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摘要 
 

直接降頻的接收器(DCR)架構目前在工業和學術界已經成為一個趨勢，因為它擁

有體積小，便宜和消耗更少動力的優勢。但是，這種架構會一起伴隨著一些射頻(RF)

的不完美效應，像是直流電(DC)偏移，頻率偏移，以及 I/Q 不平衡效應等等…在這篇

論文中，主要是研究頻率相依的 I/Q 不平衡效應。  

為了使無線接收器上的類比 I/Q 處理器得到令人滿意的效能，實部和虛部的匹配

變得至關重要。 此論文提出一個新穎的基頻處理方法來估計和補償在 MIMO-OFDM

系統下，頻率相依的 I/Q 不平衡效應。 提出的方法只要使用一次的估算，就能夠估計

並且補償非理想效應，它可以容忍的範圍包含了震幅誤差 2dB， 相位誤差 20 度，以

及實部的低通濾波器是 [1 0.1 ]，虛部的低通濾波器是 [0.1 1 ] 的情況。 
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Abstract 
 

A direct-conversion receiver (DCR) architecture becomes a trend in industry and 

academic world nowadays because it is small, cheap and less power-consuming. This kind 

of architecture, however, accompanies with some radio frequency (RF) imperfections such 

as the direct current (DC) offset, frequency offset, inphase/quadrature (I/Q) imbalance, and 

etc. In this thesis, it focuses on the topic of the RF impairment of frequency dependent I/Q 

imbalance. 

To achieve satisfactory performance in analog I/Q (inphase/quadrature) processing 

based wireless receivers, the matching of amplitudes and phases of the I and Q branches 

becomes vital. In this thesis, a novel baseband I/Q estimation and compensation technique 

is proposed to overcome the frequency dependent I/Q imbalance in MIMO-OFDM systems. 

The proposed method uses a one-shot algorithm which is able to estimate and compensate 

the non-ideal effect up to gain error 2 dB, phase error 20 degree, and the low pass filter of 

the real part is [1 0.1], the low pass filter of the image part is [0.1 1]. 
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CHAPTER 1  

INTRODUCTION 

 
Orthogonal Frequency Division Multiplexing (OFDM) is a kind of spectrally efficient 

signaling technique for communications over frequency selective fading channels [1], [2]. 

MIMO-OFDM is one of the promising technologies satisfying the need for high throughput. 

Orthogonal frequency division multiplexing (OFDM) possesses the ability to resist 

multipath channel by simple frequency-domain equalizer; thus, it has been adopted by 

many transmission systems, e.g., IEEE802.11a/g based WLAN systems [3], [4], digital 

audio broadcasting (DAB) [5], and digital video broadcasting terrestrial TV (DVB-T) [6]. 

Unfortunately, OFDM systems are sensitive to imperfect synchronization and non-ideal 

front-end effects, causing serious system performance degradation. One of the key effects 

coming from non-ideal RF circuit is I/Q imbalance, which is due to the gain and phase 

mismatch between in-phase (I) and quadrature-phase (Q) paths. More specifically, it occurs 

when the difference of the phase in I and Q channels from local oscillator is not exactly 90 

degree and the gain is not the same. In this thesis, we propose a novel one-shot frequency 

domain technique for calibrate frequency dependent I/Q imbalance in MIMO-OFDM 

systems. 

Multiple-input multiple-output (MIMO) makes use of multiple transmitter and multiple 

receiver antennas to transmit independent data streams simultaneously for increasing 

diversity and spectral efficiency. Consequently, the combination of MIMO and OFDM is 

widely discussed in recent years and has been used by some wireless broadband systems 

such as IEEE 802.11n [7] and IEEE.802.16a. 

In fact, there are tons of literatures focusing on the problem of I/Q imbalance and the 

compensation scheme; see [9]-[24] and references therein. However, most of them put 

emphasis on frequency-independent I/Q imbalance, and only a few of them [9], [12]-[17] 

provide compensation schemes for frequency-dependent I/Q imbalance, which is much 

more complicated. Based on the assumption that desired signal and image interference are 

statistically independent, some methods make use of the blind source separation techniques 
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to extract the desired signal [9][12][18][19]. However, the finite training sequences used to 

estimate the coefficients for compensation do not always satisfy the assumption. Therefore, 

decision-directed methods are usually needed for these algorithms to adaptively converge 

the desired solutions. Some other adaptive compensation methods, such as [20], also 

encounter the same difficulty. Then, [16] deriving an adaptive MMSE solution and I/Q 

mismatch cancellation in frequency domain for MIMO-OFDM systems. It independently 

calculates the coefficients of detection and compensation for each subcarrier, but the 

coefficients of neighboring subcarriers are highly correlated. Accordingly, we should take 

account of this property to improve speed of convergence. 

On the other hand, some researchers develop the compensation algorithms by means of 

the training symbols known by the receiver in advance, like [21]-[24]. Reference [21] 

analyzes the frequency-dependent I/Q imbalance in the presence of frequency-offset. Still, 

some restrictions on the training sequence exist and a finite impulse response (FIR) filter is 

adopted to correct the frequency-dependent I/Q mismatch. Truly, a FIR filter is not suitable 

for OFDM systems because it increases the effective channel length experienced by 

transmitted signal. If the effective channel length is larger than the guard interval (GI), we 

have to show the great concern about the inter-symbol interference (ISI) which is a 

troublesome issue in OFDM systems. Then, speaking of Reference [22], it only discusses 

frequency-independent I/Q imbalance problem on the basis of channel smoothness criterion. 

Moreover, both [21] and [22] ignore the noise contribution when they analyze these RF 

imperfections, and it doesn’t conform to the real case. Different from [21] and [22], 

assuming the noise at receiver is an additive white Gaussian noise (AWGN), references [23] 

[24] propose techniques that jointly estimates the I/Q imbalance and other RF impairments 

based on the maximum likelihood (ML) criterion. However, the joint estimators of [23][24] 

are only for the frequency-independent I/Q mismatch and can not be directly applied to 

MIMO-OFDM systems. 

In order to maintain and realize system with imperfect RF distortions, we major focus 

on “how to calibrate the frequency dependent I/Q imbalance accuracy”. Table 1-1 shows 

the state of the art of the I/Q-M problem in OFDM system. And in this thesis, the proposed 

algorithm using the long training field preamble in MIMO-OFDM packet format is 

developed to overcome frequency dependent I/Q-M. From simulation results, it is shown 

that the proposed scheme make a high performance receiver possible in the condition of 

frequency dependent I/Q-M. 
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Table 1-1  The State of The Art 

 

The remainder of this thesis is organized as follows. Chapter 2 describes the 

MIMO-OFDM system model. Chapter 3 describes the general I/Q Imbalance Model. Then 

a novel algorithm for compensating for frequency dependent I/Q-M is developed in Chapter 

4. The simulation results are shown in Chapter 5. Proposed hardware architecture is in 

Chapter 6. Finally, this thesis is concluded in Chapter 7 And reference is in the last part of 

this thesis. 
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CHAPTER 2  
SYSTEM MODEL OF MIMO-OFDM 

 
The MIMO-OFDM system supports BPSK、QPSK、16-QAM、64-QAM four kinds of 

modulation, FEC supports 1/2、2/3、3/4、5/6 four kinds of coding rate，and it can uses 2x2 

or 4x4 antennas to transmit data. Before data transmitted, the data must go through 

Alamouti STBC（Space Time Block Code）encoding. After that, data go through OFDM 

modulation, and using IFFT to transfer frequency domain data to time domain signal. In 

each OFDM symbol, each symbol has 64 subcarriers , and 52 of them are data carrier, 4 of 

them are pilot carrier, others are null carrier. In receiver, first step, it uses FFT to transfer 

received signal to frequency domain data. Second step, equalizer will compensate channel 

effect then combine two stream data into original by Alamouti Decoder. The MIMO basic 

architecture is as Figure 2-1 and the Alamouti STBC（Space Time Block Code）is as 

Figure 2-2.The basic MIMO-OFDM transmitter and receiver is as Figure 2-3 and Figure 

2-4 [7]. And Figure 2-5 shows the used system channel model. In this thesis, we will focus 

on the I/Q mismatch, and the general I/Q model will be introduced in next section in detail.  
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Figure 2-1  MIMO Basic Architecture 
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Figure 2-2  Alamouti STBC（Space Time Block Code） 
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Figure 2-3  MIMO Basic Transmitter 
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Figure 2-4  MIMO Basic Receiver 
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CHAPTER 3  

GENERAL I/Q IMBALANCED MODEL 

 
A generalized block-diagram of an I/Q signal processing based quadrature receiver [9] is 

presented in Figure 3-1.The I/Q imbalance caused by the LO can be characterized by an 

amplitude mismatch g = (1+ε ) and a phase errorθ . Following the LO are mixers, amplifiers, 

LPFs and A/D converters which in general cause the frequency dependent I/Q imbalance. And 

we represent the I/Q baseband signal paths by two mismatched LPFs (with frequency responses 

of  and ( )IH f ( )QH f  ,respectively) [9]. The local oscillator signal ( )LOX t  of an 

imbalanced quadrature demodulator is here modeled as: 

 

( ) ( ) ( )LO LO LOX t I t jQ t= + 

 
cos(2 ) sin(2 )c cf t jg f tπ π θ= − + 

2 2
1 2

c cj f t j f tK e K eπ π−= + 
*

1 2( ) ( )K z t K z t= +                 ( 3-1 ) 

 

Where g = (1+ε ) and θ  represent the demodulator amplitude and phase imbalances, 

respectively (ideally g = 1 and θ  = 0 ). The mismatch coefficients  and  in ( 3-1 ) 

are given by   

1K 2K

 

1 [1 ] / 2jK ge θ−= +                                             ( 3-2a ) 

2 [1 ] / 2jK ge θ= −                                                 ( 3-2b ) 
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From [9], to analyze the effect of branch mismatches, the signal after through LPFs, and 

Fourier transforms, we can get  

 

( ) ( ) ( )BB BB BBR f I f jQ f= +  

( ) ( ) ( ) ( )LO I LO QI f H f jQ f H f= +                    ( 3-3 ) 

 

( )BBR f  represents the received data in the baseband as in Fig.3-1 .After some 

manipulations, the result of ( 3-3 ) can be written in a more convenient form as 

 
*( ) ( ) ( ) ( ) ( )BBR f f Z f f Zα β= + f−                           ( 3-4 ) 
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Figure 3-1  MIMO-OFDM I/Q System Model. 



In ( 3-4 ), the term relative to *( )Z f−  is caused by the imbalances and represents the 

image aliasing effect. Notice that the basic imbalance model used in [10]-[11] is a special 

case of ( 3-4 ) for which ( ) ( )I QH f H f= . And because the front-end processing cannot 

sufficiently attenuate the image band signal and some kind of compensation is needed.  

Following figures show how the frequency independent I/Q-M and frequency 

dependent I/Q-M affect the channel frequency response in the condition of No Multipath, 

and No AWGN. In Figure 3-2 and Figure 3-3, it shows the amplitude and phase of the 

channel frequency response under the condition of frequency-independent I/Q-M of gain 

error 1dB, phase error 20°.  
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Figure 3-2  Amplitude of C.F.R. of Gain Error 1dB, Phase Error 20° 
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Figure 3-3  Phase of C.F.R. of Gain Error 1dB, Phase Error 20° 
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In Figure 3-4 and Figure 3-5, it shows the amplitude and phase of the channel frequency 

response under the condition of frequency dependent I/Q-M of gain error 1dB, phase 

error 20°, ＝[1 0.1], ＝[0.1 1]. ( )Ih t ( )Qh t
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CHAPTER 4  

ESTIMATION FOR FREQUENCY DEPENDENT I/Q 

IMBALANCE  

 
In MIMO-OFDM system, the packet format is as Figure 4-1. The legacy long training 

OFDM symbol is identical to the 802.11a long training OFDM symbol [7]. And the L-LTF 

is the same in each antenna. The HT-LTFs are transmitted after the HT-STF. For any PPDU, 

there must be at least as many HT-LTFs as spatial streams in the HT Data portion of the 

PPDU. The first HT-LTF consists of two Long Training Symbols (LTS) as in 802.11a/g 

and a regular guard interval of 0.8 µs, giving a total length of 7.2µs. Following second and 

all subsequent HT-LTFs each consist of a single HT-LTS with a regular guard interval of 

0.8 µs, giving a total length of 4µs. And the HT-LTF is tone interleaved across antennas, 

the 56 tones are partitioned across the antenna array during each OFDM symbol. Tone 

partitioning into sets for 20MHz is shown in Table 4-1. At each OFDM symbol interval, 

each set of tones maps to one transmit antenna. And over time, all sets get mapped to an 

antenna. An example of tone interleaving across 4 transmit antennas is shown in Figure 4-2 

[7]. And Figure 4-3 shows the HT-LTF tone interleaving across 2 spatial streams. 
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Figure 4-1  MIMO-OFDM Packet Format 
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Nss Set 0 Set 1 Set 2 Set 3 

1 [-28:1:-1] [1:1:+28]    

2 [-28:2:-2] [2:2:28] [-27:2:-1] [1:2:27]   

3 [-28:3:-1] [2:3:26] [-27:3:-3] [3:3:27] [-26:3:-2] [1:3:28]  

4 [-28:4:-4] [1:4:25] [-27:4:-3] [2:4:26] [-26:4:-2] [3:4:27] [-25:4:-2] [4:4:28]

 
Table 4-1  Tone partitioning into sets for 20MHz (56 tones) 

 
 
 

HT-LTF
0

HT-LTF
1

HT-LTF
2

HT-LTF
3

SS 0 Set 0 Set 3 Set 2 Set 1

SS 1 Set 1 Set 0 Set 3 Set 2

SS 2 Set 2 Set 1 Set 0 Set 3

SS 3 Set 3 Set 2 Set 1 Set 0

time

HT-LTF
0

HT-LTF
1

HT-LTF
2

HT-LTF
3

SS 0 Set 0 Set 3 Set 2 Set 1

SS 1 Set 1 Set 0 Set 3 Set 2

SS 2 Set 2 Set 1 Set 0 Set 3

SS 3 Set 3 Set 2 Set 1 Set 0

time

 
 
 
 
 
 
 
 
 
 
 

Figure 4-2  HT-LTF tone interleaving across 4 spatial streams 
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Figure 4-3  HT-LTF tone interleaving across 2 spatial streams 
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From Figure 4-1 ~ Figure 4-3, we can get the Set0 and Set1 in 2x2 system. 

 

– Set_0 = [0   0  -1   0  1   0  1   0  -1   0   1   0   1   0    ... ] 

– Set_1 = [0  -1   0  -1   0  -1  0  -1   0   1   0  -1   0   -1   ... ] 

 

Because the data of Set0 and Set1 intersects, we can get the channel frequency response 

by interpolating the received data. And because the HT-LTF is tone interleaved across 

antennas, channel frequency response for each channel can be estimated by using the 

interpolating the received HT-LTF. Taking 2x2 system for example, these channel 

frequency response 11
ˆ ( )H f 、 12

ˆ ( )H f 、 21
ˆ ( )H f 、 22

ˆ ( )H f  can be estimated.( ˆ ( )RTH f  

means the estimating channel frequency response of Tth transmitter antenna to Rth receiver 

antenna ).From equation ( 3-4 ), the data affected by I/Q imbalance will be attenuated by its 

mirror part.  In HT-LTF and L-LTF, there exit some pairs in which the quotient of data 

and its mirror part data is +1, and in others positions, their quotients are -1. Taking 2x2 

systems for example, we can find some pairs which their quotient in HT-LTF is +1, and in 

L-LTF, in the same pair’s positions, their quotient is -1. 

In HT-LTF, the quotient of some pairs is +1, we can estimate the channel frequency 

response 11
ˆ ( )H f 、 12

ˆ ( )H f 、 21
ˆ ( )H f 、 22

ˆ ( )H f  from these pairs position as following. 

 
*

11 1 11 1 11
ˆ ( ) ( ) ( ) ( ) ( )H f f H f f Hα β= + f−                              ( 4-1a ) 

*
12 1 12 1 12

ˆ ( ) ( ) ( ) ( ) ( )H f f H f f Hα β= + f−                                ( 4-1b ) 

*
21 2 21 2 21

ˆ ( ) ( ) ( ) ( ) ( )H f f H f f Hα β= + f−                              ( 4-1c ) 

*
22 2 22 2 22

ˆ ( ) ( ) ( ) ( ) ( )H f f H f f H fα β= + −                          ( 4-1d ) 

 

Where 1( )fα and 1( )fβ  means the I/Q-M coefficients in receiver one; 

2 ( )fα and 2 ( )fβ  means the I/Q-M coefficients in receiver two. And 、 、

、  represent the real channel frequency response. 

11( )H f 12 ( )H f

21( )H f 22 ( )H f

 

In L-LTF, in the same pair’s positions, their quotient is -1. The L-LTF part in receiver 

one is as following. 
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{ }1 1 11 12( ) ( ) ( )L-LTF( ) ( )L-LTF( )R f f H f f H f fα= + 

{ }* * * *
1 11 12( ) ( )L-LTF ( ) ( )L-LTF ( )f H f f H f fβ+ − − + − −                                                                      ( 4-2 ) 

 

And because the L-LTF are all real number, *L-LTF ( ) L-LTF( )f f= . After some 

rearrangement, equation ( 4-2 ) will become: 

 

 *
1 1 11 1 11( ) ( ) ( )L-LTF( ) ( ) ( )L-LTF( )R f f H f f f H f fα β= + − −

*
1 12 1 12( ) ( )L-LTF( ) ( ) ( )L-LTF( )f H f f f H f fα β+ + − −       ( 4-3 ) 

 

And because L-LTF( ) 1 L-LTF( )f f− = − × , equation ( 4-3 ) can be written as 

 

[ ]*
1 1 11 1 11( ) ( ) ( )L-LTF( ) ( ) ( ) L-LTF( ) 2L-LTF( )R f f H f f f H f fα β= + − − f

ˆ( ) L-LTF( ) ( )

[ ]*
1 12 1 12( ) ( )L-LTF( ) ( ) ( ) L-LTF( ) 2L-LTF( )f H f f f H f f fα β+ + − −  

( 4-4 ) 

 

Substituting equation ( 4-1a ) and ( 4-1b ) into equation ( 4-4 ), it will become… 

 

 14

12
ˆL-LTF( ) ( )f H f+ −

1 11f f= H f 12
ˆL-LTF( ) ( )f H f+ R

* *
1 11 12 ( -L F( ) ( ) 2)L T ( )f f H f Hβ f⎡ ⎤− − + −⎣ ⎦

                           ( 4-5 ) 

 

From equation ( 4-3 ) , and knowing L-LTF( ) 1 L-LTF( )f f= − × − , getting the 

following.. 

 

[ ] *
1 1 11 1 11( ) ( ) ( ) L-LTF( ) 2L-LTF( ) ( ) ( )L-LTF( )R f f H f f f f H fα β= − − − + − f−

1

 

[ ] *
1 12 1 12( ) ( ) L-LTF( ) 2L-LTF( ) ( ) ( )L-LTF( )f H f f f f H f fα β+ − − − + − −

                                                                     

( 4-6 ) 

 

Substituting equation ( 4-1a ) and ( 4-1b ) into equation ( 4-6 ), it will become… 

 
1 1

ˆ( ) L-LTF( ) ( )R f f H= − f 
[ ]1 112 ( )L-LTF( ) ( ) ( )12f f H f H fα− − +     ( 4-7 ) 



After some rearrangement and making whole equation conjugate, equation ( 4-7 ) 

becomes: 

 
* *

12
ˆL-LTF ( ) ( )f H f+ −* *

1 1
*ˆ( ) L-LTF ( ) ( )R
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1f f H f− = − 
* * * *
1 11 122 ( )L-LTF ( ) ( ) ( )f f H f H fα ⎡ ⎤− − − + −⎣ ⎦                    ( 4-8 ) 

 

From equation ( 4-5 ) and ( 4-8 ), and *L-LTF ( ) L-LTF( )f f= , we can get the 

following… 

 

                    ( 4-9 ) 

 

 

And we can also find some pairs which their quotient in HT-LTF is -1, and in  same 

pair’s positions in L-LTF, their quotient is +1. Follow the same method, we can find the 

equation below: 

 

   

                       ( 4-10 ) 

 

From equation ( 4-9 ) and ( 4-10 ), there are 24 ratios of 1
*
1

( )
( )

f
f

β
α −

 in the receiver one in 

MIMO 2x2 systems of 20MHz. And by interpolating the 24 ratios, we can get the all ratios 

of 56 subcarriers of a symbol. After getting these 56 ratios, we can compensate the data of 

receiver one in frequency domain by the following equation. 

 
* *
1 1 1 1

1 * *
1 1 1 1

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

f R f f R fZ f
f f f

α β
α α β β f

− − −
=

− − −
 

  ( 4-11 ) 

In the Receiver two, we can also take the same methods to get the 56 ratios of 2
*
2

( )
( )

f
f

β
α −

 

to compensate for the frequency dependent I/Q-M in receiver two. 

 
* *
2 2 2 2

2 * *
2 2 2 2

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

f R f f R fZ f
f f f

α β
α α β β f

− − −
=

− − −
 

( 4-12 ) 



Above equation from ( 4-1a ) to ( 4-12 ) is the case of 2x2 MIMO-OFDM systems in 20 

MHz, we can also apply these one-shot method to solve the frequency dependent I/Q-M in 

MIMO-OFDM 4x4 systems. And following Figure 4-4 is the flow chart of the proposed 

algorithm. 
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Figure 4-4  Flow Chart of Proposed Algorithm 
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CHAPTER 5  

SIMULATION RESULT AND PERFORMANCE  

 
To evaluate the proposed algorithm, a typical MIMO-OFDM system based on IEEE 

P802.11 Wireless LANs, TGn Sync Proposal Technical Specification is used as a 

reference-design platform. The parameters used in the simulation platform are “The length 

of OFDM symbol is 64 and cyclic prefix is 16”. A satisfactory accuracy can usually be 

reached if enough data samples are used to calculate the estimate from the long training 

symbols. As a result, the proposed method uses high throughput long training field symbols 

and legacy long training field symbols to measure the frequency dependent I/Q-M. 

 

The simulation result below is based on following conditions:  

 2x2 MIMO-OFDM systems in 20MHhz. 

 PSDU is 1024. bytes 

 MCS is 13 (modulation is 64QAM, coding rate is 2/3 ) 

 Decoder using soft Viterbi decoder 

 Multipath Model: TGnD, TGnE, TGnF, and the relative rms delay and Tap 

number will be shown in Table 5-1 [25] 

 

We set three kinds conditions of I/Q Mismatch: 

High I/Q : gain error is 1dB, phase error is 20° in receiver 1; and  

          gain error is 2dB, phase error is 10° in receiver 2. 

Low I/Q : gain error is 1dB, phase error is 10° in receiver 1; and  

            gain error is 0.7dB, phase error is 8° in receiver 2. 

 

Worst FDI (Frequency Dependent Imbalance):  

The  represents the LPF in real part in time domain is [1 0.1] ( )Ih t

The  represents the LPF in image part in time domain is [0.1 1] ( )Qh t
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Mode rms delay spread Tap numbers 
A 0 ns 1 
B 15 ns 2 
C 30 ns 5 
D 50 ns 8 
E 100 ns 15 
F 150 ns 22 

Table 5-1  TGn Multipath Specifications 

 

Following Figure 5-1 and Figure 5-2, it shows the amplitude and the phase of estimated 

channel frequency response 11Ĥ  under frequency dependent I/Q-M ( =[1 0.1], 

=[0.1 1] ,  1dB 20° ) , No AWGN, No Mutipath.  
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Figure 5-1  Amplitude of C.F.R. 11Ĥ ( =[1 0.1], =[0.1 1] , 1dB 20° ) ( )Ih t ( )Qh t
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Figure 5-2  Phase of C.F.R. 11Ĥ ( =[1 0.1], =[0.1 1] ,  1dB 20° ) ( )Ih t ( )Qh t
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From the above two figures, it shows that the I/Q-M has been calibrated, and the channel 

frequency response left can be compensated by the Aloumouti equalizer easily. 

 

Following Figure 5-3 and Figure 5-4 , it shows the amplitude and the phase of estimated 

channel frequency response 11Ĥ  under frequency dependent I/Q-M ( =[1 0.1], 

=[0.1 1] , 1dB 20° ) , Mutipath: TGnE, No AWGN. 

( )Ih t

( )Qh t

 

 

0 10 20 30 40 50 60
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

subcarriers

am
pl

itu
de

H11 before Compensaion
H11 after Compensaion
H11 ideal

 

 

 

 

 

 

 

 

 

Figure 5-3  Amplitude of Channel Frequency Response 11Ĥ in TGnE 
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11Ĥ in TgnE Figure 5-4  Phase of Channel Frequency Response
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Following figure will show the whole system performance ( PER ) improved by the 

proposed algorithms in all kinds of conditions. In Figure 5-5~ Figure 5-13, the multipath 

condition is TGnD or TGnE, or TGnF, Low I/Q or High I/Q, it shows that , the proposed 

algorithms can improve the system performance greatly when frequency dependent I/Q-M 

effect is serious.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5  Amplitude of Channel Frequency Response of TGnD 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-6  PER vs SNR, MCS 13, TGnD, 1dB 10° and 0.7dB 8° 
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Figure 5-7  PER vs SNR, MCS 13, TGnD, 1dB 20° and 2dB 10° 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-8  Amplitude of Channel Frequency Response of TGnE 
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Figure 5-9  PER vs SNR, MCS 13, TGnE, 1dB 10° and 0.7dB 8° 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-10  PER vs SNR, MCS 13, TGnE, 1dB 20° and 2dB 10° 
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Figure 5-11  Amplitude of Channel Frequency Response of TGnF 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-12  PER vs SNR, MCS 13, TGnF, 1dB 10° and 0.7dB 8° 
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Figure 5-13  PER vs SNR, MCS 13, TGnF, 1dB 20° and 2dB 10° 
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CHAPTER 6  

PROPOSED HARDWARE ARCHITECTURE  

 
Below Figure 6-1 shows the block diagram of the proposed I/Q estimator & 

compensation. And following Figure 6-2 and Figure 6-3 are the IQ-Estimation and 

IQ-Compensation block. And in Figure 6-4 and Figure 6-5, it shows the block architecture.. 

In this design, the critical module is the Complex Divider. 
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IQ 
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FFT Alamouti
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Figure 6-1  Block Diagram of the proposed I/Q Estimator & Compensation 
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Figure 6-2  Block of IQ-Estimation   
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Figure 6-3  Block of IQ-Compensation 
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Figure 6-4  Block Structure of I/Q-Estimation. 
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Figure 6-5  Block Structure of I/Q-Compensation. 
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CHAPTER 7  

CONCLUSION AND FUTURE WORK 

 
This thesis has proposed a novel one-shot algorithm to estimate the frequency dependent 

I/Q-M in MIMO-OFDM receivers. The proposed algorithm can uses two kinds of long 

training symbols to estimate frequency dependent I/Q-M in multipath environments. From 

simulation results, the proposed algorithm can meet many system requirements to prevent 

obvious performance loss under different frequency dependent I/Q-M conditions. 

Following Table 7-1 shows the comparison result with other methods 
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Table 7-1  Comparison with other Methods 
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