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Abstract 
 
The two-dimensional unsteady flow field over a square cylinder has been 
numerically predicted by finite volume method (FVM) with a non-iterative 
method PISO, standing for Pressure-Implicit with Splitting of Operators, 
solving implicitly discretised time-dependent fluid equations. The uniform 
and the shear free stream were considered. The shear flow was studied with 
two different velocity ratio 3:1 and 3:2 as well as two different distances 6 
and 10 in unit length between the square cylinder and the inlet boundary of 
the computational domain while Reynolds number was in the range from 50 
to 500. The higher velocity ratio of free stream brings the lower Strouhal 
frequency. The negative vortices dissipate more rapidly then the positive 
ones do even thought the negative background dominates. The direction of 
lifting force is pointing to the faster free stream side of the shear flow cases. 
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摘要 

 

本論文主要探討二維非穩態的流場中，流體流經一方形阻塊，數值方

法使用有限體積法(FVM)來離散，使用隱式非疊代的 PISO 法，即

Pressure-Implicit with Splitting of Operators，來求解暫態的流體方程

式。當中分別探討了均勻流及剪力流兩種不同的入口條件；於剪力流

的條件下分別以 3：1 及 3：2 兩種速度比，以及從入口邊界到方形阻

塊之間以 6 和 10 不同的單位長度加以比較， 探討的雷諾數範圍從 50 

到 500。結果發現到，在入口速度較高的速度比之下，會產生較低的

Strouhal 頻率；而在整個流場當中都是負的渦度所主導下卻發現，負

的渦度耗散還比正的渦度耗散還要迅速；在剪力流的案例中，舉升力

是指向速度較快的那一方。 
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Chapter 1 

Introduction 

The new technologies are dominating the world and people are so 

depending on those technologies to have the lives easier and enjoyable. Once the 

wind breezes, poets and artists are about to remember it in any kinds of beautiful 

ways. It happens but it was the only thing happened. The wind comes from 

nature and nature is not just beautiful it is amazingly helpful. Although sails 

started to be utilized to move boats by the ancient Egyptians thousands years 

ago, the applications were broadly presented since fifteenth century. Until 1903, 

Wright brothers introduced a craft bringing people to the sky. The interactions 

between fluid and structures were quite doing the jobs. Some interesting 

phenomena were well described by a German scientist Ludwig Prandtl with the 

discovery of boundary layer occurred at the fluid-structure interface, 1904. After 

the giant breakthrough, researches and studies were following the trend so fast 

to move even further. The airfoil by far keeps playing the most important role 

for sure but the fluid-structure interaction is not just about the airfoil which is a 

big topic but still partial. The structure suffered from the blowing fluid does not 

have to be streamlined in shape. It may be of any kind of funny shapes being 

seen anywhere. A special vibrating motion would happen in the wake of the 

unstreamlined bodies, i.e. bluff bodies, and somehow this motion would be 

vibrating the bodies as well. Break step march is also the similar way by soldiers 

to induce an imposed frequency which happens to create the resonance on the 

bridge, and then to do the damage. Due to the existence of wake oscillation, 

engineers have to really pay attention on the fluid-structure interaction of 
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unstreamlined bodies instead of the airfoil industries only. Modern skyscrapers 

are also part of the studies. Because of the boundary layer effect, the wind at the 

higher part of the buildings is undoubtedly blowing so fast, and so creating the 

stronger oscillation and some unexpected harmful instabilities to the structure. It 

does not have to wait for earthquakes to come; they would be easily destroyed 

just by the beautiful breeze. Bluff body studies are so much mentioned with the 

safety-maintenances which are so about our living lives.   

1.1 Bluff Body 

Bluff, unstreamlined bodies have been working on so many places. People 

had been unconsciously ignoring the most interesting part for thousands years 

until the wire was vibrating so hard with the Aeolian tone coming out. Strouhal 

at 1878 started the experiment of the interaction between bluff bodies and the 

blowing wind. Even the wind went smoothly and uniformly, the existence of 

fluctuating forces which was exciting Rayleigh so much at 1896 was attributed 

to the vortex shedding from the leeward surface of the circular cylinder body 

into the wake with the alternating motion periodically to the downstream [1] 

once Reynolds number went beyond a certain number otherwise a pair of 

symmetric vortices stayed right behind the body steadily [2]. Vortex shedding 

phenomena were caused by the separated boundary layers from the upper and 

lower surfaces of the bluff body [3]. Lots of scientists and engineers were 

getting the researches begun after the fascination had been widely spread. 

Strouhal number was, hence, theoretically defined by Roshko [4], Bearman [5], 

and Griffin [6] for scaling the vortex street. Due to the computer had not been 

sufficiently well-performance yet, people were so much hitting the road from the 

experimental parts. The fluctuating vortex street was experimentally found to be 
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complex and varied along the increase of Reynolds number from 40 to 10,000 

while the phenomena changed from stable to transition, and then to the irregular 

movement [4]. Furthermore, Hama [7] visually found out the 

three-dimensionality in the wake of a circular cylinder. The decreasing 

span-wise frequency was observed with the increasing Reynolds number great 

than 150. Despite the wake instability interested many researchers devoting their 

sophisticated experimental skills, the Strouhal-Reynolds number relation from 

different labs somehow deviated from each other by about 20 percent still. Until 

1988, Williamson and Roshko proposed that the three-dimensional effect 

introduced by the so-called oblique shedding mode happened to be the critical 

reason of those disagreements for years. Although they all brought us the 

different experimental data, the contributions were still made. The 

discontinuities of Strouhal frequency along the increase of Reynolds number 

were reported by Trittin [8]. The causes of these discontinuous variations were 

explained to be attributed to the unskilled flow control which did not maintain 

the flow uniformly [9]. The forced cylinder vibration was told to be one of the 

possible reasons by observing the existence of quasi-periodic state in the laminar 

wake and the transformation to chaotic state [10]. The cylinder vibration 

triggering the discontinuities was still supported [11]. The quasi-periodic state 

was actually confirmed but the flow non-uniformity and the forced vibration 

were on the contrary examined not to be exact the main reasons causing the 

discontinuities [12]. Williamson and Roshko [12] indicated an intrinsic three 

dimensional wake instability which potentially caused the discontinuities of 

Strouhal frequency as the Reynolds number went beyond 178 and 260 even 

under a controlled parallel shedding, i.e. two-dimensional flow, of circular 

cylinder. This critical Reynolds number 178 was said to be the onset point of the 
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transition of wake from two-dimensional to three-dimensional. Although the 

wire was the research topic, the bluff body does not have to be always a circular 

cylinder. The shape of interest was thought to be sharp-corners or to be 

something not that smooth. The mechanism responsible for vortex shedding of 

rectangular cylinder was sort of different from the one of circular cylinder. The 

development of Vortex Street was triggered by the separation from the leading 

edge of a square cylinder instead of from the leeward side of circular one while 

Reynolds number was sufficiently high. The data of square and of other 

rectangular cylinders reported in detail and systematical were achieved by 

Okajima [13] although the width-to-height ratio of a rectangular cylinder had 

already been considered to be the contributing factor by Nakaguchi et al. since 

1968 [14]. The vortex street had been a popular topic with Reynolds number 

staying high, whereas the finding of the onset critical Reynolds number for the 

vortices turning from symmetric to asymmetric and from steady to unsteady was 

the topic as well. Works had never been too easy even the numerical analysis 

came to be the one doing the prediction of the phenomena of interests. The onset 

Reynolds number turned out to be more than just one certain number due to the 

blockage effect. A bigger blockage ratio brought a higher value of onset 

Reynolds number [15, 16] as well as the higher Strouhal frequency and drag 

coefficient [17]. Two critical values of Reynolds number are mentioned so far. 

One is the onset point for flow turning from steady to unsteady and the other one 

is the onset point of three-dimensionality. The 2D simulation would over predict 

the drag and lift coefficient once the flow goes beyond the critical Reynolds 

number of three-dimensionality [18]. Many researchers were quite focusing on 

the second onset point with the interest of three-dimensionality and they defined 

few modes to classify some particular phenomena in three-dimensional analysis. 
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Once the flow features turn into three-dimensional, span-wise instabilities 

appear with different wavelengths which classify the particular features with 

modes A and B [12]. Mode A was characterized by longer span-wise wavelength 

by about two to four diameters of cylinder with larger vortex dislocations while 

second onset Reynolds number was achieved. Mode B happened with shorter 

wavelength by about one diameter instead while Reynolds number was about 

230 whose value was higher than the one of second onset point. Although these 

measurements or predictions of mode classification were done with circular 

cylinder flow, those of rectangular or sharp-corners cylinders possessed the 

similarities as well [19]. Even a new Mode S with span-wise wavelength of 2.8 

diameter between those of Mode A and B was observed in the wake of square 

cylinder while Reynolds number equaled 200 [20]. More complex phenomena 

could be found once people were doing the studies of the Karman vortex street 

in the wake of the rectangular or square cylinder. The nonlinear dynamic system 

of the wake was truly interesting. The frequency spectrum was studied from first 

onset Reynolds number to what induced the chaos. This transition process was 

somehow indicating the existence of three-dimensionality. 

1.2 Imposed Frequency 

Once the unfixed body is with the incident flow coming with an imposed 

frequency, the body as well as the wake may follow the imposed frequency to 

oscillate, the resonance is usually termed lock-on which could be also induced 

by self-vibration bluff body with certain range of the imposed frequency either 

from the incident flow or bluff body itself [21, 22, 23, 24, 25]. The self-vibrating 

bluff body could move in various ways for researchers to observe the lock-on 

effect. Armstrong et al. [26] and Barbi et al. [27] examined the vortex resonance 
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on the body oscillating in-line with the coming uniform flow, and the results 

were quite closed to the earlier experiments done by Griffin and Ramberg [28]. 

These experiments were also showing that the certain and appropriate imposed 

frequency being dominating the lock-on effect had to be somewhere in the range 

closing to twice of the natural or Strouhal frequency of the wake. The span 

width of the range was proportional to the magnitude or amplitude of the 

imposed oscillation. The result of cross-flow oscillation also described the 

similar shape of the lock-on regime measured by Koopmann [22]; the difference 

was that the cross-flow oscillation was locking the body and the wake in the 

lifting direction instead of in the dragging one. Moreover, the oscillation 

frequency in the lifting direction was naturally one half of the one in the 

dragging direction of the body [21], the lock-on regime of the cross-flow 

oscillation was, hence, locating near the Strouhal frequency rather than twice of 

it. Vortex resonance or lock-on could be also observed with small rotational 

oscillation of bluff body. Although it was rarely studied, Tokumaru and 

Dimotakis [29] and Filler et al. [30] analogically found the phenomena of 

amplitude-dependent range of lock-on frequencies.  

1.3 Shear Flow 

Researches of uniform flow have been widely studied and well-developed 

experimentally and numerically although there may be some unrevealed 

phenomena possibly remained. Again back to the study of bridges, the structures 

so attached to the ground are obviously immersed in the boundary layer which 

possesses the shear flow inducing something even more complicated and 

practical. The most investigations were done with an uniform shear flow of 

which the velocity profile varied linearly along the transverse direction. The 
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identical assumption of the numerical study was even surprisingly leading two 

opposite results and the mean lift and the mean drag forces on the cylinder were 

quite an issue never allowed to happen by scientists and engineers. The mean lift 

force was found to be likely to point to either the slower free-stream velocity site 

[31, 32, 33, 34] or the faster site [35, 36]. Despite the diverse shear rates applied 

by those authors might be the reason [37], the conflict kept on being discussed 

because the discrepancies were not just simply coming from the forces exerted 

to the cylinder. The existence of vortex shedding was even argued [33, 38]. The 

non-uniform flow is by far more complicated but unfortunately it is practical and 

easily met. The unnecessary vibration makes the noise, and devastatingly brings 

the failure of bridges or even the very tall skyscrapers in the future.  

1.4 Problem under Consideration 

The present study is focusing on the flow over a square cylinder. The 

transition process of the wake instabilities will be numerically predicted by 

two-dimensional simulation based on finite volume discretization with PISO 

algorithm. The Strouhal-Reynolds relation will be made and be compared with 

the data from some of the remarkable studies in the past decades to have the 

certification made. The shear flow is also managed to be studied by controlling 

the velocity profile of the encountering flow with certain velocity jump. Instead 

of applying the inlet flow with linear variation, the velocity profiles at the upper 

half and at the lower half of inlet boundary are both uniform but different in 

speed, due to which the shear flow would be naturally grown and more real. The 

flow phenomena are going to be studied within a controlled range of moderate 

Reynolds number from 50 to 500 where the flow remains unsteady with 

alternating vortices shedding to the downstream, and then achieves the chaotic 
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state before which the periodic, the quasi-periodic state, the change of 

dominating frequency, and so on could be numerically observed and discussed.  
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Chapter 2 

Mathematical Model 

2.1 Physical Model 

A fixed square cylinder confronted by a constant free stream has been 

studied. The velocity profile of the free stream is divided into two parts with 

different values of velocity to have the shear flow effect studied, which is 

depicted in Fig. 2-1. The model is described by Cartesian coordinate system 

with x-axis being aligned with the direction of free stream and the origin located 

at the center of the cylinder. The average velocity of the free stream, V , and the 

side length of the cylinder, L , are the characteristic velocity and length in the 

study, respectively. The blockage ratio, HL=β , is 0.1 which means that the 

vertical width of the computational domain, H , is defined as 10 in unit length. 

The default L1 is 6, whereas it will be changed to 10 for further studies. 

2.2 Governing Equations 

The study is considered to be two-dimensional with the assumption of a 

laminar Newtonian working fluid under unsteady and incompressible conditions 

without body force. The heat transferring phenomenon does not affect the fluid 

field being studied under the isothermal condition. 

Continuity equation   

0=
∂
∂

i

i

x
u                                                        (2.1) 

Navier-Stokes equation (Momentum equations) 

( )
⎥
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⎦
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∂
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∂
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where the fluid density, viscosity coefficient, pressure, and velocity are 
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designated by ρ , μ , P , u , respectively. 

2.3 Dimensionless Groups 

The dimensionless quantities are introduced as, 

L
tVt =∗

L
xx =∗ , 

L
yy =∗ , 

V
uu =∗ , 

V
vv =∗ , 2V

PP
ρ

=∗  

,where both L and V represent the characteristic length and characteristic 

velocity of the domain of interest, respectively. 

The governing equations can be written in dimensionless form as 

0=
∂
∂

∗

∗

i

i

x
u                                                       (2.3) 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂
∂

∂
∂

+
∂
∂

−=
∂

∂
+

∂
∂

∗

∗

∗

∗

∗∗

∗

∗

∗∗

∗

∗

i

j

j

i

jij

iji

x
u

x
u

xx
P

x
uu

t
u

Re
1                            (2.4) 

,where the dimensionless number Reynolds number is defined as
ν
VL

=Re .  

2.4 Boundary Conditions 

Inlet: the velocity profile is divided into two equal parts with identical uniform 

shapes but different values in velocity, which is depicted in Fig. 2-1. Due to the 

average value of inlet velocity is always expected to be the characteristic 

velocity, the velocity values of half upper and half lower part are set to be 

α+= 1u  and α−= 1u , respectively, with 0=v . 

Outlet: convective boundary condition 0=
∂
∂

+
∂
∂

x
u

t c
φφ  [42], 

where φ  represents the transported property and cu  is the convective velocity. 

Cylinder surface: Non-slip boundary condition ( 0=u , 0=v ) is applied at the 

wall surfaces. 

Free Boundaries: 0=
∂
∂

y
u , 0=v  
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Chapter 3 

Discretization 

3.1 Introduction 

Finite volume approach with unstructured-grid arrangement is employed to 

discretize the two-dimensional unsteady incompressible Navier-Stokes 

equations with implicit differencing in time, which is allowing the bigger time 

step for unsteady problem without losing stability, and the second order central 

differencing in space. 

In the present study, the Navier-Stokes equations can be simplified to a general 

form as 

( ) ( ) PV
t

∇−∇Γ⋅∇=⋅∇+
∂
∂ φφρφρ

v
                                     (3.1) 

where φ  designates each velocity component. 

The equation is also presented with volume integral form as 

( ) ( ) ∫∫∫∫∫∫∫∫∫∫∫∫
∀∀∀∀

∀∇−∀∇Γ⋅∇=∀⋅∇+∀
∂
∂ PdddVd

t
φφρφρ

v
                   (3.2) 

integrated over a control volume.  

3.2 Finite Volume Method 

The numerical methods commonly used for fluid dynamics are finite 

difference, finite volume, finite element, and boundary element methods. Before 

applying one method for the work, the form of grids is chosen to be unstructured 

to well model the extremely complex geometries. The troubles of coordinate 

transform for finite difference are, hence, avoided. Finite volume method is 

applied in this study because it is more fluid dynamics than finite element 

method is and has less mathematical treatments than boundary element method 
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does. The smoothness assumption is avoided due to finite volume is based on 

the integral form of equations. Despite the physical phenomena are not always 

coming smoothly, the solution with high gradient can be well performed and the 

conservation property is preserved as well. Dealing with the integral form of the 

transport equation, the terms of the equation are known as unsteady and 

convection term at the left hand side while diffusion and pressure term at the 

right hand side of the equation. The further deduced control surface approach by 

Gauss divergence theorem simplifies each term other than unsteady term as 

∫∫∫∫∫∫∫∫∫ −⋅∇Γ=⋅+∀
∂
∂

∀ SSS

SPdSdSdVd
t

vvvv
φφρφρ                            (3.3) 

Unsteady term 

The volume integral of the unsteady term 

∫∫∫
∀

∀
∂
∂ d

t
ρφ  

can be discretized on the center of each control volume with first-order 

approximation as 

( )on

t
φφρ

−
Δ
∀Δ                                                  (3.4) 

where the superscripts n and o of propertyφ  are denoting the new and old time 

levels, respectively. The old time level term would be put into the source term. 

Convection term 

The surface integral of this term 

∫∫ ⋅
S

SdV
vv

φρ  

was approximated on the entire surface of one control volume (cell) as 

( )∑∑ ⋅=
f

n
ffff

f

C
f SVF φρ

vv
                                          (3.5) 

with subscript f denoting that the properties on the surfaces of a control volume 

(Fig. 3-1). The convection flux across the surfaces was approximated by the 
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linear combination of upwind and central difference schemes and can be written 

as 

[ ] ( )[ ]oUD
f

CD
f

nUD
f

C
f FFFF −+= γ                                        (3.6) 

in which the second term at the right hand side of the equation is moved into the 

source term, which is explicit. In the present study, the central difference scheme 

is mainly applied via 1=γ    

The first-order upwind difference approximation is 

nbfPf
UD
f mmF φφ ⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

••

0,min0,max                                  (3.7) 

as well as the second-order central difference approximation is 

( )[ ]nbpPpf
CD
f ffmF φφ +−=

•

1                                         (3.8) 

where pf denotes the weighting factor. The subscripts P and nb denote the 

properties on primary and neighboring control volumes (cells), respectively. 

Diffusion term  

The surface integral of this term 

∫∫ ⋅∇Γ
S

Sd
v

φ  

was approximated over the entire control volume surface as 

( )∑∑ ⋅∇=
f

f
n
ff

f

D
f SF

v
φμ                                            (3.9) 

where ( )dSdS ff

vvvv
−+= . d

v
is the vector pointing in the direction from primary 

volume (cell) center to the neighboring volume (cell) center (Fig. 3-2). The 

length d
v

 was considered to be the factor affecting the diffusion dominancy 

and numerical stability. Hence, the over-relaxed approach of d
v

 was introduced. 

[39] 
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,
2

Pnb
fPnb

f

S

S
d δ

δ

v
vv

v
v

⋅
=                                              (3.10) 

The diffusion flux approximated by the chosen scheme over-relaxed approach is 

rewritten as 

( ) ( )dS
S

S
F f

o
ff

n
P

n
nb

fPnb

ffD
f

vv
vv

v

−⋅∇+−
⋅

= φμφφ
δ

μ
2

                             (3.11) 

in which the second term at the right hand side of the equation is also moved 

into the source term, which is explicit. 

Pressure term  

The surface integral is 

∫∫∫∫∫
∀

∀∇= PdSdP
S

r
                                             (3.12) 

which is approximated as                                          

∀Δ∇=∑ o

f
f

o
f PSP
v

                                              (3.13)  

Arrangement of the difference transport equation                               

The volume integral form of the transport equation was approximated to a 

linear algebraic equation also known as  

∀Δ∇−+= ∑ o

nb

n
nbnb

n
PP PSAA φφ                                      (3.14) 

in which 

t
AA

nb
nbP Δ

∀Δ
+= ∑ ρ  

⎟
⎠
⎞

⎜
⎝
⎛−+

⋅
=

•

0,max
2

f
fPnb

ff
nb m

S

S
A vv

v

δ

μ
                     

( )[ ] ( ){ } o

f
f

o
ff

oUD
f

CD
f t

dSFFS φρφμγ
Δ
∀Δ

+−∇+−−= ∑
vv

 

where the source term S includes the second terms of unsteady, convection, and 

diffusion terms.  
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Chapter 4 

Numerical Method for Unsteady Flow Calculation 

4.1 Introduction 

The governing equation was approached implicitly by finite volume 

method but the calculation efficiency is expected to be promoted by ignoring the 

conventional iteration procedure. A non-iterative method named PISO which 

stands for Pressure-Implicit with Splitting of Operators proposed by Issa 1984 

[40] to numerically analyze the implicitly discretised time-dependent fluid 

equations is being applied. The tedious iteration is removed with the advantaged 

large time step of implicit differencing remained. The process of solution was 

split into a series of predictor and few correctors of momentum equations at 

each time step with an accurate approximation well achieved. During the 

process, the discretised algebraic momentum equations would be implicitly 

solved alone to temporally predict the values of velocity at first, of which this 

moment therefore is termed the predictor step. The accurate solution would 

never be approached without continuity equation being involved. The mass 

conservation law is then fulfilled at the following few corrector steps by solving 

the algebraic pressure correction equations derived from the algebraic 

momentum equations combined with mass conservation law. The concept of the 

successive correctors of splitting operators is similar to an iterative method 

SIMPLE [41]. SIMPLE has to conventionally go all over the iteration steps to 

have the solution approached at a single time step but PISO saves the time from 

the unnecessary repeats. This breakthrough of PISO is attributed to the few more 

correctors at each time step while SIMPLE has only one corrector proceeded at 

each iteration step. Even the first corrector satisfies continuity equation, mass 
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conservation has not fully obtained yet [40]. PISO method possesses good 

temporal accuracy and good stability for large time step which additionally 

profits the approaches of steady-state problems as well due to the fast and 

efficient calculation speed. 

4.2 Details of the PISO Algorithm 

Predictor step 

The predictor step is to implicitly solve the algebraic momentum equation 

deduced by finite volume the task of previous chapter using the prevailing 

pressure field.  

( )∀Δ∇−+= ∑ ∗∗ o
P

nb
nbnbPP PSVAVA
vv

                                    (3.14) 

which is thus solved to yield the ∗V
v

field but the mass conservation law has not 

satisfied yet. The corrector steps are then taking care of the mass conservation 

law of the flow field by updating the corresponding pressure. 

First corrector step 

The new velocities and the corresponding new pressure assumed to be 

obtained from the very first corrector step are denoted with superscript ∗∗  and∗ , 

respectively. The momentum equation is taken as 

( )∀Δ∇−+= ∗∗∗∗ ∑ P
nb

nbnbPP PSVAVA
vv

                                    (4.1) 

The first velocity corrector is certainly the difference between these two 

algebraic momentum equations and deduced as 

f
fP

f P
A

V ′∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
−=′

v
                                               (4.2) 

where ∗∗∗ −≡′ VVV , oPPP −≡′ ∗  

The mass flow rate corrector can be, therefore, deduced by the velocity corrector 

as 
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ffff SVm
vv

& ⋅′=′ ρ ff
fP

f SP
A

v
⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′∇⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
−= ρ                                (4.3) 

Over-relaxed approach is employed to let ( )dSdS ff

vvvv
−+=  for better numerical 

diffusion control.  

( ) ( )dSP
A

P
S

S

A
m ff

fP
fPnbf

fPnb

f

fP
ff

vvv
vv

v

& −⋅′∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
−⋅′∇

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
−=′ ρδ

δ
ρ

2

               (4.4) 

Then, replacing the term PnbfP δ
v

⋅′∇ in the bracket by Pnb PP ′−′ , and summing up the 

mass flux correction equations all over the control surfaces to completely 

achieve the properties on one control volume with one equation goes to  

( )dSP
A

mPAPA ff
fP

f
f

f
f

nb
P
nbP

P
P

vv
−⋅′∇⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
+′+′=′ ∑∑

•

ρ                       (4.5) 

where  

∑=
f

P
nb

P
P AA  

fPnb

f

fP
f

P
nb S

S

A
A vv

v

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
=

δ
ρ

2

 

∑∑∑ ∗∗∗ −=′
f

f
f

f
f

f mmm &&&  

Mass conservation is directly achieved by assuming 0=∑ ∗∗

f
fm& over each control 

volume. The first pressure correction equation is deduced as 
1

2
1

1 PP
f

nb
P
nbP

P
P SSPAPA ++′=′ ∑                                       (4.6) 

where 

∑ ∗−=
f

fP mS &1
1  

( )∑ −⋅′∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
=

f
ff

fP
fP dSP

A
S

vv
ρ1

2   
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More corrector steps 

The new velocities and the corresponding new pressure are denoted with 

superscript ∗∗∗  and ∗∗ , respectively. The momentum equation is taken as 

( )∀Δ∇−+= ∗∗∗∗∗∗∗ ∑ P
nb

nbnbPP PSVAVA
vv

                                   (4.7) 

The difference between the momentum equation right above and the previous 

one with velocity denoted with ∗∗ is deduced as 

f
fP

f

P

f
nbnb

P P
AA

VA
V ′′∇⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ ′

=′′
∑

v

v
                                     (4.8) 

where ∗∗∗∗∗ −≡′′ VVV , ∗∗∗ −≡′ VVV , ∗∗∗ −≡′′ PPP  

Again, the mass flow rate corrector, hence, is 

ff
fP

f

P

f
nbnb

ff SP
AA

VA
m

v

v

& ⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′′∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ ′

=′′
∑

ρ                               (4.9) 

Over-relaxed approach and PnbPnbf PPP ′−′=⋅′∇ δ
v

 are applied. By following the 

same procedure of first corrector, the present corrector is 

( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ ′

−−⋅′′∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
+′′+′′=′′

∑
∑∑ f

f

P

f
nbnb

fff
fP

f
f

f
f

nb
P
nbP

P
P S

A

VA
dSP

A
mPAPA

v

v

vv
& ρρ     (4.10) 

where  

∑=
f

P
nb

P
P AA  

fPnb

f

fP
f

P
nb S

S

A
A vv

v

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
=

δ
ρ

2

 

∑∑∑ ∗∗∗∗∗ −=′′
f

f
f

f
f

f mmm &&&  

Mass conservation is directly achieved by assuming ∑ ∗∗∗

f
fm& =0 over each control 
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volume while∑ ∗∗

f
fm& =0 has been done from the assumption of the first corrector. 

The present corrector, therefore, is 
2

2
2
1 PP

f
nb

P
nbP

P
P SSPAPA ++′=′ ∑                                       (4.11) 

where 

f

f

P

f
nbnb

fP S
A

VA
S

v

v

⋅
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ ′

−=
∑

ρ2
1  

( )∑ −⋅′′∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∀Δ
=

f
ff

fP
fP dSP

A
S

vv
ρ2

2   

Although more corrector steps are needed for the conservation law, two 

corrector steps are quite sufficient to have the accuracy of solution within 

temporal truncation error [40]. 

The source term of each algebraic pressure correction equation, i.e. corrector, 

has been divided into two parts. The first one is accounting for the orthogonality 

of structured girds, whereas the second one is for the non-orthogonality of 

unstructured grids. Namely, the first one is sufficiently needed if the gird 

arrangement is regular and rectangular. On the other hand, the second one is also 

required if the grid arrangement is irregular and distorted. Each pressure 

correction equation, i.e. corrector, hence, is solved by two steps with the first 

and the second source term separately. The correcting calculation goes through 

the first step once and then the second step of which the further repeats are 

necessary if the grids are quite distorted. Due to the grid arrangement of present 

study is structured, surface vector fS
v

parallels the vector Pnbδ
v

, i.e. fS
v

equals d
v

, 

only the first step is gone through.  
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4.3 Implementation of Boundary Conditions 

The inlet boundary condition locating at the upstream of the square 

cylinder is set to be a shear flow. The inlet is equally divided into an upper part 

and a lower part. These two parts possess the uniform flow with different 

velocities from each other to create a jump in between. At the outlet one locating 

at the downstream of the cylinder, the convective boundary condition 

0=
∂
∂

+
∂
∂

x
u

t c
φφ  [42] a wave equation is applied. The implicit method is used as 

0=
Δ
−

+
Δ
−

x
u

t

n
C

n
B

c

o
B

n
B φφφφ                                           (4.12) 

The boundary and the neighboring inner cell properties are denoted with 

the subscripts B and C, respectively. The convective velocity cu  is set to be the 

local flow velocity at the outlet boundary. 

The equation is also shown as 

Cr
Cr n

C
o
Bn

B +
+

=
1

φφ
φ                                                 (4.13)    

in which 
x

tu
Cr c

Δ
Δ

=  is defined as Courant number. 

At the upper and lower site boundaries of the entire computational domain, 

the boundary velocities in the x-direction are set to be identical with the 

x-velocities at the immediate neighboring cells inside the domain along 

y-direction ( 0=
∂
∂

y
u ) and 0=v  which are both utilized to have the free boundary 

condition applied. At the surface of the square cylinder, the non-slip boundary 

condition on wall is applied. 
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4.4 Solution Procedure of PISO 

Step 1: read the velocities and pressure of the flow field from the old time level. 

Step 2: solve the momentum equation (3.14) to get ∗V . 

Step 3: compute P′  by solving the first pressure correction equation (4.6) to 

update velocities and pressure to get ∗∗V and ∗P . 

Step 4: compute P ′′ by solving the second pressure correction equations (4.11) 

to further update velocities and pressure to get ∗∗∗V and ∗∗P . 

Step 5: if the required time step is achieved, then stop the calculation and output 

the data otherwise proceed to the next time step and repeat all over the way from 

step 1 to step 4.  

The solution procedure is also depicted in Fig 4-1. 
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Chapter 5 

Validation of Numerical Code 

5.1 Grid Test 

The computational domain is discretized into a number of rectangular cells 

with different sizes. The grid distribution is not uniform throughout the domain 

in which the denser part is located close to the square cylinder. It is depicted in 

Fig. 5-1. The flow pattern is expected to be complex at the near wake of the 

cylinder. 

The grid test has been done with 198×97 and 232×123 cells in x and y 

directions, respectively. The relations between Strouhal number and Reynolds 

number obtained by these two cases are depicted in Fig. 5-2. The case with 

232×123 cells presents a smoother result and is applied for the present study. 

5.2 Data Comparison 

The data of the present numerical prediction with uniform free stream has 

been validated by making the comparison of the relations between Strouhal 

number and Reynolds number with those reported by Okajima [13], Davis et al. 

[17], Franke et al.[44], Sohankar et al.[19], and Saha et al.[43], which is 

depicted in Fig. 5-3. The Strouhal frequency is detected from the transverse 

velocity of a monitor point located at (x=1.23, y=0) in the near wake of the 

cylinder. The detected signals are identical if x<5 [45]. The range of Reynolds 

number for validation is from 50 to 500. During these predictions, some 

interesting phenomena of the Strouhal frequency were observed from the power 

spectrum analyses. The relation of St-Re shows a big valley from Re=175~375. 

With starting from the deep bottom of the valley, i.e. Re=250, and then going all 
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over the way up to the hill along the increase of Reynolds number, the period 

doubling which means that the second peak of lower frequency emerges shows 

up at the spectra (Fig. 5-4) while the starting point was found to be 218 and 250 

by Saha et al. [45] and Sohankar et al. [19], respectively, although there is also 

the third peak which is still small. The frequency of this additional peak is 

somehow higher than the half value of Strouhal frequency from Re=250, but in 

the range of around Re=375~425, the frequency is exactly the half value of 

Strouhal frequency. This 0.5 frequency-locking mode was also reported in the 

range Re=325~375 by Saha et al. [45]. The clear spectrum are shown in 

Re=375~425, the range of half frequency locking, but before and after which the 

noises are quiet strong as Re>300. About Re>450, Sf
2
1  possesses the highest 

peak at the spectra and dominates. This feature was also found at Re=500 by 

Sohankar et al. [19]. As Re=500, the chaotic state is determined by the space 

diagram (Fig. 5-5). 

The mean drag and mean lift coefficient of the forces acting on the square 

cylinder are also calculated. These mean coefficients are got from the time 

average values over a certain range of time. The drag and lift coefficients, DC  

and LC , are defined as LVF D
22 ρ  and LVFL

22 ρ , respectively. 

The comparison of the mean drag coefficient has been also made with the 

data of Davis et al. [17], Franke et al.[44], and Saha et al.[43], depicted in Fig. 

5-6. The value of the mean lift coefficient is starting to deviate from zero as 

Re>325. On the other hand, 04.0−=LC  was found at Re=400 by Sohankar et al. 

[19]. 
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5.3 Time Step Size 

The test of step size marching in time is also done by making the 

comparison with the data reported by Saha et al. [43]. The time step size is 

chosen to be 0.01 or even the finer one 0.005. Applying the data by Saha et al. 

for the validation is because the blockage ratio was 0.1 and the square cylinder 

was 6 in unit length away from the inlet boundary of the computational domain, 

which are identically applied for the uniform free stream case of present study. 

The comparison is depicted in Fig. 5-7 which shows the relations of Reynolds 

number and Strouhal number obtained from the computations with time step size 

0.01 and 0.005 as well as the data by Saha et al.. The present computations with 

different step sizes are quite consistent with each other in the whole range of 

various Reynolds numbers under consideration. The time step size 0.01 is, 

therefore, chosen for the present study to shorten the calculation time. 
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Chapter 6 

Results and Discussion 

Shear flow has been studied by changing the velocity ratio of free stream 

and the distance between the square cylinder and the inlet boundary of the 

computational domain, which provides different shear rate, the velocity gradient 

confronted by the square cylinder. The parameter α  is considered to be 0.5 and 

0.2 to have the velocity ratio of free stream 3:1 and 3:2, respectively, whereas 

the parameter L1 is 6 and 10 to have different distances for shear flow to grow, 

see Fig. 2-1, with Reynolds number from 50 to 500 in the present study. The 

shear rate effect can be studied with wide range of Reynolds number.  

6.1 Relation of St and Re with Shear Free Stream 

The relation of St-Re is depicted in Fig. 6-1 with Strouhal number St, 

VLfs , and Reynolds number Re, νVL . The similarities between uniform and 

shear flow show up as Re<100 but the discrepancies appear as Re goes high. 

The St-Re relations of shear flows even with different velocity ratios of free 

stream and L1s are showing the St-drop about Re>150, which might indicates 

the transition process to three-dimensionality. Around Re=300, the chaotic states 

are observed by the phase space analyzes (Fig. 6-2 ~6-5), before which the 

interesting feature of Strouhal frequency is found with different shear rates. The 

higher velocity ratio generally brings the lower Strouhal frequency as L1 

remains the same, which was also reported by Saha et al. [46] and Kang [47]. 

On the contrary, the longer L1 possessing the lower shear rate of the more 

developed shear flow brings the lower Strouhal frequency, whose discrepancy 

may be affected by the different transverse spans of shear layer naturally grown. 
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As Reynolds number goes beyond around 325, the shear flow frequency 

spectrum, see Fig. 6.6 ~6.9, become so confusing. The main Strouhal 

frequencies are quite hard to be defined for the shear flow cases besides the case 

of velocity ratio 3:1 and L1=6. Hence, Instead of defining the Strouhal 

frequencies, the dominating frequencies are applied for Fig. 6.1 as Re>325. 

6.2 Period Doubling 

The signals in the near wake of square cylinder were detected by the 

transverse component of velocity at point (x=1.23, y=0) and were analyzed by 

Power spectrum analysis. The signals detected from the flows with shear free 

stream are also repeating some of the phenomena observable in the uniform free 

stream case, especially the cases of shear rate 3:2 (Fig. 6-7 & 6-9). Once the 

velocity ratio goes higher to 3:1, the process of period-doubling somehow 

disappears. The periodic state lasts to higher Reynolds number as well as the 

disorder vibrating motion of the wake, hence, comes along with lower Reynolds 

number. The period-doubling process becomes rarer even with the longer L1. 

The most interesting phenomena happen in the case of velocity ratio 3:2 and 

L1=10. As Reynolds number goes beyond around 375, the period-doubling is so 

obvious no matter how big the Reynolds number is. The dominating frequencies 

are all 0.10376 Hz.  
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6.3 Lift Coefficient 

The coefficient of the lifting force acting on the square cylinder has been 

numerically predicted. As the free stream is uniform, the mean lift coefficient 

should be zero theoretically unless Reynolds number exceeds a certain number, 

and it was well studied without too many discrepancies between the data from 

researchers. It is unfortunately that as the free stream is shear flow, the direction 

of mean lifting force acting on the cylinder becomes an issue. Two opposite 

directions were observed and predicted with similar physical assumptions. 

Moreover, the direction of the mean lift could be even reversed at certain 

Reynolds number, which was reported by Kurose and Komori [48]. Hence, the 

mean lift coefficient under a shear flow condition is an important topic for the 

present study. 

The mean lift coefficients from cases in the present study were obtained by 

the average values over a period of time in which the wake flow was 

alternatively shedding in a stationary periodic state. Despite the chaotic state 

might be reached with higher Reynolds number, the time-averaged values of the 

mean lift coefficients were still calculated by the identical time-span even the 

periodic motion was not observed.  

In the present study, the direction of the mean lifting force is pointing 

toward the higher velocity part, i.e. pointing up, all over the whole span of 

Reynolds number from 50 to 500. Known from Fig. 6-10, the mean lift 

coefficient does not always go up along the increase of Reynolds number. After 

a certain value of Reynolds number, the mean lift goes down. The good 

agreement between each other is achieved by the cases of shear rate 3:2. Even 

the parameter L1 is not the same, the both Lift-Re relations of L1=6 and L1=10 
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are quite coinciding with each other before Reynolds number reaches 325. As 

Re>325, the discrepancies and the fluctuating motions are observed and 

considered be triggered by the chaotic state. The mean lift coefficient 

dramatically rises once the velocity ratio is increased to 3:1. Not only does the 

discrepancy happen between the 3:1 cases of L1=6 and L1=10, but the mean lift 

coefficient of L1=10 also keeps going up until the chaotic state is approached, 

which is quite diverse from the other three shear flow cases in the present study. 

The turning points of the mean lift-Re relation is at about Re=225 for the cases 

of velocity ratio 3:2 while it is at about Re=175 for those of velocity ratio 3:1. 

The fluctuating motion of mean lift-Re relation is also observed as the flow of 

velocity ratio 3:1 reaches the chaotic state about Re=300. Especially the one 

with L1=10, the range for the values of mean lift coefficient to go up and down 

is almost a unit order. The one with L1=6 fluctuates but as the value of Reynolds 

number goes beyond 350, the decrease of mean lift coefficient is present until 

about Re=475.  

The explanation of this phenomenon may be attributed to the theory 

proposed by Bernoulli. The distinguishing feature of present study is that 

although the shear flow was applied, the shear flow has not been fully developed 

yet as well as the shear layer did not cover the whole square cylinder in 

transverse direction. The shear flow effect seems to dominate less. Therefore, 

the upward lift force was caused because the lower pressure field was formed by 

the faster free stream on top of the cylinder.  
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6.4 Drag Coefficient 

The mean drag force acting on the square cylinder is studied and presented 

by the relation of the mean drag coefficient and Reynolds number, which is 

depicted in Fig. 6-11. The mean values of them were also calculated from the 

average values over an identical time-span with the one applied for the mean 

values of lift coefficient. The study of mean drag coefficient presents neither an 

issue nor the big discrepancy, but the power of it may be related to the velocity 

ratio. The possible damages of a bridge or of other structures encountering the 

shear flow can be imagined by this investigation. The mean drag coefficients of 

the cases with higher velocity ratio are obviously much higher than those with 

lower one whereas the parameter L1 seems to affect less in this study. The good 

agreement of mean drag-Re relations with different values of L1 shows up as the 

velocity ratio is remained the same. The dissimilarities present after the chaotic 

state was achieved. The comparison is also made with the case of uniform free 

stream. As the velocity ratio is staying 3:2, the drag forces are just a little bit 

higher than those of the case with velocity ratio 3:3, i.e. uniform free stream. 

The coincidence between 3:2 and 3:3 of velocity ratio with L1=6 is even 

approached when the values of Reynolds number are around 400. As the 

velocity ratio goes up to 3:1, the drag forces become much stronger.  
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6.5 Instantaneous Vorticity Contours 

The instantaneous flow structure certainly changes with the increase of 

Reynolds number. During this change, the movement of the flow is going from 

period to quasi-period, and then to the chaotic state, whose corresponding flow 

patterns of uniform and shear free stream are all depicted. In order to tell the 

differences between the flow patterns with different values of Reynolds number 

precisely, the instantaneous flow fields have to be caught under the same 

condition. The lift coefficient is applied to be the criterion for the present study. 

All the flow structures being displayed with different Reynolds number are 

caught as the lift coefficients reach the corresponding mean values. The vortices 

alternatively shedding from the square cylinder to the farther downstream are 

also depicted.  

6.5.1 Uniform Flow 

The instantaneous vorticity contours are depicted in Fig. 6-12 with different 

values of Reynolds number. Due to the uniform free stream, the strengths of the 

positive and negative vortices shedding from the bottom and the top sides of the 

square cylinder, respectively, are quite compatible. At Re=50, the vortices are 

elongated to about 9 in unit length and they become much more rounded in 

shape at about Re>75. The vortex farther away from the cylinder to the 

downstream is more rounded and also dissipated by the mechanism of 

momentum diffusion. With the increase of Reynolds number, the transverse 

moving range of vortices is becoming wider. Before Reynolds number reaches 

300, the vortices in the wake flow are well-behaved leading the succeeding one 

to the downstream step by step. One positive vortex leads another negative one 

and vise versa. The distance between two vortices is well maintained as well. As 
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Reynolds number goes beyond about 300, the vortices start to move sort of 

arbitrarily. The distances are no more maintained. The positive vortex and the 

negative one are so against each other. As Reynolds number moves further to 

about 450, the vortices are even being piled up and clustered together in any 

possible direction. 

6.5.2 Shear Flow 

All the shear flow fields in the present study possess the negative 

background vorticity because the higher value of free stream velocity was 

arranged to be located at the upper half part of the inlet boundary. The negative 

vortices would be made at where the shear layer grows. The strengthened 

clockwise vortices, i.e. negative, as well as the weakened counterclockwise ones, 

i.e. positive, are hence shown in the shear flow cases (Fig. 6-13 ~6-16). The 

elongated positive vortices are also observed due to the positive vortices are 

shed from the square cylinder’s bottom side where the velocity of the free 

stream is slower. As the positive vortices are shedding to the downstream, they 

are then confronting the faster free stream from the top and elongated. On the 

contrary, the negative vortices shedding from the top of the square cylinder are 

even more rounded because of the lower free stream from the bottom. With 

increasing the velocity ratio, the phenomena just mentioned are more obvious. 

The positive vortices are longer and thinner while the negative vortices are more 

rounded and bigger. On the other hand, the distance between the vortex and the 

succeeding vortex becomes longer with the higher velocity ratio.  

As Reynolds number stays low, the counterclockwise and clockwise 

vortices are extending to the farther downstream continuously, especially the 

counterclockwise ones with solid lines. Due to the convection dominates much 

less at Re=50; the clockwise vortices are not rounded yet until Re=75. Along the 
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increase of Reynolds number, the vortices break into pieces and occupy bigger 

range in the transverse direction by the wider shear layer in which the velocity 

gradient is lower from the bottom to the top. Similarly, the farther downstream 

engages the vortices with the wider span in transverse. The dissipation of 

vortices at the downstream of the wake is also observed. The clockwise vortices 

dissipate more rapidly than the counterclockwise ones do. The higher velocity 

ratio, 3:1, elongates the counterclockwise vortices in the near wake, but whose 

succeeding counterclockwise vortices about to grow at around 10 unit length 

away from the cylinder are easy to be torn apart. 

6.6 Instantaneous Streamlines 

The instantaneous flow patterns of each case with the increase of Reynolds 

number are described by streamlines depicted in Fig. 6-17 ~6.21. These 

instantaneous flow fields are also caught as the instantaneous lift coefficients 

reach the corresponding mean values. These instantaneous streamlines of these 

cases are corresponding to those illustrations of the instantaneous vorticity 

contours mentioned in chapter 6.5. 

6.6.1 Uniform Flow 

As the free stream is uniform, one eddy right behind the square cylinder 

can be observed in Fig. 17. As the Reynolds number stays low, the curvatures of 

streamlines at the downstream of the wake flow are small and smooth. As the 

Reynolds number goes higher, the wake fluctuates more with bigger curvature. 

The streamlines are also illustrating the phenomena of alternative motion in the 

wake of a square cylinder by showing the wave-like motion. As the Reynolds 

number goes higher, the distances between waves are getting closer until around 

Re=250 beyond which the wave-like motion starts to go arbitrarily and influence 
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the flow field wider in the transverse direction. 

6.6.2 Shear Flow 

Fig. 6.18 ~6.21 are illustrating the flow patterns of the flow fields with 

shear free stream. Two different velocity ratios and distances between the 

cylinder and inlet boundary are also considered. The shear free stream with 

higher velocity at the top side brings another eddy right under the square 

cylinder and even some smaller eddies in the farther wake. The eddy adhere to 

the bottom of the cylinder may grow up as the velocity ratio goes high, while on 

the contrary, it may turn smaller as the distance between the cylinder and the 

inlet boundary elongates. The shear rate of the present cases rises while the 

velocity ratio goes up as well as the inlet-cylinder distance is shortened, hence, 

this eddy grows. The biggest eddy formed beneath the square cylinder can be 

observed in the cases of velocity ratio 3:1 and L1=6. 

6.7 Time Evolution of Flow Fields 

Fig. 6-22 ~6-25 are showing the time evolution of an uniform free stream 

passing over the square cylinder with Reynolds number 100, 200, 300, and 400. 

The instantaneous flow fields evolve through a period obtained from the 

corresponding Strouhal frequency. The strength of vorticity dominates the 

behaviors of eddy behind the cylinder. As the negative vorticity occupies bigger 

area immediate behind the cylinder than the positive one does, the dominating 

eddy shown by streamlines goes clockwise. Once the area occupied by the 

positive vorticity catches up the one occupied by the negative vorticuty, the 

counterclockwise eddy grows while on the contrary the clockwise one 

diminishes and vice versa. The positive and the negative vorticities are 

alternatively shedding from the cylinder and regularly dominating the flow field 
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in turn, whose phenomena are being describing by the instantaneous streamlines. 

Moreover, the weaker positive vorticity at the farther downstream rolls up 

streamlines while the negative one rolls down them. As Re=300, the 

counterclockwise eddy at 5T/6 even breaks the rule to grow up competing 

against the clockwise one. The time-evolving instantaneous flow fields with 

shear free stream are also studied. In order to see the big difference to the 

uniform free stream one, the cases are selected with velocity ratio 3:1 and L1=6 

(Fig. 6-26 ~6-29). Due to the elongated positive vorticity and the rounded 

negative one, the streamlines in the wake show the smoother concaves and the 

rugged convexes. Furthermore, although the positive and the negative vorticities 

dominate in turn, the positive vorticity is always eager to grow before the 

negative vorticty diminishes, because of which, the counterclockwise eddy 

appears with the still big clockwise one, and hence is pushed beneath the 

cylinder. As the clockwise eddy becomes smaller, the counterclockwise one goes 

behind the cylinder. As Reynolds number is 200 and 300, the negative vorticity 

is even strong at the farther downstream which can be told by the clockwise 

eddy of the streamlines. As Re=400, both the positive and the negative 

vorticities are grown strong and so effecting the farther wake dramatically and 

chaotically.  

6.8 Elongation of Computational Domain 

The computational domain is elongated from 24 to 32 in x-direction to have 

the studied more certified. The Strouhal frequency and the mean drag coefficient 

are again obtained with longer computational domain to make the comparison 

with the default assumption (Fig. 6-30 & 6-31). The good agreement is shown. 
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Chapter 7 

Conclusions 

The present study first shows the similarity, that the onset Reynolds number 

of the transition process to three-dimensionality is about 150 in all the cases of 

uniform and shear free stream. The discrepancies between the uniform and shear 

flow cases are also indicated. Many flow features are quite affected by the 

velocity ratio. The shear free stream alters the flow phenomena along the 

increase of Reynolds number. As the velocity ratio goes high, the Quasi-periodic 

state, i.e. period-doubling, happens in quite a narrow range of Reynolds number 

while the period state is brought to higher Re as well as the chaotic state shows 

up at lower Re. The mean drag coefficient is also higher with higher velocity 

ratio whose higher shear rate also brings the lower Strouhal frequency. The 

present study investigates the evolution of Vortex Street in the wake of square 

cylinder. The vortices are dissipated at the downstream by the mechanism of 

momentum diffusion while the moving range of the vortices becomes wider in 

the transverse direction. Talking about the shear free stream cases, the negative 

vortices dissipate more rapidly then the positive ones do even though the flow 

field possesses the negative background vorticity which strengthens the negative 

vortices. The direction of lifting force has been calculated to point to the faster 

free stream side. 
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