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Chapter 3  Theories 

3.1  Principles of Electron Tunneling 
The operating principle of STM is based on the quantum mechanical phenomenon of 

electron tunneling. The concept of the tunneling is interpreted by a one-dimensional model. In 

classical mechanics, an electron energy E moving in a potential U(z) is describe by 

 
2
zp U ( z ) E ,

2 m
+ =  (3.1) 

 

where m is the electron mass, 9.1×10-28 g. In regions where E>U(z), the electron has a 

nonzero momentum Pz. On the other hand, the electron cannot penetrate into any region with 

E<U(z), or a potential barrier. In mechanics, the state of the same electron is described by a 

wavefunction Ψ(z), which satisfies Schrödinger’s equation, 

 
2 2

2

d (z) U (z) E (z)
2m dz

− Ψ + Ψ = Ψ
  (3.2) 

 

Where Ψ(z) is the wave function of the electron.  

For an electron with E = U/2 incident in a square barrier from the left, as shown in Fig. 

3.1. The Schrödinger’s equation of this electron 

 
2 2

2

d 1(z) U (z) 0
2m dz 2

− Ψ + Ψ =
  (3.3) 

 

has the solution  
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where 


2
1

)2( mUk = ; 


2
1

)(mUK = .  

Eq. (3.4) can be solved for the transmission coefficient T = |F/A|2 by matching the 

boundary conditions on Ψ and dΨ/dz at x = 0 and x = s. That is  

 

2 2
2 2

1

1 ( ) sinh
2

T
k K Ks

Kk

=
+

+
 

(3.5) 

 

Because the barrier width s is much thicker than the wavefunction decay length 

1/K, 1>>Ks , the transmission coefficient can be approximated as   

 

kse
Kk
KkT 2

22
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)(
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+
≈  (3.6) 

 

It is exponential dependence of the transmission coefficient T on the barrier width s that 

enables atomic resolution images in tunneling microscopy. It provides a sufficient signal and 

the tunneling current for atomic scale feedback control of the gap width s along the z 

direction.    

 

 

Fig. 3.1 Wavefunction for an election with kinetic energy E=U/2 penetrating a potential 

barrier U. 
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3.2  Principles of NC-AFM  

3.2.1  Introduction of FM-AFM 
NC-AFM is a powerful tool for topographic surface imaging capable of attaining true 

atomic-scale structures even on insulating surface as well as on conductive surface. The 

technique can also be used to measure forces in the sub-nN range and has been adapted for 

investigations of localized charges, magnetic distributions, and contact potentials. In addition 

to the imaging of surface structure, NC-AFM has also been used for the investigation of local 

surface properties at a nano-scale resolution. Therefore, we will describe the fundamental 

principles in NC-AFM in this section. 

NC-AFM (also called frequency modulation atomic force microscopy (FM-AFM)) has 

achieved the long-standing goal of true atomic resolution with AFM in UHV. Our analysis 

starts with a discussion of the relation between frequency shifts and tip-surface interactions, 

emphasizing the ability of perturbation theory to describe the measured frequency shift. We 

discuss the role of short-range chemical interactions in the atomic contrast, with particular 

attention to semiconductor and ionic (alkali halides and oxides) surfaces. Also included is a 

detailed quantitative comparison between theoretical simulations and experimentation. 

Inversion procedures, the determination of the tip-sample interaction from the frequency shift 

versus distance curves above specific sites, are also reviewed. We finish with a discussion on 

the optimal range of experimental operation parameters and the use of damping (excitation 

amplitude) as a source of atomic contrast, including the possible interpretation in terms of 

microscopic dissipation mechanisms. 

    The FM mode developed by Albrecht et al. provided the key to achieve increased 

sensitivity through higher quality-factor without any restriction on bandwidth. In the FM 

mode the signal used to produce the image comes from the direct measurement of the 

resonance frequency of the cantilever by the tip-surface interaction. In FM-AFM, the spatial 
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dependence of the frequency shift induced in the cantilever motion by the tip-sample 

interaction is used as the source of contrast: During the scan, the tip-sample distance is varied 

in order to achieve a set value for ∆f. Thus, the topography in the images represents a map of 

constant frequency shift over the surface. 

    In the FM mode (also known as non-contact mode), the cantilever is used as the 

frequency-determining element of a feedback oscillator. The quantities of experimental 

interest are ∆f, the shift in the resonance frequency of this oscillator under the influence of 

tip-sample interactions, and Aexc, the excitation amplitude of the driving piezo-actuator 

necessary to maintain the oscillation amplitude of the tip at a pre-set value A. For FM mode is 

generally used in UHV environment.  

 

3.2.2  Relation between frequency shift and forces  
The oscillation frequency is the observable in FM-AFM and it is important to establish a 

connection between shift and forces acting between tip and sample. While the frequency can 

be calculated numerically, an analytic calculation is important for finding the functional 

relationships between operational parameters and the physical tip-sample forces. The motion 

of the cantilever (spring constant k, effective mass m*, initial potential between tip and 

sample (Vts) can be described by a weakly disturbed harmonic oscillator. Figure 3.2 shows the 

deflection '( )q t  for the tip of the cantilever. It oscillates with an amplitude A at a distance 

( )q t from a sample. The closest point to the sample is q=D and ( ) '( ) .q t q t d A= + +  The 

Hamiltonian (Ĥ) for the cantilever is  

 
2 2'ˆ ( ),

2 * 2 ts
p kqH V q
m

= + +  (3.7) 

  

Where * '/ .p m dq dt=  The unperturbed motion is given by  



 

 34

 

0'( ) cos(2 )q t A f tπ=  (3.8) 

 

and the frequency is: 

 

0
1 .

2 *
kf

mπ
=  (3.9) 

 

If the force gradient 2 2/ /ts ts tsk F z V z= −∂ ∂ = ∂ ∂  is constant during the oscillation cycle, the 

calculation of the frequency shift is trivial: 

 

0
.2 ts

ff k
k

∆ =  (3.10) 

 

However, in classical FM-AFM, varies by several orders of magnitude during one oscillation 

cycle and a perturbation approach as shown below has to be employed to calculate the 

frequency shift. 

We used the Hamiltion-Jacobi Method to solve these relational equations. The first 

derivation of the frequency shift in FM-AFM was achieved in (1997) [25] using canonical 

perturbation theory [26]. The result of this calculation is  

 

0
2 1/0 0
2 0

' [ '( )] '( ) .
f

ts ts
f ff F q F D A q t q t dt

kA kA
∆ = − 〈 〉 = − + +∫  (3.11) 

 

The applicability of first-order perturbation theory depends on the magnitude of the 

perturbation, i.e. the ratio between tsV  and the energy 2 / 2E kA=  of the oscillating 

cantilever. In FM-AFM, E is typically in the range of several KeV, while tsV  is only a few 
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electron volts. First order perturbation theory yields results for f∆ with excellent precision. 

 

 

Fig. 3.2 The Schematic view of an oscillating cantilever has definition of geometric terms. 
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3.3  Interaction Force between the Tip and the Sample  
The AFM is similar to a STM, except that a cantilever replaces the tunneling tip. The 

NC-AFM is based on the detection of forces between the tip and the sample. We can classify 

the contributions by their range and strength. In vacuum, there are short-range chemical force 

(fraction of 1 nm), van der Wall force, and electrostatic force with a long range (up to 100 

nm).  

The total force Fts between tip and sample is composed of several contributions: 

 

,ts chem vdW elF F F F= + +  (3.12) 

 

with the short ranged chemical force, Fchem (covalent, ionic, or metallic bonding), the van der 

Walls force, FvdW, and the long ranged electrostatic force Fel. 

In regular NC-AFM operation, the electrostatic force is minimized, by applying the 

correct bias voltage Vt on the tip: 

 

2 21 1 ( )
2 2el t cp

dC dCF U V V
dz dz

= − = − +  (3.13) 

 

Where C, U, Vcp, and Vt represents effective capacitance, effective potential difference (EPD), 

the local contact potential Vcp between tip and sample, and the bias voltage on the tip, 

respectively. The contact potential Vcp is the difference in work function between the tip and 

the sample, that is, ( ) /( )cp tip sampleV e= Φ − Φ −  for conducting tips and samples. 

    The van der Walls force is independent of Vt and decays faster than the electrostatic force 

[27]. The plane-sphere interaction force is given by the expression: 
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26vdW
HRF
D

= −  (3.14) 

 

Where H is the Hamaker constant, R is the tip radius, and D is the tip-sample distance. 

    The chemical forces are due to developing bonds between tip and sample atoms, and are 

relevant only at tip-sample distance below ~5 Å [28]. This mechanism is presumably 

responsible for atomic resolution imaging. 

 

3.4  Calculation of Interaction Force between Tip and 

Sample  
Several groups have obtained images demonstrating true atomic resolution by force 

microscopy in a noncontact mode (NC-AFM) on different materials. However, proper 

descriptions of the tip-sample interaction and contrast mechanisms are still under discussion. 

The extension of NC-AFM beyond topography measurements toward a microscopy of 

specific surface properties depends very much on an understanding of these issues. Various 

kinds of interactions, such as van der Waals (vdW), electrostatic, magnetic, and short-range 

chemical forces, contribute to the total force between the probing tip and sample. These 

interactions have different distance dependencies. One key problem in NC-AFM is to 

distinguish and separate these interactions. The characterization of short-range chemical 

forces is crucial to the understanding of true atomic resolution. The short-range can be 

developed procedures for single molecule manipulation. 

The electrostatic interaction between a tip and a surface has been calculated and been 

investigated analytically by several authors. Colchero et al. describe the cantilever as a tilted 

plane capacitor and the tip as a charged cone terminated by a parabolic apex [29]. They 

concluded that the tip apex dominates the tip-sample interaction only for small tip-sample 

distances below 3-10 nm. Saint Jean et al. used a tip model consisting of a cone and a 
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spherical tip, neglecting the cantilever. They concluded that electrostatic interaction 

dominates the van der Walls for tip-sample separation larger than half the tip apex radius [30]. 

Comparing different parameters (apex radius, cone opening angle and cone length) of a tip, 

Jacobs et al. concluded that best resolution in KPFM was achieved for long slender tips with a 

slightly blunt apex [31]. Olsson et al. measured the tip-sample distance as a function of 

applied bias voltage and compared the shape of the obtained dependence in predictions for 

different tip models [14], i.e. a sphere, a cone and a parallel plate capacitor opposing a sample 

surface. These results allow us to acquire information about tip shape based on the data 

obtained in situ.  

 

3.4.1  A tip-lever system  
    Colchero et al. presented an analytical formula for a realistic model for the probe. The 

tip-lever system is structured with three elemental building blocks: a lever, a tip cone and a tip 

apex. The lever is characterized by its length l, its width w and an angle θlever respect to the 

sample surface. The tip is a truncated cone of height h and opening angle θtip which ends 

precisely in a parabolic tip apex of radius R.  

    For this geometry, the shape and length of the circular segments connecting the probe 

and the sample can be calculated and relation can be determined to obtain the following forces 

as a function of the distance between the surface and tip apex: 

 

2
20

2 2

2 42( ) ( 2 ln ),
2 2 ( 2 )cos( )1 ( )( ) [1 2 tan ( / 2)] tip

tip tip

apex

zRU R z z
z zR z z R R zf z
R R

F πε
θθ θ

+ −
= − +

− + + −+ +
 (3.15) 

2
_ 02

4 / 2 / 2[ln sin( / 2) ],
( ) / 2 / 2 / 2trun cone tip

tip

z h z zF U
z z h z

π δ δ δ
ε θ

π θ δ δ δ
− + − −

= − −
− + − + +

 (3.16) 

2
2

02 2

2 tan ( / 2) 1
( ) 1 2 tan( / 2) /( )

lever
lever

lever lever

lwF U
z h l z h

θ
ε

θ θ
=

+ + +
 (3.17) 
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where 
ln[1/ sin( / 2)]

( )
[1 sin( / 2)][3 sin( / 2)]

tip
tip

tip tip

f
θ

θ
θ θ

=
− +

 ; θtip is the cone’s full opening angle; h is the 

mesoscopic tip cone of height . 

 

3.4.2  D(Vt) 
According Eq. (3.11) the Fts is the total force of the tip and the sample:  

 

( ) ( ) ,tot ts vdw apex cone leverF d F d F F F F= = + + +  (3.18) 

 

where 0cos(2 )d D A A f tπ= + + , d is the instantaneous tip-surface separation, D stands for the 

nearest position, A represents the cantilever free oscillation amplitude and f0 the cantilever 

oscillation frequency. Calculated for f0 = 260 kHz, Δf = -30 Hz, k= 42 N/m, θtip = 25°, and H 

= 4×10-19 J, the result was plotted in Fig. 3.3. 
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Fig. 3.3 The minimum tip-sample distance D calculated for various tip radii as indicated. The 

dash curve is calculated by assuming as oxide layer of 7 nm at the tip’s end. Parameter: f0  = 

260 kHz, Δf = -30 Hz, k = 42 N/m, Hamaker constant H = 4×10-19 [32], θtip =25°. 




