
Chapter 1 

Introduction 
Lorenz studied the strange changes in the atmosphere which is the first example 

to study chaos in 1963. In the past four decades, a large number of studies have shown 

that chaotic phenomena are observed in many physical systems that possess 

non-linearity [1, 2]. It was also reported that the chaotic motion occurred in many 

non-linear control systems [3]. 

Chaos and chaotic systems have received a flurry of research effort in the past 

few decades. Such systems are nonlinear by nature, can occur in various natural and 

man-made systems, and are characterized by great sensitivity to initial conditions [4]. 

Besides the theoretical interest in the analysis of such nonlinear systems, there is 

another dimension to that interest; namely, utilizing such systems for useful practical 

applications [5-12]. Many researchers have devoted themselves to finding new ways 

to control chaos more efficiently [13-16]. Chaotic phenomena are quite useful in 

many applications such as fluid mixing [17], human brain dynamics [18], and heart 

beat regulation [19], information processing, etc. Therefore, making a periodic 

dynamical system chaotic, or preserving chaos of a chaotic dynamical system, is very 

meaningful and worthy to be investigated [20, 21]. 

Fractional calculus is a 300-year-old mathematical topic [22-25]. Although it has 

a long history, for many years it was not used in physics and engineering. However, 

during the last 10 years or so, fractional calculus starts to attract increasing attention 

of physicists and engineers from an application point of view [26, 27]. It was found 

that many systems in interdisciplinary fields can be elegantly described with the help 

of fractional derivatives. Many systems are known to display fractional-order 

dynamics, such as viscoelastic systems [28], dielectric polarization [29], 
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electrode–electrolyte polarization [30], electromagnetic waves [31], quantitative 

finance [32], and quantum evolution of complex systems [33]. 

It is well known that chaos cannot occur in autonomous continuous time systems 

of integer-order less than three according to the Poincare–Bendixon theorem [34, 35]. 

A recent example of a continuous time third order system that exhibits chaos is the 

Chen system [36]. The order of a system can be defined as the sum of the orders of all 

involved derivatives. However, in autonomous fractional order systems, it is not the 

case. For example, it has been shown that the fractional order Chua’s circuit with an 

appropriate cubic nonlinearity and with order as low as 2.7 can produce a chaotic 

attractor [37]. In [38, 39], the bifurcation and the chaotic dynamics of fractional order 

cellular neural networks are studied. In [40], chaotic behaviors of a fractional order 

‘‘jerk’’ model is studied, in which a chaotic attractor can be generated with the system 

order as low as 2.1 and a conjecture is presented that third order chaotic systems can 

still produce chaotic behavior with a total system order of 2 + e, 0< e < 1. In [41], 

chaotic behavior of the fractional order Lorenz system is studied, but unfortunately, 

the results presented in this thesis are not correct as pointed out by [42]. Also in [42], 

chaos and hyperchaos in fractional order Rössler equations are discussed, in which it 

is shown that chaos can exist in the fractional order Rössler equation with order as 

low as 2.4, and hyperchaos can also exist in the fractional order Rössler hyperchaotic 

system with order as low as 3.8. In [43-46], chaotic behaviors in the fractional order 

Chen system are studied and the lowest order to have chaos in this fractional order 

Chen system is shown to be 2.1 and 2.92, respectively. 

Chaos synchronization [47-55] is a very important topic in the nonlinear [56-58] 

science and it has been developed extensively. Recently many scientists in various 

fields have been attracted to investigate chaos synchronization due to its application in 

a variety of fields including secure communications, chemical, physical, and 
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biological systems, neural networks and so on. So various synchronization schemes, 

such as variable structure control [59], parameters adaptive control [60-67], observer 

based control [68, 69], active control [70-76], nonlinear control [77, 78], anti-control 

[79-85] and so on, have been successfully applied to the chaos synchronization. 

Furthermore, the problem of anti-controlling chaos (from periodic to chaotic) is 

interesting, non-traditional, and indeed very challenging. More importantly, within the 

biological context, anti-control of chaos suggests great potential for future 

applications. Recently, there have been many successful thesiss towards the goal of 

anti-control, which are essentially experimental or semi-analytical [86]. Sometimes 

chaotic behavior and chaos synchronization are beneficial and desirable in many 

applications. For example, chaos is important in secure communication, information 

processing, liquid mixing, biological systems, etc. [87–89]. For this purpose, making 

a nonchaotic dynamical system chaotic or retaining (or enhancing) the chaos of a 

chaotic system is called “anti-control of chaos or chaotification [90, 91]”. Therefore, 

the anti-control of chaos is meaningful topic and worth to be investigated. 

Mechanical resonance is widely applied in high-precision oscillators for a 

multitude of time-keeping and frequency reference applications. The extraordinary 

small size and high level of integration that can be achieved with nano resonators 

appear to open exceptional possibilities for creating miniature-scale precision 

oscillators to be used in e.g. mobile communication and navigation devices. 

The chaos, chaos synchronization and anti-control of integral and fractional 

order nano parameter resonator system are studied in this thesis. Linear approximation 

of a fractional order integrator to analyze nano parameter resonator system can be 

obtained by utilizing frequency domain techniques based in Bode diagrams. By 

applying numerical analyses such as phase portraits, Poincaré maps and bifurcation 

diagrams, the periodic and chaotic motions are observed. The chaos synchronizations 
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of two uncoupled integral and fractional order identical chaotic nano resonator 

systems are obtained by replacing their corresponding parameters by the same 

function of chaotic state variables of a third identical chaotic system. Anti-control of 

chaos are obtained by addition of an external constant term or nonlinear term. 

Replacing a system parameter by a function of chaotic state variables of a modified 

van der Pol system, we can obtain anti-control of chaos. 

This thesis is organized as follows. In Chapter 2, a method for the approximation 

of the fractional derivative is given. The nano resonator system and its fractional order 

form are presented. Numerical simulations, phase portraits, Poincaré maps and 

bifurcation diagrams, for various different fractional order nano resonator systems are 

studied. In Chapter 3, numerical simulations for integral and fractional order nano 

resonator systems based on driving the corresponding parameters of two chaotic 

systems by a chaotic signal of a third system are given for order 1 ~ 0.1. In Chapter 4, 

anticontrols of chaos are obtained by addition of a constant term and by adition of a 

nonlinear term. In Chapter 5, anticontrols of chaos are obtained by replacing a system 

parameter by a function of a state variable of modified van der Pol system. 

Anticontrol of chaos can be successfully obtained for total order 1.8 ~ 0.2. In Chapter 

6, conclusions are drawn. 
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Chapter 2 

Chaos in a Nonlinear Damped Mathieu System, 

in a Nano Resonator System and in Its 

Fractional Order Systems 
In this Chapter, the chaotic behaviors of a nonlinear nano resonator system with 

integral orders and with fractional orders are studied. By applying numerical analyses 

such as phase portraits, Poincaré maps and bifurcation diagrams, the periodic and 

chaotic motions are observed. It is found that chaos exists both in the integral order 

and in the fractional order nano resonator systems. 

 

2.1 Method for the approximation of the fractional derivative 

The idea of fractional integrals and derivatives has been known since the 

development of the regular calculus, with the first reference probably being associated 

with Leibniz in 1695 [92]. 

Two commonly used definitions for the general fractional differintegral are the 

Grunwald definition and the Riemann-Liouville definition. The latter is given here 
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By considering the initial conditions to be zero, this formula reduces to the more 

expected and comforting form 
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and the fractional integral of order q can be described as qs
sF 1)( =  in the frequency 

domain. 

The standard definitions of the fractional differintegral do not allow direct 

implementation of the operator in time domain simulations of complicated systems 

with fractional elements. Using the standard integer order operators to approximate 

the fractional operators is an effective method to analyze such systems. 

The approximation approach taken here is to approximate the system behavior in 

the frequency domain [93]. By utilizing frequency domain techniques based in Bode 

diagrams, one can obtain a linear approximation of a fractional order integrator. Thus 

an approximation of any desired accuracy over any frequency band can be achieved. 

Table in Appendix from Ref. [94] gives approximations for qs
1  with 

 in steps of 0.1 with errors of approximately 2 dB from  to 

 rad/s. These approximations will be used in the following numerical simulations. 
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2.2 The Chaos of the Nonlinear Damped Mathieu System and of the 

Nano Resonator System with Its Fractional Order Form 

Mechanical resonance is widely applied in high-precision oscillators for a 

multitude of time-keeping and frequency reference applications. In all such cases, the 

high-precision resonating element consists of an off-chip passive component, such as 

a quartz crystal. Major drawback of these off-chip resonator technologies is that they 

are bulky and must interface with transistor chips at the boards, posing a bottleneck 

against the ultimate miniaturization of e.g. wireless devices. The extraordinary small 

size and high level of integration that can be achieved with nano resonators appear to 
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open exceptional possibilities for creating miniature-scale precision oscillators to be 

used in e.g. mobile communication and navigation devices. 

Nano resonator system studied in this thesis is a modified form of nonlinear 

damped Mathieu system which is obtained when the nano Mathieu oscillator has 

nonlinear time-dependent spring constant [91]. The nonlinear damped Mathieu system 

is a nonautonomous system with two states x and y: 
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where a, b, c, d are constant parameters, and 1ω , 2ω  are circular frequencies. The 

phase portraits, Poincaré maps, bifurcation diagram and the Lyapunov exponent for 

system (2.4) are showed in Fig. 2.1 where a = 0.2, b = 0.2, c = 0.4, 1ω = 2ω =ω =1. 

Let 1ω = 2ω =ω , and replace tωsin  by z which is the periodic time function solution 

of the nonlinear oscillator 
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where e, f are constant parameters. Then we have the modified nonlinear damped 

Mathieu system, i.e. the nano resonator system: 
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It becomes an autonomous system with four states where a, b, c, d, e and f are 

constant parameters of the system. System (2.4) consists of two parts: 
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Eq. (2.8) affords the periodic time function solution to system (2.7) as an 

excitation which induces the chaos in system (2.7). As a result, Eq. (2.7) can be 

considered as a nonautonomous system with two states, while Eq. (2.7) and Eq. (2.8) 

together can be considered as an autonomous system with four states. Our main 

interest devotes to Eq. (2.6), while Eq. (2.8) remains an integral order system. The 

phase portraits, Poincaré maps, bifurcation diagram and the Lyapunov exponent for 

(2.6) are showed in Fig. 2.2. The corresponding modified nonlinear fractional order 

damped Mathieu system, the fractional order nano resonator system, is: 
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where α  and β  are the fractional orders. 

 

2.3 Numerical Simulations for the Integral and Fractional Order 

Systems 

We vary the derivative orders α , β  and the system parameter d, the other 

system parameters are fixed. Simulations are performed under 2=+ βα , 
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9.1=+ βα  where α , β  are not integers. In our numerical simulations, five 

parameters , , 2.0=a 2.0=b 4.0=c , 1=e  and 3.0=f  are fixed and d is varied. 

The initial states of the nano resonator system are 3)0( =x , 4)0( =y ,  and 

. The numerical simulations are carried out by MATLAB, and are 

summarized in Table 1.. 

1)0( =z

0)0( =w

The phase portraits, Poincaré maps and the bifurcation diagrams of Case 1, 2, 3, 

4, 10, 11, 12, 13, 15, 16, 17, 18, 19, 23, 25, 31, 33 and 34 for nano resonator system 

are showed in Fig. 2.3, 2.4, 2.5, 2.6, 2.10, 2.7, 2.8, 2.9, 2.11, 2.12, 2.13, 2.14, 2.2, 

2.16, 2.17, 2.18, 2.19 and 2.15 respectively. Case 1, 2, 3 and 19 have similar shapes in 

their phase portraits and Poincaré maps, chaos in Case 3 is only distributed over the 

parameter d = 40~50, relatively, chaos in Case 1, 2 and 19 are distributed more wide 

than that of Case 3. Case 4, 23 and 25 have similar shapes in their phase portraits. 

Case 11, 13, 15, 17 and 34 have similar shapes in their phase portraits. Case 17 has 

the largest range of y among case 11, 13, 15, 17 and 34, even beyond 3000, chaos in 

case 13 and 17 are distributed over all varied parameter region, but in case 15, chaos 

is distributed over about the parameter d > 50. Case 10, 12, 16, 18, 31 and 33 have 

similar shapes in their phase portraits. 

The results from simulation verified that chaos indeed exists in the system with 

total fractional orders 2=+ βα  and 9.1=+ βα , which are summarized in Table 

2.1. 

 

 

 

 

 

 

 9



 

Table 2.1 Relation between orders of derivatives and existence of chaos. 

Total order 2 Total order 1.9 

Cases Orders Existence 
of chaos 

Fig. No. Cases Orders Existence 
of chaos 

Fig. No.

1 1.1=α , 

0.9=β  

Yes 2.3 20 1.1=α , 

0.8=β  

No  

2 9.0=α , 

1.1=β  

Yes 2.4 21 8.0=α , 

1.1=β  

No  

3 2.1=α , 

0.8=β  

Yes 2.5 22 2.1=α , 

0.7=β  

No  

4 8.0=α , 

1.2=β  

Yes 2.6 23 7.0=α , 

1.2=β  

Yes 2.16 

5 3.1=α , 

0.7=β  

No  24 3.1=α , 

0.6=β  

No  

6 7.0=α , 

1.3=β  

No  25 6.0=α , 

1.3=β  

Yes 2.17 

7 4.1=α , 

0.6=β  

No  26 4.1=α , 

0.5=β  

No  

8 6.0=α , 

1.4=β  

No  27 5.0=α , 

1.4=β  

No  

9 5.1=α , 

0.5=β  

No  28 5.1=α , 

0.4=β  

No  

10 5.0=α , 

1.5=β  

Yes 2.10 29 4.0=α , 

1.5=β  

No  

11 6.1=α , Yes 2.7 30 6.1=α , No  
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0.4=β  0.3=β  

12 4.0=α , 

1.6=β  

Yes 2.8 31 3.0=α , 

1.6=β  

Yes 2.18 

13 7.1=α , 

0.3=β  

Yes 2.9 32 7.1=α , 

0.2=β  

No  

14 3.0=α , 

1.7=β  

No  33 2.0=α , 

1.7=β  

Yes 2.19 

15 8.1=α , 

0.2=β  

Yes 2.11 34 8.1=α , 

0.1=β  

Yes 2.15 

16 2.0=α , 

1.8=β  

Yes 2.12 35 1.0=α , 

1.8=β  

No  

17 9.1=α , 

0.1=β  

Yes 2.13 

18 1.0=α , 

1.9=β  

Yes 2.14 

19 1=α , 

1=β  

Yes 2.2 
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Chapter 3 

Parameter Excited Chaos Synchronizations of 

Integral and Fractional Order Nano Resonator 

Systems 
3.1 Preliminaries 

In this Chapter, the chaos synchronizations of two uncoupled integral and 

fractional order identical chaotic nano resonator systems are obtained by replacing 

their corresponding parameters by the same function of chaotic state variables of a 

third identical chaotic system. It is named parameter excited chaos synchronization 

which can be successfully obtained for very low total fraction order 0.2. Numerical 

simulations are illustrated by phase portraits, Poincaré maps and state error plots. 

 

3.2 Numerical Simulations for the synchronizations of Integral and 

fractional order chaotic nano resonator systems 

It is well known that a chaotic system is very sensitive to its initial conditions, 

means that the behaviors of two same chaotic systems which have distinct initial 

conditions are totally different. In this thesis, these two chaotic fractional order nano 

resonator systems 
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where α  and β  are the fractional orders, are synchronized by replacing 

corresponding parameters by the same function of chaotic states of chaotic nano 

resonator system 
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where a = 0.2, b = 0.2, c = 0.4, d = 50, e = 1 and f = 0.3 are constant parameters of the 

system. Define the error states as 211 xxe −=  and 212 yye −=  in system (3.1) and 

(3.2). The synchronization scheme is to replace the corresponding parameters d, c, b 

or a in system (3.1) and (3.2) by the same function of chaotic states of system (3.3) 

such that 0)( →te as . In following simulations, for various derivative 

orders 

∞→t

α  and β , we replace the system parameter d in system (3.1) and (3.2) by sin 

x, and by sin y, where x and y are state variables in system (3.3); replace c in system 

(3.1) and (3.2) by + , where x and y are state variables in system (3.3); 

replace b in system (3.1) and (3.2) by 10( + y ), where x and y are state 

variables in system (3.3) and replace a in system (3.1) and (3.2) by 10( + ), 

where x and y are state variables in system (3.3). Simulations are performed under 

xsin ysin

x2sin 2sin

x3sin y3sin

1~1.0== βα  in steps of 0.1. In our numerical simulations, six parameters , 2.0=a
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2.0=b , , ,  and 4.0=c 50=d 1=e 3.0=f  of system (3.3) are fixed. The initial 

states of system (3.3) are 3)0( =x , 4)0( =y , 1)0( =z  and . The 

numerical simulations are carried out by MATLAB. 

0)0( =w

Case 1: The parameters 2.0=a , 2.0=b , 4.0=c , 1=e  and  of 

system (3.1) and (3.2) are fixed. The initial states of system (3.1) and (3.2) are 

, , 

3.0=f

003.0)0(1 =x 004.0)0(1 =y 004.0)0(2 =x , 003.0)0(2 =y ,  and 

. The parameter d of system (3.1) and (3.2) is replaced by the same sin x, 

where x is the state variable of system (3.3). All synchronizations for 

1)0( =z

0)0( =w

1~1.0== βα  

are successfully obtained. For saving space, only results for βα = = 0.1, 0.4, 0.7 and 

1 are shown in Fig. 3.1 ~ 3.8. 

Case 2: The parameters 2.0=a , 2.0=b , 4.0=c , 1=e  and  of 

system (2.4) and (2.5) are fixed. The initial states of system (3.1) and (3.2) are 

, , 

3.0=f

003.0)0(1 =x 004.0)0(1 =y 004.0)0(2 =x , 003.0)0(2 =y ,  and 

. The parameter d of system (3.1) and (3.2) is replaced by the same sin y, 

where y is the state variable of system (3.3). All synchronizations for 

1)0( =z

0)0( =w

1~1.0== βα  

are successfully obtained. For saving space, only results for βα = = 0.1, 0.4, 0.7 and 

1 are shown in Fig. 3.9 ~ 3.16. 

Case 3: The parameters 2.0=a , 2.0=b , 4.0=c , 1=e  and  of 

system (2.4) and (2.5) are fixed. The initial states of system (3.1) and (3.2) are 

, , 

3.0=f

003.0)0(1 =x 004.0)0(1 =y 004.0)0(2 =x , 003.0)0(2 =y ,  and 

. The parameter c of system (3.1) and (3.2) is replaced by the same 

+ , where x and y are the state variables of system (3.3). All 

synchronizations for 

1)0( =z

0)0( =w

xsin ysin

9.0~1.0== βα  are successfully obtained. For saving space, 

only results for βα = = 0.1, 0.4, 0.7 and 0.9 are shown in Fig. 3.17 ~ 3.24. 

Case 4: The parameters 2.0=a , 2.0=b , 4.0=c , 1=e  and  of 

system (3.1) and (3.2) are fixed. The initial states of system (3.1) and (3.2) are 

3.0=f
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003.0)0(1 =x , , 004.0)0(1 =y 004.0)0(2 =x , 003.0)0(2 =y ,  and 

. The parameter b of system (3.1) and (3.2) is replaced by the same 

10( + y ), where x and y are the state variables of system (3.3). All 

synchronizations for 

1)0( =z

0)0( =w

x2sin 2sin

9.0~1.0== βα  are successfully obtained. For saving space, 

only results for βα = = 0.1, 0.4, 0.7 and 0.9 are shown in Fig. 3.25 ~ 3.32. 

Case 5: The parameters 2.0=a , 2.0=b , 4.0=c , 1=e  and  of 

system (3.1) and (3.2) are fixed. The initial states of system (3.1) and (3.2) are 

, , 

3.0=f

003.0)0(1 =x 004.0)0(1 =y 004.0)0(2 =x , 003.0)0(2 =y ,  and 

. The parameter a of system (3.1) and (3.2) is replaced by the same 

10( + y ), where x and y are the state variables of system (3.3). All 

synchronizations for 

1)0( =z

0)0( =w

x3sin 3sin

9.0~1.0== βα  are successfully obtained. For saving space, 

only results for βα = = 0.1, 0.4, 0.7 and 0.9 are shown in Fig. 3.33 ~ 3.40. 
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Fig. 3.3 The phase portraits of the synchronized nano resonator fractional order 

systems (3.1) and (3.2) with order 4.0== βα  for Case 1. 

1y  
2y

1x  2x

 

Fig. 3.4 The time histories of the errors of the states of the synchronized nano 

resonator fractional order systems (3.1) and (3.2) with order 4.0== βα  for Case 1. 
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1y  
2y

1x  2x

Fig. 3.5 The phase portraits of the synchronized nano resonator fractional order 

systems (3.1) and (3.2) with order 7.0== βα  for Case 1. 

 

Fig. 3.6 The time histories of the errors of the states of the synchronized nano 

resonator fractional order systems (3.1) and (3.2) with order 7.0== βα  for Case 1. 
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(a)                                  (b) 

1y  
2y

1x  2x

Fig. 3.7 The phase portraits of the synchronized nano resonator integral order systems 

(4) and (5) with order 1== βα  for Case 1. 

(a)                                  (b) 

1e  2e

t t 

Fig. 3.8 The time histories of the errors of the states of the synchronized nano 

resonator integral order systems (4) and (5) with order 1== βα  for Case 1. 
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(a)                                  (b) 

1y  
2y

1x  2x

Fig. 3.9 The phase portraits of the synchronized nano resonator fractional order 

systems (3.1) and (3.2) with order 1.0== βα  for Case 2. 

(a)                                  (b) 

1e  2e

t t 

Fig. 3.10 The time histories of the errors of the states of the synchronized nano 

resonator fractional order systems (3.1) and (3.2) with order 1.0== βα  for Case 2. 
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Fig. 3.11 The phase portraits of the synchronized nano resonator fractional order 

systems (3.1) and (3.2) with order 4.0== βα  for Case 2. 

1y  
2y

1x  2x

 

Fig. 3.12 The time histories of the errors of the states of the synchronized nano 

resonator fractional order systems (3.1) and (3.2) with order 4.0== βα  for Case 2. 

1e  2e

t t 

 

 

 

 

 

 

 

 

 

 

 37



 

Fig. 3.13 The phase portraits of the synchronized nano resonator fractional order 

systems (3.1) and (3.2) with order 7.0== βα  for Case 2. 

1y  
2y
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Fig. 3.14 The time histories of the errors of the states of the synchronized nano 

resonator fractional order systems (3.1) and (3.2) with order 7.0== βα  for Case 2. 
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(a)                                  (b) 

1y  
2y

1x  2x

Fig. 3.15 The phase portraits of the synchronized nano resonator integral order 

systems (4) and (5) with order 1== βα  for Case 2. 

(a)                                  (b) 

1e  2e

t t 

Fig. 3.16 The time histories of the errors of the states of the synchronized nano 

resonator integral order systems (4) and (5) with order 1== βα  for Case 2. 
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(a)                                  (b) 

1y  
2y

1x  2x

Fig. 3.17 The phase portraits of the synchronized nano resonator fractional order 

systems (3.1) and (3.2) with order 1.0== βα  for Case 3. 

(a)                                  (b) 

1e  2e

t t 

Fig. 3.18 The time histories of the errors of the states of the synchronized nano 

resonator fractional order systems (3.1) and (3.2) with order 1.0== βα  for Case 3. 
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Fig. 3.19 The phase portraits of the synchronized nano resonator fractional order 

systems (3.1) and (3.2) with order 4.0== βα  for Case 3. 

1y  
2y

1x  2x

 

Fig. 3.20 The time histories of the errors of the states of the synchronized nano 

resonator fractional order systems (3.1) and (3.2) with order 4.0== βα  for Case 3. 
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Fig. 3.21 The phase portraits of the synchronized nano resonator fractional order 

systems (3.1) and (3.2) with order 7.0== βα  for Case 3. 

1y  
2y

1x  2x

 

Fig. 3.22 The time histories of the errors of the states of the synchronized nano 

resonator fractional order systems (3.1) and (3.2) with order 7.0== βα  for Case 3. 
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(a)                                  (b) 

1y  
2y

1x  2x

Fig. 3.23 The phase portraits of the synchronized nano resonator fractional order 

systems (3.1) and (3.2) with order 9.0== βα  for Case 3. 

(a)                                  (b) 

1e  2e

t t 

Fig. 3.24 The time histories of the errors of the states of the synchronized nano 

resonator fractional order systems (3.1) and (3.2) with order 9.0== βα  for Case 3. 
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(a)                                  (b) 

1y  
2y

1x  2x

Fig. 3.25 The phase portraits of the synchronized nano resonator fractional order 

systems (3.1) and (3.2) with order 1.0== βα  for Case 4. 

(a)                                  (b) 

1e  2e

t t 

Fig. 3.26 The time histories of the errors of the states of the synchronized nano 

resonator fractional order systems (3.1) and (3.2) with order 1.0== βα  for Case 4. 
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Fig. 3.27 The phase portraits of the synchronized nano resonator fractional order 

systems (3.1) and (3.2) with order 4.0== βα  for Case 4. 

1y  
2y

1x  2x

 

Fig. 3.28 The time histories of the errors of the states of the synchronized nano 

resonator fractional order systems (3.1) and (3.2) with order 4.0== βα  for Case 4. 
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Fig. 3.29 The phase portraits of the synchronized nano resonator fractional order 

systems (3.1) and (3.2) with order 7.0== βα  for Case 4. 

1y  
2y

1x  2x

 

Fig. 3.30 The time histories of the errors of the states of the synchronized nano 

resonator fractional order systems (3.1) and (3.2) with order 7.0== βα  for Case 4. 
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(a)                                  (b) 

1y  
2y

1x  2x

Fig. 3.31 The phase portraits of the synchronized nano resonator fractional order 

systems (3.1) and (3.2) with order 9.0== βα  for Case 4. 

(a)                                  (b) 

1e  2e

t t 

Fig. 3.32 The time histories of the errors of the states of the synchronized nano 

resonator fractional order systems (3.1) and (3.2) with order 9.0== βα  for Case 4. 
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(a)                                  (b) 

1y  
2y

1x  2x

Fig. 3.33 The phase portraits of the synchronized nano resonator fractional order 

systems (3.1) and (3.2) with order 1.0== βα  for Case 5. 

(a)                                  (b) 

1e  2e

t t 

Fig. 3.34 The time histories of the errors of the states of the synchronized nano 

resonator fractional order systems (3.1) and (3.2) with order 1.0== βα  for Case 5. 

 

 

 

 

 

 

 

 

 48



 

1y  
2y

1x  2x

Fig. 3.35 The phase portraits of the synchronized nano resonator fractional order 

systems (3.1) and (3.2) with order 4.0== βα  for Case 5. 

 

Fig. 3.36 The time histories of the errors of the states of the synchronized nano 

resonator fractional order systems (3.1) and (3.2) with order 4.0== βα  for Case 5. 
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Fig. 3.37 The phase portraits of the synchronized nano resonator fractional order 

systems (3.1) and (3.2) with order 7.0== βα  for Case 5. 
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2y

1x  2x

 

Fig. 3.38 The time histories of the errors of the states of the synchronized nano 

resonator fractional order systems (3.1) and (3.2) with order 7.0== βα  for Case 5. 
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(a)                                  (b) 

1y  
2y

1x  2x

Fig. 3.39 The phase portraits of the synchronized nano resonator fractional order 

systems (3.1) and (3.2) with order 9.0== βα  for Case 5. 

(a)                                  (b) 

1e  2e

t t 

Fig. 3.40 The time histories of the errors of the states of the synchronized nano 

resonator fractional order systems (3.1) and (3.2) with order 9.0== βα  for Case 5. 
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Chapter 4 

Anti-Control of Chaos of Fractional Order Nano 

Resonator Systems 
4.1 Preliminaries 

Anti-control of chaos of fractional order chaotic nano resonator system has been 

studied in this Chapter. By addition of an external term, we can obtain anti-control of 

chaos, i.e. changing state from regular to chaos. The addition of constant term k and 

of nonlinear term zkz  are used where z is the third state variable of the system. The 

results are illustrated by bifurcation diagrams. 

 

4.2 Numerical Simulations for the Anti-Control of Chaos of 

fractional order chaotic nano resonator systems 

Creating chaos is called anti-control of chaos at times [95]. The problem of 

anti-control of chaos is interesting, nontraditional, and indeed very challenging. In this 

section, two methods of anti-control, such as addition of a linear term k and a 

nonlinear term zkz , are proposed, which can excite the existing of chaos of the 

originally non-chaotic system. The results are demonstrated by numerical results, i.e. 

bifurcation diagrams. 

First, we add an external linear input k to the second equation of (2.9). Thus Eq. 

(2.9) becomes 
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The numerical results, i.e. bifurcation diagrams are shown in Fig. 6-1~6-7. 

Second, we add an external nonlinear input zkz  to the second equation of (2.9). 

Thus Eq. (2.9) becomes 
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The numerical results, i.e. bifurcation diagrams are shown in Fig. 6-8~6-16. 

We vary the derivative orders α , β , the system parameter d and the external 

input term k, the other system parameters are fixed. The system parameter d is chosen 

that making the behavior of system (2.9) preserve periodic phenomena. Changing the 

external input term k from zero upwards, the chaotic behavior is increased. 

Simulations are performed under 2=+ βα , 9.1=+ βα  where α , β  are not 

integers. In our numerical simulations, five parameters 2.0=a , , , 

 and  are fixed, d and k is varied. The initial states of the nano 

resonator system are , 

2.0=b 4.0=c

1=e 3.0=f

003.0)0( =x 004.0)0( =y , 1)0( =z  and . 0)0( =w
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d=10 

x 

k

Fig. 4.1 The bifurcation diagram for the system (4.1) with order 2.0=α  and 

7.1=β . 

 

d=17 

x 

k

Fig. 4.2 The bifurcation diagram for the system (4.1) with order 3.0=α  and 

6.1=β . 
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d=6 

x 

k

Fig. 4.3 The bifurcation diagram for the system (4.1) with order 5.0=α  and 

5.1=β . 

 

d=20 

x 

k

Fig. 4.4 The bifurcation diagram for the system (4.1) with order 6.0=α  and 

3.1=β . 
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d=20 

x 

k

Fig. 4.5 The bifurcation diagram for the system (4.1) with order 7.0=α  and 

2.1=β . 

 

d=10 

x 

k

Fig. 4.6 The bifurcation diagram for the system (4.1) with order 9.0=α  and 

1.1=β . 
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d=10 

x 

k

Fig. 4.7 The bifurcation diagram for the system (4.1) with order 1.1=α  and 

9.0=β . 

 

d=10 

x 

k

Fig. 4.8 The bifurcation diagram for the system (4.2) with order 2.0=α  and 

7.1=β . 
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d=8 
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k

Fig. 4.9 The bifurcation diagram for the system (4.2) with order 2.0=α  and 

8.1=β . 

 

d=17 

x 

k

Fig. 4.10 The bifurcation diagram for the system (4.2) with order 3.0=α  and 

6.1=β . 
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d=6 
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k

Fig. 4.11 The bifurcation diagram for the system (4.2) with order 5.0=α  and 

5.1=β . 

 

d=20 

x 

k

Fig. 4.12 The bifurcation diagram for the system (4.2) with order 6.0=α  and 

3.1=β . 
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d=20 

x 

k

Fig. 4.13 The bifurcation diagram for the system (4.2) with order 7.0=α  and 

2.1=β . 

 

d=25 

x 

k

Fig. 4.14 The bifurcation diagram for the system (4.2) with order 8.0=α  and 

2.1=β . 
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d=10 

x 

k

Fig. 4.15 The bifurcation diagram for the system (4.2) with order 1.1=α  and 

9.0=β . 

 

d=18.5

x 

k

Fig. 4.16 The bifurcation diagram for the system (4.2) with order 8.1=α  and 

2.0=β . 
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Chapter 5 

Parameter Excited Anti-Control of Chaos of 

Fractional Order Nano Resonator Systems 
5.1 Preliminaries 

Parameter excited anti-control of chaos of fractional order chaotic nano resonator 

system is studied in this Chapter. By replacing the system parameter with a function 

of chaotic state variables of a modified van der Pol system, we can obtain anti-control 

of chaos. It is named parameter excited anti-control of chaos which can be 

successfully obtained for very low total fraction order 0.2. Numerical simulations are 

illustrated by phase portraits, Poincaré maps and bifurcation diagrams. 

 

5.2 A Modified Van der Pol System 

The equation of a van der Pol oscillator driven by a periodic force can be written 

as 

0sin)1( 2 =−−++ tbxxaxx ωϕ &&&                              (5.1) 

In Eq. (5.1), the linear term stands for a conservative harmonic force which 

determines the intrinsic oscillation frequency. The self-sustaining mechanism which is 

responsible for the perpetual oscillation rests on the nonlinear term. Energy exchange 

with the external agent depends on the magnitude of displacement |x| and on the sign 

of velocity . During a complete cycle of oscillation, the energy is dissipated if 

displacement x(t) is large than one, and that energy is fed-in if |x| < 1. The 

time-dependent term stands for the external driving force with amplitude b and 

frequency 

x&

ω . Eq. (5.1) can be rewritten as two first order equations: 

⎩
⎨
⎧

+−+−=

=

tbyxaxy
yx

ωϕ sin)1( 2&

&
                           (5.2) 

The modified van der Pol system studied in this thesis is 
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can be separated into two parts: 
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and 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−=

=

3dzcz
dt
dw

w
dt
dz

                                               (5.5) 

In Eq. (5.2), replaceing sin tω  by z which is the periodic time function solution of the 

nonlinear oscillator (5.5), we obtain system (5.4). In Eq. (5.5) if d = 0, z is a 

sinusoidal function of time. Now d≠ 0, z is a periodic motion of time but not a 

sinusoidal function of time. As a result, system (5.4) can be considered as a 

nonautonomous system with two states, while system (5.3) consisting of Eq. (5.4) and 

Eq. (5.5) can be considered as an autonomous system with four states. 

 

5.3 Numerical Simulations for the Parameter Excited Anti-Control of 

Chaos of Fractional Order Chaotic Nano Resonator Systems 

In this section, the method of anti-control, such as replacing the parameter d of 

system (2.9) by a nonlinear term dky +2  where  is a state of system (5.3), is 

proposed: 

2y
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which can chaotize originally non-chaotic system. The results are shown by numerical 

simulations, i.e. phase portraits, Poincaré maps and bifurcation diagrams shown in Fig. 

5.1 ~ 5.9. 

We vary the derivative orders α , β  and the gain k, the other system 

parameters are fixed. From the bifurcation diagrams, changing the gain k from zero 

upwards increases the wandering range of chaotic state variables. Simulations are 

performed under 9.0~1.0== βα . In system (9), six parameters , , 

, ,  and 

2.0=a 2.0=b

4.0=c 10=d 1=e 3.0=f  are fixed, k is from 0 to 5. In system (12), four 

parameters , ,  and 5=a 1=b 1=c 0001.0=d  are fixed and the system behavior 

is chaotic. The initial states of the nano resonator system are , 

,  and 

003.0)0( =x

004.0)0( =y 1)0( =z 0)0( =w . 
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Fig. 5.1 The bifurcation diagram for the system (5.6) with order 9.0== βα . 
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Fig. 5.2 The bifurcation diagram for the system (5.6) with order 8.0== βα . 
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Fig. 5.3 The bifurcation diagram for the system (5.6) with order 7.0== βα . 
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Fig. 5.4 The bifurcation diagram for the system (5.6) with order 6.0== βα . 
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Fig. 5.5 The bifurcation diagram for the system (5.6) with order 5.0== βα . 
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Fig. 5.6 The bifurcation diagram for the system (5.6) with order 4.0== βα . 
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Fig. 5.7 The bifurcation diagram for the system (5.6) with order 3.0== βα . 
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Fig. 5.8 The bifurcation diagram for the system (5.6) with order 2.0== βα . 
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Fig. 5.9 The bifurcation diagram for the system (5.6) with order 1.0== βα . 

 

 

 

 

 

 

 

 

 

 

 73



Chapter 6 

Conclusions 
In this thesis, the chaotic behaviors of a nonautonomous nonlinear nano 

resonator system are investigated by means of phase portraits, Poincaré maps and 

bifurcation diagrams. The total orders of the system for the existence of chaos are 1.9 

and 2.0. 

Parameter excited chaos synchronizations of uncoupled integral and fractional 

order nano resonator systems are obtained by replacing their corresponding 

parameters by the same function of chaotic state variables of a third identical chaotic 

system. Numerical simulations for integral and fractional order nano resonator 

systems are given for order 1 ~ 0.1. It is found that this approach is very effective 

even for very low total fractional order 0.2. An interesting phenomenon is found that 

the lower the total fractional order is, the faster the synchronization is accomplished. 

Anti-control of chaos of fractional order nano resonator systems is studied. Three 

methods of anti-control, such as addition of a constant term k, a nonlinear term zkz  

and replacing a system parameter by a function of chaotic state variables of a 

modified van der Pol system, are proposed, which can excite the existing of chaos of 

the originally non-chaotic system. The results are demonstrated by numerical results, 

i.e. bifurcation diagrams. The chaotic motion of the system has been obtained easily 

by choosing suitable feedback gains. It is found that those three methods are 

succeeded in exciting chaos of fractional order nano resonator system from periodic 

one for very low total fractional order 0.2. 
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