Contents

Chinese Abstract	Ι
English Abstract	III
Acknowledgment (Chinese)	V
Content	VI
Table Captions	VIII
Figure Captions	IX
Chapter.1 Introduction	
1.1 Background	1
1.2 Overview of grain control technologies	2
1.3 Introduction of diamond like carbon (DLC)	3
1.4 Laser crystallization mechanisms	3
1.5 Grain barrier carrier transport mechanism under	er high lateral
field In poly-Si TFTs	4
1.5.1 Seto's model	4
1.5.2 Possible grain boundary carrier transport	mechanism
in poly-Si TFTs	6
1.6 Motivation	9
1.7 Thesis outline	10
Chapter.2 Experimental and Material Analysis	
2.1 Instrument	12
2.1.1 Introduction of laser crystallization instru	iment 12
2.1.2 Introduction of Raman	13
2.2 Diamond like carbon characteristics	13
2.2.1 Diamond like carbon deposition	13

	2.2.2 Material analysis	13
2.3	Amorphous silicon thin film with and without	
	capped DLC crystallized by ELA	15
	2.3.1 Sample fabrication and Laser irradiation	15
	2.3.2 Material analysis	16
2.4	Crystallization mechanism for 1000A a-Si with	
	heat retaining Layer of DLC	18
Chapter.	3 Analysis of Kink Effect in Poly-Si TFTs	
3.1	Possible kink effect related mechanisms	20
3.2	Device Fabrication	20
3.3	Parameter extracted method	21
3.4	Electrical characteristics	22
	3.4.1 Different laser crystallized quality	22
	3.4.2 Different bias voltage	24
	3.4.3 Different laser crystallization	24
	3.4.4 Kink current	25
Chapter.	4 Conclusion	27
Referen	Reference	
Tables		

Figures

Table Captions

- Table I.The average grain size of different laser energy (scan pitch fixed to 2um)
- Table IIThe trap density of ELA $(380mJ/cm^2)$ and SSL with laser energy density of $415mJ/cm^2$ to $507mJ/cm^2$.

Figure Caption

Chapter 1

Fig.1-4-1	The simple schematic diagram of melted silicon (a) flow from the edge
	to the middle (b) flow from the middle to the edge during
	crystallization

- Fig.1-5-1 The distribution of the charges in poly-Si
- Fig.1-5-2 The relationship between energy barrier height and gate voltage
- Fig.1-5-3 The output characteristic of device before and after passivation
- Fig.1-5-4 The "activation energy" is from this charged trap energy level to the conduction band edge

Chapter 2

and the second

- Fig.2-2-1 The reflectivity of DLC film. The thickness of DLC is 100nm
- Fig.2-2-2 The transmittance of DLC film. The thickness of DLC is 100nm
- Fig.2-2-3 The Raman spectrum of DLC before and after laser irradiated by 300 to $500mJ/cm^2$
- Fig.2-2-4The calculated absorptivity of DLC films before and after laserirradiation with laser energy density of 300 and $500mJ/cm^2$
- Fig.2-3-1The cross-section of sample A. The space between DLC pattern are3,6,10,20,30,50um and the length of DLC are 4,6,8,12,16,20,30,60um
- Fig.2-3-2 (a) The cross-section of sample B. (b) The cross-section of reference of sample B
- Fig.2-3-3 The optical picture, of sample A with the laser energy of (a) $400mJ/cm^2$ (b) $500mJ/cm^2$ (c) $600mJ/cm^2$
- Fig.2-3-4 The AFM result of the region near the middle of the DLC patterns

- Fig.2-3-5 SEM image of sample A with laser energy density of (a) $400mJ/cm^2$ (b) $500mJ/cm^2$ (c) $600mJ/cm^2$
- Fig.2-3-6 (a) The position of Raman irradiated (b) The Raman spectra of different position which is shown as (a)
- Fig.2-3-7 The Raman result of sample A with the laser energy of (a) $400mJ/cm^2$ (b) $500mJ/cm^2$ (c) $600mJ/cm^2$
- Fig.2-3-8 The Raman spectra for sample B at the position of poly-silicon near DLC patterns with the laser energy of (a) 500mJ/cm² (b) 600 mJ/cm²
 (c) The Raman spectra for the reference sample of sample B without DLC patterns
- Fig.2-4-1 The schematic diagram of the proposed crystallization process
- Chapter 3
- Fig.3-2-1 The cross-section of view of poly-Si TFT with self-align source/drain

ANIMAR DE LA COMPANY

- Fig.3-3-1 The saturation voltage at various gate voltages can be defined from the "first" minimum points of the conductance
- Fig.3-3-2 The kink current I_{KINK} can be evaluated by using the drain current at high drain voltage to minus the rectified saturation current, such that $I_{KINK}=I_D-I_{D,SAT}$
- Fig.3-3-3 Arrhenius plot of the drain current of TFT with different gate voltages and $V_{DS}=0.1V$. The slope of each line defines the activation energy at the grain boundary
- Fig 3-3-4 The average trap density was extracted from slope of this plot
- Fig.3-4-1 The model of grain boundary accelerated electron. The grain boundary barrier height is fixed. (a) carriers are accelerated by the grain boundary energy trop (b) larger grain size shows a gentler energy drop

- Fig.3-4-2 (a) The grain boundary barrier height with the laser energy density of $415mJ/cm^2$ (b) The multiplication factor with the laser energy density of $415mJ/cm^2$
- Fig.3-4-3 (a) The grain boundary barrier height with the laser energy density of $438mJ/cm^2$ (b) The multiplication factor with the laser energy density of $438mJ/cm^2$
- Fig.3-4-4 (a) The grain boundary barrier height with the laser energy density of $507mJ/cm^2$ (b) The multiplication factor with the laser energy density of $507mJ/cm^2$
- Fig.3-4-5 The average trap density of SSL with different grain sizes (from 0.1*um*-1*um*)
- Fig.3-4-6The multiplication factor of laser energy density form $415 \sim 507 mJ/cm^2$.Multiplication factor decreases with the laser energy density increases
- Fig.3-4-7 The band diagram of the grain boundary accelerated electron affect by the drain voltage
- Fig 3-4-8 The multiplication factor increases with the drain voltage. And the larger laser energy density shows less serious kink effect.
- Fig.3-4-9 The multiplication factor is decreases with the gate voltage increases. Because of the effective lateral electric field lowering and the effective grain barrier height reduction
- Fig.3-4-10 The multiplication factor of different laser energy density for a fixed $V_D V_{D,SAT}$ value. The multiplication factor of a larger laser energy poly-Si film achieve a negligible small value faster
- Fig.3-4-11 The grain barrier height of ELA and SSL $415mJ/cm^2$ silicon films. The grain barrier height of ELA is larger than the SSL $415mJ/cm^2$ one

- Fig.3-4-12 Under the same lateral electric field, the multiplication factor of ELA is larger than the one of SSL $415mJ/cm^2$.
- Fig.3-4-13 The grain barrier height of ELA and SSL 415~ $507mJ/cm^2$. The grain barrier height of SSL is smaller than ELA. And also the grain sizes with laser energy density of $438mJ/cm^2$ and $507mJ/cm^2$ are much larger than ELA.
- Fig.3-4-14 The grain size of SSL $438mJ/cm^2$ and $507mJ/cm^2$ is larger than ELA and the grain barrier height is also small than ELA. So the multiplication factor of SSL $438mJ/cm^2$ and $507mJ/cm^2$ is much smaller than ELA's.
- Fig.3-4-15 The kink current of SSL with laser energy density from $415mJ/cm^2$ to $507mJ/cm^2$

