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ABSTRACT

In this thesis we focus on the linear and non-linear regression with AR(1) error models.
In the linear regression part, the generalized median estimator, feasible generalized me-
dian estimator, generalized trimmed mean (GTM) and the feasible generalized trimmed
mean (FGTM) are proposed. Before defining the estimators, we use the covariance matrix
of the error terms to do a Cochran-Orcutt transformation on the regression model such
that the transformed one is a usual linear regression model with i.i.d. error variables.
Then we discuss the robust estimators of this transformed model.

The generalized and feasible generalized median estimators are defined by the [;
norm method. So they are robust to outliers. For the generalized and feasible gener-
alized trimmed mean estimators, we apply sample regression quantile which is defined by
Koenker and Bassett (1978) to trim data first and then define the estimators based on
the rest of data. Due to trimming, these estimators are robust to outliers also. Besides
the linear regression with AR(1) error model, we extended the idea of trimmed mean to

introduce generalized and feasible generalized trimmed means for the nonlinear regression
with AR(1) error model.

The corresponding Bahadur representations and asymptotic normality are proved in
this thesis also. Besides these theoretical results, we also do simulations to discuss the
effect of the estimation of correlation coefficients p to the model. And an application on
a real data set is also given.

Key words and phrases : robust, AR(1), generalized median estimators, generalized
trimmed mean estimators, Bahadur representation, regression quantile, the linear and
non-linear regression.
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Chapter 1

Introduction

1.1 Why Robustness?

Statistical inferences are based on observations and prior assumptions about
the underlying situation. There are explicit or implicit assumptions about
randomness and independence, about distributional models, prior distri-
butions for some unknown parameters, and so on. In model selection one
needs to look critically at the assumptions and examine the effects of plau-
sible departures from model assumptions in various possible directions.
Most classical statistical procedures are based on two assumptions, that
the sample observations are independently and identically distributed, and
that the underlying distribution is normal. While the first assumption may
not be unrealistic in certain situations, it is the second assumption that is
rather unrealistic from a practical point of view. Nonnormal distributions
are more prevalent in practice, and to assume normality instead might lead
to erroneous statistical inferences.

What is desired is an inference procedure which in some sense does al-
most as well as possible if the assumption is true, but does not perform
much worse within a range of alternatives to the assumption. Such a pro-
cedure is robust to departures from the assumption on which it is based.
For example, a robust to deviations from normality procedure is defined
to be one that is nearly as efficient as the classical procedure for a normal
distribution but is considerably more efficient overall for nonnormal distri-
butions.

There are several definitions of robustness. First question we have is
from what deviations from assumptions we are seeking robustness. The
most usual answer is deviations due to a different form of p. d. f. f(z;6).



Robustness with respect to outliers is known as being resistant to outliers.
Another question in studies of robustness is the range of distributions over
which a procedure should be robust. The general shape of a data set should
allow one to narrow the range considerably.

Statisticians have been receptive to the basic notion of robustness and
its effective implementations in statistical methodology. A significant con-
tributor to the development of robust statistical procedure is Peter J. Hu-
ber, and his graduate level textbook (1981) provides a good coverage of
the basic theory developed during the 1960s and 1970s. The best-known
approach to robust estimation has its roots in Huber (1964). Parametric
results began to be questioned in the 1950s, when asymptotic methods de-
veloped to the point where the inefficiency of the t-test to the Wilcoxon test
could be demonstrated [Pitman(1949), Hodges and Lehmann (1956)]. The
sensitivity of some classical estimators was documented by Tukey (1960).

Other factors also contributed to the growing interest in robustness.
Hampel (1973) has given a comprehensive list of them and a provocative
introduction to robust methods; the reader is encouraged to read his essay.
More statisticians are now familiar with the rudiments of functional analy-
sis and computing. Huber (1964) and Hampel (1968) both have employed
ideas from functional analysis in their pioneering work; and the Princeton
robustness study [Andrews et al. (1972)] is typical of the computational
approach to gaining insight into robust proposals. The idea is widespread
accepted that every new statistical study is incomplete without some seri-
ous attention to the effect of slight changes in the assumptions. One reason
for the continued proliferation of such work is the almost universal appli-
cability and intuitive appeal of Hampels influence function and breakdown
point (1971, 1973).

Two monographs, by Serfling (1980) and Sen (1981a) contain some de-
tailed discussions on the asymptotic properties of robust estimators and
test statistics for the location as well as simple linear models. The book by
Hampel, Ronchetti, Rousseeuw, and Stahel (1986) addresses some of the
robustness issues from (mostly) a finite sample point of view. In this per-
spective robustness against plausible departures from the assumed form of
the error distribution, heteroscadasticity of the errors and lack of indepen-
dence of these error components (serial dependence, interclass correlations
etc.), and presence of outliers (or error-contamination) have all been iden-



tified as principal issues. Two other monographs, by Shorack and Wellner
(1986) and Koul (1992) on asymptotics of the (weighted) empirical pro-
cess, have touched on robustness primarily from an asymptotic point of
view. The book by Rieder (1994) is devoted solely to robust asymptotic
statistics, but it emphasizes mostly the infinitesimal concept of robustness
and nonparametric optimality based on the notion of least favorable local
alternatives.

There are other perceptions and definition of robustness, which in appli-
cation seem to be limited to long-tailed symmetric distributions, and the
reader is referred to the authoritative works of Hoaglin et al. (1983) and
Huber (1981).

1.2 Regression Quantile

Regression analysis is an important statistical tool that is routinely ap-
plied in most sciences. Out of many possible regression techniques, the
least squares (LS) method has been generally adopted because of tradi-
tion and ease of computation. However, there is presently a widespread
awareness of the dangers posed by the occurrence of outliers. Outliers
occur very frequently in real data, and they often go unnoticed because
nowadays computers process much data. Not only the response variable
can be outlying, but also the explanatory part, leading to so-called lever-
age points. Both types of outliers may totally spoil an ordinary LS analysis.

To avoid this problem, new statistical techniques have been developed
that are not so easily affected by outlieers. These are the robust methods,
the results of which remain trustworthy even if a certain amount of data
is contaminated. The outliers are far away from the robust fit and hence
can be detected by their large residuals from it, whereas the standardized
residuals from ordinary LS may not expose outliers at all.

Among other noteworthy developments over the past 15 years, regres-
sion quantiles, have steadily reshaped the domain and scope of robust
statistics. For sample quantiles the celebrated Bahadur (1966) representa-
tion, provided a novel approach to the study of the asymptotic theory of
order statistics, quantile functions, and a broad class of statistical function-
als. Some of these developments are reported in Serfling (1980, ch. 2), Sen



(1981a, ch.7) and other contemporary advanced monographs. Bahadurs
(1966) own results, as further extended by Kiefer (1967) and supplemented
by Ghosh (1971) in a weaker and yet elegant form, let the way to various
types of representations for statistics and estimators.

It started with a humble aim of regression L-estimators by Koenker and
Bassett (1978) and traversed the court of robustness onto the domain of
regression rank scores, see Gutenbrunner and Jureckova (1992). In this
way it provides a natural link to various classes of robust estimators and
strengthens their interrelationships as well. The asymptotic theory is fur-
ther streamlined to match the needs of practical applications. In this re-
spect it would be helpful for readers to have familiarity with the basic
theory of robustness e.g., the introductory discussion in Huber (1981).

1.3 Summary

In this paper we focus on the linear /non-linear regression with AR(1) error
models. In the linear regression part, the generalized trimmed mean and
the feasible generalized trimmed mean are proposed. They are based on
the regression quantile of Koenker and Bassett (1978). The first step we
do to this model is a transformation. We use the covariance matrix of the
error term to do a Cochrane0Orcutt transformation such that the model
with AR(1) error has the usual linear regression form. Then we discuss the
regression quantile estimator of this transformed model.

Due to the AR(1) error model the autoregressive parameter p appears
in the transformed design matrix. If p is known, the transformed design
matrix is known. When the autoregressive parameter p is unkown, we re-
place it by a /n—consistent estimator p.

Then from the transformed model, we get the a—th sample regression
quantile. We use this estimator the design matrix to trim some data. After
trimming, the general trimmed mean (GTM) is defined. Due to trimming,
this is a robust estimator of the regression coefficient vector which is robust
to outlier. If p is replaced by the /n—consistent estimator p, the feasible
generalized trimmed mean (FGTM) is defined.

After the definitions of the robust estimators (GTM, FGTM), the large



sample theory of the estimators are given. After some regular assumptions,
we prove the Bahadur representations of the generalized regression quan-

tile, GTM, feasible generalized regression quantile, and also the asymptotic
normality of the GTM and FGTM.

Besides, the linear regression with AR(1) error model, we apply the idea
of trimmed mean to introduce generalized and feasible generalized trimmed
means for the nonlinear regression with AR(1) error model. We show that
these estimators are asymptotically more efficient than the trimmed means.
These results extend the concept of generalized and feasible generalized
least squares estimators for linear regression with AR(1) error model to
the robust estimators for nonlinear regression models.

The organization of this paper is as follows. In Chapter 2 criterions
are introduced, such as maximum (asymptotic) bias, (asymptotic) break-
down point, influence function, asymptotic variance under mixed normal,
minimax bias. A short introduction of the robust techniques is given in
Chapter 3. We focus on R-, M-, L-estimators, minimum distance estima-
tor, and also Kolmogorove MD estimator. For more advanced results on
robust estimations, reader is referred to Jureckova and Sen (1996). Main
results corresponding to generalized and feasible generalized trimmed me-
dian estimators for linear regression with AR(1) error models are given in
Chapter 4. The corresponding results to generalized and feasible gener-
alized trimmed means for linear regression with AR(1) error models are
given in Chapter 5. And the extension to the nonlinear regression with
AR(1) models are given in Chapter 6.



Chapter 2

Criterions

In this chapter we would like to describe quantitatively how greatly a small
change in the underlying distribution F' changes the distribution £5(7),)
of an estimate T, = T;,(z1, -+ ,x,). In the following sections, we will give
short descriptions on maximum (asymptotic) bias, asymptotic breakdown
point of T" at Fp, influence function, minimax bias.

2.1 Maximum asymptotic bias and asymptotic break-
down point

We assume that T,, = T(F,) derives from a functional T, where F), is
the empirical distribution. In most cases of practical interest, T, is then

consistent:
T,, — T(F) in probability,

and asymptotically normal
Lr{v/n[T, — T(F)]} — N0, A(F,T)).

Then we will discuss the quantitative large sample robustness of T" in terms
of the behavior of its asymptotic bias T'(F')—T(Fy) and asymptotic variance
A(F,T) in some neighborhood P.(F)) of the model distribution F,. For
instance, P(Fp) might be a Levy neighborhood

{FIVt, Fo(t —€) —e < F(t) < Fo(t +¢€) + ¢}
or a contaminated set
(FIF=(1—¢)Fy+eH,He M},

where M is the set of all probability measure on the sample space.



The two most important characteristics then are the maximum bias

bi(e) = sup T(F) = T(Fo)|

and the maximum variance

vi(e) = sup A(F,T).
FeP,

We should like to establish that, for sufficiently large n, the estimate T,
behaves well for all F' € P.. Let M (F,T,) be the median of £z[T,, —T'(Fp)]
and let Q:(F,T,) be a normalized t—quantile range of £r(/nT},), which is
defined as

5 (V) (1 —t) = L' (VT (1)
11 —1) — d-1(1) ’

Qi F,T,) = (2.1)
® being the standard normal cumulative. The value t is arbitrary, but
fixed, say t = 0.25 (interquartile range) or ¢ = 0.025 (95% range, which
is convenient in view of the traditional 95% confidence intervals). For a
normal distribution, @); coincides with the standard deviation; therefore
@Q? is sometimes called pseudo-variance.

Then define the maximum asymptotic bias and variance, respectively,

as
b(e) = lim sup |M(F,T,)|,
" FePp.
v(e) = lim sup Q;(F,T,)>.
" FeP.

Note that, P; = M is the set of all probability measures on the sample
space, so b(1) is the worst possible value of b (usually co). We define the
asymptotic breakdown point of T" at Fj as

€ =€ (Fo,T) = sup{elb(e) < b(1)}.

Roughly speaking, the breakdown point gives the limiting fraction of bad
outliers the estimator can cope with.

Similarly we may also define an asymptotic variance breakdown point
e = " (Fy, T) = sup{elv(e) < v(1)},

but this is a much less useful notion.



2.2 Influence function

Consider the simple model where X7, Xo,--- , X,, are i.i.d. r.v.s with a d.f.
F generally unknown. We have a parametric model {Gy : § € O} formed
by a dominated system of distributions and wish to estimate 6 for which
Gy is as close to F' as possible.

Let T,, = T,,(X1,Xs,---,X,,) be an estimator of § which we express
as a functional T'(F,,) of the empirical d.f. F), of X7, Xo,---, X},. A suit-
able normed limiting influence on the value of an estimate T'(F,) can be
expressed as

IO(:C, Fn; T) — 1im{T((1 B E)Fn + 6533) — T(Fn)

reR!
€0 € b ’

where for every ¢,z € R!, 6,(t) = 0 or 1 with respect to z # t or x = t,
respectively. The above quantity, considered as a function of z, has been
introduced by Hampel (1968, 1974) under the name influence function.

If T is sufficiently regular and G is near F', then the leading terms of a
Taylor expansion are

T(G)=T(F) -I-/IC’(:U,F, T){G(dz)F(dz)} + - - -

We have [IC(z,F,T)F(dz) = 0. Thus if we substitute the empirical
distribution F;, for G in the above expansion, we obtain

Va(T(F,) = T(F)) = vn / 10z, F.TVF,(dz) + -
= %ZIO(%F,T) T

By central limit theorem, ﬁ Y IC(x;, F,T) is asymptotically normal with
mean 0, if z; are independent with common distribution F'. Moreover, the
remaining terms are asymptotically negligible. Thus, /n(T(F,) — T'(F))
is then asymptotically normal with mean 0 and variance

A(F,T) = /10(:,:, F,T)*F(dz). (2.2)

The influence function has two main uses. First, it allows us to assess the
relative influence of individual observations toward the value of an estimate
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or test statistic. Its maximum absolute value,

v* =sup |IC(z, F,T)]|,

has been called gross error sensitivity by Hample. It is related to the
maximum bias:

T(F) = T(Fy) = ¢ / 1C(z, Fy, T) F(dz).
Hence

bi(e) = sup |[T(F) — T(Fp)| = ey

Second, the influence function allows an immediate and simple, heuristic
assessment of the asymptotic properties of an estimate, since it allows us
to guess an explicit formula (2.2) for asymptotic variance.

2.3 Asymptotic variance

Let (Fp)pco be a parametric family of distributions, and let the functional
T be a Fisher consistent estimate of #, that is

T(Fy) =0, for all 6.

Assume that 7T is Frechit differentiable at F. We would like to show that
the corresponding estimate is asymptotically efficient at Fy if and only if
its influence function satisfies

1 0
I1C(x; Fy, T) = ——=—(1 : 2.
Here, fy is the density of Fy, and
0
I(Fy) = / (5510 fo)dF

is the Fisher information.

Assume that dr(Fp, Fpis) = O(6), that

foxs —fo O



converges in the Lo(Fp)-sense, and that
0 < I(Fp) < o0.

Then by definition of the Frechet derivative,

T(Fuss) = T(E) — [ 10(3 FoT)(fors — folds = ofdy (Fi, Foss)
= 0(9).

We devide above by ¢ and let 6 — 0. In view of (2.3) and (2.4) we obtain

/[C’(a:; Fg, )aae(log fg)f,gdl‘ = 1. (2.5)

The Schwartz inequality applied to (2.5) gives that the asymptotic variance
A(Fy, T) of /n(T(F,) — T(Fy)) satisfies

A(Fy T) = / IC(w; Fy, T)2dFy > — (2.6)

and that he equality in (2.6) holds (i.e., asymptotic efficiency) only if
IC(z; Fy, T) is proportional to 2 57 108 fo- The factor of proportionality gives
the result announced in (2.3).

2.4 Minimax asymptotic variance/bias

Assume that the true underlying distribution F' lies I some neighborhood
P., of the assumed model distribution Fj, that the observations are inde-
pendent with common distribution F'(z —#), and that the location param-
eter f is to be estimated. In this section we would like to optimize the
robustness properties of such a location estimate by minimizing its maxi-
mum asymptotic bias b(e€) for distributions F' € P..

We now construct two e-contaminated normal distributions F'; and F_,
which are sy Metric about zy and —x(, respectively, and which are trans-
lates of each other. F!, is given by its density

)1 =e)o(x) for z < =y,
fe(@) = {(1 —e)p(x — 2xg) for x > x, (2.7)

10



where ¢ = @’ is the standard normal density, and
F_(z) = Fy(z + 2x).

Thus T'(Fy) — T(F-) = 2z for any translation invariant functional, and
it is evident that none can have an absolute bias smaller than =y at F'.
and F_ simultaneously. This means that the median achieves the smallest
maximum bias among all translation invariant functionals. Moreover, for
symmetric unimodal distributions, the solution in variably is the sample
median.

Let Fy be the distribution having the smallest Fisher information

1) = [(Lprae

among the members of P.

For any sequence (7},) os estimates, the asymptotic variance of \/nT,
at Iy is at best 1/I(Fp). Thus if we can find a sequence (7},) such that
its asymptotic variance does not exceed 1/I(Fy) for any F € P, we have
clearly solved the minimax problem. In particular, this sequence (7,) must
be asymptotically efficient for Fj.

11



Chapter 3

Robust techniques

3.1 Introduction

In this chapter we place emphasis on the motivations of several important
classes of robust estimators and on their basic properties. We will consider
two general situations, Location Models and Regression Models.

Location models. Let Xi,---, X, be n(> 1) i.i.d. random variables
with unknown distribution function G, defined on the real line R'. Let
{Fy : 6 € ©} be a parametric family of d.f.s and we wish to estimate 6 for
which Fjy provides the closest approximation of G. For the location model,

we assume that
Fy(z) = Fy(z — 6),

where 0 is real and Fj belongs to a class Fj.

Regression models. Suppose that Xi,---, X, are independent r.v.s
where X; hasd.f. F(z—6;),fori =1,---  n, and the vector 8 = (64, -- ,6,)
of parameters satisfies the condition that for some p (1 < p < n),

0 € 11,

where II, a linear p-dimensional subspace of R". We conceive of a class I
of distributions, and assume that F' € F. The choice of IF has an important
bearing on the choice of robust estimators for the corresponding models.
Note that the location model is a special case of the regression model for

which 0 = ,, for 0 € © C R..

Among various robust estimators, three broad classes, namely the M-,
L- and R-estimators, have turned out to be the most interesting, and they
have been studied extensively in the literature. In Section 3.2, we consider

12



the basic formulation of the M-estimators. They are well defined for a va-
riety of models for which maximum likelihood estimators (MLE) are also
defined. M-estimators cover both the MLE and LSE as subclasses.

In Section 3.3, R-estimators are considered. These estimators are based
on the ranks of observations (or signed ranks), and generally correspond to
suitable rank tests for symmetry or randomness against shift or regression
alternative. We will consider the R-estimators of location and regression
parameters. Section 3.4 is devoted to the study of L-estimators. These
L-estimators were originally conceived as linear combinations of functions
of order statistics for efficient estimation of location or scale parameters.
Generally, they are computationally appealing and possess various desir-
able properties. L-estimators have also been considered for linear models.

Besides these principal classes of robust estimators, some other notable
classes have been studied a lot, such as Minimum distance estimators
(MDE). We will give a short introduction in Section 3.5.

3.2 M-Estimator

Let Xi,---,X, be iid. random variables with a distribution function
(d.f.) F(z,0) where § € ©, an open set in R’. The true value of 6 is
denoted by 6y. Let p(z,0) : R x © — R be an absolutely continuous
function in the elements of # and such that the function

h(6) = Eo,p(X1,0) (3.1)

exists for all & € © and has a unique minimum over © at #;. An M-
estimator (maximum likelihood type estimator) M, of 6y is defined as a
statistic which is a solution (with respect to #) of the minimization of
S, p(Xi, 0) with respect to 6 € ©, i.e.,

M, = arg min{z p(X;,0):0 €6} (3.2)
i=1

In many cases, the minimization problem in (3.2) leads to the implicit
equation

> (X,0) =0
=1

13



where ¢(z,0) = k{(0/00)p(z,0)}, for all z,8, and £ which is a nonzero

real number.

3.2.1 M-estimation of General Parameters

We consider the general vector parameter and impose the following regu-
larity conditions on p and on F':

Al. First-order deriwatives. The functions ¢;(x,t) = (0/06;)p(z,0) are

assumed to be absolutely cont.inuous in ), with the derivatives ¢;;(x,0) =
(0/060));(x,0), such that E[1);, (X7, 600)]*> < oo, (j,k =1,---,p). Further
we assume that the matrices I'(6y) = [v;1(60)]} ,—; and B(6o) = [b;1.(60)]} 1
are positive definite, where

ir(0) = Egthjr(0),

and
b]k(e) = COU9(¢j(X1, 9),¢k(X1, 9)), jk=1,---p.

A2. Second- and third-order derivatives. ¢jk(:c, 6) are absolutely con-
tinuous in the components of § and there exist functions My (x, 6y) such
that Mmjg = EMjkl (Xl, 90) < o0 and

Pin(, 00+ )] < Mju(z,60),z € R, ||0]] < 6,6 >0,

where 5% (z.6)
. - x
, 9) = JA\T
Vi@ 0) = =50 56
Under the conditions A1 and A2, the minimum in (3.2) is one of the
roots of the system of equations:

) jakal:]-:"'ap'

i=1

The following theorem states existence of a solution of (3.3) that is \/n-
consistent estimator of 6y and admits an asymptotic representation.
Theorem 3.2.1 Let X, Xy, -+ be i.i.d. r.v.s with d.f. F(x,6y), 6y € ©, ©

14



being an open set of RP. Let p(z,0) : R X © — R be a function absolutely
continuous in the components of 6 and such that the function h(0) of (3.1)
has a unique minimum at @ = 6y. Then, under the conditions A1 and A2,
there exists a sequence {M,} of solutions of (3.8) such that

|| M, — 6y|| = O,(1) as n — oo,

and

M, = 6y — n Y (T(6)) ™ Z W(X;,00) + Op(n1), (3.4)

where P(x,0) = (Y1(x,0),-- -, Yp(z,0))".
The representation (3.4) implies the asymptotic normality of M,,.

Corollary 3.2.1 Under the conditions of Theorem 8.2.1, n%(Mn —
6p) has asymptotically p-dimensional normal distribution N,(0, A(6y)) with

A(6o) = (T'(6o)) " B(60)(T'(6o)) "

3.2.2 Me-estimators in Location Models

Let X7, X5, -+ be i.i.d. r.v.s with the d.f. F(z — ). Let p: R — R be
an absolutely continuous function with the derivative ¢ and such that the
function

h() = / o(z — 0)dF (z) (3.5)

has a unique minimum at # = 0. Let us consider the case when % is an
absolutely continuous function which could be decomposed as

P(t) =i(t) +o(t),t € R (3.6)

where 1; has an absolutely continuous derivative ¢] and v is a piecewise
linear continuous function, constant outside a bounded interval. We im-
pose the following conditions on 1,9 and F'.

Bl. Smooth component 1. 1; is absolutely continuous with an abso-
lutely continuous derivative 1] such that

/(1%(:1: +))2dF (z) < K, for |t| <6,
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and ¢ is absolutely continuous and [ [¢{(z + ¢)|dF (z) < K for |t| <4,
where ¢, K1 and K are positive constants.

B2. Piecewise linear component 1. 1y is absolutely continuous with
the derivate

Yo(z) =y forr, <z <r,y,v=1,-k,

where ag, aq, -+ -, oy are real numbers, ap = a; =0, and —co =1y < r; <
<< Tk < Tyl = OQ.

B3. F smooth around the difficult points. F has two bounded deriva-
tives f and f’ and f > 0 in a neighborhood of ry,--- , 7.

B4. Fishers consistency. v =1+ v2 > 0, where v; = [ ¢/(z) ) for
i =1,2, and [¢*(z)df (z) < oo.

The M-estimator M,, of 8 is then defined as a solution of the minimiza-
tion

Zp(XZ- — 0) := min with respect to 6 € R.

Under the conditions (B1)-(B4), M, coincides with a root of the equa-

tion
> bXi—t)=0. (3.7)

If p is not convex, then the equation (3.7) may have more roots. The con-
ditions B1-B4 guarantee that there exists at least one root of (3.7) that
is y/n-consistent estimator of # and that admits an asymptotic representa-
tion. This is formally expressed in the following theorem.

Theorem 3.2.2 Let X1, Xo,--- be i.i.d. r.v.s with d.f. F(x —0). Let
p: R — R be an absolutely continuous function whose derivative ¢ can be
decomposed as (3.6) and such that the function h(6) of (3.5) has a unique
minimum at 8 = 0. Then under the conditions (B.1)-(B.4), there ezists
a sequence {M,} of roots of the equation (3.7) such that

n} (M, — 8) = O,(1)

and

M, (ny) lzw i — 0) 4+ R, where R, = O,(n"). (3.8)
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The asymptotic representation (3.8) immediately implies that the se-
quence nt is asymptotically normally distributed as n — oo; hence we
have the following corollary:

Corollary 3.2.2 Under the conditions of Theorem 3.2.2, there exists a
sequence {M,} of solutions of the equation (3.7) such that n2 (M, — 6) has
asymptotically normal distribution N (0, 0%(, F)) with (1, F) = 472 [ ¢*(z)dF(z)

3.2.3 M-estimators in Regression Models

Consider the linear model

Y =XB+E, (3.9)
where Y = (Y1, -+ ,Y,) is the vector of observations, X = X,, is a (known
or observable) design matrix of order (n x p), 8 = (B1,---,5p) is an un-
known parameter, and E = (Ey,--- , E,)" is a vector of i.i.d. errors with a

distribution function F.

The M-estimator of location parameter extends to the model (3.9) in
a straightforward way: Given an absolutely continuous p : R — R with
derivative v, we define an M-estimator of § as a solution of the minimiza-
tion

Z p(Y;, Xit) := min

i=1
with respect to t € RP, where x} is the i-th row of X,,,7 = 1,--- ,n. Such
M-estimator M, is regression equivariant:

M, (Y +Xb) =M, (Y) + b for b € R,
but M, is generally not scale equivariant: It does not satisfy

My (cY) = cM,(Y) for ¢ > 0.

On the other hand, the studentization leads to estimators that are scale
as well as regression equivariant. The studentized M-estimator is defined
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as a solution of the minimization
> p((Y; = xjt)/S,) = min, (3.10)
i=1

where S, = S,,(Y) > 0 is an appropriate scale statistic. For the best results
S, should be regression invariant and scale equivariant:

Sn(c(Y +Xb)) = ¢S, (Y) for b € R and ¢ > 0.

The minimization (3.10) should be supplemented by a rule how to define
M, if S,(Y) = 0. However, in typical cases it appears with probability
zero, and the specific rule does not affect the asymptotic properties of IM,,.

Before giving the basic results on studentized M-estimator of regression
model, we imposed the following conditions on (3.10):

M1. S,(Y) is regression invariant and scale equivariant, S, > 0 a.s.
and

n3 (S, = 5) = Op(1)
for some functional S = S(F) > 0.

M2. The function h(t) = [ p((z—t)/S)dF(z) has the unique minimum
at ¢ = 0.

M3. For some § > 0 and n > 1,

/_oo{|z| sup sup [ (e7"(z + u)/S)|}ndF(z) < 00

00 |u[<d [v| <6
and o

|1t sup 44+ /) aEE) < o
where ¢! (2) = (d/d2).(z), and ¥ (2) = (d*/dz*).(2).

M4. 1. is a continuous, piecewise linear function with knots at uq, - - - , g,
which are constants in a neighborhood of +00. Hence the derivative 1)/, of
1. is a step function

P(2) =, for p, < 2 < pyr1,v=0,1,--- |k,

C
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where ap, a1, -+ ,ar ER ag=ar =0and —oco = py < p1 < -+ < g <
pr+1 = oo. We assume that f(z) = dFi) is bounded in nelghborhoods of
Sy S

MS5. ¢s():/\ for q, < 2 < qu41,v = 1,--- ,m where —0co0 = ¢y <
G < < Gm<Qni1 =00, —00 < A< A1 < -+ < A\ < 00. We assume
that 0 < f(z) = (d/dz)F (z) and f'(z) = (dz/dzz)F(z) are bounded in
neighborhoods of Sy, -+, Sym.

The asymptotic representation for M,, will involve the functionals

w=stf " WA(2/S) + L=/ S))dF (2), (3.11)
w=st | " LW (2/S) + U=/ S))dF (2),
=S = Aon) F(S,),

SZ - 1/1QVf( )

Conditions M4 and M5 depict explicitly the trade-off between the
smoothness of 1) and smoothness of F'. The class of functions . covers the
usual Hubers and Hampels proposals.

Moreover we impose the following conditions on the matrix X,,:

X1. I‘“:l,izl,"' , n
X2 n7t i [Bllt = Op(1).

X3. lim, 0 Q. = Q, where Q, = n™1X/ X, and Q is a positive defi-
nite p X p matrix.

Let M,, be a solution of the minimization (3.10). If ) = p’ is continuous
(i.e., s = 0), then M,, is a solution of the system of equations

(3.12)
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The basic results on studentized M-estimators of regression are summa-
rized in the following three theorems.

Theorem 3.2.3 Consider the model(3.9) and assume the conditions
M1-M4, X1-X3, and that v, defined in (3.11) is different from zero.
Then, provided s = 0, there exists a root My, of the system (3.12) such
that

n%||M,, — ]| = 0,(1) as n — 0. (3.13)
Moreover any root M of (3.12) satisfying (3.13) admits the representation
Sy,
Mn—ﬁ:(nry 1Q IZXZ¢E/S)—%(§—1)1-|—RW

where ||R,,|| = O,(n7) and e; = (1,0,---,0)/ € R,.

Theorem 3.2.4 Consider the linear model (3.9) and assume the con-
ditions M2, M5, and X1-X3. Let My, be the point of global minimum of
(8.10). Then, provided that ¥, = . = 0,

n?||M, — B]| = 0,(1) as n — oo,

and M, admits the representation

Ma = (19010t Y (/) e+ R,
1=1

where ||R,,|| = O,(n3/%) and e; = (1,0,---,0)' € RP.

Theorem 3.2.5 Consider the model (3.9) and assume the conditions
M1-M4, and X1-X3. Let ¢ be either continuous or monotone, and let
T+ 75 0. Then, for any M-estimator M, satisfying n*/>(M,, — 8) =
()P(l);

*\ — * 5%
M,,—f = (n(n1+77))~ 1sz¢ Ei/S)=(m+71) " (12495) (g —Der+ Ry
where

Op(n™"),  if. =0,
IRaf1 = O |
L(n7%%)) otherwise.
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Theorem 3.2.3-3.2.5 have several interesting corollaries, parallel to those
in the location model.

Corollary 3.2.3 Under the conditions of Theorem 3.2.3, let MS) and
Mg) be any pair of roots of the system of equations (3.12), both satisfying
(8.13). Then

MY = M| = Op(n™Y).

Corollary 3.2.4 Assume that
o :/ W2 (2/S)dF () < oo,

Then, under the conditions of Theorem 3.2.3-3.2.5, respectively, the se-
quence

1 S,
n?{% (M, — B8) + 72(§ —1)ey}

has the asymptotic p-dimensional normal distribution Np(O,O'QQ_l); here
Yi stands for i, vF or i + ), © = 1,2, respectively.

3.3 R-Estimator

In this section we give a simple introduction of estimates derived from
rank tests, which is called R-estimates. Consider a two-sample rank test
for shift: let z1,---,x,, and vy1,--- ,y, be two independent samples from
the distributions F(z) and G(z) = F(x — A), respectively. Merge the two
samples into one of size m+n and let R; be the rank of z; in the combined
sample. Let a; = a(i), 1 < i < m + n, be some given scores; then base a
test of A = 0 against A > 0 on the test statistic

Spn = k= > a(Ry). (3.14)

We assume that the scores a; are generated by some function J as follows:

i/t
ai = (m +n) / J(s)ds. (3.15)
(i—-1)/(m+n)
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To simplify the presentation, we assume that m =nand 0 < J < 1. In
terms of functionals (3.14) can be written as

S(F,G) = / J[%F(a:) + %G@)}F(d.@), (3.16)
or, if we substitute F(z) = s,
S(F,G) = /J[%s + %G(F‘l(s))]ds. (3.17)

We also assume that

/J(s)ds =0, (3.18)

Y ai=0. (3.19)

Then the expected value of (3.14) under the null hypothesis is 0. We
can derive estimates of shift A,, and of location 7,, from such rank tests:

corresponding to

1. In the two sample case, adjust A,, such that S, ,, = 0 when computed
from (zq1, -+ ,z,) and (y1 — Ay, -0,y — Ay).

2. In the one sample case, adjust 7T}, such that S, ,, =~ 0 when computed
from (zy,--- ,z,) and (27,21, -+ ,27T,x,). In this case a mirror image
of the first sample serves as a stand-in for the missing second sample.

Thus our location estimate 7), derives from a functional T'(F’), defined by

the implicit equation

/J{% [s+1—F2T(G)— F~'(s))] }ds =0. (3.20)

3.3.1 Influence Function of R-Estimates
We now derive the influence function of T'(F'). To shorten the notation we
introduce the distribution function of the pooled population:

1

K(z) = 5 [F(z)+1—FQ2T(F) —z)]. (3.21)
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Assume that F' has a strictly positive density f. We insert F; = (1 —¢)F +
tG for F in (3.20) and take the derivative 0/0t (denoted by a dot ) at
t = 0. This gives

f2T — F7'(s))
FE=Y(s))

(3.22)

To separate this expression in a sum of three integrals and substitute z =

2T — F~Y(s) in the first (thus s = F(2T — z)), but = = F~!(s) in the
second and third integrals, we obtain

[ rwE o) Fer-F @)+

T / J(K (2)) f (2T —2) f(z)dz+ / %[J’(K(:c))—i—J’(l—K(x))] f(2T—2)F(z)dz = 0.

(3.23)
Now we assume that the scores-generating function is symmetric

J1—-t)=—-J(),0<t<1 (3.24)

then we simplify (3.23) by introduction the function U(z), being an indef-
inite integral of

U'(z) = J'{%[F(a:) L1 FQT(F) - o)} fQT(F) —z).  (3.25)

Then (3.23) turns into

/ U'(2) f(2)de + / U'(2) F(2)dz = 0. (3.26)

Integration by parts of the second integral yields

/ U(2)F(x)da = — / U(x)E(de).
With G' = §, we obtain the influence function from (3.26) by solving for

T
U(e) — [ U() (@)
[U(z)f(z)dz

for symmetric F' this can be simplified considerably, since then U(z) =

J(F(2)):

IC(z; F,T) =

(3.27)

e J(F()
D = T @) fepar

23
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Example The influence function of the Hodges-Lehmann estimate (J ()

t—1)is
TF(2T(F) — 1)
IC(z; F,T) = 2 , 3.28
B = 1) — o f (e (529
with T'(F') defined by
1
/F(QT(F) —z)F(dx) = 3 (3.29)
For symmetric F' this simplifies to
F(ﬂ?) —3
IC(x; F\T) = ——5—, 3.30
and the asymptotic variance of /n[T'(F,,) — T(F )] is indeed known to be
1
A(F,T)= | IC*dF = 3.31
.1 | T FoTaT (3.31)

3.3.2 Robustness of R-Estimates

We assume that the scores function J is monotone increasing and J(1—t) =
—J(t). In order that (3.17) by well defined, we require

/|J(s)|ds < 0. (3.32)

The function
At:F)= /J{%[s +1— F(2t — F7Y(s))]}ds (3.33)

is monotone decreasing in ¢, and it increases if F' is made stochastically
larger.

We consider that

Fil for0<s<1-—
Fll(s){ , (s+e€)+e for0<s< €

0, for s > 1—e.
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Thus provided the two side conditions
0<s<1-—c¢€

and
2t — Fy'(s) > xg + e,

where Fiy(z) = € is satisfied, we have
Fi[2t — F7H(s)] = Fy[2t —2¢ — Fy (s +€)] —e.
The second condition can be written as
s < Fy(2t — 2e — xp) — €.

Putting things together we obtain

At Fy) = /O J(%[s—i—e—i—l—Fg@(t—e)—Fo_l(s—i—e))])ds—{—/ Tl (s+1))ds,

(3.34)
with
S = [Fo(Q(t — 6) — SU()) — €}+.

We then obtain
by (e) = inf{tIA(E F1) < 0},

and, symmetrically we also obtain b_(¢€); if Fj is symmetric, we have
bul€) = b (€) = —b_(e).
With regard to breakdown we note that b (¢) < oo if and only if
tliglo A(t; Fy) < 0.

Since

lim A(t: Fl):/o B J[%(s+e)]ds+/ J[%(s+1)]ds

t—00
1/2 1
=9 / J(s)ds + / J(s)ds
€/2 1—€/2

Y /1 L/Q J(s)ds — /1 /126/2 J(s)ds).

the breakdown point €* is that value € for which

/1 T o) = / i 7(s)ds. (3.35)

/2 1—¢/2



Example For the Hodges-Lehmann estimates, J(t) =t — %, we obtain

as breakdown point X
€ 1 2 ~ 0.293.

When € | 0 the integrand in (3.34) decreases and converges to the in-
tegrand corresponding to Fj for almost all s and t. It follows from the
monotone convergence theorem that A(¢; F1) | A(¢; Fy) at the continuity
points of A(+; Fy). Hence if A(t; Fy) has a unique zero, that is, if T'(Fp) is
uniquely defined, T is continuous at Fy. If T'(Fp) is not unique, then 7' of
course cannot be continuous at Fj. A sufficient condition for uniqueness
is that the derivative of A(¢; Fyy) with regard to ¢ exists and is not equal to

0 At T = T'(Fp); this derivative occurred already as the denominator of
(3.27) and (3.28).

We summarize the results in the following theorem.

Theorem 3.3.1 Assume that the scores generating function J is mono-
tone increasing, integrable, and J(1 —1t) = —J(t). If the R-estimate T (Fy)
is uniquely defined by (3.20), then T is weakly continuous at Fy. The break-
down point of T is given by (3.35).

3.4 L-Estimator

Consider a statistic that is a linear combination of order statistics, or more
generally, of some function h of them:

n

Tn = Z amh(l’(i)).

1=1

We assume that the weights are generated by a measure M on (0, 1):

) L}

L

This choice preserves the total mass, > ; a,; = M{(o,1)}, and symmetry

of the coefficients, if M is symmetric about ¢t = %
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Then T,, = T(F,,) derives from the functional

T(F) = / R(F~(s)) M (ds). (3.36)

We have exact equality T,, = T'(F},) if we regularize the integrand at its
discontinuity points and replace it by

Sh(F (s — 0)) + Sh(Fy (5 4+0)),

Here, the inverse of any distribution function F'is defined in the usual way
as
F7l(s) = inf{z|F(z) > s}, 0 <s < 1.

3.4.1 Influence Function of L-Estimates

To find the influence function IC(z; F,T) of T insert F; = (1 —t)F + tG
into (3.36), and take the derivative with respect to t at t = 0, for G = 4,.
We begin with the derivative of Ty, = F, !(s), that is, of the s-quantile. If
we differentiate the identity

Fy(Fy'(s) =5
with respect to t at t = 0, we obtain
G(F~Y(s)) = F(F~'(s)) + f(F}(s))T, = 0,

or
s — G(F~1(s))
f(F=1(s))
If G = 9, is the pointmass 1 at z, this gives the value of the influence
function of Tj:

T, =

IC(z; F,Ty) = f(;—;l(ls))’ for z < F~1(s)
= T for x > F7(s).

Quite clearly, these calculations make sense only if F' has a nonzero finite
derivative f at F~1(s), but then they are legitimate.
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By the chain rule for differentiation, the influence function of h(7}) is
IC(z; F,W(Ty)) = IC(z; F, Ts) W (Ty),
and that of 7" itself then is

IC(z; F\T) :/IC(J:;F,h(TS))M(ds) (3.37)

[SHEE),, [ RENE),
=] i) M) /F@ F(F(s) M de)- (3:38)

If M has a density m, it may be more convenient to write (3.38) as

10 FT) = [ Wm(EE)dy = [ 0= P )mE )y
- - (3.39)
This can be remembered through its derivative:
%IC(J?; F,T)=NW(z)m(F(x)).

Then we have the following alternative version of (3.36):

— [ tym(Pw)Fay)
—— [ B (7 w)dy.
Example 1. For the median (s = 1) we have
IC(z; F\Ty9) = 2f(F__11(% for z < F—1(%),
1 1
:2f(F—_1(%)) for x > F (2)

Example 2. The a-trimmed mean corresponds to h(z) = = and

1
m(s) = 5w fora<s<l—a
=0, otherwise;
thus
! T d 40
T(F)_I—Qa,/a F~(s)ds. (3.40)
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Note that the a-trimmed mean T'(F},), as defined by (3.40), has the fol-
lowing property: if an is an integer, then an observations are removed
from each end of the sample and the mean of the rest is taken. If it is not
an integer, say an = |an| + p, then |an| observations are removed from
each end, and the next observations z(sanu+1) And % (,_[ay)) are given the
reduced weight 1 — p

The influence function of the a-trimmed mean is, according to (3.39),
1

1 -2«
1
=1 2a[xW(F)], for FYa) <z < F'(1-a)

1

- 1-2a
Here W is the functional corresponding to the so-called a-Winsorized
mean:

IC(x) = [F~ Y)W (F)], for z < F~!(a)

[F7H1 —a) = W(F)], for z > F71(1 - a).

W(F) = / T P (s + aF Y a) + aF (1 a)
=(1-2)T(F)+aF Ha)+aF (1 -a).

3.4.2 Robustness of L-Estimates

We now calculate the maximum bias b; for L-estimates. Assume that
h(zx) = x and that M is a positive measure on (0,1) with total mass
1. The resulting functional corresponds to a location estimate; if Fj,x.
denotes the distribution of the random variable aX + b, We have

T(FaX+b) = CLT(FX) + b, fora>0.

Let a be the largest real number such that [«, 1—a] contains the support
of M; then the breakdown point satisfies €* < a. We now show that ¢* = a.

Assume that the target value is T'(Fy) = 0, let 0 < € < «, and define
by, b_ as follows:

by (e) = sup{T(F)|dL(Fo, F) < €}
b_(e) = inf{T(F)ldu(Fy, F) < e}

Then, with Fi(z) = (Fo(z —€) — €)™, we have
b0 = [ F M) = e [ F s+ OM(ds)
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and

1-a
b_(€) = —e+ / Fyl(s — €)M (ds).
Let
bi(e) = ma{by (6), ~b_(c)}
As Fy (s +¢€) — Fy'(s —¢€) |} 0 for € | 0, except at the discontinuity
points of F; !, we conclude that b;(¢) < by (e)—b_(e) J 0 iff the distribution

function of M and Fo_l do not have common discontinuity points, and then
Tis continuous at Fj. Since by(e) is finite for € < a, we must have € > a.

In particular, the a-trimmed mean with 0 < a < % is everywhere contin-

uous. The a-Winsorized mean is continuous at Fy if F; !(a) and F; *(1—a)
are uniquely determined.

The generalization to signed measures is immediate, the results is in the
following theorem.

Theorem3.4.1 Let M = M — M~ be a finite signed measure on (0, 1)
and let T(F) = [ F~1(s)M(ds). Let a be the largest real number such that
[a, 1 — «] contains the support of M+ and M~. If a > 0, then T is weakly
continuous at Fy, provided m does not put any point mass on a disconti-
nuity point of Fo_l. The breakdown point satisfies € > «. If M 1s positive,
we have € = a, and a = 0 tmplies that T s discontinuous.

For the asymptotic properties of L-estimates the following theorem is a
useful version which is from Huber(1969) and Stigler (1969).

Theorem3.4.2 Let M be an absolutely continuous signed measure with
density m, whose support is contained in [a,1 — «], o > 0. Let T(F) =
[ F~Y(s)m(s)ds. The \/n(T(F,) — T(F)) is asymptotically normal with
mean 0 and variance [ IC(z; F,T)*F(dz), provided both (1) and (2) hold:

(1) m is of bounded total variation (so all its discontinuities are jumps).
(2) No discontinuity of m coincides with a discontinuity of F~1.
3.5 Minimum Distance Estimates

Assuming the general parametric model

P = {P|0 € O} C M;(A)
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on a general sample space (£2,.4), the minimum distance (MD) idea is to
determine the value 8 so that Py fits best a given probability, respectively
the empirical measure. The set of probabilities M;(.A) has to be mapped,
and the parametric model P embedded, into some metric space (=, d). The
following conditions are imposed on the parametrization 8 — Fjy:

(1) 575 0 — d(Pg,Pg) >0
(2) £ =0 = d(P, F) =0

(3) For every 6 € © there exist numbers 7y, Ky € (0, 00) such that [ —6] <
Np —> d(Pg, Pg) > Kg‘g — 9‘

The open parameter space © C R" being locally compact separable, it
has a representation

o0
0= L_Jl@y
with ©, open, the closure 8, compact, and ©, C ©,,; for all v > 1.

Due to (2), the parametrization § — P is uniformly continuous on each

compact ©,: For every 6 € (0,00) there exists some ¢,(d) € (0,00) such
that for all (,60 € ©,,

I —0| <€ (0) = d(FP, ) <6 (3.41)

The same is true for the inverse Py — 6 restricted to the image set { |0 €
©,}: For every € € (0,00) there is some d,(¢) € (0,00) such that for all
(,0 €06,

d(Pr, Py) < d,(e) = | —0| <e

Choose three sequences 7, 2, p, € (0, 00) such that

lim 7, = oo, lim 2, =0, lim v/np, = 0.
V—00 V—00 n—o0

For § = p, in (3.41), by the compactness of ©,, there exist finite subsets
@V,n = {eu,n;la e 79V,n;q,,7n} C éy C O
such that for all n,v > 1,

sup inf{d(FP;, )]0 € ©,,,} < pn.
(€O,
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Define T, ,, : M;(A) = O,,, so that T},,,(Q) denotes the first element 6, ;
of ©,,,, to achieve inf{d(Q, Fy)|0 € ©,,}. This means that

d(Q7 Peu,n;i) > d(Q7 Peu,n;j)7 /I’ < -7
d(Q: Pe,,,n;i) > d(Q: PH,,,n;j)a 1 > .7

Given any Q € M;(A), by (2) and ©, compact, there is some ¢ € ©, which
minimizes d(Q, Fy) for 8 € ©,. For this ¢ choose 0,,,; € ©,,,, according to
(3.5) and (3.42),

dQ,Fy,,,) <dQ,F,,.) <dQ,F)+ pn.
Thus, for all Q € M1(A) and all n,v > 1,
d(Q, Pr, ) < oien@f d(Q, Py) + pn.

Let By(Fy,r) ={Q € M1(A)|d(Q, Py) < r}.

We have the following lemma.

T)n(Q) =0, = { (3.42)

Lemma 3.5.1 Assume (1) and (2), and let T, ,, be defined by (3.42). Then

for every v € N there exists some m, € N such that for all n > m,,,

sup sup{|T,,,(Q) — 0||Q € Ba(Py,r,/v/n)} < z,.
USCH

We can arrange that m, < m, )4 for all n > 1. The MD functional
Ty = (Ty,) is now obtained from (7,,,) by a certain diagonalization:

This construction achieves bounded infinitesimal oscillation of 7; on the

neighborhood system Uj;.

Theorem 3.5.1 Assume (1), (2) and (3), and let Ty = (Ty,,) be defined
by (3.48). Then, for all 8 € © and r € (0, c0),

lim sup sup{v/n|Ty,(Q) — 0| |Q € Ba(Py,r/v/n)} < .

n—oo

Kolmogorov MD Estimate
Minimum distance estimates S, = (S*n) are obtained by evaluating mini-
mum distance functionals T, = (T*n) at the empirical measure,

. . 1 <&
S*,n(a:l; cr 73771) — T*,n(Pn)a Pn(xla te ,SUn) — ﬁ ZI%
1=1
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For the Hellinger distance dj,, some (kernel) smoothing of the empirical
is required as in Beran(1977), and likewise for total variation distance d,,

since in these two metrics d*(f?n, Q.) = 1, if Q, has no atoms. We concen-
trate on the Kolmogorov estimates Si. The sample space is assumed to be
some finite-dimensional Euclidean (R™, B™).

Theorem 3.5.2 Let P be identifiable, and Ly differentiable at all § € ©.
Then Sy, = (Skn) is at all sample sizes n > 1 a random variable,

Skt (R™ B™) — (©,BF).

Moreover, for allf € ©, allr € (0,00) and all arrays Q,; € Bi(Py,r/y/n),
the sequence of laws /n(Sk, — 6) (Q%n)) is tight in RF.

For more discussion on MDE, we refer to Beran(1977, 1981, 1982), Mil-
lar(1981, 1983, 1984) and Koul(1985).

33



Chapter 4

Generalized and Feasible Generalized

Median Estimators for the Linear
Regression with AR(1) Error Model

One of standard assumptions in the regression model is that the error term
e; and €;, associated with the ith and jth observations, are uncorrelated.
Correlation in the error terms suggests that there is additional information
in the data that has not been exploited in the current model. When the
observations have a natural sequential order, the correlation is referred as
autocorrelation or serial correlation.

The symptoms of autocorrelation may appear as the result of a variable
having been omitted from the right-hand side of the regression equation.
If successive values of the omitted variable are correlated, the errors from
the estimated model will appear to be correlated. The presence of auto-
correlation has several effects on the analysis. These are summarized as
follows:

1. Least squares estimates of the regression coefficients are unbiased but
are not efficient in the sense that they are no longer have minimum variance.

2. The estimate of 02 and the standard errors of the regression coeffi-
cients may be seriously understated; that is, from the data the estimated
standard errors would be much smaller than they actually are, giving a
spurious impression of accuracy.

3. The confidence intervals and the various tests of significance commonly
employed would no longer be strictly valid.

34



Thus the presence of auto correlation can be a problem of serious con-
cern for the preceding reasons and should not be ignored.

4.1 Introduction

The generalized least squares estimator (GLSE) and the feasible gener-
alized least squares estimator (FGLSE) are, separately, extended to the
generalized and the feasible generalized median estimators for the linear
regression with AR(1) error model. The large sample theory for these es-
timators is developed. Furthermore results of Monte Carlo studies and
an example of real data analysis are provided for the feasible generalized
median estimator.

Consider the linear regression model
yi:a:;ﬂ—l—ei,i: 1,...n (41)

where, for each i, z; is a known design p-vector with value 1 in its first
element and €;,7 = 1,...,n are random error variables. Suppose that the
error vector € = (€1, ..., €,)" has the covariance matrix structure

Cov(e) = 0%Q (4.2)

where €2 is a positive definite matrix. From the regression theory of the
estimation of (3, it is known that any estimator having an (asymptotic)
covariance matrix of the form

S(X'QtX)! (4.3)

is more efficient than the estimator having (asymptotic) covariance matrix
of the form

S(X'X)"HX'QX) (X' X)) (4.4)

where ¢ is some positive constant. In the least squares estimation when the
matrix 2 is known, Aitken (1935) introduced the GLSE and showed that
it has a covariance matrix of the form (4.3) and the least squares estimator
(LSE) has a covariance matrix of the form(4.4) with § = 2. Tt is also well
known that, when {2 is unknown, the FGLSE has the asymptotic covari-
ance matrix of the form (4.3). Then these two generalized type estimators
are more efficient than the LSE.
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Although the GLSE and FGLSE are asymptotically more efficient than
the LSE in many regression problems, they are highly sensitive to even
a very small departure from normality and to the presence of outliers.
Therefore developing robust type generalized and feasible generalized es-
timators in each specific regression problem are interesting. The concept
of developing robust type generalized estimators in regression analysis is
not new. For the multivariate regression model, one of linear regression
(4.1) with errors of a case of (4.2), Koenker and Portnoy (1990) introduced
the concept of generalized M-estimators for the estimation of regression
parameters. In this article, we consider the linear regression model of (4.1)
with AR(1) errors in the sense that ¢; follows

€ = PE€;i—1 + €; (45)

where eq,...,e, are i.i.d. random variables, is one of the most popular
models. Suppose that |p| < 1 and e; has a distribution function F. We
introduce a generalized type and also a feasible generalized type median
estimators (i.e. the ¢;-norm estimator) and derive their asymptotic prop-
erties for this linear regression with AR(1) error model.

We introduce the generalized and feasible generalized type median esti-
mators in Section 2. The theory of these two median estimators is given in
Section 3. We provide a Monte Carlo study and an example of real data
analysis for the feasible generalized median estimator in Section 4. Finally,
the proofs of the theorems are provided in Section 5.

4.2 Generalized and Feasible Generalized Median Es-
timator

Assume that F' has a median 0. The population median of the ¢-th depen-
dent variable y; given both independent variables x; and error variable ¢; 4
1S

Fot e [(0.5) = XiB + pei1. (4.6)

Inserting the relation of (4.5) for y;_1, we have y; < Fy_ﬁz 6H(0.5) iff y; —
pyi—1 < (z; — pz;_1)'B iff e; < 0. This discussion also implies that

Fy:|1mi76i—1 (05) = pYi—1 + ('CCZ - pxi—l)lﬁ (47)

which is conditional on independent variables z; and preceeding depen-
dent variable y;_1. We can reformulate the conditional median of (4.7) as
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Fy_i|ii76i(0.5) = pyi—1 + (x; — pz;—1)'8. Then, once we have known p or an
estimator p when it is unknown, we can estimate 8 through this formula-
tion. For the estimation of 3, we consider this transformation in a matrix

form as

y=X0B+e (4.8)
where it is seen that Cov(e) = 0?Q with
1 p P p"‘;
1 1 A
1—0p : : :
pn—l pn—2 pn—3 o 1
Define the half matrix of Q7! as
(1—-p»HY2 0 0 ... 0 0]
—p 1 0 ... 0 0
Q712 = 0 —p 1 ... 0 0f. (4.10)
i 0 0 0 ... —p 1]

With the above half matrix of €2, we consider the model for the transfor-
mation u = (Q~Y2)'y as

U:Zﬁ-{—((1—p2)1/261,62,63,...,6n)/ (411)

where Z = (Q7'/2)’X. Note that the vector u and the matrix Z are
both functions of parameter p. The usual descriptive statistics, robust or
nonrobust, based on model (4.8) can be carried over straightforwardly to
transformed model (4.11) when p is known. However, when p is unknown,
u and Z need to be replaced by the ones that place its p by the estima-
tor. Knowing the fact that GLSE is simply the LSE of 8 for model (4.11),
we may consider the median estimator (generalized or feasible generalized)
defining on this transformed model. To validate the terminology calling the
generalized and the feasible generalized median estimators, we will show
that they are asymptotically equivalent in the sense of having the same
asymptotic covariance matrix of the form of (4.3).

Definition 4.1. The generalized median estimator for the linear re-
gression with AR(1) error model is defined as

Be = argbeRPminZ [ui — 2|
i=1
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where u; and z] are the i-th rows of w and Z respectively.

After the establishment of the generalized median estimator for the
known p, question will be to find if there is a similar estimator for the
unknown p. Specifically, can the estimators of the regression median of
Definition 4.1 with replacing p by an consistent estimator p have asymp-
totic behavior exactly the same as it displayed for B; when p is known.
If yes, the theory of feasible generalized least squares estimation is then
carried over to the theory of feasible generalized median estimator in this

specific linear regression model. Let QO be the matrix {2 replacing its p by
p and we define matrices 4 = (9_1/2)'y, 7 = (9_1/2)’)( and é = (9—1/2)’6_

Definition 4.2. The feasible generalized median estimator for the lin-
ear regression with AR(1) error model is defined as

n
Bra = argye g minz |t; — 2|
i=1

where 4; and 2 are i-th rows of & and Z respectively.

4.3 Asymptotic theory of generalized and feasible gen-
eralized median estimators

Without examining these generalized and feasible generalized median esti-
mators, we have still not known if they do play the role of generalized or
feasible generalized robust estimators. A set of assumptions related to the
design matrix X and the distribution of the error variable e in the Section
4.5 are assumed to be true throughout the paper. The following theorem
states that the generalized and feasible generalized median estimators have
the same Bahadur representation and the same asymptotic distribution.

Theorem 4.3.1. Assume that Q, = lim,.on ' X'Q71X, a positive def-
inite matriz, and p satisfies that n'/*(p—p) = O,(1). Then both n'/%(Bg—P3)
and n''*(Brg — B) have the same representation,

0.5(£(0)Q,) 'n 2> " zisgn(e;) + 0p(1) (4.12)

i=1
where f 1s the p.d.f. of the i.5.d. variables ey, ...,e, and sgn is the sign
function with value 1 if e; > 0 and —1 if e; < 0. Furthermore, n*/?(3g — )
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and n1/2(BFG — B) have the same asymptotic distribution that is normal
with mean zero vector and the covariance matrizc

0.25f7%(0)Q,".

We have several aspects to explain the above theorem.

(a). According to (4.12), the median estimators Sg and BFG have the
same asymptotlc covariance matrix of the form v(X'QX)~! with v =
(0.5)2£72(0), and thus Be and Brpg are asymptotically generalized and
feasible generalized, respectively, estimators of the population regression
parameter S. In contrast with the questions raised in Section 1, from a
large sample point of view on the linear regression with AR (1) error model,
we have extended the concept of generalized and feasible generalized esti-
mators from least squares estimation to the median estimator.

(b).If we let p = 0, these representations for B and Bpg are exactly the
same as the median estimator for usual linear regression model (see this in
Ruppert and Carroll (1980)). Theorem 4.3.1 indicates that we have gener-
alized the median estimation theory from the linear regression model with
i.i.d. errors to that with AR(1) errors.

(c). It is interesting that the representations for these two median esti-
mators are free of the representation of p. Available estimators (see the
two examples in next section) of p that are asymptotically normal may be
seen in Fomby, Hill and Johnson (1980, 211-213), for the proof of asymp-
totic normality in detail, see Theil (1971).

4.4 Monte Carlo Study and Example

For the feasible generalized median estimator, there are two questions
worth to be answered through the simulation study. We know that, as
indicated from Theorem 4.3.1, all estimators of p that are asymptoti-
cally normal make the feasible generalized median estimators converging
to the same normal distribution. Among the choices of asymptotically
normal estimator p, the Cochran-Orcutt (C-O) method and the Theil’s

39



method are most popular in application. Then, the first question is that
if these two estimators of p make the two corresponding feasible general-
ized median estimators performing equivalently in simulation. By letting
€ = y; — =;0;s where (i is the LSE of £, we note that the C-O method

defines p by% and the Theil’s method defines p by iy Gé1)/ (7_1_1).
i=2 € (> iz1 €)/(n—p)
We perform a simulation to study this problem. With sample size n = 30,
the simple linear regression model, y; = By + B1x;1 + €; where ¢; follows the
AR(1) error is considered. The error variable e is standard normal and z;
are independent normal random variables with mean /2 and variance 1. A
total of 1000 replications were performed where parameter values of p are
—0.9,—-.07,—-0.5,—0.3,0. We compute the mean squares errors for these
two types of feasible generalized median estimators where the total mean
squared error is the square of the Euclidean distance between the median

estimator and regression parameter 5. The mean squares errors are listed
in Table 1.

p -0.9 -0.7 -0.5 -0.3 0
Co 0.0672 | 0.0830 |0.1024 |0.1274 | 0.2129
Theil |0.0669 | 0.0828 | 0.1021 | 0.1279 | 0.2129

Table 1. MSE’s of feasible generalized median estimator using C-O and
Theil’s methods

The feasible generalized median estimators of using C-O and Theil meth-
ods to estimate p are nearly indifferent in MSE’s. With this result, we then
further concern the question if this feasible generalized median estimator is
robust comparing with FGLSE. To answer this question, we also conduct
a simulation.

This simulation is conducted with the same data generation system
except that the error variable e; is generated from the mixed normal dis-
tribution (1—§)N(0,1)+8N(0,0?) with § = 0.1,0.2 and o = 1, 3, 5, 10, 25.
We compute the MSE’s for FGLSE and the feasible generalized median
estimator. We display the MSE’s in Table 2.
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p =|FGLSE|Br¢ |p =|FGLSE| Brc
—0.9 —0.5

§=0 [0.040 |0.062

§ = § =

0.1 0.1

c=3 [0.073 [0.083 |o=3 |0.176 |0.122
5 0.116 [0.091 |5 0.249 |0.183
10 0.595 [0.072 |10 0.571 |0.114
25 1.559 | 0.108 |25 2.350 |0.133
§ = § =

0.2 0.2

c=3 [0.137 [0.076 |o=3 |0.135 |0.149
5 0.192 [0.089 |5 0.364 |0.110
10 1.207 [0.178 |10 1.299 | 0.186
25 5.129 |0.259 |25 8.811 [0.336

Table 2. MSEs for GLSE and feasible generalized median estimator

We have several conclusions drawn from Table 2:

(a). The case 6 = 0 indicates that e; follows a normal distribution. Then
the results in table 2 full fill the statistical theory that the FGLSE is more
efficient than other consistent estimators.

(b). In cases § > 0, almost all median estimates are with smaller MSE’s
relative to their corresponding FGLSE’s. This result shows that the fea-
sible generalized median estimator is indeed, among the class of feasible
generalized estimators, a robust one.

The data described in Dielman (1996) can be used as an example to
examine these methods. With sample size n = 16, this data set included
corporate profits (in billion dollars) and gross national product (GNP) (in
billion dollars). The regression model proposed was

yi = Bo + Bix; + €

here y’s and z’s represent the corporate profit and GNP respectively. Fol-
lowing the theory of economics, we anticipate the parameter 3; to be pos-
itive. Dielman (1996) has shown that the disturbances, ¢;, have first-order
autocorrelation €; = pe;_1 +e; by rejecting the null hypothesis p = 0. Since
both the FGLSE and the generalized median estimator have estimates of
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right sign on (31, our main purpose for analyzing this data set will focus on
comparing the performace of their corresponding approximated confidence
intervals.

By applying normal theory, we construct the asymptotic confidence in-
tervals of 5y and ) by using the estimators of the asymptotic variances of

elements of BFG = (Bo, 51) We let the estlmator of Q, be Qp = lX'Q7IX
and the estimator of f(0) be f(0) = nho o I(—% < e; < %), using the
uniform kernel, where hy = 1.740 x 1.059 x & x n~1/° as suggeted by Si-
monff (1996) and 62 = n%pé’é. The estimates of p based on C-O and Theil’s
methods are 0.7523 and 0.7155 respectively. The 90% and 95% confidence

intervals for 5y and ; based on these methods are presented in Table 3.

Parameter FGLSE BFG

v =0.95

C—-0: by (1.2665, 17.587)) (29.380,41.510
16.320 12.130

531 (0.0265,0.0313)) (0.0236,0.0271
0.0047 0.0035

Theil : By (4.7028,16.307)) (21.086, 30.531
11.604 9.4446

531 (0.0273,0.0311)) (0.0264, 0.0295
0.0037 0.0030

v =0.90

C—-0: by (2.4689, 16.385)) (30.273,40.616
13.696 10.180

531 (0.0269, 0.0309)) (0.0238, 0.0268
0.0039 0.0029

Theil : By (5.6357,15.374)) (21.846, 29.772
9.7390 7.9262

531 (0.02767,0.0308§0.0267,0.0293
0.0031 0.0025

Table 3. Approximated confidence intervals and length for GNP data
There are two conclusions can be drawn from Table 3:

(a). Confidence intervals generated from the Theil’s method are shorter
than the corresponding ones generated from the C-O method.
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(b). Confidence intervals generated from the proposed feasible general-
ized median estimator are shorter than the corresponding ones generated
from the feasible generalized least squares estimator.

4.5 Proof of Theorem 4.3.1

The following conditions concerning the design matrix X and the distribu-
tion of error variable e are similar to the standard ones for linear regression
models as given in Ruppert and Carroll (1980) and Koenker and Portnoy
(1987):

(al) n™' Y5, zj; = O(1) for all 5.
(a2) n 1 X'Q71X = Q, + o(1), where @, is a positive definite matrix.

(a3) The probability density function f and its derivative are both bounded
and bounded away from 0 in a neighborhood of F~!(«a) for o € (0, 1).

(a4) n!/2(5 - p) = O,(1).

Proof of Theorem 3.1 : Consider first the representation of the feasi-
ble generalized median estimator Spg. According to Koenker and Bassett
(1978), Bra can be expressed as

Bra = argyepmin ¥ _(i; — 2)(0.5 — I(a; < 2b)).
From (4.1) and (4.5), we have
i — 2 Bra = e — n VP Thei_y + n Y2 (2T + 02T Ty)
where T = n'/2(Bpg — ) and Ty = n*/2(p — p). Let

n
M(tl, tg) = n_1/2 Z ZZ(O5 — I(GZ - n_1/2t26i_1 S 7?,_1/2ZZI-t1 - n_ltgl‘;_ltl)).
1=1

Following the proof of Theorem 5.5 of Chen, Welsh and Chan (2001), we

can derive

SUP <kl M (b1, £2) = M (0,0) = E(M (b1, ) = M(0, 0))| = 0,(1) (4.13)
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and

SUP |4, 1<k o] <kt | B (M (t1, £2) — M (0,0)) + f(0)n ™" Z zizit1| = 0p(1) (4.14)

for k, k' > 0. Moreover, Ruppert and Carroll (1980) provides that

n2Y " 2(0.5 — I(i; < £fBra)) = op(1). (4.15)
1=1

From (4.13)-(4.15), we can derive
12 — B) = Oy(1). (1.16)

Then the representation of Bpg is followed from (4.15), (4.16) and the
following result, induced from (4.13) and (4.14),

M (T}, T3) — M(0,0) + f(0)n Z %2 T = o,(1
for any sequences Ty = O,(1) and T5 = O,(1).

Letting to = 0, the proof for the representation of BG is exactly the same
as for Brq.
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Chapter 5

Generalized and Feasible Generalized

Trimmed Means for the Linear
Regression with AR(1) Error Model

In this chapter we propose the generalized and the feasible generalized
trimmed means for the linear regression with AR(1) errors model. These
play the role of robust type generalized and feasible generalized estima-
tors for this regression model. Their asymptotic distributions are devel-
oped. We also show that the Gauss-Markov theorem holds for these two
trimmed means in the sense that they are asymptotically the best in two
corresponding classes of linear trimmed means.

5.1 Introduction

For some regression models such as linear regression with AR(1) errors,
with uncorrelated but unequal variances errors or the seemingly unrelated
regression model, the generalized least squares estimator (GLSE) and fea-
sible generalized least squares estimator (FGLSE) have some advantages
such as with variances (or asymptotic variance) smaller than the least
squares estimator (LSE) and being best (or asymptotically) linear unbi-
ased estimator. However, the GLSE and the FGLSE are sensitive to de-
partures from normality and to the presence of outliers. Hence extending
these concepts to robust estimation is an interesting topic in regression
analysis. The concept of developing robust type generalized estimators
in regression analysis is not new. Koenker and Portnoy (1990) introduced
this interesting concept and developed the generalized M-estimators for the
estimation of regression parameters of the multivariate regression model.
Although considering only generalized estimation, their approach initiated
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the interest of robust type generalized and feasible generalized estimators
for estimation of regression parameters. Unlike the multivariate regression,
we consider the linear regression with AR(1) error model

Y; = x;—ﬂ+€i,7; = 1,...,n

5.1
€ = PE€i—1 T € 5-1)

where |p| < 1, ¢;,7 = 1,...,narei,i,d. variables with mean zero and variance
o? and z; is a known design p-vector with value 1 in its first element. From
the regression theory of the estimation of (3, it is known that, when p
is known, the GLSE and, when p is unknown, the FGLSE are with (or
asymptotically with) the same covariance matrix which is smaller than it
of the LSE. To see the sensitivity of the GLSE and the FGLSE, by letting
X' = (x1,...,z,) and Q2 = Cov(e) with € = (eq, ..., €,)’, the GLSE and the
FGLSE all have (asymptotic) covariance matrix of the form

oA(X'Q X)) (5.2)

where the term o? is the variance of e;. The sensitivity is revealing from
that o2 could be arbitrary large when e; obeys heavy tail distribution.

The fact that o? is sensitive in distribution motivates us to consider
robust estimators that have (asymptotic) covariance matrix of the form

y(X'QX)! (5.3)

where robustness means that it has v insensitive in heavy tail distribution.
Based on the regression quantiles of Koenker and Bassett (1978), we will
introduce the generalized trimmed mean (GTM) and feasible generalized
trimmed mean (FGTM) to play the role of robust type generalized and
feasible generalized estimators for the linear regression with AR(1) errors
model. For advancing study of their properties, we will also show that the
theory of robust type Gauss-Markov theorem holds asymptotically for the
GTM and FGTM in the sense that they are the best in their corresponding
classes of trimmed means linear in trimmed observations.

We introduce the concepts of GTM and FGTM in Section 2 and es-
tablish their large sample theory in Section 3. In Section 4, we introduce
a best asymptotic linear estimation property for the GTM and FGTM in
Section 4. Finally the proofs of theorems are displayed in Section 5.
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5.2 Generalized and Feasible Generalized Trimmed
Means

For the linear regression with AR(1) error model (5.1), to obtain a GTM
we need to specify quantile for determining the observation trimming and
to make a transformation for the linear model for obtaining generalized
estimators. For given i-th dependent variable for model (5.1), assuming
that ¢+ > 2, one way to derive a generalized estimator is to consider the
transformation by the Cochrane and Orcutt (C-O, 1949) as

vi = pYi-1+ (x; — Pwi—l)'ﬂ + €;.

We assume that error variable e has distribution function F' with prob-
ability density function f. With the transformation for generalized estima-
tion, a qantile could be defined through variable e or a linear conditional
quantile of y; 1 and y;. By the fact that z; is vector with first element 1,
the following two events determined by two quantiles are equivalent

ei < FHa) (5.4)
and

o0 (%1 = o) () ) 55

2

sl =5+ (77, ).

0p1

with

Here ((«) is called the population regression quantile by Koenker and
Bassett (1978). With specification of quantiles and transformation, we will
define the generalized trimmed means.

For defining the generalized trimmed means, we consider the C-O trans-
formation on the matrix form of the linear regression with AR(1) error
model of (5.1) which is

y=Xp+e
where Cov(e) = 0%Q2 with
1 p p2 pn—l
1 1 0 pn—2
Q= = _
pn—l pn—2 pn—3 1



Define the half matrix of Q1 as

(1—=pHY2 0 0 ... 0 0

—p 1 0 ... 0 0

Q%) = 0 —p 1 ... 0 0
0 0 0...—p1

The C-0O transformation is
u=ZB+ ((1—p»)Y %, ea,e5,....e,) (5.6)

where v = (Q7V2)'y and Z = (21, ..., z,)" = (Q7Y/2)'X. It is known that
GLSE is simply the LSE of g for model (5.6).

For 0 < a < 1, the a-th (sample) regression quantile of Koenker and
Bassett (1978) for the linear regression with AR(1) error model is defined
as

n
Ba(e) = argyepymin > (u; — 2jb) (o — I(u; < 2b))
i=1
where u; and z] are the i-th rows of u and Z, respectively. We then define
a generalized trimmed mean based on regression quantiles.

Definition 5.1. Define the trimming matrix as

A, = diag{a; = I(z/fa(0n) < i < 2fa(az)) 1i=1,...,n}.

The Koenker and Bassett’s type GTM is defined as
Leo(an, a) = (Z'A,2) 1 7' A (5.7)

The next interesting problem is then that when parameter p is unknown,
can the trimmed mean of (5.7) with replacing p by an consistent estima-
tor p have the asymptotic behavior exactly the same as it displayed for
Lg(aq, ). If yes, the theory of generalized least squares estimation is
then carried over to the theory of robust estimation in this specific linear
regression model.
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Let Q be the matrix of {2 with p replaced by its consistent estimator p.
Define matrices @ = (Q7Y2)y, Z = (Q7Y/?)'X and é = (Q7V/?)c. Let the
regression quantile when the parameter p is unknown be defined as

Bra(a) = argyepmin Yy (i; — 2b)(a — I(i; < b))
i=1

where 4; and 2] are i-th rows of 4 and Z, respectively.

Definition 5.2. Define the trimming matrix as
A, = diag{a; = I(Zfrc(ar) < 4 < ZBra(az)) :i=1,...,n}.
The Koenker and Bassett’s type FGTM is defined as
Lrg(on, 0) = (2'A,2) 12 Ay,

With the C-O transformation, the half matrix (Q27'/2)" has rows with
only a finite number of elements that depend on the unknown parameter p.
This trick makes the study of asymptotic theory for frG(a) and FGTM
Lpg(ai, az) similar to what we have for the classical regression quantile
and trimmed mean for linear regression.

Large sample representations of the GTM and the FGTM and their
role playing as generalized and feasible generalized robust estimators will
be introduced in the next section.

5.3 Asymptotic theory of GTM and FGTM

The following conditions concerning the design matrix X and the distri-
bution of error variable e are assumed to be true throughout the following
study.

In the following we give a Bahadur representation for the generalized
regression quantile which is followed straightforwardly from Theorem 3 of
Ruppert and Carroll (1980).

Lemma 5.3.1. The generalized regression quantile has the representation,

n'2(Bo(0)-B(a) = @, F(F - (@)n Y sila—I(e; < F(a)))+o,(L),

1=1
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where Q, = limy, o X'Q X . Furthermore, n*/?*(Bg(c) — B(a)) has a nor-
mal asymptotic distribution with mean zero vector and covariance matriz

a(l — oz)f_2F_1(oz)Q;1.

According to (5.3), the quantile estimator Sg(c) has asymptotic covari-
ance of the form v(X'QX)~! with v = a(1 — a) f"2(F~!(«)) which is then
asymptotically a generalized estimator of 5(a), the population regression
quantile for the linear regression with AR(1) error model. The represen-
tation of Lg(aq, ) is also a direct result of Theorem 4 of Ruppert and
Carroll (1980).

Theorem 5.3.2. The GTM has the following representation

nl2(La(an,00)~(F4N1)0,) =~ Q'Y s (dler) - B(@(e))) oy,

i=1
where A = f;?&? ef(e)de, 0, =lim, ,on 1> " z; and

F_l(Oél) zfe < F_l(ozl)
be)= e if P (o) < ¢ < F1(a)

F Y ag) ife>F Y a).

The above theorem provides the result that GTM is a generalization
of the trimmed mean from the linear regression with i.i.d. errors to the

AR(1) errors.

Corollary 5.3.3. The normalized GTM n'/?(Lg(ay,as) — (B8 + A(1 —
p)0:)) has an asymptotic normal distribution with zero mean vector and
asymptotic covariance matriz

02(a17 aQ)Q;la

where

F~(ay)

o?(a, ) =(ag — al)_2[/1~“1(a | (e — A)2dF(e) 4+ ay(F (o) — N)?

+ (1 —a)(F ! (a2) = A = (an F~Har) + (1 — o) F ' (a2))?].
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The asymptotic covariance matrix of Lg(aq,as) is also of the form
Y(X'QX)™ with v = 0%(a1, a) which is the asymptotic variance of the
trimmed mean for location model. If we center the columns of X so that
6, has all but the first element equal to 0, then the asymptotic bias affects
the intercept alone and not the slope.

In the special case of symmetric distribution, the asymptotic distribu-
tion of the GTM can be simplified.

Corollary 5.3.4. If F is symmetric at zero and we let « = a3 = 1 — o
then n'/?(Lg (o, 1—a)—B) has an asymptotic normal distribution with zero

mean vector and asymptotic covariance matrizc 02(oz, 1 —a) ;1, where

F1(1-a)
(a1 - a) = (1 20)Y] /F Ly SR 2P )

How efficient is the GTM comparing with the GLSE? Ruppert and
Carroll (1980) computed the values of the term o?(«, 1 — ) for e following
several contaminated normal distributions. In comparisons of it with o2,
the variance of e, the GTM is strongly more efficient than the GLSE when
the contaminated variance is large. Along with the results in Huber (1980)
and Welsh (1987), the Huber’s M-estimator and the Welsh’s trimmed mean
defined on model (5.6) are expected to have the same asymptotic distribu-
tion as it in Corollary 5.3.3. These then serve as other types of generalized
robust estimators. In general, the parameter p is unknown. The interest
is then if the FGTM has a representation as the same as it of the GTM?
Before to state this result, we need to give a representation of the regres-
sion quantile frg(a).

Lemma 5.3.5. The regression quantile Bpg(oz) has the representation,

n!2(Bro() = B(e)) = Q' FTHET (@) ™2y ziler = I(er < F (@)

+ F(F, 1 ()8n'?(p = p) F, ()] + 0p(1),

where 0, = lim, 0o n 1Y 1, 2.
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The asymptotic representation of Srg(a) is not the same as it of fg(a).
In fact, it relies on the asymptotic representation of p. In the large sam-
ple expansion for the FGTM, we see that the representation for the part
Z' Ayt involves n'/2(p — p) and n'/?(Bpq(e) — Ba) with a = a; and ay.
Since the representation of Spq(a) also involves n'/2(j— p), the terms with
nt/ 2(p— p) will automatically cancel out so the FGTM has a representation
free of p in its formulation.

Theorem 5.3.6. The FGTM has the same representation as that ex-
pressed for GTM in Theorem 5.3.2.

From Theorem 5.3.6, the FGTM indeed plays the role of feasible gener-
alized estimator for estimating regression parameter .

5.4 Best asymptotically linear in K-B trimmed ob-
servations

Besides the properties of generalized and feasible generalized estimations
that the GTM and FGTM have, do they also have analogous property such
as the best linear unbiased estimation that the GLSE and FGLSE have?
We will show that the GTM and FGTM are asymptotically the best in
classes of estimators linear in Koenker and Bassett’s trimmed observations.
The design of this linear trimmed means follows the idea of estimators lin-
ear in Welsh’s trimmed observations by Chen and Welsh (2002).

Any linear unbiased estimator has the form My with M a p X n non-
stochastic matrix satisfying M X = I,,. Since M is a full-rank matrix, there
exist matrices H and Hj such that M = HH|. Thus, an estimator is a
linear unbiased estimator if there exists a p X p nonsingular matrix H and
a n X p full-rank matrix Hy such that the estimator can be written as

HH{y. (5.8)

To make generalization of the linear unbiased estimators to the trimmed
estimators, we consider linear function of trimmed observations A, Q7 2y
and A, Q1~1/?y. respectively, for cases of known and unknown p.
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Definition 4.1. A statistic Blg is asymptotically linear in the general-
ized Koenker and Bassett’s trimmed observations (ALGKB) y if

By = My*, (5.9)

where y* = Q124,07 Y%y and M can be decomposed as M = H H)) with
H a p x p stochastic or non-stochastic matrix and Hy a n X p matrix which
is independent of the error variables ¢, satisfying the following two condi-
tions:

(a6) nH — H in probability, where H is a full rank p x p matrix.

(a7) HH)Q VX = (g — a1)7 L, + 0,(n"1/?), where I, is the p X p
identity matrix.

This is similar to the usual requirements for unbiased estimation ex-
cept that we have introduced a Winsorized observation vector to allow for
robustness and considered asymptotic instead of exact unbiasedness. A
question arises for the class of ALGKB estimators. Besides the generalized
trimmed mean, does this class of estimators contain interesting estima-
tors? To answer this question, we consider a generalization of Mallows-

type bounded influence trimmed means for linear regression model by De
Jongh, De Wet and Welsh (1988).

Definition 4.2. The Mallows-type bounded influence generalized trimmed
mean is defined as

Lyg(on, a0) = (ZWALZ) 1 Z'W A, (5.10)

with W a diagonal matrix of weights. Mallows-type bounded influence
generalized trimmed means in terms of weighted matrix W is a subclass of

ALGKB estimators seen by letting H = (Z/W A, Z)~! and Hy = ZW.

Some assumptions related to the design of matrix Hy are contained

in (al)-(a3). The following theorem gives a Bahadur representation for
ALGKB estimators.

Theorem 5.4.3. Under conditions (al)-(a7), we have

n'2(By = (B+ ) =0 PH Y hid(ei — E(4(ei))) + 0,(1)

1=1
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with v, = NHO,.
The limiting distribution of ALKB estimators is then followed.

Corollary 5.4.4. Under the conditions of Theorem 5.4.3, the nor-
malized ALGKB estimator n'*(8;, — (8 + v,)) has an asymptotic nor-
mal distribution with zero mean vector and asymptotic covariance matrix

(012 - 041)202(0/1, OZ2)Hth/.

If we further assume that F _1s symmetric at and let o =1 — a9 = q,
0 < a < 0.5, then 7,4 = 0 and 3, is a consistent estimator of 3. In general,
when F' is asymmetric, Blg is asymptotically biased for S and the asymp-
totic bias is given by 7;,. Again, if we center the columns of Hj so that 6,
has all but the first element equal to 0, then the asymptotic bias affects
the intercept alone and not the slope.

Lemma 5.4.5. For any matrices Ii and Qp induced from conditions
(al) and (a4), the difference (aa — a1)*HQyuH' — Q' is positive semidefi-
nite.

Put H = (Z'A,Z) ' and Hy = Z, we have n™ ' Z' A, Z — (s — 1)@, so0
we can see that conditions (a6) and (a7) hold for Lg(a1, as), and the gen-
eralized K-B trimmed mean is an ALGKB estimator. Moreover, Corollary
5.3.3 proved that n'/?(Lg (a1, a2) — (B + 7,)) has an asymptotic normal
distribution with zero mean and covariance matrix o?(a, az)le.

Theorem 5.4.6. Under conditions (al)-(a7), generalized K-B trimmed
mean Lg(oq, ao) defined in (5.6) is a best ALGKB estimator.

In the class of linear estimators based on the trimmed observations, we
have shown that for estimating the parameter vector 3, the GTM is a best
ALGKB estimator. This proves that the robust type Gauss-Markov theo-
rem holds for the GTM. Since the class of Mallow-type bounded influence
generalized trimmed means is a subclass of linear estimators based on the
trimmed observations and the generalized K-B trimmed mean is one in this
subclass, we then have the following theorem.

Theorem 5.4.7. The GTM 1s also the best Mallow-type bounded influ-

ence generalized trimmed mean.
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The Gauss-Markov theorem for the FGTM is similar to it of the GTM.
We list them in the followings.

Definition 4.8. A statistic Bl g 1s asymptotically linear in the general-
ized Koenker and Bassett’s trimmed observations (ALFGKB) y if

Blfg = My*a
where y* = Q—1/21[1n§2—1/2/y and M satisfies the conditions in Definition 4.1.

Definition 4.9. The Mallows-type bounded influence feasible general-
ized trimmed mean is defined as

LMpg(Oél, 012) = (ZA/WAnZ)_le/WAn’&
Theorem 5.4.10. Blfg and Blg have the same asymptotic distributions.

Theorem 5.4.11. The feasible FGTM 1is also the best Mallow-type
bounded influence feasible generalized trimmed mean.

This establishes the robust version of the Gauss-Markov theorem for the
estimation of the linear regression with AR(1) error model.

5.5 Proofs

The following conditions concerning design matrices X and Hy and dis-
tribution of error variable e are similar to the standard ones for linear
regression models as given in Ruppert and Carroll (1980) and Koenker
and Portnoy (1987):

(al) n=' 307 4z = O(1) for all 5.

(a2) n 71 X'QX = Q, + o(1), where Q, is a positive definite matrix.

(a3) n=1 3.,z = 0, + o(1), where 6, is a finite vector with first element
value 1.

(a4) The probability density function and its derivative are both bounded
and bounded away from 0 in a neighborhood of F*~1(a) for a € (0, 1).

(a5) n/2(p — p) = Op(1),
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Proof of Lemma 5.3.5 : Let

M(tl, tz) = n_1/2 Z zi{a—](ei—n_lﬁtlei_l S (zi—n_l/Qtlxil)'(n_1/2t2+F*_1(oz)))}.
We want to show that

SUD| (¢, 1)<k M (1, £2) =M (0,0) = F*~H(a) f(F*Ha))nV? > " zi(2fta—t1 F* ()| =
1=1

By letting, for k > 0, S, (t1,t2) = M (t1,t2) — M(0,0), we will prove
in two steps. In the first step, we will show that

SUD||(1, )] <k On (1, T2) — ESn(t1, 22)] = 0p(1) (5.12)
based on Lemma 3.2 in Bai and He (1998).

Now we prove (5.12) by checking the three conditions L;, Ly and Lg in
the hypothesis of Lemma 3.2 in Bai and He (1998). First we prove

ntY 2B (e; —n e < (5= n7Pmin) (n7 Py + FFN )
— I(e; — n_l/Qt’{ei_l < (z — n_l/Qt’{a:i_l)'(n_l/Qtz + F*_l(oz))|

< M(||t1 — t7|| + ||t2 — 3]|), for some M > 0.
(5.13)

Define
A=n""Y ZuBEI(e; —n e < (2 — n”Phmisy) (07 Py + F @)

— I(e; — n_l/QtTei_l < (z — n_l/Zt‘{aji_l)'(n_lﬂtg + F*_l(a))\

and
— 0 S Bl (e — 0 ey < (2 — 0 ) (07 2y 4+ F(a))

—I(e; —n Y2t < (z — n YV2ai)) (n V25 + F*Ha))).
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Represent A = A; + Ay as follows,
A:n_lzzgziEI( —n Ve < (zi —n Pz (n Yy + FF Y @),
€; — n_1/2t’{ei_1 > (Zz — n_l/Qt’{xi_l)'(n_l/th + F*_l(a)))

—I—n_lz,zgziEl( —-n 1/27516@ 1> (zi—n —1/2 t1zi—1) (n 1/2t + F* 1( ),

=1
e —n Ve < (z —n V) (0 + FFY(Q)))
— A + A

Let &, = n1/2t2 + F*_l(oz) and U;_1 = €¢;_1 — :U;-_lfn. Then

n
Al = n_l Z Z;ZZE[(GZ S Z;fn — n_l/ZtlUi_l, e > Z;fn - n_1/2t>fUZ-_1)
1=1

=n""Y 25 B{f(2&)n |t — t]]|Ui1}

< Mn=Y2||t; — t1]).

Similarly, Ay < Mn~'2||t; — || and B < Mn~'/2||t, — t;||. Hence (5.13)
holds and so does the condition (L1) in the hypothesis of Lemma 3.2 in
Bai and He (1998). The condition (L2) is satisfied automatically since the
indicator function is bounded.

Next, similar arguments to those used to prove (5.11) can be used to
prove that the following

n! Z zzl-ziE{sup”tl_tT||+||t2_t;||§d\I(ei —n Ve < (zi— 07 VPymiy) (n 7Y Py
i=1
+ F* () —I(e; — n**thei < (zi — n Vi)' (n V25 + F* )}
is bounded by Mn~1/2d which implies that condition (L3) holds. Therefore,
from Lemma 3.2 in Bai and He (1998), we obtain
sup||(t17t1)||§K|Sn(t1, t2) — ESn(tl, t2)| = Op(].). (514)

On the other hand, through the technique of Chen, Welsh and Chan (2001),
we can developed the following,

SUP|| (1 <k B (S (b1, 12)) = F* (@) f(F* ! (@) )n ™"/ Z zi(2ita—t1 F*Ha))] = 0,(1),
- (5.15)
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joining (5.12) and (5.15), statement (5.11) holds. Using the method of Ju-
reckova (1977, Lemma (5.12) and (5.11)) again, n'/2(8(a) — B(a)) = O,(1)
is obtained. Thus, the theorem is proved.

Proof of Theorem 5.3.6. The FGTM can be formulated as
nY?(Lpalon, a) — B) = (n 12/ A, Z2)In~Y2Z A, é.

Since n'/2(p — p) = O,(1), we have nV2Z'A,é = n~1 27 Ae + 0,(1).
By letting M (t1,t2, ) = n~1/2 S zieil(e; — n 12t 1 < FYa) +
n_l/Q(zi + n_1/2t1$i_1)/t2 + n_1/2t1F*_1(a)), we see that

nY2Z' Aye = M (T (o), Ty, o) — M(T} (1), T4, 1) (5.16)
with T5 () = n'/2(B(«) — B(a)) and T3 = n/2(p — p). However, using the

similar techniques of the proof for Lemma 5.3.5, we can see that

M(Ty, Ty, a)—M(0,0,,a) = F* Y (a) f(F*Ha))n"1/? Z zi(ZTy—T F* () +o,(1)
i=1
(5.17)
for any sequences 71 = O,(1) and T5 = O,(1). Then, from Lemma 5.3.1,
(5.16) and (5.17), we have

nV27'A e =n~Y? i ziled (F* Hay) < e; < F* " Hag)) + F* Hag) (oo — I(e; <
F*(a2))) = F* (o) o — T(er < F(an)))] + 0p(1).
(5.18)

Also, similar discussion of the proof for Lemma 5.3.5 provides the result
nZ'AZ = Q, + 0y(1). (5.19)
Then (5.18) and (5.19) imply the theorem.

Proof of Lemma 5.4.5. Write plim(B,,) = B if B,, converges to B in
probability. Let C = HHy — (Z'AZ)7'Z.
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Now plim(CAZ) = plim(HH}AZ) — plim(Z'AZ)~'Z'AZ = 0. Hence
HQuH' = (g — ay) 'plim(H H,A(H H,A))
= (g — ay) 'plim((CA+ (Z'AZ) ' Z'A)(CA+ (Z'AZ) 1 7' A))
= (g — ) Hplim(CAC") + plim((Z'AZ) ' Z' AZ(Z'AZ) ™))
= (g — o) " 'plim(CAC") + (ay — 042)_1@;1
> (g — 041)_2Q;1-

The following assumptions are needed for the proof of Theorems in Sec-
tion 4:

(b3) n™' 1L, 25 = O(1) for z = = or h and all j,

(b4) n1X'X = Q,+0(1), n PH)X = Qp,+o(1) and n *HjHy = Qp,+0(1)
where (0, and @)}, are positive definite matrices and @)y, is a full rank ma-
trix.

(b5) n~1 Sor i hi =6L+0(1).

The proof of Theorem 5.4.3 may be simplified from the proof of Theo-
rem 5.4.9, so it is skipped.

Proof of Theorem 5.4.9. From condition (a2) and (A.10) of Ruppert
and Carroll (1980), HH}AX 3 = 3+ 0,(n"1/2). Inserting (5.1) in equation
(5.9), we have

nl/2(5Alfg — ) = nl/QHH(')Ane + 0,(1).

Now we develop a representation of n~1/ 2H\Ane. Let

Ui(a, T;,) = n~ Y2 Z hijeil(e; < F7Y(a) +n~ 22T,

i=1
and
Ula, Tp,) = (Ui, Tpn), -, Up(er, T}y)).
Also, let
(o) = n'?[Bpa(a) — B(a)).
Then

nY2HAe = Ulog, T (an)) — U, T (ar)).
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From Jureckova and Sen’s (1987) extension of Billingsley’s Theorem (see
also Koul (1992)), we have

| Uj(e, T},) — Uj (e, 0) — nTF (o) f(F Y a)) Z hijz;T, |= 0,(1), (5.20)

for j =1,...,p and T), = O,(1). From (5.20) and Definition 4.1,

n~V2H) Ae = (U(aa, T (a)) — Uz, 0)) — (U(a, Ti () — U, 0))

n n

+ (U(awe, 0) — U(a,0))
‘”ZZ (hie, I (F™ (a1) < e < F~Y(aw)) + (F(a)I(e: > F~ ()

+ F Y« 1)1(% < F7Y o)) hi — ((1 — an) F~(aa) + cr F () ha] + 0p(1
(5.21)

Then (5.21) and Condition (a6) indicate that 37, has a representation
as the same as the one in Theorem 5.4.3 for 8, which implies the theorem.
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Chapter 6

Generalized Trimmed Means for the
Nonlinear Regression With AR(1)
Error Model

In this work, we apply the idea of trimmed mean of Welsh (1987) to intro-
duce generalized and feasible generalized trimmed means for the nonlinear
regression with AR(1) error model. We show that these estimators are
asymptotically more efficient than the trimmed means. These results then
extend the concept of generalized and feasible generalized least squares
estimators for linear regression with AR(1) error model to the robust esti-
mators for nonlinear regression models.

6.1 Introduction

We consider the general nonlinear regression model

vi=g(x;,0)+e€,i=1,...n (6.1)

where y; and xz; are, respectively, the response variables and vectors of
independent variables, and ¢; are error variables. Concerning with esti-
mating regression parameter vector § in the nonlinear regression model
with i.i.d. errors, the least squares estimators have been extensively stud-
ied. For instance, Hartley and Booker (1965), Jennrich (1969) and Wu
(1981) demonstrated the asymptotic normality property. Whereas Ivanov
(1976), and Ivanov and Zwanzig (1983) derived an asymptotic expansion
for its distribution. Under some regularity conditions and assuming that
the errors have common mean 0 and variance o2, then, if we let )4 repre-
sents the least squares estimator (LSE), it has the asymptotic covariance
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matrix of the form
(X (8)X(8)"

where X (b) = (di(b), ..., du(b))" with d;(b) = 2% However, outliers or

heavy tail error distribution may makes o? large that heavily decreases the
efficiency of the LSE.

For increasing the efficiency of the nonlinear least squares estimator,
robust estimation aims to develop estimators that have asymptotic covari-
ance matrices of the form

O(X(B)X(B))

where § is positive and bounded in error distribution. Among the robust
approaches, several authors have proposed and studied some L-estimators.
Oberhofer (1982), Richardson and Bhattacharyya (1987) and Wang (1995)
studied the ¢;-norm estimators, whereas Liese and Vajda (1994) studied
the theory of M-estimator. Additionally, from a computational aspect,
Prochazka (1988) and Koenker and Park (1992) studied the trimmed least
squares estimator based on regression quantiles of Koenker and Bassett
(1978). From a theoretical aspect, Jureckovd and Prochdzka (1994) stud-
ied it for that model (1.1) includes an intercept term. This trimmed mean
is nice to have representation of the form of location trimmed mean. Re-
cently, Huang, Yang and Chen (2004) studied a trimmed mean of Welsh
(1987) that has the advantage of easy computation but has the represen-
tation in Jureckovd and Prochdzka (1994).

Suppose that the error vector € = (ey, ..., €,)" has the covariance matrix
structure

o0 (6.2)

where €2 is a positive definite matrix. From the regression theory of the
estimation of (3, it is known that any estimator having an (asymptotic)
covariance matrix of the form

S(X(ByQTIX(8) (6.3)

is more efficient than the estimator having (asymptotic) covariance matrix
of the form

O(X(B)X(B)) X (B)QX(B)(X(B)X(8)) (6.4)
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In the linear regression model with error structure of (6.2), Aitken (1935)
call estimators with covariance matrices of the form of (6.3) the general-
ized estimators. The question we may be interesting is if we have a robust
estimator for the nonlinear regression model of (6.1) with error structure
of (6.2) that has asymptotic covariance matrix in the form of (6.3).

In this article, we consider the nonlinear regression model of (6.1) with
AR(1) errors in the sense that ¢; follows

€ = p€i—1 + €; (65)

where eq, ...,e, are i.i.d. random variables, is one of the most popular
models. Suppose that |p| < 1 and e; has a distribution function F. We
introduce a generalized trimmed mean and derive their asymptotic prop-
erties for the regression parameter vector 3.

6.2 Generalized Trimmed Means

Consider the nonlinear regression model (6.1) where its errors follow the
structure of (6.5). For simplification, denote D;(b) = 8Zgb(§éjb), the second
order partial derivative of the regression function with respect to vector b.
The least squares estimate, using the quadratic approximation, is defined

as the convergent estimator of the sequence defined by

n

bj =bj1 + [ _(di(bj—1)di(bj—1) — (yi — g(xi, bj—1)) Di(bj—1))] !
o= (6.6)
Z di(bj—1)(yi — g(,bj-1))

where by 1s a fixed vector.

It is seen that Cov(e) = 0?Q with

1 p P p"‘;
1 1 e
o=——| 7 - 7 £ (6.7)
1—0p :
pn—l pn—2 pn—3 1
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Define the half matrix of Q1 as

(1—=pHY2 0 0 ... 0 0
—p 1 0 ... 0 0

Q%) = 0 —p 1 ... 0 0 (6.8)
0 0 0 ... —p 1

Define matrix Z(b) = (72X (b). Let $; be a predetermined estima-
tor of 5. We also define vector V = (Q7/2)(y — G,.(31)) where G, (b) =
(9(x1,b),- -+, g(zn, b)) and residuals e; = y; — g(z;, BI),i =1,...,n. Denote
the a-th residual quantile as 7, («) and we let 2/(b) and v; be, respectively,
i —th row of Z(b) and i — th element of V. Combining the quadratization
method (6.7) with the construction of Welsh’s trimmed mean allows us to
define the generalized trimmed mean as the convergent estimator of the
sequence defined in the following.

Definition 6.1. The generalized trimmed mean for the nonlinear regres-
sion model is
La(on, az) =Pr + [Z(ZZ(BI)Z;(BI) — 0 M;(B1)) I (ma(ea) < v; < ma(a2))] ™!

1=1
n

Zzi(él)[vil(nn(al) < v < mp(a2)) + nu(ar) (v < ny(ar)) — o)
+ nu(c2)(L(vi > ma(a2)) — (1 — a2))].
(6.9)

After the development of the generalized trimmed mean, the next inter-
esting problem is whether when the parameter p is unknown, the trimmed
mean of (6.9) with p replaced by a consistent estimator p, will have the
same asymptotic behavior as displayed by Lg (a1, az). If yes, the theory of
generalized least squares estimation is then carried over to the theory of
robust estimation in this specific nonlinear regression model. Let 2 be the
matrix of 2 with p replaced by its consistent estimator p. Define matrices

A

Z(b) = (Q2YX(b) and V = (@2 (y — Gn(B)). We also let 2/(b) and
0; be, respectively, i — th row of Z(b) and ¢ — th element of V.

Definition 6.2. The feasible generalized trimmed mean for the nonlinear
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regression model is

n

~

Lpg(ou, as) =fr + [Z(%(BI)%(BI) — 0, M;(Br)) ] (nn(a1) < 9 < m(c2))] ™

Z 21’(31)[@1'](7771(051) < 0; < Mplaa)) 4+ mu(ar)(1(0; < mplaq)) — aq)
+ M (c2) (L(0; = mn(a2)) — (1 — a2))].
(6.10)

With the C-O transformation, the half matrix (Q27/2)" has rows with
only a finite number (not depending on n) of elements that depend on
the unknown parameter p. This trick, traditionally used in econometrics
literature for regression with AR(1) errors (see, for example, Fomby, Hill
and Johnson (1984, p210-211)), makes the study of asymptotic theory for
Bpa(e) and PGTM Lpg(ov, ag) similar to what we have for the classical
regression quantile and trimmed mean for linear regression. Large sample
representations of the GTM and the PGTM and their role as generalized
and pseudo generalized robust estimators will be introduced in the next
section.

6.3 Large Sample Properties of Generalized Trimmed
Mean

We state a set of assumptions (al-ab) related to the design matrix X and
the distribution of the error variable e in the Section 6.4 that are assumed
to be true throughout the paper.

Lemma 6.3.1. The quantile 7, has the following representation

02 (n(0) — F () = £ (EF N (@)n 2 (a—I(e < F(a)))) +o,(1).

1=1
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Theorem 6.3.2. The generalized trimmed mean has the following rep-
resentation

nl/z(Lg(oq, 042) — (5 + ’7)) :n_1/2(a2 - O‘l)_ngl Z Zz(ﬁ)(¢(el) - E(¢(el)))

+ 0p(1)
where v = Mag — a1)7'Q, '8 with

1 — F~(az)
A= P / ef(e)de,

o — (X1 F~1 ()

and

F_l(oq) if e < F_l(al)
dle) =< e if F71(ay) <e < F Y a).
-

Yag) ife> F ()

For statistical inference, we need an asymptotic distribution of the gen-
eralized trimmed mean which is stated in the following.

Corollary 6.3.3
(a)
n'(La(an, a2) = (B +7)) = N(0,0%(a1,02)Q, ")

where

% (e, az) =(az — a1) (i (F~Han))? + (1 = ag) (F ™} (a2))* + /Fl(a | e*dF

— (ole_l(ozl) + (1 — CYQ)F_l(O{Q) + /\)2)

(b) If F'is further assumed to be symmetric and we let oy = a = 1 — aw,
0 < a < 0.5, then

n'?(Lg(a, 1 - a) — B) = N(0,0%(a, 1 — )@, ")

where in this situation

Fl(1-a)
2,1 — a) = (1 20)"2(2a(F(1— a))? + / 2dF).
F1(a)
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The asymptotic covariance matrix of Lg(a1, ag) is also of the form ny;l
with v = 0?(ayq, ag) which is the asymptotic variance of the trimmed mean
for the location model. How efficient is the GTM compared with the GLSE?
Ruppert and Carroll (1980) computed the values of the term o?(a, 1 — )
for e following several contaminated normal distributions. In comparisons
of it with o2, the variance of e, the GTM is strongly more efficient than
the GLSE when the contaminated variance is large.

Lemma 6.3.4. The quantile function npg has the following represen-
tation

Valire = F7H(a)) =fH(Fa)n 2y (a—I(ei < F7H(a)-
i=1
+ 9,;”1/2(51 — B) + 0y(1).
An interesting question is then whether the PGTM has the same repre-

sentation as that of the GTM.

Theorem 6.3.5. The PGTM has the same representation as that ex-
pressed for the GTM in Theorem 6.3.2.

6.4 Proofs

The following are a set of assumptions regarding the design vectors and the
distribution function that are assumed to be true throughout this paper:

(a.1) n 13" 2:(8)2H(B) = Q, + o(1) where Q is a positive definite.
(a.2) n7t 3" | 2i(B) = 0,4+ 0(1) where 6, is a finite vector depending on p.

(a.3) n™t 300 255(8) = O(1), n™' 320, D (B) = O(1).
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(a.4) For b > 0

n” max) gy <y Z |dij(B)° = O(1),

i=1
n~tmaxy g o|dij (8)] = O(1),
n_l/QmaX||ﬁ||gb|Djk(5)| = 0(1),
n_1/2maX||ﬁ||gb|ijh(5)\ = 0(1).
(a.5) n'/2(Br — B) = Op(1).

(a.6) The probability density function f is bounded away from 0 in a
neighborhood of F~1(«), for 0 < a < 1, and its fourth population moment
is finite.

Proof of Theorem 6.3.1
Following Ruppert and Carroll (1980), we have

n~1/? Z%(w < () = 0,(1). (6.11)

From the Taylor expansion of g(z;, 3) at B; up to order 2, for t = < 0> €

RPFL we let

S(t) =n Y2 (e — FHa) —n Yty —n 226+ 0ty
=1

+ 05n_1t'1MZ(B + tl)tl).

By adopting the method of Jureckova (1977, Proof of Lemma 5.2, see
also Chen (1988, p72-75)), we can have

max| </ S(t) — S(0) + f(F~ ' (a))(to —n~* Z z(8)t1)| = 0,(1),for b > 0.

(6.12)
By using (6.11) and (6.12), we see that, from Jureckova (1984), we have

n1/2(77n(a) — FYa)) = 0,(1). (6.13)
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Then, from (6.11)-(6.13),
FEH @) (2 () - -n” Z di(B)n'(Br - B))

— nl/? Z di(B)balei — F7H (@) + 0,(1).

This further implies the theorem.

Proof of Theorem 6.3.2
The representation of Lg(a1, s) is a linear combination of the representa-
tion of B and the following

[ > @BAB) — v (BT Y z(B)(ei+ (B)(Br — B))

(o) < <mpp(a2) (1) <vi<np(az)

+ Z 2i(B) [ (1) (L (vi < mplr)) — o) + nnlaa)(L(vi > nn(ae)) — (1 —
M (1) <vi<ny ()

(6.14)

The representation of n=Y23""  2(8)e;I (n, (a1 < v; < my(aw)) is con-
sidered first. Let

) =n 112 Z a(B)eil (e < F~Na) + 0ty —n V22(6 + t)ta

— 0.5n_1t1 1(5 + tl)tl)

Again, the method of Jureckovd (1977, Proof of Lemma 5.2) implies that
U(T) = U0)+F o) f(F Y (a))n™} Zd (To+24(B)T1) +0,(1) (6.15)

for any O,(1) sequences T and T7. Imposing the facts of assumption (a.5)
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and (6.15) leads to

_1/2 Z Zz nn op < v; < Un(%)

—1/2221 Hoy) < e < F Y aw))

- F ( )f(F_l(O@))(@ n!2(nu(ez) — F~(a))
+Qun'*(Br = B)) + FHon) f(F () (B,n' () — F~ewr))
+ Qpnlﬁ(ﬂl —B)) + Op( )-

Analogous discussion will see that

‘WZ% (1m0 ) (T (05 < () — on)

o) (101 2 ma(2)) — (1~ 02} ) < i < ()
o) Y 5 (8) (I (e < F o) )

 E o) By n P ann) — F o) — QB — )

P ) Y 5B e > o) — (1 o)

=1
+ F(F~H(02)) (0,0 (ma(02) = F~(a2)) + Qun'*(B1 = )] + 0p(1)
(6.17)
The theorem is followed by imposing (6.16) and (6.17) in (6.14).

The proof of Lemma 6.3.4 is quite similar to those of Lemma 6.3.1 and
Theorem 6.3.5 and then is skipped.

Proof of Theorem 6.3.5.
Note that we may represent v; and 7, as

b =e; —n 2B+ 0T VPT) T + n T T M (B + TP T

+ n_lTng_l(ﬁ + 7?,_1/2T1)T1 — n_3/2T2T1'Gi_1(B + 7?,_1/2T1)T1),
(6.18)

i = F7l(a) + n V2T,
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with Ty = n1/2(ﬁn — FYa), Ty = nl/Q(ﬁAI — ) and Th = nl/Q(f) —p).

From (6.18) and by denoting

we may see that
n
n"Y2N " 5(Br)6id (fn(an) < 65 < a(02))
i=1

= —Cn*? (B — B) +n Y2 Z zi(B)eil (mon) < 0 < mple)) + 0p(1).
= (6.19)

The term §; in (6.10) will be cancelled out with the first term on the right
hand side of (6.19).

Consider a representation of the second term on the right hand side of
(6.19). Let t' = (to,t},t2) and

U*(t) = n~ Y2 Z zi(B)eil(e; < F~Ha) +n YTy + n V2B + 0 Y2T)TY
i=1

— 0 ITM; (B + n~ VAT T, — 0 od, (B + n VAT T + n PTG (B + n~ Y21

With the analogous discussions for Theorem 5.5 of Chen, Welsh and Chan
(2001) and Lai, Thompson and Chen (2004), we may see the following

U(T) = U"(0) + F~ () (6,To + Q,T1) + 0p(1)

for any sequences Ty = O,(1) and 71 = O,(1).
This implies that

—n 12 Z Z(B)e (F~ an) < e < F Y aw)) + F )0, (fn(c2) — F~'(as))

— F(a1)f,n"(fa(cn) — F~ (1)) + (F~(az) — F~(1))Qun'*(Br = B) + 0p(1)
(6.20)
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Similarly, we may also derive the followings,
n~2Y " 2(B)(1(0; < fulcn)) — o)
i=1

= f(FY(0n))[6,To(cr) + Q,T1] + n~ '/ Z z(B)(I(ei < F~ () — an) + 0,(1),
- (6.21)

n~/? Z zi(B) (1 (0 = nn(a2)) — (1 — az))

= f(F Y (0))[6,To(a2) + Q,T1] + n~'/? Z z(B)I(e; > F~' (o)) — (1 —a2)) + oy(
- (6.22)

and
n'C, = Q,+ o,(1). (6.23)

The theorem is induced from combining the representations in (6.21)-(6.23)
into (6.10).
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