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Modeling of Pattern-Based Block Motion Estimation and Its Application
Jang-Jer Tsai, Member, IEEE, and Hsueh-Ming Hang, Fellow, IEEE

Abstract—Pattern-based block motion estimation (PBME) is one
of the most widely adopted compression tools in the contemporary
video coding systems. However, despite that many researches have
studied PBME, few have yet attempted to construct an analytical
model that can explain the underneath principle and mechanism
of various PBME algorithms. In this paper, we propose a statis-
tical PBME model that consists of two components: 1) a statis-
tical probability distribution for motion vectors and 2) the minimal
number of search points (so-called weighting function) achieved by
a search algorithm. We first verify the accuracy of the proposed
model by checking the experimental data. Then, an application ex-
ample using this model is shown. Starting from an ideal weighting
function, we devise a novel genetic rhombus pattern search (GRPS)
to match the design target. Simulations show that, comparing to
the other popular search algorithms, GRPS reduces the average
search points for more than 20% and, in the meanwhile, it main-
tains a similar level of coded image quality.

Index Terms—Genetic search, modeling, motion estimation, pat-
tern-based block motion estimation (BME), video coding.

1. INTRODUCTION

LOCK MOTION estimation (BME) is a critical com-
B ponent in an efficient inter-frame coding. However, it
is a highly computation-intensive process. Many researches
have proposed fast algorithms to reduce its computational
requirement. However, few researchers, to our knowledge, have
tried to construct an accurate model for the BME process. To
be specific, it is a model that unveils the relationship among
the video sequences, the search methods, the computational
complexity and the output video quality. Our aim is to construct
an explicit mathematical model for BME.

According to [1], the fast BME algorithms can be classified
mainly into two categories: 1) reducing of number of checking
(search) points and 2) lowering computational complexity in cal-
culating the block-matching criterion for each checking (search)
point. This study focuses on the algorithms in the first category.
The first fast BME category roughly consists of three sets of
tools for reducing the search points: 1) an operative threshold
for early decision mechanisms [2]-[4], 2) the selection of good
initial search points [3], [5], and 3) an effective set of search
patterns [4], [6]-[8]. Combing all these tools, the latest BME
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algorithms achieve a dramatic speed-up in finding the near-op-
timal candidate motion vectors while maintaining a desired level
of quality. The first and second sets of tools rely heavily on the
data dependency of neighboring image data. Consequently, the
search pattern plays a key role in deciding the performance of
a search algorithm especially when the data correlation is low.
In this paper, we like to explore the following problems. Why
does one search pattern outperform the others? What is the
underlying mechanism behind it? Is there a search pattern that
handles nearly all sequences well? Moreover, can we construct a
mathematical model that describes the underlying mechanism?
An attempt is made in this paper to answer these questions.

In this paper, we will construct a simple and yet effective sta-
tistical model for the pattern-based BME (PBME). Also, based
on this model, a novel genetic PBME algorithm is devised. The
rest of this paper is organized as follows. Section II presents
the probability distribution functions of the motion vectors ac-
quired by full search (FS). In Section III, we analyze the search
points of several representative PBME algorithms and formu-
late the weighting functions (WF). Based on the proposed prob-
ability distribution function for motion vectors and the WFs of
different PBME algorithms, Section IV constructs a statistical
model for PBME. To demonstrate the usefulness of this model,
anew genetic rhombus pattern search is presented in Section V,
which shows good performance for both low motion and rela-
tive high motion sequences. Lastly, we conclude this paper by
Section VI

II. PROBABILITY DISTRIBUTION FOR MOTION VECTORS

In order to design a good search pattern set, many papers dis-
cussed the nature of motion vectors (MVs). The authors of [9]
empirically gather the statistics of the motion vectors around the
initial search point. And [10] assumes that the motion vector dis-
tribution can be approximated by either Gaussian or Laplacian
probability distributions. So far, we have not found an attempt
of finding a probability distribution function (PDF) that has a
very precise match to the motion vectors.

We select a few representative training sequences to gen-
erate motion vectors at various bit rates under the settings given
in Table I. These sequences are coded by a MPEG-4 SP@L3
encoder using FS. All the sequences are in CIF (352 x 288)
format. Only the first frame is coded as I frame, and all the re-
maining frames are coded as P frames. The motion vector search
range is set to 16, the initial quantizer step size is set to 15,
and the block size is set to 16 x 16. When the quantization step
varies to achieve the desired bit rate, the peak signal noise ratio
(PSNR) quality of the coded video sequence ranges from 26dB
(poor but acceptable) to 40dB (visually the same as original).

A. Motion Vector Distributions

In our experiments, we test two kinds of initial motion vec-
tors (served as the origins of the PBME search), namely, the zero
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TABLE 1
TRAINING SEQUENCES AND THEIR CODING PARAMETERS

CT256 container 256 7.5 300 39
CT40 container 40 7.5 300 32
HL40 hall 40 &5 300 33
Mpge molberand o 10 300 40
daughter
CG112 coastguard 112 30 300 29
FM512  foreman 512 30 300 34
FM1024 foreman 1024 30 300 36
FB1024  football 1024 30 90 35
FG768 ﬂ"“(’;j:ngar' 768 30 250 26
ST1024 Steven 1024 30 300 29

motion vector (ZMV) and the predicted motion vector (PMV).
Herein, ZMV is defined by (1), and PMV is defined by (2),
which is specified by the MPEG-4 standard.

ZMV = (0,0) 1)
PMV = Median(MVY, MV, MVUE) )

where MVY is the adjacent upper block of the current block,
MVZ is the adjacent left block, and MVYE s the neighboring
up-right block.

Based on the motion vector data obtained by applying FS
to video sequences, we find that the motion vector distribu-
tions with respect to (w.r.t.) PMV generally have a more sym-
metric shape as compared to the motion vector distributions
w.r.t. ZMV. In addition, the PMV-based motion vectors have a
much smaller standard deviation. They cluster better. Therefore,
the motion vector distributions w.r.t. PMV are used in the rest
of this paper. The statistics of the motion vectors w.r.t. PMV of
all the selected training sequences show that both the horizontal
mean values and vertical mean values are close to zero. Thus,
these motion vector distributions are zero-biased w.r.t. PMV.
Furthermore, the correlations between the horizontal compo-
nents and the vertical components of motion vectors are nearly
zero for all our training sequences.

B. Normalized Independent 2-D Distribution

Based on the above observations, three popular zero-mean
normalized independent 2-D distributions are considered as can-
didates for modeling the MV distribution: 1) Gaussian distribu-
tion function (3), 2) Laplacian distribution function (4), and 3)
Cauchy distribution function (5). Note that (z,y) € A, (z'y’) €
A and A is the geographical area of [-32 ~ +31, —32 ~ +31]
in our experiments. The parameters (A;, Ay, b, by, 0, and 7,)
are functions of the MV variances

e_”’Q/Q)‘m . 6_92/2>‘y
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Remark: Strictly speaking, the zero correlation between the
horizontal components and vertical components of motion vec-
tors does not imply that they are statistically independent. How-
ever, we justify the correctness of these probabilistic models
using the goodness-of-fit test [11] as follows.

To find out which of the three PDFs best approximates the
PDF of motion vectors acquired by FS, a well-known good-
ness-of-fit test, 2-D KS test [12], is adopted. The statistic D de-
fined in [12] is used as the measure of similarity between the
hypothesized PDF (the modeled data) and the observed PDF
(measured data). To be more specific, the statistic D is the max-
imum absolute difference between two cumulative probability
distributions function, as defined in (6), wherein CDF ,,,odeled
and CDF, casurea are the cumulative PDFs of the model and
the measured data, respectively, and A is the geographical area
of [-32 ~ 431, —32 ~ +31] in our experiments

D = max {|CDFmodeled (’U) - CDFmeasured(v)l} ;U € A.
(6)

A smaller statistic D implies that the hypothesized PDF matches
better the observed PDF. The motion vector probability distri-
butions acquired by FS, PDF g, are tested against the aforesaid
hypothesized zero-mean, normalized, independent 2-D distri-
butions with the same variances. These hypothesized distribu-
tions with the same variance of MV acquired by FS are called
Grs(z,y), Lrs(z,y) and Crs(x, y), respectively. In our exper-
iments, Crs(z,y) generally has the smallest statistic D values.
However, according to [12], the values of statistic D in our ex-
periments are too large to claim that any of these three 2-D dis-
tributions has a good match to the target PDFpg(z, y).

C. A Fitted Probability Distribution

To construct a more accurate PDF model, we extend C(x, y)
and propose a new form of PDF denoted by T'(x,y), which is
defined by (7). For each of the selected training sequences, 7,
and 7, are optimized such that the maximum discrepancy be-
tween PDFpg(z,y) and T'(x,y) is minimized, and £, and &,
are adjusted such that the variances of T'(z, y) are the same as
those of the training sequences. The T'(x, y) with the fitted pa-
rameters that match PDFpg(z,y) becomes Trs(z, y). Experi-
ments show that 7, and 7, range from 1.13 to 2.2 for the training
sequences. This indicates the variations among the training se-
quences are considerably large

1 1
_ []7* +€, [y]Tv +€
T(z,y) = T . @)
(o e T HE T,

Despite the large individual differences among the training
sequences, we find that 7, and 7, are generally around 1.67. We
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TABLE II
STATISTIC D OF 2-D KS TEST ON SOME REPRESENTATIVE SEQUENCES

Sequences Grs(x,y) Lys(x.y) Crs(x,y) Sks(x,y)

CT256 0.48 0.38 0.08 0.02
CT40 0.42 0.35 0.14 0.06
MD9%6 0.38 0.32 0.12 0.08
FB1024 0.28 0.23 0.19 0.14
ST1024 0.39 0.33 0.17 0.11
Average 0.39 0.32 0.14 0.08

thus choose 7, = 7, = 5/3 to simplify 7'(z,y). The resultant
distribution is called S(z,y) as defined by (8)

1 1

578 1. |yo/3 4,
S(.T,y) _ || ¢ 1|y‘ Cyl ) (8)

|$|5/3+<I ‘y|5/3+<y

(=',y")EA

In Table II, the 2-D KS tests show that Sps(z,y) has a
smaller statistic D in comparison with Grs(z,y), Lrs(x,y),
and Crg(z,y). Note that the parameters ((.,(,) of Srs(z,y)
are obtained by numerical methods so that the variances of
Srs(z,y) match the data statistics of motion vectors acquired
by FS. In summary, we propose a new probability distribution
S(z,y) that models the PDF of the motion vectors. It consti-
tutes the first element of our complete PBME model.

III. SEARCH POINTS IN PATTERN-BASED SEARCH ALGORITHMS

Search patterns are generally devised based on the assump-
tion that the matching cost surface is uni-modal; in other words,
the matching cost associated with a search point is smaller when
it is closer to the global minimum. Under this assumption, the
number of search points is defined to be the minimal number of
search points in all possible paths leading to the best-matched
point from the starting (initial) point. Because the (shortest)
search path is determined by the search pattern in general, the
search point number depends on the search pattern. Therefore,
it (number of search points) is a discrete function of the loca-
tion and is called weighting function (WF). By examining the
search process of a PBME, we can construct its corresponding
WFE. Note that the global uni-modal cost surface assumption is
too strong and it is not always valid for typical video sequences
[6]. Often it is valid within a small neighborhood of the global
minimum point. Consequently, the WF does not represent the
actual number of search points. To be exact, it represents the
lower bound of the number of search points. But the statistics
also show that the number of actual search points is highly cor-
related with our defined WF.

Four representative pattern-based search methods, four step
search (FSS) [7], diamond search (DS) [8], enhanced hexag-
onal search (EHS) [6], and easy rhombus pattern search (ERPS),
are used to illustrate the construction of weighting functions.
Herein, ERPS is ARPS [4] without searching various MV pre-
dictors and it uses PMV as the starting point. These pattern-
based search algorithms are chosen because of their well-rec-
ognized performance.

Fig. 1 shows the contour plots of the WFs of FSS, DS, EHS,
and ERPS, respectively. The value on a contour represents the
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Fig. 1. Contour plots of the WFs of FSS, DS, EHS, and ERPS, respectively.

least number of search points for a search algorithm to move
from the origin to a point (location) on the contour. Because
EHS moves faster than any other algorithms, EHS surpasses
the other algorithms at distant locations. Its weighting function
WFEns(z,y) has smaller values at the outer contour. On the
other extreme, because WFgrps(2,y) has the smallest values
around the starting point, ERPS has advantages in slow motion
situations. Therefore, by looking into the WF of a search algo-
rithm, we understand why one search algorithm works better
for a particular situation (fast motion or slow motion). WF is
the second element of our complete PBME model.

IV. STATISTICAL MODEL FOR PATTERN-BASED BLOCK
MOTION ESTIMATION

Based on the problem formulation in Sections II and III, the
average search points (ASP) of a PBME algorithm for a se-
quence can be described by (9). It depends on both search al-
gorithm (SA) and the video sequence. Mathematically, it is the
sum of the products of WF and the MV PDF at all locations
within the search area, where SPFg (2, y) denotes the number
of search points acquired by a specific algorithm, PDFga (z, y)
denotes the motion vector distribution acquired by a specific al-
gorithm on a specific sequence, and A is the search area. It is
clear that we can get SPFg (2, y) and PDFga (2, ) only after
we apply a specific search algorithm to a specific sequence.

In this paper, we propose to use (10) for modeling ASP. In
(10), ASP is a linear function of the sum of the products of
Srs(z,y) and WFga (z,y). Thus, it consists of two compo-
nents: MV distribution (sequence dependent) and WF (SA de-
pendent). By tuning the values of C; and C5, we can compen-
sate for the modeling errors. Given a SA, we pre-analyze it and
obtain WFg4 (z, y). Given a specific sequence, we can pre-cal-
culate MVs using FS and obtain Sgs(z,y). Then, one can use
(10) to estimate the ASP values of an SA when it is applied to
a specific sequence

ASP= )" PDFss(x,y) x SPFsa(z,) )
(z,y)€A
ASP=C1x Y Ses(z,y) X WFsa(z,y) + Ca. (10)
z,yEA

We need to justify that the above model is valid for real data.
There are two methods to decide C and C>. In the first method,
we apply a fixed SA to a set of training sequences to compute



TSAI AND HANG: MODELING OF PATTERN-BASED BLOCK MOTION ESTIMATION AND ITS APPLICATION 111

TABLE III
REGRESSION PARAMETERS (C'; AND C5) AND THE CORRELATION
COEFFICIENTS BETWEEN THE MODEL-PREDICTED ASP AND THE
TRUE ASP. (1ST METHOD)

FSS 0.42 10.38 0.98

DS 0.46 7.59 0.98

EHS 0.42 5.63 0.99

ERPS 0.44 2.97 0.98
TABLE IV

REGRESSION PARAMETERS (C'y AND C'5) AND THE CORRELATION
COEFFICIENTS BETWEEN MODEL-PREDICTED ASP AND THE
TRUE ASP. (2ND METHOD)

CT256 1.07 -1.42 1.00
CT40 1.17  -4.70 0.98
HL40 1.19  -435 0.99
MD96 1.17  -4.52 0.97
CGl112 1.05 -1.05 1.00
FM512 1.15 -3.60 0.99
FM1024 1.10  -2.36 1.00
FB1024 0.62 1.66 0.73
FG768 1.15 -3.76 0.98
ST1024 1.08 -5.82 0.91

C1 and Cs by the regression method. Our objective is that the
model with trained Cy and C5 can predict the ASP of a new se-
quence accurately. In the second method, we apply a few search
algorithms (the training algorithms) to a specific sequence, and
then calculate C'; and Cs based on the acquired data. In this case
the goal is that the model with trained C; and C; can predict the
ASP values of a new algorithm.

In the first method, C; and C5 are obtained from a set of
training sequences with one specific search algorithm. Table III
displays the C7 and Cs values for each search algorithm. The
last column is the correlation coefficient between the actual ASP
and the predicted ASP. One may notice that the correlation coef-
ficients are all very close to 1, which indicates that the predicted
ASPs are nearly the same as the actual ASPs.

In the second method, C; and C5 are obtained by applying
a set of search algorithms (training algorithms) to a specific se-
quence. We then predict the ASP value of a new algorithm by
using the proposed model. Table IV displays the C; and Cs
values for the 10 sequences and the correlation coefficients be-
tween the predicted ASP and the actual ASP. The correlation
coefficients are very close to 1 except that for the FB1024 se-
quence. This may be due to the high motion contents of FB1024.
In spite of the small number of training algorithms, the coher-
ence between the predicted ASP and the actual ASP is very high
for all 10 sequences.

The first method and the second method are designed for dif-
ferent scenarios. The first method is used to predict the ASP of
a new sequence (for a given specific search algorithm), while
the second method is used to predict the ASP of a new search
algorithm (for a given specific sequence). Due to different sizes
of training samples and different purposes, the accuracy com-
parison between these two methods may not be meaningful.

(@ ()

Fig. 2. Search patterns for GRPS.

V. AN APPLICATION: PATTERN-BASED SEARCH
ALGORITHM DESIGN

How can we devise a new pattern-based search algorithm with
the help of the previous analysis? We do this in three steps.
We first construct a target WF based on the analysis in the past
two sections. Then, we devise a search pattern that hopefully
achieves the desired WF. At last, we evaluate its performance
by simulation on real pictures.

The first step of designing a new search algorithm is to find
a WF that has the smallest possible values at all locations, be-
cause, in our proposed model, WF is the only algorithm-depen-
dent parameter that determines ASP.

Most effective PBME algorithms consist of two stages:
1) coarse regular search stage and 2) fine ending search stage.
The purpose of the regular search stage is to fast locate the
potential optimal motion vectors, and the ending stage is to
determine the best-matched point in a small neighborhood.
Each stage may use one or several search patterns. In the
regular search stage, because the shortest path between two
points in a plane is a strait line, the fastest search path for a
search algorithm is the strait line from the starting point directly
to the best-matched motion vector. Based on the previous
experiments, we suspect that a doable search method moves at
most one unit distance horizontally or vertically per step. As
shown in Fig. 2(a), the minimal number of search points for
reaching the motion vector (x,y) is “abs(z) + abs(y) + 1.7
In the ending stage, to decide precisely the location of the
best candidate motion vector generally requires to search at
least the neighboring 4 points and the current point (center)
itself, as shown in Fig. 2(b). The resulting contour plot of
WFgrps(z,y) is depicted in Fig. 3.

The second step is to choose proper search patterns that fulfill
the desired WF. By simplifying the genetic search algorithms
in [13] and [14] and combining the rhombus search patterns,
we propose a genetic rhombus pattern search (GRPS) algorithm
described below.

1) Initialization: Check the starting point, PMV, and set it as

the parent point.

2) Mutation: Randomly select a next generation point (the
mutation point) from the untested points of a rhombus pat-
tern centered at the parent. (That is, check one of the four
solid points in the coarse search pattern in Fig. 2(a).)

3) Competition: Select the survivor between the parent and its
mutation based on their matching costs.

a) If the mutation is better than the parent, the mutation
is the survivor (the next parent). Go to step 2.
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Fig. 3. WF of GRPS.

b) If the parent is better than its mutation, the parent is
the survivor (the next parent) and check if there is any
remaining untested mutation point in the four points
of a rhombus pattern. If there is one, go to step 2; oth-
erwise, (that is, all points in the ending search pattern,
Fig. 2(b), are checked,) go to step 4.

4) End: Set the current survivor as the final motion vector.

Comparing Fig. 3, the contour plot of WFgrps(z,y), with
the contour plots of the four popular algorithms in Fig. 1, we can
find that GRPS has the same or smaller number of search points
as ERPS near the starting point, and it has a smaller number
of search points than EHS in locations away from the starting
point. In other words, it achieves the smallest number of search
points at nearly all locations, when compared to the four popular
search algorithms.

Lastly, we evaluate the performances of the proposed GRPS
by conducting experiments on the selected training sequences.
The results are shown in Table V (average number of search
points), Table VI (PSNR), and Table VII (performance compar-
ison). In Table VII, the computing gain (CG) is defined as the
ratio of ASP minus one, and the quality gain (QG) is defined
as the PSNR difference. In summary, the ASP of GRPS on av-
erage is 22% faster than that of ERPS, 56% faster than EHS,
130% faster than DS, 172% faster than FSS, and 145 times faster
than FS. On the other hand, the PSNR of GRPS is on average
better than all other search algorithms, except for ERPS. Com-
pared with ERPS, the quality loss of GRPS is very small, around
0.01dB. Therefore, GRPS outperforms all the other search algo-
rithms in terms of ASP for all training sequences, and its coding
quality is comparable with all the other algorithms.

The GRPS algorithm has fewer ASP because the proposed
genetic pattern search calculates and compares the matching
cost of the parent with that of one randomly selected point in
the search pattern. On the average, the genetic algorithm saves
about 50% search points when the matching error surface is
nearly monotonic. In the worst cases, its behavior is the same
as the non-genetic sibling. Considering the probability of being
trapped into the local minimum, a genetic algorithm roughly has
a similar behavior as its non-genetic sibling. The reason is that
both of them terminate the search process when the matching
error of the center point is smaller than those of all points in the

TABLE V
ASP (AVERAGE NUMBER OF SEARCH POINTS)

CT256 5.36 5.75 9.59 13.81 17.53 1024
CT40 5.98 7.04 1042 15.03 18.38 1024
HL40 6.35 7.33 1034 1538 18.72 1024
MD9%6 5.98 6.83 1032 14.85 18.37 1024

CGl112 6.08 7.63 1031 15.09 18.25 1024

FM512 7.13 865 10.76 16.17 19.03 1024

FM1024 6.94 832 1054 1576 18.71 1024

FB1024 11.89 1636 1429 2236 2270 1024

FG768 6.38 7.57 1055 1530 18.73 1024

ST1024 7.65 9.95 1148 1696 19.47 1024

Average 6.97 854 1086 16.07 18.99 1024
TABLE VI

PSNR (PEAK SIGNAL NOISE RATIO)

CT256 39.49 39.50 39.48 39.51 39.49 39.56
CT40 3221 32.08 3146 3192 31.69 32.04
HL40 3449 34.60 3427 3425 34.17 33.55
MD96  40.08 40.09 39.87 39.99 39.93 39.80
CG112  29.14 29.16 29.07 29.14 29.13 29.08
FM512  34.05 34.10 33.94 34.06 34.02 34.06
FM1024 36.52 36.61 36.46 36.59 36.48 36.56
FB1024 3487 34.88 34.86 3493 3494 35.28
FG768 26.17 26.19 26.15 26.18 26.16 26.33
ST1024 2939 29.31 2947 29.44 2935 29.48
Average 33.64 33.65 33.50 33.60 33.54 33.57
TABLE VII

CODING PERFORMANCE COMPARISON

CT256 0.07 -0.01 0.79 0.02 1.58 -0.01 2.27 0.00 190.04 -0.07
CT40 0.18 0.13 074 074 151 028 2.07 051 17024 0.16
HL40 0.15 -0.11 0.63 022 1.42 024 195 0.32 16026 0.94
MD96 0.14 -0.02 0.73 020 148 0.08 2.07 0.15 17024 0.27
CG112 025 -0.02 0.70 0.07 1.48 0.00 2.00 0.01 167.42 0.06
FM512 021 -0.05 0.51 0.12 127 -0.01 1.67 0.03 142.62 -0.00
FM1024 020 -0.08 0.52 0.07 127 -0.06 1.70 0.04 146.55 -0.04
FB1024 038 -0.01 020 001 0.88 -0.06 091 -0.06 85.12 -0.41
FG768 0.19 -0.02 0.65 0.02 1.40 -0.00 1.94 0.01 159.50 -0.15

ST1024 030 0.07 0.50 -0.08 1.22 -0.06 1.55 0.04 132.86 -0.09
Average 022 -0.01 0.56 0.14 130 0.04 1.72 0.11 14583 0.07

search pattern. But they may be trapped into different locations.
We have examined the motion vectors produced by GRPS and
by the other search algorithms. Using the M Vs produced by FS
as the ideal target, the average absolute differences in MVs are
similar for the five fast SAs (including GRPS) discussed in this
paper. Also, the average SAD differences of these five SAs are
similar.

VI. CONCLUSION

A systematic approach is taken in constructing a mathe-
matical model for the PBME algorithms. With the assistance
of goodness-of-fit tests, we propose a new PDF, an extended
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Cauchy distribution, for the motion vector distribution. It
matches well the real motion vector PDF produced by FS.
We then suggest a so-called WF that describes the minimal
search points of a search algorithm. The WF of a certain PBME
algorithm is estimated by analyzing the search process of
that PBME. The complete PBME model includes these two
elements: the statistical PDF derived from a video sequence
and the WF derived from a search algorithm. With the proposed
model, we can predict the performance of a new search pattern
without actually applying the search algorithm to a video
sequence. Thus, it helps us in constructing new search patterns
(algorithms). An application example is given. Starting from
an ideal WF target, we propose a GRPS algorithm, which
outperforms all other popular search algorithms in speed while
maintaining a similar PSNR quality.
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