國 立 交 通 大 學 顯示科技研究所 碩士論文

電漿束配向技術於光學補償彎曲式液晶顯 示器之研究

Investigation on Plasma Beam Alignment Technique for OCB Mode Liquid Crystal Display

研究生:周鴻杰 指導教授:陳皇銘博士

中華民國九十六年六月

電漿束配向技術於光學補償彎曲式液晶顯 示器之研究

Investigation on Plasma Beam Alignment Technique for OCB Mode Liquid Crystal Display

研究生:	周鴻杰	Student: Hong-Chieh Chou
指導教授:	陳皇銘	Advisor: Dr. Huang-Ming P. Chen

國立交通大學 電機資訊學院 顯示科技研究所 碩士論文

A Thesis

Submitted to Display Institute College of Electrical Engineering and Computer Science National Chiao-Tung University in Partial Fulfillment of the Requirements for the Degree of Master

> in Display Institute

> > June 2007

Hsin-Chu, Taiwan, Republic of China

中華民國九十六年六月

電漿束配向技術於光學補償彎曲式液晶顯 示器之研究

碩士研究生: 周鴻杰 指導教授: 陳皇銘

國立交通大學 顯示科技研究所

中文摘要

陽極層電漿源早期為俄羅斯使用於太空衛星推進器,近幾年此原理才開始被 應用於液晶配向技術。此電漿束產生方式為利用直流電漿系統產生一電漿源,利 用其正電極所產生的正偏壓強電場,使得電漿中的離子群被推動並對配向膜產生 表面處理,藉以提升配向膜品質。傳統的定向刷磨方式所造成的塵屑污染、靜電 殘留、刷痕產生等問題,對於大型化高解析度液晶顯示器面臨許多的瓶頸。電漿 束配向法屬於非接觸式配向法,沒有上述定向刷磨的缺點,為目前最有潛力取代 傳統刷磨之一。

光學補償彎曲式液晶顯示器具有廣視角以及快速的反應速度之特性,對於色 序型顯示器有著良好的應用。然而一般的配向法仍以定向刷磨為主,對於非接觸 之配向則較少琢磨。因此,本論文主要在探討經由電漿束配向後其光學補償彎曲 式液晶盒之光電特性、液晶之預傾角與配向膜之表面形貌,並與傳統之刷磨法作 為比較。

Investigation on Plasma Beam Alignment Technique for OCB Mode Liquid Crystal Display

Student: Hong-Chieh Chou

Advisor: Dr. Huang-Ming P. Chen

Display Institute National Chiao Tung University

Abstract

ALT (Anode Layer thruster), originally used for the satellite propulsion in Russia, was modified to be the plasma source for the application of LC alignment technique. The ALT source consists of outer and inner cathode and anode. Permanent magnet is necessary to generate magnet pole at outer cathode. The plasma flux is generated by cross electric field (E) and magnetic field (H) immediately. In contrast to current rubbing manufacturing process, the plasma alignment has fewer problems of electrostatic charge and debris and is the potential candidate to replace conventional rubbing process for the next generation large display.

The OCB (Optically Compensated Bend) mode LC is known for its fast response time and wide viewing angle. Rubbing process is still the main method for preparation of OCB. In addition, the electro-optical characteristics, pretilt angle of OCB cells and surface morphology of alignment layer after plasma treatment were investigated. The influence of OCB cells between these two alignments was also be discussed. Fast response time (3.3ms) was revealed and has the potential for OCB mode LCD to replace conventional rubbing process.

誌 謝

首先誠摯感謝指導教授陳皇銘博士的幫助,迷惘中將我拉進液晶顯示器這塊 領域。在這段期間中,不論是計畫的撰寫、實驗的設計與討論對於我的指導令我 受益匪淺。

此外由衷地感謝實驗室大家的幫助,讓我可以在有限的時間內順利完成此論 文。感謝淇文、宜揚、書豪、世民、佑儒、耿睿、佳恬、耀慶、昆展、威慶、俊 民、ジ綺、文孚、怡帆、謹瑋、祥志、蓮馨,不論是實驗上的討論或是彼此互相 的加油鼓勵,讓我深刻體驗到這裡的溫暖。感謝老夥伴以及所辦助理們,正宇、 龍材、偉誠、鈳銳、義淵、子民、雅惠,你們的雪中送炭,我感激於心。

感謝我最擊愛的爸媽,因為您們的支持與鼓勵,使得我屢屢有著堅持下去的 動力,也謝謝伯父一家人的關懷,讓我感受到許多溫暖與助力,我亦銘記於心。

最後將此論文呈現給我最摯愛的雙親,因為有您們才有現在的我。

Contents

Chapter 1

Introduction

1.1 Display Technology	1
1.2 Liquid Crystal Displays	1
1.2.1 The fundamental concept of Liquid Crystal Displays	3
1.2.2 Optically Compensated Bend (OCB) Mode	5
1.3 Alignment Process	7
1.4 Motivation and objective	10
1.5 Organization of this thesis	10

Chapter 2

Principle

2.1 Introduction	12
2.2 Discharge Characteristics	12
2.2.1 Plasma	12
2.2.2 Glow Discharge	13
2.3 Anode Layer Thruster (ALT) Source	17
2.3.1 History and Background	17
2.3.2 Application for LC Alignment	19
2.4 Alignment Mechanism	21

Chapter 3

Fabrication and Measurement Instruments

3.1 Introduction	23
3.2 Fabrication Process	24
3.2.1 Flow Chart	24
3.2.2 Cell Fabrication	25
3.3 Measurement Instruments	27
3.3.1 Electro-optical Measurement System	27
3.3.2 Cell Gap Measurement System	29
3.3.3 Pretilt Angle Measurement System	32
3.3.4. Atomic Force Microscopy (AFM)	33

Chapter 4

Experimental Results and Discussions

4.1 Introduction	35
4.2 V-T Characteristics	35
4.2.1 Plasma Alignment Treatment	35
4.2.2 Hybrid Cell	
4.3 AFM Analysis	
4.4 Pretilt Agnle Dependence	44
4.5 POM Characteristics	45
4.6 Response Time	47
Chapter 5	

Conclusions

5.1 Conclusions	
5.2 Future Work	50
Reference	51

Figure caption

Fig. 1-1 The structure of liquid crystal display2
Fig. 1-2 (a) Sketch of Trnasmissive (left) and Reflective (Right) LCD3
Fig. 1-2 (b) Sketch of Transflective LCD4
Fig. 1-3 Setup and basic principle of the OCB switching mode in the off (left) and
on (right) state6
Fig. 1-5 The flow effect accelerates the relaxation motion in the center of the Pi
cell7
Fig. 1-6 History of the development of photo-alignment11
Fig. 2-1 Space and laboratory plasmas classified by their electron temperature
and charged particle density13
Fig. 2-2 Voltage-Current (V-I) characteristic for a discharge14
Fig. 2-3 Voltage distribution in a dc glow discharge process16
Fig. 2-4 Cross-sectional schematic drawing of the linear ion source18
Fig. 2-5 Schematic diagram of ALT plasma system19
Fig. 2-6 ALT Plasma beam with race-trap sharp20
Fig. 3-1 The fabrication flow chart of the OCB cell24
Fig. 3-2 The schematic diagram of electro-optical measurement system28
Fig. 3-3 Two reflecting surfaces separated by a layer causing a light interference.
The dotted line indicates the first internal reflection
Fig. 3-4 The reflection as a function of wavelength using a air gap of 5.0µm31
Fig. 3-5 Pretilt angle measurement system (Autronic DMS 101 TBA)32
Fig. 3-6 Schematic diagram of crystal rotation method32
Fig. 3-7 Concept of AFM and the optical lever
Fig. 4-1 V-T characteristics as different exposure time (20sec, 35sec and 50sec)
compare with the rubbing method

Fig. 4-2 V-T characteristics as different exposure time (5sec, 20sec, 35sec, 50sec
and 50sec) with hybrid OCB cells
Fig. 4-3 V-T characteristics as 50sec plasma exposure time compare with hybrid
cell
Fig. 4-4 Dependence of thickness of polyimide as function of exposure time40
Fig. 4-5 Surface morphology of polyimide (a) original surface (b) 20sec plasma
treatment (c) 65sec plasma treatment (d) 3D before plasma (e) 3D after plasma
65sec
Fig. 4-6 Surface roughness as function of exposure time43
Fig. 4-7 Pretilt angle dependence as function of exposure time44
Fig. 4-8 Dark state for OCB cell as function of plasma exposure time after
driving 10v (a) plasma 5sec (b) plasma 20sec (c) plasma 50sec (d) plasma 65sec
(e) hybrid cell46
Fig. 4-9 Response time dependence as function of plasma exposure time48
Fig. 4-10 Comparison between pure plasma and hybrid cells

List of tables

Table 3-1 The parameters of the ALT plasma alignment	26
Table 3-2 The procedure of the ALT plasma alignment	27
Table 4-1 List of transition voltage of OCB cells	37
Table 4-2 List of transition voltage of hybrid cells	