolbox prevides the Uniform Noise Generator
block. The initial seed, the noise lower bound and the noise upper bound must be
specified in the simulation. We specify the initial seed 31, the noise lower bound 0
and the noise upper bound 5 in the simulation.

For anti-control of chaos, all simulations for g, =q, =0.1~0.9 are obtained
successfully. For saving space, only results for g, =q,=0.1, 0.5 and 0.9 are shown as
Fig. 5.7-5.8.

From above numerical results, it is shown that when k, is either positive or
negative, the chaotic phase portraits are almost symmetric to the origin. It can be seen

that when total order is larger, the range of y state is also larger.
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Fig. 5.1 The phase portraits and Poincaré maps of the fractional order modified nano Duffing
resonator systems (11) with control term k;F;, wherek, =10, F, is the white noise.

63



(a) 0,=0Q, = 0.1 (b) 0,=0Q, = 05

30

a0

20

A0k

-0
8

(c) 9,=0,=09

Fig. 5.2 The phase portraits and Poincaré maps of the fractional order modified nano Duffing

resonator systems (11) with control term K, F,, wherek, =—10, F, is the white noise.
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Fig. 5.3 The phase portraits and Poincaré maps of the fractional order modified nano Duffing

resonator systems (11) with control term k,F,, wherek, =10, F, is Rayleigh noise.
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Fig. 5.4 The phase portraits and Poincaré maps of the fractional order modified nano Duffing

resonator systems (11) with control term k,F, , wherek, =-10, F, is Rayleigh noise.
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Fig. 5.5 The phase portraits and Poincaré maps of the fractional order modified nano Duffing

resonator systems (11) with control term k,F,, wherek, =10, F, is Rician noise.
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Fig. 5.6 The phase portraits and Poincaré maps of the fractional order modified nano Duffing

resonator systems (11) with control term k,F,, wherek, = —10, F; is Rician noise.
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Fig. 5.7 The phase portraits and Poincaré maps of the fractional order modified nano Duffing

resonator systems (11) with control term k,F,, wherek, =10, F, is the uniform noise.
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Fig. 5.8 The phase portraits and Poincare maps of the fractional order modified nano Duffing

resonator systems (11) with control term k,F,, wherek, =—-10, F, is the uniform noise.
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Chapter 6

Conclusions

In this thesis we have studied the chaos in the fractional order modified nano
Duffing resontor system by phase portraits, Poincaré maps and bifurcation diagrams
in Chapter 2. The total orders of the system for the existence of chaos are 1.8, 1.9, 2.0
and 2.1.

In Chapter 3, The chaos synchronizations of two uncoupled fractional order
modified nano Duffing resonator systems are obtained by replacing their
corresponding parameters by the same function of chaotic state variables of a third
chaotic system. The method is named:parameter excited chaos synchronization which
can be successfully obtained for very dlow total fractional order 0.2. Numerical
simulations are illustrated by phase portraits, Poincaré maps and state error plots.

In Chapter 4 and 5, anti-contrel of chaos of-a fractional order modified nano
Duffing resonator system is studied. By using the functions of state variable of a
second identical system as the added term, the anti-control of chaos can be obtained.
By using the white noise, Rayleigh noise, Rician noise and uniform noise as the added
term respectively, the anti-control of chaos can be obtained. Anti-control of chaos can
be successfully obtained for very low total fractional order 0.2. Numerical simulations

are illustrated by phase portraits and Poincaré maps.
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Appendix

Table 1. FRACTIONAL OPERATORS WITH APPROXIMATELY
2 db ERROR FROM @ =10-2TO 102 rad/sec

1 220.4s* +5004s° +503s” + 234.5s + 0.484

¥t N s° +359.8s* +5742s° +4247s* +147.7s +0.2099

1 _ 60.95s" +816.95° +582.85° + 23.245+0.04934
s°?  s° +134s* +956.5s% + 383.552 +8.953s + 0.01821

1 5 23.765* +224.95% +129.1s° + 4.7335+ 0.01052
s°®  §° +64.51s* +252.25° + 63.615% +1.104s +0.002267

255" +558.55° +664.25 +44.155 +0.1562

s*  s° +125.65° +840.65° + 317.2s% + 7.428s + 0.02343

N 15.97s* +593.2s* +1080s? +135.45 +1

s°°  §° +134.3s* +1072s® +543.4s% + 20.1s + 0.1259
1 8579s" +255/6° + 405:3s” +35.935 +0.1696

s°® " §° 404.225" £472.95%4134:85% + 2.639s + 0.009882

B

B

1 4.406s" $177.65° +209.65° +9.179s+0.0145
s  §° +88.125" 4 279:25%+33:3s? +1.927s + 0.0002276
 5.2355° +14535%+453065 + 254.9
s°® 5% 1 658.1s° +57005% +'658.25 +1

B

1 1.766s” +38.27s +4.914

s*° " 5% 136,155 + 7.789s5 + 0.01
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