
Chapter One 

Introduction 

Randomness and random numbers have traditionally been used for a variety of 

purposes, for instance, games. With the advent of computers, people recognized the need 

for a means of introducing randomness into a computer program. Surprising as it may 

seem, however, it is difficult to get a computer to do something by chance. A computer 

running a program follows its instructions deterministically and the result is therefore 

completely predictable. 

Computer engineers chose to introduce randomness into computers in the form of 

pseudo-random number generators. As the name suggests, pseudo-random numbers are 

not truly random. Rather, they are computed from a mathematical formula or simply 

taken from a pre-calculated list. A lot of research has devoted to the pseudo-random 

number theory such that many modern random number generating algorithms are so good 

that the generated numbers look like they were truly random. However, as expected, 

pseudo-random numbers have the characteristic of predicability, meaning the whole 

sequence can be predicted if one knows where in the sequence the first number start. 

Pseudo-random numbers are used for computer games but also used on a more 

serious scale for the generation of cryptographic keys, for simulation, and for some 

scientific experiments. For cryptographic use, however, it is important that the numbers 

used to generate keys are not just seemingly random; they must be unpredictable. All 

strong (meaning difficult to crack) cryptography requires truly random numbers to 

generate keys. For simulation, there is a whole set of numerical "Monte Carlo" techniques 

to base on. Simulation studies are commonly used in evaluation of newly developed 

statistical methods, or when analytical evaluation of quantities of interest is extremely 

difficult. Therefore, quality of any simulation study depends heavily on the quality and 

quantity of the uniform random numbers generated. For example, if one conducts a 

simulation study with a large number of repetitions once the generator runs through its 

period, the generated random numbers start cycling and no longer “independent.” 

Selection of the seed does not remedy this problem. The seed is the point at which the 

generator starts in a sequence of period k. Most random number generators have a default 
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seed of 0 and allow alternative seeds set by the user. A seed of 0 typically invokes an 

algorithm that calculates the take-off point within the sequence from the system date and 

time of the computer. Thus, running a program at different times, it will generate different 

sequences of numbers; but within each sequence, intrinsic periodicity is unavoidable. Thus, 

having a very long cycle becomes an essential requirement for a good random number 

generator (RNG) nowadays. 

In Chapter 2, we introduce the following pseudo-random number generators. LCG 

(Linear Congruential Generator) was proposed by Lehmer in 1949 [16]. It is one of the 

oldest, most studied, and most popular methods for generating random numbers [11]. As 

the computational power gets cheaper, increasingly long sequences of random numbers 

are used in modern applications. Reliable generators with longer periods become a 

necessity. MRG (Multiple Recursive Generator) extends the LCG by higher order recursion 

to obtain longer period and other good properties. However, MRG has a drawback in 

computing efficiency: its computing time is about k times slower than that of LCG. Viewing 

this, Deng and Lin [3] proposed FMRG (Fast MRG) in 2000 by setting as many coefficients 

iα  in MRG to be 0 or ± 1 as possible to improve the computing efficiency. Continually 

improving the generators, Deng and Xu [4] recently proposed a system of 

High-dimensional, Efficient, Long-cycle and Portable (HELP) uniform random number 

generators named DX random number generators. It is based on some special forms of 

MRG corresponding to primitive k-th degree polynomials.  

The main objective of this study is to investigate the performance of the DX random 

number generators empirically. We test the DX RNGs by the Diehard test suite, which is a 

collection of test programs provided by Marsaglia [18]. In Chapter 3, we describe the 

experimental design of our empirical study. Results are given in Chapter 4. As a result, the 

DX random number generators passed almost all the tests in Diehard. Pierre L’Ecuyer [13] 

once said that no random number generator can pass all statistical tests and a proper way 

to evaluate RNGs is: a bad RNG is one that fails simple tests, whereas a good RNG is one 

that fails only complicated tests. In this sense, we may claim that the DX RNGs is a system 

of good random number generators based on the results of our empirical study. 
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Chapter Two 

Literature Review 

2.1 Pseudo-random Number Generators 

A pseudo-random number generator (PRNG) is a deterministic algorithm that 

generates a sequence of numbers with little or no discernible pattern in the numbers. Any 

computer program can only generate pseudo-random numbers. Thus, the outputs of 

pseudo-random number generators are not truly random. They can only approximate 

some of the properties of random numbers. Nonetheless, pseudo-random number 

generation is an important part of modern computing, from cryptography to Monte Carlo 

methods for simulating physical systems. Careful mathematical analysis is required to 

ensure that the generated numbers are sufficiently “random”. 

Most such algorithms attempt to produce samples that are uniformly distributed. 

Because a PRNG is a deterministic algorithm, its output has certain properties that a truly 

random sequence would not exhibit. One of these is the guaranteed periodicity. A 

generator that is not periodic can be designed, but its memory requirements would slowly 

grow as it runs [11]. In addition, a PRNG can start from an arbitrary starting point, or seed 

state, and will always produce an identical sequence from that point on. In practice, many 

PRNGs exhibit artifacts that may cause them to fail some statistical significance tests. 

These include: shorter than expected periods for some seed states, poor equi-distribution 

property, successive values may not be independent, some bits are more random than 

others, and lack of uniformity. 

2.2 Linear Congruential Generators: LCG 

An LCG has three integer-valued parameters denoted by B, C, and M, respectively. 

This class of generators uses a method similar to the folding schemes in chaotic maps. Its 

basic form is 

( )CBXX ii += −1  mod M, , 1≥i

where B and C are relatively prime numbers. B is known as the multiplier, C is the 
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increment, and M is the modulus. When C=0, the LCG is called the multiplicative LCG 

(MLCG). 

The choice of B=16807, C=0, M=2147483647 is a very popular set of parameters for 

the LCG. These parameters were published by Park and Miller [20]. This particular 

generator, often known as the minimal standard random number generator, is often but 

not always the generator used for the built-in random number function in compilers and 

other software packages. 

There are two characteristics of LCGs. One is Periodicity and the other one is Parallel 

Hyperplanes. Given an initial seed , there is some 0X Mn ≤  such that . We say 

the periodicity of this LCG is the least such . The existence of period can be proved by a 

simple application of the Pigeonhole Principle [1]. The other characteristic is: when we plot 

the set of k-dimensional points  (for all i) in the k-dimensional space, 

we will observe that all points fall mainly on the hyperplanes. Marsaglia [17] found that 

when taken in pairs, triplets, or n-tuples, the random numbers often fall on only a few 

planes in n-space. There is actually more than one set of parallel hyperplanes if viewing the 

k-dimensional space from different orientations. 

0XXn =

n

),,,( 11 −++ kiii xxx L

2.3 Multiple Recursive Generators: MRG 

As mentioned before, reliable generators with long periods are in demand for many 

modern applications [13]. MRGs is a popular class of such generators, which is based on 

the higher order recursion: 

( )kikii XXX −− ++= αα L11  mod M, . ki ≥

For a given prime modulus M, such generators can achieve the maximum period of 

length 1−kM . And good ones have much better structural properties than the simple 

MLCG with the same modulus, while being almost as fast to compute and easy to 

implement as an LCG [12]. 

We say that a RNG has a “s-distribution property”, if every s-tuple of numbers appears 

exactly the same number of times, with the exception of the all-zero tuple that appears one 

time less. In that case, LCG is 1-distributed while MRG with maximum period of 1−kM  is 

k-distributed. 
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Similar to LCGs, the set of all overlapping s-tuples of values ( ), in which 1, −+ sii UU L

MXU ii /= , forms a lattice structure in  (for details, see [2, 7, 8, 14]). MRGs of order 

k behave in  like LCGs in . The lattice structure may be analyzed by the spectral 

test. Recent computer searches for good parameters can be found in [10, 20]. Further 

theoretical properties of MRGs are discussed in [9]. 

s]1,0[

skR kR

2.4 Fast Multiple Recursive Generators: FMRG 

Seeing the fact that the computing time of an MRG is about k times slower than that of 

an LCG, Deng and Lin [3] proposed to set as many terms of iα  in MRG to be 0 or ± 1 as 

possible to improve the computing efficiency. They especially proposed a random number 

generator called FMRG, which is a special form of the MRG with the maximum period of 

1−kM . The basic form of the FMRG is 

( )1−− ±= ikii XBXX  mod M , . ki ≥

It generates a new number from the last generated number and the number generated k 

steps earlier. The detail of searching FMRG-k is given in [3]. It is easy to see that the 

computing time of LCG and FMRG is almost the same since it takes the same time to add a 

constant increment C in LCG as to add a variable increment  in FMRG. Compared to 

a general MRG, an FMRG is fast because it requires only one multiplication and one 

addition/subtraction. Deng and Lin [3] also proposed to restrict the multiplier B (say, 

1−iX

MB ≤ ) for efficiency and portability. 

2.5 A System of Generators by Deng & Xu: DX 

A necessary condition for an MRG to have a good lattice structure is that the sum of 

squares of coefficients iα  is large [15]. FMRG only has two nonzero coefficients B and 1± . 

Therefore, it seems necessary to choose a large value for B or to add more nonzero terms to 

obtain a good lattice structure [4] . 

Extending the idea of FMRG, Deng and Xu [4] proposed a system of 

High-dimensional uniformly, Efficient, Long-cycle, and Portable uniform random number 

generators called DX-k-s. DX-k-s is an MRG with conditions that its corresponding 

primitive polynomial has s terms of common multiplier iα =±B and the rest of iα =0. They 
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also required the indices of nonzero terms are about k/(s-1) apart. Let  denote the 

integer part of a real number x. Then the nonzero coefficients can be written as  

[ ]x

( )[ ] ( )[ ] ( ) ( )[ ] Bkskssksk ====== −−−− ααααα 1/21/21/1 L  

and the general form of DX-k-s is 

( )[ ] ( )( )1]1/[)1/(2 −−−−−−− ++++= iskisksikii XXXXBX L  mod M, . ki ≥

One big difference between FMRG and DX is that DX requires a common coefficient B 

for each term. The reason for such a choice is that a computer multiplication consumes 

much more time than an addition or subtraction. By requiring a common coefficient in DX, 

it only needs one multiplication so that high efficiency can be achieved. 

The following are FMRG and some DX-k-s: 

1. FMRG-k ( 1α  = 1, kα  = B) 

( )1−− += ikii XBXX  mod M , . ki ≥

2. DX-k-2 ( 1α  = kα = B) 

( )1−− += ikii XXBX  mod M , . ki ≥

3. DX-k-3 ( 1α  = ]2/[kα  = kα  = B) 

[ ]( )12/ −−− ++= ikikii XXXBX  mod M , . ki ≥

4. DX-k-4 ( 1α  = ]3/[kα  = ]3/2[ kα  = kα  = B) 

[ ] [ ]( )13/3/2 −−−− +++= ikikikii XXXXBX  mod M , . ki ≥

Deng and Xu [4] conducted a complete search for DX-102-s and DX-120-s with s=1, 2, 

3, 4 for MB <<0 . All generators (many choices of B) of DX-102-s and DX-120-s with 

different s are provided on their web site [5].  
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A particular generator, DX-1511-4 with M= =2147427929 and B=521816, 

was mentioned in [4] : 

55719231 −

( 150310071511521816 −−−− )+++= iiiii XXXXX  mod 2147427929 , .  1511≥i

This generator has a very long period of  and equi-distributed up to 

1511 dimensions.  

5.141001511 101 ≈−M
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Chapter Three 

An Empirical Study 

3.1 Introduction 

The main objective of this study is to investigate the empirical performance of the 

DX-k-s generators. We would also like to know how the parameters (k, s, B) affect the 

empirical performance of DX-k-s generators. In this chapter, we will describe our program 

and the design of experiments for our empirical study. 

3.2 C program 

A C code for the implementation of DX-120 is provided by Deng and Xu at the website: 

http://www.cs.memphis.edu/~dengl/dx-rng/. Only slight changes on their C program are 

needed for implementing DX-102 and FMRG with different values of k. Appendix I lists 

the C code used in our study. 

All tests in Diehard suite require users to provide a large binary file of 32-bit integers 

to test. However, the random numbers produced by the original C code of Deng and Xu are 

floating point numbers in the interval of (0, 1). We multiply these numbers by 4294967296 

(= ) to produce a long sequence of 32-bit integers to creat a binary file for Diehard. 322

3.3 Initial Seeds for 5 Replicates 

In this study, we generate 5 replicates for each testing condition. Every generator 

needs an initial seed to start the process of producing random numbers. We use the 

popular LCG with B=16807, C=0, M=231-1 to produce 5 numbers to serve as the initial 

seeds for 5 replicates. We take 12345 as an initial seed for the LCG to produce the other 4 

values: 770088852, 1888542194, 739539393, and 1037150863. There is no particular 

reason for using these 5 initial seeds, but we believe that the behavior of a good random 

number generator would not be affected by initial seeds. 

3.4 Selection of B’s  

Deng and Xu [4] argued that the DX-k-s generators using large B should have a better 
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theoretical property and, hopefully, a better empirical performance. We choose some small 

and some large B’s for each DX-k-s generators in our experiments. Deng and Xu [5] have 

provided many values of B for each class of DX generators. For each of DX-102-s and 

DX-120-s, s=1,2,3,4, 10 different RNGs are selected, 5 RNGs with larger B and the other 5 

RNGs with smaller B. For each FMRG (with k=2, 3, 4), we select 10 RNGs in the same 

manner. Then we have 110 RNGs in total. The listings of the selected B values are given in 

Table 1. 

3.5 KS-test in Diehard Test Suite 

KS-test is the Kolmogrov-Smirnov test for determining if two distributions differ 

significantly. The KS-test has the advantage of making no assumption about the 

distribution of data. It is non-parametric and, therefore, distribution free. Essentially, any 

test in Diehard suite tries to determine whether a set of N real numbers is randomly drawn 

from a uniform distribution. The KS-test in Diehard suite calculates the distance between 

the empirical and theoretical distribution functions and returns the probability associated 

with the observed value of the Anderson-Darling Statistic. It is a modification of the 

original KS-test and gives more weight to the tails than does the original KS-test. For most 

people, it is sufficient to know how evenly the generated random numbers are distributed. 

We denote this returned probability by KSTEST in this paper.   

3.6 Tests in Diehard Suite 

We run all 15 tests in Diehard suite as listed below: 

1. Overlapping Sums Test (Test 1) 

2. Runs Test (Tests 2a, 2b, 2c, 2d) 

3. Random Spheres Test (Test 3) 

4. Parking Lot Test (Test 4) 

5. Birthday Spacings (Test 5) 

6. Count the 1’s in Specific Bytes (Test 6) 

7. Ranks of 6x8 Matrices (Test 7) 

8. Ranks of 31x31 and 32x32 matrices (Tests 8a, 8b) 
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9. Count the 1’s in a Stream of Bytes (Tests 9a, 9b) 

10. Monkey Tests on 20-bit Words (Test 10) 

11. The Craps Test (Tests 11a, 11b) 

12. Minimum Distance Test (Test 12) 

13. Overlapping Permutations (Tests 13a, 13b) 

14. Sparse Occupancy Tests OPSO, OQSO, DNA (Tests 14a, 14b, 14c) 

15. The Squeeze Test (Test 15) 

16. Summary (Summary Test)  

Every test returns some p-values and at least a summary KSTEST value. Some tests 

(e.g., Tests 4, 6, and 14) only display several p-values but no KSTEST. So we wrote a simple 

program to combine the displayed p-values into a KSTEST value [see Appendix III]. This 

simple program is a part of the original C code in Diehard where it is used to calculate the 

KSTEST and returns p-values to determine whether those p-values follow the specified 

distribution or not. We have verified the correctness of the program by the p-values and 

KSTEST of several tests produced by Diehard. Some tests have more than one KSTEST 

value, because these tests have subtests or repeat twice. Hence, there will be in total 25 

KSTEST values collected when testing a sequence of numbers. 

We collect the 25 KSTEST values for each testing condition. Then we use S-plus to 

perform analyses of variance on these KSTEST values to study the effects of the three 

parameters, k, s, and B, on the performance of the RNGs. 

3.7 Design of the Experiment 

With the KSTEST values collected for each RNG and each testing condition (i.e., 

seed/B) under study, we can perform the following analyses to study the effects of the 

design parameters, k, s, and B. 

(1) For DX-102-s (or DX-120-s) generators, we can study the effects of s and B. The 

factor s has 4 levels, 1, 2, 3, 4, while B has two levels, small and large. The design is a 4×2 

full factorial design. The data consist of the results of 15 tests with 5 replicates for each of 

the 8 (=4×2) treatments. 
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(2) For FMRG-k generators, we can study the effects of the factors k and B. The design 

is a 3×2 full factorial design with 3 levels for factor k (=2, 3, 4) and two levels for factor B 

(small and large). 

(3) Combining the data of DX-102-s and DX-120-s, we can study the effects of three 

factors, k, s, and B. The design is a 2×4×2 full factorial design, where factor k has two 

levels (102 and 120), s has four levels (1, 2, 3, and 4), and B has two levels (small and 

large). 

(4) Combining all the KSTEST data, which now consist of the results of 11 RNGs (4 

DX-102-s, 4 DX-120-s, and 3 FMRG-k generators). We can study the effects of two factors, 

RNG and B. The design is clearly an 11×2 full factorial design. 

In Chapter 4, we will report the results of our experiments and analyses. 
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Chapter Four 

Results of the Empirical Studies 

A good random number generator should have some nice theoretical property and 

they should be verified through rigorous empirical tests. A collection of statistical tests 

used to evaluate random sequences was given in Diehard test suite, which was developed 

by George Marsaglia (see, http://stat.fsu.edu/pub/diehard). The original program was 

written in FORTRAN and it was not very portable.  DiehardC 1.03, created by Scott 

Nelson [19], is a re-implementation of the original Diehard and is written in C. We use 

DiehardC 1.03 to test our random number generators and the results are reported in this 

chapter. 

4.1 Tests of Random Numbers and Our Experiment Results 

To interpret the results produced by Diehard, Nelson [19] stated that 

“A p-value is an attempt to normalize the test results. A p-value should be uniform on 

[0, 1) if the input file contains truly independent random bits. Those p-values are 

obtained by p=F(X), where F is the assumed distribution of the sample random 

variable X---often normal. But that assumed F is just an asymptotic approximation, for 

which the fit will be worst in the tails. Thus you should not be surprised with occasional 

p-values near 0 or 1, such as .0012 or .9983. When a bit stream really FAILS BIG, you 

will get p's of 0 or 1 to six or more places. By all means, do not, as a Statistician might, 

think that a p < .025 or p> .975 means that the RNG has "failed the test at the .05 level". 

Such p's happen among the hundreds that DIEHARD produces, even with good RNG's. 

So keep in mind that "p happens".” 

All the DX random number generators pass almost all the tests in Diehard in general. 

The descriptions of the 15 tests are given in Appendix III and their test results are given in 

Tables 3-25. Those p-values are the KSTEST values described above. B1 to B10, of each DX 

are the 10Bs given in Table 1 ranked from small to large.  

The KSTEST values in Tables 3-25 seem spread on the interval (0, 1). Note that, we 

omit the table for the test of “Count the 1’s in a Stream of Bytes” (i.e., Tests 9a and 9b), 

because all KSTEST values produced by this test are all equal to 1. By the description of 
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Diehard, it is usual to see few occurrences of 0 or 1 even when the sequence is random and 

uniformly distributed. For the whole Diehard test suite, DX can be considered as “pass” 

(see the results for the Summary test); but for this particular test, DX fails. This 

phenomenon can be explained as follows. 

Notice that the “Count the 1’s in a Stream of Bytes” test is specifically designed for 

32-bit generators (see Appendix III). DX random number generator with modulus 231-1 is 

only capable of producing 31 random bits and the least significant bit will be always 1 when 

treated as a 32-bit integer. Therefore, this particular test will definitely fail the DX random 

number generators with modulus 231-1. Many kinds of adjustments for these non-32-bit 

RNG are described by Nelson [19]. One simple remedy is to multiply the floating point by 

232-1001 (=4294966295) instead of 232 (suggested by Diehard) so that DX can produce 

some 0 and 1 in its least significant bit. Since the test results of DX RNGs by Diehard suite 

are similar, we have only re-performed the DX-120-s, s=1, 2, 3, 4 with multiplier 232-1001 

and seed 12345 in this test. Indeed, the returned KSTEST values, provided in Table 47, are 

not all 1 anymore and indicate that the RNG. passes this test. In fact, the role of the 

multiplier is to fit the requirement of Diehard, it does not affect the essence of RNGs. 

Tables 3-25 give the KSTEST values of all the tests we perform in our study. We 

count the frequencies of the KSTEST values less than 0.05 for each test and RNG. Figure 1 

and 2 give the bar charts of these frequencies grouped by tests and RNGs, respectively. It is 

observed that the “Overlapping Permutations” test (Tests 13a and 13b) fails RNGs more 

frequently than other tests. The Overlapping Permutations test is also designed for 32-bit 

RNGs. This may be the reason why this test fails the DX RNGs more frequently.  

Test 16 is a summary test. It collects 234 p-values produced by Diehard, and test 

them by a Kolmogrov-Smirnov test. Figure 1 shows that there is no of KSTEST value less 

than 0.05 in summary test (Test 16). In this sense, DX RNGs have passed Diehard test 

suite. From the results of our study, the overall performance of DX RNGs is good. 

4.2 ANOVA & Discussion 

To investigate if the performance of RNG may be affected by its design parameter, we 

collect the KSTEST values to run the four analyses of variance described in Subsection 3.7. 

The ANOVA reports of each analysis are provided in Tables 41-45. From these ANOVA 

tables, we can see that there is no apparent evidence that any factor affects the KSTEST 
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values with k=102, 120, and s=1, 2, 3, 4. In other words, the performance of DX random 

number generators in Diehard test suite is not affected by the parameters k=102, 120, s=1, 

2, 3, 4, and B=small, large. The results also indicate that DX-102-s, DX120-s, and FMRG-k 

have similar performance when tested by Diehard suite. 

4.3 A Comparison Study with LCG 

To compare DX with the commonly used LCG, we also run the Diehard test suite on 

LCG. To generate 5 random sequences, we use the same 5 initial seeds. B’s (7, 11, 14, 22, 28, 

16807, 16810, 16812, 16814, 16820, 46259, 46260, 46266, 46267, 46268) are chosen and 

divided into three groups (small, medium, and large). The resulting KSTEST values are 

given in Tables 26-40. Results show that LCG performs poorly for several of Diehard tests. 

Based on the “pass” definition of Diehard, LCG fails. FISH LCG with B=742938285, 

950706376, 1226874159, 62089911, and 1343714438 were recommended by Fishman and 

Moore [6] because of its excellent lattice structure. We also run Diehard test suite on these 

5 B’s with initial seed=12345 and find out that these 5 RNGs with excellent lattice stucture 

still fail on many tests in Diehard. The results are provided in Table 48. 

Table 46, the ANOVA report of LCG, it shows that B is a significant factor for the 

performance. The KSTEST values of Diehard test suite are apparently affected by the B 

values. We remarked Tests 1, 5, 8, 9, 10, 11a, summary, have the KSTEST values equal or 

close to 1, so that factor B shows no effects. 

4.4 DX-1511-4 with M=2 -55719 and B=521816 31

Generator DX-1511-4 with M=  and B=521816 was particularly mentioned 

by Deng and Xu [4]. Deng and Xu emphasized that it has a very long period and is 

equi-distributed up to 1511 high dimensions. We test this RNG with the Diehard test suite. 

With the same 5 initial seeds, the KSTEST values are given in Table 2. These KSTEST 

values exhibit good performance. The RNG passes all the tests. We note that DX-1511 

passes the Count the 1’s in a Stream of Bytes test. A reason is that it is not a generator of 

modulus 2

55719231 −

31-1. 
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Chapter Five 

Conclusion 

In this information age, the computing power keeps on enhancing and the large scale 

simulation studies become very common. Random number generators with long period 

and good statistical properties become essential for many applications and simulation 

studies. In this thesis, we first review the DX-k-s generators proposed recently by Deng 

and Xu [4]. Then we produce random numbers and test them by the Diehard test suite for 

each RNG under study. While the empirical testing task is tedious, it is an essential step to 

supplement to the theoretical property and to ensure the quality of the DX generators. 

In our study, DX generators with k=102, 120 and s=1, 2, 3, 4 under study perform 

quite well with Diehard test suite. The KSTEST values outputted by Diehard are further 

analyzed by ANOVA. The results indicate that the parameters, k, s, and B, do not 

significantly affect the performance, which means that each DX generator has similar 

performance with Diehard test suite. This is a good news to RNG users since there is no 

need to select a particular B to get a better RNG. We have particularly empirically studied 

the DX-1511-4 with M=231-55719=2147427929 and B=521816. This generator has a very 

long period of M 1511 ≈  1014100.5 and is equi-distributed up to 1511 dimensions. Very few 

RNGs pass all the tests in Diehard, and DX-1511-4 does. We have also investigated the 

performance of the commonly used LCG with Diehard and found that the LCGs under 

study perform poorly and that factor B affects the performance significantly. 

While the study of random number generator is tedious and low-tech, it plays an 

important role in this information age. “The mechanic, who wishes to do his work well, 

must first sharpen his tools.” Confucius said. From the empirical testing results based on 

Diehard test suite, we believe that the DX generators, from k=2 to 1511, are good RNGs and 

worth a recommendation. 
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Appendices 

Appendix I 
This C program produces a binary file of random numbers used as an input to the Diehard 
test suite. We first generate a sequence of uniform DX random numbers using the C code 
provided by Deng and Xu [5], and then transform it into a 32-bit random number 
sequence by multiplying the numbers with a multiplier. Diehard suggested a multiplier of 
2 . 32

 

/*  u_help.c : u_help generates uniform random numbers (0,1) using HELP-120-s 
    For description, see Deng and Xu (2002)*/ 
#include <stdio.h> 
#include <stdlib.h> 
 
#define KK 120 
#define PP 2147483647 /* 2^31-1 */ 
#define HH 1/(2.0*PP)  
#define B_LCG 16807  /* for LCG */ 
 
/* _int64/quad_t:64-bit integers, which is machine dependent, see sys/types.h*/ 
/* use  _int64/quad_t (64-bit integers) only if _int64/quad_t is defined. */ 
/*_int64 used in MS-C, quad_t used in GNU-C                                     */ 
/* Note: operations with _int64/quad_t are faster than that with double   */ 
 
#if defined(_WIN32) 
typedef _int64 XXTYPE; 
#define DMOD(n, p) ((n) % (p)) 
#elif defined(_GNUC_) 
typedef quad_t XXTYPE; 
#define DMOD(n, p) ((n) % (p))  
#else 
#include <math.h> 
typedef double XXTYPE; 
#define DMOD(n, p) fmod((n), (p))  
#endif 
 
/* various B values for u_help */ 
static long BB1[] = {335, 1369, 1916, 2196, 2477}; 
static long BB2[] = {33, 283, 551, 1521, 1902}; 
static long BB3[] = {392, 4907, 5016, 5871, 5888}; 
static long BB4[] = {1441, 1651, 1906, 2543, 3075}; 
static int BBsize[4] = {5,5,5,5}; 
static long* pBB[4] = {BB1, BB2, BB3, BB4}; 
 
/* functions of u_help */ 
typedef double (*PFN_U_HELP)(void); 
double u_help1(void); 
double u_help2(void); 
double u_help3(void); 
double u_help4(void); 
static PFN_U_HELP  pfn_u_help[4] = {u_help1, u_help2, u_help3, u_help4}; 
 
/* internal buffer and status, initialized in su_help() */ 
static long BB ;    /* B value */ 
static PFN_U_HELP  pu_help;  /* u_help function */ 
static XXTYPE XX[KK];   /* buffer */ 
static int II = -1;    /* index */ 
static int IK2;     /* used by u_help3 */ 
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static int IK13, IK23;   /* used by u_help4 */ 
 
/* su_help : Initialization of help-k-s */ 
void su_help(unsigned int seed, int IdxS, int IdxB) 
{ 
    int i; 
    /* use LCG to initialize the sequence */ 
    if(seed==0) seed = 12345;   /* ensure that seed is not zero */ 
    XX[0] = seed; 
    for(i=1; i<KK; i++) XX[i] = DMOD( B_LCG *  XX[i-1],  PP); 
 
    /* initial help-k-s */ 
 if(IdxS <1 || IdxS > 4) IdxS = 4; 
    --IdxS;  --IdxB;   
    if(IdxB <0 || IdxB >= BBsize[IdxS]) IdxB = 0; 
     
    BB = pBB[IdxS][IdxB]; 
    pu_help = pfn_u_help[IdxS]; 
    II = KK-1;       /* running index */ 
    IK2 = KK/2-1;      /* used by u_help3 */ 
    IK13 = KK/3-1;    IK23 = 2*KK/3-1; /* used by u_help4 */ 
     
    printf("\nseed=%d IdxS=%d, IdxB=%d, BB=%d\n", seed, IdxS+1, IdxB+1, BB); 
} 
 
double u_help1(void) 
{ 
    int oldII = II; 
    if(++II >= KK)  II = 0;  /*wrap around running index */ 
    XX[II] = DMOD(BB * XX[II] + XX[oldII],  PP); 
    return ((double) XX[II] /PP) + HH;  
} 
double u_help2(void) 
{ 
    int oldII = II; 
    if(++II >= KK)  II = 0;  /*wrap around running index */ 
    XX[II] = DMOD(BB * (XX[II] + XX[oldII]),  PP); 
    return ((double) XX[II] /PP) + HH;  
} 
double u_help3(void) 
{ 
    int oldII = II; 
    if(++II >= KK)  II = 0;  /*wrap around running index */ 
    if(++IK2 >= KK) IK2 = 0; /*wrap around IK2*/ 
    XX[II] = DMOD(BB * (XX[II] + XX[IK2] + XX[oldII]),  PP); 
    return ((double) XX[II] /PP) + HH;  
} 
double u_help4(void) 
{ 
    int oldII = II; 
    if(++II >= KK)  II = 0; /*wrap around running index */ 
    if(++IK13 >= KK) IK13 = 0; /*wrap around IK13*/ 
    if(++IK23 >= KK) IK23 = 0; /*wrap around IK23*/ 
    XX[II] = DMOD(BB * (XX[II] + XX[IK13] + XX[IK23] + XX[oldII]),  PP); 
    return ((double) XX[II] /PP) + HH;  
} 
double u_help(void) 
{ 
    /* II < 0 only if su_help() is not called earlier */ 
    if(II < 0)  su_help(0, 0, 0);  
    return (pu_help)();   /* call u_help */ 
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} 
 
/* sample main() function */ 
int main() 
{ 
    int i, seed=1037150863, IdxB, runs=2867200, j; 
 unsigned long uuu_help; 
for(j=1;j<=4; j++) 
{ 
    for(IdxB=1;IdxB<=5;IdxB++){     
  static char filename[1002]; 
  FILE *out; 
 
    //printf("Help-120-%d, input 3 integers for: seed, runs, IdxB\n",j); 
    //scanf("%d%d%d", &seed, &runs, &IdxB); 
     
    su_help(seed, j, IdxB);   
 
 printf("Input the file name ::  method=%d  B=%d\n",j,BB); 
 gets(filename); 
 
 out=fopen(filename, "wb"); 
 
    for(i=0; i<runs; i++){ 
  uuu_help=u_help()*4294967296; 
  fwrite(&uuu_help,4,1,out); 
        } 
 } 
} 
    return 0; 
}            
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Appendix II 
This C program is part of the source code in Diehard, and is modified to calculate the 
KSTEST for some tests that do not return a KSTEST value. A sample to calculate the 
KSTEST of DNA test (Test 14c) is produced. 
 

#include <stdio.h> 
#include <iostream.h> 
#include <stdarg.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 
#include <malloc.h> 
 
#define integer long 
#define real double 
#define ulong unsigned long 
#define uint  unsigned int 
 
#define doublereal double 
#undef min 
#undef max 
#define min(a,b) ((a) <= (b) ? (a) : (b)) 
#define max(a,b) ((a) >= (b) ? (a) : (b)) 
 
 
static FILE *output_file1, *output_file2; 
 
#define MAX_PVALUES 240 
static real pvalues[MAX_PVALUES]; 
static int pvalue_count = 0; 
 
 
/* 
   If you are using a 32 bit version of C, you don't need huge, 
   and the normal malloc and free functions work just fine. 
*/ 
 
#define huge 
 
/* 
  Borland C uses the non-standard farmalloc and farfree functions 
*/ 
 
#ifdef __BORLANDC__ 
#define malloc(n) farmalloc((long)n) 
#define free(n) farfree(n) 
#undef huge 
#endif 
 
int acmp(const void *a, const void *b) 
{ 
    if (* (real *)a < *(real *)b) { 
        return -1; 
    } 
    if (* (real *)a > *(real *)b) { 
       return 1; 
    } 
    return 0; 
} 
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void asort(real *list, int n) 
{ 
    qsort(list, n, sizeof(real), acmp); 
} 
 
 
void DNA(real *pp) 
{ const n=31;//******** 
real y[n]; 
 
for(int r=0;r<31;r++) 
y[r]=pp[202+r]; 
 
    real t, z; 
    int i; 
 
printf("DNA\n");   
scanf("%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%
lf%lf%lf%lf%lf%lf%lf", &y[0], &y[1], &y[2], &y[3], &y[4], &y[5], &y[6], &y[7], &y[8], 
&y[9], &y[10], &y[11], &y[12], &y[13], &y[14], &y[15], &y[16], &y[17], &y[18], &y[19], 
&y[20], &y[21], &y[22], &y[23], &y[24], &y[25], &y[26], &y[27], &y[28], &y[29], 
&y[30]); 
 
//y sorting 
    asort(y, n); 
    z = 0.0 - (real) n * n; 
    for (i = 0; i < n; ++i) { 
        t = y[i] * (1.0 - y[n-1 - i]); 
        if (t < 1e-20) { 
            t = 1e-20; 
        } 
        z -= (i + i + 1) * log(t); 
    } 
    z /= n; 
 
    if (z < 0.01) { 
        cout<<"ks-p="<<0.0; 
    } 
 
    if (z <= 2.0 && z>=0.01) { 
        cout<<"ks-p="<<exp(-1.2337 / z) * 2.0 * (z / 8.0 + 1.0 - 
               z * 0.04958 * z / (z + 1.325)) / sqrt(z); 
    } 
 
    if (z <= 4.0 && z>2.0) { 
        cout<<"ks-p="<<1.0 - exp(z * -1.091638) * 0.6621361 - 
                     exp(z * -2.005138) * 0.95059; 
    } 
 if(z>4.0){ 
    /* (z > 4.0) */ 
    cout<<"ks-p="<<1.0 - exp(z * -1.050321) * 0.4938691 - 
  exp(z * -1.527198) * 0.5946335; 
 } cout<<endl; 
} 
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Appendix III 
The description of the tests in Diehard suite provided in [18]. 

1. Overlapping Sums Test 

Integers are floated to get a sequence U(1),U(2),... of uniform (-.5,.5) variables. Then overlapping sums 
S(1)=U(1)+...+U(100), S2=U(2)+...+ U(101),…  are formed. The S's are virtually normal with a certain 
covariance matrix. A linear transformation of the S's converts them to a sequence of independent standard 
normal, which are converted to uniform variables for a KSTEST. The p-values from ten KSTESTs are given 
still another KSTEST. 

2. THE RUNS TEST 

It counts runs up, and runs down, in a sequence of uniform [0,1] variables, obtained by floating the 
32-bit integers in the specified file. This example shows how runs are 
counted: .123, .357, .789, .425, .224, .416, .95 contains an up-run of length 3, a down-run of length 2 and an 
up-run of (at least) 2, depending on the next values.  The covariance matrices for the runs-up and 
runs-down are well known, leading to chisquare tests for quadratic forms in the weak inverses of the 
covariance matrices.  Runs are counted for sequences of length 10,000.  This is done ten times. Then 
repeated.  

3. THE 3DSPHERES TEST 

Choose 4000 random points in a cube of edge 1000. At each point, center a sphere large enough to 
reach the next closest point. Then the volume of the smallest such sphere is (very close to) exponentially 
distributed with mean 120pi/3. Thus the radius cubed is exponential with mean 30. (The mean is obtained by 
extensive simulation). The 3DSPHERES test generates 4000 such spheres 20 times. Each min radius cubed 
leads to a uniform variable by means of 1-exp(-r^3/30.), then a KSTEST is done on the 20 p-values. 

4. THIS IS A PARKING LOT TEST 

In a square of side 100, randomly "park" a car---a circle of radius 1. Then try to park a 2nd, a 3rd, and 
so on, each time parking "by ear". That is, if an attempt to park a car causes a crash with one already parked, 
try again at a new random location. (To avoid path problems, consider parking helicopters rather than cars.) 
Each attempt leads to either a crash or a success, the latter followed by an increment to the list of cars already 
parked. If we plot n the number of attempts, versus k the number successfully parked, we get a curve that 
should be similar to those provided by a perfect random number generator. Theory for the behavior of such a 
random curve seems beyond reach, and as graphics displays are not available for this battery of tests, a 
simple characterization of the random experiment is used: k, the number of cars successfully parked after 
n=12,000 attempts. Simulation shows that k should average 3523 with sigma 21.9 and is very close to 
normally distributed. Thus (k-3523)/21.9 should be a standard normal variable, which, converted to a 
uniform variable, provides input to a KSTEST based on a sample of 10. 

5. THE BIRTHDAY SPACINGS TEST 

Choose m birthdays in a year of n days. List the spacings between the birthdays. If j is the number of 
values that occur more than once in that list, then j is symptotically Poisson distributed with mean m^3/(4n). 
Experience shows n must be quite large, say n>=2^18, for comparing the results to the Poisson distribution 
with that mean. This test uses n=2^24 and m=2^9, so that the underlying distribution for j is taken to be 
Poisson with lambda=2^27/(2^26)=2. A sample of 500 j's is taken, and a chi-square goodness of fit test 
provides a p value.  The first test uses bits 1-24 (counting from the left) from integers in the specified file. 
Then the file is closed and reopened. Next, bits 2-25 are used to provide birthdays, then 3-26 and so on to 
bits 9-32. Each set of bits provides a p-value, and the nine p-values provide a sample for a KSTEST. 

6. THE COUNT-THE-1'S TEST for specific bytes 

Consider the file under test as a stream of 32-bit integers. From each integer, a specific byte is chosen , 
say the left-most bits 1 to 8. Each byte can contain from 0 to 8 1's, with probabilities 1,8,28,56,70,56,28,8,1 
over 256. Now let the specified bytes from successive integers provide a string of (overlapping) 5-letter words, 
each "letter" taking values A,B,C,D,E. The letters are determined by the number of 1's, in that byte 0,1,or 2 
---> A, 3 ---> B, 4 ---> C, 5 ---> D, and 6,7 or 8 ---> E. Thus we have a monkey at a typewriter hitting five 
keys with various probabilities 37,56,70,56,37 over 256. There are 5^5 possible 5-letter words, and from a 
string of 256,000 (overlapping) 5-letter words, counts are made on the frequencies for each word. The 
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quadratic form in the weak inverse of the covariance matrix of the cell counts provides a chisquare test 
Q5-Q4, the difference of the naive Pearson sums of (OBS-EXP)^2/EXP on counts for 5- and 4-letter cell 
counts. 

7. THE BINARY RANK TEST for 6x8 matrices 

From each of six random 32-bit integers from the generator under test, a specified byte is chosen, and 
the resulting six bytes form a 6x8 binary matrix whose rank is determined. That rank can be from 0 to 6, but 
ranks 0,1,2,3 are rare; their counts are pooled with those for rank 4. Ranks are found for 100,000 random 
matrices, and a chi-square test is performed on counts for ranks 6,5 and <=4. 

8. THE RANK TEST of 31x31 and 32x32 matrices 

The leftmost 31 bits of 31 random integers from the test sequence are used to form a 31x31 binary 
matrix over the field {0,1}. The rank is determined. That rank can be from 0 to 31, but ranks< 28 are rare, 
and their counts are pooled with those for rank 28. Ranks are found for 40,000 such random matrices and a 
chi-square test is performed on counts for ranks 31,30,29 and <=28. 

A random 32x32 binary matrix is formed, each row a 32-bit random integer. The rank is determined. 
That rank can be from 0 to 32, ranks less than 29 are rare, and their counts are pooled with those for rank 29. 
Ranks are found for 40,000 such random matrices and a chi-square test is performed on counts for ranks 
32,31,30 and <=29. 

9. THE COUNT-THE-1's TEST on a stream of bytes  

Consider the file under test as a stream of bytes (four per 32 bit integer). Each byte can contain from 0 
to 8 1's, with probabilities 1,8,28,56,70,56,28,8,1 over 256. Now let the stream of bytes provide a string of 
overlapping 5-letter words, each "letter" taking values A,B,C,D,E. The letters are determined by the number 
of 1's in a byte 0,1,or 2 yield A, 3 yields B, 4 yields C, 5 yields D and 6,7 or 8 yield E. Thus we have a monkey 
at a typewriter hitting five keys with various probabilities (37,56,70,56,37 over 256). There are 5^5 possible 
5-letter words, and from a string of 256,000 (over-lapping) 5-letter words, counts are made on the 
frequencies for each word. The quadratic form in the weak inverse of the covariance matrix of the cell counts 
provides a chi-square test Q5-Q4, the difference of the naive Pearson sums of (OBS-EXP)^2/EXP on counts 
for 5- and 4-letter cell counts. 

10. THE BITSTREAM TEST 

The file under test is viewed as a stream of bits. Call them b1,b2,... Consider an alphabet with two 
"letters", 0 and 1 and think of the stream of bits as a succession of 20-letter "words", overlapping. Thus the 
first word is b1b2...b20, the second is b2b3...b21, and so on. The bitstream test counts the number of missing 
20-letter (20-bit) words in a string of 2^21 overlapping 20-letter words. There are 2^20 possible 20 letter 
words. For a truly random string of 2^21+19 bits, the number of missing words j should be (very close to) 
normally distributed with mean 141,909 and sigma 428. Thus (j-141909)/428 should be a standard normal 
variate (z score) that leads to a uniform [0,1] p value. The test is repeated twenty times. 

11. THE CRAPS TEST.  

It plays 200,000 games of craps, finds the number of wins and the number of throws necessary to end 
each game. The number of wins should be (very close to) a normal with mean 200000p and variance 
200000p(1-p), with p=244/495.  Throws necessary to complete the game can vary from 1 to infinity, but 
counts for all>21 are lumped with 21. A chi-square test is made on the no.-of-throws cell counts. Each 32-bit 
integer from the test file provides the value for the throw of a die, by floating to [0,1], multiplying by 6 and 
taking 1 plus the integer part of the result. 

12. THE MINIMUM DISTANCE TEST 

It does this 100 times choose n=8000 random points in a square of side 10000. Find d the minimum 
distance between the (n^2-n)/2 pairs of points. If the points are truly independent uniform, then d^2, the 
square of the minimum distance should be (very close to) exponentially distributed with mean 995. Thus 
1-exp(-d^2/.995) should be uniform on [0,1] and a KSTEST on the resulting 100 values serves as a test of 
uniformity for random points in the square. Test numbers=0 mod 5 are printed but the KSTEST is based on 
the full set of 100 random choices of 8000 points in the 10000x10000 square. 

13. THE OVERLAPPING 5-PERMUTATION TEST 
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This is the OPERM5 test. It looks at a sequence of one million 32-bit random integers.  Each set of five 
consecutive integers can be in one of 120 states, for the 5! possible orderings of five numbers. Thus the 5th, 
6th, 7th,...numbers each provide a state. As many thousands of state transitions are observed,  cumulative 
counts are made of the number of occurences of each state.  Then the quadratic form in the weak inverse of 
the 120x120 covariance matrix yields a test equivalent to the likelihood ratio test that the 120 cell counts 
came from the specified (asymptotically) normal distribution with the specified 120x120 covariance matrix 
(with rank 99).  This version uses 1,000,000 integers, twice. 

14. The tests OPSO, OQSO and DNA 

OPSO means Overlapping-Pairs-Sparse-Occupancy. The OPSO test considers 2-letter words from an 
alphabet of 1024 letters.Each letter is determined by a specified ten bits from a 32-bit integer in the sequence 
to be tested. OPSO generates 2^21 (overlapping) 2-letter words (from 2^21+1 "keystrokes") and counts the 
number of missing words---that is 2-letter words which do not appear in the entire sequence. That count 
should be very close to normally distributed with mean 141,909, sigma 290. Thus (missingwrds-141909)/290 
should be a standard normal variable. The OPSO test takes 32 bits at a time from the test file and uses a 
designated set of ten consecutive bits. It then restarts the file for the next designated 10 bits, and so on. 

OQSO means Overlapping-Quadruples-Sparse-Occupancy. The test OQSO is similar, except that it 
considers 4-letter words from an alphabet of 32 letters, each letter determined by a designated string of 5 
consecutive bits from the test file, elements of which are assumed 32-bit random integers. The mean number 
of missing words in a sequence of 2^21 four-letter words, (2^21+3 "keystrokes"), is again 141909, with sigma 
= 295.  The mean is based on theory; sigma comes from extensive simulation. 

The DNA test considers an alphabet of 4 letters::  C,G,A,T, determined by two designated bits in the 
sequence of random integers being tested. It considers 10-letter words, so that as in OPSO and OQSO, there 
are 2^20 possible words, and the mean number of missing words from a string of 2^21 (over-lapping) 
10-letter words (2^21+9 "keystrokes") is 141909. The standard deviation sigma=339 was determined as for 
OQSO by simulation. (Sigma for OPSO, 290, is the true value (to three places), not determined by simulation. 

15. THE SQUEEZE TEST 

Random integers are floated to get uniforms on [0,1]. Starting with k=2^31=2147483647, the test finds 
j, the number of iterations necessary to reduce k to 1, using the reduction k=ceiling (k*U), with U provided by 
floating integers from the file being tested. Such j's are found 100,000 times, then counts for the number of 
times j was <=6,7,...,47,>=48 are used to provide a chi-square test for cell frequencies. 

16. FINAL SUMMARY 

Final summary test, 234 p-values collected from various tests should be another KS-test. 
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