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摘 要       

 
在本論文中，我們考慮兩個在生物醫學上常被應用的量：累積發生函數以及長期

發生率；針對感興趣的發生原因，我們探討這兩個量的無母數估計。在三種不同

的資料結構下(競爭風險和治癒模式在右設限存在下、競爭風險在左截切存在

下)，我們分別應用三種不同的想法去得到無母數估計量：分解法，加權法以及

補值法。在本文中，我們證明出在每一種資料結構下，使用不用想法所得到的無

母數估計量都是相同的。另外，我們也利用數值分析來比較在競爭風險和治癒模

式下，何者的無母數估計量更為有效率。 
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ABSTRACT 

 
In this thesis we consider nonparametric inference of the cumulative incidence 

function for a particular type of failure and its long-term incidence rate, both of which 

are useful descriptive measures for biomedical data with multiple endpoints. A unified 

framework is provided to study different inference techniques under various 

incomplete data structures. Specifically three approaches, namely decomposition, 

weighting and imputation, are studied under data settings which include the 

conventional competing risks data, the framework of a cure model and truncated 

data. Identity between these methods for each data structure is examined. Numerical 

examples are provided for comparing the first two data formulations. 

 

Key words: Competing Risks; Cure models; Imputation; Inverse probability weighting; 

Multi-state model; Nonparametric inference; Sufficient follow-up; Truncation. 
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Chapter 1. Introduction

Multiple events data are commonly seen in many biomedical applications. Figure 1

depicts a common competing risks framework, in which there are J + 1 states, with

state 0 being alive and states 1, 2, . . . , J corresponding to the J distinct types of death.

Figure 2 describes another situation in which a subject receiving heart transplantation

may experience two different paths (i.e. with/without rejection).

Figure 1: Competing risks of J distinct causes of death

Figure 2: A two-path model for heart transplant
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Suppose that a person may experience one of J distinct types of failure or J different

paths. Let T be the failure time of the first event and B be the indicator for the

corresponding failure type taking values j = 1, . . . , J . The cumulative incidence function

(CIF) for the jth cause of failure is defined as Fj(t) = Pr(T ≤ t, B = j). In the example

of heart transplant, let (B = 1) be the occurrence of rejection and (B = 2) be the

death without rejection. In this case, F1(t) is the cumulative probability of experiencing

rejection by time t and F2(t) is the cumulative probability of death without rejection by

time t.

Under the conventional framework of competing risks, the cumulative incidence func-

tion(CIF) can be considered as an extension of the Kaplan-Meier estimation with J = 1.

Properties of the Kaplan-Meier estimator has been thoroughly studied in the literature.

Specifically it is a product-limit estimator, satisfies the properties of redistribution-to-

the-right and self-consistency, and is the nonparametric MLE. Recently Satten and Datta

(2001) showed that the Kaplan-Meier estimator can also be expressed as an inverse-

probability-of-censoring weighted average. In this thesis, we discuss how to generalize

these inferential techniques to the estimation of CIF.

Most literature on CIF is developed under the competing risks framework. That is,

one observes {(Ti, Bi)(i = 1, 2, . . . , n)} or its censored version. Nonparametric estimation
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of Fj(t) in presence of right censoring has received substantial attention in the literature

(Anderson et al., 1993; Kalbfleisch and Prentice, 2002). The martingale expression of the

nonparametric MLE(NPMLE) was given in Lin (1997), which is useful for large-sample

analysis. Satten and Datta (1999) showed that the NPMLE can also be re-expressed by

a product-limit representation with fractional risk sets. For the simple case of J = 2,

two recent articles by Betensky and Schoenfeld (2001) and Wang (2003) studied the

estimation of Fj(t) in the context of a two-state model. In practical applications, it

has been founded that the CIF estimate is often misused by practitioners. Golley et al.

(1999) and Farley et al. (2001) explained the distinction between the estimate of the

cumulative incidence function and the complement of the Kaplan-Meier estimator. We

will also address this issue under the framework of cure model.

In this thesis, we apply different inference techniques to estimate Fj(t) and other

related quantities(i.e. the long-term incidence rate) under different types of data struc-

tures. Chapter 2 reviews some relative papers about the cumulative incidence function.

Chapter 3 considers the classical setting of competing risks data. Chapter 4 studies a

different data formulation in the context of cure models in which subjects with B 6= j

are treated as being cured and hence will never experience the cause of interest, B = j,

despite of long-term follow-up. In Chapter 5, we extend the results to competing risks

data subject to left truncation. Relationships between different inference approaches
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are examined for each data structure. In Chapter 6 we provide numerical analysis to

illustrate the difference between competing risks data and the data formulated based on

the a cure model. Concluding remarks are given in Chapter 7.
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Chapter 2. Literature Review

In this Chapter, we focus on the competing risks setting. Let T be the failure time of

the first event and B be the indicator for the corresponding failure type taking values

j = 1, . . . , J . Let S(t) = Pr(T > t), F (t) = 1− S(t) and

λ(t) = lim
∆t→0

Pr(T ∈ [t, t + ∆t)|T ≥ t)

∆t
. (1)

The cumulative incidence function (CIF) of the jth event define as Fj(t) = Pr(T ≤

t, B = j) which is the cumulative probability of observing the jth event by time t.

However in practice, patients may drop out from the study or, at the end of the study,

some may still have not developed any type of failure. Let C be the external censoring

variable and assume that T and C are independent. Define Λj(t) =
∫ t

0
λj(u)du, where

λj(t) is the cause-specific hazard function defined as

λj(t) = lim
∆t→0

Pr(T ∈ [t, t + ∆t), B = j|T ≥ t)

∆t
. (2)

In presence of right censoring, observable variables become X = T ∧ C and B̃ = I(T ≤

C) · B. Let {(Ti, Ci, Bi) (i = 1, . . . , n)} be iid replications of (T, C, B). Observed data

can be expressed as {(Xi, δi, B̃i) (i = 1, . . . , n)}, where Xi = Ti ∧ Ci and B̃i = δi · Bi =

I(Ti ≤ Ci) ·Bi.

Consider the special case of estimating S(t). The likelihood can be expressed as

n∏
i=1

[dF (Xi)]
δiS(Xi)

1−δi
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=
n∏

i=1

[dΛ(Xi)]
δiS(Xi).

It has been shown that the NPMLE places mass only at observed failure times. For the

general case J > 1, the likelihood becomes

n∏
i=1

{[
J∏

j=1

dΛj(Xi)
I(B̃i=j)]

∏
u≤Xi

{1−
J∑

j=1

dΛj(u)}}.

Maximization of the above multinomial likelihood function, gives the MLE

dΛ̂j(t) =

∑n
i=1 I(Xi = t, B̃i = j)∑n

i=1 I(Xi ≥ t)
.

Lin(1997) showed that CIF has the following nice decomposition:

Pr(T ≤ t, B = j)

=

∫ t

0

Pr(T = u,B = j|T ≥ u)Pr(T ≥ u)

=

∫ t

0

S(u−)dΛj(u),

where S(u) = Pr(T > u) and Λj(t) =
∫ t

0
λj(u)du. By a simple plug-in approach, Fj(t)

can be estimated by

F̂j(t) =

∫ t

0

Ŝ(u−)dΛ̂j(u), (3)

where Ŝ(t) is the Kaplan-Meier estimator of Pr(T > t),

Ŝ(t) =
∏
u≤t

{1−
∑n

i=1 I(Xi = u, δi = 1)∑n
i=1 I(Xi ≥ u)

}
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and dΛ̂j(t) is the Nelson-Aalen estimator of dΛj(t),

dΛ̂j(t) =

∑n
i=1 I(Xi = t, B̃i = j)∑n

i=1 I(Xi ≥ t)
.

Lin (1997) mentioned that (3) is also the NPMLE. The paper also derives the martingale

expression of
√

n{F̂1(t)−F1(t)} in which weak convergence properties of the process can

be established. The results are useful for constructing confidence bands of Fj(t) based

on re-sampling techniques.

In survival analysis, there is a well-known relationship between the survival function

and the cumulative hazard function. Specifically we have

S(t) = exp(−
∫ t

0

λ(u)du).

Therefore it seems natural to extend such a relationship to CIF and the cause-specific

hazard function. However many researchers, including Golley et al. (1999) and Lin

(1997) and Farley et al. (2001), found that

1− Fj(t) ≥ exp(−
∫ t

0

λj(u)du).

We will clarify this issue by introducing another data structure, namely the cure model

framework.
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Chapter 3. Competing Risks Data

Without external censoring, one observes {(Ti, Bi)(i = 1, . . . , n)}. The empirical esti-

mator of Fj(t) = E[I(T ≤ t, B = j)] is given by

F̄j(t) =
n∑

i=1

I(Ti ≤ t, Bi = j)/n =
n∑

i=1

∫ t

0

dI(Ti ≤ u,Bi = j)/n. (4)

Competing risks data in presence of right censoring, can be expressed as {(Xi, δi, B̃i)

(i = 1, . . . , n)}, where Xi = Ti ∧ Ci and B̃i = δi · Bi. Notice the indicator of interest,

I(Ti ≤ t, Bi = j) may be missing due to censoring and hence the empirical estimator

(4) is not applicable.

3.1. Estimation of Cumulative Incidence Function

As mentioned in Chapter 2, the NPMLE of Fj(t) can be obtained explicitly by

F̂D
j (t) =

∫ t

0

Ŝ(u−)dΛ̂j(u). (5)

Here we apply two useful principles for handling missing data to estimate Fj(t). One

way is treating I(X ≤ t, B̃ = j) as a biased proxy of I(T ≤ t, B = j) and then applying

the technique of weighting to correct the sampling bias. Notice that

E[
I(X ≤ t, B̃ = j)

G(T−)
|T ] = I(T ≤ t, B = j),

where G(u) = Pr(C > u) and G(u−) = Pr(C ≥ u). Hence Fj(t) can be estimated by

9



the following weighted average:

F̂W
j (t) =

1

n

n∑
i=1

I(Xi ≤ t, B̃i = j)

Ĝ(Xi−)
=

1

n

∫

u≤t

∑n
i=1 dI(Xi ≤ u, B̃i = j)

Ĝ(u−)
, (6)

where

Ĝ(t−) =
∏
u<t

{1−
∑n

i=1 I(Xi = u, B̃i = 0)∑n
i=1 I(Xi ≥ u)

}.

Imputation is another way to deal with incomplete observations. By writing Fj(t) =

∫ t

0
Fj(du), it follows that

Fj(du) = E[I(T ∈ [u, u + du), B = j)] = E
[
E[I(T ∈ [u, u + du), B = j|X, B̃)]

]

where E[I(Ti ∈ [u, u + du), Bi = j|Xi, B̃i)] can be written as

I(Xi ∈ [u, u + du), B̃i = j) + I(Xi < u, B̃i = 0)
Pr(Ti ∈ [u, u + du), Bi = j)

S(Xi)
.

This approach yields the following self-consistent equation, F̂ I
j (t) =

∫ t

0
F̂ I

j (∆u),

where

F̂ I
j (∆u) =

n∑
i=1

I(Xi = u, B̃i = j)/n +
n∑

i=1

I(Xi < u, B̃i = 0)F̂ I
j (∆u)/nŜ(Xi). (7)

Note that the first component of F̂ I
j (∆u) is the original assigned mass at the failure time

point u and the second component is the mass re-distributed from previously censored

observations. The estimator F̂ I
j (t) has the following explicit representation,

F̂ I
j (t) =

∫

u≤t

∑n
i=1 dI(Xi ≤ u, B̃i = j)

n−∑n
i=1 I(Xi < u, B̃i = 0)/Ŝ(Xi)

.
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Figure 3 provides a simple example to illustrate the steps of mass re-distribution for

estimating F1(t) when there are two types of failure. Let x(1) < x(2) < ... < x(n) be

ordered observations of Xi (i = 1, . . . , n) and δ(k) and B̃(k) be the indicators associated

with x(k). At an observed point on the time line, the associated failure type is marked

as ©, ×, and 4 for B̃ = 0, 1, 2, respectively. In the first step, every point is assigned

with mass 1/n = 1/7. As can be seen in (7), the mass assigned to points with B̃ = 2 has

no contribution to the calculation of F̂ I
1 (t). Hence F̂ I

1 (x(1)) = 1/7 and F̂ I
1 (x(3)) = 2/7

since there are no censored observations with B̃ = 0 before these two points. The mass

assigned to the censored observation, x(4), will be evenly distributed to x(j) (j = 5, 6, 7)

and then the mass assigned to the censored observation, x(6), will be distributed to the

point on its right, x(7). The redistribution-to-the right algorithm works in the same way

as in the special case of Pr(B = 1) except that F̂ I
j (∆u) does not receive mass from other

competing events with B̃ 6= j (j > 0).
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Figure 3: Mass calculation for estimation of F̂ I
1 (t) based on the first data structure,

where © : B̃ = 0;× : B̃ = 1;4 : B̃ = 2.

Now, we show that the above three estimators of Fj(t) are equivalent. Specifically

the jump sizes of the above estimators at time u are given by

F̂D
j (∆u) =

∑n
i=1 I(Xi = u, B̃i = j)∑n
i=1 I(Xi ≥ u)/Ŝ(u−)

,

F̂W
j (∆u) =

∑n
i=1 I(Xi = u, B̃i = j)

nĜ(u−)
,

and

F̂ I
j (∆u) =

∑n
i=1 I(Xi = u, B̃i = j)

n−∑n
i=1 I(Xi < u, B̃i = 0)/Ŝ(Xi)

,

where u = x(k) is an observed failure point with B̃(k) = j.

Theorem 1:Identical relationship of F̂D
j (∆u), F̂W

j (∆u) and F̂ I
j (∆u)

Proof:
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According to the result of Satten and Datta (2001), we have

Ŝ(u) = 1− 1

n

n∑
i=1

I(Xi ≤ u, δi = 1)

Ĝ(Xi−)
, (8)

Ĝ(u−) = 1− 1

n

n∑
i=1

I(Xi < u, B̃i = 0)

Ŝ(Xi)
. (9)

By applying equation (9), it can be shown that the denominators of F̂W
j (∆u) and F̂ I

j (∆u)

are identical. In general, we can write

Ŝ(u−)Ĝ(u−) =
∏
s<u

{
1−

∑n
i=1 I(Xi = s, δi = 1)∑n

i=1 I(Xi ≥ s)
−

∑n
i=1 I(Xi = s, δi = 0)∑n

i=1 I(Xi ≥ s)
+ R(s)

}
,

where

R(s) =
(
∑n

i=1 I(Xi = s, δi = 1)) (
∑n

i=1 I(Xi = s, δi = 0))

(
∑n

i=1 I(Xi ≥ s))
2 .

If there are no ties between failure and censored observations, R(s) should equal zero

for all s and

Ŝ(u−)Ĝ(u−) =
∏
s<u

{
1−

∑n
i=1 I(Xi = s)∑n
i=1 I(Xi ≥ s)

}
=

1

n

n∑
i=1

I(Xi ≥ u)

and hence F̂W
j (∆u) = F̂D

j (∆u). Note that if there are ties between failures and cen-

sored observations, we can still make the same conclusion if we impose the conventional

assumption that the failures had occurred just before the censored observations.

From now on, we write F̂j(t) to denote any of the three representations. The equiv-

alence result has already been established for the special case Pr(B = 1) = 1, where
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1 − F1(t) reduces to S(t) and 1 − F̂1(t) reduces to the Kaplan-Meier estimator, Ŝ(t).

Note that Satten and Datta (2001) has shown that

Ŝ(t) =
∏
u≤t

{1−
∑n

i=1 I(Xi = u, δi = 1)∑n
i=1 I(Xi ≥ u)

} = 1− 1

n

n∑
i=1

I(Xi ≤ t, δi = 1)

Ĝ(Xi−)
,

which is a special case of equation (6).

The numerator in F̂j(∆u),
∑n

i=1 I(Xi = u, B̃i = j), counts the number of observing

type j failure at time u. The denominator has three equivalent representations which

measure the “effective sample size“ at time u adjusted for the underlying censoring

mechanism. From the expression of F̂W
j (∆u), we see that the effective sample size equals

nĜ(u−) which is the (estimated) expected number of subjects that are not right censored

at time u. The expression of F̂ I
j (∆u) indicates that previously censored observations

should be excluded in the calculation of the effective sample size but their influence

should be weighted according to their survival probabilities. The expression of F̂D
j (∆u)

indicates that the effective sample size is larger than the number at risk since subjects

who had died previously should be included in the adjusted sample size which accounts

for the possibility of external censoring.

Despite of the equivalence, different representations of the some quantity may provide

different applications. The connection with the nonparametric MLE is useful to establish

the optimal property. The idea of imputation is related to the re-distribution to the right

and self-consistent properties which may be adopted in other inference problems that
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involve the covariate information or other censoring patterns. The weighted expression

of F̂W
j (t) is very useful for analytical analysis and may be generalized to other censoring

mechanisms if the effect of censoring can be formulated explicitly.

3.2. Estimation of Long-Term Incidence Rate

The long-term incidence rate is defined as

πj = Pr(B = j) = lim
t→∞

Pr(T ≤ t, B = j). (10)

Estimation of πj is not just a trivial extension of the previous results since as indicated

in (10), πj involves the tail information which may be missing if the quality of data

is the distribution of Fj(t) can not be recovered at the tail region. A crucial condition

which measures the quality of data for recovering the tail information is called “sufficient

follow-up“. For competing risks data, define the following boundary points, τT = supt{t :

S(t) > 0},τC = supt{t : G(t) > 0}, and τX = supt{t : Pr(X > t) > 0}. Sufficient follow-

up requires τT ≤ τC , which means that the follow-up time is long-enough to recover the

whole information of S(t) despite of censoring.

Let xj
max be the largest failure point for failure type j. When τT ≤ τC , τX = τT ,

xj
max will be a valid estimator for τ j

T = supt{t : Pr(T > t, B = j) > 0} and hence

π̂D
j = F̂j(x

j
max) will be a valid estimator for πj = Fj(τ

j
T ). Now, we show that F̂j(x

j
max)

also has several equivalent representations. Specifically, the principle of weighting yields
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the estimator,

π̂W
j =

n∑
i=1

I(B̃i = j)

nĜ(Xi−)
.

Applying the idea of imputation, we need to estimate

E[I(Bi = j)|B̃i, Xi] = I(B̃i = j) + I(B̃i = 0)w(Xi),

where

w(Xi) = Pr(Bi = j|Xi, B̃i = 0) =
1

S(Xi)

∫ ∞

Xi

dFj(u).

This approach was considered by Wang (2003) under the framework of a two-path model,

where πj represents the path probability. Using the plug-in principle, w(Xi) can be

estimated by

ŵ(Xi) = {
∫ ∞

Xi

dF̂j(u)}/Ŝ(Xi) (11)

and hence πj can be estimated by

π̂I
j =

1

n

n∑
i=1

{I(B̃i = j) + I(B̃i = 0)ŵ(Xi)}.

Theorem 2: π̂I
j = π̂W

j = π̂D
j

Proof:

The estimator π̂I
j can be re-expressed as

π̂I
j =

1

n

n∑
i=1

{
I(B̃i = j) + I(B̃i = 0)ŵ(Xi)

}

=
1

n

n∑
i=1

{
I(B̃i = j) +

I(B̃i = 0)

Ŝ(Xi)

[
n∑

k=1

I(Xk > Xi, B̃k = j)

nĜ(Xk−)

]}
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=
1

n

n∑
i=1

I(B̃i = j) +
1

n

n∑

k=1

I(B̃k = j)

nĜ(Xk−)

[
n∑

i=1

I(Xk > Xi, B̃i = 0)

Ŝ(Xi)

]
.

By equation (9),

π̂I
j =

1

n

n∑
i=1

I(B̃i = j) +
n∑

k=1

I(B̃k = j)

nĜ(Xk−)

{
1− Ĝ(Xk−)

}
=

n∑

k=1

I(B̃k = j)

nĜ(Xk−)
= π̂W

j .

Furthermore it follows that

π̂j =
n∑

i=1

I(B̃i = j)

nĜ(Xi−)
=

n∑
i=1

I(Xi ≤ xj
max, B̃i = j)

nĜ(Xi−)
= F̂j(x

j
max),

where xj
max is the largest observed failure time for type j event.

We see again that the three methods lead to the same estimator of πj, which will be

denoted by π̂j.

For competing risks data, insufficient follow-up means that τT > τC . There will be

large censored observations at the tail so that Ŝ(x(n)) > 0 and Ĝ(x(n)) = 0, where x(n) is

the largest value of X. Consequently there will be some mass beyond xj
max which is not

estimable and hence π̂j would underestimate πj. In fact, nonparametric estimation of

any quantity that involves the tail information has the problem of non-identifiability if

follow-up is not sufficient. To accommodate the situation of insufficient follow-up, Wang

(2003) suggested to impose an artificial assumption, Pr(B = j|T > τX) = πj, which

implies that the missing tail area contains the same information about the quantity of
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interest as in the whole support. The resulting estimator becomes

π̆I
j =

∑n
i=1{I(B̃i = j) + I(B̃i = 0)ŵ(Xi)}

n̆
, (12)

where n̆ = n − ncŜ(x(n)) and nc =
∑n

i=1 I(B̃i = 0)/Ŝ(Xi). Alternatively, we can apply

the weighting approach to estimate πj by,

π̆W
j =

1

n̆

n∑
i=1

I(B̃i = j)

Ĝ(Xi−)
,

and

n̆ = n− ncŜ(x(n)) =
n∑

i=1

I(δi = 1)

Ĝ(Xi−)
.

Theorem 3: π̌I
j (t) = π̌W

j (t)(adjusted for insufficient follow up)

Proof:

The original expression of π̆I
j is given by

π̆I
j =

∑n
i=1

{
I(B̃i = j) + I(B̃i=0)

Ŝ(Xi)

[∑n
k=1

I(Xk>Xi,B̃k=j)

nĜ(Xk−)

]}

n− ncŜ(x(n))
.

To show n− ncŜ(x(n)) =
∑n

i=1
I(δi=1)

Ĝ(Xi−)
, we need to consider the following two cases. Let

δ(n) be the indicator associated with x(n). If δ(n) = 1, which means that Ŝ(x(n)) = 0, by

equation (8), we have
∑n

i=1
I(δi=1)

Ĝ(Xi−)
= n. If δ(n) = 0 which implies that Ĝ(x(n)) = 0 and

by equation (9), we have nc =
∑n

i=1
I(B̃i=0)

Ŝ(Xi)
= n and hence

n− ncŜ(x(n)) = n(1− Ŝ(x(n))) =
n∑

i=1

I(δi = 1)

Ĝ(Xi−)
.
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Hence in either case, we have that

n− ncŜ(x(n)) =
n∑

i=1

I(δi = 1)

Ĝ(Xi−)
,

and it follows that

π̆I
j =

∑n
i=1 I(B̃i = j)

/
Ĝ(Xi−)

∑n
i=1 I(δi = 1)/ Ĝ(Xi−)

.

Thus one can view n̆ as the sample size that only measures the identifiable region.

When Ŝ(x(n)) = 0, which is an evidence of sufficient follow-up, we have n̆ = n.
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Chapter 4. Cure Model Framework

In classical survival analysis, an implicit but sometimes implausible assumption is that

every individual will eventually experience the event of interest. Cure models allow the

possibility that a subject may not develop the event of interest despite of long-term

follow-up. For more discussions on cure models, one can refer to the book by Maller

and Zhou (1996). Data with multiple endpoints can be formulated in the context of

cure models if a particular type of event, say type j, is of major interest. Under the

framework of a cure model, those who will never experience this type of failure (B 6= j)

are treated as being immune (cured, or non-susceptible) for the event of type j. One

can define Tj as the hypothetical failure time such that

Tj = T · I(B = j) +∞ · I(B 6= j).

For t < ∞ , the cumulative incidence function can be written as

Fj(t) = Pr(T ≤ t, B = j) = Pr(Tj ≤ t)

and hence its complement becomes

Sj(t) = Pr(Tj > t) = Pr(T > t, B = j) + Pr(B 6= j).

When there is more than one type of failure, 1− πj = limt→∞ Sj(t) > 0. In such a case,

Tj is not a proper random variable.
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It is useful to compare the failure time variables discussed in the paper via their

hazard functions. The hazard functions for T and Tj are given by

λ(t) = lim
∆t→0

Pr(T ∈ [t, t + ∆t)|T ≥ t)

∆t
(13)

and

λ̃j(t) = lim
∆t→0

Pr(Tj ∈ [t, t + ∆t)|Tj ≥ t)

∆t
, (14)

respectively. The relationship between a hazard function and its survival function holds

for T and Tj such that

S(t) = Pr(T > t) = exp(−
∫ t

0

λ(u)du),

and

Sj(t) = Pr(Tj > t) = exp{−
∫ t

0

λ̃j(u)du}.

In presence of competing risks, the cause-specific hazard for type j failure is defined as

λj(t) = lim
∆t→0

Pr(T ∈ [t, t + ∆t), B = j|T ≥ t)

∆t
. (15)

Note that that λ(t) =
∑J

j=1 λj(t). It is easy to see that λ̃j(t) ≤ λj(t) since for t < ∞

Pr(Tj ∈ [t, t + ∆t)) = Pr(T ∈ [t, t + ∆t), B = j)

but Pr(Tj ≥ t) ≥ Pr(T ≥ t). The latter implies that the risk set at time t for Tj is a larger

set which includes not only those with T ≥ t but also those with T < t,B = k (k 6= j).
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Consequently

Sj(t) = exp{−
∫ t

0

λ̃j(u)du} ≥ exp{−
∫ t

0

λj(u)du}. (16)

In summary, we provide a new explanation of (16) which has been discussed in Lin

(1997), and Gooley et al. (1997).

4.1. Estimation of Cumulative Incidence Function

In the context of cure models, censored data based on Tj can be formulated as {(X̌j
i , δ̌

j
i ) (i =

1, . . . , n)}, where X̌j
i and δ̌j

i are iid replications of X̌j = Tj ∧ C and δ̌j = I(Tj ≤ C)

respectively. It is important to note that δ̌j
i = 0 corresponds to two possible situations

of B̃i, namely B̃i = 0 and B̃i = k 6= j (k > 0), provided by the competing risks data

structure. However for the cure model considered here, when δ̌j
i = 0, only X̌j

i = Ci is

recorded and the information of other competing risks is ignored. Figure 4 illustrates the

relationship between the two data structures. The first data structure can be converted

to the second one if the failure time associated with B̃ = 2 is replaced by the time to

the external censoring event, which requires additional information.
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Figure 4: Relationship between the two data structures. The difference is that the

second type of data extends the endpoint of the competing risk event marked by 4 to the

endpoint of external censoring marked by ©.

By independence between Tj and C and equation (16), Sj(t) can be consistently

estimated by the Kaplan-Meier estimator,

Šj(t) =
∏
u≤t

{1−
∑n

i=1 I(X̌j
i = u, δ̌j

i = 1)∑n
i=1 I(X̌j

i ≥ u)
}

and hence Fj(t) can be estimated by F̌j(t) = 1− Šj(t). As F̂j(t), F̌j(t) also has different

but equivalent representations. By similar arguments, one can show that

F̌j(t) =
n∑

i=1

I(X̌j
i ≤ t, δ̌j

i = 1)

nǦ(X̌j
i−)

(17)
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=

∫

u≤t

∑n
i=1 dI(X̌j

i ≤ u, δ̌j
i = 1)

n−∑n
i=1 I(X̌j

i < u, δ̌j
i = 0)/Šj(X̌

j
i )

, (18)

which is also the nonparametric MLE, where

Ǧ(t) =
∏
u≤t

{1−
∑n

i=1 I(X̌j
i = u, δ̌j

i = 0)∑n
i=1 I(X̌j

i ≥ u)
}.

It should be mentioned that sometimes practitioners may estimate Fj(t) by the comple-

ment of the wrong Kaplan-Meier estimator

Š0
j (t) =

∏
u≤t

{1−
∑n

i=1 I(Xi = u, B̃i = j)∑n
i=1 I(Xi ≥ u)

},

which actually estimates exp{−Λj(t)} but Sj(t) ≥ exp{−Λj(t)} as claimed in (16). The

misuse of 1 − Š0
j (t) to estimate Fj(t) has been noticed by many authors (Farley et al.,

2001; Gooley et al.,1999; Lin, 1997; Wang, 2003), just to name a few.

4.2. Comparison of the Two Estimators

Now we compare the two estimators derived under different data structures based on

their weighted expressions given in (6) and (17) respectively. We find that

I(X̌j
i = u, δ̌j

i = 1) = I(Xi = u, B̃i = j).

Hence these estimators only differ in the denominator that involves the estimator of

G(t). If the main purpose of inference was to estimate G(t), Ǧ(t) is clear a better choice

since Pr(δ̌ = 0) ≥ Pr(B̃ = 0). In fact, Ǧ(t) is less variable than Ĝ(t). However the

estimator of G(t) is now used as a reciprocal weight to obtain an estimator of Fj(t). It
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turns out that a better estimator of G(t) does not necessarily yield a better estimator of

Fj(t). In the following, we show that F̂j(t) has smaller asymptotic variance than F̌j(t).

This phenomenon was first noticed by Tsai and Crowley (1998) in a different estimation

problem that also involves inverse-probability-weighting. To better understand the effect

of the estimator of G(t), we also evaluate two hypothetical estimators,

F̄j(t) =
n∑

i=1

I(Xi ≤ t, B̃i = j)

nḠ(Xi−)
(19)

where Ḡ(t) =
∑n

i=1 I(Ci > t)/n, and

F̄ ∗
j (t) =

n∑
i=1

I(Xi ≤ t, B̃i = j)

nG(Xi−)
. (20)

Now, we show that although

0 = AVar(G(t)) ≤ AVar(Ḡ(t)) ≤ AVar(Ǧ(t)) ≤ AVar(Ĝ(t)),

the relationship for the estimators of Fj(t) is reverse such that

AVar(F̄ ∗
j (t)) ≥ AVar(F̄j(t)) ≥ AVar(F̌j(t)) ≥ AVar(F̂j(t)).

Theorem 4: AVar(F̄ ∗
j (t)) ≥ AVar(F̄j(t)) ≥ AVar(F̌j(t)) ≥ AVar(F̂j(t)).

Proof:

Based on the martingale representation of Ĝ(t), one can write

√
n{G(t)− Ĝ(t)} = n−1/2G(t)

n∑
i=1

∫ t

0

dMci(u)

Pr(X ≥ u)
+ op(1),
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where

Mci(u) = I(Xi ≤ u, B̃i = 0)−
∫ u

0

I(Xi ≥ s)Λc(ds)

and Λc(s) is the cumulative hazard function of C. It follows that

√
n{F̂j(t)− Fj(t)} =

1√
n

n∑
i=1

∫ t

0

dI(Xi ≤ u, B̃i = j)− dHj(u)

G(u−)

+
1√
n

n∑
i=1

∫ t

0

[

∫ u

0

dI(Xi ≤ s, B̃i = 0)− I(Xi ≥ s)dΛc(s)

Pr(Xi ≥ s)
]dFj(u) + op(1),

where Hj(t) = Pr(X ≤ t, B̃ = j). The asymptotic variance of F̂j(t) equals Var(A(t)) +

2Cov(A(t), B(t)) + Var(B(t)), where

A(t) =

∫ t

0

dI(X ≤ u, B̃ = j)− dHj(u)

G(u−)
,

B(t) =

∫ t

0

∫ u

0

dMc(s)

Pr(X ≥ s)
dFj(u)

Mc(u) = I(X ≤ u, B̃ = 0)−
∫ u

0

I(X ≥ s)Λc(ds).

It follows that

V ar(A(t)) = E[A2(t)] =

∫ t

0

dFj(u)

G(u−)
− F 2

j (t),

V ar(B(t)) =

∫ t

0

∫ t

0

E

[∫ u

0

dMc(s)

Pr(X ≥ s)
·
∫ v

0

dMc(w)

Pr(X ≥ w)

]
dFj(u)dFj(v)

=

∫ t

0

∫ t

0

∫ u∧v

0

d〈Mc,Mc〉(s)
Pr2(X ≥ s)

dFj(u)dFj(v),
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=

∫ t

0

∫ t

0

∫ u∧v

0

dΛc(s)

Pr(X ≥ s)
dFj(u)dFj(v).

The covariance term equals

E[A(t)B(t)]

= E

{∫ t

0

dI(X ≤ v, B̃ = j)− dHj(v)

G(v−)
·
∫ t

0

∫ u

0

dMc(s)

Pr(X ≥ s)
dFj(u)

}

=

∫ t

0

∫ t

0

1

G(v−)

·E
{[

dI(X ≤ v, B̃ = j)− dHj(v)
]
·
∫ u

0

dI(X ≤ s, B̃ = 0)− I(X ≥ s)dΛc(s)

Pr(X ≥ s)

}
dFj(u)

=

∫ t

0

∫ t

0

1

G(v−)

·E
{

dI(X ≤ v, B̃ = j) ·
∫ u

0

dI(X ≤ s, B̃ = 0)− I(X ≥ s)dΛc(s)

Pr(X ≥ s)

}
dFj(u)

= −
∫ t

0

∫ t

0

1

G(v−)
E

{
dI(X ≤ v, B̃ = j) ·

∫ u

0

I(X ≥ s)dΛc(s)

Pr(X ≥ s)

}
dFj(u)

= −
∫ t

0

∫ t

0

1

G(v−)
E

{
dI(X ≤ v, B̃ = j) ·

∫ u

0

dΛc(s)

Pr(X ≥ s)

}
dFj(u)

= −
∫ t

0

∫ t

0

∫ u∧v

0

dΛc(s)

Pr(X ≥ s)
dFj(u)dFj(v).
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Asymptotic variance of
√

n{F̂j(t)− Fj(t)} equals

[∫ t

0

dFj(u)

G(u−)
− F 2

j (t)

]
−

∫ t

0

∫ t

0

∫ u∧v

0

dΛc(s)

Pr(X ≥ s)
dFj(u)dFj(v). (21)

Hence asymptotic variance of
√

n{F̌j(t)− Fj(t)} can be derived in the same way, which

is given by

[∫ t

0

dFj(u)

G(u−)
− F 2

j (t)

]
−

∫ t

0

∫ t

0

∫ u∧v

0

dΛc(s)

Pr(X̌ ≥ s)
dFj(u)dFj(v). (22)

Notice that (21) and (22) only differ by one term in the the second component. Because

Pr(X̌ ≥ s) ≥ Pr(X ≥ s), it is easy to see that

AVar(
√

n{F̌j(t)− Fj(t)}) ≥ AVar(
√

n{F̂j(t)− Fj(t)}).

The asymptotic variance of
√

n{F̄j(t)− Fj(t)} is

[∫ t

0

dFj(u)

G(u−)
− F 2

j (t)

]
−

∫ t

0

∫ t

0

∫ u∧v

0

dΛc(s)

Pr(C ≥ s)
dFj(u)dFj(v), (23)

which can be further simplified as

[∫ t

0

dFj(u)

G(u−)
− F 2

j (t)

]
−

∫ t

0

∫ t

0

(
1

G(u ∧ v)
− 1)dFj(u)dFj(v),

and the asymptotic variance of
√

n{F̄ ∗
j (t)− Fj(t)} is

∫ t

0

dFj(u)

G(u−)
− F 2

j (t). (24)

It is clear that

AVar(F̄ ∗
j (t)) ≥ AVar(F̄j(t)) ≥ AVar(F̌j(t)) ≥ AVar(F̂j(t)). (25)
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4.3. Estimation of long-term incidence rate

In presence of external censoring, the non-identifiable region for competing risks data

refers to the set, {t : t > τT ∧ τC} and the non-identifiable region for data of the cure

model is {t : t > τ j
T ∧ τC}. It is important to note that τ j

T < τT . Clearly the second set

is larger than the first one. When follow-up is sufficient, we have τ j
T < τT < τC and both

data structures provide enough information for estimating π. However when follow-up

is not sufficient, the two data structures contain different level of information about the

tail distribution.

Based on the second type of data {(X̌j
i , δ̌

j
i ) (i = 1, . . . , n)}, sufficient follow-up re-

quires τ j
T ≤ τC , which implies that the length of follow-up is long enough to observe all

the susceptible with B = j. If τ j
T ≤ τC , πj can be consistently estimated by the following

three expressions

π̌j = 1− Šj(x
j
max) =

n∑
i=1

I(δ̌j
i = 1)

nǦ(X̌j
i−)

=
1

n

n∑
i=1

{
I(δ̌j

i = 1) + I(δ̌j
i = 0)w̌(X̌j

i )
}

,

where

w̌(t) =

∑n
k=1 I(X̌j

k > t, δ̌j
k = 1)F̌j(∆X̌j

k)

Šj(t)
.

For the cure model, insufficient follow-up means that τ j
T > τC . Consequently π̌j

also underestimates πj. For competing risks data, the probability of the non-identifiable

region {t : t > τT ∧ τC} is identifiable and is estimated by Ŝ(x(n)) which provides the

foundation for us to re-allocate the mass under the artificial assumption Pr(B = j|T >
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τX) = πj. However for the second data structure, the mass of the non-identifiable region

{t : t > τ j
T ∧ τC} is still not identifiable without imposing distributional assumptions.

It seems that it is impossible to construct a valid estimator of πj nonparametrically.

The book by Maller and Zhou (1996) has thorough discussions on the problem of non-

identifiability in the context of cure models.
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Chapter 5. Extension to Truncation Data

We discuss whether the two suggested estimation principles can be extended to incor-

porate left truncation. Suppose that T is the age when the first failure occurs and B

is the corresponding failure type. Let L be the age that a subject enters the study.

If the sample only includes those who have not developed any type of failure, we can

imagine that the sample is subject to left truncation such that only those with T > L

can be included in the sample. Let (Ti, Bi, Li) (i = 1, . . . , m) be a random sample of

(T, B, L). Under left truncation, we only observe the sample (Ti, Bi, Li) (i = 1, . . . , n)

with Ti > Li and m is unknown. Let FL(t) = Pr(L ≤ t) be the distribution function of

L. For truncated data, the marginal functions S(t) and FL(t) can be estimated by the

Lynden-Bell estimators

S̃(t) =
∏
u≤t

{1−
∑n

i=1 I(Ti = u, Li ≤ u)∑n
i=1 I(Li ≤ u ≤ Ti)

},

F̃L(t) =
∏
u>t

{1−
∑n

i=1 I(Li = u, Ti ≥ u)∑n
i=1 I(Li ≤ u ≤ Ti)

}.

We first study estimation of m and α = Pr(T ≥ L). Let F (t) = 1 − S(t). Based

on the decomposition that α =
∫

FL(u)dF (u), we have α̃D =
∫

F̃L(u)dF̃ (u), where

F̃ (t) = 1− S̃(t). Based on another less straightforward decomposition,

FL(t)S(t−) = Pr(L ≤ t)Pr(T ≥ t) = αPr(L ≤ t ≤ T |T ≥ L),
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we may estimate α by

α̃(t) =
F̃L(t)S̃(t−)∑n

i=1 I(Li ≤ t ≤ Ti)/n
.

The weighting approach can be applied based on the relationship

E[
1

FL(T )
|T ≥ L] =

1

Pr(T ≥ L)
E[

I(T ≥ L)

FL(T )
] =

1

α
,

which implies that α can be estimated by

α̃w = { 1

n

n∑
i=1

1

F̃L(Ti)
}−1.

It is important to mention that, in presence of truncation, the method of imputation

seems not applicable since an truncated observation is completely missing and even its

existence is unknown. He and Yang (1998) considered estimation of α and, in their

Theorem 2.2, it is shown that α̃(t) = α̃D for any t such that
∑n

i=1 I(Li ≤ t ≤ Ti) > 0.

Now, we show that α̃(t) = α̃D = α̃w.

Theorem 5: α̃(t) = α̃D = α̃w

Proof:

From (2.8)of He and Yang (1998), we have
∑n

i=1 I(Ti = t)/n = F̃L(t)∆F̃ (t)/α̃D and

hence ∆F̃ (t) = α̃D
∑n

i=1 I(Ti = t)/nF̃L(t). By taking summation over all t on both

sides of the previous identity, we have

1 =
n∑

i=1

∆F̃ (Ti) = α̃D

n∑
i=1

1

nF̃L(Ti)
,

which means that α̃D = { 1
n

∑n
i=1

1
F̃L(Ti)

}−1 = α̃w.
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From the above two estimators, we see the jump sizes at time u are given by

F̃w
j (∆u) = {1

n

n∑
i=1

1

F̃L(Ti)
}−1 · {

∑n
i=1 I(Ti = u,Bi = j, Ti ≥ Li)

nF̃L(u)
},

and

F̃D
j (∆u) = {

∑n
i=1 I(Ti = u, Bi = j, Ti ≥ Li)∑n

i=1 I(Li ≤ u ≤ Ti)/S̃(u−)
}.

Proving F̃w
j (∆u) = F̃D

j (∆u) is the same as showing α̃D = α̃w.

It follows that the total sample size m can be estimated by

m̃ =
n∫

F̃L(u)dF̃ (u)
=

n∑
i=1

1

F̃L(Ti)
=

∑n
i=1 I(Li ≤ t ≤ Ti)

F̃L(t)S̃(t−)
. (26)

Since
∑n

i=1 I(Ti = u,Bi = j)/n is an estimator of Fj(∆u)Pr(L < u)/α, it follows that

Fj(∆u) can be estimated by
∑n

i=1 I(Ti = u,Bi = j)/m̃F̂L(u), where m̃ can be any of

the above estimators in (26). The method of decomposition yields the estimator

F̃j(t) =

∫

u≤t

S̃(u−)dΛ̃j(u),

where

Λ̃j(u) =

∫ ∑n
i=1 I(Ti = u,Bi = j, Li ≤ u)∑n

i=1 I(Li ≤ u ≤ Ti)
.
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Chapter 6. Numerical Analysis

6.1. Simulation Results

The purpose of the simulation studies was to examine the performance of F̂1(t) and

F̌1(t) in finite samples (i.e. n = 100 and n = 200). Suppose that there are two types of

failure. The indicator I(B = 1) was generated from a Bernoulli random variable with

probability π1 and the latency variable for each type Tj|B = j was generated from an

exponential distribution such that Pr(Tj > t|B = j) = exp(−λj) (j = 1, 2). The failure

time of the first event was set to be T = I(B = 1)T1 + I(B = 2)T2. The independent

censoring variable C was generated from U(0,m). Hence

Pr(B̃ = 1) = Pr(δ̌ = 1) = π1 · Pr(T ≤ C|B = 1),

which measures the probability of observing the first type of failure by time t in presence

of external censoring. In addition to the two proposed estimators F̂1(t) and F̌1(t), the

hypothetical estimators F̄1(t) and F̄ ∗
1 (t) in (19) and (20) were also evaluated.

Table 1 displays the average bias and standard deviation of each estimator, based on

500 replications, when π1 = 0.9, λ1 = 0.8, λ2 = 1 and m = 5 which gives Pr(B̃ = 1) ≈

0.67. We see that the correct order of the asymptotic variances for the four estimators

shown in (25) has already appeared when n = 100. The discrepancy gets larger when

t approaches to the tail. Table 2 shows the results when π1 = 0.9, λ1 = 0.8, λ2 = 1

and m = 10 which gives Pr(B̃ = 1) ≈ 0.79. We see that the performance of all the
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estimators improves as n or Pr(B̃ = 1) increases. Table 3 displays the results when

π1 = 0.5, λ1 = 0.8, λ2 = 1 and m = 10 which gives Pr(B̃ = 1) ≈ 0.44. Although

the relative performances of the four estimators are consistent with the previous two

settings, the differences become less obvious when π1 and Pr(B̃ = 1) decrease.

6.2. Analysis of Stanford Heart Transplant Data

For illustration, the methods discussed in the article were applied to analyze the Stanford

transplant data (Crowly and Hu, 1977). The event of interest (B = 1) is rejection and

the competing risk (B = 2) is death without rejection. Among 65 patients, 29 with

rejection (B̃ = 1), 12 died without rejection (B̃ = 2) and 24 were censored (B̃ = 0).

For the 12 patients without rejection (B̃ = 2), we set X̌ = C, which is the time from

the date of acceptance to the end of the study in April 1974. The quantity of interest

is F1(t) which represents the cumulative incidence probability of experience rejection by

time t. The two estimated cumulative incidence functions, F̂1(t), and F̌1(t), were shown

in Table 4 and plotted in Figure 5. When t > 500, we see that the discrepancy between

F̂1(t) and F̌1(t) increases as t gets larger. It seems that F̌1(t) is less reliable because of

heavy censoring in T1, the time to death without rejection.

To estimate π1, the probability of rejection, a naive estimate is 29/65 = 0.446.

If Pr(B̃ = 0) is very small, this estimate may be reliable. However in the present

example, Pr(B̃ = 0) ≈ 24/65 ≈ 0.37, which implies that this naive estimator is not
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reasonable. Applying our methods, the evidence of insufficient follow-up is clear since

Ŝ(x(n)) = Ŝ(1350) ≈ 0.209. We found that x1
max = 1350 and π̂1 = F̂1(x

1
max) = 0.548.

The modified estimator in (12), which accounts for the unassigned mass in the tail, is

π̆1 = 0.693. Which is a more reasonable estimator of π1 than the naive estimator.
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Figure 5: Two estimators of the cumulative incidence probability for the time to

rejection by time t based on the Stanford Heart Transplant data. F̂1(t) : the dashed line;

F̌1(t) : the solid line.
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Chapter 7. Discussion

We have demonstrated that, as the Kaplan-Meier estimator, the cumulative incidence

function can be estimated via different approaches. We prove that these representations

are equivalent under the settings discussed in the thesis. For future applications, these

techniques may offer different alternatives in other contexts such as interval censoring

or regression problems.

The inverse-probability-weighting representation is particularly useful in simplifying

analytic work which has led to closed-form expressions of the asymptotic variances as

shown in (21) and (22). It also allows us to compare the two estimators F̂j(t) and

F̌j(t) analytically. The second structure allows one to use existing statistical packages

to estimate 1 − Fj(t) by the Kaplan-Meier estimator. However since the data ignores

the information provided by other competing risks, the resulting estimator has larger

variance and also it seems unlikely to estimate the long-term incidence rate if the follow-

up period is not long enough. In fact, the simulations indicate that the two estimators

have larger difference in the tail region. In the extension to truncated data we found

that the imputation fails but the weighting method still works.

Shen (2003) showed that the Lynden-Bell estimator for the left-truncation data can

be expressed as inverse-probability-weighted average. To estimate the truncation prob-

ability with left-truncated and right-censored data, Shen (2005) proposed two different
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estimators by using the inverse-probability-weighting method.
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Table 1: Performance of F̂1(t), F̌1(t), F̄1(t), and F̄ ∗
1 (t) when π1 = 0.9 and Pr(B̃ = 1) ≈

0.67.

n=100 n=200

Fn(t) F̂1(t) F̌1(t) F̄1(t) F̄ ∗
1 (t) F̂1(t) F̌1(t) F̄1(t) F̄ ∗

1 (t)

0.1 0.339 0.340 0.340 0.342 0.272 0.272 0.273 0.275

(-0.982) (-0.982) (-0.983) (-1.051) (-0.522) (-0.522) (-0.522) (-0.587)

0.3 1.05 1.05 1.05 1.13 0.798 0.798 0.812 0.86

(-0.984) (-0.987) (-0.978) (-1.66) (-0.521) (-0.524) (-0.523) (-1.21)

0.5 1.73 1.74 1.82 1.98 1.28 1.29 1.35 1.57

(-1.06) (-1.07) (-1.06) (-3.27) (-0.530) (-0.538) (-0.535) (-2.8)

0.7 2.37 2.46 2.78 3.05 1.70 1.78 1.99 2.35

(-1.02) (-1.06) (-1.05) (-6.48) (-0.46) (-0.47) (-0.49) (-5.9)

The first number in each cell is the standard deviation (×10−2), and the second number

in parentheses is the average bias (×10−3).

Table 2: Performance of F̂1(t), F̌1(t), F̄1(t), and F̄ ∗
1 (t) when π1 = 0.9 and Pr(B̃ = 1) ≈

0.79.

n=100 n=200

Fn(t) F̂1(t) F̌1(t) F̄1(t) F̄ ∗
1 (t) F̂1(t) F̌1(t) F̄1(t) F̄ ∗

1 (t)

0.1 0.252 0.252 0.253 0.260 0.173 0.173 0.174 0.176

(-0.99) (-0.99) (-0.99) (-0.99) (-0.493) (-0.493) (-0.492) (-0.496)

0.3 0.758 0.759 0.768 0.831 0.529 0.529 0.530 0.570

(-0.992) (-0.99) (-0.99) (-0.97) (-0.50) (-0.501) (-0.496) (-0.517)

0.5 1.22 1.23 1.28 1.47 0.82 0.824 0.868 1.05

(-1.0) (-0.994) (-0.98) (-0.94) (-0.496) (-0.493) (-0.481) (-0.528)

0.7 1.62 1.67 1.86 2.30 1.14 1.17 1.33 1.66

(-0.994) (-0.975) (-0.931) (-0.86) (-0.492) (-0.475) (-0.431) (-0.513)

0.9 2.19 2.65 3.19 3.92 1.67 2.25 2.58 3.05

(-1.98) (-1.81) (-1.79) (-1.67) (-1.19) (-0.98) (-0.92) (-1.02)

The first number in each cell is the standard deviation (×10−2), and the second number

in parentheses is the average bias (×10−3).
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Table 3: Performance of F̂1(t), F̌1(t), F̄1(t), and F̄ ∗
1 (t) when π1 = 0.5 and Pr(B̃ = 1) ≈

0.44.

n=100 n=200

Fn(t) F̂1(t) F̌1(t) F̄1(t) F̄ ∗
1 (t) F̂1(t) F̌1(t) F̄1(t) F̄ ∗

1 (t)

0.1 0.355 0.357 0.357 0.360 0.267 0.268 0.269 0.281

(-0.99) (-0.99) (-0.99) (-1.0) (-0.530) (-0.529) (-0.529) (-0.527)

0.2 0.680 0.683 0.684 0.727 0.497 0.497 0.5 0.533

(-0.96) (-0.96) (-0.96) (-0.99) (-0.497) (-0.494) (-0.495) (-0.485)

0.3 1.122 1.130 1.137 1.220 0.771 0.791 0.798 0.865

(-0.93) (-0.93) (-0.94) (-0.98) (-0.48) (-0.472) (-0.481) (-0.454)

0.4 1.54 1.65 1.69 1.90 1.09 1.13 1.15 1.30

(-1.01) (-1.01) (-1.03) (-1.08) (-0.416) (-0.41) (-0.434) (-0.385)

0.5 3.36 3.45 3.51 3.78 2.2 2.37 2.39 2.49

(-2.85) (-2.79) (-2.82) (-2.86) (-1.6) (-1.54) (-1.59) (-1.52)

The first number in each cell is the standard deviation (×10−2), and the second number

in parentheses is the average bias (×10−3).

Table 4: Comparison of F̂1(t), F̌1(t), based on Stanford heart transplant data.

t F̂1(t) F̌1(t) t F̂1(t) F̌1(t)

13 0.016 0.016 161 0.306 0.306

29 0.047 0.047 280 0.340 0.342

39 0.063 0.063 589 0.375 0.378

50 0.128 0.128 624 0.399 0.403

54 0.177 0.177 994 0.480 0.494

63 0.209 0.209 1106 0.511 0.528

66 0.258 0.257 1350 0.548 0.571

68 0.274 0.273

136 0.29 0.29
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