目 錄

中文提要		i
英文提要		ii
誌謝		iv
目錄		V
表目錄		vi
圖目錄		vii
第一章	緒論	1
1.1	前言	1
1.2	有機薄膜電晶體發展史	3
1.3	有機薄膜電晶體操作機制	6
1. 3. 1	有機半導體導電機制	6
1.3.2	有機薄膜電晶體結構與操作模式	8
1. 3. 3	各項重要參數	10
1.4	研究背景和動機	12
第二章	元件製作	15
2.1	實驗使用材料和儀器介紹	15
2.1.1	材料介紹	15
2.1.2	材料が紹 儀器介紹····································	16
2.2	OTFT 元件製作流程····································	17
第三章	貝 · 微 · 简 · · · · · · · · · · · · · · · ·	20
3. 1	金屬功函數與電性關係	20
3. 2	氧化金屬的修飾結果	23
3.3	修飾層的厚度最佳化	31
3.4	接觸電阻分析	35
3.5	元件環境因素影響	38
第四章	結論	42
參考文獻		44

表 目 錄

表 1-1	有機 TFT 與無機 TFT 之比較	2
表 3-1	本實驗各種電極元件得到的參數整理	23
表 3-2	ITO、Cr 與 Au 電極經由氧化金屬修飾的各項元件參數··········	31
表 3-3	不同氧化金屬厚度對電晶體特性參數整理	35
表 3-4	以Mo())修飾各雷極前後所得到的接觸電阻······	38

圖 目 錄

圖 1-1	兩種常見小分子半導體
圖 1-2	1983 年的第一個 OTFT
圖 1-3	1988 年 A. Assadi 等人製作的 P3HT OTFT 元件
圖 1-4	幾種最常被用於 OTFT 主動層的有機材料
圖 1-5	自 1984 至今的 OTFT mobility 進展趨勢
圖 1-6	能帶中 polaron 的產生機制示意圖
圖 1-7	載子自分子間傳導(hopping)示意圖
圖 1-8	金氧半接面能階隨閘極電壓的變化
圖 1-9	有機場效電晶體操作機製示意圖
圖 1-10	OTFT 元件參數粹取示意圖
圖 1-11	載子流經 OTFT 時所遇到的等效電阻
圖 2-1	Poly(α-methylstyrene)與 toluene 的化學結構式
圖 2-2	本實驗的 OTFT 結構
圖 3-1	以金為電極之 OTFT 特性曲線
圖 3-2	金電極元件於 $ m V_G$ =- $ m 60V$ 時之 $ m I_D$ - $ m V_G$ 以及 $ m I_D^{0.5}$ - $ m V_G$ 曲線 $ m$
圖 3-3	以ITO、Cr及Al為電極之OTFT電性比較
圖 3-4	以 ITO、Cr 及 Al 為電極之轉換特性比較
圖 3-5	單純ITO與MoO2 200Å修飾ITO電極的電性比較
圖 3-6	單純ITO電極與加入 MoO_2 和 V_2O_5 修飾後的 I_D - V_G 轉換特性比
	較
圖 3-7	單純 AI 電極與加入 MoO_2 和 V_2O_5 修飾後的 I_D - V_G 轉換特性比
	較
圖 3-8	金屬電極與氧化金屬接觸能階示意圖
圖 3-9	加入整層與經由圖形化的MoO ₂ 修飾層元件以及各別得到的電性
	比較
圖 3-10	歐傑縱深分析所得之元素深度分佈
圖 3-11	以MoO ₂ 修飾Al電極的bottom-contact元件結構
圖 3-12	以 MoO_2 修飾 Al 電極的 I_D - V_G 電性圖
圖 3-13	以 MoO_2 修飾 Au 電極的 $OTFT$ 元件 I_DV_D 圖和 I_DV_G 電性圖
圖 3-14	ITO/MoO2電極元件mobility對MoO2厚度趨勢圖
圖 3-15	ITO/V ₂ O ₅ 電極元件mobility對V ₂ O ₅ 厚度趨勢圖
圖 3-16	Al/ MoO2電極元件mobility對MoO2厚度趨勢圖
圖 3-17	Al/V ₂ O ₅ 電極元件mobility對V ₂ O ₅ 厚度趨勢圖
圖 3-18	Au電極元件之線性區特性與Rp-L在不同V _G 下的關係
圖 3-19	ITO電極與ITO/MoO2電極元件照光時的I _D -V _D 在暗態與亮態比
· ¬•	較
圖 3-20	ITO電極與(b)ITO/MoO2電極元件照光時的I _D -V _G 在暗態與亮態
<u> </u>	ニュニン エニニットししひょ シロコロンフ エニエン ロー・ハンフロッチョココー エーディロ かっさて コニかっ

	比較	39
圖 3-21	位於 pentacene/insulator 界面的電子-電洞對經由照光而分離	40
圖 3-22	有無MoO ₂ 修飾的ITO電極元件在固定偏壓下的衰滅狀態比較	41

