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Abstract

Recently, low temperature polycrystalline silicon thin-film transistors (TFTs) have been
investigated extensively for their wide applications. In order to achieve high quality poly-Si
at low process temperature, laser crystallization technology is a promising method compared
with other techniques. In this thesis, we.especially focus on the analysis on crystallization
mechanism of poly-Si annealed by high. power solid-state Nd:YAG laser and establish
physically-based mobility model including temperature effect directly through thin film
property.

Firstly, the poly-Si crystallization mechanism under the high power (200 W) Nd:YAG
solid state pulsed laser annealing system have been carefully studied by analyzing their
Raman spectra and scanning electron microscope . It is found that the Gaussian-distributed
laser beam profile successfully produce large super lateral growth process window. The
devices in the SLG process window exhibit field-effect mobility around 250 cm? / Vs and the
threshold voltage lower than 1 V. The influence of a-Si film thickness and the laser scan pitch
on the process window is also carefully inspected. In addition to poly-Si, high quality
poly-SiGe annealed by SSL has been successfully achieved. The FWHM value of Si-Ge peak

is about 23.68 cm™ which is close to single crystal SiGe alloy.



The physically-based mobility model containing grain barrier height effect and phonon
lattice scattering effect have been proposed. It can precisely predict the mobility over wide
range of gate voltage bias by using only few fitting parameters. The model is valid for
devices with channel length varying from 30 um to 6 um while channel width is 6 pm under a
temperature range from 298 K to 343 K. Moreover, we adopt the proposed mobility model to
simulate output characteristics of devices. Excellent agreements are found when comparing

the calculated results and experimental data.
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