錄

| 中文提要  |                                                 | i   |
|-------|-------------------------------------------------|-----|
| 英文提要  |                                                 | ii  |
| 誌謝    |                                                 | iv  |
| 目錄    |                                                 | V   |
| 表目錄   |                                                 | vi  |
| 圖目錄   |                                                 | vii |
| 第一章   | 緒論                                              | 1   |
| 1.1   | 前言·····                                         | 1   |
| 1.2   | 有機薄膜電晶體發展史                                      | 3   |
| 1.3   | 有機薄膜電晶體操作機制                                     | 6   |
| 1.3.1 | 有機半導體導電機制                                       | 6   |
| 1.3.2 | 有機薄膜電晶體結構與操作模式                                  | 8   |
| 1.3.3 | 各項重要參數                                          | 10  |
| 1.4   | 研究背景和動機                                         | 12  |
| 第二章   | 元件製作                                            | 15  |
| 2.1   | 實驗使用材料和儀器介紹                                     | 15  |
| 2.1.1 | 材料介绍                                            | 15  |
| 2.1.2 | 儀器介紹                                            | 16  |
| 2.2   | OTFT 元件製作流程···································· | 17  |
| 第三章   | 實驗結果與討論                                         | 20  |
| 3.1   | 金屬功函數與電性關係                                      | 20  |
| 3.2   | 氧化金屬的修飾結果                                       | 23  |
| 3.3   | 修飾層的厚度最佳化                                       | 31  |
| 3.4   | 接觸電阻分析                                          | 35  |
| 3.5   | 元件環境因素影響                                        | 38  |
| 第四章   | 結論                                              | 42  |
| 參考文獻  |                                                 | 44  |

## 表 目 錄

| 表 1-1 | 有機 TFT 與無機 TFT 之比較            | 2  |
|-------|-------------------------------|----|
| 表 3-1 | 本實驗各種電極元件得到的參數整理              | 23 |
| 表 3-2 | ITO、Cr 與 Au 電極經由氧化金屬修飾的各項元件參數 | 31 |
| 表 3-3 | 不同氧化金屬厚度對電晶體特性參數整理            | 35 |
| 表 3-4 | 以MoO2修飾各電極前後所得到的接觸電阻          | 38 |
|       |                               |    |



| 圖 1-1  | 兩種常見小分子半導體                                                            |
|--------|-----------------------------------------------------------------------|
| 圖 1-2  | 1983 年的第一個 OTFT                                                       |
| 圖 1-3  | 1988 年 A. Assadi 等人製作的 P3HT OTFT 元件                                   |
| 圖 1-4  | 幾種最常被用於 OTFT 主動層的有機材料                                                 |
| 圖 1-5  | 自 1984 至今的 OTFT mobility 進展趨勢                                         |
| 圖 1-6  | 能帶中 polaron 的產生機制示意圖                                                  |
| 圖 1-7  | 載子自分子間傳導(hopping)示意圖                                                  |
| 圖 1-8  | 金氧半接面能階隨閘極電壓的變化                                                       |
| 圖 1-9  | 有機場效電晶體操作機製示意圖                                                        |
| 圖 1-10 | OTFT 元件參數粹取示意圖                                                        |
| 圖 1-11 | 載子流經 OTFT 時所遇到的等效電阻                                                   |
| 圖 2-1  | Poly(α-methylstyrene)與 toluene 的化學結構式                                 |
| 圖 2-2  | 本實驗的 OTFT 結構                                                          |
| 圖 3-1  | 以金為電極之 OTFT 特性曲線                                                      |
| 圖 3-2  | 金電極元件於 $V_G$ =-60V時之 $I_D$ - $V_G$ 以及 $I_D$ <sup>0.5</sup> - $V_G$ 曲線 |
| 圖 3-3  | 以ITO、Cr及Al為電極之OTFT電性比較                                                |
| 圖 3-4  | 以 ITO、Cr 及 Al 為電極之轉換特性比較                                              |
| 圖 3-5  | 單純ITO與MoO <sub>2</sub> 200Å修飾ITO電極的電性比較                               |
| 圖 3-6  | 單純ITO電極與加入 $MoO_2$ 和 $V_2O_5$ 修飾後的 $I_D$ - $V_G$ 轉換特性比                |
|        | 較                                                                     |
| 圖 3-7  | 單純AI電極與加入 $MoO_2$ 和 $V_2O_5$ 修飾後的 $I_D$ - $V_G$ 轉換特性比                 |
|        | 較                                                                     |
| 圖 3-8  | 金屬電極與氧化金屬接觸能階示意圖                                                      |
| 圖 3-9  | 加入整層與經由圖形化的MoO2修飾層元件以及各別得到的電性                                         |
|        | 比較                                                                    |
| 圖 3-10 | 歐傑縱深分析所得之元素深度分佈                                                       |
| 圖 3-11 | 以MoO <sub>2</sub> 修飾Al電極的bottom-contact元件結構                           |
| 圖 3-12 | 以MoO <sub>2</sub> 修飾Al電極的I <sub>D</sub> -V <sub>G</sub> 電性圖           |
| 圖 3-13 | 以 $MoO_2$ 修飾Au電極的OTFT元件 $I_DV_D$ 圖和 $I_DV_G$ 電性圖                      |
| 圖 3-14 | ITO/MoO2電極元件mobility對MoO2厚度趨勢圖                                        |
| 圖 3-15 | ITO/V2O5電極元件mobility對V2O5厚度趨勢圖                                        |
| 圖 3-16 | Al/MoO2電極元件mobility對MoO2厚度趨勢圖                                         |
| 圖 3-17 | Al/V2O5電極元件mobility對V2O5厚度趨勢圖                                         |
| 圖 3-18 | Au電極元件之線性區特性與Rp-L在不同VG下的關係                                            |
| 圖 3-19 | ITO電極與ITO/MoO2電極元件照光時的ID-VD在暗態與亮態比                                    |
|        | 較                                                                     |
| 圖 3-20 | ITO電極與(b)ITO/MoO2電極元件照光時的ID-VG在暗態與亮態                                  |
|        |                                                                       |

|        | 比較                                      | 39 |
|--------|-----------------------------------------|----|
| 圖 3-21 | 位於 pentacene/insulator 界面的電子-電洞對經由照光而分離 | 40 |
| 圖 3-22 | 有無MoO2修飾的ITO電極元件在固定偏壓下的衰滅狀態比較           | 41 |

