
Chapter 3 
The Principle and Improvement  

for AWB in DSC 
 

3.1 Introduction 

Estimating the wavelength composition of scene illumination from image data is an 

important topics in color engineering. Solutions to this issue have applications in 

image understanding, image processing and computer graphics. Several methods for 

estimating the full spectral-power distribution have been proposed,[17-18] but all 

depend on strong physical constraints with respect to the illuminant and often 

encounter mathematical complexity and robustness difficulties associated with 

inferring a continuous illuminant spectrum from a small number of color sensor 

responses. 

 

In recent years, theorists have attempted a useful and simpler form of the estimation 

problem.[19-20] Rather than numerical estimates of the full spectral power 

distribution, one tries to classify the wavelength composition of the scene illumination 

into one of a restricted number of groups. An example of illumination classification is 

to restrict the estimation to a set of blackbody radiators, say spaced every 500 degrees 

Kelvin (K). Classification of illuminants by color temperature is useful in many 

applications, including photography, color imaging, printing, and room lighting. Color 

temperature classification provides simple specification of many common light 

sources.[21] Two related issues are analyzed in this paper. First, we consider the 

estimation of color temperature of scene illumination from a single image. 
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Second, we consider how a color image acquired under one illumination can be 

rendered for viewing in an illumination with a different color temperature. We 

use a modification of the correlation method suggested by Finlayson et al.[19] In that 

method, each illuminant is associated with a reference gamut in the chromaticity 

plane. To estimate the illuminant for a given image, the image pixel chromaticities are 

compared with the reference gamuts of several different illuminants. The color 

temperature for the image illumination is estimated by finding the best match between 

the number of pixels and the reference gamuts. Using a set of calibrated images, we 

found that this method provides a complex process to estimate of the illuminant color 

temperature and required lots of hardware memory. The difficulty rests in the reliance 

on chromaticity coordinates. By using a scaled version of the red and blue sensor 

responses, we obtain a better estimate of the illuminant color temperature. Also, we 

have modeled this method by Gaussian equation that largely saved the memory in 

digital still camera. Having estimated the color temperature of the acquired image, it 

is often desirable to render that image under a simulated illuminant of a different color 

temperature. When the potential illuminants are restricted to vary only in color 

temperature, this color correction can be performed in a simple way. The method is 

described and applied to an image database that includes simulation images and a 

variety of real scene. 
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3.2 Illuminant Estimation Method (Modified Method) 

3.2.1 Color Temperature and Reciprocal Color Temperature 
 

To determine the basic parameters of the illuminant classification model, we perform 

calculations using a set of blackbody radiators, a moderately large set of surface 

reflectance functions, and the properties of our camera. Figure 3-1 shows the 

spectral-power distributions of a black body radiator at absolute color temperatures 

ranging from 1000K to 10,000K in 500K steps. The spectral radiant power at 

temperature T (in Kelvin K) is described by an equation of the following form.[21] 

 
M(l) = c1λ

-5{exp(c2/λT) - 1}-1,                   (3-1) 
 
where c1, c2 are constants and λ is wavelength (m). 
. 

Differences in color temperature do not correspond to equal perceptual color 

differences. Judd’s experimental report [23] suggested that visually equally significant 

differences of color temperature correspond more closely to equal differences of 

reciprocal color temperature. The unit on the scale of microreciprocal degrees (106K-1) 

is called “mired.” This unit is also called “remek,” which is the contraction for a unit 

of the International System of Units (SI), the reciprocal megakelvin(MK-1). Judd 

determined that color-temperature difference corresponding to a just noticeably 

different (JND) chromaticity difference over the range of 1800–11 000 K. Figure.3-2 

shows the Planckian locus (chromaticity locus of blackbody radiators) in the (u’, v’) 

plane of the CIE 1976 UCS chromaticity diagram, where the locus is segmented in 

two ways of equal color-temperature steps and equal reciprocal color-temperature 

steps. Note that small intervals in reciprocal color temperature are more nearly 

perceptually equal than small intervals in color temperature. 
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                  (a)                                     (b) 

 

Fig.3-1 (a) Spectra of a black body radiator; (b) Planckian locus with the scales 

of color temperature and reciprocal color temperature in the (u’, v’ ) 

chromaticity plane. Sources with lower color temperatures tend to be reddish, 

while those with higher color temperatures are bluish. 

 
 

3.2.2 Reference Gamut Properties 
 

Consider some desirable properties of a set of reference gamuts. First, one reference 

gamut must not include another. Otherwise, choosing a unique temperature fails. 

Second, it is preferable that the gamuts be separated and have minimal overlap. Two 

desires improve the ability to discriminate between illuminant color temperatures. 

 

S. Tominaga [22] have examined several coordinate systems with these criteria in 

mind. First consider the sensor chromaticity coordinates (r, b) which are obtained by 

normalizing the camera outputs RGB for each surface as 
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r = R/(R+G+B), b = B/(R+G+B).              (3-2) 

 

Figure 3-2(a) shows the reference gamuts with respect to our camera. The gamut for 

8500K includes most of the area in the other gamuts. In the presence of even modest 

amounts of sensor noise, these chromaticity coordinates provide a poor choice for 

illuminant classification. 

 

Next consider the CIE-xy chromaticity coordinate system. We make a 3x3 matrix for 

transforming the camera outputs RGB into the tristimulus values XYZ. This matrix is 

determined by fitting the sensor spectral-sensitivity functions to the CIE 

color-matching functions. The chromaticity coordinates (x, y) are then obtained by 

normalizing the tristimulus values XYZ as 

 

 x = X/(X+Y+Z), y = Y/(X+Y+Z).              (3-3) 

 

Figure 3-2(b) shows the reference gamuts in the xy chromaticity plane. Again the 

biggest gamut for 8500K includes most of the area in the other gamuts. One difficulty 

in using the xy chromaticity representation is that the chromaticity projection removes 

intensity differences. High intensity regions of the image contain more information 

about the illuminant than dark, shadowed regions. Hence, basing illuminant 

classification on data that have been normalized by the chromaticity mapping 

removes an important source of information. 
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 Fig.3-2 color gamus have different arrangement in different chromaticity 

plane.(a) r-b chromaticity plane and (b) x-y chromaticity plane. 

 

3.2.3 Finlayson’s method (Color by Correlation) 
 

Finlayson ‘s work[19] begin by determining which image colors can occur (and how 

these colors are distributed) under each of a set of possible lights. they discussed in 

the paper how, for a given camera, they can obtain this knowledge. They then 

correlate this information with the colors in a particular image to obtain a measure of 

the likelihood that each of the possible lights was the scene illuminant. Finally, they 

use this likelihood information to choose a single light as an estimate of the scene 

illuminant. Computation is expressed and performed in a generic correlation 

framework. 

  

Color constancy have been solved in three stages. First, build a correlation matrix to 

correlate possible image colors with each of the set of N possible scene illuminants 

(see Fig.3-3). For each illuminant, characterize the range of possible image colors 
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(chromaticities) that can be observed under that light (Fig. 3-3(a)) This information is 

used to build a probability distribution (Fig.3-3(b)) which stand for the likelihood of 

observing an image color under a given light. The probability distributions for each 

light form the columns of a correlation matrix M (Fig. 3-3(c)) (each row of the matrix 

corresponds to one of the N x N discrete cells of the partitioned chromaticity space). 

 
Bayes’ rule: It’s used to 

define every element.  

 
         (a)                    (b)                         (c) 

3nd 1st 
2nd

 

Fig. 3-3. Three steps in building a correlation matrix. (a) Firstly, characterize 

which image colors (chromaticities) are possible under each of our reference 

illuminants. (b)Then, use this information to build a probability distribution for 

each light. (c) Finally, encode these distributions in the columns of our matrix. 

 

Given a correlation matrix and an image whose illuminant we wish to estimate, they 

performed the following two steps (illustrated in Fig.3-4). First, they determine which 

image colors are present in the image (Fig. 3-4(a)). This information is coded in a 

vector v of ones and zeros corresponding to whether or not a given chromaticity is 

present in the image.  

Then, determine a measure of the correlation between this image data v and each of 

the possible illuminants. The usual expression of a correlation is as a vector 

 

Color by Correlation 

N 
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dot-product. For example, if a and b are vectors, then they are strongly correlated if 

a．b is large. After that, use a similar dot-product definition of correlation here. Each 

column of the correlation matrix M corresponds to a possible illuminant so that the 

elements of the vector returned by the product vtM are a measure of how strongly the 

image data correlates with each of the possible illuminants. Fig.3-4 is a graphical 

representation of this process. The highlighted rows of the correlation matrix 

correspond to chromaticities present in the image (entries of v which are one). To 

obtain a correlation measure for an illuminant, they simply sum the highlighted 

elements of the corresponding column. The result of these sum values is a vector, (Fig. 

3-4(b)), whose elements express the degree of correlation of each illuminant. 

 
(a) (b) 

l

 

Fig.3-4. Solving for color constancy in three stages. (a) Histogram the 

chromaticities in the image. (b) Correlate this image vector v with each column 

of the correlation matrix. (c) This information is used to find an estimate of the 

unknown illuminant, for example, the illuminant which is most correlated with 

the image data. 
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3.2.4 Modified Model 

In the previous section, we have described Finlayson’s color by correlation method                  

for illuminant estimation. Although this method have resulted in a good result to 

illuminant estimation. For the application in digital still camera, this algorithm was 

too complex and needed lots of memory. Here, we modified their method to simplify 

the illuminant estimation parameters by making assumption that the chromaticity 

probability distribution converges to Gaussian distribution. 

 Gaussian model 

Many patterns-from fish to handwritten characters to some speech sounds-can be 

viewed as some ideal or prototype corrupted by a large number of random 

process. Therefore, the Gaussian is often a good model for actual probability 

distribution. A univariate normal distribution has roughly 95% of its area in the 

range σ2≤− ux , as shown in Figure 3-5.[24]. The general multivariate normal 

density in d dimensions is written as:  

 

                                                        (3-4) 

where: 

         x = (x1, x2, …, xd)t      (t stands for the transpose vector form) 

            μ = (μ1, μ2, …, μd)t mean vector 

         Σ = d*d covariance matrix 

            |Σ| and Σ-1 are determinant and inverse, respectively 
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Therefore, the parameters for illuminant estimation has reduced to mean and 

covariance matrix. 

 

 
           (a)                                   (b) 

Fig.3-5 A univariate Gaussian distribution (a) two-dimensions and              
(b) three-dimension. 

 

 Classifier  

We model the chromaticity probability distribution by Gaussian model, and the 

paramemers now are mean and covariance matrix. Once we get an image whose 

illuminant we wish to estimate, we perform the following two steps: First, we 

determine which image colors are present in the image. This information is coded in a 

mean value. Then, we determine a measure of the correlation between this image 

mean value and each of the possible illuminants. The usual expression of a correlation 

is as a vector distance which defined as follow[24]: 

   1. Euclidean distance: 

)()(2 uxuxd t −−=   

                                               (3-6)   

2. Mahalanobis distance: 

 

                          (3-7) 

)()( 12 uxuxr t −−= ∑ −

If the distance is miniman, then they are strongly correlated.  
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3.3 Color Correction Method 

 

The color correction method is based on summarizing the ratio of R, G, and B sensor 

responses under different illuminants. The camera responses to all gray surface 

response on Macbeth color checker are calculated for an illuminant at each reference 

color temperature. These values are used to define two functions of color temperature: 

 

k1(T) =R(T)/G(T) , k2(T) =B(T)/G(T)            (3-8) 

 

In this example, the functions are computed using responses from all the gray surfaces. 

Shoji Tominaga [22] have experimented with variations of this formula, including 

methods that emphasize the white surfaces. Several different methods produce similar 

results. The color image acquired at one color temperature can be rendered as an 

image at another temperature by using k1 and k2. Let ［R(T0), G(T0), B(T0)］ be the 

RGB values for each pixel at estimated color temperature T0. The RGB values at any 

temperature T can be estimated as 

 

(R, G, B) = (R(T0)k1(T)/k1(T0), G(T0), B(T0)k2(T)/k2(T0)   (3-9) 
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3.4 Summary 
 

The present chapter has analyzed two related issues concerning scene illumination. 

First, we considered the classification of color temperature from a single image. We 

have introduced a modification of the correlation method for illuminant estimation. 

The original correlation method (Finlayson’s method) used reference gamuts defined 

in the chromaticity plane. The estimation performance is improved by making 

assumption that chromaticity probability distribution converges to Gaussian 

distribution. The improvement occurs because the illuminant estimation parameters is 

reduced and saved hardware memory in DSC. The color correction method is based 

on summarizing the ratio of R, G, and B sensor responses under different illuminants. 

Both of R and B gains are defined as a function of color temperature. The color 

correction can be performed in a simple way using the lookup table. The proposed 

method can be applied to a variety of real scenes. The precision of the algorithm was 

compared using experimental data obtained with a calibrated camera and real images 

of outdoor scenes which will be discussed in next chapter.  
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