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Abstract

In this thesis we deal with a few problems related to the presence of
impurity in semiconductors. The focus of Part I is on the realization of THz
radiation in solid state system by using the concept of resonant state, a hybrid
state of localized impurity state and a band of continuum. The previous
proposal on such resonant state laser, however, has a serious constrain on
the applied strain, and consequently the emitted photon has a lower bound
of energy. We invent a quantum well structure in order to relax such constrain
and generate photon of energy less than 4 meV, corresponding to frequency
of 1 THz, with feasible conditions of strain, impurity concentration, electric
field, and temperature. We demonstrate that a population inversion can
be achieved in this structure by numerically solving the Boltzmann kinetic
equation in momentum space.

Part II is devoted to the investigation of the effects of oxygen adsorption
on the electronic properties of conjugated polymers. It is found that the
oxygen molecule has the tendency to adsorb onto the category of carbon-
based materials with sp2-binding, such as carbon nanotube and most of the
conjugated polymers, by a weak intermolecular interaction. There are two
outstanding questions regarding such adsorption. One of them is the huge
mobility difference between hole and electron in many conjugated polymers.
This is in contrast to the situation for the crystalline inorganic solids in which
the electrons have a larger mobility than the holes. The simple formula for the
carrier mobility in terms of effective mass and scattering time is apparently
invalid to explain such imbalance in such disorder system because accurate
band structure calculation reveals two similar effective masses for conduction
and valence bands. Therefore it is the presence of defect that dominate
the transport in such disorder system, and hence the observed mobility is
influenced by the trap density to a great extent. The ultimate entity for
such imbalance is shown to be the adsorbed oxygen molecule which causes
a pair of asymmetric binding energies for the trapped electron and hole in a
symmetric electronic system.

P -doping by the adsorbed gas molecule is another interesting property
of conjugated polymers. A reversible increase of conductivity is found in
the polymer FET when the polymer was previously exposed to air for a few
hours. The increase of conductivity, however, causes the degrade of the device
characteristics by increasing the off-current. This effect can be completely
eliminated by just evacuating the devices for a long time, say a week. The
doping mechanism remains unclear because of the conditional illumination.



For polythiophene, the doping can be found in both dark and illumination,
while it is only possible under illumination for pentacene. We would like to
understand the mechanism for such doping process. Polythiophene is taken
as an example by calculating the band structure for the oxygenated poly-
thiophene with a self-consistent tight-binding scheme. The coincidence of
Fermi level and the valence band edge reveals that a cluster of adsorbed
oxygen molecules transform the semiconducting polymers into metal. Such
coincidence is shown to depend on the HOMO level of the host. In addi-
tion, an excitation corresponding to electron transferring to the adsorbate
is also found in the band structure. The metal-insulator transition explains
the doping in dark and the charge transfer excitation is interpreted as the
photoinduced doping.

Keywords: THz radiation, solid state laser, resonant state, Boltzmann ki-
netic equation, continuum-trap system, conjugated polymers, organic semi-
conductor, quasi-particle, polaron, soliton, exciton, quantum yield, defect,
trap, mobility imbalance, molecular oxygen, adsorption, metal-insulation
transition, oxygen doping, Fermi level alignment.
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Part I

Realization of THz radiation in
solid state system
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Chapter 1

Overview of solid-state THz
source

1.1 Introduction

Applications of electromagnetic radiation are ubiquitous in our daily lives
from personal communications, microwave ovens, to X-ray in medical de-
tections. For scientific studies, those radiations can be used to unravel the
underlying structures of tiny objects ranging from the elementary atoms,
molecules, to tissues. THz radiation, whose frequency (1−10 THz) falling
in the range between infrared and microwave regions of the spectrum, has a
wavelength (30−300 µm) comparable to the size of human tissues and hence
it is very desirable for medical imaging such as detecting cancers or other
diseases. Despite of the wide applications, THz frequencies are among the
least developed electromagnetic spectra. The underdevelopment is primarily
due to lack of convenient THz sources that can provide high radiation inten-
sities with cw operation. Radiation sources based on solid state media are
thus highly desirable due to its size and the potential integration with other
electronic applications. However, it is difficult to achieve the population in-
version conditions for this range of frequency in solid state system because
some thermal processes, like acoustic phonon scattering and Auger relax-
ation, inherent for solids have energy scale of meV, and hence can equalize
non-equilibrium carrier distributions of states spaced by a few THz.

Since the original proposal of semiconductor superlattices, there has been
much progress to obtain optical gain in such novel system. In this chapter
we are going to review three different schemes to generate THz radiation
based on the solid state quantum structures. For quantum cascade laser and
resonant state laser, a population inversion between levels where transition
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Figure 1.1: A schematic plot for quantum cascade laser. As shown, the
carriers injected from the left tunnel into the state 1 and followed by a slow
decay to state 2. With precise control of the barrier height and well width,
state 2 can fast decay into state 3, which in turn depopulates state 2. A
population inversion is then achieved when the decay from 1 to 2 is slow.
Identical process takes place in the next block.

takes place is the key ingredient to obtain light amplification. However,
the emission of THz radiation resulting from Bloch oscillation still can have
optical gain without population inversion. Among these, the focus is on the
resonant state laser which use a hybridized state of a localized impurity state
and the continuous valence band states. Motivated by the constrain on the
energy of emitted photon in previous proposals, we invent a new quantum
well structure to implement such concept but free of such constrain. The
details of lasing mechanism and the theoretical analysis will be given in the
following chapters.

1.2 Quantum cascade laser

The quests for solid state radiation sources usually rely on precise manipula-
tion of carrier’s kinetics such that the optical gain can be obtained between
levels of transition. In other words, a population inversion is necessary for
the lasing condition. The usual and convenient external forces which drive
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the distribution deviating from the its equilibrium one is electric field. The
energy difference for carrier transition in THz frequencies has the order of
meV, which is much smaller than the band gap, usually of order eV, in most
semiconductors. Thus the transition must take place within a single band.
This is possible when considering the subband structure brought by the fancy
structure like quantum well or super lattice.

Fig. 1.1 shows a schematic plot for the operation of quantum cascade
laser. The relevant levels in a principal block are labeled by 1, 2 and 3. The
actual device contains a few periods of such block. Usually the carriers are
injected by resonant tunneling. By precise control of width of quantum wells
and the the barriers, state 1 can have a relatively slow decay into state 2 by
localizing the wave function for state 1. The depopulation of state 2 can be
achieved by the fast decay from 2 to 3. A new cycle starts when carriers from
3 tunnel into state 1 in the next block. Fig. 1.2 shows the potential profile
in an actual quantum cascade laser based on Si/SiGe superlattices where the
THz radiations result from intersubband electroluminescence[1]. In addition
it has been demonstrated to emit cw radiation of 3.2 THz at liquid-nitrogen
temperature in GaAs/AlGaAs SLs[2].

However, building QCLs at such long wavelengths becomes increasingly
challenging since the intersubband energy separations are extremely small
(1 THz corresponds to 4 meV). It becomes difficult to achieve the selective
injection and removal of carriers necessary to obtain an intersubband pop-
ulation inversion, especially as the energy separations become comparable
to the subband broadenings. Furthermore, the free carrier absorption loss
scales as λ2 and thus increases significantly at low frequencies[3]. To date
the design based on QCL is able to emit radiation of 1 THz.[4]

1.3 Bloch oscillation

The dynamics of a electron moving freely in a perfectly periodic potential
under an applied constant electric field is simple. If we approximate the band
dispersion as

ε =
∆

2
(1− cos kd) , (1.1)

then the velocity of the electron can be expressed as

v(k) =
1

h̄

∂ε

∂k
=

∆d

2h̄
sin kd , (1.2)

where the momentum is a function of the applied electric field, given by
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Figure 1.2: The valence band potential for a quantum cascade laser in
Si/SiGe superlattice[1]. With precise control of the well widths and the
Ge content, two series of states, labeled by HH1 and HH2, are separated by
a gap of 130 meV and a transition takes place between them. When a DC
electric field is applied, holes on HH2 states can easily arrive at w1 by tun-
neling but is quenched there due to small overlap between wave functions for
HH1 and HH2. The quench therefore generates a sufficiently long life time
for HH2, and a population inversion is possible when more and more holes
are injected. This block is repeated for a few cycles in the real device.
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k(t) = k0 +
eEt

h̄
. (1.3)

Thus the electron has a sinusoid velocity under the constant electric field.
That is

v(t) =
∆d

2h̄
sin(ωBt) , (1.4)

where ωB is the Bloch oscillation frequency

ωB =
eEd

h̄
. (1.5)

Therefore, the electron can move back and forth in both real and momentum
spaces for such ideal situation[5, 6]. The spatial amplitude for Bloch oscilla-
tion is about ∆/eE. For real situation when electric field of order kV/cm and
bandwidth ∆ of order eV, this amplitude is much larger than the lattice con-
stant, which suggests that such oscillation is not possible to be observed at
room temperature. However, in the structure of superlattice, this amplitude
can be significantly reduced since the subband has much smaller ∆. In ad-
dition, the frequency ωB can be fine tuned to match THz range by adjusting
the layer spacing and the applied field. Key experiments in semiconductor
superlattices have shown Wannier-Stark ladders, transient Bloch oscillations,
and resonant THz photoconductivity[7, 8, 9].

1.4 Strain-induced resonant state laser

Another promising way to realize semiconductor source of THz radiation
is resonant state lasers[10, 11] (RSL) based on doped quantum well (QW)
structures,[12, 13] whose operation involves strain-induced resonant states
and pumping by an electric field. A THz transition between higher and lower
acceptor states has been observed.[12, 13] In RSL with one single QW, the
two degenerate valence bands are split by symmetry-lowering external strain
caused by external pressure or lattice mismatch. The splitting also removes
the degeneracy of the hydrogen-like acceptor localized states and therefore
two localized states are formed with energy levels attached to each split band.
As the strain is so strong that the energy splitting exceeds the binding energy
of the acceptor, one of the two localized states becomes resonant with the
band to which the other localized state is attached. The coincidence in energy
leads to resonant scattering between the continuous and localized states. A
population inversion between the two localized states can be achieved by
resonant capture of the holes under an electric field.
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Figure 1.3: A schematic of the operation for emission of THz radiation based
on the resonant state in strained p-Ge[11]. As shown, the resonant state
is a combination of the valence band continuum and the localized acceptor
state. The hybridization is through an off-diagonal coupling between states
of different jz.
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Shown in Fig. 1.3 is the valence band diagram for the strained semicon-
ductor as well as a series of acceptor states attached to them. The split
between the two bands is proportional to the strain. Therefore the accep-
tor state, labeled by the thick line, can have a energy resonance with the
continuum. Though the localized state and the continuum have different an-
gular momentum component jz, they can form a resonant state by coupling
with each other through an small off-diagonal interaction in the Luttinger
Hamiltonian[11]. In thermal equilibrium the lowest for hole carrier is the
acceptor 1s state shown in the top of Fig. 1.3. Therefore at very low tem-
perature all the holes occupy this state. When turning on an electric field,
those holes can be excited to the continuum by impact ionization and then
accelerate toward the energy of the resonant state. Once they reach that
energy, scattering is intense and the holes may again be captured by the ac-
ceptors but in a relatively high level. Note that the time scales for the impact
ionization and scattering is small and of order of picosecond. Consequently
the radiative decay from higher to lower acceptor levels of microsecond time
scale is relatively slow and a population inversion can be achieved as long as
the lower localized levels are depopulated by impact ionization.
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Chapter 2

Resonant state laser in
quantum well structure

2.1 The limit on photon energy in RSL

In the previous approach to RSL[10, 11, 12, 13] there is a serious constraint
on the emitted photon energy. In single QW the acceptor level splitting
needs to be greater than the impurity binding energy in order to have res-
onant state. The photon energy therefore must be larger than the binding
energy, which is several tens of meV (15 meV for Ge and 50 meV for Si[14])
corresponding to more than 10 THz. In this paper we present a concept of
Silicon-Germanium QW RSL which is free of such a constraint. Instead of
one single QW, in our structure the continuous and localized states are in
different layers and the resonance can be controlled by independent strains in
different layers. Therefore resonant scattering can occur even if the energy
splitting is smaller than the acceptor binding energy. Silicon-Germanium
alloy is chosen as the material system for this concept because of its low
absorption in the THz range and easy integration with Si electronics. We
calculate the energies of the localized acceptor levels and continuous sub-
band levels (indicated as ”continuum” below), and give the relation between
the emitted photon energy and the structure parameters. In order to show
that population inversion can be realized under practical experimental con-
ditions, we construct a comprehensive theoretical model for non-equilibrium
behaviors of holes in the QW structure and study in detail the the dynamical
behaviors of the holes with external pumping field. Our results indicate that
emission as low as 1 THz can be obtained in the QW structure with reason-
able Germanium compositions under an electric field of about 100 V/cm at
10 K.
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Figure 2.1: The band edge profiles for light hole (LH, solid line) and heavy
hole (HH, dashed line) of the proposed QW structure are shown. Both x and
y directions are perpendicular to the crystal growth direction z. x and y are
the Germanium compositions for the well and barrier layers respectively. W
is the well width. The energies of the strain-split acceptor levels LH1S, HH1S
and HH2P± relevant for THz laser are also shown. d is the distance between
the dopant and the boundary of the well. The HH1 minimum is indicated
by the dash-dot line. The insert defines the directions in the system.

2.2 A remedy: QW-RSL

The profile of valence band edge diagram along crystal growth direction (z
direction) of the proposed QW structure is shown in Fig. 2.1. For clarity the
sign of energy is reversed. The splitting of heavy hole and light hole band
edge is due to strain caused by lattice mismatch between SiGe alloy and Si.
The strain can be linearly related to the Germanium compositions in the
alloy. The two Si1−xGex layers sandwiching the central Si1−yGey layer have
identical profile and are δ-doped with identical acceptor density na. The
profile has been designed to be symmetric for simpler theoretical treatments.

As can be seen in the profile of the heavy hole band edge in Fig. 2.1, holes
are confined in the central layer in the z direction due to the potential bar-
riers constituted by the two identical Si1−xGex layers at two sides. Series of
subbands are formed due to the confinement. We label the energy minimum
of the first heavy hole subband (HH1), which is a function of the well width
W , by the dash-dot line in the central layer. In addition there is a series
of localized acceptor levels attached to the heavy hole band edge in each
δ-doped layer. We focus on the low-lying heavy hole 2p±1 level (HH2P±),
labeled by a short dashed line, and the light hole acceptor 1s level (LH1S)
labeled by a short solid line. LH1S and HH2P± have opposite parity and
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Figure 2.2: Schematic 4-level operation of the THz laser. The operation
involves three acceptor states LH1S, HH1S and HH2P± as well as the HH1
continuum (shaded region). The four major processes are also indicated.
Process 1 indicates the field ionization of HH1S through the a barrier to reach
HH1 minimum. The low-energy holes in HH1 are pumped toward resonant
states by electric field in the Process 2. Process 3 represents resonant capture
of continuum holes of energy Er to meta-stable LH1S. The radiative decay
by stimulated emission into the lower localized state HH2P± is denoted by
Process 4.

hence are expected to give the strongest intensity of radiation among all pos-
sible transitions. Besides, the acceptor 1s level attached to the heavy hole
band edge is the very lowest state for holes in the system and is labeled by
HH1S, which is shown below the HH2P± in Fig. 2.1. With precise control of
Germanium compositions x and y in the QW structure, the heavy hole and
light hole band edges as well as the localized acceptor levels can be adjusted
to have the relative energies required for THz laser.

2.3 Mechanism for population inversion

Now we consider the pumping mechanism of the holes under an external
electric field F (strength F ) perpendicular to the z direction, say x direc-
tion. The physical picture is shown in Fig. 2.2. HH2P± is below LH1S and
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minimum of HH1 by δ and E0 respectively. Note that in our problem δ
must be larger than E0 to have resonance between HH1 and LH1S. At zero
temperature all the holes stay in the low-lying HH1S state without field.
When the external electric field is applied, some holes on HH1S are initially
field-ionized then more holes are excited to HH1 through impact ionization
and acquire more kinetic energy until occurrence of phonon scattering. The
processes of field ionization and pumping of holes are denoted by Process 1
and 2 respectively in Fig. 2.2. Another channel for slowing down the holes in
HH1 is the resonance capture by LH1S. The transition between heavy hole
and light hole states, denoted by Process 3, is facilitated by the off-diagonal
matrix element[11] of Luttinger-Kohn Hamiltonian to be discussed below.
As the occupation of higher LH1S grows with increasing external field and
the lower HH1S and HH2P± are gradually depleted by impact ionization,
a population inversion is expected. Emission of THz photon, indicated by
Process 4, will take place due to the radiative decay of holes from LH1S to
HH2P±.

The resonance of the localized state and the continuum is achieved by
raising the strain of the lattice so that the localized state is lifted to immerse
within the continuum. In the previous works on QW RSL[12, 13] this ac-
ceptor impurity is doped in the same layer as the continuous states, so E0

is simply the binding energy. Apparently in such case the strain splitting δ
must exceed the binding energy, corresponding to a lower bound of photon
energy. In this work we spatially separate the acceptor impurity and quan-
tum well so the relative energy between the localized state and continuum
has a much higher flexibility by adjusting the compositions x, y and the well
width W . As a result no matter how small δ is we can always adjust the
QW structure such that E0 < δ. However the only lower bound for the
emitted photon energy is the energy shift of the resonant state caused by
the perturbation of the continuum as discussed previous Section. Hence our
proposed structure is able to emit photon of energy less than the binding
energy which is usually several tens of meV (12 THz in the case of Si ) and
is expected to fulfill the needs of solid-state optical sources of several THz
or even sub-THz range. Because the relative energies of the localized and
continuous states are crucial to the laser operation, below we calculate the
quantitative relations between the relevant levels in the QW structure and
QW parameters like width W and Germanium compositions. Even though
the acceptor levels are outside the central well, there is no difficulty for the
holes in the central well to be resonantly captured by the acceptor as long
as there is a overlap between the wavefunctions of the acceptor levels and
HH1. In order for the above picture to be valid, it is important to choose an
intermediate value for the distance between the dopants and the quantum
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well. The distance should be neither so large relative to the acceptor Bohr
radius that there is no overlap between the acceptor level and quantum well
level nor so small that acceptor level itself becomes heavily influenced by the
well.
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Chapter 3

Theoretical modeling of
population inversion in a
continuum-trap system

3.1 Hybridization of acceptor impurity state

and valence band continuum

3.1.1 Subband and Impurity Wavefunctions

In this subsection we calculate the wavefunctions and energies of the rel-
evant states. We first consider a perfect crystal. The wavefunctions for
the heavy hole and light hole bands can be represented by the eigenfunc-
tions of the Luttinger-Kohn Hamiltonian[15] HLK in the Bloch function ba-
sis {u3/2, u1/2, u−1/2, u−3/2}, which is the periodic sum of the atomic orbitals
with total angular momentum quantum number j = 3

2
. The subscripts stand

for their z component jz of total angular momentum j. The column vector
Ψ formed by the envelope functions {ϕ3/2(r),ϕ1/2(r),ϕ−1/2(r),ϕ−3/2(r)} are
the eigenfunctions of HLK . The true wavefunction ψ(r) of the state is given
by ψ(r) = Στϕτ (r)uτ . The Luttinger-Kohn Hamiltonian can be written as

HLK =
h̄2

2m0




â+ b̂ ĉ 0

b̂† â− 0 ĉ

ĉ† 0 â− −b̂

0 ĉ† −b̂† â+




jz = 3
2

jz = 1
2

jz = −1
2

jz = −3
2

, (3.1)

and the matrix elements are

â+ = −k̂z(γ1 − 2γ)k̂z − (γ1 + γ)(k̂2
x + k̂2

y) , (3.2)
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Figure 3.1: Spectrum of the diagonal part H0 of the full Hamiltonian H. The
acceptor states of interest and the continuous HH1 are shown. The binding
energy for HH2P± and the emitted photon energy are denoted by E0 and
δ respectively. Their values and corresponding variational Bohr radius is
shown in Table I. ε(k) is the spectrum of subband HH1.
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â− = −k̂z(γ1 + 2γ)k̂z − (γ1 − γ)(k̂2
x + k̂2

y) , (3.3)

b̂ =
√

3(k̂x − ik̂y)(γk̂z + k̂zγ) , (3.4)

ĉ =
√

3γ(k̂x − ik̂y)
2 . (3.5)

m0 is the free electron mass and k̂i = i ∂
∂xi

, i = x , y , z are operators for the
envelope functions. γ1, γ2 and γ3 are material-dependent Luttinger param-
eters and γ = (2γ2 + 3γ3)/5. For crystals with translational invariance the
envelope functions are all proportional to plane waves eik·r and the above
operators turn into c-numbers. Diagonalization of the matrix gives the spec-
trum E±(k) which possesses four-fold degeneracy at the band edge. The sign
± indicates that there are two branches, the heavy hole and light hole bands.
The spectrum E±(k) is given by

E±(k) =
h̄2

m0

[
γ1

k2

2
±

√
γ2

2k
4 + 3(γ2

3 − γ2
2)(k

2
xk

2
y + k2

yk
2
z + k2

zk
2
x)

]
. (3.6)

When the perfect crystal is subject to a stress due to external strain or
lattice mismatch the crystal symmetry is lowered, and the four-fold degen-
eracy at the valence band edge is split into two two-fold degeneracies. If the
strain is along the [001] axis, which is parallel to the z direction, this effect
is to add a strain term Vst to the Hamiltonian.[16] It can be represented by
the diagonal matrix

Vst =




ζ 0 0 0
0 −ζ 0 0
0 0 −ζ 0
0 0 0 ζ


 . (3.7)

The coincidence of heavy hole band and light hole band at band edge is split
by the strain factor ζ which is proportional to external force and dependent on
the direction of strain. In QW the strain results from the lattice mismatch
between Si and SiGe alloy. In epitaxially grown SiGe QW structure on
Si substrate, the lattice constant of the whole structure is fixed by the Si
lattice constant. Because the natural lattice constant of SiGe alloy is different
from Si, there must be a strain in the alloy to force the lattice constant to
match Si. The relation between valence band splitting ζ due to strain and
the Germanium composition t in Si1−tGet alloy was studied before.[17] The
expression in eV is ζ(t) = 0.01 + 0.2t− 1

4

√
0.0016 + 0.0074t + 0.24t2. In our

proposed QW structure the Germanium compositions vary in the z direction
and the hence the strain factor ζ is a function of z .
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For an acceptor in the stressed crystal we shall add the Coulomb potential
VI due to the charged center

VI(r) = vI(r)I =
1

4πε

e

r
I , (3.8)

where ε is the dielectric constant. r is the distance from the acceptor. I
represents the 4× 4 identity matrix. In the high strain limit the off-diagonal
coupling b̂ and ĉ can be considered as perturbations and HLK becomes ap-
proximately diagonal with two-fold degeneracy for heavy and light holes.
The resultant localized states can also be divided into two subgroups like the
band states.

After reviewing the bulk crystals we can extend the discussions to the
states in QW structures shown in Fig. 2.1. Even without strain the valence
band edge depends on the Germanium compositions,[18] described by Vb(z) =
vb(z)I. For Si1−tGet alloy grown on Si, the valence band offset in eV can be
written as vb = 0.84t. The total band edge profile in Fig. 2.1 comes from
the sum of Vb(z) and Vst(z). The Luttinger parameters have different values
in different layers, hence they are functions of z. Homogeneity of those
parameters is assumed within each Silicon-Germanium layer and their values
are determined by linear interpolation between pure Si and pure Ge. The
heavy hole and light hole subbands in the structure can be expressed by the
total Hamiltonian H

H = HLK + Vb(z) + Vst(z) . (3.9)

Note that z=0 is at the center of well so there is a parity symmetry with
respect to z → −z in this problem. Here we separate HLK into diagonal and
off-diagonal parts, labeled by H0

LK and H1
LK respectively. The wavefunctions

for HH1 emerge from eigenfunctions of diagonal parts H0 = H0
LK + Vb(z) +

Vst(z) of the full Hamiltonian H. The off-diagonal heavy hole-light hole
mixing H1

LK will be considered later as a perturbation. The unperturbed
Schrödinger equation can be written as

H0Ψ = εΨ . (3.10)

We solve this to obtain HH1 envelope functions Ψ of the wavefunctions ψk

with eigenvalues ε(k). On the other hand, the localized states φLH
1s and φHH

2p±
with respective eigenvalues ELH

1s and EHH
2p± are eigenstates of Hamiltonian

H0
LK + VI(r) + [Vb(z) + Vst(z)]z=z±0

. z±0 ≡ ±(W
2

+ d) denote the positions

of acceptors. The implicit assumption is that the Coulomb potentials VI

has little effect on the subband wavefunctions while the non-uniform strain
is irrelevant to the localized state. The above approximations are justified
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by the conditions that the distance between the dopant and quantum well
boundary d as well as the thickness of outer Si1−xGex layers are both larger
than the acceptor Bohr radius. The equations turn out to be the typical
one-dimensional potential well problem for the subband and hydrogen atom
problem for the localized states. Energy spectrum for the relevant states are
shown in Fig. 3.1. The explicit wavefunctions for HH1 can be expressed as

ψk(ρ, z) =
1√
A

g(z)eik·~ρu±3/2 , (3.11)

where the ± sign in the wavefunctions reflects the two-fold degeneracy guar-
anteed by time-reversal symmetry in the absence of magnetic field and the
envelope function g(z) have the even parity to yield the lowest energy of all
subbands. A is the QW area. ~ρ = (x, y) is the in-plane coordinate. The
acceptors wavefunction localized at z = z±0 and ~ρ = 0 are of the forms

φLH
1s (~ρ, z) = ϕ1s

[
~ρ, z − z±0

]
u±1/2 , (3.12)

φHH
2p± (~ρ, z) = ϕ2p±

[
~ρ, z − z±0

]
u±3/2 , (3.13)

where ± stands for z > 0 and z < 0 respectively. We use hydrogenic trial
functions

ϕ1s(~ρ, z) =
1√
πa2b

exp


−

√
ρ2

a2
+

z2

b2


 , (3.14)

ϕ2p±(~ρ, z) =
1

2πa4b
ρeiφ exp


−

√
ρ2

a2
+

z2

b2


 . (3.15)

a (in-plane Bohr radius) and b (out-of plane Bohr radius) are variation pa-
rameters for minimizing their energy and φ is the polar angle in the xy
plane. ρ is the modulus |~ρ|. Variational calculations are performed to ob-
tain the acceptor level splitting δ and the difference E0 between HH2P± and
HH1 minimum. Variational calculations are performed to obtain the accep-
tor level binding energy. The resultant binding energies and the variational
Bohr radius of the levels of interest are shown in Table I.

Next we consider the corrections to the impurity states resulting from
the QW confinement potential as well as the off-diagonal couplings with the
HH1 continuum. Such corrections are necessary for having a more precise
prediction on the emitted photon energy. Here we focus on the corrections to
the binding energy of LH1S, which is resonant with the continuum. Note that
the binding energy is relative to the barrier, not the quantum well continuum.
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The expressions for the corrections ∆E1s are given below and the details of
derivation are presented in Appendix 4.1.

∆E1s = ∆ + P
A

(2π)2

∫
dk

|αk|2
E1s − εk

. (3.16)

∆ is the correction due to the confinement potential while the integral due
to the coupling with the continuum. P stands for the Cauchy principle value
integration. αk and ∆ are given by

αk = 〈ϕ1s|ĉ|ψk〉 , (3.17)

∆ = 〈ϕ1s| [vC(z)− vC(z0)] |ϕ1s〉 . (3.18)

Note that only the off-diagonal elements involving kx and ky are considered
because the resonance requires a large in-plane momentum. The confinement
potential vC is the diagonal element of Vb +Vst belonging to light hole states.
Correction due to the confinement potential ∆ is negligible in the present case
because very little portion of the impurity wavefunction for the impurity falls
on the QW region and the confinement potential is small compared to the
impurity binding energy. In fact our calculation shows this correction on
E1s is less than 0.1 %. However this effect for the case of smaller binding
energy is important such as the shallow donors located in the barrier near the
quantum well.[19] The second term resembles the formula for second order
perturbation. Even though still only about 10 % of E1s, it provides significant
corrections in case of the small emitted photon energy. The smallness of the
corrections is reasonable since the light hole localized states and the heavy
hole continuum have small overlap and they can couple to each other only
though the off-diagonal elements of HLK which is treated as perturbation in
the high-strain limit.[11] The QW continuum and the HH2P± are assumed
to be unaffected by the perturbation.

3.1.2 Resonant transition

The hybridization of the localized LH1S and the HH1 continuum via the
off-diagonal perturbation H1

LK leads to a new set of resonant states {ΨE}
labeled by its complex energy E + iΓE

2
. The imaginary part is given by

ΓE

2
= π

A

(2π)2

∫
dkδ(E − εk)|αk|2 . (3.19)

The nonzero imaginary energy ΓE here represents that ΨE is a quasi-stationary
state. More precisely speaking the HH1 holes of momentum k can be cap-
tured by LH1S with the transition rate W res

k for a time interval h̄/Γ. The
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Figure 3.2: The energy width Γ of the resonant state is shown as a function
of the resonant state energy Er measured from HH1 minimum. Symbol
curves correspond to various in-plane Bohr radius a of LH1S orbital with
fixed d = 6 nm. Dash and dot lines correspond to various distance d between
the acceptor and boundary of the central well with a = 2.7 nm.

transition rate and the time interval are determined in a self-consistent man-
ner, that is

W res
k =

2

h̄
|αk|2 Γ/2

[ε(k)− E1s]
2 + Γ2/4

, (3.20)

Γ

h̄
=

∑

k

W res
k . (3.21)

The center of the Lorentzian corresponds to E1s because the resonant state
ΨE1s contains the maximum component of the localized LH1S. For simplicity
we regard the unknown Γ in Eq. (3.20) as close to zero and the Lorentzian
is reduced to a delta function. So long as the resultant Γ from Eq. (3.21) is
small compared to the resonance energy Er ≡ E1s − ε(k = 0) (see Fig. 2.2,
3.1) of LH1S, this method is self-consistent to obtain Γ.

Next work out Γ in the small Γ limit. In other words the resonant tran-
sition rate W res

k can be given simply by the Fermi-Golden rule,

W res
k =

2π

h̄
|αk|2δ [ε(k)− E1s] . (3.22)

In order to obtain an explicit expression for the transition rate we need to
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calculate the overlap integral 〈ϕ1s|ψk〉. Assuming the main contribution to
this integral comes from the region in the barrier, i.e. |z| > W

2
, we arrive at

〈ϕ1s|ψk〉 =
1√
A

1√
πa2b

∫
dz g(z)

∫
dxdy ei~k·~ρ exp


−

√
ρ2

a2
+

z2

b2


 (3.23)

= ℵ
√

16πab2

A

1

η2

{
e−η d

b
1

κb− η

[
κb− 2η

η(κb− η)
+

d

b

]
+ e−κd

[
(2η − κb)

η(κb− η)2 +
(2η + κb)

η(κb + η)2

]}
.

The dimensionless quantity η ≡ √
1 + a2k2 is introduced. ℵ is to normalize

the envelope function g(z) as
∫ ℵ2|g(z)|2dz = 1. κ is the decay constant of

g(z) in the barriers.
Γ as a function of resonance energy Er is plotted in Fig. 3.2 for various

acceptor in-plane Bohr radius a and separation d. The effect of coupling with
the continuum can be investigated through Γ. For distance d much larger
than the Bohr radius, the coupling is diminished due to decreasing overlap
between the impurity state and the continuum. In such case the formation
of resonant state is impossible. However the dependence of the coupling
on the Bohr radius is determined by two competing factors. Namely in
the z direction the envelope function g(z) of continuum has larger overlap
with localized impurity state of larger Bohr radius, while in the xy plane
the continuum of higher kinetic energy can only be coupled to the impurity
state of smaller Bohr radius because such localized state has larger Fourier
momentum components. For larger Bohr radius, it is shown in Fig. 3.2 that
Γ is larger at lower Er while it is smaller at higher Er.

3.2 Carrier kinematics in the steady electric

field

So far there is no comprehensive theoretical model for the non-equilibrium
behavior of acceptor levels interacting with a subband in QW. In order to
make quantitative predictions of the conditions for hole population inversion,
below we construct a model which takes into account of all the relevant
physical processes for such system.

3.2.1 Hole Statistics at equilibrium

The occupation probabilities of LH1S, HH2P±, HH1S and HH1 states are
indicated by f1, f2, fg and fk respectively. In thermal equilibrium the oc-
cupation ratio of LH1S to HH2P± is given by the Boltzmann factor, i.e.
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f2/f1 = exp(−βδ). β is the inverse of the product of Boltzmann constant
kB and temperature T . Moreover at equilibrium the hole densities are de-
termined by assigning each level with its Boltzmann weighting. Note the all
the holes are provided by the lowest localized level and hence we have the
following normalization of total holes.

nafg + naf1 +
1

A

∑

k

fk + naf2 = na . (3.24)

When the electric field is turned on holes acquire kinetic energy from the
external field and the distribution of holes deviates from Boltzmann distri-
bution. In order to give a quantitative account of how the non-equilibrium
populations depend on parameters (e.g. field strength F , temperature T , and
acceptor density na), we need to study the microscopic kinetics governing the
transitions among the states.

3.2.2 Boltzmann Kinematic Equation

The strategy for obtaining the non-equilibrium populations is as follows.
First we neglect the low-lying HH2P± and HH1S temporarily and solve the
kinetics of the subsystem containing HH1 and LH1S in order to obtain the
relation between f2 and fk, with considerations of phonon scattering within
HH1 and the resonant transition between the continuous HH1 and the local-
ized LH1S. This is justified because the resonant scattering is much faster
than the decay through spontaneous emission from LH1S to HH2P±.[10]
Afterwards the occupation probability f1 of HH2P± is determined by the
its balance with non-equilibrium subband distribution fk through impact
ionization, thermal recombination, and their inverse processes Auger recom-
bination and thermal excitation. Detailed calculations are given below.

For a given number of holes in the subsystem containing HH1 and LH1S,
the non-equilibrium distribution fk in HH1 and occupation of LH1S f2 are
studied by solving the Boltzmann kinetic equation numerically for various
electric fields and acceptor densities. In the subsystem the holes in HH1
acquire kinetic energy from the constant electric field F applied along the x
axis. For moderate electric field and low temperature, it is adequate to adopt
the concept of streaming motion[22] in which the only significant scattering
is due to optical phonon (energy h̄ω0). This is implemented by introducing
a particle drain in momentum space such that once a specific hole drifts
with velocity eF/h̄ through the energy surface ε = h̄ω0 (denoted by Π) in
the momentum space, the hole will experience a optical phonon scattering
and simultaneously reemerge as a hole of energy less than ε0.[10, 11] Hence
fk = 0 for ε(k) ≥ h̄ω0. The energy ε0 is determined by the requirement
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that in the presence of constant electric field F the probability for a hole
being able to drift beyond the constant energy surface ε = h̄ω0 + ε0 without
emitting one optical phonon is negligibly small. The quantity ε0 is equal to
the product of external force eF , carrier velocity

√
2m∗h̄ω0/h̄ and inverse

of the average optical phonon emitting rate νA. m∗ stands for the effective
mass. Note that the energy-independent optical phonon emitting rate is due
to the constant density of states in two dimension. Therefore the excess
energy can be expressed as

ε0 =
eF

νA

√
2h̄ω0

m∗ . (3.25)

The reemerging holes can be modeled as a particle source[10, 11]

S(k, t) =
e
h̄

[
∫
Π fk(t)F · dS]

[
∫

Θ(ε0 − ε(k′))d2k′]
Θ(ε0 − ε(k)) , (3.26)

where Θ is the step function. The meaning of the above expression is that the
holes reemerging rate is uniform for energy within ε0, and the total reemer-
gence rate must match the collection of the outward carrier flux eF

h̄
fk passing

through the surface Π in the momentum space.
In order to properly account for the temperature effects, we include the

acoustic phonon scattering. The acoustic phonon scattering rate W acu
k,k′ is of

the form[23]

W acu
k,k′ =

2πΞ2q2

%ωqWA
(nq +

1

2
∓ 1

2
)δ [ε(k′)− ε(k)∓ h̄ωq] , (3.27)

where % is the mass density of solid lattice and Ξ is the lattice deformation
potential. The acoustic phonon involved in the transition has wave number
q = k′−k and its dispersion is given by ωq = cq where c is the sound velocity
in the solid. Emission and absorption of phonon in the processes correspond
to + and − respectively. The product WA represents the QW volume.

We assume homogeneity in the x and y directions so that the distribution
are function of variables kx and ky only. The set of kinetic equations can be
written as

∂fk

∂t
+

eF

h̄
· ∂fk

∂k
= Sk −Dk + C1 [fk, f2] , (3.28)

∂f2

∂t
= C2 [fk, f2] . (3.29)

Ci [fk, f2] , i = 1, 2 represent the collision terms for the acoustic phonon and
resonant scattering. They are functionals of the the distribution functions.
The explicit expression for the collision terms are
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C1 [fk, f2] = naA {W res
k (f2 − fk)}+

∑

k′
{W acu

k′k fk′ −W acu
kk′ fk} , (3.30)

C2 [fk, f2] =
∑

k

W res
k (fk − f2) . (3.31)

The kinetic equations Eq. (3.28) and Eq. (3.29) are solved numerically by
starting with the equilibrium distribution and then integrating forward in
time until a steady state is reached. Note that the sum of densities naf2 +
1
A

∑
k fk is a conserved quantity in the time evolution, guaranteed by cance-

lation of collision terms and the boundary conditions at surface Π. In this
way not only the steady state but also the transient of the system can be
modeled. The occupations of LH1S f2 and the HH1 fk are obtained up to an
arbitrary total number of holes in the subsystem. In particular the relation
between f2 and fk at steady state can be readily seen by setting the left hand
side of Eq. (3.29) equal to zero

f2 =

∑
k W res

k fk∑
k W res

k

=
∫

dεδ [ε(k)− Er] fk . (3.32)

Now we consider the special case with no electric field. The subsystem is
in thermal equilibrium. The occupations of HH1 and LH1S obey the Boltz-
mann statistics guaranteed by the presence of delta function in the expression
for resonant scattering as well as the fact that the scattering between HH1
states k and k′ due to acoustic phonon emission and absorption satisfies the
relations

W acu
k′k

W acu
kk′

=
1 + nq

nq

= exp {−β [ε(k′)− ε(k)]} . (3.33)

ε(k′) > ε(k) is assumed without loss of generality and q is the wavevector of
the phonon involved in the process. Therefore in equilibrium f2 is given by

f2 =
N/A

1
A

∑
k e−βε(k) + nae−βEr

e−βEr , (3.34)

where N represents the total number of holes in the subsystem.
In order to describe the effect of the electric field on the distribution, we

define a dimensionless parameter λ(F, T ) by

λ(F, T ) ≡
1
A

∑
k fk

naf2 + 1
A

∑
k fk

=
ns

n2 + ns

. (3.35)
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Figure 3.3: Impact ionization rates wip as functions of kinetic energy ε of
incident subband hole for HH1S to HH1 and HH2P± to HH1 are respectively
shown.

λ(F, T ) is the fraction of holes in HH1 for the subsystem. For low temper-
ature at equilibrium virtually all holes stay near the HH1 minimum so λ is
close to unity. In the presence of the electric field the population of LH1S
increases as a consequence of Eq. (3.32), since holes in HH1 acquire kinetic
energy from field so the non-equilibrium distribution fk has larger value at
ε(k) = Er. Therefore for given na, λ(F, T ) is expected to decrease as electric
field increases. Increase of acceptor density na also raise f2 because the dis-
tribution in HH1 becomes more concentrated on ε(k) ≤ Er. This is because
the stronger resonance scattering inhibits the holes to acquire energy higher
than the resonance energy Er.

3.2.3 Impact Ionization and thermal recombination rates

Next we turn to the interactions between HH1 and low-lying localized states
including HH1S and HH2P±. The interactions are dominated by impact
ionization and the thermal recombination as well as their inverse processes.
In impact ionization process one energetic hole in HH1 with momentum
k scatters with one hole in the low-lying localized states φb in the barrier
through the Coulomb interaction such that they both come out as free holes
in HH1. The transition rate is given by
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wip(k) =
2π

h̄

∑

k1,k2

∣∣∣∣∣

〈
k1,k2

∣∣∣∣∣
e2

r

∣∣∣∣∣ k, b

〉∣∣∣∣∣
2

δ [ε(k)− Eb − ε(k1)− ε(k2)] , (3.36)

where r is the separation between the incident hole and localized hole. The
summation is over all the final two particle Bloch states (k1,k2). The first
task is to evaluate the scattering matrix element 〈k1,k2| e2

r
|k, b〉. Substitut-

ing the explicit expressions for those localized wavefunctions and Coulomb
potential into the scattering matrix element, it becomes

∫
d3r1d

3r2
1√
A

e−ik1·~ρ1f ∗(z1)
1√
A

e−ik2·~ρ2f ∗(z2)V (|r1 − r2|) 1√
A

eik1·~ρ1f(z1)φb(r2),

(3.37)
where the dummy coordinates ri = (~ρi, zi), i = 1, 2 are to be integrated out
to obtain a impact ionization rate as a function of the momentum k of the
incident hole. The integral is complicated by the entanglement of dummy
variables r1 and r2 but it can be eased by replacing the Coulomb interaction
with its representation in Fourier expansions

1

4πε

e2

|r1 − r2| =
e2

ε

∫ d3q

(2π)3

1

q2
eiq·r1e−iq·r2 . (3.38)

Similar to Eq. (3.24) the overlap between the HH1 and LH1S, the major
contributions to the matrix element come from |z| > W

2
. After some algebra

the scattering amplitude M arrives at the expression

M (k;k1,k2) =

〈
k1,k2

∣∣∣∣∣
e2

r

∣∣∣∣∣ k, b

〉

=
1

A3/2

e2

ε

∫ dq⊥
2π

1

q2
‖ + q2

⊥

∫
dz1|f(z1)|2eiq⊥z1

∫
dz2f

∗(z2)I(z2, q
′)e−iq⊥z2 . (3.39)

q‖ = |k− k1| and the expression for I(z) is given by

I(z, q′) =

√
4πa2

b

∫ ∞

0
dρh(ρ)exp


−

(
ρ2 +

(z − z±0 )2

b2

) 1
2


 , (3.40)

where the function h(ρ) is ρJ0(aq′ρ) for the case of HH1S as initial state

and is
√

1
2
ρ2J1(aq′ρ) for the case of HH2P± as initial state. J stands for the
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Bessel functions. q′ = |k− k1 − k2| and χ =
√

1 + a2q′2. The upper script
± is for z > 0 and z < 0 respectively. Note that I(z, q′) decreases with the
momentum transfer q′ as a consequence of localization of the initial acceptor
state. The scattering amplitude is expected to decrease rapidly when the
momentum transfer q′ is larger than the inverse of the Bohr radius a of the
localized orbital. Hence we simplify the expression Eq. (3.36) as

wip(k) =
2π

h̄
|M|2 ∑

k1,k2

Θ(
1

a
− |k− k1 − k2|)

× δ [ε(k)− E0 − ε(k1)− ε(k2)] (3.41)

=
2π

h̄
|M|2σ(k) .

M stands for the maximum scattering amplitude which occurs when k1 = k2,
and the angel between k and k1 is equal to that between k and k2. The
summation in the above expression gives the effective phase space volume
σ(k) available for this scattering process given that the incident momentum
is k. Carrying out k1 and k2 integral one obtains

σ(k) = A2
∫ d2k1

(2π)2

d2k2

(2π)2
Θ(

1

a
− |k− k1 − k2|)

× δ [ε(k)− E0 − ε(k1)− ε(k2)] (3.42)

=

(
A

(2π)2

)2 ∫ d2u

2
d2vΘ(

1

a
− u)δ

{
h̄2

2m

1

2

(
|u + k|2 + v2

)
− [ε(k)− E0]

}

=
A2

2π

m

h̄2

∫
d2uΘ(

1

a
− u)Θ

[
− h̄2

4m
|u + k|2 + (ε(k)− E0)

]
,

where the phase space dummy variables (k1,k2) was transformed into the
new coordinates (u,v) = (k1 + k2,k1 − k2) with corresponding Jacobian
equals one half. After integrating out the variable v the evaluation of σ(k)
can be obtained through counting the overlapping area of one circle centered
at origin with radius 1/a and another circle centered at −k on the x-axis

with radius

√
4m[ε(k)−E0]

h̄
. The resultant rate wip is plotted in Fig. 3.3 as

a function of kinetic energy h̄2k2

2m∗ . The reverse process of impact ionization
is Auger recombination, in which two HH1 holes collide and result in one
localized hole and one HH1 hole with higher kinetic energy. Auger process
must be taken into account as well.

The holes impact-ionized to the HH1 can go back to the low-lying local-
ized states by acoustic phonon emission, i.e. the thermal recombination. The
thermal recombination rate is given by[24]
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wtr(k) = 210π
c

l0

E4
0m

∗c2

[ε(k) + E0]
5a3

∣∣∣g(z±0 )
∣∣∣
2
(Nq + 1) , (3.43)

where c is the sound velocity. Nq is the number of phonon involved in the
scattering and q is the wave vector of the phonon satisfying conservation
of energy given by q = [ε(k) + E0] /h̄c. l0 is the characteristic length for
acoustic phonon scattering

l0 =
πh̄4%

2m∗3Ξ2
, (3.44)

where % and Ξ are mass density of the lattice and deformation potential as
mentioned previously. The reverse process of the thermal recombination is
the thermal excitation of holes in the low-lying localized states by acoustic
phonon absorption.

Between the two localized levels, HH1S and HH2P±, the thermal cap-
ture/generation rates ta/e are given by

ta/e = 210 c

l0

mc2

∆ε
(Nq +

1

2
∓ 1

2
) . (3.45)

∆ε denotes the energy difference between the localized levels. The subscripts
a and e indicate that these processes are accompanied by phonon absorption
and phonon emission respectively.

3.2.4 Hole population in subband and lower localized
acceptor states

From Section 3.2.2 we are able to deal with the non-equilibrium occupations
fk and f2 with normalization up to an arbitrary total number of holes. Using
the impact ionization and phonon emission rates we are now able to deal
with the occupations in the subsystem consisting of lower localized levels
and HH1. To be precise, we adopt the normalization given by Eq. (3.24)
where the total hole density of subsystem consisting of LH1S and HH1 is
equal to the vacancy density in HH2P± and HH1S. Since the occupation
probability f2 is completely determined from fk, it is convenient to write the
density of HH1 holes ns as

ns =
ns

ns + naf2

(ns + naf2) = λ(F, T )na(1− f1 − fg) , (3.46)

and the hole density of LH1S as

n2 = [1− λ(F, T )] na(1− f1 − fg) . (3.47)
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The dimensionless parameter λ(F, T ), given by Eq. (3.35), has values between
zero and unity.

Once f1 and fg are known, f2 can be determined from Eq. (3.47). f1

and fg can be calculated from the kinetics between HH1 and the low-lying
localized states. Impact ionization and thermal excitation processes cause the
upward transitions while Auger recombination and thermal recombination
processes cause the downward transitions. The respective downward Auger
recombination rates from HH1 to HH2P± and HH1S are rar

2p = A2p(T )n2
s(1−

f1) and rar
1s = A1s(T )n2

s(1 − fg), where the coefficients A’s are temperature-
and acceptor density-dependent for the Auger recombination and the factors
(1-f1,g) account for the constraint that the process is forbidden when the lower
acceptor state is filled with a hole. Note that holes in HH1 are not required to
have threshold kinetic energy for the recombination process to take place, so
we assume the coefficients A’s have a negligible field dependence. The holes
occupied the continuum can drop to the lower localized states, HH1S and
HH2P±, by thermal recombination. In our case HH2P± is below the HH1
minimum by 2 meV, which is much smaller than the gap between HH1 and
HH1S, 16 meV; here we neglect the latter recombination process since the
rate is inversely proportional to the gap. This downward rate from HH1 to
HH2P± is proportional to the hole density in HH1 and can be written as rtr

2p =
C(F, T )ns. The coefficient C(F, T ), dependent on field and temperature, is
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Figure 3.5: The subband hole fractions λ(F, T ) as a function of electric field
F for T = 1 K (solid) and T = 4 K (dashed) are shown. The coincidence
for different temperatures at higher electric fields suggests that kBT becomes
irrelevant compared with the scale of Er and optical phonon energy h̄ω0.

taken as the average of Eq. (3.43) with respect to fk

C(F, T ) =

∑
k wtr (ε(k)) fk∑

k fk

. (3.48)

We now consider upward transitions. The impact ionization rates for the re-
spective processes, HH1S to HH1 and HH2P± to HH1, are of the expressions,
rip
1s = B(F, T )nsfg and rip

2p = B(F, T )nsf1. Note that the factors f1 and fg

in the expressions account for the requirement of occupied initial localized
acceptor state. The coefficients Bi(F, T ) can be written as the average

Bi(F, T ) =

∑
k wip

i (ε(k)) fk∑
k fk

. (3.49)

The subscript of wip
i in Eq. (3.49) stands for different rates resulting from dif-

ferent initial localized states in the different collision processes in the present
case. There exists a threshold of kinetic energy for the hole in HH1 for
impact ionization and consequently the coefficient B for low field and low
temperature is negligibly small. Besides the upward transition caused by
the inelastic collision, holes occupying the lower localized states can also be
excited to the continuum through phonon emission. Here we also neglect
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the direct excitation of HH1S holes to HH1 because it requires absorption of
phonon of much greater energy. Therefore we are left with the thermal exci-
tation from HH2P± to HH1, and the rate can be expressed as rte = D(T )n1.
The phonon absorption coefficient D(T ) is determined by detailed balance
with rtr at thermal equilibrium.

Since we have to consider two lower localized states in the kinetic problem,
we are left with the transition between HH1S and HH2P±. For simplicity
we only consider the thermal excitation and recombination. The upward
and downward transition among the two levels are given by tang and ten1.
With all the necessary transitions at hand it is ready to write down the
kinetic equations for the populations n1 and ng of the two localized states.
Substitute all the formula into the relation we have

dn1

dt
− tang + ten1 = rar

2p − rip
2p + rtr − rte (3.50)

= A2pn
2
s(1− f1)−B2pnsf1 + Cns −Dn1 .

dng

dt
+ tang − ten1 = rar

1s − rip
1s

= A1sn
2
s(1− fg)−B1snsfg .

Now we are left with the determination of the coefficients A1s, A2p and
D which are assumed to be independent of the electric field. Since the oc-
cupations obtained from the rate equation must be restored to the thermal
equilibrium when the electric field is set to zero, the requirement of detailed
balance at zero field give A1s, A2p and D using B1s, B2p and C

A2p(T )
(
n0

s

)2
(1− f 0

1 ) = B2p(F = 0, T )n0
sf

0
1 ,

A1s(T )
(
n0

s

)2
(1− f 0

g ) = B1s(F = 0, T )n0
sf

0
g ,

D(T )n0
1 = C(F = 0, T )n0

s . (3.51)

Note that the zeros as upper scripts in fg, f1, n1 and ns stand for the equi-
librium values.

3.3 Population inversion in quantum well res-

onant state laser

For given F and T , Eq. (3.50) can be solved to give fg and f1. Then they
can be substituted to Eq. (3.47) to give f2. f2/f1 > 1 is the condition for
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population inversion. Putting everything together we are now able to ob-
tain the non-equilibrium distribution of holes in all the levels under electric
field pumping. For the subsystem containing LH1S and HH1, the normal-

ized subband distribution f̃(ε) ≡ f(ε)
k2

p

(2π)2ns
versus hole kinetic energy for

different acceptor densities is shown in Fig. 3.4 with applied electric field 1
KV/cm. kp stands for the hole momentum corresponding to kinetic energy
of one optical phonon energy h̄ω0=40 meV and the integration

∫
|k|<kp

f̃(ε)dε
gives unity. For lower acceptor densities na holes in HH1 are more likely to
be pumped to acquire energy exceeding resonance energy Er. This results
in lower occupation below Er. Higher acceptor densities na lead to higher
occupation probability at Er, i.e. larger f̃(Er). This phenomena results from
strong resonant scattering for higher acceptor densities. From Eq. (3.32) the
occupation f2 of LH1S is consequently enhanced with increasing acceptor
density. In other words for same hole density in HH1, higher acceptor den-
sities na lead to higher LH1S occupation probabilities f2. Therefore higher
na is advantageous for building population inversion. The effect of electric
field is shown in Fig. 3.5 by plotting the subband hole fraction λ. At low
field, the occupation of LH1S compared to that of HH1 is suppressed by the
Boltzmann factor and λ is near unity. As the field is turned on (between
10−2 and 10−1 V/cm), holes acquire kinetic energy by field pumping. Hence
more holes accumulate in LH1S through resonant capture of holes in HH1
with kinetic energy ε(k) = Er. As the field further increases, the fraction
λ starts to increase because the field pumping overwhelms resonant capture
and acoustic phonon scattering. In that case large fraction of holes in HH1
acquire kinetic energy larger than Er. The temperature effect diminishes
in this regime as shown by the coincidence of the two curves in Fig. 3.5.
Eventually the growth of λ in the high field regime saturates when optical
phonon scattering sets in.

Next we consider the subsystem consisting of HH1 and the lower localized
states. At low temperature and equilibrium, most of the holes are bound by
the acceptors and occupy the lowest HH1S. There are very few holes on HH1
and even fewer holes with enough kinetic energy to inelastically collide with
the localized holes. Therefore the process of impact ionization is negligible,
and the so is the Auger recombination because in such dilute case the average
distance between the free holes is so large that the probability of collision
is extremely small. Hence the populations of these levels are dominated by
the thermal processes and the statistics obey the Boltzmann distribution.
When the electric field is turned on, holes can acquire more kinetic energy
and the impact ionization of the low-lying localized state is possible through
the inelastic collisions with energetic holes. The subsequent distribution of
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Figure 3.6: The solution ξ of equation Eq. (3.52) at low field and low tem-
perature is shown as a function of the relative impact ionization coefficient
bc. The abrupt jump around bc = 1 is due to the depletion of the lower
localized levels by impact ionization.

holes are balanced by those upward and downward transitions, as illustrated
in Eq. (3.50). In order to have a quantitative understanding of how electric
field change the steady-state distribution of holes as the impact ionization
rates increase, it is easier to consider the subsystem as HH1 and one single
localized state, which is below HH1 minimum by eg. The rate equation can
be written in a similar manner, that is

Ãnaλ
2ξ3 + B̃λξ2 + (C̃ − B̃ +

D̃

λ
)λξ −D = 0 . (3.52)

The variable ξ = 1 − f̃ and f̃ stands for the population in the localized
state. The capital letters with tildes represent the effective coefficients for the
corresponding processes. Now we first focus on the limit of low temperature
and low field. In such case the occupation of lower localized levels is close to
unity (ξ ¿ 1) and the impact ionization coefficient B̃ is nearly zero. So it is
a good approximation to neglect the term of highest power in ξ in the rate
equation Eq. (3.52). The solution is given by

ξ =
(B̃ − C̃)λ +

√
(B̃ − C̃)2λ2 + 4λB̃D̃

2λB̃
, (3.53)

where the term for thermal excitation D̃/λ is dropped in the parenthesis

35



of Eq. (3.52) because thermal excitation process is much weaker than the

thermal recombination process (C̃ À D̃
λ
) at low temperature. Note λ ' 1

at low field. In order to illustrate how electric field affects the solution ξ
through impact ionization coefficient B̃, we set λ = 1 and define relative
coefficients for impact ionization bc ≡ B̃

C̃
and the thermal excitation dc ≡ D̃

C̃
to the thermal recombination coefficient C. The solution can be rewritten as

ξ =
(bc − 1) +

√
(bc − 1)2 + 4bcdc

2bc

. (3.54)

dc ' e−βeg is a temperature-dependent parameter in the expression as sug-
gested by Eq. (3.51). For bc = 1 ξ is

√
dc ¿ 1 justifying the omission the ξ3

term in Eq. (3.52) in the regime of discussion. The relation between ξ and the
relative impact ionization coefficient bc is plotted in Fig. 3.6 for temperature
from 1K to 4K. In the limit of small bc the solution can be approximated as
ξ = dc which is nothing but the thermal equilibrium. Such case corresponds
to the low field situation in which the impact ionization is not yet activated.
As electric field increases, bc grows towards unity because more holes in HH1
acquire enough kinetic energy from the field. In the cross-over regime where
the term (bc − 1) in Eq. (3.54) turns positive from negative, ξ grows rapidly
as both the population and average kinetic energy of holes in HH1 increase.
As bc gets larger and larger than 1 the solution approaches 1 − 1

bc
. In the

cross-over there is a competition between the two terms (bc − 1)2 and bcdc

in the square root of Eq. (3.54). Consequently the size of the cross-over is
determined by

√
dc. Since the impact ionization parameter bc is strongly

field-dependent, this cross-over corresponds to the variation of field δF as

δF ∼ e−β
eg
2

(
∂bc

∂F

)−1

. (3.55)

This δF characterizes how sensitive pumping is to electric field. The dramatic
jump of ξ at bc ' 1 is due to the dominance of upward impact ionization
over the downward thermal recombination. The depletion of the lower local-
ized levels when bc > 1 is critical for the realization of the hole population
inversion.

After combining the two subsystem, we are able to obtain the occupation
of each level in the system. The occupation probabilities fg, f1 and f2 for
the strain split acceptor levels and the ratio f2/f1 at 4K are shown in Fig.
3.7. By definition a population inversion is established if f2/f1 > 1. There is
a threshold acceptor density na about 10−3 nm−2 when applied field is 100
V/cm. The threshold acceptor density reflects that the resonance scattering
is necessary for building the population inversion. As na increases further, it
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Figure 3.7: Occupation probabilities f1 (HH2P±), f2 (LH1S) and fg (HH1S)
for T = 4 K are plotted as functions of acceptor density na at fix electric
field F = 100 V/cm. The population ratio f2/f1 is shown in solid line. The
horizontal line at f2/f1 = 1 denotes that population inversion is built when
na exceeds some threshold acceptor density.

becomes harder for HH1 holes to acquire higher energy, which is shown in Fig.
3.4, and this effect leads to suppression of the impact ionization processes
from the lower levels. Even though the upward transitions get suppressed due
to more resonant scattering, the population f2 remains fixed values due to
the increase of λ with increasing na. However this effect leads to the fact that
population ratio fg/f1 is getting closer to its equilibrium value. For T < 4
K the result is the same because acoustic phonon scattering is irrelevant for
low temperature and higher field. The behaviors of the system differ for
low temperature (kBT < δ) and high temperature (kBT > δ) regimes. At
low temperature (T < 10 K) population inversion can be realized for only
a moderate electric field (100 V/cm) because there is almost no acoustic
phonon scattering, and the hole distribution in HH1 can be easily distorted
by the field. At high temperature, the distribution is stabilized by the strong
acoustic phonon scattering. Therefore population inversion is impossible even
for stronger field.

In Fig. 3.8 the populations of localized levels versus field strength F
for T = 10 K are shown. As the field is turning on and increasing toward
20 V/cm, holes on HH1 become more and more energetic. Consequently
more and more free holes are generated due to the increase of coefficients B1s
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and B2p. Note that presently the resulting upward transition is mainly from
HH1S to HH1 because the upper level HH2P± is empty, and the population
f1 mainly results from the combined processes, impact ionization HH1S to
HH1 plus the thermal recombination from HH1 to HH2P±. As F continues
to increase, the populations f1 and f2 grow significantly and the lowest HH1S
begins to deplete due to the fact that the intra-center recombination from
HH2P± to HH1S is quite slow. Now the upward transition is contributed
more by HH2P± than HH1S. When the field exceeds the threshold field,
20 V/cm in our case, the lowest HH1S is almost empty and the pumping
process is mainly controlled by the transitions between HH1 and HH2P±.
The abruptness of the growth of f2 is inversely proportional to the temper-
ature according to Eq. (3.55). However the population f2 comes to a fixed
value for the field F > 30 V/cm. This saturation is indicative of the fact
that impact ionization rates have a upper bound. If we further increase the
temperature, acoustic phonon scattering and thermal recombination become
important and kBT comes back as a relevant energy scale. When the thermal
energy dominates the transport process, the electric field is no longer able
to significantly push the distribution away from equilibrium. Based on these
results we predict the optimal conditions for hole population inversion ratio
f2/f1 are na=10−3 nm−2, F = 100 V/cm and temperature below ten Kelvins.
These conditions in a QW structure specified in Section 3.1.1, with central
width W = 11.7 nm and Germanium compositions x = 0.088 and y = 0.094,
are well within the range of experimental implementation.

3.4 Concluding Remarks

Before drawing the conclusion, some non-ideal effects have to be remarked
here. In real structure there are always compensating donors present. We
assume the donor density in the δ-doped region is nd. With the presence of
the compensating donors, the density of holes is reduced to be n∗a = na−nd in
the number normalization equation, Eq. (3.24). The presence of the donors
reduces the total number of holes and increases the number of unoccupied
impurity levels. Since the governing equations for the distribution of holes are
nonlinear due to impact ionization and Auger recombination as shown in Eq.
(3.50), the impact ionization threshold and many other properties depend on
the total number of holes and therefore the compensation ratio nd/na. The
immediate consequence is the increase of threshold electric field for impact
ionization due to fewer energetic holes generated than in the ideal case with-
out compensating donors. However the laser threshold electric field will not
be increased too much with the inevitable donors in reality. In addition two-
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LH1S versus electric field F at T = 10 K are shown. Population inversion is
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field can not drive the hole distribution significantly away from equilibrium.
Therefore T = 10 K is the critical temperature for population inversion in
our case.
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level impurity interacting with a continuum employed in our model can lead
to S-shaped current-field dependence and bistability when the compensating
donors are present. This nonlinear behavior has been studied extensively
in p-Ge[25] and for recombination-generation models in semiconductors in
general.[26] It allows low and high current state for a given field. In order for
our quantum well structure to achieve population inversion, the system must
be in the high current state. Actually the S-shaped dependence comes from
multiple solutions of the steady-state rate equation for the occupations and is
independent of carrier species and systems. Hence the S-shaped dependence
is expected to occur as well in our subband system if the compensation ratio
nd/na is too large. In summary we estimated that the effects of donors are
negligible if nd/na is much smaller than 0.01.[25]

In conclusion, we propose a QW structure with resonant state and show
that the relative energies of the strain-split localized states and the contin-
uous states enable laser operation with photon frequency as low as 1 THz.
The hole distributions are studied in detail with considerations of all the
related microscopic physical processes. Calculations on the occupation prob-
abilities of the localized states reveal that there are thresholds for external
field and acceptor density in order to achieve the population inversion. For 1
THz lasing, the required field is 100 V/cm at temperature below 10K. These
conditions can be easily realized in experiments. This work leads to a new
and practical direction for semiconductor THz laser with arbitrarily small
radiation frequency.
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Chapter 4

Appendix

4.1 Algebraic formulation of resonant state

In this appendix we give the details of the binding energy corrections to
the LH1S impurity state in the presence of the QW and the off-diagonal
couplings with the HH1 continuum. For simplicity the envelope functions for
the localized impurity state and the QW continuum are denoted by φ and
ψk respectively. The unperturbed states satisfy the equations

[
H0

LK + VI(r) + VC(z0)
]
φ u3/2 = E1sφ u3/2 ,

[
H0

LK + VC(z)
]
ψk u1/2 = εkψk u1/2 . (4.1)

Considering the full Hamiltonian, the eigenstates are superposition of the
form

Ψp =
∑

m=± 1
2

a(m)
p (φ um) +

∑

m=± 3
2

Σkb
(m)
pk (ψk um) . (4.2)

Here the index p denotes the label for the hybridized states and it runs
through the total number of continuous states plus one. Substituting the
hybridized states into the equation HΨp = εpΨp, a set of algebra equations
for the coefficients ap and bpk are obtained.

a
( 1
2
)

p (εp − E1s −∆) =
∑

k

b
(− 3

2
)

pk αk

b
(− 3

2
)

pk − Σk′b
(− 3

2
)

pk′ βkk′ = a
( 1
2
)

p α∗k , (4.3)

where
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βkk′ = 〈ψk|vI(r)|ψk′〉 . (4.4)

βkk′ stands for the intraband transition due to Coulomb interaction from the
impurity center. Note that we omit another set of equation for m = −1/2
and m = 3/2 because they are identical to Eq. (4.3). The eigenvalue εp can
be solved by by iterative substitution from Eq. (4.3) and the leading terms
are

εp = E1s + ∆ +
∑

k

|αk|2
εp − εk

+
∑

k1k2

α∗k1
βk1k2αk2

(εp − εk1)(εp − εk2)
. (4.5)

The perturbed energy for LH1S can be obtained by directly substitute the
unperturbed energy E1s for εp in the right hand side of Eq. (4.5). Aided
by the equality 1

x+i
= P 1

x
− iπδ(x) to avoid the singularity and neglect the

higher order terms, expressions for the shift of binding energy ∆E1s and the
corresponding imaginary part energy are obtained.

∆E1s = ∆ + P
A

(2π)2

∫
dk

|αk|2
E1s − εk

, (4.6)

ΓE1s

2
= π

A

(2π)2

∫
dkδ(E1s − εk)|αk|2 . (4.7)

42



Part II

Implication of oxygen
adsorption on the electronic

properties of conjugated
polymers

43



Chapter 5

Theoretical backgrounds for
organic semiconductor physics

5.1 Hückel model for one-dimensional lattice

and spontaneous symmetry breaking by

phonon interaction

Organic semiconductor is a class of materials whose constitute element is
carbon atom, and which have the electronic and optical properties of semi-
conductor, such as modulated conductivity by doping or electric field, and
the absorption spectrum with a sharp edge. Conjugated polymer and small
molecules belong to this category. Such materials can be made to light-
emitting diodes with high efficiency due to its small dielectric constant, which
in turn gives the excitions in organic semiconductors a large binding en-
ergy. Moreover, because of the large area process by spin coating, its flexible
substrate and potential integration of electronic and optical applications,
organic semiconductors have emerged as a candidate material for future op-
toelectronic applications[27]. In this thesis the focus is on the conjugated
polymers.

In order to understand the fundamental principles of carrier transport,
optical excitations, and quasi-particles in conjugated polymers, we shall first
study its electronic structure. Most of the electronic and optical properties
can be well explained from it. Since the conjugated polymers can be basically
described as a long chain of repeated chemical units, such as benzene ring, the
band picture is of fundamental importance for further concept development.

A single atom has its own set of discrete energy level which can be ob-
tained by, roughly speaking, solving the the Schrödinger equation resembling
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the one for an hydrogen atom. When two atoms approach each other and
form a diatomic molecule, the spectrum is still a set of discrete energy levels.
Taking H2 as the simplest case, the bonding and anti-bonding combinations
of 1s orbitals from both hydrogen atoms make up two molecular orbitals
for H2, and the respective energies are equally split from the hydrogen 1s
level. It is true for the p and d orbitals as well. Furthermore, according to
the rotational symmetry with respect to the connecting axis, we can classify
the combinations into two categories, one is π category which has the odd
symmetry such as pz-pz, while the other is σ category which has the even
symmetry such as 1s-1s and px-px[28]. Moreover, the bonding orbitals al-
ways have lower energy than the corresponding anti-bonding ones since the
latter contains larger kinetic energy. The σ-orbitals usually have a larger
split among them because of the larger wave function overlap, which in turn
causes a larger resonance integral[28]. The concept can be generalized to
larger molecule or polymers which consists of numerous atoms, and their
spectra evolve into a set of continuous distributions of energy levels, or a
band, due to the fact that the number of levels can increase as the molecule
size while the range of energy must remains a finite number which leads to
more and more nearly degenerate levels.

Shown in Fig. 5.2 is the chemical structure for poly (p-phenylene vinylene)
(PPV), which is a typical example of conjugated polymer. As seen from the
figure, the polymer is a chain of the repeated unit consisting of a benzene ring.
Each carbon connects with the adjacent carbons through the sp2 bonding,
or σ-bond, which is made up with the 2s, 2px and 2py orbitals. In addition,
the 2pz orbitals between adnacent carbons can also form a chemical bond
called π bond. From the band theory, the periodic σ-bonds develop a set of
σ-bands while the π-bonds develop a set of π-bands. Next we are going to
establish the technical part for the band theory.

We can regard the conjugated polymer as a perfectly periodic one-dimensional
lattice, even though in reality the presence of disorder such as structure dis-
order, chemical defect, and chain end can cause some qualitative differences.
For simplicity we consider the case where each unit cell contributes one state.
In the tight-binding limit, the Hamiltonian is usually written as

H =
∑

i

{εψ†i ψi +
[
(−t)ψ†i ψi+1 + h.c.

]
} , (5.1)

where ψ†i is the field operator creating an electron at ith site. ε and t are,
respectively, the on-site energy and the coupling between adjacent unit cells.
Writing the field operator in terms of its Fourier component ak can give a
diagonal Hamiltonian

∑
k ε(k)a†kak. The new set of basis,
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Figure 5.1: Chemical structure for PPV and its tight-binding parameters.

ak =
∑

i

eikaψi , (5.2)

as a linear combination of localized atomic orbital, is delocalized throughout
the whole lattice. The corresponding spectrum, given by

ε(k) = ε− 2t cos ka , (5.3)

is then centered at ε with bandwidth 4t. Here we note that when each unit
cell contributes one electron, then the virtual solid is a metal since the Fermi
level coincides with the band and gives a finite density of state near the level.
We will demonstrate later that such metallic nature of the 1D carbon lattice
is not true when one considers the interaction with lattice vibrations.

The observed band gap in the spectrum for polyacetylene[29], whose basic
unit cell contains only one carbon atom, proves the above consideration to
be invalid. The discrepancy comes from the fact that we ignore the degree
of freedom from lattice. Consider the following Hamiltonian[30]

H = −∑

i,s

(ti,i+1ψ
†
i+1ψi + h.c.) +

∑

i

1

2
K(ui − ui+1)

2 +
∑

i

1

2
Mu̇2

i , (5.4)

where ui represents the displacement of ith atom and the latter two terms
stand for the lattice vibration. The coupling now is a function of adjacent
displacement,

ti,i+1 = t0 − α(ui − ui+1) (5.5)

We first neglect the kinetic term in the Hamiltonian in the spirit of Born-
Oppenheimer approximation since the mass for atom M is much larger than
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electron’s mass. Then one may think the ui’s are all zero in order to have the
translational invariance when shifting one unit cell. Next we can think what
happen if not all the ui’s are zero. For a simple case, consider the following
set of displacement

ui = u0 ,

ui+1 = −u0 , (5.6)

Apparently, this will increase the vibration energy as the second term in
Eq. (5.4)is not zero now. However, the size of unit cell also doubles as the
inclusion of Eq. (5.6), which induce a band gap and the resultant energy for
total electrons is lowered. In the limit of very large K, the eventual ground
state for the electron-phonon system still has the phase that all ui’s are zero
to avoid the great cost for lattice vibrations. Quantitatively the vibrational
energy increases as u2

0, and the electronic energy decreases roughly as the
band gap, which has a linear term in u0. Therefore there exists a phase
corresponding to a nonzero u0 and has lowest energy[30]. The existence of
such phase manifests the breaking of discrete translational symmetry, or the
Pierels instability. The spectrum for the double-size unit cell can be obtained
by the following Hamiltonian[31]

H =
∑
n

[
(−t+)ψ†2n−1ψ2n + (−t−)ψ†2nψ2n+1

]
+ h.c. (5.7)

where

t+ = t0 + αu0

t− = t0 − αu0 . (5.8)

The resultant spectrum is given by

E±
k = ±

√
t2+ + t2− + 2t+t− cos 2k . (5.9)

For more complicated unit cell, such as poly(p-phenylene vinylene) (PPV),
similar symmetry breaking also occurs as shown by the alternative single-
double bond labeled by t1 and t2 in Fig. 5.2. The following matrix can be
diagonalized to give the π-band for PPV.

47



−1 −0.5 0 0.5 1
−8

−6

−4

−2

0

2

4

6

8

Wavevector (k/ π)

E
n

er
g

y 
(e

V
)

Figure 5.2: The π-bands resulting from diagonalizing the matrix in Eq. (5.10)

HPPV (k) =




0 t3 t3 0 0 0 0 t1e
ika

t3 0 0 t3 0 0 0 0
t3 0 0 0 t3 0 0 0
0 t3 0 0 0 t3 0 0
0 0 t3 0 0 t3 0 0
0 0 0 t3 t3 0 t1 0
0 0 0 0 0 t1 0 t2

t1e
−ika 0 0 0 0 0 t2 0




. (5.10)

where t1=-2.2 eV, t2=-3.0 eV, and t3=3.1 eV.
We briefly summarize the above arguments in Fig. 5.3. When neglect-

ing the lattice vibration, the unit cell has its original size and the band is
half-filled as in (a). Such a half-filled band corresponds to a metal. When
considering the lattice vibration, Pierels instability occurs as in (c), which in
turn develops a band gap at k = kF = π/2, and the filled band corresponds
to an insulator.
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Figure 5.3: Various spectrum as the phonon coupling is turned on[32].

5.2 Polaron and soliton

Continuing the discussion in previous discussion, it is convenient to define a
order parameter φ to distinguish the two different phases of the degenerate
ground state.

φi = (−1)iui . (5.11)

Under such definition, the two ground states as shown in Fig. 5.4, denoted
by A and B, have the order parameter φ of +u0 and −u0 respectively. This
helps our further discussion on the elementary excitation, or quasi-particle,
in the phonon-coupling system.

In a band insulator, the lowest excitation is a free electron-hole pair by
exciting a valence electron to the conduction band. However, in this strong
phonon-coupling 1D system, the lattice degree of freedom must be taken
into account when considering the excitation. Furthermore, it is the phonon
coupling that there exists excitation which has energy lower than the band
gap. This is where organic and inorganic semiconductors differ most.

Recalling the order parameter in Fig. 5.4 where φ remains a constant
throughout the whole lattice. Intuitively, one can construct the excitation by
the simple topological deformations such as those shown in Fig. 5.5. Actually
the excitation in the left is called polaron. The spectrum can be obtained
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Figure 5.4: Configurations for phase A and B and the corresponding order
parameters φ’s.
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Figure 5.5: Order parameters φ for polaron (left) and soliton (right).

through a trial function for the vibrational part which contains a variational
width for the deformation. The resultant energy levels with two additional
gap states are shown in (d) of Fig. 5.3. The gap states, corresponding to the
polaron states, are of crucial importance when one considers the injection of
carrier into the polymer. The excess charge carriers are stored in the polaron
state instead of the conduction or valence bands in rigid semiconductors.

On the other hand, the right in Fig. 5.5 represents an soliton excitation.
Soliton is unique in that the deformation leads to the formation of an elec-
tronic state near the center of band gap. For zero occupance, however, the
chain is positively charge but has no net spin. Similarly for the double occu-
pance, the chain is negatively charge and of no net spin. The state of single
occupance is neutral but with a net spin 1/2, which is in great contrast to
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the free electron.

5.3 Excition and the quantum yield in light-

emitting polymers

Exciton is an excitation for a quasi-bound state consisting of a pair of elec-
tron and hole in which there is a Coulomb attraction between them. Such
excitation has an energy lower than a free pair of electron and hole which
has the energy larger than the band gap. The existence of such excitation
will correct the ideal absorption spectrum of a semiconductor in which the
minimum excitation energy is the band gap. In addition to the sharp edge
associated with a band-to-band transition, the exciton can induce an absorp-
tion below the sharp edge.

The equation of motion for the quasi-bound state can be decomposed into
two parts; one is a free Hamiltonian in the center of mass frame, while the
other is for the relative motion. The latter has a Hamiltonian resembling the
hydrogen atom and is responsible for the binding energy. Since the dielectric
constant in conjugated polymers is usually much smaller (about 3) than that
in inorganic semiconductors (about 10), the exciton in conjugated polymers
usually has a small Bohr radius and a large binding energy. The reason for
the small dielectric constant may result from the smaller size of carbon atoms
relative to the silicon atoms, which makes carbon atoms more difficult to be
polarized.

In the frame of relative motion, the spatial wave functions for the bound
states can be classified according to the rotational symmetry. However, the
Fermi statistics must be taken into account in order to have the correct
product of spatial and spin wave functions. For the pair of spin singlet
configuration, the lowest state has s-wave symmetry. For the pair of triplet
spin, then the lowest state has p-wave symmetry. As shown in Fig. 5.6, S1 is
the lowest exciton state for spin singlet and T1 is the lowest for spin triplet.
Note that S1 is the lowest among all exciton excitation because S1 has the
smallest Bohr radius and the largest binding energy.

The operation of a light-emitting polymers has much to do with the energy
diagram in Fig. 5.6. Electron and hole can be injected into the light-emitting
layer, forming exciton and then decaying into the ground state with emitting
a photon. However, the ground state labeled by S0 is nondegenerate and has
zero spin component. Since the electromagnetic interaction responsible for
the decay, actually the operator A·P, does not contain operators which can
flip the spin, only the spin singlet exciton S1 can decay into the ground state
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Figure 5.6: Energy diagram for spin-singlet, labeled by S, and spin-triplet,
labeled by T, excitons[27].

without further assistance such as phonon. Consequently only the fraction of
pairs which forms spin singlet can contribute to the emitting process. Hence
the internal electroluminescence (EL) quantum efficiency ηint for a typical
LED can be written as a product γηsq where γ is the exciton formation ratio
per injected pair, ηs is the recombination branching ratio through the spin
singlet, and q is the singlet exciton radiative decay probability. In fact, q can
be close to unity while γ is improved by using multilayer structure. Therefore
ηs can be taken as the intrinsic yield that sets the theoretical limit for ηint.
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Chapter 6

The unbalancing effect of
adsorbed oxygen molecules on
electron versus hole transport
in conjugated polymers

Adsorption of O2 seems to be universal among the organic semiconductor
based on the sp2-bonding carbon backbone, such as polythiophene, car-
bon nanotube, pentacene, and emissive materials for organic light-emitting
diodes. For organic semiconductors with defects, the O2 can worsen the
transport for electron by forming a hybridized state with the electron trap,
which will bind the electron more tightly. Under such circumstance, the elec-
tron mobility can be much smaller than the hole mobility, which is usually
observed for a large class of conjugated polymers and small molecules.

In this chapter the generally observed higher hole mobility relative to
electron mobility in conjugated polymers is explained with the defects and
adsorbed molecular oxygen. Adsorption of the extrinsic molecular oxygen
leads to that electrons are bound more tightly than holes by the traps in
the originally symmetric electronic system. Hence the mobility imbalance
emerges from the asymmetric binding energies. Besides, the defects are the
favored adsorption sites because the intermolecular attraction is enhanced
due to stronger induced dipole-dipole interaction when gap defect levels ap-
pear.
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6.1 Overview of experimental findings on the

unbalancing carrier mobility

Despite of similar effective masses[34], the hole mobility is generally sev-
eral orders of magnitude higher than the electron mobility in organic semi-
conductors, including conjugated polymers and small molecules[35, 36, 37].
Poly(2-methoxy,5-(2’-ethyl-hexoxy)-p-phenylene vinylene) (MEH-PPV) and
pentacene are typical examples of such imbalance[36, 37]. Transport mea-
surements and comparisons with theoretical models suggest there are much
more electron traps than hole traps[38, 39]. The asymmetry of traps could
result from extrinsic effects like the unintentional background p-doping by
chemical impurities or other chemical defects[40]. In reality mobility im-
balance, however, persists even for samples with high purity. In this work
we demonstrate that the ubiquitous molecular oxygen is the ultimate entity
which breaks the electron-hole symmetry even without any chemical reac-
tion. The highest occupied orbital of O2 is half-filled and ready to partially
accept an electron from the organic semiconductor once physically adsorbed.
Our calculation shows that the electronic structures of the originally sym-
metric defects are significantly altered by the physically adsorbed O2, and
the trap binding energy for electron becomes much larger than holes. Dif-
ference in binding energy naturally leads to imbalanced carrier mobilities.
The huge mobility difference is a consequence of the presence of traps and
the adsorption of O2, thus the idea can be generalized to all the disorder or-
ganic semiconductors. To be specific, we investigate the carrier excitations in
π-conjugated poly(p-phenylene vinylene) (PPV) chain whose backbone con-
tains a single defect which leads to two gap energy levels. The conduction for
electron and hole are supposed to be completely the same because the two
emerging defect levels are symmetric. However this symmetry is broken when
O2 is close to the defect and provide a pathway only for the electron in the
anti-bonding polymer defect level. The asymmetry results in larger binding
energy for trapped electrons than that for trapped hole by a few hundreds of
meV. Transport model shows that the mobility can be made different by 2-3
orders of magnitude at high adsorption density. Since no chemical reaction
takes place, this effect is reversible once oxygen is removed.
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poly(p-phenylene vinylene)

t3
t1 t2

Figure 6.1: Shown in the right inset is the chemical structure for PPV as
well as its tight-binding parameters t’s. The left inset shows the schematic
band structure of the PPV chain with one defect unit. See the text for the
details of the levels.

6.2 Electronic structure for defect levels in

conjugated polymers

The inset of Fig. 6.1 shows the chemical structure for a perfect PPV chain.
Adopting the resonance integrals of t1=-2.2 eV, t2=-3.0 eV, and t3=-3.1 eV
one can fit the valence and conduction band structures obtained by more
sophisticated computations[40]. The defect levels appearing in the gap can
be obtained by introducing a one-bond defect in one single repeat unit with
all other units remaining perfect. For PPV, defect levels can be caused by
the reduction of the vinyl double-bond t2 due to structure distortion[40].
The electronic structure is shown schematically in the inset of Fig. 6.1 where
CB and VB respectively denote the conduction and valence bands, and the
band gap for perfect chain is Eg =2.8 eV. The defect levels labeled by AD
and BD refer to the fact that their corresponding wavefunctions have anti-
bonding and bonding symmetry with respect to the center of the reduced
double-bond. Now the BD and AD are, respectively, the the highest occu-
pied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO). Their difference is designated by ∆1. The energy gaps en and
ep stand for binding energies for the trapped electron and hole respectively.
en=ep is guaranteed by the electron-hole symmetry. Denoting t′2 = t2(1− δ)
for the reduced double-bond, the equal binding energies are plotted as a
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function of δ in Fig. 6.1. It can be seen that as δ increases toward unity,
the binding energies increase and their wavefunctions become more local-
ized around the reduced double-bond. Below we discuss how the presence of
oxygen alters this symmetric picture.

6.3 Electronic configuration for oxygen molecule

and the intermolecular force

It was suggested that O2 and PPV can form reversible charge transfer complex[41],
and the probable adsorption site is the carbon-carbon double bond[42]. In
fact, the band edge Bloch state wavefunction has a major contribution from
the vinyl double bond. Therefore we expect that O2 can adsorb onto the PPV
chain as shown in Fig. 6.2. The empirical Lennard-Jones 6-12 potential[43]

VLJ =
A

d12
− B

d6
, (6.1)

is adopted to describe the intermolecular interaction between polymer and
oxygen for separation d. The potential minimum E0 and the corresponding
separation d are given by A = E0d

12 and B = 2E0d
6. The minus term

is due to induced dipole-dipole interaction[44]. Based on the second order
perturbation, we assume B only depends on energy difference between ground
state and the lowest excited state of the two-molecule system. The lowest
excited state is that one electron is excited from BD to AD in PPV and one
electron is excited from π to the singly occupied π∗ in oxygen. Such state
has energy higher than ground state by ∆1 + ∆2. Consequently

B =
α

∆1 + ∆2

. (6.2)

∆2 in O2 is determined by the gap between π and π∗ which gives 4.35
eV[45]. α is roughly the same for all oxygen-conjugated carbon system.
Coefficient A for the short-ranged repulsion is also assumed to depend only
on the local atomic arrangement. Since the intermolecular interactions be-
tween carbon nanotubes and oxygen have been studied extensively[46], we
can determine our unknown coefficients from them. The separation d and
potential minimum E0 have been reported to be 2.7 Å and 0.25 eV using
ab inito calculation[46]. Then A and B are 37500 (eV-Å12) and 193.7 (eV-
Å6), respectively. α=1046 (eV2-Å6) is obtained by the π-band gap of 1 eV
in carbon nanotube. The resultant separation and potential minimum for
perfect PPV-O2 system is 2.8 Å and 0.14 eV using ∆1=2.8 eV. With de-
fect, the attraction coefficient is larger due to the reduced HOMO-LUMO
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π

*π
2∆

Oxygen

PPV
d

Figure 6.2: The Lennard-Jones potential between PPV chain and O2. The
dashed and the solid lines are for perfect and defect chain respectively. Also
shown is the geometry for adsorption and the MOs for the oxygen π∗ level
and the localized AD level. The box inset gives the ground state electronic
configuration for O2 in which the energy ∆2 represents the difference between
π and π∗ MOs. The gray and white indicate the negative and positive lobes
of the atomic orbitals.

energy difference. Consider the case for δ=0.9 corresponding to ∆1=0.4 eV.
As shown in Fig. 6.2, the attraction is enhanced for the chain with one defect
and the corresponding d=2.66 Å and E0=0.30 eV. It is therefore energetically
favorable for the molecular oxygen to be adsorbed onto the defect sites.

The Hamiltonian H for such a system is

H = Hp + Ho + Hpo . (6.3)

Hpo stands for the interaction. For isolated PPV,

Hp =
∑

n,k,σ

εn,kb
†
nkσbnkσ +

∑

α=±,σ

εαb†ασbασ . (6.4)

σ and k are spin and momentum index respectively. εn,k is the n-th band
energy. The subscripts ±, respectively, stand for BD and AD levels and
with corresponding energies ε±. For O2, Ho must possess the property of
spin-triplet ground state as well as the large on-site repulsion responding for
the large difference between electron affinity (EA 0.45 eV) and ionization
potential (IP 12 eV) in its gas phase[47]. If we denote the degenerate π∗

orbitals in O2 as π∗x and π∗z , the Hamiltonian can be written as
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Ho =
∑

α={x,z}σ

(
ξa†ασaασ +

U

2
nασnα−σ

)
− J

2
~Sπ∗x · ~Sπ∗z , (6.5)

where ξ means the energy for the two degenerate levels and a†(a) are the
corresponding creating(annihilating) operators. U is the direct Coulomb
repulsion when two electrons occupy the same orbital, and the positive J
describes the exchange effect between the degenerate orbitals. The energy
lowering by the exchange effect manifests the more stable spin triplet 3O2

than the singlet 1O2. The vector operator ~S is the total spin on each degen-
erate orbital. The values for U and J can be obtained by definitions of EA
and IP : (2ξ − J

2
) + IP = ξ and (3ξ + U) + EA = 2ξ − J

2
. ξ is O+

2 energy and
2ξ − J

2
is the 3O2 energy. 3ξ + U is the energy for O−

2 . J is about 1 eV[46].
Hence the repulsion U=IP−EA−J = 10.6 eV.

6.4 Asymmetric binding energies for the trap-

per carriers emerging from the symmet-

ric electronic system

Hybridization between two molecular orbitals (MO) of different symmetry
is zero. Therefore the O2 π∗x orbital is not involved in the hybridization.
Furthermore BD and all the valence band states can not hybridize with the
O2 π∗z either since they have different parity symmetry with respect to the
plane vertically cut the center of the reduced double-bond and center of
internuclear line of oxygen. Consequently O2 orbital can only hybrid with
AD and the conduction band states. However the conduction band states are
negligible since their MOs are extended and have relatively little components
on the sites near the oxygen. Keeping the only term gives

Hpo = −t
(
a†zb− + b†−az

)
. (6.6)

The spin indices are neglected. The value of t can be determined from the res-
onance integrals βCO between individual carbon and oxygen atoms. Namely

t =
1√
2
(c1 − c2)βCO . (6.7)

c1 and c2 stand for the MO components of AD on the two carbon atoms
defining the reduced double-bond. The resonance integral βCO between the
oxygen and carbon pz separated by a distance d can be expressed as
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Figure 6.3: Resonance integral β(d) is plotted as a function of separation
between atoms.

β(d) =
1

4πε

∫
d3rϕ(r)

1

r
φ(|r− d|) . (6.8)

The wavefunctions ϕ and φ stand for the respective pz atomic orbitals on
carbon and oxygen atoms. The resultant βCO can be simplified if one ap-
proximates the atomic orbitals as s-orbital with effective Bohr radius rC of
0.77 Å and rO of 0.65 Å respectively.[47]. The dielectric constant is chosen
to reproduce βCC used in the tight-binding model. As shown in Fig. 6.3
when d equals the single bond length 1.4 Å, βCC is about -3 eV, consistent
with the values commonly used for conjugated polymers. The integrals drop
exponentially as d further increases. For the given Bohr radius a1 and a2 for
carbon and oxygen atoms, the explicit form of β is given by

β(d) =

√
a1a2

πεd(a2
1 − a2

2)

[
e−d/a1d(a2

1 − a2
2) + 2a1a

2
2(e

−d/a2 − e−d/a1)
]

(6.9)

Even though a full electron transfer from polymer to oxygen is inhib-
ited by the large repulsion energy U , the mixing of a small charge-transfer
component into the ground state is enough to break the binding energy sym-
metry. Fig. 6.4(a) shows the ground state, denoted by |G; n〉, for the neutral
system. For later convenience we set this configuration as reference, that is
〈G; n|Hp + Ho|G; n〉 = 0. The one-hole configurations in Fig. 6.4(b) and (c)
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(a) (b) (c)

(d) (e) (f)

|G;n> |G;+> |EX;+>

|G;-> |EX;-> |CT;->

AD
BD

Figure 6.4: Electronic configurations for one extra electron and one extra
hole in the hybrid system. See the text for the details of the states. Note
there is no charge-transfer component for hole.
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respectively stand for the trapped-hole ground state and the lowest free hole
state where the hole occupies the valence band minimum. They are labeled
by |G; +〉 and |EX; +〉. The matrix elements of H within this subspace is
simply

(
ε+ 0
0 Ev

)
(6.10)

where Ev denotes the hole energy for valence band minimum. Note that
we exclude the configuration in which the the last electron in BD for |G; +〉
is transferred to oxygen, because such configuration has very high energy
due to the mutual Coulomb repulsion between the two localized holes[43].
Even such state is considered, it is irrelevant since Hpo does not contain
hopping between BD and oxygen. Consequently the excitation for hole to
free continuum takes energy of Ev − ε+ = ep, which is the same as the O2-
free case. The situation for one electron is very different. Fig. 6.4(d), (e),
and (f) denote the trapped-electron ground state, free electron state, and the
charge-transfer state. They are labeled as |G;−〉, |EX;−〉 and |CT;−〉. The
matrix elements for H within the three-state subspace is




ε− 0 −t
0 Ec 0
−t 0 −EA


 , (6.11)

where Ec is the energy for the conduction band minimum. The diagonal
energy for charge-transfer state is ξ + U + J/2 and we replace it with −EA
by definition. Without the hopping term t the 3×3 matrix is reduced to
a 2×2 one with exact symmetry to the hole problem. The point here is
the ground state energy is shifted when the hopping term is involved. The
ground state energy is given by

(ε− − EA)/2−
√

t2 + [(EA + ε−)/2]2 . (6.12)

The energy of the free electron state |EX;−〉 is unaffected by t. Therefore
the extra electron in the ground state is bound more tightly when the ad-
sorbed O2 appears. The resultant binding energy for trapped electron is
larger than that for trapped hole, and the difference ∆b versus various EA
of oxygen and coupling t is shown in Fig. 6.5. The lowering of the ground
state energy comes from the stabilization due to the resonance between the
trapped state and the charge-transfer state. Experimentally, such lowering
had been observed from the increase of the activation energy of electron trap
and its level filling in MEH-PPV by exposing to air[48]. The true ground
state becomes a superposition of |G;−〉 and |CT;−〉. The absolute square of
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Figure 6.5: Binding energy difference ∆b between trapped electron and
trapped hole for δ=0.8 is plotted for various carbon-oxygen coupling t and
EA of oxygen. The larger binding energy for trapped electron is the origin
for the mobility imbalance. Shown in the inset is charge-transfer component
in the true ground state for one electron.

the coefficient for |CT;−〉 is also shown in the inset of Fig. 6.5. As expected
the asymmetry becomes more apparent for stronger coupling t when sepa-
ration d is shorter. Reduced repulsion U or larger EA in O2 also enhances
the charge transfer and the asymmetry. Actually the value of EA in solids
may be higher than gas phase value due to polarization effects and structural
relaxation[49]. Consider the trap binding energy of 1.0 eV corresponding to
δ=0.8. Choosing oxygen EA as the gas phase value of 0.45 eV, the binding
energy is 1.16 eV for trapped electron and 1.0 eV for trapped hole. Indeed
the electron binding energy is 0.16 eV higher. The difference is close to the
deep levels measurements for MEH-PPV[50], in which the trap levels AF1
and DF1 have binding energy of 1.0 eV and 1.3 eV respectively.

Now we use the asymmetric binding energies to quantitatively explain
the mobility imbalance. The carrier mobility µ in the disorder organic semi-
conductor depends on the number of trapped carrier nT and free carriers nF ,
and it can be expressed as[40]

µn = µPF /(1 +
nT

nF

) . (6.13)

µPF is the free polaron mobility which follows the Poole-Frenkel laws. In the
case without any doping, the population ratio nT

nF
at low field is determined

by the trap density xt per repeat unit and the binding energies en and ep.
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Figure 6.6: The ratio µe/µh of electron-hole mobility versus the ratio χ of
defect sites which have adsorbed O2. As χ increase, or more O2 adsorbed onto
the defect sites, the degree of mobility imbalance increases. The asymmetric
effect is more apparent for trap with larger binding energy.

Thus, the electron-hole mobility ratio can be expressed as

µe

µh

=
xt + e−βep

xt(1− χ) + xtχeβ∆b + e−βep
, (6.14)

where χ represents the ratio of the defect sites with an O2 adsorbed on it.
Consider the case for symmetric binding energy of 0.3 eV. The resultant
separation d and coupling t are 2.79 Å and 0.8 eV, which leads to electron
binding energy en 0.4 eV and the unchanged hole binding energy ep 0.3 eV.
Assume each defect site now has an additional oxygen molecule adsorbed on
it, or simply χ=1. If the trap density xt=10−5, then the electron mobility is
about 1/50 of the hole mobility, which is close to the experiment[36]. Fig.
6.6 shows the mobility ratio µe/µh as a function of O2 adsorption ratio χ
according to Eq. (6.14). The mobility imbalance is stronger as more O2 are
adsorbed onto the defect sites.

6.5 Concluding remarks

We would like to remark that the symmetry in Fig. 6.2 may be broken in
reality and the oxygen bond might not be aligned with the carbon double
bond. However even for the O2 adsorbed in configurations which enable
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the tunneling to the BD level, the hole binding energy will not be increased
by the perturbation of O2 because of the high energy cost for the hole to
be transferred to O2, i.e. the large IP of O2. On the other hand the elec-
tron binding energy will always increase by mixing with the electron-tranfer
state. Furthermore energy consideration suggests that the absorption with
high symmetry is the preferred configuration. Even through many other less
symmetrical configurations may be present in reality, such preferred sym-
metrical adsorption alone is enough to explain the electron-hole imbalance.
Even though PPV is taken as the model for calculations, obviously the con-
sideration can be extended to all organic semiconductors in which the traps
and adsorbed O2 dominate the carrier transport[35, 51, 52]. O2 adsorption
is believed to be the common origin for the carrier imbalance for polymer,
small molecules, and perhaps even carbon nanotubes and fullerenes.

In conclusion the presence of localized defect levels in the gap can en-
hance the intermolecular attraction. The originally symmetric electronic de-
fect structure results in huge mobility imbalance by the symmetry-breaking
coupling with adsorbed O2.
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Chapter 7

The p-doping by oxygen
molecules in organic
semiconductors

In addition to the unbalancing effect on carrier transport in previous chap-
ter, the adsorbed gas molecules can have a p-doping effect such that the
insulating organic materials can have some free hole carriers at thermal equi-
librium. Such effect can cause the OFF-state conduction and degrades the
field effect transistor’s characteristics by lowering its on-off ratio. From the
perspective of fundamental principle, the doping by O2 is quite different from
that in conventional inorganic semiconductors where each impurity can con-
tribute one carrier individually at room temperature. The O2 doping, on the
other hand, has a strong dependence on the dopant concentration and does
not need any additional excitation in some conjugated polymers. Besides,
photons of visible light wavelength can induce more carriers as well by the
charge-transfer excitation.

In this chapter we investigate the sensitive effect of O2 adsorption on
the electronic properties of organic semiconductors by studying the band
structures of the oxygenated system. The band structure for the O2-adsorbed
polythiophene, as an important example, is obtained by a self-consistent
tight-binding scheme which takes into account the correlation effect resulting
from strong Coulomb repulsion on the oxygen orbital. The adsorbed gas
molecules can actually p-dope the host materials even without illumination,
i.e. a ground state property. Because of the hybridization of the oxygen and
polymer wave functions, the Fermi level of the oxygenated system will be
pinned at the nearly half-filled oxygen band with overlap with the polymer
valence band. We compare with different chemical and electronic structures
for polythiophene structures and find that the doping depends critically on
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Figure 7.1: Increased conductivity and decreased carrier mobility found in
P3HT FET after it is exposed to air[53].

the ionization potential. On average each oxygen molecule can dope more
than 0.1 hole in dark. Furthermore, a charge-transfer excitation at about 2.3
eV photon energy to give highly mobile holes is predicted for the oxygenated
system.

7.1 Overview of the p-doping in organic semi-

conductors

Recently the high sensitivity of electronic properties of organic semiconduc-
tors to air exposure has drawn a great deal of intention. For example, a
reversible increase of conductivity, as shown in Fig. 7.1, is found in poly(3-
hexyl thiophene) (P3HT) field-effect transistors (FET) after oxygen exposure
during the sample preparation[53]. From the perspective of application, the
oxygen exposure causes the off-state conduction in P3HT FET’s and de-
grades the device characteristics[54, 55]. However, the off-current can be sig-
nificantly reduced after placing the devices in vacuum for a few days, which
suggests no chemical reaction ever took place. In addition to conjugated
polymers, small molecules such as pentacene also have the similarly sensitive
properties[55]. Single-wall carbon nanotubes, on the other hand, can possess
alternatively n-type and p-type behaviors by switching the nanotubes in the
conditions between vacuum and air exposure[56]. So far it is well accepted
that such modulation is a consequence of O2 physical adsorption which some-
how induce a p-doping to the organic semiconductors. However, whether the
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adsorbed O2 results in a bulk p-doping effect[54, 55, 56] or modify the barrier
between the contact[57] remains unsettled.

The p-doping process, in which electrons are removed from the host, is
not clearly understood so far. From energy conservation, it appears that
such process could be accomplished only with some additional energy since
the ionization potential (IP) of organic semiconductors (between 5 and 6
eV) is usually much larger than the electron affinity (EA) of O2 (0.45 eV
in gas phase[59]). Indeed, as shown in Fig. 7.2, the effect of p-doping in
pentacene FET is apparent only with illumination of UV light[55]. However,
it does not seem so in the case of P3HT as the current-voltage measure-
ment in dark condition still presents significant off-current[54, 55]. Besides,
using poly(3’,4’-dialkyl-2,2’;5’,2”-terthiophene) (PTT) with similar chemical
structure but of larger IP, as active layer can reduce the undesired off-current
to some extent[60]. Thus the p-doping can happen in dark, i.e. a ground
state rather than excited state property, depending critically on the highest
occupied molecular orbital (HOMO) level of the host material.

In this chapter we clarify theoretically the mechanism of p-doping in
organic semiconductors for both in dark and under illumination. With a
self-consistent tight-binding scheme which considers the correlation effects
on O2, we can obtain the band structures for a class of oxygenated polythio-
phene. Molecular oxygen is unique in that it has two half-filled molecular
orbitals which contribute to its paramagnetism. Through the hybridization
betweem oxygen and the polymer, the oxygen band becomes degenerate with
the polymer valence band and the Fermi level is pinned by the oxygen band to
lie inside the valence band. In other words, the adsorbed oxygen transform
the semiconducting polymer into a metal even at the ground state. Such
metal-insulator transition has been predicted for oxygenated single-wall car-
bon nanotube[46, 61].

7.2 Metal-insulator transition in the oxygenated

single-wall carbon nanotube

Carbon nanotubes are common with most organic semiconductors, like pen-
tacene, P3HT, and emissive materials for organic light-emitting diodes in
their sp2-bonding carbon backbone. Carbon nanotubes can have different
electronic properties according to their tube chirality and diameter. Because
of their size, large area surface area, and hollow geometry, carbon nanotubes
are being considered as prime materials for gas adsorption. Recently there
have been extensively studies on the adsorption of oxygen molecules onto

67



Figure 7.2: Device characteristics for pentacene FET (upper) and P3HT
FET (below) for various exposing and illuminating conditions. The pen-
tacene FET has apparent p-doping effect with both oxygen exposure and
illumination, while P3HT FET shows the doping effect with oxygen expo-
sure.
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Figure 7.3: Upper: The single-wall carbon nanotube shows reducing resis-
tance when exposing to O2. Lower: The carrier species are alternatively
n-type and p-type for vacuum and O2-exposure[56].

single-wall carbon nanotubes and its resultant modulation in the electronic
properties[46, 56, 57, 61]. Fig. 7.3 shows the modulation in electronic proper-
ties due to such O2 exposure. It appears that the resistance of the nanotubes
is reduced to some extent for air exposure. Moreover the resistance shows
a reversible increase when the nanotubes are placed in vacuum again. In
addition, the carrier specie of the nanotubes changes from n-type to p-type
when the nanotubes are exposed to air, and this process can be reversibly
repeated.

Jhi et al.[46] first give a theoretical account for such modulation due to
oxygen exposure. Due to the reversibility, they regard the p-doping as a
consequence of physically adsorbed oxygen molecule. By carrying out a first
principle calculation, they found that the intermolecular interaction between
O2 and carbon nanotube has a potential of depth about few hundreds of meV.
They also calculate the band structure for the oxygenated single-wall carbon
nanotube in which each unit cell contains one oxygen molecule. As shown
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Figure 7.4: The band structure for single-wall carbon nanotube in which
each unit cell contains one oxygen molecule. Based on the spin unpolarized
calculation, the Fermi level now is slightly below the host valence band, and
it indicates that the oxygenated material is a metal now.

in Fig. 7.4, the band structure contains two additional half-filled bands con-
tributed from the adsorbed O2. Most importantly, the Fermi level lies within
the valence band such that there are free holes which are delocalized through
the whole tube at zero temperature, i.e. the oxygenated carbon nanotube be-
comes a metal. This transformation from a intrinsic semiconductor to metal,
suggested by the band structure, is valid to explain the p-doping effect by
O2.

The band structure can be viewed as a set of bands from carbon weakly
interacting with the O2 orbitals. As can be seen in Fig. 7.4, the degenerate
band associated with degenerate oxygen orbitals, labeled by O1 and O2, are
split due to the fact that the two oxygen orbitals have different symmetry
when coupling with the carbon atoms. Similarly, the bands labeled by C1
and C2, which are degenerate in the absence of such hybridization, are also
split due to different category of symmetry. Therefore the band C2 and O2
have wave functions which are mixed with carbon and oxygen atomic orbitals.
This can be seen in Fig. 7.5, (a) stands for the bonding combination of the
mixing for C2 which yields a lower energy, while (b) is the anti-bonding
combination for band O2. However, the band labeled by C0 is orthogonal to
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Figure 7.5: The wave function contour for the band states labeled by O2 (b)
and C2 (a) in Fig. 7.4.

the oxygen orbitals and thus free of such split.

7.3 Electronic structure for oxygenated poly-

thiophene

The chemical structure for a thiophene is shown in the upper panel in Fig.
7.6. A thiophene contains six π-electrons, four of which from carbon atoms
and the rest from the sulfur atom. The π-band shown in the left panel of Fig.
7.7 is obtained from the set of tight-binding parameters given by ε1=-1 eV,
ε2=0, εs=-3.8 eV, t1=-2.8 eV, t2=-3.5 eV, t3=-2.5 eV, and τ=-3.2 eV[62].
The Fermi level is set at zero. The HOMO level corresponds to the edge state
labeled by Cπ∗ of the valence band (VB). For states near the HOMO level,
their wave functions have most components on the two top carbon atoms
with an anti-bonding combination. The two flat parts labeled by S0 and S1
have most components on the sulfur atom.

The magnitude of τ , a measure of π-delocalization between molecular
orbitals on adjacent thiophene units, can alter the position of HOMO level.
As |τ | increases, the bandwidth of VB increases and hence the HOMO level
is elevated. The chemical structure for P3HT causes it to have more pla-
nar conformation than PTT since in the latter there are more side-chain
repulsions[60]. Therefore larger magnitude of τ can be expected in P3HT.
Consequently the right panel in Fig. 7.7 demonstrates the lowering of HOMO
level and the reduction of the bandwidth of VB for the identical tight-binding
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Figure 7.6: The upper panel shows the chemical structure for polythiophene
and its tight-binding parameters for the π-band. The lower panel represents
the configuration for the combined system for polythiophene containing the
adsorbed O2 (empty circles).
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Figure 7.7: The π-bands for polythiophene with the Fermi level is set at
energy zero. The band resulting from larger |τ | in the left panel shows
elevated HOMO level and wider valence bandwith in comparison to the band
with smaller |τ | in the right panel. We identify the left π-band with P3HT
while the right with PTT. In fact the IPs are 4.98 and 5.22, respectively, for
P3HT and PTT[60].

parameters except τ of -2.2 eV. We identify the left π-bands with P3HT while
the right with PTT. The great difference in air stability of these two poly-
mers will be discussed below in order to illustrate the essence of dark doping
by O2.

The donor site which interacts with O2 is the sulfur atom in thiophene
because the heteroatom contains a lone pair of electrons[63]. Consequently
we consider the configuration in the lower panel of Fig. 7.6 to represent the
combined system for polythiophene and O2. Besides, we consider the case
in which each thiophene unit is attached by one O2 to simulate the situation
for high density adsorption. Note that the wave functions for the π-band
are composed of pz atmoic orbitals as we regard the plane for thiophene as
the x-y plane. The π-band wave functions have the odd inversion symmetry
with respect to the thiophene plane. On the other hand, taking the O2

bond as y-axis the O2 molecule has its two valence electrons occupying the
two degenerate molecular orbitals π∗x and π∗z . According to the adsorption
configuration in Fig. 7.6, only the π∗z has nonvanishing coupling with the π-
band of the host material due to symmetry. Now we can regard the combined
system as a thiophene chain weakly interacting a O2 chain. As in the case of
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single-wall carbon nanotube[46], the combined system here is going to have
an additional half-filled band associated with the π∗z oxygen orbital.

In an isolated O2, the spins of the two electrons in the π∗z and π∗x orbitals
are in triplet configuration due to the strong Coulomb correlation. However
once the density of the adsorbed O2 is so high that an O2 band form through
hybridization with the polymer π-bands, the oxygen wave functions become
delocalized Bloch state and the spin correlation is no longer important. We
can then treat the highly oxygenated polymer in a spin-independent fashion
and ignore the exchange interaction. Such theoretical approach has been
shown to be valid for carbon nanotube[46, 61]. Because of the hybridization,
the expectation value of the electron occupation in each O2 is no longer
fixed at 2 as in the isolated molecule. The O2 on-site energy depends on
the occupation number due to Coulomb repulsion. The repulsion can be
simplified if we use a mean-field description, that is

Ua†↑a↑a
†
↓a↓ −→ Ua†↑a↑ < n↓ > +U < n↑ > a†↓a↓ (7.1)

Therefore we define the on-site energy for π∗z orbital of spin σ as

εσ = ξ + U〈n−σ〉 , (7.2)

where n−σ represents the occupation operator for electron of opposite spin
on the same orbital[64]. 〈〉 is the ground state expectation value. Hence
the actual on-site energy has to be determined self-consistently if additional
electrons occupying the orbital. For later convenience we define the on-site
energy for free oxygen band as ε0 ≡ ξ + U/2, which corresponds to a level
below vacuum by 5.8 eV.

The band structure of the combined system is made up with an almost
flat oxygen band and a set of π-bands from the thiophene chain. The weak
hybridization between the oxygen π∗z and sulfur atomic orbitals here can split
the bands from its unperturbed ones and allow electrons transferring to O2.
The ultimate band structure, with consideration of the correlation effects,
is obtained as follows. We first consider the case of P3HT. When P3HT is
isolated from the O2 chain, the top of valence band lies above the oxygen band
because P3HT has an IP of 5 eV while the oxygen band lies below vacuum
by 5.8 eV as indicated by ε0 in Fig. 7.8. Once the coupling tOS is turned on,
the electrons occupying the top of valence band may transfer to the lower
oxygen band, which cause a lift of oxygen band according to Eq. (7.2) as
shown by the arrow in Fig. 7.8. The positions of Fermi level and the flat
oxygen band, which depends on the occupance on π∗z , have to be determined
in a self-consistent manner. Here we take advantage of the narrowness of
the oxygen band to have a simpler way determining both positions. Since
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Figure 7.8: Schematic plot for valence and conduction bands for organic
semiconductor. Due to electron transferred to O2, the oxygen band is shifted
upward as a result of increasing Coulomb repulsion.

the flat oxygen band can neither be empty nor filled because O2 has a large
IP and a small EA, Fermi level must be pinned with the flat band in order
to keep the π∗z having an occupation not far from unity on average, i.e. a
nearly half-filled oxygen band. If we neglect the perturbation due to the
weak coupling tOS, the position of the flat band is solely determined by the
π∗z on-site energy. Thus the Fermi level can be given by a simple relation

EF = ε0 +
ρ

2
U , (7.3)

where ρ is the density of electron transferred to O2. On the other hand, the
transferred electron, which lift the oxygen band as shown in Fig. 7.8, has
to coincide with the total number of empty states between the valence band
edge and Fermi level. If we set the center of valence band as reference and
approximate its dispersion as ε(k) = W cos k, then the transferred electron
density is given by

ρ =
2

π
cos−1(

EF

W
) . (7.4)

As shown in Fig. 7.9, ρ can be obtained by solving Eq. (7.3) and (7.4) with
the given dimensionless on-site energy ε0/W and Coulomb repulsion U/W .
As shown in Fig. 7.10, as long as the HOMO level, or the top of valence
band, lies above the center of free oxygen band ε0, the density of transferred
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Figure 7.9: Plot for solving Eq. (7.3) and Eq. (7.4).

electron ρ is nonzero. We shall note that the transferred electron ρ obtained
by the above scheme may be slightly overestimated under the approximation
of cosine dispersion for valence band.

7.4 The p-doping in the condition of dark

and illumination

Below we discuss the band structure of the oxygenated polymer calculated
by self-consistent tight-binding method. The weak coupling tOS perturbs
the bands more significantly which have larger components on sulfur and
oxygen atoms. Therefore, the oxygen band and the segments S0 and S1
are mixed with nonzero tOS. The value of tOS can actually by the integral
1

4πε

∫
d3rϕ(r)1

r
φ(|r−d|), where the wave functions ϕ and φ, respectively, stand

for the pz orbitals on sulfur and oxygen atoms in Fig. 7.6. d is the separation
between them and it can be determined by estimating the adsorption poten-
tial with Lennard-Jones 6-12 form in which the attraction part is assumed to
be a universal function of polymer band gap for all carbon backbone based
on sp2 bonding in previous chapter. In this way we have tOS=0.2 eV.

The resultant π-band structure is shown in the left panel of Fig. 7.11
with the transferred electron density ρ=0.15 for the oxygenated P3HT in
Fig. 7.6. The parameters ε0/W and U/W are, respectively, 0.27 and 9.6 and
Fermi level EF /W=0.97 lies just below the edge of valence band. Hence the
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to photon excitation in the oxygenated P3HT.
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Figure 7.12: The absorption difference for O2-exposure and N2-exposure
P3HT.

oxygenated P3HT is a metal where free hole carriers exist. Despite of the
hybridization with O2, the wave functions of Cπ∗ valence band edge still have
the dominate contribution from carbon pz orbital. The nature of the holes
is this identical with the holes on a pristine polymer without oxygen. On
the other hand, holes in the oxygen band can hardly move due to the very
large effective mass. This is consistent with the experimental finding that the
average hole mobility is decreased by the oxygenation. This transformation
from intrinsic semiconductor to metal by adsorbed O2 explains the effect of
O2 p-doping in dark condition. Note that such doping occurs even at zero
temperature, in contrast to the n/p doping for inorganic semiconductors
where thermal energy is required to lift the carriers to the bands. Moreover,
O2 act collectively instead of giving its own hole individually as in inorganic
semiconductors. In addition to the empty states near Cπ∗ generate free hole
carriers at ground state, photons can excite the electrons in the sulfur band
and the valence band to the empty parts of the oxygen band. Since only
the sulfur atom has significant optical transition matrix element with oxygen
atom, the absorption coefficient is proportional to the sulfur component of
the initial Bloch state and the optical joint density of state. The relative
absorption spectrum is shown in the right panel of Fig. 7.11. The sharp peak
at 2.3 eV (400 nm) is from the sulfur band, while the broad tail is from the
valence band. This result is remarkably consistent with the experiment[53].

Reducing the magnitude of τ can lower the HOMO position and alter the
p-doping significantly. For polythiophene with IP larger than 5.8 eV due to
smaller |τ | as the case of PTT in Fig. 7.7, the additional oxygen band will
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lie close the the edge of valence band in the band gap. The p-doping in dark
is significantly suppressed by the large IP, but a photoinduced p-doping is
possible. Obviously we can generalized the oxygen doping dependence on IP
to other organic semiconductors. For small molecules such as pentacene with
IP of 6 eV[37], the off-current for pentacene FET is apparent only under both
illumination and O2 exposure[55], in complete agreement with our prediction.

We would also like to remark further on the relation between the ad-
sorption density and the p-doping. It seems that a single O2 is not able to
reconcile the picture for such p-doping because of its low EA. Consider the
case of weak coupling for the single O2 and assume the organic semiconduc-
tor were indeed p-doped by it, the Fermi level of the combined system would
go down and touch the edge of valence band in order to generate one free
hole. Once this took place, the lost electron would occupy nowhere but the
O2, which however took exceedingly high energy as indicated by the small
EA. Therefore a cluster of adsorbed O2, as in the lower panel of Fig. 7.6, is
required to accept the additional electron. The free hole carrier density has
been quantitatively extracted from the pinch-off voltage of P3HT FET[54].
It can be seen that the carrier density actually rises only after a sufficiently
long time of O2 exposure, say 1 hour. This observation supports that doping
in the dark has a threshold adsorption density for the cluster formation.

Adsorption of O2 seems to be universal among the organic semiconduc-
tor based on the sp2-bonding carbon backbone, such as polythiophene, car-
bon nanotube, pentacene, and emissive materials for organic light-emitting
diodes. The O2 adsorption has other effects on the electronic properties in
addition to the p-doping. For organic semiconductors with defects, the O2

can worsen the transport for electron by forming a hybridized state with the
electron trap, which will bind the electron more tightly. Under such circum-
stance, the electron mobility can be much smaller than the hole mobility,
which is usually observed for a large class of conjugated polymers and small
molecules.

7.5 The Fermi level alignment in the pres-

ence of the oxygen band

In addition to the bulk properties discussed above, oxygenation is also ex-
pected to modify the metal interface dramatically. The fact that the Fermi
level is pinned by the flat oxygen band is of crucial importance when the
organic material is in contact with metal. Naively, the Fermi level is fixed by
the metal and can be anywhere within the band gap. However, for the oxy-
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Figure 7.13: Band alignment in single-wall carbon nanotube[57].

genated organic semiconductors, the adsorbed oxygen molecules contribute a
band within the band gap which pin the Fermi level of the metal by its high
unoccupied density of state. As can be seen in Fig. 7.13, different barrier
heights are found for exposed and unexposed carbon nanotube FET’s[57].

Recently an ultraviolet photoelectron spectroscopy study of the titanyl
phthalocyanine (TiOPc) thin film also supports the concept of bulk p-doping[58].
It was found that the exposed organic material could have enough free hole
carriers in bulk region such that a reverse band bending, in contrast to the
unexposed film, is formed at the interface. Moreover, as can be seen in Fig.
7.14 for the case of TiOPc, the fact that the Fermi level is fixed about 0.6
eV above the HOMO level for various metal contacts[58].

7.6 Concluding remark

Compared with metals and insulators, semiconductors are unique in that
their electrical properties can be widely tuned by the dopants. Inorganic
semiconductors are usually classified into intrinsic and extrinsic ones de-
pending on the existence of the dopants, and analogy has been made to or-
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Figure 7.14: Band alignment between TiOPc and various metal contacts[58].

ganic semiconductors. Most of the materials used in organic semiconductor
devices are thought to be intrinsic, since no dopant is intentionally incorpo-
rated. Yet it is well known that their electrical conductivity is highly sensi-
tive to external conditions despite the materials has been carefully purified.
The distinction between intrinsic and extrinsic semiconductors is therefore
blurred and questionable. In the past several years it became clear that the
gas molecules are responsible for such sensitivity. In particular, the ubiqui-
tous molecular oxygen physically adsorbed to the organic semiconductors is
shown to cause a p-doping, in sharp contrast to inorganic semiconductors
where doping is through chemical bonding with impurity atoms. So far very
little is known about the nature of oxygen doping, and apparently the well-
established donor/acceptor doping theory of inorganic semiconductor is far
from applicable[65].
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[41] D. A. dos Santōs and J. L. Brédas, Synth. Met. 101, 486 (1999).

[42] Handbook of Photochemistry and Photobiology, Chapter 11, edited by
H.S. Nalwa, Volume 2: Organic Photochemistry (American Scientific
Publishers, 2003).

[43] N. W. Aschroft and N. D. Mermin, Solid State Physics (Harcourt
Brace College Publisher, New York, 1976).

[44] J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, New
York, 1994).

[45] J. C. Slater, The Calculation of Molecular Orbitals (Wiley-
Interscience, New York, 1979).

[46] S. H. Jhi, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 85, 1710
(2000).

[47] CRC Handbook of Chemistry and Physics, 79th ed., edited by D. R.
Lide (CRC, Boca Raton, FL, 1998).
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