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Appendix A  The Force Laws for Bodies of 

Different Geometries: the Hamaker Constant 

A.1  Molecule-Surface Interaction 
The Hamaker constant H is defined by 2

1 2H Cπ ρ ρ= , where 1ρ  and 2ρ  is the number 

of atoms per unit volume in the two bodies and C is the coefficient in the atom-atom pair 

potential. Let us assume that pair potential between two atoms or small molecules is purely 

attractive and of the form ( ) / nU r C r= − . Then, with the further assumption of additives, the 

net interaction energy of a molecule and the planar surface of a solid made up of like 

molecules (Fig. A.1 (a)) will be the sum of its interactions with all the molecules in the body. 

For molecules in a circular ring of cross-sectional area dxdz and radius x, the ring volume is 

2 xdxdzπ , and the number of molecules in the ring will be 2 xdxdzπρ , where ρ  is the 

number density of molecules in the solid. The net interaction energy for a molecule at a 

distance D away from the surface will therefore be  

 

2 2 / 2 20 0

2( ) 2
( ) ( 2)

z x

n nz x D

xdx C dzU D C dz
z x n z

π ρ
π ρ

=∞ =∞ ∞

−= =
= − = −

+ −∫ ∫ ∫  (A.1) 

32 /( 2)( 3) nC n n Dπ ρ −= − − −      for n>3, (A.2) 

 

Which for n=6 (van der Waals forces) becomes  

 

3( ) / 6 .U D C Dπ ρ= −  (A.3) 

 

The corresponding force, 4( ) / / 2F w D D C Dπ ρ= −∂ ∂ = − , could of course have been derived 

in a similar way by summing (integrating) all the pair forces resolved align the z axis. 
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(a) 

 

(b) 

 

Fig. A.1 (a) The model is Molecule near a wall. (b) The model is a spherical particle near a 

wall (R>>D) 
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We can now calculate the interaction energy of a large sphere of radius R and a flat 

surface (Fig. A.1(b)). First, from elementary geometry we know that for a circle 

 

2 (2 ) .x R z z= −  (A.4) 

 

The volume of a thin circular section of area 2xπ  and thickness dz is 

therefore 2 (2 )x dz R z zdzπ π= − , so that the number of molecules contained within this section 

is (2 )R z zdzπρ − , where ρ  the number density of molecules in the sphere is. Since all these 

molecules are at a distance ( )D z+  from the planar surface, the net interaction energy is, 

using Eq. (A.1), 

 
2 2 2

30

2 (2 )( ) .
( 2)( 3) ( )

z R

nz

C R z zdzw D
n n D z

π ρ =

−=

−
= −

− − +∫  (A.5) 

 

For R>>D, only small values of z ( )z D≈  contribute to the integral, and we obtain 
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( 2)( 3) ( )

4 ,
( 2)( 3)( 4) ( 5)

n

n

C Rzdzw D
n n D z

C R
n n n n n D

π ρ

π ρ

∞

−

−

= −
− − +

= −
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∫
 (A.6) 

 

Which for n=6 (van der Waals forces) becomes 

 

2 2( ) / 6 .w D C R Dπ ρ= −  (A.7) 

 

However, for D R>> , we may replace ( )D z+  in the denominator of Eq. (4) by D, and 

we then obtain 
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2 2 32

3 30

2 (2 ) 2 (4 / 3)( ) ,
( 2)( 3) ( 2)( 3)

R

n n

C R z zdz C Rw D
n n D n n D

π ρ π ρ π ρ
− −

−
= − = −

− − − −∫  (A.8) 

 

Which, since 34 / 3Rπ ρ  is simply the number of molecules in the sphere, is the same as 

Eq. (A.1) for the interaction of a molecule (or small sphere) with a surface. It is left as an 

exercise for the interested reader to show that for two spheres of equal radii R whose surfaces 

are at a small distance D apart ( )D R>> , their interaction energy is one half that given by Eq. 

(A.5) or (A.6), while for two spheres for apart ( )D R>>  the energy varies as 1/ nD−  as for 

two molecules. At intermediate separation ( )D R≈  the expression for the interaction 

potential is more complicated but remains analytic (Harmaker, 1937). 

    The Hamaker constant of the Si cantilever and Pt coating cantilever, they had been 

researched by people to measure the vdW force term in the experiments, and the Hamaker 

constant (H) was determinate 4×10-19 [32].   

 



 

 97

Appendix B  Constant Force Gradient 

B.1  For Small Tip Oscillation Amplitude 
In early NC-AFM papers, the observed frequency shift ∆f of the oscillating cantilever 

was related to the gradient of the force kts between the tip and sample [64]. Forces between tip 

and sample cause a change in 0 .f f f= + ∆  The eigenfrequency of a harmonic oscillator is 

given by 0.5( * / *) / 2 ,k m π  where k* is the effective spring constant and m* is the effective 

mass. If the second derivate of the tip-sample potential 2 2/ts tsk V z= ∂ ∂  is constant for whole 

range covered by the oscillating cantilever, * tsk k k= + . If ,tsk k<<  the square root can be 

expended as a Taylor series and the shift in eigenfrequency is approximately given by, 

 

0 0

2 2
ts

ts
f F ff k
k z κ

∂
∆ = − = −

∂
 (B.1) 

 

where 0f  is the unperturbed resonance frequency, kts is the force gradient, and k is the spring 

constant of the force sensor. Unfortunately, this approximated equation is only valid for small 

tip oscillation amplitudes A, compared to the separation between probing tip and sample. 
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B.2  Analytical Expressions for the Force and Force 

Gradient Using Different Models 
 

Model F 'F  ' .|F constd =  

Electrostatic:  

Sphere 

Only d<<R 

2
0

sphere
RUF
D

πε
= −  

2
0

2 2'sphere
RUF

D
πε

=  0( )
'
R U

F
πε  

Charged line 

(~cone) 

2
2

0

( ) ( )
4 4cone

LF D Ln U
D

α
πε

= −  
2 2

0

'
4cone

UF
D

α
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2

2

0

( )
4 '
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α
πε

 

Plane surface 

(circle area) 

2 2
0

22vdW
R UF
d

πε
= −  

2
0

3'plane
RUF

D
πε

=  

2
1/3 2 /30( )

'
R U

F
πε

 

Ven der Waals:  

Sphere 
26

HRF
d

= −  3'
3vdW
HRF
D

=  … 

02 / sinh[1/ tan( / 2)]tipArcα πε θ=  [65] 

Table Ι. Analytical expressions for the force and force gradient using different models 

for the tip shape. The formulas are valid for D<R and zero contact potential. The 

right-hand column gives the variation in tip-sample separation with U for fixed force 

gradient. F: force, 'F : force gradient, D: tip-to-sample separation, R: tip radius, tipθ : 

the tip open-cone angle, L: length of the tip, U: tip bias subtract contact potential, H: 

Hamaker constant, and 0ε : vacuum permittivity. 
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Appendix C  Do STM Mode Using Cantilever for 

Atomic Resolution 
We can use un-vibrating cantilever to do STM mode for obtaining height resolution 

image as shown in Fig. C.1. Scanning the surface using cantilever is as same as W tip. 

However, the cantilever has some vibration when it scans across surface, so we must set the 

lower scan-speed than the W tip to reduce the vibration noise. Figure C.1 shows the STM 

image that is acquired by using the parameters for Vsample = 2.1 V, feedback set = 0.18 nA, 

scanning-speed = 1000 nm/s, and scanning size = 100×100 nm2. 

 

 

Fig. C.1. The STM image is obtained by using AFM Si-cantilever, and the scanning 

parameters are Vsample = 2.1 V, feedback set = 0.18 nA, and scanning size = 100×100 nm2. 
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Appendix D  Additional Calculation 

D.1  Apparent z-Height Deviation versus Tip Bias for 

Constant Force Gradient 

Apex(D<<R)+vdW=dF=constant
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Fig. D.1 The apparent topographic height deviation ∆z is as a function of Vt with various R 

when the '
_( ) ' .ts s sphere vdWF F F const= + =  The different contact potential (a) 0.1 V (b) 0.2 V, 

and (c) 0.5 V show the different variation heights. The Hamaker constant is set as 4×10-19 J. 
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D.2  Apparent z-Height Deviation versus Tip Bias for 

Non-Constant Force Gradient 
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Fig. D.2 The apparent topographic height deviation ∆z is as a function of Vt with various R 

when the '
_( ) ' .ts apex tr cone vdWF F F F nonconst= + + =  The different contact potential (a) 0.1 V 

(b) 0.2 V, and (c) 0.5 V show the different variation heights. The Hamaker constant is set as 

4×10-19 J. 
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D.3  Forces versus Tip-Sample Distance and Forces 

versus Degree 
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Fig. D.3 (a) The force as a function of tip-sample distance (z) calculated for R = 2.5 nm, U = 2.5 

V, A = 16 nm and D = 1.718 nm. (b) The force as a function of degree is transformed from (b) 

by cos( )z D A A ψ= + + , and the maximum Force occurs at the 180°; hence the tip-sample 

distance is the minimum at D. The truncated-cone force is larger than the other forces at D. 




