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利用 Ritz 法分析具有 V 型缺口之矩形薄板振動 

研究生︰廖慎謙                  指導教授︰黃炯憲 博士 

國立交通大學土木工程學系碩士班 

摘 要 

應力奇異點之問題常發生於工程力學的分析計算中。本論文以薄

板理論為基礎，利用 Ritz 法分析具有 V 型缺口之矩形板振動，在分

析過程中使用兩組允許函數序列，分別為：(1)多項式函數，其本身

可構成一組完備之序列；(2)角函數，滿足 V 型缺口兩自由邊緣之邊

界條件，並可精確地描述缺口尖端之應力奇異特性。本論文之研究案

例包含完全自由與懸臂矩形板，先以完整的收斂性分析驗證角函數能

夠有效地加速自然振動頻率之收斂速度，並探討不同幾何及位置之 V

型缺口對矩形板振動行為之影響。本論文為首次研究具有 V 型缺口

之矩形板振動，此研究結果可提供後人研究參考與比較。 
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Vibrations of Rectangular Thin Plates with a V-notch via the 

Ritz Method 

Student︰Shen-Chien Liao    Adviser︰Dr. Chiung-Shiann Huang 

Department of Civil Engineering 

National Chiao-Tung University 

Abstract 

This thesis presents a novel method for accurately determining the 

natural frequencies of rectangular plates with an edge V-notch. Based on 

the well-known Ritz method, two sets of admissible functions are used 

simultaneously: (1) algebraic polynomials, which form a complete set of 

functions; (2) corner functions, which are the general solutions of 

bi-harmonic equation, duplicate the boundary conditions along the edges 

of the notch, and describe the stress singularities at the sharp vertex of the 

V-notch exactly. The rectangular plates under consideration are either 

completely free or cantilevered. The effects of corner functions on the 

convergence of solutions are demonstrated through comprehensive 

convergence studies. Accurate numerical results and nodal patterns are 

tabulated for V-notched plates having various notch angle, depths and 

locations. These are the first known frequency and nodal pattern results of 

V-notched rectangular plates in the published literature. 
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Chapter 1  Introduction 

1.1 Research Background 

Plate structures are very common in engineering practice, and are 

extensively used in civil, mechanical, and aeronautical engineering, such 

as concrete floor slab and aircraft skin components. Their vibrational 

behaviors have caught great interests of many researchers. 

Stress singularities mean that infinite stresses exist at some points in 

the domain under consideration, and are often encountered in plate 

problems. Three main reasons causing stress singularities are: (1) 

discontinuousness of geometry, such as cracks in the domain or sharp 

re-entrant angles at the boundary; (2) concentrated loads, such as point 

forces or moments; (3) suddenly change of material properties, such as 

composite material. When the stress singularity behaviors exist in the 

domain under consideration, it is necessary to find the asymptotic 

solutions, which can exactly describe the stress singularities, for 

obtaining accurate solutions for static or vibration problems. However, as 

the demand for engineering structures is improving, a singularity problem 

is unavoidable in engineering analysis. 

Vibrations of V-notch plates are concerned with stress singularity 

problems due to the sharp vertex. Such notches may be generated 

intentionally in the plate for clearance or other reasons. This thesis 

utilizes the well-known Ritz method to analyze the vibration of 

rectangular plates with a V-notch based on the classical plate theory. Two 
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sets of admissible functions are used in the analysis method 

simultaneously: (1) algebraic polynomials, which form a complete set of 

functions; (2) corner functions, which are the general solutions of 

bi-harmonic equation, duplicate the boundary conditions along the edges 

of the notch, and describe the stress singularities at the sharp vertex of the 

V-notch exactly. The rectangular plates under consideration are 

completely free and cantilevered, respectively. The effects of the 

asymptotic solutions on the convergence of numerical solutions are 

demonstrated through convergence studies. The efftects of the V-notch on 

the vibration behaviors of rectangular plates also are discussed in detail. 

1.2 Literature Review 

On the topic of plate vibrations, at least 2000 research papers have 

been published. Leissa (1967) summarized the methods of analysis and 

numerical results found in 500 references on the free vibration of plates 

published before 1967 in his classical monograph. Since then, research 

and publication on this subject has been at an increasing rate. In these 

studies, vibration of cracked plates is a problem of greatest interests, 

which combines the fields of vibration analysis and stress singularity. 

Only a few papers about this problem are published. Most of them are 

based on the classical theory and are reviewed below. 

Most of the published works considered the cracked rectangular 

plates with simply supported at all sides or at two opposite sides. Because 

analytical solutions exists for such plates with no crack, semi-analytical 

solutions can be constructed for such plates with cracks along a straight 
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line perpendicular to the simply supported edge. To investigate the 

vibrations of simply supported rectangular plates with cracks, Lynn and 

Kumbasar (1967) used Green’s function approach to obtain the solutions 

for Fredholm integral equations of the first kind, while Stahl and Keer 

(1972) formulated the problem as dual series equations and reduced to 

homogeneous Fredholm integral equations of the second kind. Aggarwala 

and Ariel (1981) used Stahl and Keer’s approach to analyze the vibration 

of a plate with various crack configurations along the symmetry axes of 

the plate. Solecki (1983) constructed a solution for vibrations of a cracked 

plate by using Navier form of solution along with finite Fourier 

transformation of discontinuous functions for the displacement and slope 

across the crack. Recently, Khadem and Rezaee (2000) used so called 

modified comparison functions constructed from Levy’s form of solution 

as the admissible functions of the Ritz method to analyze a simply 

supported rectangular plate with a crack having an arbitrary length, depth 

and location parallel to one side of the plate. 

To study the vibration behaviors of cracked rectangular plates with 

two opposite edges simply supported, Hirano and Okazaki (1980) used 

Levy’s form of solution and matched the boundary conditions by means 

of a weighted residual method, while Neku (1982) modified Lynn and 

Kumbasar’s approach by establishing the needed Green’s function using 

Levy’s form of solution. 

To consider the vibrations of a cracked rectangular plate with 

arbitrary boundary conditions, a numerical method has to be used. Qian et 

al. (1991) developed a finite element solution by deriving the stiffness 
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matrix for an element including the crack tip from the integration of the 

stress intensity factor. Yuan and Dickinson (1992) decomposed a 

rectangular plate under consideration into several domains and introduced 

artificial springs at the joints between the domain so that the Ritz method 

with regular admissible functions can be easily applied to find the 

solutions. Krawczuk (1993) proposed a finite element solution similar to 

that of Qian et al., except that the stiffness of an element including the 

crack tip was expressed in a closed form. Liew et al. (1994) developed a 

domain decomposition method for the vibrations of cracked rectangular 

plates with various boundary conditions. 

In the above-mentioned literature, the solutions, except for the finite 

element solutions, by no means considered the characteristic of the stress 

singularities. In the present thesis, the Ritz method is used to analyze the 

vibrations of rectangular plates with a V-notch. It is more suitable for 

solving the problem than a traditional finite element approach. Based on 

the classical plate theory, a finite element approach needs C1 type 

elements, which are much more complicated than C0 type elements, and 

are difficult to establish. The asymptotic solutions derived by Williams 

(1952) are used along with suitable polynomials as admissible functions 

in the present problem. Similar analysis procedure has been used to 

determine the natural frequencies and mode shapes for sectorial plates 

and circular plates with V-notches by Leissa et al. (1993a, 1993b). It is 

demonstrated here by obtaining extensive results for frequencies and 

mode shapes of rectangular plates having various notch angle, depths and 

locations. The present results serve not only to improve the understanding 
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the vibration behavior of a V-notched plate, but also as benchmark data 

against those from other numerical methods or experiments. 

1.3 Contents in the Thesis 

The contents in the thesis are mainly divided into five chapters. The 

contents in the following chapters are introduced briefly below. Chapter 2 

shows the derivation of asymptotic solutions, and discusses the stress 

singularities at a corner. Chapter 3 analyzes the vibration of completely 

free rectangular plate with a V-notch, where stress singularities occur at 

the vertex of the V-notch. Chapter 4 analyzes the cantilevered rectangular 

plates with a V-notch. Finally, conclusions and recommendations for this 

study are presented in Chapter 5.
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Chapter 2  Corner Functions and Stress Singularities 

The stress singularities at sharp corners were first demonstrated by 

Williams (1952). The stress singularity behaviors also have great 

influence on vibration problems of such plates. This work applies the Ritz 

method to analyze the vibration of rectangular plates with a V-notch. 

Besides suitable polynomial functions, the asymptotic solutions derived 

by Williams (1952) are introduced into the admissible functions in the 

analysis. In this chapter, the derivation of the asymptotic solutions is 

explicated, and the stress singularities are also discussed. 

2.1 Corner Functions and Characteristic Equations 

The governing equation without external loading in the classical plate 

theory, in polar coordinates is 

0),(4 =∇ θrw  (2.1) 

where w(r, θ) is the transverse displacement of a plate; ▽2 is the 

Laplacian operator, 2

2

2

2
2 1
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. The stress resultants as shown 

in Fig. 2.1 in terms of the transverse displacement are: 
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where D is the flexural rigidity, )1(12/ 23 υ−= EhD ; E is Young’s Modulus; 

υ is Poison’s ratio; h is the thickness of the plate. 

The effective transverse force per unit length acting on the annular edge 

Vr(r, θ), and that acting on the radial edge Vθ(r, θ), are: 
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The boundary conditions along the edge θ=θ0 are specified as follows: 

(1) For a clamped radial edge, 

0),( 0 =θrw , 

0
),( 0 =

∂
∂

θ
θrw

. (2.4) 

(2) For a free radial edge, 

0),( 0 =θθ rM , 

0),( 0 =θθ rV . (2.5) 

(3) For a simply supported radial edge, 

0),( 0 =θrw , 
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0),( 0 =θθ rM . (2.6) 

On the basis of separation of variables, the solution of Eq. (2.1) can 

be assumed as 

)()(),( θθ FrGrw =  (2.7) 

where G(r) can be expressed as a power series in r, 

∑
∞

=

+=
1

1)(
n

n
nrgrG λ , (2.8) 

and λn need not be an integer and is generally a complex number. 

Substituting Eq. (2.8) into Eq. (2.7) yields 

),(),(
1

1
n

n
n Frgrw n λθθ λ∑

∞

=

+= . (2.9) 

Substituting Eq. (2.9) into Eq. (2.1) and rearranging the resulting equation 

in terms of power series of r, yield 

0})1(])1()1[({ 2222)(

1

3 =+′′+++∑
∞

=

− FFFrf nnn
iv

n
n

n －－ λλλλ  (2.10) 

Satisfying Eq. (2.10) results in coefficients of r with different orders 

equal to zero, 

0)1(])1()1[( 2222)( =+′′+++ FFF nnn
iv －－ λλλ  (2.11) 

The general solution of Eq. (2.11) is 

θλθλθλθλλθ )1cos()1sin()1cos()1sin(),( −−+++= nnnnnnnnnn dcbaF ＋＋

 (2.12) 

Substituting Eq. (2.12) into Eq. (2.9) gives 
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∑
∞

=

+ −+++=
1

1 )1sin()1cos()1sin({),(
n

nnnnnn CBArrw n θλθλθλθ λ ＋  

})1cos( θλ −nnE＋  (2.13) 

where values of λn and eigenvector relationships among An, Bn, Cn, and En 

are determined from the boundary conditions along θ=0 and θ=α as 

shown in Fig. 2.2. It should be noticed that the above solution Eq. (2.13) 

is not valid for λn= 0 or λn= ±1, because the general solution of Eq. (2.11) 

for such λn is not in the form of in Eq. (2.13). 

Consider a sectorial plate with both free radial edges, as shown in Fig. 

2.3. Taking advantage of the symmetry of the problem, one can separate 

the solution given in Eq. (2.13) into symmetric and antisymmetric parts. 

Substituting the even functions of θ (i.e. An= Cn= 0) into the boundary 

conditions along the free radial edge (Eqs. (2.5)) yields the following two 

equations for Bn and En, 

0]2/)1cos[(]2/)1cos[( 21 =−++ nnnn EB αλγαλγ , (2.14a) 

0]2/)1sin[(]2/)1sin[( 31 =−−+ nnnn EB αλγαλγ , (2.14b) 

where )1)(1(1 −+= υλγ n , 

)3()1(2 υυλγ ++−−= n , 

)3()1(3 υυλγ ++−= n . (2.15) 

To ensure nontrivial solution results, the determinant of the 

coefficients must be zero. Hence, 
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 0
]2/)1sin[(]2/)1sin[(
]2/)1cos[(]2/)1cos[(

31

21 =
−+
−+

αλγαλγ
αλγαλγ

nn

nn  

Expanding and simplifying the above determinant attains the 

characteristic equation for λn for the symmetric case, 

αλυυαλ sin)]3/()1[()sin( nn +−=  (2.16) 

From Eq. (2.14b), the relation between Bn and En is 

])2/)1sin[(/(]2/)1sin[(/ 13 αλγαλγ +−= nnnn EB  (2.17) 

By following the procedure similar to that described above and using the 

odd functions of θ (i.e. Bn= En= 0) in Eq. (2.13), one can obtain the 

characteristic equation for λn for the antisymmetric case, 

αλυυαλ sin)]3/()1[()sin( nn +−−= , (2.18) 

and the relation between An and Cn, 

])2/)1cos[(/(]2/)1cos[(/ 13 αλγαλγ +−= nnnn CA . (2.19) 

Consequently, combining Eq. (2.16) and Eq. (2.18), the characteristic 

equations for λn corresponding to free-free boundary conditions are 

αλυυαλ sin)]3/()1[()sin( nn +−= m  (2.20) 

Substituting Eq. (2.17) and Eq. (2.19) back into Eq. (2.13) yields 

∑
∞

=

=
1

),(),(
n

n rwrw θθ , 

where 
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])1sin()1sin(
]2/)1cos[(
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and γ1, γ2, and γ3 are given in Eqs. (2.15) .The asymptotic solution wn(r, θ) 

is the corner function corresponding to free-free boundary conditions. 

The corner functions characterize the local stress distribution near the 

vertex of a corner formed by two edges with free-free boundary 

conditions. By following the similar procedure, one can obtain the 

characteristic equations for λn and the corner functions for all of the 

possible combinations of boundary conditions along two radial edges. 

2.2 Stress Singularities at Corners 

 In the classical plate theory, the stress components related to the 

moments, in polar coordinates are 

 3/12 hzM rr =σ , 

 3/12 hzMθθσ = , 

hzM rr /12 θθτ = . (2.22) 

where z is the normal coordinate measured from the midplane; Mr, Mθ, 

and Mrθ are give in Eqs. (2.2). From Eqs. (2.2), (2.13) and (2.22), it can 

be recognized that when the real parts of the characteristic values Re(λn) 

are less than one, moment and stress singularities occur in the vicinity of 

r = 0. 

 Fig. 2.4 shows the minimum value of Re(λn) versus the vertex angle α 
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for Poison’s ratio υ= 0.3. It shows that, the stress singularities are present 

when α＞π/2 for S-S and S-F boundary conditions and when α＞π for F-F 

and C-C boundary conditions, respectively. For most cases (except S-S 

boundary condition), the strength of singularities would increase with 

increasing α. In all the cases, the strongest singularities are present for 

S-S boundary condition. 
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Chapter 3  Vibrations of Completely Free Rectangular 

Plates 

This chapter investigates the vibrations of completely free 

rectangular plates with a V-notch as shown in Fig. 3.1. Stress singularities 

exist at the vertex of the V-notch. Algebraic polynomials and corner 

functions are used as the admissible functions in the Ritz method. This 

chapter demonstrates the usefulness of the corner function in the 

convergence of the numerical solutions and discusses the effects of 

various notch depths, angles, and locations on the vibration behaviors of 

the plates under consideration. 

3.1 Formulation for the Ritz method 

 In the Ritz method, the maximum strain energy ( maxU ) and the 

maximum kinetic energy ( maxT ) for free vibration of a thin plate in terms 

of transverse displacement w are 

dAwwwwwDU
A

xyyyxxyyxx∫∫ −−−+= ]}),(,,)[1(2),,{(
2

22
max υ  (3.1) 

dAwhT
A
∫∫= 2

2

max 2
ωρ  (3.2) 

where the subscript〝 j, 〞refers to a partial differential with respect to the 

independent variable j; A is the area of the midplane of a plate. ρ is the 

mass per unit volume of a plate; ω is the circular frequency. 

The total potential energy Π is defined as 



 14

maxmax TU −=Π  (3.3) 

Assuming 

∑
=

=
N

i
ii waw

1

 (3.4) 

where ia  is the undetermined coefficient; iw  is the admissible function. 

Substituting Eq. (3.4) into the total potential energy Π (Eqs. (3.1), (3.2) 

and (3.3)) and minimizing Π yield 

0=
∂
Π∂

ia
 (3.5) 

One can obtain the following equations as a matrix form: 

}]{[}]{[ 2 aMaK ω=  (3.6) 

where 

∫∫ +−−++=
A

xxjyyiyyjxxiyyjxxjyyixxiij wwwwwwwwDK ,,,,)(1(),,)(,,[( υ  

dAww xyjxyi )],,2−  (3.7) 

dAwwhM
A

jiij ∫∫= )(ρ  (3.8) 

T
Naaaaa },,,,{}{ 321 K=  

Through solving this generalized eigenvalue problem (Eq. (3.6)), one can 

obtain the natural frequencies (eigenvalues) and the corresponding mode 

shapes (eigenfunctions). 

3.2 Admissible Functions 
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 The admissible functions used in the Ritz method have to satisfy the 

geometrical boundary conditions of the problem under consideration. In 

addition to using the polynomial functions admissible functions, the 

corner functions corresponding to the free-free boundary conditions 

around a corner are also used as the admissible functions to describe the 

singularity behavior at the vertex of the V-notch. Hence, the admissible 

functions can be assumed as the sum of two sets of functions, namely, 

),(),(),( θrwyxwyxw cp += , (3.9) 

where ),( yxwp  contains the polynomial admissible functions and is 

expressed as: 

∑∑
−

=

−

=

=
1

1,0

1

1,0

I

i

J

j

ji
ijp yxaw , (3.10) 

where I and J denote the number of terms in x and y, respectively. For 

simplicity, I is taken equal to J for the following numerical results. 

),( θrwc  contains the corner functions corresponding to the free-free 

boundary conditions around a corner and is expressed as: 

))],(Im()),(Re([),(
2,1

θθθ rwarwarw nn

N

n
nnc += ∑

=

, (3.11) 

where ),( θrwn  are the corner functions corresponding to the free-free 

boundary conditions around a corner and are given in Eq. (2.21). Since 

the corner functions include symmetric and antisymmetric parts, the 

number of the corner functions is 2N and the total number of admissible 

functions is I×J＋2N. 
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 Substituting Eqs. (3.12), (3.13) and (3.14) into Eqs. (3.9), (3.10) and 

(3.11) yields I×J＋2N linear equations for the undetermined coefficients 

ija , na  and na . These equations lead to a generalized eigenvalue 

problem. 

 The polar coordinate system ),( θr  for the corner functions ),( θrwn  

is defined as shown in Fig. 3.1. The origin (O) of the coordinate system is 

at the vertex of the V-notch. Note that, both the corners A and B needs no 

corner functions because these two corner angle are less than π and no 

stress singularity occurs here. The relations between Cartesian coordinate 

),( yx  and the polar coordinate ),( θr  are 

2/122 ])()[( dbycxr −+−+−= , (3.12) 

)(tan 1

dby
cx
−+−

−
= −θ , (3.13) 

where b, c, and d are shown in Fig. 3.1. 

3.3 Convergence Study 

 It is one of the typical characteristics of the Ritz method that the 

obtained frequencies would converge to the exact solutions from the 

upper bounds if a sufficient number of admissible functions are used. In 

this section, to verify the accuracy of the solutions and demonstrate the 

effects of the corner functions on the convergence, convergence studies 

are presented for completely free square plates (a/b=1.0, as seen in Fig. 

3.1) with different notch angles (α=5° or 30°) and notch depths (d/b=0.1, 
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0.3, or 0.5). The V-notch is located at c/a=0.5. Poison’s ratio υ is taken 

equal to 0.3. The numerical results are the nondimensional frequency 

parameters Dha /2 ρω  for the first five modes. Note that, the first three 

rigid body modes (zero frequencies) are ignored. The computation was 

carried out by using FORTRAN programming language with quad 

precision (34 significant digit accuracy) on a 64-bit computer. 

 Table 3.1 shows the convergence of the frequency parameters for an 

intact square plate (no V-notch), in which no stress singularities are 

presented. The frequency data were computed by using polynomial 

functions with increasing number of terms (I×J) from 3×3 to 10×10. 

Note that the frequency parameters for the fourth and fifth modes are 

exactly identical, which are double roots in an eigenvalue problem. The 

numerical results are in excellent agreement with those of Leissa (1973), 

who used beam functions as admissible functions, and those of Filipich 

and Rosales (2000), who used whole element method. Since the beam 

functions may not form a complete set of functions, the converged results 

of Leissa (1973) are larger than the present ones. The present results also 

show more accuracy than the converged results of Filipich and Rosales 

(2000). The comparison recognizes the validity of the computation for the 

part of the polynomial functions. 

 Table 3.2 shows the convergence of the frequency parameters for a 

square plate with a very shallow V-notch (d/b=0.03) having large notch 

angle (α=170°) that causes weak stress singularities at the vertex of the 

notch. As expected, the admissible functions of polynomials can give 

good convergent results due to the completeness of polynomials. Adding 
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corner functions to the admissible functions only can slightly accelerate 

the convergence of the numerical solutions for this very shallow, wide 

angle notch. It demonstrates the validity of the computation for using 

polynomials and corner functions as admissible functions. 

 Tables 3.3 to 3.6 show the convergence of the frequency parameters 

for square plates having a V-notch with various notch angles (α=5° and 

30°) and notch depths (d/b=0.1, 0.3 and 0.5). Since the V-notch is much 

sharper and deeper than that considered in Table 3.2, the stress 

singularities at the V-notch would be stronger and the corner functions are 

expected to show more significant effect on the convergence of the 

solutions. In these cases under study, the admissible polynomials used 

alone give solutions with very slow convergence, especially for the case 

with a sharper (α=5°) or deeper (d/b=0.5) notch. However, 

supplementing the admissible functions with corner functions 

significantly accelerates the convergence of the solutions. 

 In the case of Table 3.3, it is found that adding the corner functions 

into the admissible polynomials may yield ill-conditioned matrices at the 

number of admissible functions not very large (i.e., 8×8+2×8, 7×7+2×8). 

The ill-conditioning is due to numerical roundoff errors. For only using 

the admissible polynomials, the ill-conditioning also occurs when the 

number of polynomials (I×J) exceeds 14×14. That is to say, the accurate 

solutions cannot be obtained for only using the admissible polynomials 

before the ill-conditioning occurs. However, supplementing the 

admissible functions with corner functions can give the convergent 

solutions with high accuracy (4 significant digit convergence) before the 
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ill-conditioning occurs. 

 Comparing the results of Table 3.3 with those of Tables 3.4 and 3.5, it 

is found that the present analysis needs more supplements of corner 

functions to get the convergent solutions for square plates with a deeper 

V-notch. Observing the results of Tables 3.4 and 3.6, one can find that 

more corner functions may not be needed to obtain convergent solutions 

as α changes from 30° to 5°. Moreover, one may overestimate the 

numerical solutions of these cases if no supplement of corner functions is 

involved in the present analysis. 

 On the basis of the above results, it is recognized that corner 

functions have significant effects on the convergence of the solutions for 

square plates with a V-notch. One of the reasons for corner functions 

having such effects on the convergence is that the corner functions can 

appropriately describe stress singularity behaviors of moments and 

transverse shear forces around the vertex of the V-notch. Another is that 

the corner functions explicitly indicate the existence of the V-notch in the 

plate under consideration. When the polynomial functions are used along 

in the Ritz method, the recognition of the existence of the V-notch is only 

through the integration domain. 

Table 3.7 shows the convergence of the frequency parameters for a 

square plate having a V-notch of α=0° and d/b=0.3, which can be 

considered as a straight crack. Although a cracked plate and an intact 

plate have the same integration domain, they have different stiffness. As 

expected, the solution obtained by using polynomial functions along is 

the same as that of an intact plate, which is not the correct solution of the 
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cracked plate. Obviously, it is not suitable to characterize a V-notch in a 

plate only through the integration domain in the Ritz method as the notch 

angle or the notch depth becomes smaller. However, the corner functions 

satisfying the free edge boundary conditions of the V-notch can definitely 

realize the existence of a V-notch or a crack in the formulation for the 

Ritz method. 

3.4 Numerical Results 

 To show the effects of a V-notch on the vibrations of plates, this 

section presents the frequency parameters and the mode shapes for the 

first five modes of rectangular plates with various aspect ratio a/b and 

having a V-notch with various notch angle α and notch depth d/b at 

various locations c/a. The mode shapes are described by their nodal 

patterns (lines of zero displacement during the vibration of a mode). 

Tables 3.8 to 3.10 show the results of frequency parameters for the 

first five modes of rectangular plates with different a/b (1.0, 2.0 and 0.5), 

α (5° and 30°), d/b (0, 0.1, 0.3 and 0.5) and c/a (0.5 and 0.75). Tables 3.11 

to 3.13 show the relative reductions of the frequency parameters, which 

are defined as 

100%
intact,

notch-V,intact, ×
−

=Δ
n

nn
n ω

ωω
ω , (3.14) 

where intact,nω  denotes the frequency of a intact plate, and notch-V,nω  

denotes the frequency of a plate with a V-notch. 

It is interesting to observe how the frequency parameters change with 
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various α, d/b and c/a. Some interesting trends are found as follows: 

(1) The frequency parameters significantly decrease as the notch depth 

d/b increases for rectangular plates with different a/b mainly because 

of the reduction of the flexural stiffness. The decreasing frequencies 

relative to the frequencies of an intact plate are considerably different 

for different modes. 

(2) When d/b=0.5, the frequency parameters decrease if α changes from 

5° to 30°. This trend is generally observed with few exceptions for 

d/b=0.1 and 0.3. 

(3) The frequency parameters for the first, second and fifth modes 

increase mostly as c/a changes from 0.5 to 0.75. The changes of the 

frequencies are more unpredictable for third and fourth modes. 

Since the nodal patterns of a square plate are different from those of 

other rectangular plates, they are discussed independently. Figures 3.2 

and 3.3 show the nodal patterns for the first five modes of square plates 

(a/b=1.0) with different α, d/b and c/a, and the corresponding frequency 

parameters are given in the parenthesis. Before discussing the changes of 

the nodal patterns of a square plate for different α, d/b and c/a, it should 

be noticed that the nodal patterns of the fourth and fifth modes for an 

intact square plate shown in Fig. 3.2 and 3.3 are considerably different. 

Mathematically, the frequencies for these two modes are double roots in 

an eigenvalue problem, and any linear combination of the corresponding 

eigenfunctions is also a possible eigenfunction (as shown in Fig. 3.8). 

Consequently, the nodal patterns of the fourth and fifth modes shown in 
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these figures are correct, and there are infinite possible sets of mode 

shapes for the these two modes. The nodal patterns given in these figures 

are chosen because they resemble those for a square plate with a shallow 

V-notch and are often seen in published literature (i.e., Leissa, 1969). 

Some interesting trends for the changes of nodal patterns for a/b=1.0 

with different α, d/b and c/a were found as follows: 

(1) For α fixed, the nodal patterns for d/b=0.1 looks very similar to those 

for d/b=0, respectively. However, if observing carefully, one can find 

some significant differences. A V-notch at c/a=0.5 destroys the 

symmetry about the horizontal axis, and the notch at c/a=0.75 further 

destroys the symmetry both axes. The crossing nodal lines for d/b=0 

may separate when a V-notch exists (i.e., the second and fifth modes 

in Fig. 3.2). A straight nodal line for d/b=0 may be distorted when a 

V-notch exists (i.e., the diagonal nodal lines of the fourth and fifth 

modes in Fig. 3.3 and the horizontal nodal line of the second mode in 

Fig. 3.2). The curve veering and the distortion of the straight nodal 

lines would become more significant when α or d/b increases. 

(2) As d/b changes from 0.1 to 0.3, the changes of the nodal patterns 

become more significant, especially that the closed nodal line of the 

third mode is destroyed drastically. Note that modal order may 

exchange, for example, the nodal pattern of the fourth mode for the 

plate with α=30° and d/b=0.3 is similar to that of the fifth mode for 

the plate with α=30° and d/b=0.1 in Fig. 3.2. 

(3) As d/b changes from 0.3 to 0.5, the nodal patterns further change, 
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especially for the plate with c/a=0.75. Note that modal order may also 

exchange (i.e., the third and fourth modes in Fig. 3.2). 

(4) The changes of the nodal patterns for c/a=0.75 are more significant 

those for c/a=0.5 due to the destruction of the symmetry about the 

vertical axis cause by a V-notch at c/a=0.75. The crossing nodal lines 

of the first mode would separate as the V-notch is not at c/a=0.5. 

(5) The nodal patterns for α=5° look similar to those for α=30°, but the 

difference of those between α=5° and α=30° is more significant for 

the deeper V-notch. For example, the nodal patterns of the fifth mode 

for the plate with d/b=0.5 and c/a=0.75 are very different between 

α=5° and α=30°. 

Figures 3.4 to 3.7 show the nodal patterns for the first five modes of 

rectangular plates of a/b=2.0 and a/b=0.5 with different α, d/b and c/a. It 

is noticed that the intact plate for a/b=2.0 is the same as that for a/b=0.5. 

The V-notch is opening at the long edge for a/b=2.0, but that is opening 

at the short edge for a/b=0.5. It is also interesting to observe how the 

nodal patterns of rectangular plates with a/b=2.0 and a/b=0.5 change 

with different α, d/b and c/a, and these observations are given as follows: 

(1) As d/b changes from 0 to 0.1, the nodal patterns changes very slightly. 

Some differences similar to those for square plates can be found. 

When a V-notch exists, the crossing nodal lines for d/b=0 may 

separate (i.e., the second and third modes in Fig. 3.5 and the second 

and third modes in Fig. 3.7), and the straight nodal lines for d/b=0 

may be distorted (i.e., the horizontal nodal line of the second mode in 
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Fig. 3.4 and the horizontal nodal line of the second and fourth modes 

in Fig. 3.6). 

(2) As d/b changes from 0.1 to 0.3, the curve veering and the distortion of 

the straight nodal lines become more significant. The nodal patterns 

still look similar between d/b=0.1 and d/b=0.3 for the plates with 

a/b=2.0, but they look very different for the plates with a/b=0.5. Note 

that modal order may also exchange for the plates with a/b=0.5 (i.e., 

the first and second modes in Fig. 3.6 and 3.7). 

(3) As d/b changes from 0.3 to 0.5, the nodal patterns further change, 

especially for the plates with a/b=0.5. Note that modal order may also 

exchange for the plates with a/b=2.0 (i.e., the third and fourth modes 

in Fig. 3.4 and the fifth mode in Fig. 3.4 and 3.5). 

(4) The changes of the nodal patterns for c/a=0.75 are more significant 

those for c/a=0.5 due to the destruction of the symmetry about 

vertical axis. The crossing nodal lines in the some modes would 

separate as the V-notch is not at c/a=0.5 (i.e., the second mode in Fig. 

3.5 and the second and third modes in Fig.3.7). 

(5) As α changes from 5° to 30°, the curve veering and the distortion of 

the straight nodal lines become more significant. But the nodal 

patterns for α=5° and α=30° still look very similar with very slight 

difference. 

(6) The nodal patterns changes more violently when the V-notch is 

opening at short edge (a/b=0.5), especially for the fourth and fifth 

modes. 
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Chapter 4  Vibrations of Cantilevered Rectangular Plates 

This chapter investigates the vibrations of cantilevered rectangular 

plates with a V-notch as shown in Fig. 4.1. The same analysis procedure 

given in the previous chapter is used again here. This chapter also studies 

the effects of the configuration of a V-notch on the vibration behaviors of 

the plates under consideration. 

4.1 Admissible Functions 

The admissible functions used in the Ritz method have to satisfy the 

geometry boundary conditions of the problem under consideration. 

Accordingly, the admissible functions given in Eqs. (3.10) and (3.11) are 

modified as 
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The coordinate systems used in the problem under consideration are 

shown in Fig. 4.1. The relations between ),( yx  and ),( θr  coordinates 

are the same as those used in a completely free plate, and are given in Eqs. 

(3.12) and (3.13). 

4.2 Convergence Study 

Through solving the generalized eigenvalue problem given in Eq. 

(3.6) by substituting the admissible functions given in Eqs. (4.1) and (4.2) 

into Eqs. (3.7) and (3.8), one can obtain the convergent upper-bound 
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solutions of the problem under consideration as the number of admissible 

functions is large enough. This section presents convergence studies for 

cantilevered square plates (a/b=1.0) with various notch angles (α=5° and 

30°) and notch depths (d/b=0.1, 0.3, and 0.5). The V-notch is located at 

c/a=0.5. Poisson’s ratio υ is set to 0.3. To demonstrate the validity of the 

present method, this section also presents convergence for the plate with a 

straight crack (α=0°) parallel to the clamped edge and make a 

comparison with the results from previous investigation. The computation 

was carried out by using FORTRAN programming language with quad 

precision (34 significant digit accuracy) on a 64-bit computer. 

Table 4.1 shows the convergence of the frequency parameters for an 

intact square plate (no V-notch). Since there is no stress singularity 

existing, the admissible functions used in the formulation need not add 

any corner function. The numerical results of the frequency parameters 

were computed by polynomial functions, given in Eq. (4.2), with the 

number of terms (I×J) increasing from 3×3 to 10×10. The numerical 

results show excellent agreement with those by Leissa (1973), who used 

beam functions as admissible functions, and those by Rossi and Laura 

(1996), who used finite element method. The comparison demonstrates 

the validity of the computation for the part of the polynomial functions. 

Table 4.2 shows the convergence of the frequency parameters for a 

square plate with a shallow a V-notch (d/b=0.03) having large angle 

(α=170°). Although there are weak stress singularities existing at the 

vertex of the V-notch, the admissible polynomials still give good 

convergent results due to the completeness of polynomials. By adding 
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corner functions to the admissible functions, the convergence of the 

numerical solutions can be accelerated slightly. This case demonstrates 

the validity of the computation for using polynomials and corner 

functions as admissible functions. 

Tables 4.3 to 4.6 show the convergence of the frequency parameters 

for square plates having a V-notch with various notch angles (α=5° and 

30°) and notch depths (d/b=0.1, 0.3 and 0.5). Since the V-notch is much 

sharper and deeper than that considered in Table 4.2, the corner functions 

are expected to show more significant effects on the convergence of the 

solutions due to the stronger stress singularities. In these cases under 

study, the admissible polynomials used alone give solutions with very 

slow convergence, especially for the case with a sharper (α=5°) or deeper 

(d/b=0.5) notch. However, through supplementing the admissible 

functions with corner functions, the convergence of the solutions can be 

accelerated significantly. 

Observing the results of Table 4.3, one finds that adding the corner 

functions into the admissible polynomials may yield ill-conditioned 

matrices at the number of admissible functions not very large (i.e., 

8×8+2×8, 7×7+2×8). If the admissible polynomials are used alone in 

the formulation, the ill-conditioning occurs when the number of 

polynomials (I×J) exceeds 12×12. The numerical solutions cannot be 

convergent to the exact ones by using polynomial functions only before 

the ill-conditioning occurs. Nevertheless, supplementing the admissible 

functions with corner functions can give the convergent solutions with 

high accuracy (at least 3 significant digit convergence) before the 
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ill-conditioning occurs. 

Comparing the results of Table 4.3 with those of Tables 4.4 and 4.5, 

one can find that to obtain the convergent solutions for square plates with 

a deeper V-notch needs to add more corner functions into the admissible 

functions. Comparing the results of Tables 4.4 and 4.6, one can find that 

more corner functions may not be needed to obtain convergent solutions 

as α changes from 30° to 5°. Note that, without the supplement of corner 

functions, one may overestimate the solutions of these cases. 

Table 4.7 shows the convergence of the frequency parameters for a 

square plate having a V-notch with α=0° and d/b=0.25, which can be 

considered as a straight crack. As expected, the solution obtained by 

using only polynomial functions is the same as that of an intact plate due 

to the same integral domain. The correct solutions of a cracked plate 

should be less than that of an intact plate, because the crack causes 

damage to the flexural stiffness of a plate. Through supplementing the 

admissible functions with corner functions, the frequencies can decrease 

efficiently due to the recognition of the existence of a crack in the Ritz 

method. 

Ma and Huang (2001) used the AFESPI experimental method to 

investigate the vibrations of a cantilevered square plate with a crack, and 

also simulate those by the commercial finite element package ABAQUS. 

This experiment used a full field, non-contact technique, electronic 

speckle pattern interferometry, for vibration measurement. The eight-node 

shell elements S8R5 were used in ABAQUS. Comparing the numerical 

results obtained from the present method to those by ABAQUS, the 
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formers are little greater than the latters. This trend is expected mainly 

because the elements S8R5 were based on the first-order shear 

deformation plate theory that has less constraints than the classical plate 

theory. Comparing the present numerical results to the experimental 

results, the present ones are all greater than the experimental ones. The 

main reason is believed that the clamped boundary condition of the plate 

for the experiment is not ideally rigid. The good agreement between these 

results demonstrates the validity of the present method. 

4.3 Numerical Results 

Tables 4.8 to 4.10 show the results of frequency parameters for the 

first five modes of rectangular plates with different a/b (1.0, 2.0 and 0.5), 

α (5° and 30°), d/b (0, 0.1, 0.3 and 0.5) and c/a (0.5 and 0.75), and tables 

4.11 to 4.13 show the relative reductions of the frequency parameters. It 

is interesting to observe how the frequency parameters change with 

various α, d/b and c/a. Some interesting findings were observed, and are 

given as follows： 

(1) The frequency parameters significantly decrease with the increasing 

notch depth d/b for rectangular plates with different a/b mainly 

because of the reduction of the flexural stiffness. 

(2) Generally, the frequency parameters decrease as α changes from 5° to 

30° for deeper V-notches. Very few exceptions are found for d/b=0.1 

and 0.3. 

(3) The frequency parameters for the first and second modes increase as 
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c/a changes from 0.5 to 0.75 for rectangular plates with different a/b. 

For such modes, the reduction of the flexural stiffness would increase 

as the V-notch is near to the clamped edge. 

Figures 4.2 to 4.7 show the nodal patterns for the first five modes of 

square plates with different a/b, α, d/b and c/a, and the corresponding 

frequency parameters are given in the parenthesis. It is also interesting to 

observe the changes of nodal patterns with different α, d/b and c/a. These 

interesting findings are given as follows： 

(1) For intact plates (d/b=0), the nodal patterns of the fourth and fifth 

modes exchange as a/b changes from 1.0 to 2.0. As a/b changes from 

1.0 to 0.5, the nodal patterns of the third to fifth modes for the plate 

with a/b=1.0 are very different from those for a/b=0.5. 

(2) For α fixed, the first five nodal patterns for d/b=0.1 looks very similar 

to those for d/b=0, except that the crossing nodal lines for d/b=0 

would separate clearly (i.e., the fifth mode in Fig. 4.2 and the fourth 

mode in Fig. 4.4). Furthermore, if observing carefully, one can find 

some slight differences existing in the nodal patterns for intact plats 

and V-notched plates. Since a V-notch destroys the symmetry about 

horizontal axis, the mode shapes are no longer symmetric about 

horizontal axis. The horizontal nodal lines for d/b=0 is distorted when 

a V-notch exists (i.e., the second mode in Fig. 4.2). 

(3) As d/b changes from 0.1 to 0.3, the changes of the nodal patterns 

become clearer, especially for third, fourth and fifth modes for the 

plate with a/b=0.5. Note that modal order may exchange (i.e., the 
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fourth and fifth modes in Fig. 4.6) 

(4) As d/b changes from 0.3 to 0.5, the nodal patterns further change, 

especially for the plates with a/b=0.5. Note that an additional nodal 

line would appear in the nodal patterns of the first mode for the plates 

with a/b=0.5. 

(5) Generally, the changes of the nodal patterns are more significant for 

the V-notch at c/a=0.5. The difference of the nodal patterns between 

c/a=0.5 and c/a=0.75 are very slight for d/b=0.1 but clearer for 

d/b=0.3 and 0.5. 

(6) The nodal patterns for α=5° look similar to those for α=30°. The 

difference of nodal patterns between α=5° and α=30° are more 

significant as d/b increases. 
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Chapter 5  Concluding Remarks 

In the previous chapters, vibration behaviors of completely free and 

cantilevered rectangular plates with an edge V-notch have been 

determined via the present method. Some conclusions are drawn from the 

foregoing studies: 

(1) The corner functions exactly satisfy the free boundary conditions 

along a V-notch and appropriately describe the stress singularity 

behaviors around the vertex of a V-notch. It has been demonstrated that 

the convergence of the numerical solutions can be accelerated by 

supplementing the admissible functions in the Ritz method with the 

corner functions. 

(2) Matrix ill-conditioning occurs when the total number of 

admissible functions used is too large. Through the supplements of corner 

functions, one can obtain the convergent solutions with high accuracy (4 

significant digit convergence) before the ill-conditioning occurs. 

(3) It has been shown that poor convergence is obtained by using 

polynomial functions only when plates with a sharp V-notch. As the 

V-notch becomes deeper, it needs more number of corner functions to 

obtain accurate solutions. 

(4) It has been shown that a shallow V-notch has only a small effect 

on the vibration behaviors of a V-notch plate. As the V-notch is deeper, 

frequencies significantly decrease mainly because of the reduction of the 

flexural stiffness, and the nodal patterns changes more violently. The 
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curve veering and the distortion of the straight nodal lines may occur due 

to the destruction of the symmetry when a V-notch exists. Sometimes, the 

modal order may exchange as the notch depth varies. 

The thesis accurately determines vibration frequencies and nodal 

patterns of V-notched rectangular plates via the present method. These 

present results serve not only to improve the understanding the vibration 

behavior of a V-notched plate, but also as benchmark data against those 

from other numerical methods or experiments. The analysis methodology 

used here can be extended to other thin plate problems with stress 

singularities, such as a plate with a cut-out where more than one corners 

having stress singularities exist.
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Table 3.1 Convergence of frequency parameters Dha /2 ρω  for a 

completely free square plate 

order of polynomial 
(I×J) Mode 

No. 
3×3 4×4 5×5 6×6 7×7 8×8 9×9 10×10 

Leissa 
(1973) 

Filipich
and 

Rosales
(2000) 

1 14.20 13.66 13.66 13.47 13.47 13.47 13.47 13.47 13.49 13.47 

2 22.45 22.45 19.73 19.73 19.60 19.60 19.60 19.60 19.79 19.61 

3 30.59 30.59 24.54 24.54 24.27 24.27 24.27 24.27 24.43 24.28 

4 41.57 39.23 35.61 35.29 34.81 34.80 34.80 34.80 35.02 34.82 

5 41.57 39.23 35.61 35.29 34.81 34.80 34.80 34.80 35.02 38.82 
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Table 3.2 Convergence of frequency parameters Dha /2 ρω  for a 

completely free square plate with a V-notch (c/a=0.5, d/b=0.03, α=170°) 

order of polynomial (I×J) Mode 
No. 

No. of 
Corner 

Functions 3×3 4×4 5×5 6×6 7×7 8×8 9×9 

1 

0 
1 
2 
3 

14.22 
14.22 
14.22 
14.15 

13.67
13.66
13.65
13.65

13.67
13.66
13.65
13.59

13.49
13.48
13.48
13.48

13.49
13.48
13.48
13.47

13.48 
13.48 
13.47 
13.47 

13.48
13.48
13.47
13.47

2 

0 
1 
2 
3 

22.08 
21.44 
21.41 
19.77 

22.08
21.40
20.34
19.63

19.43
19.42
19.42
19.42

19.43
19.42
19.42
19.42

19.31
19.30
19.30
19.30

19.31 
19.30 
19.30 
19.30 

19.31
19.30
19.30
19.29

3 

0 
1 
2 
3 

30.62 
29.43 
29.42 
29.35 

30.62
29.38
27.04
25.65

24.58
24.56
24.56
24.55

24.58
24.56
24.55
24.52

24.32
24.32
24.32
24.31

24.32 
24.32 
24.32 
24.31 

24.32
24.32
24.32
24.31

4 

0 
1 
2 
3 

41.40 
40.04 
39.37 
38.93 

38.97
37.90
37.90
35.84

35.48
35.37
35.36
35.27

35.14
35.05
35.03
35.00

34.71
34.69
34.69
34.66

34.70 
34.68 
34.68 
34.65 

34.69
34.67
34.67
34.64

5 

0 
1 
2 
3 

41.71 
41.69 
40.64 
40.64 

39.40
39.05
38.72
37.21

35.66
35.61
35.58
35.57

35.35
35.31
35.28
35.17

34.85
34.83
34.82
34.80

34.84 
34.81 
34.80 
34.79 

34.84
34.81
34.80
34.78
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Table 3.3 Convergence of frequency parameters Dha /2 ρω  for a 

completely free square plate with a V-notch (c/a=0.5, d/b=0.1, α=30°) 

order of polynomial (I×J) Mode 
No. 

No. of 
Corner 

Functions 4×4 5×5 6×6 7×7 8×8 9×9 10×10

1 

0 
3 
5 
8 

10 

13.68 
13.50 
13.48 
13.34 
13.32 

13.68
13.50
13.42
13.33
13.32

13.49
13.32
13.31
13.31
13.31

13.49
13.32
13.31
13.31

/ 

13.49
13.31
13.31

/ 
/ 

13.49 
13.31 
13.31 

/ 
/ 

13.49
13.31
13.31

/ 
/ 

2 

0 
3 
5 
8 

10 

22.35 
20.68 
19.72 
19.44 
19.40 

19.65
19.41
19.40
19.35
19.31

19.65
19.41
19.39
19.32
19.31

19.52
19.31
19.31
19.31

/ 

19.52
19.31
19.31

/ 
/ 

19.52 
19.31 
19.31 

/ 
/ 

19.52
19.31
19.31

/ 
/ 

3 

0 
3 
5 
8 

10 

30.62 
28.28 
24.49 
24.37 
24.37 

24.57
24.36
24.29
24.20
24.10

24.57
24.36
24.29
24.10
24.10

24.31
24.10
24.09
24.09

/ 

24.31
24.10
24.09

/ 
/ 

24.31 
24.10 
24.09 

/ 
/ 

24.31
24.10
24.09

/ 
/ 

4 

0 
3 
5 
8 

10 

39.11 
36.40 
35.27 
34.73 
34.67 

35.53
34.80
34.65
34.43
34.17

35.20
34.45
34.38
34.25
34.11 

34.74
34.08
34.07
34.07

/ 

34.74
34.07
34.07

/ 
/ 

34.73 
34.07 
34.07 

/ 
/ 

34.73
34.07
34.07

/ 
/ 

5 

0 
3 
5 
8 

10 

39.35 
37.50 
36.00 
34.91 
34.70 

35.68
34.96
34.92
34.88
34.57

35.37
34.70
34.52
34.31
34.22

34.88
34.23
34.23
34.22

/ 

34.87
34.22
34.22

/ 
/ 

34.87 
34.22 
34.22 

/ 
/ 

34.87
34.22
34.22

/ 
/ 

Note：“/”：no result due to matrix ill-conditioning
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Table 3.4 Convergence of frequency parameters Dha /2 ρω  for a 

completely free square plate with a V-notch (c/a=0.5, d/b=0.3, α=30°) 

order of polynomial (I×J) Mode 
No. 

No. of 
Corner 

Functions 3×3 4×4 5×5 6×6 7×7 8×8 

1 

0 
3 
5 

10 
15 

14.36 
11.82 
11.75 
11.61 
11.60 

13.82 
11.67 
11.67 
11.57 
11.56 

13.82 
11.67 
11.64 
11.56 
11.56 

13.62 
11.57 
11.56 
11.56 
11.56 

13.62 
11.57 
11.56 
11.56 
11.56 

13.61 
11.57 
11.56 
11.56 
11.56 

2 

0 
3 
5 

10 
15 

22.06 
18.16 
17.64 
17.15 
17.13 

22.05 
18.13 
17.38 
17.14 
17.12 

19.41 
17.17 
17.15 
17.09 
17.09 

19.41 
17.15 
17.14 
17.09 
17.09 

19.29 
17.09 
17.09 
17.08 
17.08 

19.29 
17.09 
17.09 
17.08 
17.08 

3 

0 
3 
5 

10 
15 

30.85 
26.24 
26.21 
23.31 
23.23 

30.84 
26.15 
23.65 
23.16 
23.11 

24.78 
23.19 
23.17 
22.97 
22.95 

24.78 
23.19 
23.16 
22.95 
22.95 

24.54 
22.95 
22.95 
22.94 
22.94 

24.54 
22.95 
22.95 
22.94 
22.94 

4 

0 
3 
5 

10 
15 

40.96 
33.36 
29.41 
28.20 
27.92 

38.64 
28.71 
28.14 
27.71 
27.66 

35.25 
28.05 
27.92 
27.67 
27.55 

34.91 
27.75 
27.67 
27.53 
27.53 

34.57 
27.62 
27.56 
27.53 
27.53 

34.56 
27.57 
27.53 
27.52 
27.52 

5 

0 
3 
5 

10 
15 

42.13 
36.63 
34.16 
32.18 
31.83 

39.98 
35.04 
33.48 
32.00 
31.67 

36.15 
32.04 
32.01 
31.58 
31.45 

35.88 
31.82 
31.77 
31.49 
31.44 

35.34 
31.45 
31.45 
31.44 
31.43 

35.30 
31.45 
31.44 
31.43 
31.43 
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Table 3.5 Convergence of frequency parameters Dha /2 ρω  for a 

completely free square plate with a V-notch (c/a=0.5, d/b=0.5, α=30°) 

order of polynomial (I×J) Mode 
No. 

No. of 
Corner 

Functions 3×3 4×4 5×5 6×6 7×7 8×8 

1 

0 
3 
5 

10 
15 

14.60 
7.974 
7.948 
7.890 
7.883 

14.07 
7.915 
7.906 
7.852 
7.850 

14.06 
7.902 
7.873 
7.849 
7.847 

13.86 
7.867 
7.850 
7.845 
7.845 

13.86 
7.865 
7.849 
7.845 
7.844 

13.85 
7.863 
7.848 
7.844 
7.843 

2 

0 
3 
5 

10 
15 

22.06 
14.45 
14.05 
13.89 
13.88 

22.04 
14.38 
13.99 
13.87 
13.85 

19.48 
13.89 
13.87 
13.84 
13.83 

19.48 
13.88 
13.86 
13.84 
13.83 

19.36 
13.83 
13.83 
13.82 
13.82 

19.36 
13.83 
13.83 
13.82 
13.82 

3 

0 
3 
5 

10 
15 

30.93 
22.88 
22.02 
21.56 
21.44 

30.89 
21.75 
21.59 
21.30 
21.28 

25.03 
21.63 
21.50 
21.28 
21.25 

25.02 
21.35 
21.29 
21.22 
21.21 

24.78 
21.32 
21.26 
21.22 
21.21 

24.78 
21.25 
21.22 
21.21 
21.21 

4 

0 
3 
5 

10 
15 

40.48 
24.00 
23.68 
22.13 
22.09 

38.38 
23.98 
22.94 
22.01 
21.98 

35.22 
22.05 
22.04 
21.91 
21.89 

34.89 
22.05 
22.04 
21.89 
21.88 

34.63 
21.89 
21.88 
21.88 
21.88 

34.62 
21.89 
21.88 
21.88 
21.88 

5 

0 
3 
5 

10 
15 

42.70 
35.54 
34.51 
31.91 
31.61 

40.64 
34.13 
33.35 
31.47 
31.16 

36.73 
31.60 
31.51 
31.13 
30.94 

36.49 
31.37 
31.27 
31.03 
30.93 

35.92 
31.02 
30.93 
30.93 
30.92 

35.84 
31.02 
30.93 
30.92 
30.92 
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Table 3.6 Convergence of frequency parameters Dha /2 ρω  for a 

completely free square plate with a V-notch (c/a=0.5, d/b=0.3, α=5°) 

order of polynomial (I×J) Mode 
No. 

No. of 
Corner 

Functions 3×3 4×4 5×5 6×6 7×7 8×8 

1 

0 
3 
5 

10 
15 

14.23 
11.84 
11.75 
11.61 
11.60 

13.69 
11.68 
11.67 
11.58 
11.58 

13.69 
11.67 
11.66 
11.58 
11.58 

13.50 
11.58 
11.58 
11.58 
11.58 

13.50 
11.58 
11.58 
11.58 
11.58 

13.50 
11.58 
11.58 
11.58 
11.58 

2 

0 
3 
5 

10 
15 

22.38 
18.71 
18.36 
17.70 
17.68 

22.38 
18.69 
17.97 
17.68 
17.67 

19.67 
17.70 
17.69 
17.63 
17.63 

19.67 
17.69 
17.68 
17.63 
17.63 

19.54 
17.63 
17.63 
17.63 
17.63 

19.54 
17.63 
17.63 
17.63 
17.63 

3 

0 
3 
5 

10 
15 

30.64 
25.95 
25.79 
23.13 
23.07 

30.64 
25.86 
23.83 
23.11 
23.07 

24.58 
23.13 
23.11 
22.92 
22.91 

24.58 
23.12 
23.11 
22.92 
22.91 

24.32 
22.91 
22.91 
22.91 
22.91 

24.32 
22.91 
22.91 
22.91 
22.91 

4 

0 
3 
5 

10 
15 

41.44 
31.14 
30.49 
28.86 
28.55 

39.11 
29.66 
28.94 
28.53 
28.46 

35.53 
28.78 
28.71 
28.52 
28.34 

35.20 
28.50 
28.49 
28.32 
28.32 

34.75 
38.34 
28.34 
28.32 
28.32 

34.74 
38.32 
28.32 
28.32 
28.31 

5 

0 
3 
5 

10 
15 

41.66 
37.28 
35.20 
32.74 
32.49 

39.37 
35.62 
34.66 
32.64 
32.38 

35.71 
32.68 
32.67 
32.32 
32.10 

35.40 
32.46 
32.42 
32.20 
32.09 

34.91 
32.10 
32.09 
32.09 
32.09 

34.90 
32.10 
32.09 
32.09 
32.09 
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Table 3.7 Convergence of frequency parameters Dha /2 ρω  for a 

completely free square plate with a V-notch (c/a=0.5, d/b=0.3, α=0°) 

order of polynomial (I×J) Mode 
No. 

No. of 
Corner 

Functions 4×4 5×5 6×6 7×7 8×8 9×9 10×10

1 
0 
3 
5 

13.66 
11.80 
11.68 

13.66
11.79 
11.66 

13.47
11.65 
11.63 

13.47
11.65 
11.63 

13.47
11.64 
11.63 

13.47 
11.64 
11.63 

13.47
11.63 
11.62 

2 
0 
3 
5 

22.45 
18.49 
18.35 

19.73
17.86
17.80

19.73
17.86
17.78

19.60
17.78
17.78

19.60
17.78
17.78

19.60 
17.77 
17.77 

19.60
17.77
17.77

3 
0 
3 
5 

30.59 
26.03 
25.43 

24.54
23.10
23.09

24.54
23.10
23.09

24.27
22.89
22.89

24.27
22.89
22.89

24.27 
22.89 
22.89 

24.27
22.89
22.89

4 
0 
3 
5 

39.23 
30.37 
30.16 

35.61
29.22
29.09

35.29
28.90
28.76

34.81
28.74
28.65

34.80
28.66
28.63

34.80 
28.66 
28.63 

34.80
28.64
28.62

5 
0 
3 
5 

39.23 
35.07 
32.95 

35.61
32.90
32.84

35.29
32.67
32.56

34.81
32.31
32.30

34.80
32.30
32.30

34.80 
32.30 
32.30 

34.80
32.30
32.30
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Table 3.8 Frequency parameters Dha /2 ρω  for completely free 

rectangular plates with a V-notch (a/b=1.0, υ=0.3) 

Dha /2 ρω  
c/a α d/b 

1 2 3 4 5 

 0* 13.47 19.60 24.27 34.80 34.80 

0.1 13.31 19.40 24.08 34.20 34.21 

0.3 11.58 17.63 22.91 28.31 32.09 5° 

0.5 8.178 14.48 21.97 22.54 31.55 

0.1 13.31 19.31 24.09 34.07 34.22 

0.3 11.56 17.08 22.94 27.52 31.43 

0.5 

30° 

0.5 7.843 13.82 21.21 21.88 30.92 

0.1 13.36 19.52 24.20 34.19 34.64 

0.3 12.07 18.38 22.80 27.61 33.75 5° 

0.5 8.515 15.12 20.96 24.82 32.87 

0.1 13.33 19.48 24.18 34.17 34.56 

0.3 11.86 18.16 22.54 27.05 33.20 

0.75 

30° 

0.5 7.961 14.60 20.57 24.37 32.27 

Note：*：No V-notch
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Table 3.9 Frequency parameters Dha /2 ρω  for completely free 

rectangular plates with a V-notch (a/b=2.0, υ=0.3) 

Dha /2 ρω  
c/a α d/b 

1 2 3 4 5 

 0* 21.46 26.57 58.48 59.61 88.01 

0.1 21.29 26.36 58.19 59.46 87.97 

0.3 19.96 24.47 56.63 57.00 87.60 5° 

0.5 17.67 20.49 48.74 55.39 77.20 

0.1 21.27 26.37 58.06 59.47 87.89 

0.3 19.84 24.52 55.67 56.95 87.38 

0.5 

30° 

0.5 17.38 20.37 47.51 53.73 74.19 

0.1 21.40 26.44 58.09 59.17 87.96 

0.3 20.83 25.23 53.45 56.03 87.57 5° 

0.5 18.97 22.73 44.23 50.64 81.06 

0.1 21.41 26.41 58.10 59.12 87.78 

0.3 20.85 25.03 53.22 55.58 86.58 

0.75 

30° 

0.5 18.95 22.28 42.54 49.54 77.86 

Note：*：No V-notch 
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Table 3.10 Frequency parameters Dha /2 ρω  for completely free 

rectangular plates with a V-notch (a/b=0.5, υ=0.3) 

Dha /2 ρω  
c/a α d/b 

1 2 3 4 5 

 0* 5.366 6.644 14.62 14.90 22.00 

0.1 5.356 6.561 14.13 14.86 21.02 

0.3 4.963 5.316 10.07 13.92 15.07 5° 

0.5 2.684 5.298 9.316 9.655 14.79 

0.1 5.320 6.564 14.14 14.76 20.89 

0.3 4.813 5.165 9.647 13.24 15.03 

0.5 

30° 

0.5 2.428 5.135 9.081 9.366 14.61 

0.1 5.357 6.584 14.28 14.88 21.56 

0.3 5.213 5.330 9.226 14.60 15.22 5° 

0.5 2.700 5.309 7.662 12.52 14.78 

0.1 5.322 6.561 14.21 14.81 21.57 

0.75 

30° 
0.3 4.864 5.247 8.712 14.19 15.20 

Note：*：No V-notch 
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Table 3.11 Relative reductions of the frequency parameters nωΔ  for 

completely free rectangular plates with a V-notch (a/b=1.0, υ=0.3) 

nωΔ (%) 
c/a α d/b 

1 2 3 4 5 

0.1 1.19  1.02  0.78  1.72  1.70  

0.3 14.03  10.05  5.60  18.65  7.79  5° 

0.5 39.29  26.12  9.48  35.23  9.34  

0.1 1.19  1.48  0.74  2.10  1.67  

0.3 14.18  12.86  5.48  20.92  9.68  

0.5 

30° 

0.5 41.77  29.49  12.61  37.13  11.15  

0.1 0.82  0.41  0.29  1.75  0.46  

0.3 10.39  6.22  6.06  20.66  3.02  5° 

0.5 36.79  22.86  13.64  28.68  5.55  

0.1 1.04  0.61  0.37  1.81  0.69  

0.3 11.95  7.35  7.13  22.27  4.60  

0.75 

30° 

0.5 40.90  25.51  15.25  29.97  7.27  

 



 48

Table 3.12 Relative reductions of the frequency parameters nωΔ  for 

completely free rectangular plates with a V-notch (a/b=2.0, υ=0.3) 

nωΔ (%) 
c/a α d/b 

1 2 3 4 5 

0.1 0.79  0.79  0.50  0.25  0.05  

0.3 6.99  7.90  3.16  4.38  0.47  5° 

0.5 17.66  22.88  16.66  7.08  12.28  

0.1 0.89  0.75  0.72  0.23  0.14  

0.3 7.55  7.72  4.81  4.46  0.72  

0.5 

30° 

0.5 19.01  23.33  18.76  9.86  15.70  

0.1 0.28  0.49  0.67  0.74  0.06  

0.3 2.94  5.04  8.60  6.01  0.50  5° 

0.5 11.60  14.45  24.37  15.05  7.90  

0.1 0.23  0.60  0.65  0.82  0.26  

0.3 2.84  5.80  8.99  6.76  1.62  

0.75 

30° 

0.5 11.70  16.15  27.26  16.89  11.53  
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Table 3.13 Relative reductions of the frequency parameters nωΔ  for 

completely free rectangular plates with a V-notch (a/b=0.5, υ=0.3) 

nωΔ (%) 
c/a α d/b 

1 2 3 4 5 

0.1 0.19  1.25  3.35  0.27  4.45  

0.3 7.51  19.99  31.12  6.58  31.50  5° 

0.5 49.98  20.26  36.28  35.20  32.77  

0.1 0.86  1.20  3.28  0.94  5.05  

0.3 10.31  22.26  34.02  11.14  31.68  

0.5 

30° 

0.5 54.75  22.71  37.89  37.14  33.59  

0.1 0.17  0.90  2.33  0.13  2.00  

0.3 2.85  19.78  36.89  2.01  30.82  5° 

0.5 49.68  20.09  47.59  15.97  32.82  

0.1 0.82  1.25  2.80  0.60  1.95  

0.75 

30° 
0.3 9.36  21.03  40.41  4.77  30.91  
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Table 4.1 Convergence of frequency parameters Dha /2 ρω  for a 

cantilevered square plate 

order of polynomial 
(I×J) Mode 

No. 
3×3 4×4 5×5 6×6 7×7 8×8 9×9 10×10 

Leissa 
(1973) 

Rossi 
and 

Laura 
(1996) 

1 3.494 3.489 3.475 3.474 3.472 3.472 3.471 3.471 3.492 3.471 

2 8.597 8.546 8.544 8.513 8.512 8.509 8.509 8.508 8.525 8.508 

3 21.56 21.50 21.31 21.31 21.29 21.29 21.29 21.29 21.43 21.29 

4 31.41 31.32 27.46 27.46 27.20 27.20 27.20 27.20 27.33 27.20 

5 32.42 31.33 31.20 30.98 30.98 30.97 30.96 30.96 31.11 30.96 
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Table 4.2 Convergence of frequency parameters Dha /2 ρω  for a 

cantilevered square plate with a V-notch (c/a=0.5, d/b=0.03, α=170°) 

order of polynomial (I×J) Mode 
No. 

No. of 
Corner 

Functions 3×3 4×4 5×5 6×6 7×7 8×8 9×9 

1 

0 
1 
2 
3 

3.496 
3.496 
3.495 
3.495 

3.491
3.491
3.490
3.489

3.477
3.477
3.477
3.476

3.476
3.475
3.475
3.475

3.474
3.474
3.473
3.473

3.473 
3.473 
3.473 

/ 

3.473
3.473
3.472

/ 

2 

0 
1 
2 
3 

8.549 
8.531 
8.511 
8.494 

8.495
8.490
8.488
8.488

8.492
8.483
8.476
8.466

8.461
8.456
8.456
8.455

8.461
8.455
8.454
8.453

8.457 
8.452 
8.452 

/ 

8.457
8.452
8.450

/ 

3 

0 
1 
2 
3 

21.45 
21.42 
21.37 
21.37 

21.39
21.36
21.31
21.20

21.19
21.19
21.19
21.18

21.19
21.18
21.18
21.16

21.17
21.16
21.16
21.15

21.17 
21.15 
21.15 

/ 

21.16
21.15
21.14

/ 

4 

0 
1 
2 
3 

31.06 
30.83 
30.28 
28.55 

30.66
29.92
27.50
27.40

27.25
27.24
27.23
27.23

27.25
27.23
27.21
27.09

27.00
26.99
26.99
26.98

27.00 
26.99 
26.98 

/ 

26.99
26.99
26.98

/ 

5 

0 
1 
2 
3 

32.40 
31.81 
31.64 
31.43 

31.53
31.26
31.05
31.05

30.99
30.97
30.90
30.79

30.77
30.76
30.75
30.74

30.76
30.74
30.74
30.73

30.75 
30.73 
30.72 

/ 

30.74
30.72
30.72

/ 

Note：“/”：no result due to matrix ill-conditioning
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Table 4.3 Convergence of frequency parameters Dha /2 ρω  for a 

cantilevered square plate with a V-notch (c/a=0.5, d/b=0.1, α=30°) 

order of polynomial (I×J) Mode 
No. 

No. of 
Corner 

Functions 4×4 5×5 6×6 7×7 8×8 9×9 10×10

1 

0 
3 
5 
7 

3.489 
3.480 
3.474 
3.473 

3.474
3.464
3.463
3.462

3.474
3.461
3.461
3.461

3.473
3.460
3.459

/ 

3.472
3.459
3.459

/ 

3.472 
3.459 
3.459 

/ 

3.472
3.459
3.458

/ 

2 

0 
3 
5 
7 

8.538 
8.441 
8.435 
8.410 

8.536
8.434
8.408
8.407

8.503
8.402
8.400
8.399

8.503
8.400
8.399

/ 

8.500
8.397
8.396

/ 

8.499 
8.396 
8.395 

/ 

8.498
8.394
8.393

/ 

3 

0 
3 
5 
7 

21.47 
21.00 
20.95 
20.94 

21.28
20.94
20.92
20.91

21.28
20.92
20.91
20.90

21.26
20.90
20.89

/ 

21.25
20.89
20.89

/ 

21.25 
20.89 
20.88 

/ 

21.25
20.88
20.88

/ 

4 

0 
3 
5 
7 

31.12 
28.33 
27.41 
27.30 

27.44
27.27
27.23
27.13

27.44
27.25
27.11 
27.00

27.18
27.00
27.00

/ 

27.18
27.00
26.99

/ 

27.18 
27.00 
26.99 

/ 

27.18
27.00
26.99

/ 

5 

0 
3 
5 
7 

31.42 
30.79 
30.64 
30.44 

31.11 
30.65
30.38
30.38

30.89
30.37
30.36
30.35

30.89
30.36
30.35

/ 

30.88
30.35
30.34

/ 

30.87 
30.34 
30.33 

/ 

30.87
30.33
30.33

/ 

Note：“/”：no result due to matrix ill-conditioning
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Table 4.4 Convergence of frequency parameters Dha /2 ρω  for a 

cantilevered square plate with a V-notch (c/a=0.5, d/b=0.3, α=30°) 

order of polynomial (I×J) Mode 
No. 

No. of 
Corner 

Functions 4×4 5×5 6×6 7×7 8×8 9×9 10×10

1 

0 
3 
5 
8 

10 

3.490 
3.395 
3.369 
3.363 
3.357 

3.474
3.359
3.353
3.349
3.348

3.473
3.356
3.351
3.348
3.347

3.470
3.350
3.347
3.345
3.344

3.469
3.350
3.345
3.344
3.343

3.468 
3.348 
3.344 
3.344 
3.343 

3.468
3.348
3.344
3.343
3.343

2 

0 
3 
5 
8 

10 

8.508 
7.668 
7.666 
7.538 
7.506 

8.504
7.646
7.507
7.462
7.437

8.463
7.527
7.474
7.429
7.424

8.462
7.503
7.432
7.425
7.420

8.457
7.483
7.427
7.418
7.417

8.456 
7.469 
7.420 
7.416 
7.415 

8.453
7.460
7.415
7.414
7.414

3 

0 
3 
5 
8 

10 

21.30 
18.92 
18.59 
18.38 
18.37 

21.12
18.47
18.35
18.23
18.18

21.12
18.41
18.30
18.08
18.07

21.08
18.24
18.10
18.07
18.02

21.07
18.22
18.05
18.02
18.01

21.05 
18.15 
18.04 
18.01 
18.00 

21.05
18.14
18.01
18.00
18.00

4 

0 
3 
5 
8 

10 

30.42 
26.09 
25.21 
24.97 
24.91 

27.43
25.20
24.98
24.84
24.74

27.42
25.09
24.89
24.73
24.72

27.15
24.83
24.73
24.71
24.71

27.15
24.80
24.72
24.70
24.70

27.14 
24.78 
24.71 
24.70 
24.70 

27.14
24.77
24.71
24.70
24.69

5 

0 
3 
5 
8 

10 

31.90 
29.05 
28.53 
28.33 
28.26 

30.84
28.43
28.34
28.22
28.19

30.61
28.26
28.24
28.16
28.16

30.57
28.19
28.17
28.15
28.14

30.56
28.19
28.15
28.14
28.13

30.52 
28.17 
28.14 
28.13 
28.13 

30.52
28.16
28.13
28.13
28.13
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Table 4.5 Convergence of frequency parameters Dha /2 ρω  for a 

cantilevered square plate with a V-notch (c/a=0.5, d/b=0.5, α=30°) 

order of polynomial (I×J) Mode 
No. 

No. of 
Corner 

Functions 3×3 4×4 5×5 6×6 7×7 8×8 9×9 

1 

0 
5 

10 
15 
18 

3.486 
3.114 
3.091 
3.083 
3.079 

3.481
3.067
3.048
3.042
3.040

3.463
3.044
3.035
3.032
3.031

3.461
3.037
3.030
3.030
3.029

3.456
3.034
3.029
3.028
3.027

3.455 
3.033 
3.027 
3.026 
3.026 

3.453
3.031
3.026
3.026
3.025

2 

0 
5 

10 
15 
18 

8.608 
7.034 
6.781 
6.673 
6.641 

8.520
6.634
6.168
6.145
6.132

8.515
6.175
5.906
5.858
5.854

8.468
5.976
5.830
5.817
5.815

8.467
5.880
5.818
5.806
5.804

8.460 
5.839 
5.804 
5.798 
5.796 

8.460
5.822
5.801
5.793
5.793

3 

0 
5 

10 
15 
18 

21.33 
16.82 
16.62 
16.49 
16.47 

21.25
15.93
15.39
15.33
15.30

21.08
15.51
15.05
14.95
14.94

21.07
15.18
14.91
14.86
14.85

20.99
14.99
14.85
14.83
14.83

20.99 
14.89 
14.82 
14.81 
14.81 

20.94
14.86
14.81
14.80
14.80

4 

0 
5 

10 
15 
18 

30.75 
20.48 
20.23 
20.12 
20.07 

30.00
20.06
19.59
19.55
19.53

27.40
19.49
19.32
19.27
19.26

27.36
19.38
19.21
19.20
19.20

27.10
19.26
19.19
19.18
19.17

27.09 
19.22 
19.17 
19.16 
19.16 

27.08
19.20
19.17
19.16
19.16

5 

0 
5 

10 
15 
18 

32.89 
28.37 
27.60 
27.55 
27.51 

32.24
27.80
27.40
27.37
27.36

30.76
27.51
27.31
27.28
27.27

30.55
27.41
27.24
27.23
27.22

30.44
27.25
27.22
27.22
27.22

30.43 
27.24 
27.22 
27.21 
27.21 

30.39
27.23
27.21
27.21
27.21
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Table 4.6 Convergence of frequency parameters Dha /2 ρω  for a 

cantilevered square plate with a V-notch (c/a=0.5, d/b=0.3, α=5°) 

order of polynomial (I×J) Mode 
No. 

No. of 
Corner 

Functions 4×4 5×5 6×6 7×7 8×8 9×9 10×10

1 

0 
3 
5 
8 

10 

3.489 
3.391 
3.371 
3.367 
3.362 

3.476
3.360
3.357
3.353
3.353

3.474
3.358
3.355
3.352
3.352

3.472
3.353
3.351
3.350
3.349

3.472
3.353
3.350
3.349
3.348

3.472 
3.351 
3.349 
3.348 
3.348 

3.472
3.351
3.348
3.348
3.348

2 

0 
3 
5 
8 

10 

8.542 
7.727 
7.715 
7.600 
7.574 

8.539
7.708
7.592
7.549
7.531

8.507
7.604
7.560
7.526
7.522

8.506
7.587
7.526
7.521
7.518

8.503
7.570
7.522
7.515
7.514

8.503 
7.561 
7.516 
7.513 
7.513 

8.501
7.552
7.513
7.511 
7.511 

3 

0 
3 
5 
8 

10 

21.47 
19.36 
19.20 
19.01 
18.98 

21.28
19.08
18.97
18.86
18.77

21.28
19.02
18.93
18.73
18.72

21.26
18.89
18.75
18.71
18.69

21.26
18.87
18.72
18.68
18.67

21.25 
18.82 
18.70 
18.67 
18.67 

21.25
18.81
18.68
18.66
18.66

4 

0 
3 
5 
8 

10 

31.15 
26.31 
25.36 
25.19 
25.11 

27.47
25.35
25.20
25.11 
24.99

27.47
25.28
25.14
24.99
24.97

27.20
25.03
24.97
24.97
24.97

27.20
25.01
24.97
24.96
24.96

27.20 
25.00 
24.96 
24.96 
24.96 

27.20
24.99
24.96
24.96
24.96

5 

0 
3 
5 
8 

10 

31.42 
29.73 
29.31 
29.10 
28.99 

31.11 
29.17
29.10
28.97
28.89

30.89
28.99
28.97
28.87
28.86

30.89
28.92
28.88
28.86
28.85

30.87
28.91
28.85
28.84
28.84

30.87 
28.89 
28.85 
28.84 
28.84 

30.87
28.88
28.84
28.83
28.83
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Table 4.7 Convergence of frequency parameters Dha /2 ρω  for a 

cantilevered square plate with a straight crack (c/a=0.5, d/b=0.25, α=0°, 

h/a=1/80, υ=0.33) 

order of polynomial (I×J) Mode 
No. 

No. of 
Corner 

Functions 4×4 5×5 6×6 7×7 8×8 9×9 10×10 

AFESPI
(2001) 

ABAQUS
(2001) 

1 

0 
3 
6 
8 

3.482 
3.413 
3.407 
3.403 

3.466
3.391
3.388
3.388

3.464
3.386
3.386
3.386

3.462
3.383
3.382
3.382

3.462
3.382
3.381
3.381

3.461
3.381
3.380
3.380

3.461 
3.380 
3.380 

/ 

3.177 3.357 

2 

0 
3 
6 
8 

8.413 
7.903 
7.833 
7.822 

8.411
7.840
7.770
7.767

8.378
7.782
7.747
7.746

8.377
7.753
7.740
7.739

8.373
7.747
7.735
7.734

8.373
7.737
7.730
7.729

8.372 
7.734 
7.726 

/ 

7.334 7.644 

3 

0 
3 
6 
8 

21.35 
19.86 
19.76 
19.75 

21.15
19.64
19.58
19.56

21.14
19.58
19.48
19.47

21.12
19.49
19.43
19.42

21.12
19.47
19.41
19.40

21.11
19.42
19.39
19.39

21.11 
19.41 
19.38 

/ 

18.18 19.08 

4 

0 
3 
6 
8 

30.98 
26.99 
26.42 
26.35 

27.34
26.02
25.84
25.79

27.34
25.97
25.78
25.75

27.08
25.68
25.68
25.68

27.08
25.68
25.67
25.67

27.08
25.67
25.66
25.66

27.08 
25.66 
25.66 

/ 

24.33 25.39 

5 

0 
3 
6 
8 

31.14 
29.85 
29.39 
29.37 

30.85
29.31
29.18
29.17

30.62
29.07
29.03
29.03

30.62
29.03
29.01
29.01

30.60
29.01
29.00
28.99

30.60
28.99
28.98
28.98

30.60 
28.98 
28.98 

/ 

27.40 28.77 

Note：“/”：no result due to matrix ill-conditioning
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Table 4.8 Frequency parameters Dha /2 ρω  for cantilevered rectangular 

plates with a V-notch (a/b=1.0, υ=0.3) 

Dha /2 ρω  
c/a α d/b 

1 2 3 4 5 

 0* 3.471 8.508 21.29 27.20 30.96 

0.1 3.459 8.407 20.96 27.01 30.47 

0.3 3.348 7.511 18.66 24.96 28.83 5° 

0.5 3.046 5.998 15.79 20.93 28.15 

0.1 3.458 8.393 20.88 26.99 30.33 

0.3 3.343 7.415 18.00 24.70 28.13 

0.5 

30° 

0.5 3.026 5.799 14.81 19.16 27.21 

0.1 3.469 8.449 21.16 27.06 30.62 

0.3 3.436 7.923 19.28 23.57 28.01 5° 

0.5 3.302 6.705 13.31 20.89 27.32 

0.1 3.462 8.406 21.15 26.93 30.63 

0.3 3.378 7.670 19.07 22.95 27.53 

0.75 

30° 

0.5 3.132 6.332 12.30 20.49 26.64 

Note：*：No V-notch
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Table 4.9 Frequency parameters Dha /2 ρω  for cantilevered rectangular 

plates with a V-notch (a/b=2.0, υ=0.3) 

Dha /2 ρω  
c/a α d/b 

1 2 3 4 5 

 0* 3.440 14.80 21.44 48.19 60.16 

0.1 3.434 14.71 21.29 47.94 60.05 

0.3 3.384 13.94 20.20 46.10 57.86 5° 

0.5 3.270 12.44 18.41 41.06 51.33 

0.1 3.434 14.70 21.27 47.84 60.05 

0.3 3.381 13.84 20.03 45.41 57.80 

0.5 

30° 

0.5 3.263 12.22 17.99 39.32 50.17 

0.1 3.439 14.76 21.38 47.82 59.71 

0.3 3.427 14.42 20.86 43.90 56.19 5° 

0.5 3.396 13.68 19.42 35.49 50.42 

0.1 3.435 14.72 21.38 47.83 59.65 

0.3 3.398 14.18 20.87 43.85 55.54 

0.75 

30° 

0.5 3.318 13.24 19.37 34.46 49.05 

Note：*：No V-notch
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Table 4.10 Frequency parameters Dha /2 ρω  for cantilevered 

rectangular plates with a V-notch (a/b=0.5, υ=0.3) 

Dha /2 ρω  
c/a α d/b 

1 2 3 4 5 

 0* 3.493 5.352 10.18 19.08 21.84 

0.1 3.468 5.262 9.897 18.59 21.02 

0.3 3.068 4.220 8.379 15.10 17.04 5° 

0.5 1.903 3.628 8.007 11.51 15.23 

0.1 3.467 5.249 9.855 18.42 20.87 

0.3 3.010 4.123 8.149 14.02 16.00 

0.5 

30° 

0.5 1.750 3.598 7.828 10.91 13.33 

0.1 3.487 5.299 10.01 18.87 21.41 

0.3 3.302 4.467 8.396 11.74 18.38 5° 

0.5 2.108 3.847 7.251 9.740 16.98 

0.1 3.474 5.249 9.907 18.68 21.42 

0.75 

30° 
0.3 3.097 4.264 8.023 10.84 18.04 

Note：*：No V-notch
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Table 4.11 Relative reductions of the frequency parameters nωΔ  for 

cantilevered rectangular plates with a V-notch (a/b=1.0, υ=0.3) 

nωΔ (%) 
c/a α d/b 

1 2 3 4 5 

0.1 0.35  1.19  1.55  0.70  1.58  

0.3 3.54  11.72  12.35  8.24  6.88  5° 

0.5 12.24  29.50  25.83  23.05  9.08  

0.1 0.37  1.35  1.93  0.77  2.03  

0.3 3.69  12.85  15.45  9.19  9.14  

0.5 

30° 

0.5 12.82  31.84  30.44  29.56  12.11  

0.1 0.06  0.69  0.61  0.51  1.10  

0.3 1.01  6.88  9.44  13.35  9.53  5° 

0.5 4.87  21.19  37.48  23.20  11.76  

0.1 0.26  1.20  0.66  0.99  1.07  

0.3 2.68  9.85  10.43  15.63  11.08  

0.75 

30° 

0.5 9.77  25.58  42.23  24.67  13.95  
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Table 4.12 Relative reductions nωΔ  of the frequency parameters for 

cantilevered rectangular plates with a V-notch (a/b=2.0, υ=0.3) 

nωΔ (%) 
c/a α d/b 

1 2 3 4 5 

0.1 0.17  0.61  0.70  0.52  0.18  

0.3 1.63  5.81  5.78  4.34  3.82  5° 

0.5 4.94  15.95  14.13  14.80  14.68  

0.1 0.17  0.68  0.79  0.73  0.18  

0.3 1.72  6.49  6.58  5.77  3.92  

0.5 

30° 

0.5 5.15  17.43  16.09  18.41  16.61  

0.1 0.03  0.27  0.28  0.77  0.75  

0.3 0.38  2.57  2.71  8.90  6.60  5° 

0.5 1.28  7.57  9.42  26.35  16.19  

0.1 0.15  0.54  0.28  0.75  0.85  

0.3 1.22  4.19  2.66  9.01  7.68  

0.75 

30° 

0.5 3.55  10.54  9.65  28.49  18.47  
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Table 4.13 Relative reductions nωΔ  of the frequency parameters for 

cantilevered rectangular plates with a V-notch (a/b=0.5, υ=0.3) 

nωΔ (%) 
c/a α d/b 

1 2 3 4 5 

0.1 0.72  1.68  2.78  2.57  3.75  

0.3 12.17  21.15  17.69  20.86  21.98  5° 

0.5 45.52  32.21  21.35  39.68  30.27  

0.1 0.74  1.92  3.19  3.46  4.44  

0.3 13.83  22.96  19.95  26.52  26.74  

0.5 

30° 

0.5 49.90  32.77  23.10  42.82  38.97  

0.1 0.17  0.99  1.67  1.10  1.97  

0.3 5.47  16.54  17.52  38.47  15.84  5° 

0.5 39.65  28.12  28.77  48.95  22.25  

0.1 0.54  1.92  2.68  2.10  1.92  

0.75 

30° 
0.3 11.34  20.33  21.19  43.19  17.40  
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Fig. 2.1 Stress resultants in polar coordinate 
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Fig. 2.2 A sectorial plate 
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Fig. 2.3 The coordinate system defined in a sectorial plate 
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Fig. 2.4 Variation of minimum Re(λn) with vertex angle α 

(after Huang, C.S. (1991), Singularities in plate vibration problems, Ph. D 

dissertation, The Ohio State University, Columbus, Ohio.)
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Fig. 3.1 The coordinate system defined in a completely free rectangular plate 

with a V-notch 
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Mode No. 
α d/b 

1 2 3 4 5 

 0 
 

(13.47) (19.60) (24.27) 
 

(34.80) (34.80) 

0.1 
 

(13.31) (19.40) (24.08) 
 

(34.20) (34.21) 

0.3 
 

(11.58) (17.63) (22.91) 
 

(28.31) (32.09) 

5° 

0.5 
 

(8.178) (14.48) (21.97) 
 

(22.54) (31.55) 

0.1 
 

(13.31) (19.31) (24.09) 
 

(34.07) (34.22) 

0.3 
 

(11.56) (17.08) (22.94) 
 

(27.52) (31.43) 

30° 

0.5 
 

(7.843) (13.82) (21.21) 
 

(21.88) (30.92) 

 
Fig. 3.2 Nodal patterns for completely free square plates with a V-notch at 

c/a=0.5 
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Mode No. 
α d/b 

1 2 3 4 5 

 0 
 

(13.47) (19.60) (24.27) 
 

(34.80) (34.80) 

0.1 
 

(13.36) (19.52) (24.20) 
 

(34.19) (34.64) 

0.3 
 

(12.07) (18.38) (22.80) 
 

(27.61) (33.75) 

5° 

0.5 
 

(8.515) (15.12) (20.96) 
 

(24.82) (32.87) 

0.1 
 

(13.33) (19.48) (24.18) 
 

(34.17) (34.56) 

0.3 
 

(11.86) (18.16) (22.54) 
 

(27.05) (33.20) 

30° 

0.5 
 

(7.961) (14.60) (20.57) 
 

(24.37) (32.27) 

 
Fig. 3.3 Nodal patterns for completely free square plates with a V-notch at 

c/a=0.75 
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Mode No. 
α d/b 

1 2 3 4 5 

 0 
 

(21.46) 
 

(26.57) 
 

(58.48) 
 

(59.61) 
 

(88.01) 

0.1 
 

(21.29) 
 

(26.36) 
 

(58.19) 
 

(59.46) 
 

(87.97) 

0.3 
 

(19.96) 
 

(24.47) 
 

(56.63) 
 

(57.00) 
 

(87.60) 

5° 

0.5 
 

(17.67) 
 

(20.49) 
 

(48.74) 
 

(55.39) 
 

(77.20) 

 
Fig. 3.4 Nodal patterns for completely free rectangular plates (a/b=2.0) with a V-notch at c/a=0.5 



 71

Mode No. 
α d/b 

1 2 3 4 5 

 0 
 

(21.46) 
 

(26.57) 
 

(58.48) 
 

(59.61) 
 

(88.01) 

0.1 
 

(21.27) 
 

(26.37) 
 

(58.06) 
 

(59.47) 
 

(87.89) 

0.3 
 

(19.84) 
 

(24.52) 
 

(55.67) 
 

(56.95) 
 

(87.38) 

30° 

0.5 
 

(17.38) 
 

(20.37) 
 

(47.51) 
 

(53.73) 
 

(74.19) 

 
Fig. 3.4 (continue)
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Mode No. 
α d/b 

1 2 3 4 5 

 0 
 

(21.46) 
 

(26.57) 
 

(58.48) 
 

(59.61) 
 

(88.01) 

0.1 
 

(21.40) 
 

(26.44) 
 

(58.09) 
 

(59.17) 
 

(87.96) 

0.3 
 

(20.83) 
 

(25.23) 
 

(53.45) 
 

(56.03) 
 

(87.57) 

5° 

0.5 
 

(18.97) 
 

(22.73) 
 

(44.23) 
 

(50.64) 
 

(81.06) 

 
Fig. 3.5 Nodal patterns for completely free rectangular plates (a/b=2.0) with a V-notch at c/a=0.75 
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Mode No. 
α d/b 

1 2 3 4 5 

 0 
 

(21.46) 
 

(26.57) 
 

(58.48) 
 

(59.61) 
 

(88.01) 

0.1 
 

(21.41) 
 

(26.41) 
 

(58.10) 
 

(59.12) 
 

(87.78) 

0.3 
 

(20.85) 
 

(25.03) 
 

(53.22) 
 

(55.58) 
 

(86.58) 

30° 

0.5 
 

(18.95) 
 

(22.28) 
 

(42.54) 
 

(49.54) 
 

(77.86) 

 
Fig. 3.5 (continue)
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Mode No. 
α d/b 

1 2 3 4 5 

 0 

 
(5.366) (6.644) (14.42) 

 
(14.90) (22.00) 

0.1 

 
(5.356) (6.561) (14.13) 

 
(14.86) (21.02) 

0.3 

 
(4.963) (5.316) (10.07) 

 
(13.92) (15.07) 

5° 

0.5 

 
(2.684) (5.298) (9.316) 

 
(9.655) (14.79) 

 
Fig. 3.6 Nodal patterns for completely free rectangular plates (a/b=0.5) 

with a V-notch at c/a=0.5 
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Mode No. 
α d/b 

1 2 3 4 5 

 0 

 
(5.366) (6.644) (14.42) 

 
(14.90) (22.00) 

0.1 

 
(5.320) (6.564) (14.14) 

 
(14.76) (20.89) 

0.3 

 
(4.813) (5.165) (9.647) 

 
(13.24) (15.03) 

30° 

0.5 

 
(2.428) (5.135) (9.081) 

 
(9.366) (14.61) 

 
Fig. 3.6 (continue)
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Mode No. 
α d/b 

1 2 3 4 5 

 0 

 
(5.366) (6.644) (14.42) 

 
(14.90) (22.00) 

0.1 

 
(5.357) (6.584) (14.28) 

 
(14.88) (21.56) 

0.3 

 
(5.213) (5.330) (9.226) 

 
(14.60) (15.22) 

5° 

0.5 

 
(2.700) (5.309) (7.662) 

 
(12.52) (14.78) 

 
Fig. 3.7 Nodal patterns for completely free rectangular plates (a/b=0.5) 

with a V-notch at c/a=0.75 
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Mode No. 
α d/b 

1 2 3 4 5 

 0 

 
(5.366) (6.644) (14.42) 

 
(14.90) (22.00) 

0.1 

 
(5.322) (6.561) (14.21) 

 
(14.81) (21.57) 

30° 

0.3 

 
(4.864) (5.247) (8.712) 

 
(14.19) (15.20) 

 
Fig. 3.7 (continue)
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Mode No. 
k 

4 5 

0 

  

0.38 

  

-0.45

  

Note：“k=0”：the solutions obtained from 12×12 polynomials with the 

Ritz method. 
Fig. 3.8 superposition of the fifth and forth mode shapes for completely 

free square plates 
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Fig. 4.1 The coordinate system defined in a cantilevered rectangular plate with 

a V-notch 
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Mode No. 
α d/b 

1 2 3 4 5 

 0 
 

(3.471) (8.508) (21.29) 
 

(27.20) (30.96) 

0.1 
 

(3.459) (8.407) (20.96) 
 

(27.01) (30.47) 

0.3 
 

(3.348) (7.511) (18.66) 
 

(24.96) (28.83) 

5° 

0.5 
 

(3.046) (5.998) (15.79) 
 

(20.93) (28.15) 

0.1 
 

(3.458) (8.393) (20.88) 
 

(26.99) (30.33) 

0.3 
 

(3.343) (7.415) (18.00) 
 

(24.70) (28.13) 

30° 

0.5 
 

(3.026) (5.799) (14.81) 
 

(19.16) (27.21) 

 
Fig. 4.2 Nodal patterns for cantilevered square plates with a V-notch at 

c/a=0.5 
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Mode No. 
α d/b 

1 2 3 4 5 

 0 
 

(3.471) (8.508) (21.29) 
 

(27.20) (30.96) 

0.1 
 

(3.469) (8.449) (21.16) 
 

(27.06) (30.62) 

0.3 
 

(3.436) (7.923) (19.28) 
 

(23.57) (28.01) 

5° 

0.5 
 

(3.302) (6.705) (13.31) 
 

(20.89) (27.32) 

0.1 
 

(3.462) (8.406) (21.15) 
 

(26.93) (30.63) 

0.3 
 

(3.378) (7.670) (19.07) 
 

(22.95) (27.53) 

30° 

0.5 
 

(3.132) (6.332) (12.30) 
 

(20.49) (26.64) 

 
Fig. 4.3 Nodal patterns for cantilevered square plates with a V-notch at 

c/a=0.75 
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Mode No. 
α d/b 

1 2 3 4 5 

 0 
 

(3.440) 
 

(14.80) 
 

(21.44) 
 

(48.19) 
 

(60.16) 

0.1 
 

(3.434) 
 

(14.71) 
 

(21.29) 
 

(47.94) 
 

(60.05) 

0.3 
 

(3.384) 
 

(13.94) 
 

(20.20) 
 

(46.10) 
 

(57.86) 

5° 

0.5 
 

(3.270) 
 

(12.44) 
 

(18.41) 
 

(41.06) 
 

(51.33) 

 
Fig. 4.4 Nodal patterns for cantolevered rectangular plates (a/b=2.0) with a V-notch at c/a=0.5 
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Mode No. 
α d/b 

1 2 3 4 5 

 0 
 

(3.440) 
 

(14.80) 
 

(21.44) 
 

(48.19) 
 

(60.16) 

0.1 
 

(3.434) 
 

(14.70) 
 

(21.27) 
 

(47.84) 
 

(60.05) 

0.3 
 

(3.381) 
 

(13.84) 
 

(20.03) 
 

(45.41) 
 

(57.80) 

30° 

0.5 
 

(3.263) 
 

(12.22) 
 

(17.99) 
 

(39.32) 
 

(50.17) 

 
Fig. 4.4 (continued)
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Mode No. 
α d/b 

1 2 3 4 5 

 0 
 

(3.440) 
 

(14.80) 
 

(21.44) 
 

(48.19) 
 

(60.16) 

0.1 
 

(3.439) 
 

(14.76) 
 

(21.38) 
 

(47.82) 
 

(59.71) 

0.3 
 

(3.427) 
 

(14.42) 
 

(20.86) 
 

(43.90) 
 

(56.19) 

5° 

0.5 
 

(3.396) 
 

(13.68) 
 

(19.42) 
 

(35.49) 
 

(50.42) 

 
Fig. 4.5 Nodal patterns for cantilevered rectangular plates (a/b=2.0) with a V-notch at c/a=0.75 
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Mode No. 
α d/b 

1 2 3 4 5 

 0 
 

(3.440) 
 

(14.80) 
 

(21.44) 
 

(48.19) 
 

(60.16) 

0.1 
 

(3.435) 
 

(14.72) 
 

(21.38) 
 

(47.83) 
 

(59.65) 

0.3 
 

(3.398) 
 

(14.18) 
 

(20.87) 
 

(43.85) 
 

(55.54) 

30° 

0.5 
 

(3.318) 
 

(13.24) 
 

(19.37) 
 

(34.46) 
 

(49.05) 

 
Fig. 4.5 (continued)
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Mode No. 
α d/b 

1 2 3 4 5 

 0 

 
(3.493) (5.352) (10.18) 

 
(19.08) (21.84) 

0.1 

 
(3.468) (5.262) (9.897) 

 
(18.59) (21.02) 

0.3 

 
(3.068) (4.220) (8.379) 

 
(15.10) (17.04) 

5° 

0.5 

 
(1.903) (3.628) (8.007) 

 
(11.51) (15.23) 

 
Fig. 4.6 Nodal patterns for cantilevered rectangular plates (a/b=0.5) with 

a V-notch at c/a=0.5 
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Mode No. 
α d/b 

1 2 3 4 5 

 0 

 
(3.493) (5.352) (10.18) 

 
(19.08) (21.84) 

0.1 

 
(3.467) (5.249) (9.855) 

 
(18.42) (20.87) 

0.3 

 
(3.010) (4.123) (8.149) 

 
(14.02) (16.00) 

30° 

0.5 

 
(1.750) (3.598) (7.828) 

 
(10.91) (13.33) 

 
Fig. 4.6 (continued)
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Mode No. 
α d/b 

1 2 3 4 5 

 0 

 
(5.366) (6.644) (14.42) 

 
(14.90) (22.00) 

0.1 

 
(3.487) (5.299) (10.01) 

 
(18.87) (21.41) 

0.3 

 
(3.302) (4.467) (8.396) 

 
(11.74) (18.38) 

5° 

0.5 

 
(2.108) (3.847) (7.251) 

 
(9.740) (16.98) 

 
Fig. 4.7 Nodal patterns for cantilevered rectangular plates (a/b=0.5) with 

a V-notch at c/a=0.75 
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Mode No. 
α d/b 

1 2 3 4 5 

 0 

 
(3.493) (5.352) (10.18) 

 
(19.08) (21.84) 

0.1 

 
(3.474) (5.249) (9.907) 

 
(18.68) (21.42) 

30° 

0.3 

 
(3.097) (4.264) (8.023) 

 
(10.84) (18.04) 

 
Fig. 4.7 (continued) 

 


