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摘要 

 
現今半導體製程中，包含上千道的製程步驟，以及參數。要如何有效的監控與

偵測製程參數異常，製程監控機制就扮演著不可或缺的角色。為了要提高產量及良

率，降低製程缺陷之發生，監控製程的每一步驟是否異常，藉由製程參數之錯誤偵

測(Defect Detection)，以及預先一步預測缺失的發生，來達到此一目標。本論文之

目的即在氧化物反應性離子蝕刻(Reactive Ion Etching, RIE)製程中，發展一套能夠

即時監控，並且預測下一批貨或是下一個製程步驟之製程參數有無出現異常之方

法。來解決上述提及之問題。 

 

在本論文中，利用主成分分析(Principle Component Analysis, PCA)以及類神經

網路(Neural Network, NN)來分析製程參數資料，製程因子先經由主成分分析處理

後，得到主要成分，再送入針對 RIE 製程參數所建立完成之類神經網路，預測其

是否出現異常；根據實際的製程需求及情況，可將 RIE 製程分為兩部分來建立其

製程監控模型，第一部份利用全部製程步驟之資訊，來偵測參數異常狀況，稱之為

離線(Offline)錯誤偵測模組；另一部份利用前三個製程步驟即時資訊來預測第四個

製程步驟之異常，稱之為即時(Online)錯誤偵測模組。 
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經由實際製程參數資料及上述兩個模組實驗驗證後，確實能夠偵測及預測出製

程參數之異常。同時，藉由此監控機制，可減少當製程異常時，排除異常的時間，

並且達到低成本即時控制之應用。 
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Abstract 

The fabrication of modern semiconductor products requires thousands of 

processing steps. A key element in achieving high yields during semiconductor 

fabrications is to minimize the amount of defected wafers. Therefore, detecting the 

defected wafers and predicting the wafer status are very important issues.  

 

In this study, BPNN is the backbone of prediction models and the BPNN inputs 

were prepared in three different ways: raw data by using the first set of data points, 

capturing samples from the original data, and the statistical summary values by calculate 

the mean and standard deviation values for each step. 

 

Four prediction models are established to predict the wafer status: offline back-

propagation neural network (BPNN), offline principle component analysis BPNN 

(PCABPNN), online BPNN, and online PCABPNN. These models have the potential to 
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reduce the overall cost of ownership of semiconductor equipment by increasing the wafer 

yield and throughput of product wafers, and not depend upon monitor wafers or 

expensive metrology rather it will enable inexpensive real-time wafer-to-wafer control 

applications in RIE. 

 

This study establishes a method for deciding the significant process parameters 

which affect the wafer status in RIE by comparing the result of applying each process 

parameter alone in BPNN. The significant parameters for all etching steps combined 

together in offline BPNN to tackle the defected wafer. Furthermore the significant 

parameters for the first three etching steps combined together in online BPNN to forecast 

the wafer status. By modifying the significant parameters when online BPNN model 

predicts the defected wafer, the down-time and mean-time-to-repair of the equipment can 

be decreased.    

 

The evaluation results for the four models demonstrate that each model has its 

advantages and disadvantages under different BPNN input preparations. However, 

preparing statistical summary as BPNN inputs has less error prediction. Therefore, using 

statistical summary in online PCABPNN is recommended to enable rapid prediction of 

wafer status in RIE which greatly reducing test wafer necessity. 
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C H A P T E R 1 

INTRODUCTION 
 
 

 

The technology of semiconductor fabrication is complex, and requires many 

specialized process steps. These steps include wafer preparation, device fabrication, 

device test, and packaging. Device fabrication is the most complex manufacturing step in 

production of semiconductor integrated circuits, and typically includes  photolithography, 

ion implantation, etching, thermal treatments, chemical vapor deposition, physical vapor 

deposition, molecular beam, electroplating, chemical mechanical polishing, wafer testing 

and back grinding [1].  

 

The integrated circuit (IC) growth performance over the past 40 years has been 

both influential, and ubiquitous as Moore’s law –which states that the numbers of 

transistor per chip, or per IC will double every year or two– while their cost remains the 

same. The correctness of Moore’s Law aggressively facilitates the scaling down and 

integration of IC devices, so that smaller and smaller devices are enabled in larger and 

larger quantities [2]. These advanced talents have also put more constraints on the design 

manufacturability. Because the manufacturing process has become less tolerant to 

variations, which easily could be source of defects.  
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 1.1 Defect Reduction Overview  

In order to achieve low yield loss and high quality, semiconductor manufacturer 

maximize their yield rates during process life cycle. The intentions of the process life 

cycle phases are different, consequently the technology requirements for defect detection 

in those phases are different and requires specific defect detection tools or recipes as well. 

Figure 1.1 illustrates semiconductor lifecycle phases, where these three phases are 

defined by the defect reduction technology subgroup [3, 4]: 

 

 

 

Figure 1.1: Fault density, yield, and output as a function of the time since the 

inception of a semiconductor technology node. [5] 
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• Process Research and Development (R&D): is characterized by relatively low 

production rates and yields, experimental development of process parameters, 

detailed characterization and identification of defects.  

• Yield Ramp (Yield Enhancement): is defined as an improving the baseline yield 

for a given technology generation starts from R&D yield level and ends by 

volume production. During this phase, the yield moves from approximately 20% 

to 80%. There are two ways to achieve the required yield ramp: reduce the total 

number of defect and fault sources, also reduce the time to source and fix each 

new defect source of mechanism.  

• Volume Production: This phase represents the final stage of the semiconductor 

process life cycle, in which no further tuning of the process control parameters is 

attempted. The objective of using defect detection tools in this stage is to identify 

process excursions as rapidly as possible, which requires very-high-throughput 

tools and methods. In this phase the process is well seasoned, so the problems are 

frequently catastrophic and could involve shutting down the line when faults 

occurred.  

The rapid identification of defect and fault sources through integrated data 

management continues to be the essence of rapid defect learning [4]. Defects must be 

detected, analyzed, and eliminated within brief period of time. Particularly, the visual 

inspection plays a fundamental role in defect detection. The visual inspection is often 

carried out by a human expert. However, new technology features have made this 

inspection unreliable. For this reason, many researchers have been engaged to develop 

automatic analysis of manufactures processes, defect prediction models, and automatic 
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optical inspections. Moreover neural networks model has first-rate in defect prediction, 

and automatic optical inspections. 

 

1.2 Motivation 

As the semiconductor processing technology approaches the 0.1 mm feature size 

and 300 mm wafer diameter, the customer demands for low defects per million (DPM) 

have not change. Fundamentally, there are only two ways to meet these demands: first, 

allow fewer bad or weak die to reach the customer. Second, reduce the intrinsic number 

of bad or weak die [6]. In the direction of facing the customer demands, the industry has 

strived to improve the yield, and equipment utilization.  

 

To optimize the yield and equipment utilization during semiconductor 

fabrications, the wafer defects should be minimized and properly processed wafers at 

each step should be confirmed. On other hand, measuring each wafer after each step is 

extremely difficult, due to cost and consumes long time for measuring each wafer after 

each step. As of now, experts in this industry usually measure and monitor wafers 

periodically, especially right after performing preventive maintenance and changing 

machine settings. A final test is performed on each wafer after all steps. Thus, if an error 

occurs, it is very likely that many wafers are misprocessed without notice until very late. 

Because of the late notice, it is extremely difficult to trace back and locate the faulty step 

and diagnose the problem. Therefore, one can save considerable resources by predicting 

the wafer state after or during each step. In this research it has been demonstrated that it 

is possible to do so in RIE process.  
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Reactive ion etch (RIE) is commonly used in VLSI as plasma etching method, 

where ions remove and react with wafer surface substrate in plasma environment. In 

addition, it is very difficult to control plasma etching process, since the physical 

mechanism of this process is not well understood.  

 

Wafer defect occurs in RIE when there is a sudden change in etching behavior. 

This change can happen due to operator errors, or machine errors, such as gas leak, power 

fault, and pressure fault. The main defect in oxide RIE is un-open etch, this defect costs 

10%-20% yield loss in PSC. Un-open etch signify the inadequate etching space in the 

wafer surface (see figure 1.2). This thesis explores the various issues of wafer defect and 

monitoring includes un-open etch defect diagnosis, offline defect prediction model, 

online defect prediction model, and the difference between these two prediction models. 

 

Many modeling techniques have been used to model the plasma etching 

throughput. However, they are limited in their ability to predict the yield quality and do 

not provide the flexibility to detect the wafer defect during etch process. This thesis 

focuses on the development of RIE output by predicting the wafer defect during/after 

etching process. Predicting wafer status is supported by careful experimental design and 

implementation. In the long term, this study will improve etch yield, at least in the 

following aspects: 
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(1) It will aid in identifying the dominant relationships between the wafer 

defects and etch factors. Therefore very good product quality will be 

achieved with continuous production. 

(2) It provides a fundamental understanding of the mechanisms involved in 

defects formation which is important for reliability during RIE process. 

(3) It offers offline model; this model will present a practical estimation of 

wafer status after etching process. 

(4) In additional, it presents online model to predict wafer status after 

stabilization steps during etching process. 

(5) This research performs wafer inspection for RIE process without 

scarifying wafers yield, and not depending upon monitor wafers or 

expensive metrology which is the main benefit of predicting the wafer 

status.  

(6)  It will enable inexpensive real-time wafer-to-wafer control applications in 

RIE. 

 

 

1.3 Problem Statement  

Reactive ion etching (RIE) is a key process in VLSI circuit fabrication, which 

combines physical ion bombardment and chemical reactions in plasma etching process. 

In addition, this critical technology is not only very expensive, but also difficult to control 

because it is not well understood [7]. In fact, a malfunctioning plasma etcher can generate 

high yield loss.  
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Silicon dioxide film etching is one of the major interests in IC interlayer dielectric 

material and multi-chip modules (MCM). A silicon dioxide film etching without any 

errors is a complex task. One of the significant detractive defect in this process is un-

opened etch (figure 1.2). Process engineers have to ensure that not only the processes and 

products are high-yielding but also that errors in manufacturing are eliminated as quickly 

as possible through continuous and timely improvements.  

 

 

Figure 1.2: Wafer surface shape before and after etching process.  

 

1.4 Thesis Statement 

 

This thesis attempts to gain an understanding of the relationship between the un-

open etch defect and RIE process, as well as providing empirical models to predict wafer 

status. Predicting wafer status in RIE is important to enhance yield, quality, and 

efficiency. Deep analysis has been done to improve the prediction model with the 

purpose of providing valuable benefits. Furthermore preparing data for neural network 

has been discussed and applied in three different ways.  
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1.5 Thesis Approach 

In RIE process, the final yield is a result of intensive interactions between process 

factors, etchant molecules, and wafer surface. In our approach, BPNN with/without PCA 

provides a comprehensive view of process factors and bridging them with the wafer 

status during/after the RIE process, thus this approach will emphasize the applications of 

predicting the wafer defect and evaluate the relationship between RIE factors and wafer 

defect.  

 

To more fully understand of this work, some additional background information is 

addressed in the next chapters. On the way to achieve the goal of predicting the wafer 

defect, the following steps are performed: 

 
Step one: Full understanding of the RIE process, and some additional background 

information such as plasma effect on etching process, back propagation neural network, 

and principle component analysis. 

Step two: Analyze the RIE factors and their interaction with an un-open etch defect.   

Step three: Consider the RIE data from PSC, and properly prepare them in three 

different ways:  raw data, sampling data, and statistical summary. 

Step four: Apply RIE factors in BPNN each factor alone to find significant factors for 

each classification. 

Step five: Decide the significant factors combination and apply these combination in 

offline BPNN model.  

Step six: Using PCA to represent the original data. 

Step seven: Properly apply PCs in offline PCABPNN model. 
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Step eight: Build online defect prediction model, using the data of the first three etching 

steps, and follow previous steps to obtain online BPNN model and online PCABPNN 

model.  

Step nine: The numerical and performance results of the online and offline prediction 

models will be evaluated as well as, the advantages, and disadvantages will be clarified. 

 

1.6 Thesis Organization 

This thesis presents an integration framework to diagnosis the defect occurred 

during RIE process. We begin with Chapter 2 reviewing neural network models and 

related works. Chapter 3 demonstrates etch process, Chapter 4 depicts the application of 

PCA in RIE.  Chapter 5 shows offline defect prediction model for RIE using neural 

networks besides, its simulation results. Also, it shows the online model. Finally, Chapter 

6 the conclusion includes summarizing important contributions of this thesis and 

discussing some interesting future directions. 
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C H A P T E R 2 

NEURAL NETWORK  
 
 
 

In the recent years, neural networks have been successfully applied in pattern 

recognition, modelling tool and as a function approximation. Furthermore, neural 

networks model has potential capability in modelling and control of non-linear dynamic 

systems, which conventionally used for dynamic processes, such as model predictive 

control (MPC), internal model control (IMC), and model inversion control. Several 

semiconductor manufacturing research investigate the application of artificial neural 

networks (ANN) in process optimization, control, and diagnosis [8-13]. 

 

On the other side, semiconductor manufacturers have faced unprecedented operation 

dilemmas and challenges, and some back-end semiconductor manufacturers were forced 

to merge. To survive in such a tough industry environment, semiconductor front-end 

manufacturers must have superb products and production technology, and they must 

continuously improve their production capability and increase production efficiency in 

order to save costs and to increase sales.  
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2.1 Related work 

Neural networks have seen an explosion of interest over the last few decades, and 

are being successfully applied in semiconductor inspection systems [9, 14-17]. The major 

reason for adopting neural networks is because neural networks have potential capability 

in modelling and controls of non-linear systems categorization. Moreover neural 

networks have the ability of learning arbitrary nonlinear mappings between noisy sets of 

input and output data. Back-propagation neural network (BPNN) is currently the most 

popular learning rule used in supervised learning, which also known as feed forward 

neural networks and multilayer perceptron (MLP). 

 

Back propagation through time is a very powerful tool, with application to solve the 

problems of prediction, optimization, control, and diagnosis in the semiconductor 

manufacturing process. [18-21]. Most of the literatures adopt BPNN because it has 

advantages of an easier-comprehended theory, faster recalling speed and higher learning 

accuracy. However, the determination of the structure architecture and the parameters 

under this network is difficult. Since the function approaching ability of neural network 

depends on the architecture of network, poor prediction can be resulted due to the 

parameters and the complexity of the problem itself, or an improper selection of the 

architecture or parameters, and vice versa. The parameters of neural network include the 

number of hidden layers, number of hidden units, learning rate and momentum, etc. 

These factors have a very great influence on the quality of approximation ability of neural 

network. Fogel [22] suggested the use of final information statistic (FIS) based on 

Akaikes’ information criterion (AIC) to determine the number of hidden layers and 
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neurons. Murata and Yoshizawa [23] and Onoda [24] proposed improved methods of 

AIC by applying statistical probability and energy function to determine the number of 

neurons. Their methods are called network information criterion (NIC) and neural 

network information criterion (NNIC), respectively. Taguchi method has also been used 

to design the parameters for neural network in previous researches. Khaw, Lim and Lim 

[25] applied Taguchi method to design the parameters and verified that the method could 

design the optimal parameters fast and robustly. Santos and Ludermir [26] applied 

factorial design to assist the design and implementation of a neural network.   

   

 Numerous researchers have studied pattern classification by using BPNN for the 

automatic inspection system in the semiconductor industry [27-29]. Zoroofi et al. [27] 

used curve recognition to detect the contamination on a wafer surface during 

semiconductor production. Three conventional classification models, a back-propagation 

technique, a minimum distance algorithm and a maximum likelihood classifier, were 

used and the performance of these three models was compared. The results showed that 

the back-propagation classifier has a better classification performance. Su et al. [28] 

proposed a neural-network approach for semiconductor wafer post-sawing inspection. 

BPNN, radial basis function network (RBFN), and learning vector quantization (LVQ) 

were employed in the inspection models. The inspection results showed that both BPNN 

and LVQ have excellent prediction result with 100% accuracy. Chen et al. [29] used 

BPNN in the etch semiconductor process to identify and classify endpoint curves. By 

real-time monitoring of changes in the endpoint curve, the abnormalities of products can 

be detected immediately. The system can reduce the uncertainty in the process curve 
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classification and provide machine shut-down suggestion immediately when necessary. 

In this respect, back propagation neural network utilized to identify and predict the wafer 

status after/ during RIE. Next section deals with back propagation neural networks 

(BPNN). 

 

2.2 Back Propagation Neural Networks Structures 

Neural networks have emerged as an important tool to model and diagnose 

problems in complex manufacturing process. There are many types of neural networks to 

map the complex relationship between input and output through supervised training 

algorithms, such as associate memory networks, radial basis functions and back 

propagation neural network (BPNN). The BPNN consists of input layer, output layer and 

several parameters include: the number of hidden layers, number of hidden neurons, 

learning rate, momentum, etc. All of these parameters have significant impacts on the 

performance of the neural-network.  

 

Figure 2.1: The artificial neural network cell  
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Neural network cells (neurons) are the basic elements of neural networks [30]. In 

general, the neurons are connected by links in term of weights. Neural networks may 

consist of multiple layers of neurons interconnected with other neurons in different layers. 

These layers consist of one input layer, one or more hidden layers and one output layer. 

As demonstrate in Figure 2.1 the inputs and the interconnected weights are processed by 

weighted summation function to produce a sum and then used by an activation function. 

The result of the activation function is the output to the neurons.  

 

 

Figure 2.2: The Back propagation neural networks model with one output  
 
 

Figure 2.2 illustrates the Back propagation neural network structure, where the boxes 

represent the hidden neurons. Each processing neuron first calculates the weighted sum 

of all interconnected signals from the input layer, plus a bias term as shown in equation 
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2.1. Then generates an output ( js ) through an activation function, where sigmoidal 

function (Eq. 2.2) expressed as activation function in this case. Although there are several 

types of activation functions, sigmoidal functions are the most commonly used. 

,
1

N

j n j j
n

s w x b
=

= +∑  (2.1) 

se
sf −+
=

1
1)(  

(2.2) 

Next the outputs are calculated by finding the weighted sum of all interconnected 

signals from the hidden layer plus a bias term and then generates an output ( y ) through 

an activation function. In BPNN usually learns by making changes in its weights 

( , ,,i j j kw w ), when the mean square error (Eq. 2.3) is larger than acceptable limit.  

∑
=

−=
K

k
kk ydE

1

2)(
2
1

 (2.3) 

Where kd  is the desired output (actual output), and ky is the BPNN output, k represent 

the number of output neuron, in this thesis one output neuron is constructed. In the 

training process, the input and output variables chosen for the network learning are 

presented to the model in a normalized form, and the weights between the hidden and 

output layers are adjusted first by using the expression below: 

 (2.4) 

 (2.5) 

 

, , ,j k j k j kw w w= +∆

, , 1. ( )( )j k k k k k kw f s y o oη =∆ = −
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Where η  represents a dumping or accelerating factor, kY  comes from the input-output 

pairs of data (x, y) available for training the network , and kO  is the output obtained 

from Equation 2.2 applied to the neurons of the output layer in the m iteration. 

Subsequently as shown in BPNN algorithm (see figure 2.3), the weights between the 

input and hidden layers are changed (Eq. 2.6, 2.7). After presentation of the first input-

output pair, the second pair is processed, and so on. 

 (2.6) 

  (2.7) 

 

 

 
  

, , ,i j i j i jw w w= +∆
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Figure 2.3: Major steps of BPNN algorithm [32] 
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C H A P T E R 3 

REACTIVE ION ETCH 
 
 

 

One of crucial importance processes in semiconductor fabrication is plasma 

etching. Plasma etching first appeared in the late 1960s to interconnect the current and 

future generation of integrated circuit [34]. In this chapter, etch process in general and 

reactive ion etch process (RIE) concise is provided in four sections: the first section 

described the main etching types and characteristics. The second section clarifies reactive 

ion etch process (RIE). 2300 Exelan Flex is explained in the third section. Some relations 

between RIE factors and wafer defects are presented in the last section.  

 

For fully understanding etch process, it is necessary to be familiar with the etch 

factors, such as etch rate, etch profile, etch bias, selectivity, uniformity, residues, and so 

on.  These terminology and others explained in Appendix Ι. 

 

3.1 Etch Process Overview 

Etching process is performed immediately after photolithography, to remove 

undesired material from the wafer surface by either chemical etcher or physical 

mechanism. Usually photoresist masks or other materials are used on the top of surface to 
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protect specific regions of the wafer surface while permitting selective etching through 

opening the photo-resist layer [1, 7, and 35].  

Two basic types of etch processes are used in semiconductor manufacturing: 

liquid (wet) chemicals, and gaseous (dry) species. In wet etch, liquid chemicals such as 

acids, bases, and solvents are chemically reacting with undesired surface material 

creating byproducts species which either dissolve or vaporize away. Table 3.1 compares 

the characteristics of the wet and dry etch process.  

 

Table 3.1:  Comparison between wet and dry etch characteristics 

 

 
On the other hand, dry etches is the primary etching method in advanced wafer 

fabrication. The goal of the dry etching process is to form significant features such as 

gates and interconnect lines, and contact holes. Contact holes will be filled with metal to 

connect the source and drain, and to connect different metal layers. The significant 

features formed in chips by reproducing the image of a mask on wafer surface with a high 

degree of integrity.  
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In general, dry etching mechanism is divided into the four basic 

phenomenological categories as shown in Figure 3.1: sputtering, chemical etching, ion-

enhanced energetic or RIE and ion-enhanced inhibitor processes [1, 7, and 35]. 

 

Figure 3.1:  The four phenomenological etching mechanisms: Ⅰ sputtering, Ⅱ Chemical 

etching, Ⅲ Ion- enhanced energetic etching   Ⅳ Ion enhanced inhibitor etching. 

 
 

The four phenomenological dry etching mechanisms :(Ⅰ ) Sputtering is the 

nonselective surface atoms removal, where the non-reactive feedstock gas ions are 

induced by plasma to strike the target surface. Chemical Etching (Ⅱ) is an isotropic and 

selective surface atoms removal, where plasma induced gaseous etchant atoms or 

molecules (free radicals) which chemically react with the surface layer and forming 

gaseous volatile etch products. (Ⅲ)RIE -Ion-Enhanced Energetic - is the highly 

anisotropic etching of surface layers due to gaseous etchant and energetic ions. (Ⅳ) Ion 

Enhanced Inhibitor Etching where in this mechanism plasma supplies chemical etchant, 

and inhibitor precursor molecules. The inhibitor molecules adsorb or deposit on the 

substrate to form a protective layer or polymer film.  
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3.2 Reactive Ion Etch  

Reactive ion etch is suitable technique for removing material from the wafer 

surface, and is widely used in VLSI manufacturing because the resist mask pattern can be 

accurately transferred to the film. Furthermore, RIE control the etching profile and under 

layer selectivity. 

 

A typical RIE system consists of a cylindrical vacuum chamber with a wafer 

platter situated in the bottom portion of the chamber (figure 3.2). The wafer platter is 

electrically isolated from the rest of the chamber, which is usually grounded. Gas flow is 

introduced through small inlets in the top of the chamber and is evacuated out to the 

vacuum pump system through the bottom of the chamber. The types and amount of used 

gas is determined by the etch process.  

 

Figure3.2:  Reactive Ion Etch Tool 
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RIE procedure starts by vacuuming chamber until the pressure arrives to the 

required limit. After that the etchant gas will introduced to the vacuum chamber at the 

same time RF powers are used to increase the electrons energy.  Some of the etchant 

molecules dissociate from the impact of the collisions with electrons forming as in Eq. 

(3.1), which generate free radicals. These free radicals diffuse across the boundary layer, 

to reach the wafer surface, and are adsorbed on the surface (3.2). With the help of ion 

bombardment (3.4), these free radicals react with the surface atoms or molecules very 

quickly and form gaseous byproducts (3.3). The volatile byproducts desorbed from the 

surface (3.5), diffuse across the boundary layer, get into the convection flow, and are 

pumped out from the chamber. It is easy to conclude that RIE contains two kinds of etch 

mechanism:  

I- Chemical etching caused by suitable reactive chemicals 

II-  Physical etching caused by ion bombardment.  

The following equations and Figure 3.3 clarify the RIE mechanism  

Etchant Formation eFFe +→+ 22  (3.1) 

Adsorption on Substrate 

nFSi
F
F

surf −→
2

 (3.2) 

Chemical Reaction 
)(adsxSiFnFSi →−  (3.3) 

Ion Assisted reaction 
)(

)(
adsx

ions SiFnFSi ⎯⎯ →⎯−  (3.4) 

Product Desorption 
)()( gasxadsx SiFSiF →  

(3.5) 
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Figure 3.3: RIE Mechanism 

3.2.1 Plasma in RIE  

 
Plasma can be generally described as an ionized gas composed of ions, free 

electrons, and a variety of neutral species. It contains approximately equal concentrations 

of positively charged particles (positive ions) and negatively charged particles (electrons 

and negative ions). While this description encompasses a wide range of plasma types and 

conditions, specific class is typically used in semiconductor processing called a "low 

pressure glow discharge", this type of plasma is weakly ionized (most of the gas 

molecules are neutral), low pressure (1 mTorr to 1 Torr), and nonequilibrium electrons 

contain most of the energy and the ions remain near room temperature. The advantage of 

this kind of plasma is surface chemical reactions with plasma can take place under no 

equilibrium conditions and at low temperature. Plasma effectively controls the main 
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etching characteristics, such as the etching rate, anisotropy, selectivity and uniformity 

provides.  

 

It is well known that the plasma process is affected by chemical and physical 

features, several features of plasma are described in this section such as: thermal 

velocities of the free electrons and ions inside the plasma. These thermal velocities are 

described by the following equations,  

1
2e

e
eTv m

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

=  (3.6) 

1
2

i
i

eTv M
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

=  (3.7) 

Where, e is the electron charge, and the ionized particle charge, Te and Ti are the electron 

and ion temperatures, and m and M are the masses of the electron and ion, respectively. 

For typical semiconductor processing plasmas, Te is between 1 and 10V (here, 

temperature and voltage can be considered equivalent through the relation T
q

K
V B=  

therefore, 300K≡ 0.026V), while Ti is near room temperature. The ion mass is also much 

larger than the electron mass. For these two reasons e iv v>> , and during the time 

immediately after the plasma is ignited, the electrons are lost to the chamber walls much 

more rapidly than the ions. This leaves the bulk plasma with a net positive charge, which 

sets up an electric field from the plasma to the walls. The high electric field region near 

the walls is called the sheath. 
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The sheath thickness is one of the plasma features. This thickness is the order of 1 

mm and is the only separated charge region. All other areas can be considered quasi-

neutral over a length scale larger than ~15 µm. The potential across the sheath relative a 

floating surface (the floating potential) is typically 10-30 V and accelerates ions that enter 

the sheath towards the floating surface. Since the ion temperature in the bulk plasma is 

low (≈ 0.026V), the energy of the ions bombarding the chamber walls is on the order of 

several Te. If the wafers to be processed are placed on one of the walls, these ions will 

strike the wafers with high velocity, and at nearly-normal incidence. This ionic 

bombardment is the basis for the anisotropic etching.  

 
3.2.2 Cooling System in RIE 

In reactive ion etch process, large heat is generated by electrons strikes and heavy 

ion bombardment, where the high temperature can cause photoresist reticulation. 

Consequently, Temperature control is needed to keep wafer health and protect wafer 

photoresist. Where low pressure is not good to transfer the heat a cooling system is 

required. Thus, Helium backside cooling is commonly used as shown in figure 3.4., either 

clamp ring or electrostatic chuck (E-chuck) is hold wafer. So in this cooling process, 

Helium is pressurized at the wafer back so heat transfer from wafer to water cooled chuck. 

 

Figure 3.4:  Helium backside cooling system 
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3.3 Case Study: Oxide RIE in PSC 
 
 This thesis studied one of reactive etching process in Power Ship Corp., where 

2300 Exelan Flex (figure 3.5) used to etch the dioxide silicon films. This equipment is a 

complete package with an integral power supply, RIE chamber, and internal cooling 

system. 

 

Figure 3.5:  2300 Exelan Flex, etching equipment in many VLSI factories. 
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This advanced Reactive Ion Etching equipment made up of many different sections 

(figure 3.6). Some of these sections are maintenance and controller sections. The main 

electronics monitor the status and manipulate the values of controlled variables such as: 

Pressure, Temperature, gas mass flow, voltage, current, and RF power.   

 

Figure 3.6:  Sketch of 2300 Exelan Flex equipment includes some controller  

 

The other main section in 2300 Exelan Flex is RIE chamber (figure 3.7). The main 

etching chamber configured inside the vacuum chamber for optimal efficiency, where 

these two chambers separated by quartz confinement rings, these rings effort pressure 

controller for the main chamber. This chamber as typical RIE (sec 3.2) consists two 

parallel plates, Esc, RF power supply, and pumping system.  
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Figure 3.7:  Sketch of the main etching chamber inside RIE chamber 

 

The purpose of oxide reactive ion etch is to create the trenches, which are filled by 

metal to connect wafer layers. To achieve this purpose three main oxide etching steps 

applied during oxide etch process, which contains eleven steps. Before the main etching 

process, good plasma environment must be prepared by stabilization steps (stable step, 

strike plasma step, and ramp up plasma step).  

 

The first step in RIE recipe starts by opening high vacuum pump automatically 

followed by closing rough vacuum pump, thus ultra-high vacuum (1mTorr) is achieved 

inside RIE chamber, after that the opened area between the vacuum chamber and main 

etch chamber is minimized by quartz confinement rings, at this instant the fluorine gas 

mixture is introduced to the main chamber as the end of the first step. 



 

 29

 

Figure 3.8:  Process recipe for oxide film etching in RIE  

 The second step objective is to strike the plasma. Plasma is initiated in the system 

through applying RF power to the wafer platter. This power is typically applied at a few 

hundred watts with twenty seven and two megahertz, these frequencies create an 

oscillating electric field that ionizes few gas molecules by stripping them of electrons, 

creating plasma as shown in equation 3.10. In step three the values of the RF power will 

be increased to enhance the plasma amount until plasma reaches the required density. 

eCFFCFe nn ++→+ −1  (3.10) 

After plasma enhanced, the main etching process is occurred by physical and 

chemical mechanisms. More physical than chemical mechanisms occurred in silicon 

oxide etching processes. In addition, free fluorine radicals are the main etchant for this 

etching process. When etching oxide, oxygen byproduct can react with C to free more 

Step1: Stable 

Step 2: Plasma Strike 

Step 3: Plasma Ramp up 

Step 4: Oxide Main Etching 1 

Step 5: Oxide Main Etching 2

Step 6: Plasma Ramp down 

Step 7: Stable 

Step 8: Plasma Strike 

Step 9: Plasma Ramp up 

Step 10: Oxide Main Etching 3 

Step 11: Plasma Ramp down 
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fluorine (equation 3.10). The reactions between the etchant atoms and oxide silicon wafer 

surface shown in the following equations: 

Adsorption on Substrate 
2 2nnF SiO SiF O+ → +  (3.11) 

Chemical Reaction 
4( ) 4adsSi nF SiF n− → <  (3.12) 

Ion bombard 
)(

)(
adsx

ions SiFnFSi ⎯⎯ →⎯−  (3.13) 

Product Desorption 
)()( gasxadsx SiFSiF →  

(3.14) 

As shown in figure 3.8 there are three main etching steps: the first oxide etch step 

is outlined the wafer surface shape from the rounded mask. The second main etch step 

provides the pattern etch. The third main oxide etch occurs in deepest depth to prepare 

the contact areas between two layers, thus this etching need higher plasma density than 

the previous etching steps to achieve its purpose. So the stabilization steps repeated with 

same procedure but different RF power and gas flow values preparing new plasma. 

 

3.4 RIE Factors 

For reactive ion etching systems (case study) mainly forty different signals were 

collected from 2300 Exelan Flex equipment in PSC, twenty two signals are carefully 

chosen from the whole signals, the chosen signals are directly impact the wafer status. 

Figure 3.9 clarifies the main twenty one factors except the time factor. For more 

understanding table 3.2 provides more elaborations about RIE factors. 
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Table 3.2: RIE factors and its clarification 
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Figure 3.9: Main factors of oxide RIE. 
 

 

3.4.1 RF Power  

The energy of the ions bombarding the substrate can be increased by employing an 

additional capacitive source of RF. Thus the etch rate increase linearly with the RF power 

supply. RF power present the most important knob that controls etch rate. When etch rate 

is out of specifications the first response the engineers do is checking RF system. four 

signals related to RF power presented in 2300 Exelan Flex table 3.2, 2 MHZ power 

supply, 27 MHZ power supply, 2MHZ reflected power and 2MHZ reflected power. In 

addition to RF, DC bias is highly correlated to etch rate as shown in figure 3.10. 
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Figure 3.10:  Etch rate and DC bias as a function of the RF power. 
 
 

3.4.2 Pressure 

Gas pressure in RIE is typically maintained in a range between a few millitorr and a 

few hundred millitorr by adjusting gas flow rates or adjusting an exhaust orifice. 

Normally, as pressure is decreased below about l00 mTorr, the potential across the 

discharge characteristically increases. At very low pressure, physical etching mechanisms 

tend to dominate (figure 3.11) , because of high ion energy, low reactant density, and 

long mean free paths. 

 

According to the kinetic theory of molecular gases, the mean free path of a gas 

molecule at constant temperature is inversely proportional with the pressure. So when the 

pressure decreases the mean free paths of the species increases, and the energetic 

particles in the plasma can easily transfer their kinetic energy to the atoms at the oxide 

silicon film surface. 
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Figure 3.11 Qualitative effect of pressure on ion energy and the etching mechanism [24] 
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C H A P T E R 4 

PRINCIPAL COMPONENT ANALYSIS  
 
 
 

Principal component analysis (PCA) is an important analysis technique in 

multivariate statistics, it was first suggested in 1901 by Pearson [36], and formally 

developed by Hotelling [37]. The main idea of principal component analysis (PCA) is to 

represent number of correlated variables into a smaller number of uncorrelated variables 

called principal components. The first principal component accounts for as much of the 

variability in the data as possible, the second PC is the linear combination with the 

second largest variance and orthogonal to the first PC, and so on. There are as many PCs 

as the number of the original variables. For many datasets, the first several PCs explain 

most of the variance, so that the rest can be disregarded with minimal loss of information. 

The objectives of using PCA are to reduce the dimensionality of a data set, and to 

identify new underlying variables that are now orthogonal. 

 

To enhance performance of prediction model in this study, PCA is suggested to 

represent the RIE factors, since simple neural networks with few nodes and connections 

tend to have better generalization capability. In this chapter, PCA technique 



 

 36

automatically extracts three principle components (PC) from all RIE factors (twenty two 

factors). Table 4.1 shows the RIE factors and its abbreviation. 

Table 4.1 RIE factors and its abbreviation. 

1x  Bias Voltage 12x  Gas 4 

2x  ESC Clamp Voltage 13x  Gas 7 

3x  ESC Current1 14x  He Flow Inner 

4x  ESC Current2 15x  He Flow Outer 

5x  ESC Temperature 16x  He Pressure Inner 

6x  Foreline Pressure 17x  He Pressure Outer 

7x  Forward Power 27MHz 18x  Pressure 

8x  Forward Power 2MHz 19x  Process Time 

9x  Gas 1 20x  Reflect Power 27MHz 

10x  Gas 10 21x  Reflect Power 2MHz 

11x  Gas 11 22x  Top Plate Temperature 
 

It is important to treat each step separately in PCA, because each etching step has 

different inherent physical/chemical characteristics, and by considering the overall 

process characteristics and the objective of model simplicity, it was decided that utilizing 

one PCA for each of the eleven steps might yield a better solution than utilizing a single 

PCA for the entire process. In this thesis, principal component analysis was utilized for 

90 training wafers, the principle components are found by computing the sample 

covariance* matrix and selecting its eigenvectors (loading vectors) for the k biggest 

eigenvalues as shown in figure 4.1.  

 

 

* Covariance matrix Cov(X)  is a good choice to capture the dependence between 
variables of the matrix (X). 
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Figure 4.1 Flow chart of principle component analysis (PCA) algorithm.  
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The covariance matrix Cov(X)  can be obtained by: 

( ) ( )
( )

1

T
X X X X

Cov X
n

− −
=

−  
(4.1) 

Where 1 2 22X X XX ⎡ ⎤
⎣ ⎦= L  

is data matrix with n samples (rows) and 22 variables (columns), as well as each 

column represents one of RIE factors.  

iX  represents vector i  of data matrix  

( )X X−  stands for subtract the mean value of each column from the corresponding 

column . 

 

To find the eigenvalues and eigenvector of the covariance matrix, Cov(X) represented 

by using singular value decomposition (SVD) as shown in the following equation: 

( ) TCov X V V= Λ  (4.2) 

where 1 2 22      V v v v⎡ ⎤
⎣ ⎦= L  

is an 22 by 22 unitary matrix of corresponding eigenvector  
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the matrix Λ is  22 by 22 diagonal matrix of the corresponding eigenvalues ( )λ  on the 

diagonal and zeros off the diagonal, where 1 2 22λ λ λ≥ ≥ ≥K  Table 4.2 shows the 
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eigenvalues for the eleven steps. Figure 4.2 shows the decrease in eigenvalues λ  for 

each of etching step. 

 

The variance of the ith PC is equal to the ith largest eigenvalue of the covariance 

matrix [38]. Because of this important property, the ϕ  percentage (equation 4.3) is used 

as a guide in choosing an appropriate number of PC. The goal is to choose as small a 

value of k as possible while achieving a reasonably high percentage of PC variance. The 

ϕ  values shown in table 4.3 give the cumulative proportion of the variance explained by 

the first k PCs, ϕ  is larger than 88% when k equals three, thus three principle 

components are selected to characterise the twenty two RIE factors by using equation 4.4:  

1
22

1

k

i
i

i
i

λ

λ
ϕ =

=

=
∑

∑
 (4.3 ) 

PC XV=  (4.4) 

 

Score equations (T XV= ) is tend to identify the three principle components according 

to RIE factors. Score equations for each etch step is shown in Appendix II 
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Figure 4.2 Eigenvalues of the covariance matrix for RIE steps   
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C H A P T E R 5   

PREDICTION MODELS FOR RIE 
 
 

 
The computing, telecommunications, aerospace, automotive and consumer 

electronics industries all rely heavily on integrated circuits (ICs). Next-generation IC 

manufacturing equipment will require dramatic improvements in cost, quality, throughput, 

and flexibility. Reducing manufacturing cost involves increasing chip yield, reducing 

cycle time, maintaining consistent product quality, improving equipment reliability, and 

maintaining stringent process control. Since IC fabrication consists of hundreds of steps, 

maintaining product quality requires the control of thousands of variables. Process steps 

are performed in sequence, and yield loss may occur at every step. However, analyzing 

wafer defects is the regular method for evaluation semiconductor technologies. Wafer 

defects carry a lot of wafer status information which can be analyzed in order to 

characterize the quality of processes and products. If the prediction model accurately 

predicts the wafer status, the repeated etching failure rate should be prevented, process 

yield should be greatly enhanced, inspection cost should be reduced and profit should be 

increased. 

 

The experimental process of this study is as depicted in figure 5.1, and four 

models are included: offline back-propagation neural network (BPNN), offline principle 
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component analysis BPNN (PCABPNN), online BPNN and online PCABPNN. These 

models have the potential to reduce the overall cost of ownership of semiconductor 

equipment by increasing the wafer yield and throughput of product wafers, and not 

depend upon monitor wafers or expensive metrology rather it will enable inexpensive 

real-time wafer-to-wafer control applications in RIE. The capability of the four prediction 

models to predict the wafer status correctly is discussed in this chapter. 

 

Figure 5.1:  Flow chart of the experiment. 
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5.1 Data Collection from RIE. 

The most important step in semiconductor process modelling is the collection of 

data. It is essential to gather a sufficient sample of representative data; or else it is 

impossible to train a neural network or any other type of model. In this study, the 

parameters data of 2300 Exelan Flex machine is collected by engineers in Powerchip 

Semiconductor Corp (PSC) factory based on their experience. These parameters include 

chamber temperature and pressure, forward and reflected RF power, DC bias and gas 

flow rates (table 3.2). 

 

Wafer Percentages in this Case Study.

25
21%

76
63%

14
12%

5
4%

Good Wafer tested

Good Wafer trained

defect Wafer trained 

defected Wafer tested

 

Figure 5.2 Percentage of the training and testing wafers in this case study. 

 

Figure 5.2 presents the training, and testing percentage of one hundred twenty 

wafers which collected from 2300 Exelan Flex machine, and the percentage of training 

wafers to testing wafers which is three to one, where fourteen wafers (12%) from the 

ninety training wafers (75%) stand for unopened etch defected wafers, and five wafers 

(4%) from the thirty tested wafers (25%) stand for defected wafers (unopened etch).  
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5.2 Data Preparation. 

This section explain the details of the preparation data performed in this study, 

data preparation techniques are used to obtain good prediction results. Figure 5.3 reveals 

the variation of the data point number/ process time for each step, for example in step 

five the number of data points is between 10- 140 with 60 data points as an average of 

step five . Because of this dissimilarity, it is hard to decide the BPNN inputs. Therefore 

three different data preparation techniques are suggested and prepared such as: raw data, 

sampling data and statistical summary data. 

• Raw data preparation: one hundred eighty four data points is the minimum 

number of data points from the collected data, thus the first one hundred eighty 

data points are suggested as raw data inputs for offline prediction models. And 

twenty data points are suggested as raw data inputs for online prediction models. 

 

Figure 5.3: (a) Box plots of data input number versus each step of given data (b) Box 
plots of Process Time versus each step of given data 
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• Sampling: non symmetric sampling is the second suggested preparation technique, 

which has ability to cover all etching steps (figure 3.8), at the same time focusing 

on the main three etching steps (step 4, step 5 and step 10). Table 5.1 shows the 

number of captured samples in each step, where two samples captured from 

stabilization steps (step 1, 2, 3, 7, 8, and 9) and two from plasma ramp down steps 

(step 6 and 11), more than half of the captured samples are captured from the 

main etching steps (step 4, 5, and 10), as a result thirty four captured samples 

cover all etching steps. These thirty four captured samples used as inputs for 

offline prediction models.  

 
Table 5.1:  Number of suggested sampling for each step in the sampling technique 

 

 Figure 5.4:  The position of captured samples. 

 

Figure 5.4 illustrates the position of captured samples, where the first data point 

of each step is captured, and the suggested sampling rate for the main etching steps is five 

and three for other steps. The first seven captured samples are suggested as the input of 
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the online prediction models, these samples includes the first data point of each 

stabilization steps, the third point after the beginning of the first three stabilization steps 

and the end point of the third step (which is the first data point of forth step). 

• Statistical summary preparation: the last suggested preparation technique, and 

depends on mean and standard deviation values. The following equations show 

the calculation of the two statistical summary values. 

1

1 N

i
i

X xN =
= ∑  (5.1) 

( )2
1

1
1

N

i
i

x XNσ
=

= −− ∑  (5.2) 

 

 

 

Figure 5.5: Statistical summary data preparation technique 

 

Because of many samples have no data for the sixth step, this step became out of 

interest. This means there is ten steps will be statistical summarized and applied in offline 

prediction models. 
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5.3 Architecture of prediction models  

As stated before, many researchers have been adopted BPNN to solve the 

problem of categorization, prediction and examination the manufacturing process, 

because the advantages of BPNN such as: easy and fast to comprehend, high accuracy 

and fast recalling speed. This study combines back propagation neural network (BPNN) 

and principle component analysis (PCA) to construct the four prediction models as shown 

in table 5.2. Offline prediction models concern about all etching process steps to predict 

the wafer status after the end of etching process. In other hand, online prediction models 

concern about the first three stabilization steps. Online prediction models are capable to 

reduce the defected wafers more than offline prediction models, due to the abnormalities 

of the etching process can be predicted as soon as possible and before the end of the first 

main etching step (step 4).  

 

Table 5.2:  The methods used in each prediction model. 

  PCA BPNN Notes 

Offline BPNN   ※ Concern about all etching 
steps 

Online BPNN   ※ Concern about the first three 
steps 

Offline PCABPNN ※ ※ Concern about all etching 
steps 

Online PCABPNN ※ ※ Concern about the first three 
steps 
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5.3.1 BPNN 

BPNN in this study consists three layers of neurons: the input layer, hidden layer, 

and output layer. The input layer receives external information such as RIE processing 

factors or principle components. From the output layer, predictions are produced, the 

prediction values expressed as a binary values to represent the wafer status, since the 

network output is between zero to one, the zone that is smaller than the Min value is set 

to zero and the zone that is greater than the Max value is set to one. If the network output 

value is equal to one that means the wafer status is good, and otherwise is bad (defected 

wafer). When the network output value is between Min and Max values, then the network 

fails to predict the wafer status. The defined value range must be established to determine 

whether the output value is close to the target value.  

 

The BPNN also incorporates hidden layers of neurons, these neurons do not 

interact with the outside world, but assist in performing nonlinear feature extraction on 

the data provided by the input and output layers. The number of hidden layers was set to 

one in this application. With a description of the BPNN network structure, training 

matters have to be settled. 

 

5.3.2 Training 
 

As previously mentioned the overall objective in training is to minimize the 

discrepancy between real data and the output of the network. During training, the 

network is trained to associate outputs with input patterns, this principle is referred to as 
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supervised learning. The training is continued until the training reached the maximum 

number of epochs or training neural network has MSE less than
61*10−
. The maximum 

number of epochs used during training the networks is set to 10000 epochs. 

 

After training, the prediction performance of the prediction models is estimated 

with two test sets. The first test set is formed by comparing the prediction error of new 

data set, data of twenty five good wafers and five defected wafer stand for testing data set. 

Two type of error obtained in the first test: type І prediction error occurred when good 

wafer is predicted as bad wafer, and type П prediction error occurred when defected 

wafer is predicted as good wafer. 

 

The second test set depends on the recognition rate/ rejection rate. The 

recognition rate is the percentage of test samples recognized correctly and the output 

value is located outside the zone values (Min and Max values). The rejection rate is the 

percentage of input samples that could not be assigned to any particular class; because the 

output value is located somewhere within the zone values. The Min and Max values are 

determined for every prediction models after testing the training wafers, where Min value 

is the highest output value for defected wafer, and Max value indicates the lowest value 

for good wafer. 
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5.4 Significant Factors 

Process engineers in anonymous companies select the RIE factors which is 

critically affect the quality of etched wafer based on their experience. These factors are 

gas flow, pressure, and radio frequency, bias voltage. If inappropriate factors are selected 

as BPNN inputs, the result will be much less than desired. Conversely, the prediction 

result will be much more than significant if RIE significant factors are selected as BPNN 

inputs. In PSC company, some RIE factors is well controlled such as the etchant gases, so 

deciding the significant factors which is practically affect the wafer status in RIE is very 

important to obtain a good result. To decide the significant factors which affect the wafer 

status in RIE, new technique is establishes in this application. This new technique 

depends on comparing the network testing result of each process factor.  

 

5.4.1 Significant Factors for Offline BPNN 

 
In offline BPNN prediction model, selecting RIE significant factors is necessary 

to achieve accurate prediction of wafer status. Significant factors of RIE process have a 

major impact with the wafer status. The following three tables (table 5.3, 5.4 and 5.5) 

show the network testing result of each factor of RIE factors by using three different data 

preparation techniques, where the BPNN testing results reveals the significant factor. 

Mean square error for training and testing wafers in BPNN are shown in the first two 

columns. In addition, there are twenty five good wafers and five defected wafers are 

tested in BPNN. The fifth column in the following tables show the number of type Ⅰ

error, which express the number of good wafers which predicted as bad wafer by using 
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BPNN. The sixth column represents the number of defected wafers which predicted as 

good wafer (type Ⅱ error),  and the last column summarizes the total error predictions.  

 

Table 5.3 illustrates the network testing result of the first 180 data points of each 

factor. The result shows that there are two significant factors:  He flow outer and Bias 

voltage. These two factors have zero error prediction, which means these two factors 

strongly affect the wafer status. 

 

Table 5.4 illustrates the network testing result of the 34 captured samples of each 

factor. These results reveal three factors from RIE factors as significant factors: Bias 

voltage, He flow inner and He flow outer. In table 5.5, Bias voltage, He flow inner, He 

flow outer, Pressure, and Reflect Power 2MHz have zero error prediction, these five 

factors considered as significant factors for offline BPNN model. It is obvious that 

statistical summary preparation technique has the best result for deciding the RIE 

significant factors. 
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Table 5.3:  Significant factors of RIE process decided after applying the first 180 data 

points of each factor in BPNN 
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Table 5.4:   Significant factors of RIE process decided after applying the 34 captured 

samples of each factor in BPNN. 
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Table 5.5:   Significant factors of RIE process decided after applying the twenty 

statistical summary values of each factor in BPNN. 
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5.4.2 Significant Factors for Online BPNN  

The success of prediction model relies heavily on the model inputs. Therefore, 

deciding the RIE significant factors of the first three stabilization steps is important to 

achieve accurate prediction of wafer status in online BPNN prediction model. To decide 

the RIE significant factors, the three data preparation techniques are applied in online 

BPNN for each single factor, consequently the significant factors will be easily observed. 

The observed RIE significant factors for the stabilization steps are highlighted in the 

following three tables(table 5.6, 5.7 and 5.8). The following three tables represent the 

network testing result of applying the three preparations technique for each single factor 

in BPNN.  

 

Table 5.6 illustrates the accuracy of predicting the wafer status by training and 

testing the first twenty data points of each single factor of RIE factors in BPNN. These 

twenty data points cover the etching process mainly before the forth step. This trial set up 

to find the significant factors which affect the wafer status. He flow outer is the only 

factor with zero error prediction, thus He flow outer is considered as significant factor. 
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Table 5.6:  Significant factors of the first three stabilization steps decided after 

applying the first 20 data points in BPNN 
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Table 5.7: Significant factors of the first three stabilization steps decided after 

applying the seven captured samples in BPNN. 
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Table 5.8:   Significant factors of the first three stabilization steps decided after 

applying the six statistical summary values of each factor in BPNN.  
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The seven captured samples of each single RIE factor are applied as BPNN inputs. 

The training and testing results of these factors are shown in table 5.7. It is obvious there 

is no indicator for any of RIE significant factor in this trial. The last trial to find the 

significant factor is using statistical summary values of each single factor in BPNN. In 

this trail the mean values and standard deviation are calculated for the first three steps 

and applied in BPNN. Table 5.8 highlights five factors with zero error prediction, these 

five factors introduce the significant factors of the first three stabilization steps. He flow 

outer, He flow inner, ESC current 1, ESC current 2, and pressure considered as 

significant factors for online BPNN model.  

 

5.5 Evaluations of prediction models  

 
The major aspects in this section is to evaluate the performance of the prediction 

models, and decide the best prediction model with respect to a constraint, the same 

training and testing samples for all prediction models. The experimental data examined 

were collected from an etching of silicon dioxide thin film in reactive ion etching. 

  

 

5.5.1 Offline BPNN prediction model  

 

Figure 5.6 illustrates offline BPNN prediction model, where the five significant 

factors (Bias voltage, He flow inner, He flow outer, Pressure, and Reflect power 2MHZ) 

are the model inputs. By using three different data preparation techniques, the number of 

input neurons of BPNN is different. when raw data preparation technique applied in 
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offline BPNN, the number of input neurons is nine hundred, as well as one hundred 

seventy when captured sample is applied, and one hundred for statistical summary 

preparation technique. 

 

 

 

Figure 5.6:  Offline BPNN prediction model  

 

The first data preparation technique does not prepare data as well as other data 

preparation techniques, even it has good prediction of wafer status by using two factors 

(He flow outer, and Bias voltage), this refers to huge number of input neurons. In 

addition the raw data preparation technique has no ability to cover all etching steps. Table 

5.9 illustrates the offline prediction model performance by using sampling and statistical 

summary preparation techniques. Both data preparation techniques assist the offline 

BPNN prediction model to achieve zero error prediction and 100% recognition rate. 
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100% recognition rate represents the percentage of test samples recognized correctly and 

the output values of test samples are located outside the zone values (0.1-0.9). 

 

Table 5.9 :  The performance of offline BPNN prediction model. 

Data preparation technique used in 
offline BPNN   

Sampling Statistical summary  
Recognition rate 100% 100% 
Training MSE 1.94311E-07 1.47594E-06 
Testing MSE 5.12016E-09 7.46886E-07 
# of input neurons 170 100 
Error prediction 0% 0% 

 

 

5.5.2 Online BPNN prediction model  

Online BPNN prediction model follows the same data preparation techniques as 

offline BPNN prediction model, where the data is prepared in three different ways: raw 

data, sampling, and statistical summary. Furthermore un-open etching is the only defect 

occurred during the process. This defect starts in the first oxide main etching step (step 4). 

Therefore studying the stabilization steps as the environment preparation for the main 

etching step is the best way to predict the defect before it occurs. 
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Figure 5.7:  Online BPNN prediction model 

 

The above figure illustrates the online prediction model and NN inputs include He 

flow outer, He flow inner, ESC current 1, ESC current 2 and pressure. In this part the 

asset of the three different data preparation techniques is compared, and this compression 

is shown in table 5.9. First the raw data is used as BPNN input, where each factor has 20 

data points, thus the total input is 100. Many error predictions occur by applying this data 

as shown in table 5.10. In addition, nineteen samples from thirty tested samples were 

clamped between the two zone values (0.1-0.9). Second, the thirty five captured samples 

represent the seven captured sample from each of RIE significant factor. The result of 

applying these prepared captured samples in online BPNN model is better than applying 

the raw data but still not desired. The good results are obtained by implement the 

prepared statistical summary in BPNN. Table 5.10 confirms that the best prediction 
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results are obtained by using the statistical data preparation techniques for online BPNN 

prediction model.  

 

Table 5.10: The performance of online BPNN prediction model 

Data preparation technique used in online BPNN 
  

Raw Data Sampling Statistical summary 
Recognition rate 36.67% 100% 100% 
Training MSE 6.88063E-06 5.33321E-06 1.52697E-05 
Testing MSE 0.257240698 0.065732305 1.86654E-05 
# of input neurons 100 35 30 
Error prediction 33.33% 6.67% 0% 

 

5.5.3 Offline PCABPNN prediction model  

To construct offline PCABPNN prediction model, principle component analysis 

(PCA) and back propagation neural network (BPNN) combines together. First, PCA is 

adopted to extract valuable information from the twenty two RIE factors for each step. 

Then the extracted principle component for all steps combined together and prepared by 

the three different techniques.  After that, neural network is trained by the prepared PC 

data of 90 training wafers, and the prepared PC data of 30 testing wafers are used to test 

the prediction accuracy, and the three different data preparation techniques are: raw PC, 

sampling PC, and statistical summary of PC. 

. 
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Figure 5.8:  Offline PCABPNN prediction model 

 

The above figure illustrates the offline PCABPNN prediction model. Principle 

component analysis is applied in this model to extract the input parameters for neural 

networks. Moreover the required time to find the principle components is much less than 

the required time to find the significant parameter.  

  

One hundred eighty data points of each principle component parameters is 

prepared by raw data preparation technique. Totally, there are five hundred and forty 

neuron inputs for the three PCS. Since the raw data covers the first one hundred and 

eighty data of PCs, the rest of data points are ignored. The ignored points of PCs may 

contain important information. As shown in figure 5.9, three defected wafers incorrectly 

predicted as good wafer by using raw data preparation technique. Obviously all error 

prediction takes place in type Ⅱprediction error.  
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Figure 5.9: Result of testing 30 wafers in offline PCABPNN prediction model by using a) raw 

data of PCs b) sampling PCs 

 

In the manner of minimizing the input data size more and more, one hundred and 

two captured samples from the three principle components are trained and tested in 

BPNN (table 5.11). Four samples from thirty tested samples were clamped between 0.1-
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0.9 ( the Max and Min zone values) by applying captured samples in offline PCABPNN 

prediction model, one by applying the first bunch of data sets, and by applying statistical 

summary there is no samples found in the failure zone, due to high accuracy (100% 

recognition rate) of the prediction model. Generally a statistical summary preparation 

technique has the best ability to enhance the accuracy of the offline PCABPNN 

prediction model. 

  

Table 5.11: The performance of offline PCABPNN prediction model 

Preparation technique used in offline PCABPNN  
  

Raw PC Sampling Statistical summary  
Recognition rate 96.67% 86.67% 100% 
Training MSE 1.29021E-06 2.4213E-05 4.52214E-06 
Testing MSE 0.101489096 0.041548198 4.05693E-05 
# of input neurons 540 102 60 
Error prediction 10.00% 3.33% 0% 

 

5.5.4 Online PCABPNN prediction model  

Previously in offline PCABPNN prediction model, three principle components is 

used to represent the RIE factors then properly prepared, trained and tested in BPNN for 

all etching steps. In this section, the same strategy will be followed by using the three 

stabilization steps. Figure 5.10 illustrates the online PCABPNN prediction model.  
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Figure 5.10:  Online PCABPNN prediction model 

 

 

Table 5.12: The performance of online PCABPNN prediction model 

Preparation technique used in online PCABPNN  
  

Raw PC Sampling Statistical 
summary  

Recognition rate 83.33% 86.67% 100% 
Training MSE 0.000128213 0.001259355 6.35134E-05 
Testing MSE 0.097786026 0.114389121 0.000143241 
# of input 
neurons 60 21 18 

Error prediction 13.33% 10.00% 0% 
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Figure 5.11: Result of testing 30 wafers in online PCABPNN by using a) raw data of PCs 

b) sampling PCs 
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Figure 5.11 clarify the number of error prediction in raw and sampling 

preparation techniques. Four predictions incorrectly predicted by using the raw 

preparation technique data, and three by using the sampling preparation techniques, while 

there is no error prediction by using statistical summary. Four samples from thirty tested 

samples were clamped between 0.1-0.9 ( the failure zone) by applying captured samples 

in online PCABPNN prediction model, and five by applying the first twenty data sets, 

and by applying statistical summary there is no samples found in the failure zone, due to 

high accuracy (100% recognition rate) of the prediction model.Generally online 

PCABPNN prediction model using sampling PCs has a slight better ability than using 

raw PCs in prediction and statistical summary has the best ability to enhance the accuracy 

of the online PCABPNN prediction model. 

 

The best result is obtained by applying PCs statistical summary. This input 

classification technique has ability to support BPNN to predict the wafer status without 

any error, as well as short training time of neural network with minimum values of mean 

square error as shown in table 5.12. 

 
 
 
 
 

. 
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5.6 Summary    

In this chapter, BPNN is the backbone of prediction models, and four prediction 

models are established to predict the wafer status: offline BPNN, offline PCABPNN, 

online BPNN, and online PCABPNN. The original data in three different ways: raw data 

by using the first set of data points, capturing samples from the original data, and the 

statistical summary values by calculate the mean and standard deviation values for each 

step. The defined value range (Max and Min zone values) must be established to 

determine whether the output value is close to the target value. 0.1 is the highest output 

value for defected wafer and 0.9 value is the lowest value for good wafer.  

 

This chapter introduce method to decide the significant process parameters which 

affect the wafer status in RIE by comparing the result of applying each process parameter 

alone in BPNN. The significant parameters for all etching steps combined together in 

offline BPNN to tackle the defected wafer. The offline significant factors are: bias 

voltage, He flow inner, He flow outer pressure, and reflect power 2MH. Furthermore the 

significant parameters for the first three etching steps combined together in online BPNN 

to forecast the wafer status. Online significant factors are:  He flow outer, He flow inner, 

ESC current 1, ESC current 2, and pressure. 

 

The four prediction models are capable to predict the wafer status correctly by 

using statistical summary preparation techniques. Offline models predict the wafer status 

concerning all etching process. In other hand, online prediction models depend on the 
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stabilization steps, thus the wafer defect can be predicted before the end of the first main 

etching step.  

 

Figure 5.12 summarize the error prediction of online and offline models. The first 

six columns represent the offline prediction models with different data preparation 

techniques. The rest columns represent the online prediction models. 

 

 

Figure 5.12: Summary of error prediction in online/offline prediction models 

using several data preparation techniques. 
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C H A P T E R 6 

CONCLUSION 
 
 

 

6.1 Conclusion  

The goal of this thesis is to predict the wafer status during/after RIE process by 

using online/offline prediction models. BPNN is the backbone of the four prediction 

models: offline BPNN, offline PCABPNN, online BPNN, and online PCABPNN. In 

order to achieve fast and robust predictive model, only the first three preparation steps of 

the RIE process is used in online prediction models. This thesis describes the potential of 

these prediction models to reduce the overall cost of semiconductor and achieving high 

yields and throughput during semiconductor fabrications, where these models not depend 

upon monitor wafers or expensive metrology rather it will enable inexpensive real-time 

wafer-to-wafer inspection application.  

 

Achieving the accurate prediction of the wafer status faced some difficulties, such 

as: managing the huge data for each wafer, dealing with missing data, deciding the RIE 

significant factors, preparing a homogeneous set of input data for BPNN, covering the 

variation of RIE steps, having a shortage of defected wafer samples. The thesis also 

explains the implemented techniques to solve these difficulties.  
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Preparing data technique is important to prepare a homogeneous set of input data 

for BPNN in three different ways: raw data by using the first set of data points, capturing 

samples and the statistical summary values by calculate the mean and standard deviation 

values for each step. However, by comparison between prediction models with different 

data preparation techniques, the statistical summary technique provides high ability to 

cover all data of etching process in convenient way. Statistical summary preparation 

technique avoids using a huge data as raw data, or missing critical data as sampling. 

 

Other technique is deciding RIE significant factor technique by comparing the 

result of applying each process factor alone in BPNN. When defected wafer is predicted 

by online prediction models, the significant parameters are modified to avoid any defect 

during the process and to decrease the down/ repair time of the equipment. Unlikely, the 

offline prediction models, which are built to track the defected wafer after RIE process. 

 

The results from the evaluation of the four prediction models indicate that robust, 

accurate and stable predictors have been constructed.  Furthermore, a greater accurate 

performance of prediction models has been achieved by online BPNN prediction model. 
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6.2 Future Extensions  
 

The techniques presented here for deciding the significant factors in RIE process 

are general in the sense and can be applied to many other plasma environments process. 

Moreover, this methodology can also be applied to other semiconductor equipment to 

find the significant factors. 

 

The best performance of prediction models has been achieved by online BPNN 

prediction model. This model can be further extended to predict the plasma characteristic, 

etching parameters and other type of defect. The online BPNN performance can be 

enhanced by implement fast and continuance feedback control. 

 

Statistical summary preparation technique has the potential to meet the prediction 

models requirements in RIE process.  Excellent models could be achieved by 

implementation the statistical summary preparation technique in multi-step processes. 
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APPENDIX I  

TERMINOLOGY  
 
 
Critical Dimension CD. The width of a patterned line or the distance between two 

lines of the sub-micron sized circuits in a chip. 

Dielectric A material that conducts no current when it has a voltage across 

it; an insulator. Two dielectrics commonly used in semiconductor 

processing are silicon dioxide (SiO2) and silicon nitride (SiN). 

Drift A change of a reading or a set point value over long periods due 

to several factors including change in ambient temperature, time, 

and line voltage 

Electrostatic Chuck Lower plate in a chamber that holds wafers using electrostatic 

attraction, allowing the temperature to be regulated with confined 

helium gas. Different types of ESC include bipolar designs based 

on dual electrodes in the chuck and monopolar chucks with a 

single electrode. Plasma gas that comes in contact with the wafer 

provides the other electrode in the circuit that clamps the wafer in 

place. Also called a chiller plate (temperature typically = 15 C). 

Etch A solution, a mixture of solutions, or a mixture of gases that 

attacks the surfaces of a film or substrate, removing material 
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either selectively or non-selectively. 

FAB Semiconductor fabrication facility. Under precise conditions, 

silicon or other semiconductor materials are transformed along 

with other basic elements into semiconductors, or microchips. 

In situ In the natural or original position or place. For SensArray, this 

means performing tests in or on the actual device (process 

chamber, hotplate, etc.) that will be used to produce the end 

product. This provides real world data as to the characteristics of 

the device. 

Insulator Nonconductive dielectric films used to isolate electrically active 

areas of the device or chip from one another. Some commonly 

used insulators are silicon dioxide, silicon nitride, boro-phospho-

silicate glass (BPSG), and phospho-silicate glass (PSG). 

Ion Implantation A process technology in which ions of dopant chemicals (boron, 

arsenic, etc.) are accelerated in intense electrical fields to 

penetrate the surface of a wafer, thus changing the electrical 

characteristics of the material. 

Load Lock An isolation chamber that allows a process chamber to be 

protected from ambient conditions. 

Metallization The deposition of a layer of high-conductivity metal such as 

aluminum used to interconnect devices on a chip by CVD or 

PVD. Metals typically used include aluminum, tungsten, and 

copper. 
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Photo-resist A light-sensitive organic polymer that is exposed by the 

photolithography process, then developed to produce a pattern 

which identifies areas of the film to be etched. 

Plasma Ionized gases that have been highly energized-for example, by a 

radio frequency energy field. This can be used to remove resist, to 

etch, or to deposit various layers onto a wafer. 

Plasma-Enhanced 

TEOS              

Oxide Deposition 

A deposition process in which tetraethoxysilane (TEOS) is used 

as a silicon source to deposit silicon dioxide on a wafer surface. 

Polysilicon (Poly) Polycrystalline silicon; extensively used as conductor/gate 

material in a highly doped state. Poly films are typically deposited 

using high-temperature CVD technology. 

Process Chamber  An enclosed area in which a process-specific function occurs 

during wafer manufacturing. 

PVD Physical Vapor Deposition (also called sputtering). A process 

technology in which molecules of conducting material 

(aluminum, titanium nitride, etc.) are "sputtered" from a target of 

pure material, then deposited on the wafer to create the 

conducting circuitry within the chip. 

RIE Reactive Ion Etch. A combination of chemical and physical etch 

processes using electrical discharge to ionize and induce ion 

bombardment of the wafer surface to obtain the required etch 

properties. 
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Short Term Drift A change in the temperature reading of the sensor(s) at a fixed 

ambient reference temperature over short periods of time. Usually 

expressed as degrees C change per hour. 

Silicon (Si) A brownish crystalline semimetal used to make the majority of 

semiconductor wafers. 

Silicon 

Dioxide(SiO2) 

A passivation layer thermally grown or deposited on wafers. It is 

resistant to high temperatures. Oxygen or water vapor is used to 

grow silicon dioxide at temperatures above 90 C. Silicon dioxide 

is used as a masking layer as well as an insulator. 

Stepper Equipment used to transfer a reticle (mask) pattern onto a wafer. 

Substrate A material that is the basis for subsequent processing operations 

in the fabrication of semiconductor devices or circuits. Examples 

of a substrate would include a silicon wafer or a glass panel. 

Test Wafer A wafer used for process monitoring during semiconductor 

manufacturing. The two types are the reclaim test wafer and the 

virgin test wafer. With test wafers you are looking at some telltale 

indication of differences in film thickness, a change in resistance 

in material, the width of a line, or a feature (critical dimension) 

due to changes in the temperature of the wafer.  

Wafer The thin, circular slice with parallel faces of pure silicon cut from 

a semiconductor crystal on which semiconductors are built.  

Yield The percentage of wafers or die produced in a process that 
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conform to specifications. 

 

APPENDIX II  

PRINCIPAL COMPONENT SCORES 
 
 
 
First Step  
  
T1=5.86708E-05* X1+0.546231739* X2+0.459104457* X3-0.687346122* X4+ 0.120997137*X5- 
0.024607657*X6-0.01546252*X7+0.037171837*X8-0.008616296*X9-0.027682561*X10-
0.015565648*X11+0.000749651*X12+0.000993437*X13+0.017607152*X14+0.004106208*X15+ 
0.001762721*X16-0.011273633*X17+0.000400883*X18-0.000195308*X19-0.000247851*X20+ 
0.000143606*X21-0.000923064*X22 
  
T2=0.986038172*X1+0.104385047*X2-0.115933952*X3+0.006370927*X4-0.000647477*X5+ 
0.017977415*X6-0.048535924*X7+0.000639341*X8+0.01554936*X9-0.009793151*X10-
0.008988219*X11+0.00076505*X12+0.00617509*X13+0.003001199*X14+-0.012319314*X15-
0.007244526*X16-0.000181166*X17-0.000789505*X18-0.000466365*X19-0.000166924*X20-
0.000335061*X21+1.48487E-05*X22 
  
T3=0.008021016*X1+0.013376482*X2-0.019808141*X3+0.003497373*X4-0.000741688*X5-
0.014390371*X6+0.016886632*X7-0.00111331*X8-0.038140459*X9-0.089417401*X10 
+0.006995821*X11+0.001394329*X12-0.148079622*X13-0.111822932*X14 +0.627665724*X15 
+0.240686736*X16+0.002168992*X17+0.034033381*X18-0.009380544*X19+0.001048596*X20 
+0.019866493*X21-0.708084741*X22 
  
   
Second Step  
   
T1=-0.354114706*X1+0.035521819*X2-0.878591862*X3-0.311590495*X4+0.05696743*X5+ 
0.006044721*X6+0.023719273*X7+0.019545046*X8-0.009772107*X9-0.002392207*X10-
0.000575023*X11-0.000174334*X12-0.000102076*X13+1.8192E-05*X14-0.000134733*X15-
0.000171802*X16-0.000763645*X17-0.000104452*X18-7.37068E-05*X19+3.11709E-05*X20+ 
4.93154E-05*X21-2.39054E-06*X22 
  
T2=0.602331325*X1+0.721616167*X2-0.202175066*X3-0.035037909*X4-0.00375017*X5-
0.049427968*X6+0.10908854*X7-0.191688965*X8-0.087223692*X9+0.007681086*X10+ 
0.090988065*X11-0.047546442*X12+0.006836049*X13-0.015198189*X14-0.044003165*X15+ 
0.018545951*X16+0.000904692*X17+0.014537893*X18+0.045280312*X19+0.006767968*X20-
0.010336403*X21-0.009109348*X22 
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T3=0.004534557*X1+0.004740745*X2-0.000967676*X3+0.000283037*X4+7.37904E-05*X5-
0.003701451*X6+0.003848999*X7+0.016360947*X8+0.042280312*X9-0.042969926*X10-
0.142139569*X11-0.20737578*X12+0.654802509*X13+0.030119638*X14+0.006177543*X15-
0.024643304*X16-0.708422833*X17+0.024061247*X18+0.006784032*X19-0.002273661*X20-
0.001308064*X21+0.001898524*X22 
  
  
Third Step  
  
T1=0.430688639*X1+0.847478428*X2-0.165820994*X3+0.086554107*X4-0.197860797*X5+ 
0.112048955*X6-0.081460464*X7+0.046883485*X8+0.01078079*X9-0.009227447*X10+ 
0.000290796*X11-0.021466767*X12-0.009919743*X13-2.77792E-05*X14-0.000914824*X15-
0.000232031*X16+6.07323E-05*X17-0.00028271*X18-3.22174E-05*X19+8.2611E-05*X20+ 1.8679E-
05*X21-9.93881E-06*X22 
 
T2=-0.514382513*X1+0.335243688*X2+0.625946137*X3+0.339111142*X4-0.053939665*X5-
0.193932407*X6-0.208174561*X7+0.127930391*X8-0.015477023*X9-0.019894857*X10-
0.101250889*X11-0.001383593*X12+0.008990209*X13-0.01712394*X14-0.048612491*X15+ 
0.010611435*X16-0.005579367*X17-0.002615967*X18-0.045617352*X19+0.001295207*X20-
0.00979156*X21+0.006322221*X22 
  
T3=-0.004189428*X1+0.002295447*X2+0.003633652*X3-0.001456438*X4-0.006443019*X5-
0.003852316*X6+0.008183371*X7-0.05939669*X8-0.00948419*X9+0.034161819*X10+ 
0.011786961*X11-0.418911675*X12+0.565158005*X13+0.033366206*X14+0.005702036*X15-
0.132466162*X16+0.01054651*X17-0.693260971*X18-0.003421485*X19+0.021789178*X20+ 
0.010976664*X21-0.001424268*X22 
  
  
Fourth Step  
  
T1=0.368620854*X1-0.430848807*X2-0.644626727*X3+0.503884164*X4+0.0712812*X5+ 
0.046859269*X6+0.020478759*X7+0.017175169*X8-0.021740932*X9+0.001626559*X10+ 
0.00221292*X11+0.020450627*X12-0.012292147*X13-0.002045109*X14+0.000169736*X15-
0.000360146*X16-8.6131E-06*X17-0.000238984*X18+1.33751E-05*X19-4.39971E-05*X20-2.59677E-
06*X21+1.44149E-08*X22 
  
T2=-0.26107794*X1+0.6779526*X2-0.10558619*X3+0.618415541*X4+0.058284557*X5-
0.069163594*X6+0.040921583*X7+0.165583636*X8-0.115117276*X9+0.06123872*X10-
0.114213051*X11+0.075425831*X12-0.015084612*X13+0.004905207*X14-0.053417504*X15-
0.016390162*X16+0.003324123*X17+0.001174298*X18+0.045380094*X19-
0.003549852*X20+0.011687835*X21-0.005351677*X22 
   
T3=-0.003121539*X1+0.002105527*X2+0.005574911*X3-0.006562001*X4+0.058260926*X5-
0.018911829*X6-0.009825818*X7+0.01375895*X8+0.134485055*X9-0.048327995*X10+ 
0.214599357*X11+0.57620168*X12+0.303949769*X13+0.017051337*X14+0.00416464*X15+0.000253
212*X16+0.003900452*X17-0.709971383*X18+0.015578234*X19-0.016787738*X20+ 
0.009535875*X21+0.00266647*X22 
  
  
Fifth Step  
  



 

 88

T1=0.365956063*X1+0.084013161*X2+0.924990635*X3-0.034408355*X4-0.031511413*X5+ 
0.028409836*X6-0.005644674*X7-3.08385E-06*X8+0.018651207*X9-0.000274675*X10+ 
0.004698971*X11+0.000166843*X12-0.003840744*X13-0.002294469*X14-3.8956E-05*X15+ 
0.000887946*X16-0.001877223*X17+7.35268E-05*X18-2.3266E-05*X19-3.3814E-05*X20+ 6.47739E-
06*X21-2.73504E-06*X22 
  
T2=-0.252078084*X1-0.49686573*X2+0.17735191*X3+0.659618411*X4+0.401038469*X5+ 
0.040495219*X6+0.01834063*X7+0.048147654*X8+0.203858359*X9-0.050874526*X10+ 
0.07606143*X11+0.015362716*X12+0.006052801*X13-0.010645192*X14-0.024916738*X15-
0.006220284*X16-0.0274209*X17+0.062067383*X18-0.028769885*X19-0.038662152*X20+ 
0.000416643*X21+0.000666248*X22 
  
T3=-0.003563025*X1-0.005320426*X2+0.0024016*X3+0.019478196*X4-0.010718771*X5-
0.0045951*X6+0.013361096*X7+0.083093811*X8+0.133430648*X9-0.091284804*X10-
0.665944999*X11-0.020888086*X12+0.164570601*X13-0.688680913*X14+0.022028582*X15+ 
0.008305847*X16+0.141730778*X17-0.015529404*X18+0.005622276*X19+0.004221272*X20+ 
0.001212558*X21-0.000460269*X22 
  
 
Sixth Step  
  
T1=0.354580568*X1+0.027713338*X2+0.17382398*X3-0.917917501*X4+0.012380125*X5-
0.002382986*X6-0.003498559*X7-0.015468861*X8+0.011755643*X9+0.003355274*X10+ 
0.010579234*X11-0.000726698*X12+0.006026301*X13+0.002387839*X14+0.001296119*X15-
0.000819123*X16+0.000396554*X17+0.000527211*X18-0.000301053*X19+9.25346E-
05*X20+1.59576E-05*X21-1.20968E-05*X22 
  
T2=-0.255655531*X1-0.637224146*X2+0.680144788*X3+0.00683278*X4+0.010530315*X5-
0.021728555*X6-0.013784199*X7+0.104760186*X8-0.11574109*X9-0.056307313*X10+ 
0.005611104*X11+0.097732697*X12-0.13648432*X13+0.040363359*X14+0.044819938*X15+ 
0.007816626*X16+0.01042188*X17-0.005511137*X18+0.063285641*X19-0.005921726*X20+ 
0.038734217*X21-0.006169062*X22 
   
T3=-0.004062506*X1-0.007813051*X2+0.008604574*X3-0.002318515*X4-0.00263726*X5-
0.011863917*X6+0.014870324*X7-0.346889469*X8-0.172416783*X9-0.021724342*X10-
0.598084314*X11+0.043499413*X12+0.023075443*X13+0.171346549*X14+0.13081052*X15-
0.646869444*X16-0.153758875*X17-0.012663054*X18-0.008527571*X19-0.003322232*X20-
0.003688184*X21-0.001506919*X22 
  
 
  
Seventh Step  
   
T1=0.33647838*X1-0.015538579*X2+0.081535218*X3-0.935183493*X4+0.068258325*X5+ 
0.019050631*X6-0.005471934*X7-0.011329101*X8+0.000349688*X9-0.005161869*X10-
0.007019663*X11+0.006904662*X12+0.003193943*X13-0.002480654*X14-0.000613684*X15-
0.001838597*X16+0.000488617*X17+0.00035862*X18+0.000286916*X19-3.79954E-06*X20-
1.91935E-05*X21-1.15881E-05*X22 
   
T2=-0.279000558*X1+0.911324425*X2+0.091455252*X3-0.109681988*X4-0.027038587*X5-
0.046093078*X6+0.050872952*X7+0.01372742*X8-0.143189167*X9-0.190746611*X10-
0.040677451*X11-0.010094689*X12-0.011802336*X13-0.0075988*X14-0.004722408*X15-
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0.002690163*X16+0.043377532*X17-0.004906011*X18+0.022620602*X19-0.052113724*X20-
0.039688*X21-0.006421394*X22 
  
  
T3=-0.004340388*X1+0.009635578*X2-8.73757E-05*X3-0.0049822*X4-0.00945227*X5-
0.017746015*X6+0.000688668*X7-0.008566808*X8+0.00939179*X9+0.0403564*X10+ 
0.055686045*X11-0.519168475*X12+0.484298329*X13+0.070818635*X14+0.038869329*X15-
0.460038348*X16+0.134982175*X17-0.365648433*X18-0.346800682*X19+0.006635867*X20-
0.00602675*X21-0.007441692*X22 
  
  
 
Eighth Step  
  
T1=0.383460303*X1-0.089948782*X2-0.033637064*X3-0.912177057*X4-0.047278856*X5+ 
0.081599692*X6+0.048737168*X7+0.005041032*X8-0.014832059*X9-0.005014885*X10-
0.008382352*X11+0.007086067*X12+0.000743782*X13+0.002644473*X14+0.000973795*X15+ 
0.000571081*X16+0.000130895*X17-5.01955E-06*X18+3.12363E-06*X19-3.22849E-05*X20-
7.74237E-06*X21-8.42386E-06*X22 
   
T2=-0.580649567*X1+0.692519386*X2-0.107900903*X3-0.304578503*X4-0.00111383*X5-
0.06796587*X6+0.112274152*X7-0.058350067*X8-0.149001297*X9-0.002133197*X10-
0.166804174*X11+0.027782667*X12+0.003114838*X13+0.004287839*X14-0.033312996*X15+ 
0.009788076*X16+0.013173508*X17+0.010488597*X18+0.058739998*X19+0.028508795*X20-
0.039488689*X21-0.008963988*X22 
  
T3=-0.006059678*X1+0.006626124*X2+0.000396917*X3-0.006851063*X4-0.002013383*X5-
0.025395817*X6-0.007684929*X7+0.00380128*X8-0.00020068*X9-0.032880197*X10-
0.002334102*X11+0.000688318*X12-0.356410217*X13-0.59888028*X14+0.348040669*X15+ 
0.612722612*X16-0.1244754*X17+0.009418507*X18-0.012488118*X19-0.001755972*X20-
0.006141005*X21-0.005998429*X22 
  
 
 
Ninth Step  
  
T1=0.434169921*X1+0.333741296*X2-0.178016661*X3-0.808546515*X4+0.077819878*X5+ 
0.042275292*X6-0.077036336*X7+0.008482664*X8-0.007092484*X9-0.018007962*X10+ 
0.013856207*X11+0.007641633*X12-0.013382094*X13+0.000532896*X14-0.004130055*X15+ 
0.000416251*X16-0.002062043*X17+0.000214287*X18-0.000234298*X19-0.000464177*X20+ 
1.01021E-05*X21+4.58091E-06*X22 
 
T2=-0.545359547*X1+0.759282029*X2-0.002172991*X3+0.048626841*X4+0.035725594*X5+ 
0.288532471*X6-0.058025897*X7+0.007986958*X8+0.095671122*X9-0.095446917*X10+ 
0.096444101*X11+0.027386666*X12-0.025372316*X13+0.017650929*X14+0.036151789*X15+ 
0.006878677*X16-0.007397823*X17-0.058514624*X18+0.000432573*X19+0.002569153*X20-
0.039774559*X21-0.007398028*X22 
 
T3=-0.005769303*X1+0.009479674*X2+0.001185837*X3-0.00523533*X4+0.027177928*X5+ 
0.014060466*X6-0.007148443*X7-0.010726084*X8+0.002810879*X9-0.041322565*X10+ 
0.014032601*X11-0.007800987*X12+0.676843928*X13-0.200380862*X14-0.028598487*X15+ 
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0.001068294*X16-0.030158155*X17-0.04114025*X18+0.151297081*X19-0.687159832*X20+ 
9.51477E-07*X21-0.001281719*X22 
 
 
 
  
Tenth Step  
   
T1=0.124137*X1-0.004652*X2-0.106555*X3-0.044890*X4+0.043621*X5+0.026096*X6-0.026676*X7-
0.011304*X8-0.010170*X9+0.028126*X10-0.065352*X11+0.201877*X12+ 
0.258898*X13+0.25666*X14+0.580403*X15-0.47441*X16-2.44308*X17+1.78379*X18+ 0.1153*X19 - 
1.6740*X20-0.2414*X21-0.093*X22 
   
T2=0.005050*X1-0.057781*X2+0.057254*X3+0.337367*X4+0.292113*X5+0.271200*X6+ 
0.115685*X7+0.819238*X8-0.045968*X9-0.428254*X10-0.028633*X11+0.012117*X12+ 
0.065238*X13-0.09649*X14+0.112155*X15-0.04521*X16-0.02117*X17+0.03360*X18+ 0.0077*X19 -
0.0457*X20+0.0040*X21+0.041*X22 
   
T3=-0.070804*X1+0.222462*X2-0.052241*X3+0.051533*X4+0.098335*X5+0.018543*X6-
0.068935*X7-0.016599*X8-0.046855*X9+0.055178*X10-0.675068*X11-0.123001*X12+ 
0.126466*X13+0.21376*X14+0.208800*X15-0.15170*X16+0.07814*X17-0.11000*X18+ 0.0306*X19 -
0.3028*X20-66.7008*X21+7.527*X22 
  
 
 
Eleventh Step  
  
T1=0.978819*X1-0.148912*X2+0.041304*X3-0.079048*X4-0.108462*X5-0.000037*X6-0.004292*X7-
0.001217*X8+0.000004*X9+0.000319*X10+0.000031*X11-0.000033*X12+ 0.000010*X13-
0.000003*X14-0.000011*X15+0.000011*X16+0.000005*X17-0.000002*X18-
0.000001*X19+0.000001*X20 
   
T2=-0.497487*X1+0.860423*X2-0.049980*X3-0.097920*X4-0.009503*X5-0.000887*X6+ 
0.000065*X7+0.000068*X8-0.000393*X9+0.000191*X10-0.000269*X11+0.000035*X12-
0.000090*X13+0.000069*X14-0.000012*X15-0.000010*X16-0.000002*X17-0.000003*X18-
0.000004*X19+0.000003*X20 
   
T3=-0.726223*X1+0.623964*X2+0.042757*X3-0.176362*X4-0.001025*X5-0.028279*X6+ 
0.053120*X7+0.010456*X8+0.011983*X9+0.006454*X10-0.115982*X11-0.039236*X12+ 
0.138793*X13-0.086707*X14+0.005794*X15+0.014646*X16+0.006590*X17-0.005666*X18+ 
0.054923*X19-0.036161*X20-0.000005*X21-0.000592*X22 
  
  
 

 

 


