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Vibrations of Rectangular Thin Plates with a V-notch via the

Ritz Method

Student : Shen-Chien Liao Adviser : Dr. Chiung-Shiann Huang

Department of Civil Engineering
National Chiao-Tung University
Abstract

This thesis presents a novel method for accurately determining the
natural frequencies of rectangular plates with an edge V-notch. Based on
the well-known Ritz method, two sets'of admissible functions are used
simultaneously: (1) algebraic polynomials, which form a complete set of
functions; (2) corner functions, which "are the general solutions of
bi-harmonic equation, duplicate the boundary conditions along the edges
of the notch, and describe the stress singularities at the sharp vertex of the
V-notch exactly. The rectangular plates under consideration are either
completely free or cantilevered. The effects of corner functions on the
convergence of solutions are demonstrated through comprehensive
convergence studies. Accurate numerical results and nodal patterns are
tabulated for V-notched plates having various notch angle, depths and
locations. These are the first known frequency and nodal pattern results of

V-notched rectangular plates in the published literature.
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Chapter 1 Introduction

1.1 Research Background

Plate structures are very common in engineering practice, and are
extensively used in civil, mechanical, and aeronautical engineering, such
as concrete floor slab and aircraft skin components. Their vibrational

behaviors have caught great interests of many researchers.

Stress singularities mean that infinite stresses exist at some points in
the domain under consideration, and are often encountered in plate
problems. Three main reasons causing stress singularities are: (1)
discontinuousness of geometry, such as ¢racks in the domain or sharp
re-entrant angles at the boundary; (2).concentrated loads, such as point
forces or moments; (3) suddenly change of material properties, such as
composite material. When the stress singularity behaviors exist in the
domain under consideration, it is necessary to find the asymptotic
solutions, which can exactly describe the stress singularities, for
obtaining accurate solutions for static or vibration problems. However, as
the demand for engineering structures is improving, a singularity problem

is unavoidable in engineering analysis.

Vibrations of V-notch plates are concerned with stress singularity
problems due to the sharp vertex. Such notches may be generated
intentionally in the plate for clearance or other reasons. This thesis
utilizes the well-known Ritz method to analyze the vibration of

rectangular plates with a V-notch based on the classical plate theory. Two



sets of admissible functions are wused in the analysis method
simultaneously: (1) algebraic polynomials, which form a complete set of
functions; (2) corner functions, which are the general solutions of
bi-harmonic equation, duplicate the boundary conditions along the edges
of the notch, and describe the stress singularities at the sharp vertex of the
V-notch exactly. The rectangular plates under consideration are
completely free and cantilevered, respectively. The effects of the
asymptotic solutions on the convergence of numerical solutions are
demonstrated through convergence studies. The efftects of the V-notch on

the vibration behaviors of rectangular plates also are discussed in detail.

1.2 Literature Review

On the topic of plate vibrations, at least;2000 research papers have
been published. Leissa (1967) summarized the methods of analysis and
numerical results found in 500 references on the free vibration of plates
published before 1967 in his classical monograph. Since then, research
and publication on this subject has been at an increasing rate. In these
studies, vibration of cracked plates is a problem of greatest interests,
which combines the fields of vibration analysis and stress singularity.
Only a few papers about this problem are published. Most of them are

based on the classical theory and are reviewed below.

Most of the published works considered the cracked rectangular
plates with simply supported at all sides or at two opposite sides. Because
analytical solutions exists for such plates with no crack, semi-analytical

solutions can be constructed for such plates with cracks along a straight



line perpendicular to the simply supported edge. To investigate the
vibrations of simply supported rectangular plates with cracks, Lynn and
Kumbasar (1967) used Green’s function approach to obtain the solutions
for Fredholm integral equations of the first kind, while Stahl and Keer
(1972) formulated the problem as dual series equations and reduced to
homogeneous Fredholm integral equations of the second kind. Aggarwala
and Ariel (1981) used Stahl and Keer’s approach to analyze the vibration
of a plate with various crack configurations along the symmetry axes of
the plate. Solecki (1983) constructed a solution for vibrations of a cracked
plate by using Navier form of solution along with finite Fourier
transformation of discontinuous functions for the displacement and slope
across the crack. Recently, Khadem and Rezaee (2000) used so called
modified comparison functions' constructed from Levy’s form of solution
as the admissible functions of the-Ritz method to analyze a simply
supported rectangular plate with a crack having an arbitrary length, depth

and location parallel to one side of the plate.

To study the vibration behaviors of cracked rectangular plates with
two opposite edges simply supported, Hirano and Okazaki (1980) used
Levy’s form of solution and matched the boundary conditions by means
of a weighted residual method, while Neku (1982) modified Lynn and
Kumbasar’s approach by establishing the needed Green’s function using

Levy’s form of solution.

To consider the vibrations of a cracked rectangular plate with
arbitrary boundary conditions, a numerical method has to be used. Qian et

al. (1991) developed a finite element solution by deriving the stiffness



matrix for an element including the crack tip from the integration of the
stress intensity factor. Yuan and Dickinson (1992) decomposed a
rectangular plate under consideration into several domains and introduced
artificial springs at the joints between the domain so that the Ritz method
with regular admissible functions can be easily applied to find the
solutions. Krawczuk (1993) proposed a finite element solution similar to
that of Qian ef al., except that the stiffness of an element including the
crack tip was expressed in a closed form. Liew ef al. (1994) developed a
domain decomposition method for the vibrations of cracked rectangular

plates with various boundary conditions.

In the above-mentioned literatute, the solutions, except for the finite
element solutions, by no means consideted the characteristic of the stress
singularities. In the present thesis, the'Ritz méthod is used to analyze the
vibrations of rectangular plates with-a-V-notch. It is more suitable for
solving the problem than a traditional finite element approach. Based on
the classical plate theory, a finite element approach needs C' type
elements, which are much more complicated than C° type elements, and
are difficult to establish. The asymptotic solutions derived by Williams
(1952) are used along with suitable polynomials as admissible functions
in the present problem. Similar analysis procedure has been used to
determine the natural frequencies and mode shapes for sectorial plates
and circular plates with V-notches by Leissa et al. (1993a, 1993b). It is
demonstrated here by obtaining extensive results for frequencies and
mode shapes of rectangular plates having various notch angle, depths and

locations. The present results serve not only to improve the understanding



the vibration behavior of a V-notched plate, but also as benchmark data

against those from other numerical methods or experiments.

1.3 Contents in the Thesis

The contents in the thesis are mainly divided into five chapters. The
contents in the following chapters are introduced briefly below. Chapter 2
shows the derivation of asymptotic solutions, and discusses the stress
singularities at a corner. Chapter 3 analyzes the vibration of completely
free rectangular plate with a V-notch, where stress singularities occur at
the vertex of the V-notch. Chapter 4 analyzes the cantilevered rectangular
plates with a V-notch. Finally, conclusions and recommendations for this

study are presented in Chapter'5.



Chapter 2 Corner Functions and Stress Singularities

The stress singularities at sharp corners were first demonstrated by
Williams (1952). The stress singularity behaviors also have great
influence on vibration problems of such plates. This work applies the Ritz
method to analyze the vibration of rectangular plates with a V-notch.
Besides suitable polynomial functions, the asymptotic solutions derived
by Williams (1952) are introduced into the admissible functions in the
analysis. In this chapter, the derivation of the asymptotic solutions is

explicated, and the stress singularities are also discussed.

2.1 Corner Functions and Characteristic Equations

The governing equation without external loading in the classical plate

theory, in polar coordinates-is

Viw(r,0) =0 (2.1)

where w(r, 6) is the transverse displacement of a plate; \/* is the

2 2
Laplacian operator, V* = 6_2+lﬁ+ 0
or® ror

. The stress resultants as shown

2

in Fig. 2.1 in terms of the transverse displacement are:

0w low 1 0*w
+o(——+——)], 2.2a
or? U(r or r* o06* ) ( )

M (r,0)=-D[

1 0*w 18_w 0w

MH(I",Q):—D[F—Zw'F; or +0U arz ], (22b)
1o°w 1 ow
M — _D(-p)~ 2 Lo 2.2
w0 (r,0) ( U)(r 500 7 80)’ (2.2¢)



0,:0)=-D L (V*w), (2.24)

Q,(r,0)= —D%@—a‘g(vzw), (2.2¢)

where D is the flexural rigidity, D= Eh’/12(1-v?); E is Young’s Modulus;

v 1s Poison’s ratio; 4 is the thickness of the plate.

The effective transverse force per unit length acting on the annular edge

V.(r, 0), and that acting on the radial edge V(7 6), are:

aMrH

I

V(r0)=0 +— —-D tow 1ow 2.3

(n0)=0, + 7 = PRFT eyl N G
oM 1 0(V*w) 0o 10w 1 ow

% _ o _ _pr VW oyl low _Low, g

0(r:0)= 0, + =2 00t 095, C o0 7ag) 33D

The boundary conditions along the edge 6=6j are specified as follows:

(1)For a clamped radial edge,

W(V:HO) = O >
ow(r,6,)
G5 2.4
v (2.4)
(2)For a free radial edge,
MH (V:HO) = 09
V,(r,6,)=0. (2.5)

(3) For a simply supported radial edge,

W(}’,HO)IO,



M,(r,6,)=0. (2.6)

On the basis of separation of variables, the solution of Eq. (2.1) can

be assumed as
w(r,0) = G(r)F(0) (2.7)

where G(r) can be expressed as a power series in 7,
G(ry=Y g ", (2.8)
n=1

and 4, need not be an integer and is generally a complex number.

Substituting Eq. (2.8) into Eq. (2.7) yields

w(r,0) = i g, 7" F(6,4,). (2.9)

n=1

Substituting Eq. (2.9) into Eq. (2.1)-and tearranging the resulting equation
in terms of power series of 7, yield

i £ F Y 1[4, + D2 +(A4,—D*F"+(A,°—1)*F}=0 (2.10)

n=1

Satisfying Eq. (2.10) results in coefficients of » with different orders

equal to zero,
F® +[(A, +1)> +(4,—1)*]F"+ (4, —1)’F =0 (2.11)

The general solution of Eq. (2.11) is

F (0,A4,)=a,sin(4, +1)@+b, cos(4, +1)0+c, sin(1, —1)8+d, cos(4, —1)0

(2.12)
Substituting Eq. (2.12) into Eq. (2.9) gives

8



w(r,0) = > r* {4, sin(4, +1)8 + B, cos(4, +1)0+C, sin(4, —1)6

n=1

+E, cos(4, —1)6} (2.13)

where values of 4, and eigenvector relationships among 4,, B,, C,, and E,
are determined from the boundary conditions along =0 and 6=a as
shown in Fig. 2.2. It should be noticed that the above solution Eq. (2.13)
is not valid for 4,= 0 or 4,= £1, because the general solution of Eq. (2.11)

for such 4, is not in the form of in Eq. (2.13).

Consider a sectorial plate with both free radial edges, as shown in Fig.
2.3. Taking advantage of the symmetry of the problem, one can separate
the solution given in Eq. (2.13)/into symmetric and antisymmetric parts.
Substituting the even functions of @ (1.e..4,= C,= 0) into the boundary
conditions along the free radial edge (Egs. (2.5)) yields the following two

equations for B, and E,,,

v, cos[(, +Dar/2]B, +y, cos[(A, —Da/2]E, =0, (2.14a)
y,sin[(A, + D /2]B, — y,sin[(4, —Da/2]E, =0, (2.14b)
where y, =1, +)(v-1),
v, =—4,(1-0)+(3+v),

7; =4, (1-v)+(B+v). (2.15)

To ensure nontrivial solution results, the determinant of the

coefficients must be zero. Hence,



7, cos[(A, +Da /2] y,cos[(4, —Da/2] B

yisin[(4, +Da /2] y,sin[(4, —1)a /2]

Expanding and simplifying the above determinant attains the

characteristic equation for 4, for the symmetric case,

sin(4,a) =[(1-0) /(3 + V)4, sina (2.16)
From Eq. (2.14b), the relation between B, and E,, is

B /E, =y,sin[(1 —Da/2]/y,sin[(4, +1)a/2]) (2.17)

By following the procedure similar to that described above and using the
odd functions of 8 (i.e. B,= E,= 0),in Eq. (2.13), one can obtain the

characteristic equation for 4, for the-antisymmetric case,

sin(4 @) = —[(1-0) /(3 + V)4, siners (2.18)
and the relation between 4,, and C,,

A, /C, =y, cos[(4, —Da/2]/(y, cos[(4, + Da/2]). (2.19)

Consequently, combining Eq. (2.16) and Eq. (2.18), the characteristic

equations for 4, corresponding to free-free boundary conditions are
sin(4, &r) = F[(1-0) /(3 + V)]A, sine (2.20)
Substituting Eq. (2.17) and Eq. (2.19) back into Eq. (2.13) yields
wr.0)= Y w,(1.0),
where

10



Wn (7", 0) = ]/'Z'”H {C [7/3 COS[(ﬂ’n - 1)a/2]

., sin(4, +1)0 +sin(4, —1)0]
y,cos[(4, +Da /2]

"y, sin[(4, + Da /2]

cos(4, +1)8+ cos(A, —1)6] (2.21)

and y;, 7,, and y; are given in Egs. (2.15) .The asymptotic solution w,(7; 6)
is the corner function corresponding to free-free boundary conditions.
The corner functions characterize the local stress distribution near the
vertex of a corner formed by two edges with free-free boundary
conditions. By following the similar procedure, one can obtain the
characteristic equations for 4, and the corner functions for all of the

possible combinations of boundary conditions along two radial edges.
2.2 Stress Singularities at:Corners

In the classical plate ‘theory, the stress components related to the

moments, in polar coordinates are

o, =12M,z/h*,
c,=12M z/h’,

r,=12M ,z/h. (2.22)

where z is the normal coordinate measured from the midplane; M,, M,,
and M,y are give in Egs. (2.2). From Egs. (2.2), (2.13) and (2.22), it can
be recognized that when the real parts of the characteristic values Re(4,)

are less than one, moment and stress singularities occur in the vicinity of

r=20.

Fig. 2.4 shows the minimum value of Re(4,) versus the vertex angle a

11



for Poison’s ratio o= 0.3. It shows that, the stress singularities are present

when a >n/2 for S-S and S-F boundary conditions and when a >x for F-F
and C-C boundary conditions, respectively. For most cases (except S-S
boundary condition), the strength of singularities would increase with

increasing a. In all the cases, the strongest singularities are present for

S-S boundary condition.

12



Chapter 3 Vibrations of Completely Free Rectangular

Plates

This chapter investigates the vibrations of completely free
rectangular plates with a V-notch as shown in Fig. 3.1. Stress singularities
exist at the vertex of the V-notch. Algebraic polynomials and corner
functions are used as the admissible functions in the Ritz method. This
chapter demonstrates the usefulness of the corner function in the
convergence of the numerical solutions and discusses the effects of
various notch depths, angles, and locations on the vibration behaviors of

the plates under consideration.

3.1 Formulation for the Ritz method

In the Ritz method, the maximum  strain energy (U, ) and the

max

maximum kinetic energy (7,,, ) for free vibration of a thin plate in terms

ax

of transverse displacement w are

Umax = gJ.J‘{(Wﬁxx +W’yy )2 - 2(1 - U)[W’xx W’yy _(Wﬁxy )2 ]}dA (3' 1)
A
_ phe’
Tmax = TJ;J.WZdA (3.2)

”

where the subscript *,,” refers to a partial differential with respect to the

independent variable j; 4 is the area of the midplane of a plate. p is the

mass per unit volume of a plate; w is the circular frequency.

The total potential energy /7 is defined as

13



n=u,_ -T,._ (3.3)
Assuming

w= Z aw, (3.4)
where a, is the undetermined coefficient; w, is the admissible function.

Substituting Eq. (3.4) into the total potential energy /7 (Egs. (3.1), (3.2)
and (3.3)) and minimizing /7 yield

o _

0 3.5
o (3.5)

One can obtain the following equations_as a matrix form:
[K]{a} = 0’ [M]{a} (3.6)

where

K, = D”[(me"'wmyy YW, tw, s, ) = (=)W, W, W, W),
A

)]dA (3.7)

—2w, a0 Wiy

M, = ph[[(ww,)dA (3.8)

la}={a,,a,,a5,....ay}"

Through solving this generalized eigenvalue problem (Eq. (3.6)), one can
obtain the natural frequencies (eigenvalues) and the corresponding mode

shapes (eigenfunctions).

3.2 Admissible Functions
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The admissible functions used in the Ritz method have to satisty the
geometrical boundary conditions of the problem under consideration. In
addition to using the polynomial functions admissible functions, the
corner functions corresponding to the free-free boundary conditions
around a corner are also used as the admissible functions to describe the
singularity behavior at the vertex of the V-notch. Hence, the admissible

functions can be assumed as the sum of two sets of functions, namely,
W(X,y)zwp(an’)‘FWc(’”ae)a (3'9)

where w,(x,y) contains the polynomial admissible functions and is

expressed as:

-1 J

=Y

i=0,1,=0,1

1

a,x'y’, (3.10)

g

~

where / and J denote the number of‘terms in x and y, respectively. For

simplicity, / is taken equal to J for ‘the following numerical results.

w,(r,0) contains the corner functions corresponding to the free-free

boundary conditions around a corner and is expressed as:

w, (r,0) = ﬁ: [a, Re(w, (r,0))+ a, Im(w, (r,0))], (3.11)

n=1,2
where w, (r,0) are the corner functions corresponding to the free-free

boundary conditions around a corner and are given in Eq. (2.21). Since
the corner functions include symmetric and antisymmetric parts, the

number of the corner functions is 2N and the total number of admissible

functions is /xJ +2N.
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Substituting Egs. (3.12), (3.13) and (3.14) into Egs. (3.9), (3.10) and
(3.11) yields IxJ +2N linear equations for the undetermined coefficients
a;, a, and a,. These equations lead to a generalized eigenvalue

problem.

The polar coordinate system (r,8) for the corner functions w, (r,6)

is defined as shown in Fig. 3.1. The origin (O) of the coordinate system is
at the vertex of the V-notch. Note that, both the corners A and B needs no
corner functions because these two corner angle are less than 7 and no

stress singularity occurs here. The relations between Cartesian coordinate

(x,y) and the polar coordinate (@) are

r=[(x-c)* +(-y+b—-d)2]'?, (3.12)
4 xX—c
0 = tan (——y+b—d)’ (3.13)

where b, ¢, and d are shown in Fig. 3.1.

3.3 Convergence Study

It 1s one of the typical characteristics of the Ritz method that the
obtained frequencies would converge to the exact solutions from the
upper bounds if a sufficient number of admissible functions are used. In
this section, to verify the accuracy of the solutions and demonstrate the
effects of the corner functions on the convergence, convergence studies
are presented for completely free square plates (a/b=1.0, as seen in Fig.

3.1) with different notch angles (a=5° or 30°) and notch depths (d/b=0.1,
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0.3, or 0.5). The V-notch is located at c/a=0.5. Poison’s ratio v is taken

equal to 0.3. The numerical results are the nondimensional frequency

parameters wa’/ph/D for the first five modes. Note that, the first three

rigid body modes (zero frequencies) are ignored. The computation was
carried out by using FORTRAN programming language with quad

precision (34 significant digit accuracy) on a 64-bit computer.

Table 3.1 shows the convergence of the frequency parameters for an
intact square plate (no V-notch), in which no stress singularities are
presented. The frequency data were computed by using polynomial
functions with increasing number of terms (/xJ) from 3%3 to 10x10.
Note that the frequency parameters for:the fourth and fifth modes are
exactly identical, which are double-roots.in an eigenvalue problem. The
numerical results are in excellent agreement with those of Leissa (1973),
who used beam functions as:admissible functions, and those of Filipich
and Rosales (2000), who used whole element method. Since the beam
functions may not form a complete set of functions, the converged results
of Leissa (1973) are larger than the present ones. The present results also
show more accuracy than the converged results of Filipich and Rosales
(2000). The comparison recognizes the validity of the computation for the

part of the polynomial functions.

Table 3.2 shows the convergence of the frequency parameters for a
square plate with a very shallow V-notch (d/b=0.03) having large notch
angle (a=170°) that causes weak stress singularities at the vertex of the
notch. As expected, the admissible functions of polynomials can give

good convergent results due to the completeness of polynomials. Adding
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corner functions to the admissible functions only can slightly accelerate
the convergence of the numerical solutions for this very shallow, wide
angle notch. It demonstrates the validity of the computation for using

polynomials and corner functions as admissible functions.

Tables 3.3 to 3.6 show the convergence of the frequency parameters
for square plates having a V-notch with various notch angles (a¢=5° and
30°) and notch depths (d/b=0.1, 0.3 and 0.5). Since the V-notch is much
sharper and deeper than that considered in Table 3.2, the stress
singularities at the V-notch would be stronger and the corner functions are
expected to show more significant effect on the convergence of the
solutions. In these cases under study,, the admissible polynomials used
alone give solutions with very slow|convergence, especially for the case
with a sharper (a=5°) ‘or deeper (d/b=0.5) notch. However,
supplementing the admissible" ‘functions with corner functions

significantly accelerates the convergence of the solutions.

In the case of Table 3.3, it is found that adding the corner functions
into the admissible polynomials may yield ill-conditioned matrices at the
number of admissible functions not very large (i.e., §X8+2 X8, 7x7+2X8).
The ill-conditioning is due to numerical roundoff errors. For only using
the admissible polynomials, the ill-conditioning also occurs when the
number of polynomials (/xJ) exceeds /4x14. That is to say, the accurate
solutions cannot be obtained for only using the admissible polynomials
before the ill-conditioning occurs. However, supplementing the
admissible functions with corner functions can give the convergent

solutions with high accuracy (4 significant digit convergence) before the

18



ill-conditioning occurs.

Comparing the results of Table 3.3 with those of Tables 3.4 and 3.5, it
is found that the present analysis needs more supplements of corner
functions to get the convergent solutions for square plates with a deeper
V-notch. Observing the results of Tables 3.4 and 3.6, one can find that
more corner functions may not be needed to obtain convergent solutions
as a changes from 30° to 5°. Moreover, one may overestimate the
numerical solutions of these cases if no supplement of corner functions is

involved in the present analysis.

On the basis of the above results, it is recognized that corner
functions have significant effects’on the convergence of the solutions for
square plates with a V-notch. [One of the reasons for corner functions
having such effects on the convergence is that the corner functions can
appropriately describe streSs  singularity *behaviors of moments and
transverse shear forces around the vertex of the V-notch. Another is that
the corner functions explicitly indicate the existence of the V-notch in the
plate under consideration. When the polynomial functions are used along
in the Ritz method, the recognition of the existence of the V-notch is only

through the integration domain.

Table 3.7 shows the convergence of the frequency parameters for a
square plate having a V-notch of a=0° and d/b=0.3, which can be
considered as a straight crack. Although a cracked plate and an intact
plate have the same integration domain, they have different stiffness. As
expected, the solution obtained by using polynomial functions along is

the same as that of an intact plate, which is not the correct solution of the
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cracked plate. Obviously, it is not suitable to characterize a V-notch in a
plate only through the integration domain in the Ritz method as the notch
angle or the notch depth becomes smaller. However, the corner functions
satisfying the free edge boundary conditions of the V-notch can definitely
realize the existence of a V-notch or a crack in the formulation for the

Ritz method.

3.4 Numerical Results

To show the effects of a V-notch on the vibrations of plates, this
section presents the frequency parameters and the mode shapes for the
first five modes of rectangular plates with various aspect ratio a/b and
having a V-notch with varieus notch angle a and notch depth d/b at
various locations c/a. The: mode shapes .are described by their nodal

patterns (lines of zero displacement during the vibration of a mode).

Tables 3.8 to 3.10 show the results of frequency parameters for the
first five modes of rectangular plates with different a/b (1.0, 2.0 and 0.5),
o (5°and 30°), d/b (0, 0.1, 0.3 and 0.5) and c/a (0.5 and 0.75). Tables 3.11
to 3.13 show the relative reductions of the frequency parameters, which

are defined as

a, . -

Aa)n — n,intact n,V-notch XIOO% , (314)
a)n,intact

where ,,.. denotes the frequency of a intact plate, and o, .

denotes the frequency of a plate with a V-notch.

It is interesting to observe how the frequency parameters change with
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various a, d/b and c¢/a. Some interesting trends are found as follows:

(1) The frequency parameters significantly decrease as the notch depth
d/b increases for rectangular plates with different a/b mainly because
of the reduction of the flexural stiffness. The decreasing frequencies
relative to the frequencies of an intact plate are considerably different

for different modes.

(2) When d/b=0.5, the frequency parameters decrease if o changes from
5°to 30°. This trend is generally observed with few exceptions for

d/b=0.1 and 0.3.

(3) The frequency parameters for the first, second and fifth modes
increase mostly as c/a changes from 0.5 to 0.75. The changes of the

frequencies are more unpredictable for third and fourth modes.

Since the nodal patterns of ‘a square plate are different from those of
other rectangular plates, they are ‘discussed independently. Figures 3.2
and 3.3 show the nodal patterns for the first five modes of square plates
(a/b=1.0) with different a, d/b and c/a, and the corresponding frequency
parameters are given in the parenthesis. Before discussing the changes of
the nodal patterns of a square plate for different a, d/b and c/a, it should
be noticed that the nodal patterns of the fourth and fifth modes for an
intact square plate shown in Fig. 3.2 and 3.3 are considerably different.
Mathematically, the frequencies for these two modes are double roots in
an eigenvalue problem, and any linear combination of the corresponding
eigenfunctions is also a possible eigenfunction (as shown in Fig. 3.8).

Consequently, the nodal patterns of the fourth and fifth modes shown in
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these figures are correct, and there are infinite possible sets of mode
shapes for the these two modes. The nodal patterns given in these figures
are chosen because they resemble those for a square plate with a shallow

V-notch and are often seen in published literature (i.e., Leissa, 1969).

Some interesting trends for the changes of nodal patterns for a/b=1.0

with different a, d/b and c¢/a were found as follows:

(1) For a fixed, the nodal patterns for d/b=0.1 looks very similar to those
for d/b=0, respectively. However, if observing carefully, one can find
some significant differences. A V-notch at c/a=0.5 destroys the
symmetry about the horizontal axis, and the notch at c/a=0.75 further
destroys the symmetry both:axes. The crossing nodal lines for d/b=0
may separate when a V=notch exists (i.e., the second and fifth modes
in Fig. 3.2). A straight nodal line for d/b=0 may be distorted when a
V-notch exists (i.e., the diagonal nodal lines of the fourth and fifth
modes in Fig. 3.3 and the horizontal nodal line of the second mode in
Fig. 3.2). The curve veering and the distortion of the straight nodal

lines would become more significant when a or d/b increases.

(2) As d/b changes from 0./ to 0.3, the changes of the nodal patterns
become more significant, especially that the closed nodal line of the
third mode is destroyed drastically. Note that modal order may
exchange, for example, the nodal pattern of the fourth mode for the
plate with a=30° and d/b=0.3 is similar to that of the fifth mode for

the plate with a=30° and d/b=0.1 in Fig. 3.2.

(3) As d/b changes from 0.3 to 0.5, the nodal patterns further change,
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especially for the plate with c/a=0.75. Note that modal order may also

exchange (i.e., the third and fourth modes in Fig. 3.2).

(4) The changes of the nodal patterns for c¢/a=0.75 are more significant
those for c/a=0.5 due to the destruction of the symmetry about the
vertical axis cause by a V-notch at c¢/a=0.75. The crossing nodal lines

of the first mode would separate as the V-notch is not at c/a=0.5.

(5) The nodal patterns for a=5° look similar to those for a=30°, but the
difference of those between a=5° and a=30° is more significant for
the deeper V-notch. For example, the nodal patterns of the fifth mode
for the plate with d/b=0.5 and c/a=0.75 are very different between
a=5°and a=30°.

Figures 3.4 to 3.7 show: the nodal patterns for the first five modes of
rectangular plates of a/b=2.0 and'a/b=0.5 with different a, d/b and c/a. It
is noticed that the intact plate for.a/b=2.0"1s the same as that for a/b=0.5.
The V-notch is opening at the long edge for a/b=2.0, but that is opening
at the short edge for a/b=0.5. It is also interesting to observe how the
nodal patterns of rectangular plates with a/b=2.0 and a/b=0.5 change

with different a, d/b and c/a, and these observations are given as follows:

(1) As d/b changes from 0 to 0.1, the nodal patterns changes very slightly.
Some differences similar to those for square plates can be found.
When a V-notch exists, the crossing nodal lines for d/b=0 may
separate (1.e., the second and third modes in Fig. 3.5 and the second
and third modes in Fig. 3.7), and the straight nodal lines for d/b=0

may be distorted (i.e., the horizontal nodal line of the second mode in
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Fig. 3.4 and the horizontal nodal line of the second and fourth modes

in Fig. 3.6).

(2) As d/b changes from 0.1 to 0.3, the curve veering and the distortion of
the straight nodal lines become more significant. The nodal patterns
still look similar between d/b=0.1 and d/b=0.3 for the plates with
a/b=2.0, but they look very different for the plates with a/b=0.5. Note
that modal order may also exchange for the plates with a/b=0.5 (i.e.,

the first and second modes in Fig. 3.6 and 3.7).

(3) As d/b changes from 0.3 to 0.5, the nodal patterns further change,
especially for the plates with a/b=0.5. Note that modal order may also
exchange for the plates withia/b=210(i.e., the third and fourth modes

in Fig. 3.4 and the fifth mode in ¥1g. 3.4 'and 3.5).

(4) The changes of the nodal patterns-for ¢/a=0.75 are more significant
those for c/a=0.5 due to'the destruction of the symmetry about
vertical axis. The crossing nodal lines in the some modes would
separate as the V-notch is not at c/a=0.5 (i.e., the second mode in Fig.

3.5 and the second and third modes in Fig.3.7).

(5) As a changes from 5° to 30°, the curve veering and the distortion of
the straight nodal lines become more significant. But the nodal
patterns for a=5° and a=30° still look very similar with very slight

difference.

(6) The nodal patterns changes more violently when the V-notch is
opening at short edge (a/b=0.5), especially for the fourth and fifth

modes.
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Chapter 4 Vibrations of Cantilevered Rectangular Plates

This chapter investigates the vibrations of cantilevered rectangular
plates with a V-notch as shown in Fig. 4.1. The same analysis procedure
given in the previous chapter is used again here. This chapter also studies
the effects of the configuration of a V-notch on the vibration behaviors of

the plates under consideration.
4.1 Admissible Functions

The admissible functions used in the Ritz method have to satisfy the
geometry boundary conditions of the problem under consideration.
Accordingly, the admissible functions given in Eqgs. (3.10) and (3.11) are

modified as

=3 Sy (@.1)
w,(r,0) = x* i[an Re(w, (r,0)) + a, Im(w, (r,0))]. (4.2)

n=1,2
The coordinate systems used in the problem under consideration are

shown in Fig. 4.1. The relations between (x,y) and (r,0) coordinates

are the same as those used in a completely free plate, and are given in Egs.

(3.12) and (3.13).
4.2 Convergence Study

Through solving the generalized eigenvalue problem given in Eq.
(3.6) by substituting the admissible functions given in Egs. (4.1) and (4.2)

into Egs. (3.7) and (3.8), one can obtain the convergent upper-bound
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solutions of the problem under consideration as the number of admissible
functions is large enough. This section presents convergence studies for
cantilevered square plates (a/b=1.0) with various notch angles (a=5° and
30°) and notch depths (d/b=0.1, 0.3, and 0.5). The V-notch is located at
c/a=0.5. Poisson’s ratio v is set to 0.3. To demonstrate the validity of the
present method, this section also presents convergence for the plate with a
straight crack (a=0°) parallel to the clamped edge and make a
comparison with the results from previous investigation. The computation
was carried out by using FORTRAN programming language with quad

precision (34 significant digit accuracy) on a 64-bit computer.

Table 4.1 shows the convergence .of the frequency parameters for an
intact square plate (no V-notch).=Sin¢e there is no stress singularity
existing, the admissible functions used in thé formulation need not add
any corner function. The numerical results of the frequency parameters
were computed by polynomial “functions, given in Eq. (4.2), with the
number of terms (/xJ) increasing from 3x3 to /0xI(0. The numerical
results show excellent agreement with those by Leissa (1973), who used
beam functions as admissible functions, and those by Rossi and Laura
(1996), who used finite element method. The comparison demonstrates

the validity of the computation for the part of the polynomial functions.

Table 4.2 shows the convergence of the frequency parameters for a
square plate with a shallow a V-notch (d/b=0.03) having large angle
(a=170°). Although there are weak stress singularities existing at the
vertex of the V-notch, the admissible polynomials still give good

convergent results due to the completeness of polynomials. By adding
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corner functions to the admissible functions, the convergence of the
numerical solutions can be accelerated slightly. This case demonstrates
the validity of the computation for using polynomials and corner

functions as admissible functions.

Tables 4.3 to 4.6 show the convergence of the frequency parameters
for square plates having a V-notch with various notch angles (a¢=5° and
30°) and notch depths (d/b=0.1, 0.3 and 0.5). Since the V-notch is much
sharper and deeper than that considered in Table 4.2, the corner functions
are expected to show more significant effects on the convergence of the
solutions due to the stronger stress singularities. In these cases under
study, the admissible polynomials,used alone give solutions with very
slow convergence, especially for the/case with a sharper (a«=5°) or deeper
(d/b=0.5) notch. However," through supplementing the admissible
functions with corner functions; the'eonvergence of the solutions can be

accelerated significantly.

Observing the results of Table 4.3, one finds that adding the corner
functions into the admissible polynomials may yield ill-conditioned
matrices at the number of admissible functions not very large (i.e.,
8x8+2x8, 7x7+2x8). If the admissible polynomials are used alone in
the formulation, the ill-conditioning occurs when the number of
polynomials (/xJ) exceeds /2x12. The numerical solutions cannot be
convergent to the exact ones by using polynomial functions only before
the ill-conditioning occurs. Nevertheless, supplementing the admissible
functions with corner functions can give the convergent solutions with

high accuracy (at least 3 significant digit convergence) before the
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ill-conditioning occurs.

Comparing the results of Table 4.3 with those of Tables 4.4 and 4.5,
one can find that to obtain the convergent solutions for square plates with
a deeper V-notch needs to add more corner functions into the admissible
functions. Comparing the results of Tables 4.4 and 4.6, one can find that
more corner functions may not be needed to obtain convergent solutions
as a changes from 30° to 5°. Note that, without the supplement of corner

functions, one may overestimate the solutions of these cases.

Table 4.7 shows the convergence of the frequency parameters for a
square plate having a V-notch with a=0° and d/b=0.25, which can be
considered as a straight crack:!As expected, the solution obtained by
using only polynomial functions is the same as that of an intact plate due
to the same integral domain. The correct solutions of a cracked plate
should be less than that of:an intact plate, because the crack causes
damage to the flexural stiffness of a plate. Through supplementing the
admissible functions with corner functions, the frequencies can decrease
efficiently due to the recognition of the existence of a crack in the Ritz

method.

Ma and Huang (2001) used the AFESPI experimental method to
investigate the vibrations of a cantilevered square plate with a crack, and
also simulate those by the commercial finite element package ABAQUS.
This experiment used a full field, non-contact technique, electronic
speckle pattern interferometry, for vibration measurement. The eight-node
shell elements S8R5 were used in ABAQUS. Comparing the numerical

results obtained from the present method to those by ABAQUS, the
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formers are little greater than the latters. This trend is expected mainly
because the elements S8R5 were based on the first-order shear
deformation plate theory that has less constraints than the classical plate
theory. Comparing the present numerical results to the experimental
results, the present ones are all greater than the experimental ones. The
main reason is believed that the clamped boundary condition of the plate
for the experiment is not ideally rigid. The good agreement between these

results demonstrates the validity of the present method.

4.3 Numerical Results

Tables 4.8 to 4.10 show the results of frequency parameters for the
first five modes of rectangular plates with-different a/b (1.0, 2.0 and 0.5),
o (5°and 30°), d/b (0, 0.1,-0.3.and 0.5)-and ¢/a (0.5 and 0.75), and tables
4.11 to 4.13 show the relative teductions of the frequency parameters. It
is interesting to observe how: the frequency parameters change with

various a, d/b and c/a. Some interesting findings were observed, and are

given as follows :

(1) The frequency parameters significantly decrease with the increasing
notch depth d/b for rectangular plates with different a/b mainly

because of the reduction of the flexural stiffness.

(2) Generally, the frequency parameters decrease as a changes from 5° to
30° for deeper V-notches. Very few exceptions are found for d/b=0.1
and 0.3.

(3) The frequency parameters for the first and second modes increase as
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c/a changes from 0.5 to (.75 for rectangular plates with different a/b.
For such modes, the reduction of the flexural stiffness would increase

as the V-notch is near to the clamped edge.

Figures 4.2 to 4.7 show the nodal patterns for the first five modes of
square plates with different a/b, a, d/b and c/a, and the corresponding
frequency parameters are given in the parenthesis. It is also interesting to

observe the changes of nodal patterns with different a, d/b and c/a. These

interesting findings are given as follows :

(1) For intact plates (d/b=0), the nodal patterns of the fourth and fifth
modes exchange as a/b changes from /.0 to 2.0. As a/b changes from
1.0 to 0.5, the nodal patterns of the third to fifth modes for the plate

with a/b=1.0 are very different from those: for a/b=0.5.

(2) For a fixed, the first fivé-nodal patterns for d/b=0.1 looks very similar
to those for d/b=0, except that the crossing nodal lines for d/b=0
would separate clearly (i.e., the fifth mode in Fig. 4.2 and the fourth
mode in Fig. 4.4). Furthermore, if observing carefully, one can find
some slight differences existing in the nodal patterns for intact plats
and V-notched plates. Since a V-notch destroys the symmetry about
horizontal axis, the mode shapes are no longer symmetric about
horizontal axis. The horizontal nodal lines for d/b=0 is distorted when

a V-notch exists (i.e., the second mode in Fig. 4.2).

(3) As d/b changes from 0./ to 0.3, the changes of the nodal patterns
become clearer, especially for third, fourth and fifth modes for the

plate with a/b=0.5. Note that modal order may exchange (i.e., the
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fourth and fifth modes in Fig. 4.6)

(4) As d/b changes from 0.3 to 0.5, the nodal patterns further change,
especially for the plates with a/b=0.5. Note that an additional nodal

line would appear in the nodal patterns of the first mode for the plates

with a/b=0.35.

(5) Generally, the changes of the nodal patterns are more significant for
the V-notch at c¢/a=0.5. The difference of the nodal patterns between
c/a=0.5 and c/a=0.75 are very slight for d/b=0.1 but clearer for
d/b=0.3 and 0.5.

(6) The nodal patterns for a=5° look similar to those for a=30°. The
difference of nodal patterns between. o=5° and a=30° are more

significant as d/b increases:

31



Chapter 5 Concluding Remarks

In the previous chapters, vibration behaviors of completely free and
cantilevered rectangular plates with an edge V-notch have been
determined via the present method. Some conclusions are drawn from the

foregoing studies:

(1) The corner functions exactly satisfy the free boundary conditions
along a V-notch and appropriately describe the stress singularity
behaviors around the vertex of a V-notch. It has been demonstrated that
the convergence of the numerical solutions can be accelerated by
supplementing the admissible functions in the Ritz method with the

corner functions.

(2) Matrix ill-conditioning -occurs - when the total number of
admissible functions used is too large. Through the supplements of corner
functions, one can obtain the convergent solutions with high accuracy (4

significant digit convergence) before the ill-conditioning occurs.

(3) It has been shown that poor convergence is obtained by using
polynomial functions only when plates with a sharp V-notch. As the
V-notch becomes deeper, it needs more number of corner functions to

obtain accurate solutions.

(4) It has been shown that a shallow V-notch has only a small effect
on the vibration behaviors of a V-notch plate. As the V-notch is deeper,
frequencies significantly decrease mainly because of the reduction of the

flexural stiffness, and the nodal patterns changes more violently. The
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curve veering and the distortion of the straight nodal lines may occur due
to the destruction of the symmetry when a V-notch exists. Sometimes, the

modal order may exchange as the notch depth varies.

The thesis accurately determines vibration frequencies and nodal
patterns of V-notched rectangular plates via the present method. These
present results serve not only to improve the understanding the vibration
behavior of a V-notched plate, but also as benchmark data against those
from other numerical methods or experiments. The analysis methodology
used here can be extended to other thin plate problems with stress
singularities, such as a plate with a cut-out where more than one corners

having stress singularities exist.
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Table 3.1 Convergence of frequency parameters wa’/ph/D for a

completely free square plate

order of polynomial Filipich

Mode (IxJ) Leissa and
No. (1973) | Rosales
3x3 | 4x4 | 5x5 | 6x6 | 7x7 | 8x8 | 9x9 | 10x10 (2000)

1 14.20 | 13.66 | 13.66 | 13.47 | 13.47 | 13.47 | 13.47 | 13.47 | 13.49 13.47

2 2245|2245 |19.73 | 19.73 | 19.60 | 19.60 | 19.60 | 19.60 | 19.79 19.61

3 30.59 | 30.59 | 24.54 | 24.54 | 24.27 | 24.27 | 24.27 | 24.27 | 24.43 24.28

4 41.57 | 39.23 | 35.61 | 35.29 | 34.81 | 34.80 | 34.80 | 34.80 | 35.02 34.82

5 41.57 | 39.23 | 35.61 | 35.29 | 34.81 | 34.80 | 34.80 | 34.80 | 35.02 38.82
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Table 3.2 Convergence of frequency parameters wa’/ph/D for a

completely free square plate with a V-notch (c/a=0.5, d/b=0.03, a=170°)

No. of

Mode order of polynomial (/%J)
Corner
No. Functions | 33 4x4 5%5 6x6 7x7 8x8 9x9
0 14.22 | 13.67 | 13.67 | 13.49 | 1349 | 1348 | 13.48
: 1 14.22 | 13.66 | 13.66 | 13.48 | 13.48 | 13.48 | 13.48
2 1422 | 13.65 | 13.65 | 13.48 | 13.48 | 1347 | 1347
3 14.15 | 13.65 | 13.59 | 13.48 | 1347 | 1347 | 1347
0 22.08 | 22.08 | 19.43 | 1943 | 19.31 | 19.31 | 19.31
5 1 21.44 | 21.40 | 1942 | 1942 | 19.30 | 19.30 | 19.30
2 21.41 | 2034 | 1942 | 1942 | 19.30 | 19.30 | 19.30
3 19.77 | 19.63 | 19.42 | 19.42 | 19.30 | 19.30 | 19.29
0 30.62 | 30.62 | 24.58 | 24.58 | 24.32 | 2432 | 24.32
1 29.43 | 29384124565, 24.56 | 24.32 | 2432 | 24.32
3 2 29.42 | 27.04 | 2456 | 24.55 | 24.32 | 2432 | 24.32
3 29.35 | 25.65 | 24.55'|-24.52 | 2431 | 24.31 | 24.31
0 41.40 | 38.97 | 3548 | 3514 | 34.71 | 34.70 | 34.69
1 40.04 | 37.90. | 3537 | 35.05 | 34.69 | 34.68 | 34.67
4 2 39.37 | 37.90 | 35.36:1-35.03 | 34.69 | 34.68 | 34.67
3 38.93 | 35.84 | 3527 | 35.00 | 34.66 | 34.65 | 34.64
0 41.71 | 39.40 | 35.66 | 35.35 | 34.85 | 34.84 | 34.84
s 1 41.69 | 39.05 | 35.61 | 35.31 | 34.83 | 34.81 | 34.81
2 40.64 | 38.72 | 35.58 | 3528 | 34.82 | 34.80 | 34.80
3 40.64 | 37.21 | 35.57 | 35.17 | 34.80 | 34.79 | 34.78
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Table 3.3 Convergence of frequency parameters wa’/ph/D for a

completely free square plate with a V-notch (c/a=0.5, d/b=0.1, a=30°)

Mode No. of order of polynomial (/xJ)
Corner

No- o inctions | 4%4 | 5x5 | 6x6 | 7x7 | 8x8 | 9x9 | 10x10

0 13.68 | 13.68 | 13.49 | 13.49 | 13.49 | 13.49 | 13.49

3 13.50 | 13.50 | 1332 | 13.32 | 1331 | 1331 | 13.31

1 5 13.48 | 1342 | 1331 | 1331 | 1331 | 1331 | 13.31
8 13.34 | 1333 | 1331 | 1331 | / / /
10 13.32 | 1332 | 1331 | / / / /

0 2235 | 19.65 | 19.65 | 19.52 | 19.52 | 19.52 | 19.52

3 20.68 | 19.41 | 19.41 | 1931 | 1931 | 1931 | 1931

2 19.72 | 19.40 | 1939 | 19.31 | 1931 | 1931 | 19.31
1944 | 1935 | 1932 | 1931 | / / /
10 19.40 | 19314219331, / / /

30.62 | 24157 | 2457 [ 2431 | 2431 | 2431 | 2431

28.28 | 2436 | 2436 24.10 | 24.10 | 24.10 | 24.10

3 24.49 | 2429 | 2429 | 2409 | 24.00 | 24.09 | 24.09
24.37 | 24207 (724107 24.09 | / /
10 24.37 | 24.1005f 24104 / / / /

39.11 | 35.53 | 3520 | 34.74 | 3474 | 3473 | 3473

36.40 | 34.80 | 34.45 | 34.08 | 34.07 | 34.07 | 34.07

4 3527 | 34.65 | 3438 | 34.07 | 34.07 | 34.07 | 34.07
3473 | 3443 | 3425 | 3407 |/ / /
10 3467 | 3417 | 3411 | / / /

39.35 | 35.68 | 3537 | 34.88 | 34.87 | 34.87 | 34.87

37.50 | 34.96 | 3470 | 3423 | 3422 | 3422 | 3422

5 36.00 | 3492 | 3452 | 3423 | 3422 | 3422 | 3422
3491 | 34.88 | 3431 | 3422 | / /
10 3470 | 3457 | 3422 | / / /

Note : “/” : no result due to matrix ill-conditioning

39




Table 3.4 Convergence of frequency parameters wa’/ph/D fora

completely free square plate with a V-notch (c/a=0.5, d/b=0.3, a=30°)

Mode No. of order of polynomial (/xJ)
Corner

No. Functions 3x3 4x4 5%5 6x6 7x7 8x8
0 14.36 13.82 13.82 13.62 13.62 13.61

3 11.82 11.67 11.67 11.57 11.57 11.57

1 5 11.75 11.67 11.64 11.56 11.56 11.56
10 11.61 11.57 11.56 11.56 11.56 11.56

15 11.60 11.56 11.56 11.56 11.56 11.56

22.06 22.05 19.41 19.41 19.29 19.29

18.16 18.13 17.17 17.15 17.09 17.09

2 5 17.64 17.38 17.15 17.14 17.09 17.09
10 17.15 17.14 17.09 17.09 17.08 17.08

15 17.13 17.12 17.09 17.09 17.08 17.08

30.85 30.84 24,78 24.78 24.54 24.54

26.24 26.15 23.19 23.19 22.95 22.95

3 5 26.21 23.65 23.17 23.16 22.95 22.95
10 23.31 23:16 22.97 22.95 22.94 22.94

15 23.23 2311 22405 22.95 22.94 22.94

40.96 38.64 35.25 3491 34.57 34.56

33.36 28.71 28.05 27.75 27.62 27.57

4 5 2941 28.14 27.92 27.67 27.56 27.53
10 28.20 27.71 27.67 27.53 27.53 27.52

15 27.92 27.66 27.55 27.53 27.53 27.52

42.13 39.98 36.15 35.88 35.34 35.30

36.63 35.04 32.04 31.82 31.45 31.45

5 5 34.16 3348 32.01 31.77 31.45 31.44
10 32.18 32.00 31.58 31.49 31.44 31.43

15 31.83 31.67 31.45 31.44 31.43 31.43
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Table 3.5 Convergence of frequency parameters wa’/ph/D for a

completely free square plate with a V-notch (c/a=0.5, d/b=0.5, a=30°)

Mode No. of order of polynomial (1xJ)
Corner

No. 1 o netions | 3%3 4x4 55 6%6 7x7 88
0 14.60 14.07 14.06 13.86 13.86 13.85

3 7.974 7.915 7.902 7.867 7.865 7.863

1 5 7.948 7.906 7.873 7.850 7.849 7.848
10 7.890 7.852 7.849 7.845 7.845 7.844

15 7.883 7.850 7.847 7.845 7.844 7.843

0 22.06 22.04 19.48 19.48 19.36 19.36

3 14.45 14.38 13.89 13.88 13.83 13.83

2 5 14.05 13.99 13.87 13.86 13.83 13.83
10 13.89 13.87 13.84 13.84 13.82 13.82

15 13.88 13.85 13.83 13.83 13.82 13.82

0 30.93 30.89 25.03 25.02 24.78 24.78

3 22.88 21.75 21.63 21.35 21.32 21.25

3 5 22.02 21.59 21.50 21.29 21.26 21.22
10 21.56 2130 21.28 21.22 21.22 21.21

15 21.44 21.28 21.25 21.21 21.21 21.21

40.48 38.38 35.22 34.89 34.63 34.62

24.00 23.98 22.05 22.05 21.89 21.89

4 23.68 22.94 22.04 22.04 21.88 21.88
10 22.13 22.01 21.91 21.89 21.88 21.88

15 22.09 21.98 21.89 21.88 21.88 21.88

0 42.70 40.64 36.73 36.49 35.92 35.84

3 35.54 34.13 31.60 31.37 31.02 31.02

5 5 34.51 33.35 31.51 31.27 30.93 30.93
10 31.91 31.47 31.13 31.03 30.93 30.92

15 31.61 31.16 30.94 30.93 30.92 30.92
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Table 3.6 Convergence of frequency parameters wa’/ph/D fora

completely free square plate with a V-notch (c¢/a=0.5, d/b=0.3, 0=5°)

Mode No. of order of polynomial (1xJ)
Corner

No. 1 o netions | 3%3 4x4 55 6%6 7x7 88
0 14.23 13.69 13.69 13.50 13.50 13.50

3 11.84 11.68 11.67 11.58 11.58 11.58

1 5 11.75 11.67 11.66 11.58 11.58 11.58
10 11.61 11.58 11.58 11.58 11.58 11.58

15 11.60 11.58 11.58 11.58 11.58 11.58

0 22.38 22.38 19.67 19.67 19.54 19.54

3 18.71 18.69 17.70 17.69 17.63 17.63

2 5 18.36 17.97 17.69 17.68 17.63 17.63
10 17.70 17.68 17.63 17.63 17.63 17.63

15 17.68 17.67 17.63 17.63 17.63 17.63

0 30.64 30.64 24 .58 24.58 24 .32 24 .32

3 25.95 25.86 23.13 23.12 2291 2291

3 5 25.79 23.83 23.11 23.11 2291 2291
10 23.13 23.11 22.92 22.92 2291 2291

15 23.07 23.07 22.91 2291 2291 2291

41.44 39.11 35.53 35.20 34.75 34.74

31.14 29.66 28.78 28.50 38.34 38.32

4 30.49 28.94 28.71 28.49 28.34 28.32
10 28.86 28.53 28.52 28.32 28.32 28.32

15 28.55 28.46 28.34 28.32 28.32 28.31

0 41.66 39.37 35.71 35.40 3491 34.90

3 37.28 35.62 32.68 32.46 32.10 32.10

5 5 35.20 34.66 32.67 32.42 32.09 32.09
10 32.74 32.64 32.32 32.20 32.09 32.09

15 32.49 32.38 32.10 32.09 32.09 32.09
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Table 3.7 Convergence of frequency parameters wa’/ph/D for a

completely free square plate with a V-notch (c¢/a=0.5, d/b=0.3, a=0°)

Mode No. of order of polynomial (/x.J)
Corner

No.  nctions | 4%4 | 5x5 | 6x6 | 7x7 | 8x8 | 9x9 | 10x10
0 13.66 | 13.66 | 13.47 | 13.47 | 1347 | 13.47 | 13.47

1 3 11.80 | 11.79 | 11.65 | 11.65 | 11.64 | 11.64 | 11.63
5 11.68 | 11.66 | 11.63 | 11.63 | 11.63 | 11.63 | 11.62

0 2245 | 1973 | 19.73 | 19.60 | 19.60 | 19.60 | 19.60

2 3 1849 | 17.86 | 17.86 | 17.78 | 17.78 | 17.77 | 17.77
5 18.35 | 17.80 | 17.78 | 17.78 | 17.78 | 17.77 | 17.77

0 30.59 | 24.54 | 2454 | 2427 | 2427 | 24.27 | 2427

3 3 26.03 | 23.10 | 23.10 | 22.89 | 22.89 | 22.89 | 22.89
5 25.43 | 23.09 | 23.09 | 22.89 | 22.89 | 22.89 | 22.89

0 39.23 | 35.613113529. | 34.81 | 34.80 | 34.80 | 34.80

4 3 30.37 | 29.22 | :28:90. [ 28.74 | 28.66 | 28.66 | 28.64
5 30.16 | 29.09 | 2876 | 28.65 | 28.63 | 28.63 | 28.62

0 39.23 |735.61 | 3529 | 3481 | 34.80 | 34.80 | 34.80

5 3 35.07 | 32.90 /7325677 | 32.31 | 3230 | 32.30 | 32.30
5 32.95 | 3284+ 32.5671°32.30 | 3230 | 32.30 | 32.30

43




Table 3.8 Frequency parameters wa’/ph/D for completely free

rectangular plates with a V-notch (a/b=1.0, v=0.3)

wa’\/ph/ D
c/a o d/b
1 2 3 4 5
0" 13.47 19.60 24.27 34.80 34.80
0.1 13.31 19.40 24.08 34.20 34.21
5° 0.3 11.58 17.63 2291 28.31 32.09
0.5 8.178 14.48 21.97 22.54 31.55
. 0.1 13.31 19.31 24.09 34.07 34.22
30° 0.3 11.56 17.08 22.94 27.52 31.43
0.5 7.843 1382 21.21 21.88 30.92
0.1 13.36 19.52 24.20 34.19 34.64
5° 0.3 12.07 18.38 22.80 27.61 33.75
0.5 8.515 15.12 20.96 24.82 32.87
0.75
0.1 13.33 19.48 24.18 34.17 34.56
30° 0.3 11.86 18.16 22.54 27.05 33.20
0.5 7.961 14.60 20.57 24.37 32.27

Note : * : No V-notch
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Table 3.9 Frequency parameters wa’/ph/D for completely free

rectangular plates with a V-notch (a/b=2.0, v=0.3)

wa’\ph!D
c/a o d/b
1 2 3 4 5
0 21.46 26.57 58.48 59.61 88.01

0.1 21.29 26.36 58.19 59.46 87.97

5° 0.3 19.96 24.47 56.63 57.00 87.60

0.5 17.67 20.49 48.74 55.39 77.20

° 0.1 21.27 26.37 58.06 59.47 87.89
30° 0.3 19.84 24.52 55.67 56.95 87.38

0.5 17.38 20.37 47.51 53.73 74.19

0.1 21.40 26.44 58.09 59.17 87.96

5° 0.3 20.83 2523 53.45 56.03 87.57

0.5 18.97 22.73 44.23 50.64 81.06

" 0.1 21.41 26.41 58.10 59.12 87.78
30° 0.3 20.85 25.03 53.22 55.58 86.58

0.5 18.95 22.28 42.54 49.54 77.86

Note : * : No V-notch
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Table 3.10 Frequency parameters wa’+/ph/D for completely free

rectangular plates with a V-notch (a/b=0.5, v=0.3)

wa’\/ph/ D
c/a o d/b
1 2 3 4 5
0" 5.366 6.644 14.62 14.90 22.00
0.1 5.356 6.561 14.13 14.86 21.02
5° 0.3 4.963 5.316 10.07 13.92 15.07
0.5 2.684 5.298 9.316 9.655 14.79
. 0.1 5.320 6.564 14.14 14.76 20.89
30° 0.3 4.813 5.165 9.647 13.24 15.03
0.5 2.428 5SS 9.081 9.366 14.61
0.1 5.357 6.584 14.28 14.88 21.56
5° 0.3 5213 5.330 9:226 14.60 15.22
0.75 0.5 2.700 5.309 7.662 12.52 14.78
. 0.1 5.322 0.561 14.21 14.81 21.57
¥ 0.3 4.864 5.247 8.712 14.19 15.20

Note : * : No V-notch
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Table 3.11 Relative reductions of the frequency parameters Aw, for

completely free rectangular plates with a V-notch (a/b=1.0, v=0.3)

Ao, (%)
c/a o d/b
1 2 3 4 5

0.1 1.19 1.02 0.78 1.72 1.70
5° 0.3 14.03 10.05 5.60 18.65 7.79
0.5 39.29 26.12 9.48 35.23 9.34

0.5
0.1 1.19 1.48 0.74 2.10 1.67
30° 0.3 14.18 12.86 5.48 20.92 9.68
0.5 41.77 29.49 12.61 37.13 11.15
0.1 0.82 0.41 0.29 1.75 0.46
5° 0.3 10.39 6.22 6.06 20.66 3.02
0.5 36.79 22.86 13.64 28.68 5.55

0.75
0.1 1.04 0.61 0.37 1.81 0.69
30° 0.3 11.95 7.35 7.13 22.27 4.60
0.5 40.90 25.51 15.25 29.97 7.27
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Table 3.12 Relative reductions of the frequency parameters Aw, for

completely free rectangular plates with a V-notch (a/b=2.0, v=0.3)

Aw, (%)
c/a o d/b
1 2 3 4 5
0.1 0.79 0.79 0.50 0.25 0.05
5° 0.3 6.99 7.90 3.16 4.38 0.47
0.5 17.66 22.88 16.66 7.08 12.28
0.5
0.1 0.89 0.75 0.72 0.23 0.14
30° 0.3 7.55 7.72 4.81 4.46 0.72
0.5 19.01 23.33 18.76 9.86 15.70
0.1 0.28 0.49 0.67 0.74 0.06
5° 0.3 2.94 5.04 8.60 6.01 0.50
0.5 11.60 14.45 24.37 15.05 7.90
0.75
0.1 0.23 0.60 0.65 0.82 0.26
30° 0.3 2.84 5.80 8.99 6.76 1.62
0.5 11.70 16.15 27.26 16.89 11.53
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Table 3.13 Relative reductions of the frequency parameters Aw, for

completely free rectangular plates with a V-notch (a/b=0.5, v=0.3)

Aw, (%)
c/a o d/b
1 2 3 4 5
0.1 0.19 1.25 3.35 0.27 4.45
5° 0.3 7.51 19.99 31.12 6.58 31.50
0.5 49.98 20.26 36.28 35.20 32.77
. 0.1 0.86 1.20 3.28 0.94 5.05
30° 0.3 10.31 22.26 34.02 11.14 31.68
0.5 54.75 22.71 37.89 37.14 33.59
0.1 0.17 0.90 2.33 0.13 2.00
5° 0.3 2.85 19.78 36.89 2.01 30.82
0.75 0.5 49.68 20.09 47.59 15.97 32.82
] 0.1 0.82 1.25 2.80 0.60 1.95
¥ 0.3 9.36 21.03 40.41 4.77 3091
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Table 4.1 Convergence of frequency parameters wa’/ph/D for a

cantilevered square plate

order of polynomial Rossi

Mode (IxJ) Leissa and
No. (1973) | Laura
3%3 4x4 5%5 6x6 77 8x8 9x9 | 10x10 (1996)

1 3.494 | 3.489 | 3.475 | 3.474 | 3.472 | 3.472 | 3.471 | 3.471 | 3.492 3.471

2 8.597 | 8.546 | 8.544 | 8.513 | 8.512 | 8.509 | 8.509 | 8.508 | 8.525 8.508

3 21.56 | 21.50 | 21.31 | 21.31 | 21.29 | 21.29 | 21.29 | 21.29 | 21.43 21.29

4 31.41 | 31.32 | 27.46 | 27.46 | 27.20 | 27.20 | 27.20 | 27.20 | 27.33 27.20

5 32.42 1 31.33 | 31.20 | 30.98 | 30.98 | 30.97 | 30.96 | 30.96 | 31.11 30.96
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Table 4.2 Convergence of frequency parameters wa’/ph/D for a

cantilevered square plate with a V-notch (c/a=0.5, d/b=0.03, a=170°)

Mode No. of order of polynomial (/xJ)
Corner

No.  netions | 3%3 | 4x4 | 5x5 | 6x6 | 7x7 | 8x8 | 9x9
0 3496 | 3491 | 3477 | 3476 | 3474 | 3473 | 3473
! 1 3496 | 3491 | 3.477 | 3475 | 3474 | 3473 | 3473
2 3495 | 3490 | 3477 | 3475 | 3473 | 3473 | 3472

3 3495 | 3489 | 3476 | 3475 | 3473 / /
0 8.549 | 8.495 | 8492 | 8.461 | 8.461 8.457 | 8.457
5 1 8.531 | 8490 | 8483 | 8.456 | 8.455 | 8.452 | 8.452
2 8.511 8.488 | 8.476 | 8.456 | 8.454 | 8.452 | 8.450

3 8.494 | 8.488 | 8.466 | 8.455 | 8.453 / /
0 2145 | 21.39 | 21.19 | 21.19 | 21.17 | 21.17 | 21.16
1 21.42 | 2136+ 2119+, 21.18 | 21.16 | 21.15 | 21.15
3 2 21.37 | 2131 20219 °21.18 | 21.16 | 21.15 | 21.14

3 21.37 | 21.20 | 2118 |- 2116 | 21.15 / /
0 31.06 | 30.66 || 27.25 |"27:25 | 27.00 | 27.00 | 26.99
4 1 30.83 | 2992 {2724 | 2723 | 2699 | 26.99 | 26.99
2 30.28 | 2750+ 27.231+27.21 | 2699 | 26.98 | 26.98

3 28.55 | 2740 | 27.23 | 27.09 | 26.98 / /
0 32.40 | 31.53 | 30.99 | 30.77 | 30.76 | 30.75 | 30.74
5 1 31.81 | 31.26 | 30.97 | 30.76 | 30.74 | 30.73 | 30.72
2 31.64 | 31.05 | 30.90 | 30.75 | 30.74 | 30.72 | 30.72

3 3143 | 31.05 | 30.79 | 30.74 | 30.73 / /

Note : “/” : no result due to matrix ill-conditioning
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Table 4.3 Convergence of frequency parameters wa’/ph/D for a

cantilevered square plate with a V-notch (c/a=0.5, d/b=0.1, a=30°)

Mode No. of order of polynomial (/xJ)
Corner

No. 1 nctions | 4%4 | 5x5 | 6x6 | 7x7 | 8x8 | 9x9 | 10x10
0 3.489 | 3474 | 3474 | 3473 | 3472 | 3472 | 3472
| 3 3.480 | 3.464 | 3.461 | 3.460 | 3.459 | 3.459 | 3.459
5 3.474 | 3463 | 3.461 | 3.459 | 3.459 | 3.459 | 3.458

7 3.473 | 3.462 | 3.461 / / / /
0 8.538 | 8.536 | 8.503 | 8.503 | 8.500 | 8.499 | 8.498
, 3 8.441 | 8434 | 8402 | 8.400 | 8397 | 8.396 | 8.394
5 8.435 | 8.408 | 8.400 | 8.399 | 8396 | 8.395 | 8.393

7 8.410 | 8.407 | 8.399 / / / /
0 2147 | 2128 | 2128 | 2126 | 2125 | 21.25 | 21.25
\ 3 21.00 | 20.94 /120192, 20.90 | 20.89 | 20.89 | 20.88
5 20.95 | 20092 | 2091 [ 20.89 | 20.89 | 20.88 | 20.88

7 2094 | 2091 | 2090 [+ 7 / / /
0 31.12 | 27.44 | 2744 | 278 | 27.18 | 27.18 | 27.18
. 3 28.33 | 27.270 727257 27.00 | 27.00 | 27.00 | 27.00
5 2741 | 2723+ 27.11:27.00 | 26.99 | 26.99 | 26.99

7 2730 | 27.13 | 27.00 | / / /
0 3142 | 3111 | 30.89 | 30.89 | 30.88 | 30.87 | 30.87
3 30.79 | 30.65 | 30.37 | 30.36 | 3035 | 30.34 | 30.33
> 5 30.64 | 30.38 | 3036 | 30.35 | 3034 | 30.33 | 30.33

7 30.44 | 30.38 | 30.35 / / / /

Note : “/” : no result due to matrix ill-conditioning
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Table 4.4 Convergence of frequency parameters wa’/ph/D fora

cantilevered square plate with a V-notch (c/a=0.5, d/b=0.3, a=30°)

Mode No. of order of polynomial (/xJ)
Corner
No. 1 nctions | 4%4 | 5x5 | 6x6 | 7x7 | 8x8 | 9x9 | 10x10
0 3.490 | 3.474 | 3473 | 3470 | 3.469 | 3.468 | 3.468
3 3395 | 3.359 | 3.356 | 3.350 | 3.350 | 3.348 | 3.348
1 5 3369 | 3.353 | 3351 | 3.347 | 3.345 | 3344 | 3.344
8 3363 | 3.349 | 3348 | 3.345 | 3.344 | 3344 | 3.343
10 3357 | 3.348 | 3347 | 3.344 | 3.343 | 3.343 | 3.343
0 8.508 | 8.504 | 8.463 | 8.462 | 8.457 | 8.456 | 8.453
3 7.668 | 7.646 | 7.527 | 7.503 | 7.483 | 7.469 | 7.460
2 7.666 | 7.507 | 7.474 | 7432 | 7.427 | 7.420 | 7.415
7.538 | 7.462 | 7.429 | 7.425 | 7.418 | 7416 | 7.414
10 7.506 | 7.437.4107424,,| 7420 | 7.417 | 7415 | 7.414
2130 | 2812 | 2dd2. [21.08 | 21.07 | 21.05 | 21.05
18.92 | 18.47 | 1841 | 1824 | 1822 | 18.15 | 18.14
3 18.59 | 18.35 | 18.30 | 18:10 | 18.05 | 18.04 | 18.01
18.38 | 1823|1808 18.07 | 18.02 | 18.01 | 18.00
10 18.37 | 18.18+:| 18.07:]18.02 | 18.01 | 18.00 | 18.00
3042 | 27.43 | 2742 | 27.15 | 27.15 | 27.14 | 27.14
26.09 | 2520 | 25.09 | 24.83 | 24.80 | 24.78 | 24.77
4 2521 | 24.98 | 24.89 | 24.73 | 2472 | 24.71 | 2471
24.97 | 24.84 | 2473 | 2471 | 2470 | 24.70 | 24.70
10 2491 | 24.74 | 2472 | 2471 | 2470 | 24.70 | 24.69
31.90 | 30.84 | 30.61 | 30.57 | 30.56 | 30.52 | 30.52
29.05 | 28.43 | 2826 | 28.19 | 28.19 | 28.17 | 28.16
5 28.53 | 2834 | 2824 | 28.17 | 28.15 | 28.14 | 28.13
28.33 | 2822 | 28.16 | 28.15 | 28.14 | 28.13 | 28.13
10 2826 | 28.19 | 28.16 | 28.14 | 28.13 | 28.13 | 28.13
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Table 4.5 Convergence of frequency parameters wa’/ph/D for a

cantilevered square plate with a V-notch (c/a=0.5, d/b=0.5, a=30°)

Mode No. of order of polynomial (/xJ)
Corner

No.  netions | 3%3 | 4x4 | 5x5 | 6x6 | 7x7 | 8x8 | 9x9
0 3486 | 3.481 3.463 | 3.461 3456 | 3.455 | 3.453

5 3.114 | 3.067 | 3.044 | 3.037 | 3.034 | 3.033 | 3.031

1 10 3.091 | 3.048 | 3.035 | 3.030 | 3.029 | 3.027 | 3.026
15 3.083 | 3.042 | 3.032 | 3.030 | 3.028 | 3.026 | 3.026

18 3.079 | 3.040 | 3.031 | 3.029 | 3.027 | 3.026 | 3.025

8.608 | 8.520 | 8.515 | 8.468 | 8.467 | 8.460 | 8.460

7.034 | 6.634 | 6.175 | 5976 | 5.880 | 5.839 | 5.822

2 10 6.781 | 6.168 | 5.906 | 5.830 | 5.818 | 5.804 | 5.801
15 6.673 | 6.145 | 5.858 | 5817 | 5.806 | 5.798 | 5.793

18 6.641 | 6.132+]'5.854-.| 5815 | 5804 | 5.796 | 5.793

0 21.33 | 2825 | 21208+ °21.07 | 20.99 | 20.99 | 20.94

5 16.82 | 15.93 15.51 15:18 | 1499 | 14.89 | 14.86

3 10 16.62 15.39 15.05 14:91 14.85 14.82 14.81
15 16.49 | 15.33 14.95 | 1486 | 14.83 14.81 14.80

18 16.47 15.30 14,94-1-714.85 14.83 14.81 14.80

0 30.75 | 30.00 | 27.40 | 27.36 | 27.10 | 27.09 | 27.08

5 2048 | 20.06 | 19.49 | 1938 | 19.26 | 19.22 | 19.20

4 10 20.23 19.59 | 19.32 | 19.21 19.19 | 19.17 | 19.17
15 20.12 | 19.55 19.27 | 19.20 | 19.18 | 19.16 | 19.16

18 20.07 | 19.53 19.26 | 19.20 | 19.17 | 19.16 | 19.16

32.890 | 32.24 | 30.76 | 30.55 | 3044 | 30.43 | 30.39

2837 | 27.80 | 27.51 | 2741 | 27.25 | 27.24 | 27.23

5 10 27.60 | 2740 | 27.31 | 2724 | 2722 | 27.22 | 27.21
15 27.55 | 27.37 | 27.28 | 27.23 | 27.22 | 27.21 27.21

18 27.51 | 2736 | 27.27 | 27.22 | 27.22 | 27.21 27.21
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Table 4.6 Convergence of frequency parameters wa’/ph/D for a

cantilevered square plate with a V-notch (c/a=0.5, d/b=0.3, a=5°)

Mode No. of order of polynomial (/xJ)
Corner
No. Functions | #*4 SX5 6%6 <7 8x8 9x9 | 10x10
0 3489 | 3476 | 3.474 | 3472 | 3472 | 3472 | 3472
3 3.391 | 3.360 | 3.358 | 3.353 | 3.353 | 3.351 | 3.351
1 5 3371 | 3.357 | 3.355 | 3.351 | 3.350 | 3.349 | 3.348
8 3.367 | 3.353 | 3.352 | 3.350 | 3.349 | 3.348 | 3.348
10 3362 | 3.353 | 3.352 | 3.349 | 3.348 | 3.348 | 3.348
0 8.542 | 8.539 | 8507 | 8.506 | 8.503 | 8503 | 8.501
3 7.727 | 7.708 | 7.604 | 7.587 | 7.570 | 7.561 7.552
2 7.715 | 7.592 | 7.560 | 7.526 | 7.522 | 7.516 | 7.513
7.600 | 7.549 | 7.526 | 7.521 | 7.515 | 7.513 | 7.511
10 7.574 | 7.53L+) 7.522-, 7.518 | 7.514 | 7.513 | 7.511
21.47 | 2128 | 2128 | 21.26 | 21.26 | 21.25 | 21.25
19.36 | 19.08 | 19:02 |- 18:89 | 18.87 | 18.82 | 18.81
3 19.20 | A8.97 | 1893 | 1875 | 18.72 | 18.70 | 18.68
19.01 18.86. 1 18.73 | 18.71 18.68 | 18.67 | 18.66
10 18.98 | 18.77+| 18,72-1-"18.69 | 18.67 | 18.67 | 18.66
31.15 | 2747 | 2747 | 27.20 | 27.20 | 27.20 | 27.20
26.31 | 25.35 | 25.28 | 25.03 | 25.01 | 25.00 | 24.99
4 2536 | 2520 | 25.14 | 2497 | 2497 | 2496 | 24.96
25.19 | 25.11 | 2499 | 2497 | 2496 | 2496 | 24.96
10 2511 | 2499 | 2497 | 2497 | 2496 | 2496 | 24.96
3142 | 31.11 | 30.89 | 30.89 | 30.87 | 30.87 | 30.87
29.73 | 29.17 | 28.99 | 2892 | 2891 | 28.89 | 28.88
5 2931 | 29.10 | 28.97 | 28.88 | 28.85 | 28.85 | 28.84
29.10 | 2897 | 28.87 | 28.86 | 28.84 | 28.84 | 28.83
10 2899 | 28.89 | 28.86 | 28.85 | 28.84 | 28.84 | 28.83
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Table 4.7 Convergence of frequency parameters wa’/ph/D for a

cantilevered square plate with a straight crack (c/a=0.5, d/b=0.25, a=0°,
h/a=1/80, v=0.33)

Mode No. of order of polynomial (IXJ) AFESPI ABAQUS
Corner
No. , (2001) | (2001)
Functions | 4x4 | 5x5 6x6 | Tx7 8x8 9%x9 | 10x10
0 3.482 | 3.466 | 3.464 | 3.462 | 3.462 | 3.461 | 3.461
3 3.413|3.391 | 3.386 | 3.383 | 3.382 | 3.381 | 3.380
1 3.177 3.357
6 3.407 | 3.388 | 3.386 | 3.382 | 3.381 | 3.380 | 3.380
8 3.403 | 3.388 | 3.386 | 3.382 | 3.381 | 3.380 /
0 8.413 | 8.411 | 8.378 | 8.377 | 8.373 | 8.373 | 8.372
3 7903 | 7.840 | 7.782 | 7.753 | 7.747 | 7.737 | 7.734
2 7.334 7.644
6 7.833|7.770 | 7.747 | 7.740 | 7.735 | 7.730 | 7.726
8 7.822 | 7.767 | 7.7461 7739 | 7.734 | 7.729 /
0 21.35 | 21.15:421.14.4.21.42 (F21.12 | 21.11 | 21.11
3 19.86 | 19.64 | 19.58:119.49.1119.47 | 19.42 | 19.41
3 18.18 19.08
6 19.76 | 19.58 | 19.48 1°19.43| 19.41 | 19.39 | 19.38
8 19.75 | 19.56 | 19:47 171942 [/19.40 | 19.39 /
0 3098 | 27.34127.34 | 27.08.4 27.08 | 27.08 | 27.08
3 26.99 | 26.02 | 25.97 | 25.68 | 25.68 | 25.67 | 25.66
4 24.33 25.39
6 26.42 | 25.84 | 25.78 | 25.68 | 25.67 | 25.66 | 25.66
8 26.35 | 25.79 | 25.75 | 25.68 | 25.67 | 25.66 /
0 31.14 | 30.85 | 30.62 | 30.62 | 30.60 | 30.60 | 30.60
3 29.85129.31 | 29.07 | 29.03 | 29.01 | 28.99 | 28.98
5 27.40 28.77
6 29.39 1 29.18 | 29.03 | 29.01 | 29.00 | 28.98 | 28.98
8 29.37 1 29.17 | 29.03 | 29.01 | 28.99 | 28.98 /

Note : “/” : no result due to matrix ill-conditioning
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Table 4.8 Frequency parameters wa’/ph/D for cantilevered rectangular

plates with a V-notch (a/b=1.0, v=0.3)

wa’\/ph/ D
c/a o d/b
1 2 3 4 5
0" 3.471 8.508 21.29 27.20 30.96
0.1 3.459 8.407 20.96 27.01 30.47
5° 0.3 3.348 7.511 18.66 24.96 28.83
0.5 3.046 5.998 15.79 20.93 28.15
. 0.1 3.458 8.393 20.88 26.99 30.33
30° 0.3 3.343 7.415 18.00 24.70 28.13
0.5 3.026 5799 14.81 19.16 27.21
0.1 3.469 8.449 21.16 27.06 30.62
5° 0.3 3.436 7.923 19.28 23.57 28.01
0.5 3.302 6.705 13.31 20.89 27.32
o 0.1 3.462 8.406 21.15 26.93 30.63
30° 0.3 3.378 7.670 19.07 22.95 27.53
0.5 3.132 6.332 12.30 20.49 26.64

Note : * : No V-notch
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Table 4.9 Frequency parameters wa’/ph/D for cantilevered rectangular

plates with a V-notch (a/b=2.0, v=0.3)

wa’\/ph/ D
c/a o d/b
1 2 3 4 5
0" 3.440 14.80 21.44 48.19 60.16
0.1 3.434 14.71 21.29 47.94 60.05
5° 0.3 3.384 13.94 20.20 46.10 57.86
0.5 3.270 12.44 18.41 41.06 51.33
. 0.1 3.434 14.70 21.27 47.84 60.05
30° 0.3 3.381 13.84 20.03 45.41 57.80
0.5 3.263 o 17.99 39.32 50.17
0.1 3.439 14.76 21.38 47.82 59.71
5° 0.3 3.427 14.42 20.86 43.90 56.19
0.5 3.396 13.68 19.42 35.49 50.42
o 0.1 3.435 14.72 21.38 47.83 59.65
30° 0.3 3.398 14.18 20.87 43.85 55.54
0.5 3.318 13.24 19.37 34.46 49.05

Note : * : No V-notch
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Table 4.10 Frequency parameters wa’./ph/D for cantilevered

rectangular plates with a V-notch (a/b=0.5, v=0.3)

wa’\/ph/ D
c/a o d/b
1 2 3 4 5
0" 3.493 5.352 10.18 19.08 21.84
0.1 3.468 5.262 9.897 18.59 21.02
5° 0.3 3.068 4.220 8.379 15.10 17.04
0.5 1.903 3.628 8.007 11.51 15.23
. 0.1 3.467 5.249 9.855 18.42 20.87
30° 0.3 3.010 4.123 8.149 14.02 16.00
0.5 1.750 3.598 7.828 10.91 13.33
0.1 3.487 51299 10.01 18.87 21.41
5° 0.3 3.302 4.467 8:396 11.74 18.38
0.75 0.5 2.108 3.847 7.251 9.740 16.98
. 0.1 3.474 5.249 9.907 18.68 21.42
¥ 0.3 3.097 4.264 8.023 10.84 18.04

Note : * : No V-notch
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Table 4.11 Relative reductions of the frequency parameters Aw, for

cantilevered rectangular plates with a V-notch (a/b=1.0, v=0.3)

Ao, (%)
c/a o d/b
1 2 3 4 5

0.1 0.35 1.19 1.55 0.70 1.58
5° 0.3 3.54 11.72 12.35 8.24 6.88
0.5 12.24 29.50 25.83 23.05 9.08

0.5
0.1 0.37 1.35 1.93 0.77 2.03
30° 0.3 3.69 12.85 15.45 9.19 9.14
0.5 12.82 31.84 30.44 29.56 12.11
0.1 0.06 0.69 0.61 0.51 1.10
5° 0.3 1.01 6.88 9.44 13.35 9.53
0.5 4.87 21.19 37.48 23.20 11.76

0.75
0.1 0.26 1.20 0.66 0.99 1.07
30° 0.3 2.68 9.85 10.43 15.63 11.08
0.5 9.77 25.58 42.23 24.67 13.95
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Table 4.12 Relative reductions Aw, of the frequency parameters for

cantilevered rectangular plates with a V-notch (a/b=2.0, v=0.3)

Ao, (%)
c/a o d/b
1 2 3 4 5

0.1 0.17 0.61 0.70 0.52 0.18
5° 0.3 1.63 5.81 5.78 4.34 3.82
0.5 4.94 15.95 14.13 14.80 14.68

0.5
0.1 0.17 0.68 0.79 0.73 0.18
30° 0.3 1.72 6.49 6.58 5.77 3.92
0.5 5.15 17.43 16.09 18.41 16.61
0.1 0.03 0.27 0.28 0.77 0.75
5° 0.3 0.38 2.57 2.71 8.90 6.60
0.5 1.28 T 9.42 26.35 16.19

0.75
0.1 0.15 0.54 0.28 0.75 0.85
30° 0.3 1.22 4.19 2.66 9.01 7.68
0.5 3.55 10.54 9.65 28.49 18.47
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Table 4.13 Relative reductions Aw, of the frequency parameters for

cantilevered rectangular plates with a V-notch (a/b=0.5, v=0.3)

Aw, (%)
c/a o d/b
1 2 3 4 5
0.1 0.72 1.68 2.78 2.57 3.75
5° 0.3 12.17 21.15 17.69 20.86 21.98
0.5 45.52 32.21 21.35 39.68 30.27
. 0.1 0.74 1.92 3.19 3.46 4.44
30° 0.3 13.83 22.96 19.95 26.52 26.74
0.5 49.90 32.77 23.10 42.82 38.97
0.1 0.17 0.99 1.67 1.10 1.97
5° 0.3 5.47 16.54 17.52 38.47 15.84
0.75 0.5 39.65 28.12 28.77 48.95 22.25
] 0.1 0.54 1.92 2.68 2.10 1.92
¥ 0.3 11.34 20.33 21.19 43.19 17.40
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Fig. 2.1 Stress resultants in polar coordinate
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Fig. 2.2 A-sectorial plate
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Fig. 2.3 The coordinate system defined in a sectorial plate
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Fig. 2.4 Variation of minimum Re(4,) with vertex angle a

(after Huang, C.S. (1991), Singularities in plate vibration problems, Ph. D

dissertation, The Ohio State University, Columbus, Ohio.)
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Fig. 3.1 The coordinate system defined in a completely free rectangular plate

with a V-notch
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Mode No.
a d/b
1 2 3 4 5
0 QOlEE
|
(13.47) (19.60) (24.27) (34.80) (34.80)
> <> LN
(13.31) (19.40) (24.08) (34.20) (34.21)
| T
5] 03 A A (
(11.58) (17.63) (22.91) (28.31) (32.0)
o || it AT
(8.178) (14.48) 21.97) (22.54) (31.55)
0.1 @ 7 V
(13.31) (19.31) (24.09) (34.07) (34.22)
v W
30° 0.3 ~_ W (
(11.56) (17.08) (22.94) (27.52) (31.43)
(7.843) (13.82) 21.21) (21.88) (30.92)

Fig. 3.2 Nodal patterns for completely free square plates with a V-notch at
c/a=0.5
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N Mode No.
1 2 3 4 5
@) Ni¥
’ N [
(1347) | (19.60) | (2427) | (34.80) | (34.80)
I
0.1 ~ f
(1336) | (19.52) | (2420) | (34.19) | (34.64)
i q—H =
B I 3 4
(1207) | (1838) | (22.80) | (27.61) | (33.79)
Nl
0.5 f
(8.515) |~ @5.12) | (2096) | (2482) | (32.87)
TN
0.1 W ~ i
(13.33) | (1948) | (24.18) | (34.17) | (34.56)
-V Vo VA
0 O
(11.86) | (18.16) | (22.54) | (27.05) | (33.20)
y —\[ —y j\f ;% ﬂﬁ
(7.961) | (14.60) | (20.57) | (2437) | (3227

Fig. 3.3 Nodal patterns for completely free square plates with a V-notch at
c/a=0.75



Mode No.
d/b
I 2 3 4 5
0 ) ( | > < —
(21.46) (26.57) (58.48) (59.61) (88.01)
] E—
0.1 ( ]
(21.29) (26.36) (58.19) (59.46) (87.97)
| Bt ——
03 R j ! (/ ]
(19.96) (24.47) (56.63) (57.00) (87.60)
03 ) k \%/ Y RS Y
(17.67) (20.49) (48.74) (55.39) (77.20)

Fig. 3.4 Nodal patterns for completely free rectangular plates (a/b=2.0) with a V-notch at c/a=0.5
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Mode No.

a d/b
1 2 3 4 5
: ) | > < E——
(21.46) (26.57) (58.48) (59.61) (88.01)
o ) ][] > [ <
(21.27) (26.37) | (58.06) (59.47) (87.89)
v >33 ——
300 | 03 R \\ ! (/ ]
(19.84) (24.52) (55.67) (56.95) (87.38)
03 ) \ % Y RS V
(17.38) (20.37) 47.51) (53.73) (74.19)

Fig. 3.4 (continue)
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Mode No.

d/b
1 2 3 4 5
° ) ( | > < ]
(21.46) (26.57) (58.48) (59.61) (88.01)
0! ) ( | T% ) / ( E—
(21.40) (26.44) (58.09) (59.17) (87.96)
V ’J | V\ V — —1
0.3 ﬁ \ f -
(20.83) (25.23) (53.45) (56.03) (87.57)
(18.97) (22.73) (44.23) (50.64) (81.06)

Fig. 3.5 Nodal patterns for completely free rectangular plates (a/b=2.0) with a V-notch at c/a=0.75
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Mode No.

a d/b

1 2 3 4 5

: ) ( | > < —
(21.46) (26.57) (58.48) (59.61) (88.01)

0! ) ( W \Wk\\ ) / ( E—
21.41) (26.41) | (58.10) (59.12) (87.78)

’J Ve 15) | V -\

300 | 03 (// = K L
(20.85) (25.03) (53.22) (55.58) (86.58)
(18.95) (22.28) (42.54) (49.54) (77.86)

Fig. 3.5 (continue)
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Mode No.
a d/b
1 2 3 4 5
. I —
(5.366) (6.644) (14.42) (14.90) (22.00)
| T |
0.1
(5.356) (6.561) (14.13) (14.86) (21.02)
O ~_
5 03
T | I T
(4.963) (5.316) (10.07) (13.92) (15.07)
0.5
(2.684) (5.298) (9.316) (9.655) (14.79)

Fig. 3.6 Nodal patterns for completely free rectangular plates (a/b=0.5)
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Mode No.

a d/b
1 2 3 4 5
0 I I -
(5.366) (6.644) (14.42) (14.90) (22.00)
V V] V
0.1
(5.320) (6.564) (14.14) (14.76) (20.89)
. O ~_
30 0.3
K L
(4.813) (5.165) (9.647) (13.24) (15.03)
0.5
(2.428) (5.135) (9.081) (9.366) (14.61)

Fig. 3.6 (continue)
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Mode No.
a d/b
1 2 3 4 5
. I -
(5.366) (6.644) (14.42) (14.90) (22.00)
v J v M| —
0.1 (ﬁ o
(5.357) (6.584) (14.28) (14.88) (21.56)
5 0.3 J F\
| B | //
(5.213) (5.330) (9.226) (14.60) (15.22)
0.5 J { I
- \ L
(2.700) (5.309) (7.662) (12.52) (14.78)

Fig. 3.7 Nodal patterns for completely free rectangular plates (a/b=0.5)

with a V-notch at ¢/a=0.75
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Mode No.

a d/b
1 2 3 4 5
. I T o
(5.366) (6.644) (14.42) (14.90) (22.00)
K ]
0.1
LR =
30° (5.322) (6.561) (14.21) (14.81) (21.57)
0.3 j \
K il //
(4.864) (5.247) (8.712) (14.19) (15.20)

Fig. 3.7 (continue)




Mode No.
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Note : “k=0" - the solutions obtained from 12x12 polynomials with the

-0.45

Ritz method.

Fig. 3.8 superposition of the fifth and forth mode shapes for completely
free square plates
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Fig. 4.1 The coordinate system defined-insa cantilevered rectangular plate with

a V-notch
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Mode No.

a d/b
1 2 3 4 5
1|
0 ]
G471) | (8508 | (21290 | (27200 | (30.96)
l v l — | 7
0.1 < - F
(3.459) | (8407 | (2096) | (27.01) | (3047
| | | 117 1/
5 | 03 T
(3348) | (7511) | (18.66) | (2496) | (28.83)
&
(3.046) | = (5.998) . (1579) | (2093) | (28.15)
V V V ,V\ V
0.1 K I (
(3.458) | (8393) | (2088) | (2699) | (30.33)
\/ \/ \/ Ve \
300 | 03 T
/|
(3343) | (7415 | @18.00) | (24700 | (28.13)
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Fig. 4.2 Nodal patterns for cantilevered square plates with a V-notch at
c/a=0.5
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Mode No.

a d/b
1 2 3 4 5
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Fig. 4.3 Nodal patterns for cantilevered square plates with a V-notch at
c/a=0.75
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Mode No.

d/b
I 2 3 4 5
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Fig. 4.4 Nodal patterns for cantolevered rectangular plates (a/b=2.0) with a V-notch at c/a=0.5
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Mode No.

a d/b
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Fig. 4.4 (continued)




Mode No.

d/b
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Fig. 4.5 Nodal patterns for cantilevered rectangular plates (a/b=2.0) with a V-notch at c/a=0.75




Mode No.

a d/b
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Fig. 4.5 (continued)




Mode No.
a d/b
1 2 3 4 5
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Fig. 4.6 Nodal patterns for cantilevered rectangular plates (a/b=0.5) with
a V-notch at c/a=0.5
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Mode No.

a d/b
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Fig. 4.6 (continued)




Mode No.
a d/b
1 2 3 4 5
] \’/
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] /_\
(5.366) (6.644) (14.42) (14.90) (22.00)
| | | | [
] \—/
0.1
] /_\
(3.487) (5.299) (10.01) (18.87) (21.41)
I = —— ] \
5 0.3
(3.302) (4.467) (8.396) (11.74) (18.38)
0.5
(2.108) (3.847) (7.251) (9.740) (16.98)

Fig. 4.7 Nodal patterns for cantilevered rectangular plates (a/b=0.5) with
a V-notch at c/a=0.75
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Mode No.

a d/b
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Fig. 4.7 (continued)




