第五章結果與討論

5-1 模擬

5-1-1 模擬中誤差的產生:

由於我們的實驗架構中,有上千個透鏡模型而使得整個程式變得很龐大又複 雜,而 Tracepro 是使用的光線追跡法,每條光線的行進路程與能量等都要被一一 記錄下來,因此造成電腦記憶體需求量大增,但我們並不能減少所使用的光線 數,當光線數少的時候,可能會造成誤差,因為真實情況下,光線數是無窮的。

根據實驗可以知道,透鏡間距越小時,能導出的光應該越多,但我們的模型 在光線數少的時候,模擬結果(圖 5-1)卻不是如此,其中橫軸為透鏡間距,縱 軸為所增加的效率。造成圖 5-1 誤差的原因可能為我們所改變的間距相差性不 大,而使微透鏡陣列所導出的光量相差本來就不大,所以一但產生誤差時,整個 趨勢會不如預期。

圖 5-1 模擬結果

而我們可以從圖 5-2 和 5-3 看出造成誤差的原因是在光線數少的時候,光源所 出射的光線恰巧從靠近邊界出射,在透鏡間距小的情況下剛好入射進透鏡內而被 困於透鏡中,而在透鏡間距大時,光線剛好可以從透鏡邊緣出射,因此兩相比較 起來,變成透鏡間距大所增加的效率大於透鏡間距小,而這種情況佔有整個光線 數的量很少,但在總光線數不多的情況下便會有很巨大的影響。其中圖 5-2 和 5-3 的光線出射位置一樣,出射角度一樣,這樣才能比較不同情況下光線的所行走的 路徑。

而矯正這個誤差的方法就是必須使光線數增多,使得在邊緣的光線對最後結 果來說影響力不大。但如同前文所述,由於電腦設備的限制,並不可能無限制的 增加光線數,因此必須找其他方式來補償光線數不足的影響,讓我們可以使用少 量的光線數下,得到和大量的光線數有相同的結果,或是可以降低 Tracepro 對記 憶體的需求,而可以讓我們使用大量的光線數進行模擬。

圖 5-2 透鏡直徑為 100μm、透鏡間距為 5μm

圖 5-3 透鏡直徑為 100μm、透鏡間距為 10μm

為了要避免如圖 5-2 與 5-3 所造成的誤差,所以必須要增加光線數但是我們設備下最多只能將光線數增加至 15 萬條,而要讓 Tracepro 得到誤差極小的情況下, 光線數至少要百萬條以上,所以為了要彌補光線數的不足,可分別使用下列兩種 方法,或同時使用此兩種方法,會得到更佳的結果:

A. 使用模擬模式 (Simulation mode):

在 Tracepro 裡面有兩種模式,一種為分析模式 (analysis mode),一種為模擬 模式 (simulation mode)。在分析模式下,每一條線在作光線追跡的過程中,光線 會經過許多平面,而每一個平面上光線的數據都會被 Tracepro 所紀錄下來。而我 們所設定的模型中,所擁有的表面太多使得數據過多使得所需的記憶體過大,進 而不能使用大量的光線數,在不能使用大量的光線數下會使模擬結果誤差值偏 高。然而我們除了偵測面外,並不需要知道其他表面的數據,此時有一個解決方 法便是使用模擬模式。因為模擬模式只會記錄你所設定的離開面 (Exit Surface), 且只紀錄你所設定需要的數據,並不會記錄其他光路中所經過的表面數據,而這 樣可以減少許多的記憶體空間,進而可以使用更多條光線來使模擬接近真實。

而使用模擬模式所改變的參數只有要在偵測面上設定離開面。這個設定是定 義出需要記錄數據的表面,最後只有設定離開面的偵測面上的數據會被記錄下 來。這種設定方法並不會影響到之前所設定的任何參數,只會讓記錄的結果中去 掉其他面的數據,只剩下偵測面上的數據。

B. 使用 Random Seed:

Tracepro 的發光面,由前文所述是用亂數的方式把數萬條光線發射出來。但 其實 Tracepro 在不同的透鏡大小或是透鏡間距的模型中,幾乎都是從同一個亂數 起始點開始取亂數發射光源,由此我們可以設定不同的亂數起始點來使每次發射 的光線都是在光源表面不同地方出射且擁有不同的出射角度,這樣的情況下可以 把每次的結果作平均,得到近似於大量光線所造成的結果。

而 Random Seed 在 Tracepro 中便是代表在發光時亂數表的起始點,不同數值的 Random Seed 表示從不同起始點開始作亂數取樣。所以在光線數不足的情況

37

下,可以藉由改變多次不同的 Random Seed 的數值,最後把不同 Random Seed 所 得到的結果取平均值,使所量測到的數據趨近於真實。這樣的效果等同於光線數 增多,因為不同的 Random Seed 所發出的光線皆不同,所以改變多次 Random Seed 後,可以視同大量的光線數分批發射。

5-1-2 模擬結果:

經過上面的修正之後,我們可以得到較好的模擬數據。以透鏡大小為 50µm 的模擬結果為例,如圖 5-4 所示,其他透鏡為 75µm 和 100µm 的結果類似於 50µm, 如下圖 5-5 與圖 5-6 所示。其中效率增益的算法為式 (5-1) 所示,其中 B₁ 為加 了透鏡所得的光電流,B₀為未加透鏡之光電流。另外圖中橫軸為填充率,其填充 效率的算法為式 (5-2),其中 Area_{cir}與 Area_{sqr}如圖 5-7 所示,縱座標為所增加的 效率。

enhanced efficiency =
$$\frac{B_1}{B_0}$$
 (5-1)
fill factor = $\frac{Area_{cir}}{Area_{sqr}}$ (5-2)

由圖 5-4 到 5-6 看出,當我們將光線數增多時,所出來的結果符合預期,當 透鏡間距增大時所能增加的效率就變小了,另外可以依照圖看出趨勢,並計算各 直線的斜率與截距,之後不同的透鏡間距所得到的結果便可以從公式計算出來, 不用再重新設定模組去跑模擬了。假設直線公式為式(5-3)其中 y 為增加的效率, x 為透鏡間距。進而將各直線的結果統計成表 2。

y = A + Bx (5-3)

圖 5-4 到圖 5-6 分別代表透鏡直徑 50μm 到 100μm 填充率對增加效率的影響, 其中圖 5-6 的透鏡 5 在間距為 5μm 時透鏡會重疊,故沒有其模擬的數值。另外從 圖可以看出不同的透鏡直徑,所造成的趨勢是類似的,都是填充率增加而所能增 加的效率也變大。

圖 5-4 不同填充率對效率的影響,其中透鏡大小為 50µm,透鏡 1 到透鏡 5 接觸 角分別為 22.62°、43.6°、61.92°、90°及 108.92 lens1 1.60 ens2 ens3 1.55 lens4 1.50 lens5 enhanced efficiency 1.45 1.40 1.35 1.30 1.25 1.20 0.55 0.60 0.65 0.70 0.50

fill factor

圖 5-5 不同填充率對效率的影響,其中透鏡大小為 75μm,透鏡 1 到透鏡 5 接觸 角分別為 22.62°、43.6°、61.92°、90°及 108.92°

圖 5-7 Fill factor 說明

Area_{cir}

表二中的 A 為圖 5-4 到圖 5-6 中曲線的斜率, B 為這些微透鏡的常數。當平 面光源上完全覆蓋了特定透鏡大小與透鏡間距時, A 就是發光效率的增加因子。 所以我們可以從表二看出不同直徑的透鏡,只要接觸角相同, 其增加因子 A 就會

	50µm		75µm		100µm	
	А	В	А	В	А	В
Lens1	1.094	0.2149	1.10797	0.19179	1.09431	0.21165
Lens2	1.16433	0.28801	1.19268	0.23922	1.1917	0.23874
Lens3	1.2298	0.3755	1.29031	0.2833	1.28479	0.28914
Lens4	1.30654	0.43637	1.36174	0.34228	1.41755	0.25444
Lens5	1.30351	0.32819	1.33944	0.2678	1.37754	0.21925

表 2 統整不同接觸角對增益效率的曲線參數

圖 5-8 描述在不同大小透鏡的情況下,增加因子A對接觸角的改變。當接觸 角由小到 90 度時,增加因子A隨著接觸角變大跟著變大,但只要接觸角一超過 90 度後,增加因子A不再隨著接觸角增加而變大,反而是隨著接觸角增加而變 小。另外也可以看出,不同大小的透鏡不會影響到增加因子A的趨勢,全部都是 在接觸角 90 度時擁有最高的增加因子。

圖 5-8 增加因子 A 和接觸角間的關係

由圖 5-8 可以看出當接觸角為 90 度時,其增加因子 A 越大,這也可以從圖 5-9 到圖 5-11 明白的顯示出無論透鏡直徑為何,只要透鏡形狀為半球體時擁有最

高效率,另外在間距為最小的 5µm 時可以增加最多效率。之後再經由 Tracepro 的計算,我們在有機發光二極體上貼附一層透鏡陣列後,最高可以將光耦合率增 加約 60%左右。另外當透鏡直徑越大時,可以看出圖中三條曲線越靠近,這是因 為透鏡間距固定但透鏡直徑越大其填充率改變越小,所以曲線越靠近。

圖 5-10 接觸角對增加效率的影響,其中透鏡直徑 75μm,透鏡間距分別為 5μm、 10μm、15μm

另外從圖 5-9 到圖 5-11 可以明顯看出當透鏡的接觸角大於 90 度之後,所能增加的效率逐漸變小,至於大於半球體的透鏡之所能增加的效率會小於半球體原因可從圖 5-12 與圖 5-13 推測,在透鏡大於半圓時,有的光束會在透鏡內形成全反射,而造成出光量變小,使所能增加的光耦合效率變小。其中圖 5-12 與圖 5-13 中透鏡與玻璃交界處的面積一樣大,光線出射方向一樣,所有物質折射率一樣,因此可以很明顯的看出,當透鏡大於半球體時有些光會被困在透鏡內無法出射。 相同的當透鏡小於半圓時,一樣的光線也會被困在透鏡內,如圖 5-14。

圖 5-12 透鏡為半球體

圖 5-13 透鏡大於半球體