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Nonparametric Estimation of the Cumulative Incidence Function
under Three Types of Data Structures

student : Chien-Hao Chen Advisors : Dr. Weijin Wang

Institute of Statistics
National Chiao Tung University

ABSTRACT

In this thesis we consider nonparametric inference of the cumulative incidence
function for a particular type of failure and-1ts-long-term incidence rate, both of which
are useful descriptive measures for biomedical data with multiple endpoints. A unified
framework is provided to study different inference techniques under various
incomplete data structures. Specifically three approaches, namely decomposition,
weighting and imputation, are studied under data settings which include the
conventional competing risks data, the framework of a cure model and truncated
data. Identity between these methods for each data structure is examined. Numerical

examples are provided for comparing the first two data formulations.

Key words: Competing Risks; Cure models; Imputation; Inverse probability weighting;

Multi-state model; Nonparametric inference; Sufficient follow-up; Truncation.
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Chapter 1.

Introduction

Multiple events data are commonly seen in many biomedical applications.

depicts a common competing risks framework, in which there are J + 1 states, with
state 0 being alive and states 1,2, ..

Figure 2 describes another situation in which a subject receiving heart transplantation

., J corresponding to the J distinct types of death.

may experience two different paths (i.e. with/without rejection).

Initial state

Death due to type I

Death due to type 2

Death due to typel

Figure 1: Competing risks of J distinét eauses of death

transplant

rejection

— | death

death

Figure 2: A two-path model for heart transplant




Suppose that a person may experience one of J distinct types of failure or J different
paths. Let T be the failure time of the first event and B be the indicator for the
corresponding failure type taking values j = 1,...,J. The cumulative incidence function
(CIF) for the jth cause of failure is defined as Fj(t) = Pr(T" < t, B = j). In the example
of heart transplant, let (B = 1) be the occurrence of rejection and (B = 2) be the
death without rejection. In this case, F(t) is the cumulative probability of experiencing
rejection by time t and Fy(t) is the cumulative probability of death without rejection by
time ¢.

Under the conventional framework of competing risks, the cumulative incidence func-
tion(CIF) can be considered as an.éxtension of the Kaplan-Meier estimation with J = 1.
Properties of the Kaplan-Meier estimator-has been theroughly studied in the literature.
Specifically it is a product-limit estimator, satisfies the properties of redistribution-to-
the-right and self-consistency, and is the nonparametric MLE. Recently Satten and Datta
(2001) showed that the Kaplan-Meier estimator can also be expressed as an inverse-
probability-of-censoring weighted average. In this thesis, we discuss how to generalize
these inferential techniques to the estimation of CIF.

Most literature on CIF is developed under the competing risks framework. That is,

one observes {(7;, B;)(i = 1,2, ...,n)} or its censored version. Nonparametric estimation



of F(t) in presence of right censoring has received substantial attention in the literature
(Anderson et al., 1993; Kalbfleisch and Prentice, 2002). The martingale expression of the
nonparametric MLE(NPMLE) was given in Lin (1997), which is useful for large-sample
analysis. Satten and Datta (1999) showed that the NPMLE can also be re-expressed by
a product-limit representation with fractional risk sets. For the simple case of J = 2,
two recent articles by Betensky and Schoenfeld (2001) and Wang (2003) studied the
estimation of Fj(t) in the context of a two-state model. In practical applications, it
has been founded that the CIF estimate is often misused by practitioners. Golley et al.
(1999) and Farley et al. (2001) explained the distinction between the estimate of the
cumulative incidence function and the complement of the Kaplan-Meier estimator. We
will also address this issue under the framework ef ctire model.

In this thesis, we apply diffetent inferénce techniques to estimate Fj(t) and other
related quantities(i.e. the long-term ingidence rate) under different types of data struc-
tures. Chapter 2 reviews some relative papers about the cumulative incidence function.
Chapter 3 considers the classical setting of competing risks data. Chapter 4 studies a
different data formulation in the context of cure models in which subjects with B # j
are treated as being cured and hence will never experience the cause of interest, B = j,
despite of long-term follow-up. In Chapter 5, we extend the results to competing risks

data subject to left truncation. Relationships between different inference approaches



are examined for each data structure. In Chapter 6 we provide numerical analysis to
illustrate the difference between competing risks data and the data formulated based on

the a cure model. Concluding remarks are given in Chapter 7.




Chapter 2. Literature Review

In this Chapter, we focus on the competing risks setting. Let T' be the failure time of
the first event and B be the indicator for the corresponding failure type taking values
j=1,...,J. Let S(t) = Pr(T > t), F(t) =1— 5(t) and

Pr(T € [t,t + At)|T > 1)
At—0 At

. (1)

The cumulative incidence function (CIF) of the jth event define as Fj(t) = Pr(T" <
t,B = j) which is the cumulative probability of observing the jth event by time t.
However in practice, patients may drop out from the study or, at the end of the study,
some may still have not developed any type of failure. Let C' be the external censoring
variable and assume that 7" and Care independent:, Define A;(t) = fot Aj(u)du, where

A;(t) is the cause-specific hazard function defined as

. Pe € t,t+ At)yB = j|T > 1)
Ailt) = Al}elilo : | At) |

- (2)

In presence of right censoring, observable variables become X = T A C and B = I (T <
C)-B. Let {(T;,C;, B;) (i =1,...,n)} be iid replications of (T, C, B). Observed data
can be expressed as {(X;, d;, Bl) (t=1,...,n)}, where X; = T; A C; and B;=6;-B; =
(T, <Cy) - B;.

Consider the special case of estimating S(t). The likelihood can be expressed as

[dF (X)) S (X))~

n
=1

(2



— H [dA(X;)]°S(X;).

i=1
It has been shown that the NPMLE places mass only at observed failure times. For the
general case J > 1, the likelihood becomes
noJ J
LA aas e =0 T {1 =D da,(w)}y.
j=1 j=1

=1 u<X;

Maximization of the above multinomial likelihood function, gives the MLE

A _Z?:1]<Xi:tv§i:j)
) = =5 % =

Lin(1997) showed that CIF has the following nice decomposition:

Pr(T < t, Byad)
t
= / Pe(T = u, B= j|T > w)Pr(T > u)
0

= [ stjin)

where S(u) = Pr(T > u) and A;(t) = fot Aj(u)du. By a simple plug-in approach, Fj(t)
can be estimated by
¢
Fi(t) = /0 $(u—)dA; (u), 3)

where S(t) is the Kaplan-Meier estimator of Pr(T > t),

0 -T10- =55 T sy

u<t

7



and dA(t) is the Nelson-Aalen estimator of dA,(t),

A 72?:1](Xi:t=§i:j)
dAJ (t) B Z?:l ](Xi > t)

Lin (1997) mentioned that (3) is also the NPMLE. The paper also derives the martingale
expression of /n{Fy(t) — Fi(t)} in which weak convergence properties of the process can
be established. The results are useful for constructing confidence bands of F}(t) based
on re-sampling techniques.

In survival analysis, there is a well-known relationship between the survival function

and the cumulative hazard function. Specifically we have

S(t) = exp(—/o A(u)du).

Therefore it seems natural to extend such a relationship to CIF and the cause-specific
hazard function. However many “researchers;“imcluding Golley et al. (1999) and Lin

(1997) and Farley et al. (2001), found that

1= Fy() = eop(= [ ()

We will clarify this issue by introducing another data structure, namely the cure model

framework.



Chapter 3. Competing Risks Data

Without external censoring, one observes {(7;, B;)(: = 1,...,n)}. The empirical esti-

mator of Fj(t) = E[I(T <t,B = j)] is given by

R=> 1T<t.B=g)/n=3 [ dIlf;<u.B.=5)/n ()

Competing risks data in presence of right censoring, can be expressed as {(X;, d;, BZ)
(t=1,...,n)}, where X; = T; A C; and B; = 6, - B;. Notice the indicator of interest,
I(T; < t,B; = j) may be missing due to censoring and hence the empirical estimator

(4) is not applicable.

3.1. Estimation of Cumulativeincidence Function

As mentioned in Chapter 2, the NPMLE-6f F;(¢) can-be obtained explicitly by

P =[S ). 5

Here we apply two useful principles for handling missing data to estimate Fj(¢). One
way is treating (X < t, B = j) as a biased proxy of I(T' < t, B = j) and then applying

the technique of weighting to correct the sampling bias. Notice that

I(X<tB=i
E(_, 7)

G M =1 <L =j),

where G(u) = Pr(C > u) and G(u—) = Pr(C > u). Hence Fj(t) can be estimated by



the following weighted average:

~

where

(X =u, B; = 0)
H{l_ z (X > ) g

u<t

Imputation is another way to deal with incomplete observations. By writing F}(t) =

f(f Fj(du), it follows that
Fy(du) = E[[(T € [u,u+ du), B = j)] = E |E[I(T € [u,u + du), B = j|X, B)]

where E[I(T; € [u,u+ du), B; = j|X;, B)] can be written as

Pr(T; € [u,u + du), B; = j)

This approach yields the following self-consistent equation, F) FI(t) = J F! FI(Au),

where

Fl(Au) =Y I(Xi=u,Bi = j)/n+ Y I(X; <u,B; = 0)F/(Au)/nS(X;). (7)
i=1 i=1
Note that the first component of ]:;j[ (Au) is the original assigned mass at the failure time

point u and the second component is the mass re-distributed from previously censored

observations. The estimator ]3]1 () has the following explicit representation,

u<t M — Z?:l I(Xz <u,B; = O)/S(Xz)

10



Figure 3 provides a simple example to illustrate the steps of mass re-distribution for
estimating Fj(t) when there are two types of failure. Let z() < 2 < ... < z(n) be
ordered observations of X; (i = 1,...,n) and J() and E(k) be the indicators associated
with z(). At an observed point on the time line, the associated failure type is marked
as (), x, and A for B = 0,1,2, respectively. In the first step, every point is assigned
with mass 1/n = 1/7. As can be seen in (7), the mass assigned to points with B = 2 has
no contribution to the calculation of ﬁ{(t) Hence F\{(x(l)) = 1/7 and ﬁ{(l‘(g)) = 2/7
since there are no censored observations with B = 0 before these two points. The mass
assigned to the censored observation, (4, will be evenly distributed to x(; (j = 5,6,7)
and then the mass assigned to the censoredsobservation, x, will be distributed to the
point on its right, x(7). The redistribution-to-the right algorithm works in the same way
as in the special case of Pr(B = 1) except. that 1/53-[ (Aw) does not receive mass from other

competing events with B # j (j > 0).

11



a 1 ~ 1 / 8
F, (Ax(l))_7 Fll(Axm))_; K (AX(U)—H

Figure 3: Mass calculation for estimation of ﬁ{(t) based on the first data structure,

where O :B=0;x : B=1;A:B=2.

Now, we show that the above three estimators 6f F;(¢) are equivalent. Specifically

the jump sizes of the above estiniators at time u are given by

FD(AU> _ Z?:l I(Xz = U, Ez = ])
! SHXG > w)/S(u=)

?:1I(Xi :uv-éi :j)

FJW(AU) = 2

and

Z?:l I(Xl =u, Bz =9

Fl(Au) = )
I n— 3" (X <u, B =0)/5(X;)

where u = x () is an observed failure point with E(k) =7.
Theorem 1:/dentical relationship of ]@D(Au), Z?]W(Au) and ]@I(Au)
Proof:

12



According to the result of Satten and Datta (2001), we have

S = 1—%211(XZ§;;f)‘ 2 g
Glu—) — 1—%2“& ;y)’(i%:m ()

By applying equation (9), it can be shown that the denominators of EW(AU) and ]3j1 (Au)

are identical. In general, we can write

A ~ Z?:l I(XZ =S, 5@ = 1) Z?:l I(XZ =S, 5@ = 0)
S = [T {1~ SNz S (% Ao |

s<u

where

If there are no ties between failure ‘and censored observations, R(s) should equal zero

for all s and

A R 7.1_1 I Xl =S
S(u=)Gu-) =[] {1 - %Zl JEX,- > s;} =

and hence Z?}W(Au) = ﬁ'jD(Au). Note that if there are ties between failures and cen-
sored observations, we can still make the same conclusion if we impose the conventional
assumption that the failures had occurred just before the censored observations.

From now on, we write ﬁ’](t) to denote any of the three representations. The equiv-

alence result has already been established for the special case Pr(B = 1) = 1, where

13



1 — Fy(t) reduces to S(t) and 1 — Fi(t) reduces to the Kaplan-Meier estimator, S(t).

Note that Satten and Datta (2001) has shown that

St =T - Z”:iiz(ﬁ&u;u): 1)} . %Z I(X; <1.6,=1)

u<t
which is a special case of equation (6).

The numerator in Fj(Au), S I(X; = u, B; = j), counts the number of observing
type 7 failure at time u. The denominator has three equivalent representations which
measure the “effective sample size“ at time u adjusted for the underlying censoring
mechanism. From the expression of FJW(AU), we see that the effective sample size equals
nG(u—) which is the (estimated) expected number of subjects that are not right censored
at time u. The expression of F j] (Au) indicates that previously censored observations
should be excluded in the calculation of the effective sample size but their influence
should be weighted according to their.survival probabilities. The expression of FjD (Au)
indicates that the effective sample size is larger than the number at risk since subjects
who had died previously should be included in the adjusted sample size which accounts
for the possibility of external censoring.

Despite of the equivalence, different representations of the some quantity may provide
different applications. The connection with the nonparametric MLE is useful to establish
the optimal property. The idea of imputation is related to the re-distribution to the right

and self-consistent properties which may be adopted in other inference problems that

14



involve the covariate information or other censoring patterns. The weighted expression
of F ]-W(t) is very useful for analytical analysis and may be generalized to other censoring

mechanisms if the effect of censoring can be formulated explicitly.

3.2. Estimation of Long-Term Incidence Rate

The long-term incidence rate is defined as

m; =Pr(B =j) = lim Pr(T <t,B =j). (10)

t—o00

Estimation of 7; is not just a trivial extension of the previous results since as indicated
in (10), m; involves the tail information which may be missing if the quality of data
is the distribution of Fj(¢) can not be.recovered at the tail region. A crucial condition
which measures the quality of data for reecovering the tail information is called “sufficient
follow-up“. For competing risks data, define the following boundary points, 7 = sup,{t :
S(t) > 0},7¢ = sup,{t : G(t) > 0}, and zg=wsup,{t : Pr(X > t) > 0}. Sufficient follow-
up requires 71 < 7¢, which means that the follow-up time is long-enough to recover the
whole information of S(t) despite of censoring.

Let o/

max

be the largest failure point for failure type 5. When 7 < 7¢, 7x = 7,

xd . will be a valid estimator for 7'% = sup,{t : Pr(T" > t,B = j) > 0} and hence

max

TP = Fj(zi,.) will be a valid estimator for m; = Fj(7.). Now, we show that Fj(zi, )

max

also has several equivalent representations. Specifically, the principle of weighting yields

15



the estimator,

X o)

Applying the idea of imputation, we need to estimate

E[I(B; = j)|B;, X;] = I(B; = j) + I(B; = 0)w(X;),

where

w(Xi) = Pr(B; = j|Xi, 1_O>IS(§Q) /:dpj(u).

This approach was considered by Wang (2003) under the framework of a two-path model,
where 7; represents the path probability. Using the plug-in principle, w(X;) can be
estimated by

21 b5 00 (1)

and hence 7; can be estimated by

) = %Z{I(E =) d(B; = 0)i (X))}

~1 ﬁ'W ~D

Theorem 2: j i

Proof:

The estimator fr][ can be re-expressed as

= —Z{ )+ 1B = i)}

RS =~ I(Bi=0) [ I(Xg > X, By =)
- ”;{I(BZ_])JF S(X)) L nG(Xy—) ]}




By equation (9),

3

~1
J

S|

i[(éi:jw w{pé()@—)}: LB =7) _

Furthermore it follows that

where x%nax is the largest observed failure time for type j event.

We see again that the three methods léadto'the’same estimator of 7;, which will be
denoted by 7;.

For competing risks data, insufficient follow-up.means that 7 > 7o. There will be
large censored observations at the tail so that S (@) > 0 and G (@) = 0, where ) is
the largest value of X. Consequently there will be some mass beyond z7 , which is not
estimable and hence 7; would underestimate 7;. In fact, nonparametric estimation of
any quantity that involves the tail information has the problem of non-identifiability if
follow-up is not sufficient. To accommodate the situation of insufficient follow-up, Wang
(2003) suggested to impose an artificial assumption, Pr(B = j|T' > 7x) = m;, which
implies that the missing tail area contains the same information about the quantity of

17



interest as in the whole support. The resulting estimator becomes

o XL {I(B = ) + 1(B: = 0)i(X)} (12)

where 7 = n — n.5(z(y) and n, = S0 I(B; = 0)/5(X;). Alternatively, we can apply

the weighting approach to estimate 7; by,

sv_ L IBi=1)
j v 2 )
nz:l G(X’L_)
and
" 16 =1)

Theorem 3: irjl(t) = V;V(t)(adjusted for insufficient follow up)
Proof:

The original expression of 7‘%]1 is given by

n 7 3 LB =0){x=n +I(X},>X;,B,=j
mr {105 - Ay I s

n =neS( )

i
J

To show n — n.S (Tm)) = D iy é((i":i)), we need to consider the following two cases. Let

d(ny be the indicator associated with (. If d(,,) = 1, which means that S (z(ny) = 0, by

equation (8), we have S 1= — p [f 8(ny = 0 which implies that G(x(,)) = 0 and

=1 G(X;—)
. o I(Bi=0)
by equation (9), we have n, = >, Socy = " and hence
~ A u I((Sz - 1)
n—nSxm) =n(l—5S(x,)) = -
(#m) = n(l = S(zm)) 2 Gx)

18



Hence in either case, we have that

. "8 =
n-— ”cS(I(n)) = Z %,

and it follows that
S I(B; = 4) ) G(X-)
S I =1)/G(X—)

Thus one can view 1 as the sample size that only measures the identifiable region.

o ]
J

When S (2(ny) = 0, which is an evidence of sufficient follow-up, we have n = n.

19



Chapter 4. Cure Model Framework

In classical survival analysis, an implicit but sometimes implausible assumption is that
every individual will eventually experience the event of interest. Cure models allow the
possibility that a subject may not develop the event of interest despite of long-term
follow-up. For more discussions on cure models, one can refer to the book by Maller
and Zhou (1996). Data with multiple endpoints can be formulated in the context of
cure models if a particular type of event, say type 7, is of major interest. Under the
framework of a cure model, those who will never experience this type of failure (B # j)
are treated as being immune (cured, or non-susceptible) for the event of type j. One

can define T} as the hypothetical failure time such.that
Ty = T [(B= 400 I(B # ).
For t < oo , the cumulative incidence  function ¢an be written as
F;(t) =Pr(T <t,B=j)="Pr(T; <t)
and hence its complement becomes
S;(t) = Pr(T; > t) =Pr(T > t,B = j) + Pr(B # j).

When there is more than one type of failure, 1 — 7; = lim;_. S;(¢) > 0. In such a case,

T} is not a proper random variable.

20



It is useful to compare the failure time variables discussed in the paper via their

hazard functions. The hazard functions for 7" and T} are given by

Pr(T € [t,t + At)|T > 1)

MO = dm, Al )
and
V) =t PG E L+ ADIT; 2 )
M0 = fm, Al , )

respectively. The relationship between a hazard function and its survival function holds

for 7" and T} such that

S(t) =Pr(T > t) = exp(— /Ot A(u)du),

and
t ~
S.(t) = PAITEN) = Sl / A, (u)du}.
0
In presence of competing risks, the cause-specifie hazard for type j failure is defined as

Pr(T € [t,t + At), B = j|T > t)

At—0 At ’ ( 15)

Note that that \(¢) = Z}]:1 A;(t). Tt is easy to see that \;() < () since for t < oo

Pr(T; € [t,t + At)) =Pr(T € [t,t + At), B = j)

but Pr(7; > t) > Pr(T > t). The latter implies that the risk set at time ¢ for 7} is a larger

set which includes not only those with 7" > ¢ but also those with 7" < t, B =k (k # j).

21



Consequently
t t
S;(t) = exp{—/ Aj(u)du} > exp{—/ Aj(uw)du}. (16)
0 0
In summary, we provide a new explanation of (16) which has been discussed in Lin

(1997), and Gooley et al. (1997).

4.1. Estimation of Cumulative Incidence Function

177

In the context of cure models, censored data based on T} can be formulated as {(X7,07) (i =
1,...,n)}, where XZJ and 527 are iid replications of X7 = T; A C' and o = I(T; < O)
respectively. It is important to note that 5{ = 0 corresponds to two possible situations
of B;, namely B; = 0 and B; = k # j«(k1310), provided by the competing risks data
structure. However for the cure model considered here, when 55 = 0, only X'f = ()} is
recorded and the information of other competing-risksis ignored. Figure 4 illustrates the
relationship between the two data structures.. The first data structure can be converted
to the second one if the failure time associated with B = 2 is replaced by the time to

the external censoring event, which requires additional information.

22



X @) 5
X @) O

X A 8O
X @) O

X @) X :

Figure 4: Relationship between the two data structures. The difference is that the
second type of data extends the endpoint of-the.competing risk event marked by A\ to the
endpoint of external censoring marked by ).

By independence between 7 and C and equation (16), S;(¢) can be consistently

estimated by the Kaplan-Meier estimator,

5 _ _Z?le(Xg:u,ggzl)
so=lle- =

and hence Fj(t) can be estimated by Fj(t) = 1 — S;(t). As Fj(t), Fj(t) also has different

but equivalent representations. By similar arguments, one can show that

B - Y IEEE=1) (7)

23



_ / Z?:ldI(Xij < U’Si =1)
wct 1 — S I(XT <, 0 = 0)/5,(X7)

which is also the nonparametric MLE, where

s _ _Z?:lI(Xij:uvgzj: )
=110 S I(X] = w) b

u<t

It should be mentioned that sometimes practitioners may estimate F};(t) by the comple-

ment of the wrong Kaplan-Meier estimator

50 (4 Z?:lI(Xi:uagi:j)
Sj (t) - g{l - 2?21 [( . > u) }:

which actually estimates exp{—A;(¢)} but S;(t) > exp{—A,(t)} as claimed in (16). The
misuse of 1 — Sg(t) to estimate Fj(t) has been noticed by many authors (Farley et al.,

2001; Gooley et al.,1999; Lin, 1997 Wangp2003), just to name a few.

4.2. Comparison of the Two Estimators

Now we compare the two estimators derived-under different data structures based on

their weighted expressions given in (6) and (17) respectively. We find that
I(X) =u,0) =1)=I(X;, =u, B; = j).

Hence these estimators only differ in the denominator that involves the estimator of
G(t). If the main purpose of inference was to estimate G(t), G(t) is clear a better choice
since Pr(d = 0) > Pr(B = 0). In fact, G(t) is less variable than G(t). However the

estimator of G(t) is now used as a reciprocal weight to obtain an estimator of Fj(t). It

24



turns out that a better estimator of G(t) does not necessarily yield a better estimator of

F;(t). In the following, we show that F}(t) has smaller asymptotic variance than Fj(t).

This phenomenon was first noticed by Tsai and Crowley (1998) in a different estimation

problem that also involves inverse-probability-weighting. To better understand the effect

of the estimator of G(t), we also evaluate two hypothetical estimators,

_ (X, <t B =
Fj(t)zz ( TLC_?(Xl—) J)

where G(t) = > | I(C; > t)/n, and

N I(X; <t,B; = j)
B Z nG(X,—)

Now, we show that although
0 = AVar(G(t)) < AVar(G(£))< AVar(G(t)) < AVar(G(t)),
the relationship for the estimators of Fj(#) is'teverse such that

AVar(F}(t)) > AVar(F;(t)) > AVar(F;(t)) > AVar(Fj(t)).

Theorem 4: AVar(F;(t)) > AVar(F;(t)) > AVar(F;(t)) > AVar(Fj(t)).

Proof:

Based on the martingale representation of G (), one can write

Vi{G() — G(1)}y = n~ G Z [ el o,
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where

and A.(s) is the cumulative hazard function of C. It follows that

dI(X, < u, By = §) — dH,(u)
Vil - ) = 7 [ IR E

dIX<sB—O)—[(X>s)dA() ) o
TONATE . (1) + 0,(1),

where H,(t) = Pr(X <t, B = j). The asymptotic variance of Fj(t) equals Var(A(t)) +

2Cov(A(t), B(t)) + Var(B(t)), where

_ [YdIEX < u, B = 9)— dH,(u)
aw = [ ROE

o0 - | P

It follows that

Var(A() = BA0) = | G2 - )

vare) = [ [ B[ [ el [ O i war )

L
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- [ s

The covariance term equals

E[A(t)B(1)]

- e{ g [ )
- [ [

.E{[d](XSU,EZj)—dHJ'(Uﬂ ./OudI(XSS,E :
=
-E{df(ng,Ezj)- Ou

= 1_)E {d](X <v,B=j)- /Ou [()lgr(z;)j/;3<8) } AFiu)
_ // {dIX<vB )/Ou%}dﬂ(“)
- /// PrX>5 )
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Asymptotic variance of /n{F;(t) — F;(t)} equals

{ g(“ ] /// PrX>3dF( w)dFj(v). (21)

Hence asymptotic variance of /n{Fj(t) — F;(t)} can be derived in the same way, which

is given by

{/0 g]?“( ] /// PrX>s Fi(w)dE;(v). (22)

Notice that (21) and (22) only differ by one term in the the second component. Because

Pr(X > s) > Pr(X > s), it is easy to see that
AVar(Val{Fy(t) - F(6)}) = AVar(ValEy(t) — F(6)}).
The asymptotic variance of v/n{ F;(t) — Fy(t)}.is

Mﬁi } /// HmwMUM@, (23)

which can be further simplified as

[ éﬁ;(u } //Gum 1)dF;(u)dF;(v),

and the asymptotic variance of \/n{F;(t) — F;(t)} is

PAF(u)
e - F (24)
It is clear that
AVar(F7(t)) > AVar(Fj(t)) > AVar(Fy(t)) > AVar(Fy(t)). (25)
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4.3. Estimation of long-term incidence rate

In presence of external censoring, the non-identifiable region for competing risks data
refers to the set, {t : ¢ > 70 A 7¢} and the non-identifiable region for data of the cure
model is {t : t > 7 A 7¢}. It is important to note that 7 < 7p. Clearly the second set
is larger than the first one. When follow-up is sufficient, we have 7'% < 71 < T¢ and both
data structures provide enough information for estimating 7. However when follow-up
is not sufficient, the two data structures contain different level of information about the
tail distribution.

Based on the second type of data {(X7,67) (i = 1,...,n)}, sufficient follow-up re-
quires 7'% < 7¢, which implies that the:dength of follow-up is long enough to observe all

the susceptible with B = j. If 7'% < 7o, m; canbe consistently estimated by the following

three expressions

=1 = 8o = Y Lot IS = 1)+ 1G5 = 000()}.

where
ST (X > 1,6 = 1) Fj(AX])
Si(t) '

For the cure model, insufficient follow-up means that 7. > 7o. Consequently 7,

also underestimates 7;. For competing risks data, the probability of the non-identifiable
region {t : t > 7p A 7¢} is identifiable and is estimated by S (2(ny) which provides the

foundation for us to re-allocate the mass under the artificial assumption Pr(B = j|T >
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Tx) = m;. However for the second data structure, the mass of the non-identifiable region
{t:t> T% A T} is still not identifiable without imposing distributional assumptions.
It seems that it is impossible to construct a valid estimator of 7; nonparametrically.
The book by Maller and Zhou (1996) has thorough discussions on the problem of non-

identifiability in the context of cure models.
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Chapter 5. Extension to Truncation Data

We discuss whether the two suggested estimation principles can be extended to incor-
porate left truncation. Suppose that T is the age when the first failure occurs and B
is the corresponding failure type. Let L be the age that a subject enters the study.
If the sample only includes those who have not developed any type of failure, we can
imagine that the sample is subject to left truncation such that only those with T" > L
can be included in the sample. Let (T}, B;, L;) (1 = 1,...,m) be a random sample of
(T, B, L). Under left truncation, we only observe the sample (T}, B;, L;) (i = 1,...,n)
with T; > L; and m is unknown. Let Fi(t) = Pr(L < t) be the distribution function of
L. For truncated data, the marginal functions ' S{t) and F () can be estimated by the

Lynden-Bell estimators

Z? 1](Ti:U,Lz‘ SU)

Z?:l Ll <u<T) )

u>t

We first study estimation of m and o« = Pr(T" > L). Let F(t) = 1 — S(t). Based

on the decomposition that o = [ Fy(u)dF(u), we have a” = [ Fy(u)dF (u), where

F(t) =1— 5(t). Based on another less straightforward decomposition,

Fr(t)S(t—) = Pr(L < )Pr(T > t) = aPr(L < t < T|T > L),
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we may estimate a by

7L (8)S(t
S (L <t

The weighting approach can be applied based on the relationship

aft) =

-)
<T;)/n’

TN Il XS Al Ty

It is important to mention that, in presence of truncation, the method of imputation
seems not applicable since an truncated observation is completely missing and even its
existence is unknown. He and Yang (1998) considered estimation of a and, in their
Theorem 2.2, it is shown that &(#) =@ forany't such that > "  I(L; <t <T;) > 0.
Now, we show that a(t) = aP = a®.

Theorem 5: a(t) =aP = av

Proof:

From (2.8)of He and Yang (1998), we have 7 I(T; = t)/n = Fy(t)AF(t)/aP and
hence AF(t) = aP Y7 I(T; = t)/nFy(t). By taking summation over all ¢ on both

sides of the previous identity, we have

which means that & = {2 > | m}_l = av.



From the above two estimators, we see the jump sizes at time u are given by

F(Au) _{%Zﬁ;ﬂ Zin (T —nz;j )—],T > L),

and

~D _ i 1T = =1 '

Proving F;"(Au) = FjD(Au) is the same as showing &
It follows that the total sample size m can be estimated by

n

B ~1 :Z (L <t<T) (26)
— Fi.(T)) Fr(t)S(t-)

Since Y1, I(T; = u, B; = j)/n is an estimator of Fj(Au)Pr(L < u)/a, it follows that
F;(Au) can be estimated by > 7" (T, =ptsBp = =) /mF(u), where 1 can be any of

the above estimators in (26). The method of decompesition yields the estimator

~f S ),

where

/Zzl —UB—],L<U)
7,1 L<U<T) ‘
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Chapter 6. Numerical Analysis

6.1. Simulation Results

The purpose of the simulation studies was to examine the performance of F} (t) and
Fy(t) in finite samples (i.e. n = 100 and n = 200). Suppose that there are two types of
failure. The indicator I(B = 1) was generated from a Bernoulli random variable with
probability m; and the latency variable for each type T;|B = j was generated from an
exponential distribution such that Pr(T; > ¢|B = j) = exp(—2J;) (j = 1,2). The failure

time of the first event was set to be T'= I(B = 1)1} + I(B = 2)T,. The independent

censoring variable C' was generated from U (0, m). Hence
Pr(B=1)=Pr(@d=1) = Py(T < C|B =1),

which measures the probability of-observingthe first type of failure by time ¢ in presence
of external censoring. In addition te the two proposed estimators F(t) and F(t), the
hypothetical estimators F(t) and Fy(¢) in (19) and (20) were also evaluated.

Table 1 displays the average bias and standard deviation of each estimator, based on
500 replications, when 7 = 0.9, \; = 0.8, Ay = 1 and m = 5 which gives Pr(B =1)~
0.67. We see that the correct order of the asymptotic variances for the four estimators
shown in (25) has already appeared when n = 100. The discrepancy gets larger when

t approaches to the tail. Table 2 shows the results when 7 = 0.9, A\ = 0.8, Ay =1

and m = 10 which gives Pr(B = 1) ~ 0.79. We see that the performance of all the
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estimators improves as n or Pr(B = 1) increases. Table 3 displays the results when
m = 0.5, Ay = 0.8, Ay = 1 and m = 10 which gives Pr(B = 1) =~ 0.44. Although
the relative performances of the four estimators are consistent with the previous two

settings, the differences become less obvious when 7 and Pr(B = 1) decrease.
6.2. Analysis of Stanford Heart Transplant Data

For illustration, the methods discussed in the article were applied to analyze the Stanford
transplant data (Crowly and Hu, 1977). The event of interest (B = 1) is rejection and
the competing risk (B = 2) is death without rejection. Among 65 patients, 29 with
rejection (B = 1), 12 died without rejection (B = 2) and 24 were censored (B = 0).
For the 12 patients without rejection (B = 2), we set X = C, which is the time from
the date of acceptance to the end of-the study.in Apzril 1974. The quantity of interest
is F(t) which represents the cumulative ineidence probability of experience rejection by
time ¢. The two estimated cumulative incidence functions, Fy(t), and Fy(t), were shown
in Table 4 and plotted in Figure 5. When ¢t > 500, we see that the discrepancy between
Fi(t) and F(t) increases as t gets larger. It seems that F}(¢) is less reliable because of
heavy censoring in 77, the time to death without rejection.

To estimate my, the probability of rejection, a naive estimate is 29/65 = 0.446.
If Pr(B = 0) is very small, this estimate may be reliable. However in the present

example, Pr(B = 0) ~ 24/65 =~ 0.37, which implies that this naive estimator is not
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reasonable. Applying our methods, the evidence of insufficient follow-up is clear since
S(x(m) = S(1350) = 0.209. We found that zha = 1350 and 71 = Fj(2iax) = 0.548.
The modified estimator in (12), which accounts for the unassigned mass in the tail, is

71 = 0.693. Which is a more reasonable estimator of m; than the naive estimator.

0.5

0.3 0.4
|

cumulative incidence function

0.1

0.0
I

0 500 1000 1500 2000

time

Figure 5: Two estimators of the cumulative incidence probability for the time to
rejection by time t based on the Stanford Heart Transplant data. F (t) : the dashed line;

Fi(t) : the solid line.
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Chapter 7. Discussion

We have demonstrated that, as the Kaplan-Meier estimator, the cumulative incidence
function can be estimated via different approaches. We prove that these representations
are equivalent under the settings discussed in the thesis. For future applications, these
techniques may offer different alternatives in other contexts such as interval censoring
or regression problems.

The inverse-probability-weighting representation is particularly useful in simplifying
analytic work which has led to closed-form expressions of the asymptotic variances as

shown in (21) and (22). It also allows us to compare the two estimators Fj(t) and

F;(t) analytically. The second structure allows ohe to use existing statistical packages
to estimate 1 — F}(t) by the Kaplan-Meier estimator; However since the data ignores
the information provided by other compeéting risks; the resulting estimator has larger
variance and also it seems unlikely to estimate‘the long-term incidence rate if the follow-
up period is not long enough. In fact, the simulations indicate that the two estimators
have larger difference in the tail region. In the extension to truncated data we found
that the imputation fails but the weighting method still works.

Shen (2003) showed that the Lynden-Bell estimator for the left-truncation data can

be expressed as inverse-probability-weighted average. To estimate the truncation prob-

ability with left-truncated and right-censored data, Shen (2005) proposed two different
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estimators by using the inverse-probability-weighting method.
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Table 1: Performance of F(t), Fi(t), Fy(t), and F¥(t) when m = 0.9 and Pr(B = 1)
0.67.

n=100 n=200
F() R K@) Rl KO RO RO R@#) Fr)

0.1 0330 0340  0.340 0342 0272 0272 0273 0275
(-0.982) (-0.982) (-0.983) (-1.051) (-0.522) (-0.522) (-0.522) (-0.587)

0.3 1.05 1.05 1.05 113 0.798  0.798 0812  0.86
(-0.984) (-0.987) (-0.978) (-1.66) (-0.521) (-0.524) (-0.523) (-1.21)

0.5 1.73 1.74 1.82 1.98 1.28 1.29 1.35 1.57
(-1.06)  (-1.07)  (-1.06) (-3.27) (-0.530) (-0.538) (-0.535)  (-2.8)

0.7 2.37 2.46 2.78 3.05 1.70 1.78 1.99 2.35

(-1.02)  (-1.06) (-1.05) (-6.48)  (-0.46) (-0.47) (-0.49)  (-5.9)

The first number in each cell is the standard deviation (x1072), and the second number

in parentheses is the average bias (x1073).

Table 2: Performance of Fi(t), Fi(t), Fy(#)jand.Fi(#) when m = 0.9 and Pr(B = 1) =
0.79.

n=100 n=200
Fu(t) R R@®) R@UEW® B R® RO @)
0.1 0.252 0.252 0.253 0.260 0.173 0.173 0.174 0.176
(0.99)  (-0.99) (-0.99) (-0.99) (-0.493) (-0.493) (-0.492) (-0.496)
0.3 0.758 0.759 0.768 0.831 0.529 0.529 0.530 0.570
(0.992)  (-0.99) (-0.99) (-0.97) (-0.50) (-0.501) (-0.496) (-0.517)

0.5 1.22 1.23 1.28 147 082 0824 0868  1.05
(-1.0)  (-0.994) (-0.98) (-0.94) (-0.496) (-0.493) (-0.481) (-0.528)
0.7 1.62 1.67 1.86 230  1.14 1.17 1.33 1.66
(-0.994) (-0.975) (-0.931) (-0.86) (-0.492) (-0.475) (-0.431) (-0.513)
0.9 2.19 2.65 319 392 167 2.25 2.58 3.05

(-1.98)  (-1.81)  (-1.79) (-1.67) (-1.19)  (-0.98)  (-0.92)  (-1.02)

The first number in each cell is the standard deviation (x1072), and the second number

in parentheses is the average bias (x1073).
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Table 3: Performance of F(t), Fi(t), Fy(t), and F¥(t) when m = 0.5 and Pr(B = 1) =
0.44.

n=100 n=200
Fu(t) R Rl Rl KM RO R® RO F@
0.1 0355 0.357 0357 0360 0267 0268 0269  0.281
(-0.99) (-0.99) (-0.99) (-1.0) (-0.530) (-0.529) (-0.529) (-0.527)
02 0680 0.683 0684 0727 0497  0.497 0.5 0.533
(-0.96) (-0.96) (-0.96) (-0.99) (-0.497) (-0.494) (-0.495) (-0.485)
0.3  1.122 1130 1137 1220 0771 0791  0.798  0.865
(-0.93) (-0.93) (-0.94) (-0.98) (-0.48) (-0.472) (-0.481) (-0.454)
0.4 154 165 1.69 190  1.09 1.13 1.15 1.30
(-1.01) (-1.01) (-1.03) (-1.08) (-0.416) (-0.41) (-0.434) (-0.385)
0.5 336 345 351  3.78 2.2 2.37 2.39 2.49
(-2.85) (-2.79) (-2.82) (-2.86) (-1.6)  (-1.54) (-1.59)  (-1.52)

The first number in each cell is the standard deviation (x1072), and the second number

in parentheses is the average bias (x1073).

Table 4: Comparison of F(t), Fi(t), based on Stanford heart transplant data.

t E(t) F(@) |t Fi(t)  Fi(t)
13 0.016 0.016 | 161  0.306 0.306
29 0.047 0.047 | 280 0.340 0.342
39 0.063 0.063 | 589 0.375 0.378
50  0.128 0.128 | 624  0.399 0.403
54 0.177 0.177 | 994  0.480 0.494
63 0.209 0.209 | 1106 0.511 0.528
66  0.258 0.257 | 1350 0.548 0.571
68 0.274 0.273
136 0.29  0.29
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