

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

以彈性 quorum 機制解決 IEEE 802.11 無線

隨 意 網 路 的 時 間 不 同 步 問 題

An Adaptive Quorum-based Mechanism for the Clock

Asynchronism Problem in IEEE 802.11 MANETs

研 究 生：陳淑敏

指導教授：曾煜棋 教授

中 華 民 國 九 十 五 年 六 月

An Adaptive Quorum-based Mechanism
for the Clock Asynchronism Problem

in IEEE 802.11 MANETs

Student: Shu-Min Chen
Advisor: Prof. Yu-Chee Tseng

A Thesis
Submitted to Institute of Computer Science and Engineering

College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer Science

July 2006

Hsinchu, Taiwan

���quorum���� IEEE 802.11
��	
��
�������

������ ���	�
���	

���������������������

! "

#$ IEEE 802.11%&'()*+,-./0123456789:;<=
8>?@ABCDEFG,HIJKLMNOPQ# IEEE 802.11%&)*,
=8>?RSTUVWX5Y35Z[RS\]^_`abcdefg=8]
>?hiJjk5lmnoCpqrs,=8>?RS5aboPt,%&'
()*+;<=8>?@5=8]>?hiuYa^vwx67,yz3{
�Jwj5oZ|}~�5��UVX��b quorumx��,RS5Z�R
S�a�W��=8>?RSo IEEE 802.11%&'()*+,=8]>?h
iJ��������5��UV,RS�abN�e�� IEEE 802.11%&
'()*+,=8]>?hiJ
����%&'()*5-./0125=8>?

i

An Adaptive Quorum-based Mechanism for the
Clock Asynchronism Problem in IEEE 802.11 MANETs

Student: Shu-Min Chen Advisor: Prof. Yu-Chee Tseng

Department of Computer Science

National Chiao-Tung University

ABSTRACT

In wireless mobile ad hoc networks (MANETs), it is essential that all nodes are syn-

chronized to a common clock forpower saving mechanism (PSM). Many protocols have

been proposed to fulfill clock synchronization for IEEE 802.11 MANETs. However, all

these protocols can not guarantee that they can completely solve the asynchronism prob-

lem in a highly mobile ad hoc network. Besides, even if there exists a perfect clock

synchronization protocol which can guarantee that it can fulfill clock synchronization in a

multi-hop network, the asynchronism problem may still arise because of mobility. There-

fore, in this work, we propose a quorum-based mechanism to assist the existing clock

synchronization protocols in solving the clock asynchronism problem in IEEE 802.11

MANETs. Our simulation results show that our proposed protocol can effectively im-

prove the clock asynchronism problem for highly mobile IEEE 802.11 MANETs.

Keywords: Mobile Ad Hoc Network, Power Saving Mechanism, Clock Synchronization.

ii

Acknowledgements

My advisor, prof. Yu-Chee Tseng, is the first one I would like to express my gratitude

to. With the wonderful research conditions he provided and his attentive instructions, I

came to discover the pleasure of research. I am also grateful to my senior, Sheng-Po Kuo.

Without his help and suggestions, I would not be able to have this thesis done. In addition,

I would like to thank all HSCC members for their generous advice. Discussing with them

benefited me in many aspects. Finally, thanks my parents and my boyfriend, Liang-Chieh

Chen, for their support.

Hsiao-Ju at CS, NCTU.

iii

Contents

�� i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vi

1 Introduction 1

2 Problem Definition and Backgrounds 3

2.1 Problem Definition . 3

2.2 Reviews .5

2.2.1 The Power Saving Mechanism of IEEE 802.11 Ad Hoc Networks5

2.2.2 Adaptive Timing Synchronization Procedure8

2.2.3 Automatic Self-time-collecting Procedure for MANETs10

3 The Proposed Quorum-Based Mechanism 12

3.1 Concept of Quorum .12

3.2 Structure of Beacon Intervals .12

3.3 Beacon Transmission Rules .13

4 Simulations 19

4.1 Simulation Setup .19

4.2 Simulation Results .20

5 Conclusions 25

Bibliography 26

iv

Curriculum Vita 28

v

List of Figures

2.1 (a) An example of the clock asynchronism problem, and (b) resynchro-

nization afterB catches up withA’s beacons. 4

2.2 An example where clock asynchronism occurs when two disconnected

components of a MANET meet each other.6

2.3 An example where clock asynchronism causes the network to lose the

communication between nodesA andF 6

2.4 Power Management in IEEE 802.11 Ad Hoc Networks.7

2.5 Beacon generation window. .8

2.6 An example of the ATSP algorithm. The black node (if any) in each

beacon interval is the node which wins the beacon transmission in that

interval. 9

3.1 The structures of grid quorum, quorum interval, and non-quorum interval.14

3.2 The flowchart of (a) the beacon-reception process and (b) beacon-window

process. .15

3.3 An example shows eventA that a node should temporarily reduce its bea-

con competition frequency to one. .17

3.4 An example illustrates eventB that a node should temporarily reduce its

beacon competition frequency to one.17

3.5 An example where ATSP is adopted in our QCS protocol.18

4.1 Maximum clock drift between any two neighboring nodes for IEEE 802.11

TSF and IEEE 802.11 TSF with QCS whereN is set to 32. 21

4.2 Beacon sending times for IEEE 802.11 TSF.22

4.3 Average remaining time of asynchronous pairs for IEEE 802.11 TSF. . . .22

4.4 Maximum clock drift between any two neighboring nodes for ASP and

ASP with QCS whereN is set to 32. .23

4.5 Beacon sending times for ASP. .23

4.6 Average remaining time of asynchronous pairs for ASP.24

vi

Chapter 1

Introduction

In wireless mobile ad hoc networks (MANETs), it is essential that all nodes are synchro-

nized to a common clock forpower saving mechanism (PSM). In IEEE 802.11 PSM, each

node wakes up at the beginning of the beacon interval to exchange messages. Through

message exchanging, nodes can schedule packet transmissions for the current beacon in-

terval. If a node does not have any packet transmission scheduled, it can switch its radio

transceiver off and go to the sleep mode for the rest of the beacon interval. In order to

exchange messages properly, node’s message exchanging period should be synchronized.

Otherwise, PSM will not function well.

To fulfill the requirement of clock synchronization, IEEE 802.11 standards specify a

distributedTiming Synchronization Function (TSF)for the ad hoc mode. In this mech-

anism, since there is no per-designed infrastructure in MANETs, each mobile node will

compete to broadcast its timing information throughbeaconframes. The TSF mecha-

nism is quite enough for a small and static ad hoc network. In [1], Huang and Lai first

discover the scalability problem of IEEE 802.11 TSF. When the number of network nodes

is increasing, beacon contention may get more serious and thereby cause the clock asyn-

chronism problem. To alleviate the scalability problem, a simple protocol called ATSP

was proposed in [1]. The basic idea of ATSP is to give the fastest node the highest prior-

ity to send beacons. However, ATSP can not handle the issues of scalability and mobility

very well at the same time. Therefore, during the past few years, several protocols have

been proposed in [2, 3]. TATSF, proposed in [2], classifies nodes into multiple tiers with

different beacon contention frequencies. Another protocol called SATSF [3] allows the

fastest node(s) to compete every beacon interval and inhibits slower nodes from beacon

contention. Besides, in SATSF, a slower node will self-adjust its clock frequency to be

closer to that of a faster node. These protocols can effectively solve the asynchronism

caused by beacon contention, but they are designed for fully-connected networks, not for

1

MANETs.

For a multi-hop ad hoc network, it is much more difficult to achieve time synchroniza-

tion. Several clock synchronization protocols for multi-hop MANETs have been proposed

such asAutomatic Self-time-correcting Procedure (ASP)[4], Multi-Hop Adaptive Timing

Synchronization Function (MATSF)[5], andMulti-Hop Timing Synchronization Function

(MTSF) [6]. The basic idea of ASP is to increase the probability of successful beacon

transmissions for faster nodes, and slower nodes canself-correctits timer automatically

after collecting enough timing information from faster nodes. MATSF adopts the similar

self-correcting idea. Besides, in order to spread the faster timing information throughout

the whole network quickly, MATSF groups the faster nodes into a dominating set. The

nodes in the dominating set will compete for beacon transmission every beacon interval,

while the rest of nodes compete only once in a while. The self-correcting mechanism of

ASP and MATSF has poor backward compatibility because it changes the beacon format

for an additional sequence number. As for MTSF, its basic idea is to create a spanning

tree rooted at the fastest station. Each node selects the fastest neighbor as its ”parent”,

and schedules its beacon transmission non-overlapping with its parent. Although MTSF

does not need to change the beacon format, its major problem is that all nodes’ beacon

transmission schedules rely heavily on the spanning tree. Hence, it is not suitable for

mobile nodes in a MANET.

The main goal of the above mentioned protocols is to minimize the maximum clock

drift of the network. However, they can not guarantee that they can successfully achieve

multi-hop clock synchronization all the time. Once if some nodes areasynchronouswith

their neighbors, i.e., their wake-up schedules do not overlap with each other, these pro-

tocols can not reduce the clock drift and re-synchronize nodes. Furthermore, nodes’ mo-

bility may aggravate the clock asynchronism problem in MANETs. Suppose that two

groups of nodes at a distance have non-overlapping wake-up schedules. When they are

approaching each other, the mentioned synchronization protocols can not do anything to

discover mutually.

In this paper, we propose a quorum-based mechanism to relieve the clock asynchro-

nism situation in IEEE 802.11 MANETs. Based on the concept of quorum, we divide

the beacon intervals into two types:quorumandnon-quorumintervals. In the quorum

interval, each node remains awake for the entire beacon interval, and contends to send its

beacon frame even if it has received one. In the non-quorum interval, it can enter the sleep

mode after the ATIM window if it does not have any communication schedule as usual.

According to the characteristics of a quorum, asynchronous neighbors can discover each

other and then get their clocks synchronized.

2

Chapter 2

Problem Definition and Backgrounds

2.1 Problem Definition

We say that theclock asynchronism problemoccurs when the time difference between

any two neighboring nodes is larger than the length of one beacon window. In this case,

the faster node’s beacon window will not overlap with the slower node’s ATIM window

(refer to Fig. 2.1(a)). So the faster node can hear the beacon sent from the slower node

but the slower node may not have a chance to hear the faster node’s beacons and thus to

get synchronized with the faster node. The clock asynchronism problem may remain un-

solved until the amount of time drift between the faster and the slower nodes is a multiple

of one beacon interval (refer to Fig. 2.1(b)). To see how serious the clock asynchronism

problem is, suppose that nodeA is faster than nodeB by 20µs per beacon interval in

Fig. 2.1. Assuming that the lengths of a beacon interval, an ATIM window, and a beacon

window are100000µs, 16000µs, and1240µs, respectively (based on the IEEE 802.11

DSSS specification), it will take100000−1240−16000+1240
20

= 4200 beacon intervals (= 420

seconds) to move from the scenario in Fig. 2.1(a) to the scenario in Fig. 2.1(b).

Until now, most existing clock synchronization protocols aim at minimizing the max-

imum clock drift among nodes in a connected and initially synchronized network. It lacks

a mechanism to get nodes synchronized when their clocks seriously drift away. Generally

speaking, the assumption that nodes are initially synchronized is not true either. If nodes

are not synchronized first, most clock synchronization protocols may not function well,

until their beacon windows meet with each other.

Nodes’ mobility will even aggravate the clock asynchronism problem in a MANET.

Since most clock synchronization protocols will try to keep the clock drifts among nodes

within a small bound, it is very likely that two partitions of a MANET will have non-

overlapping beacon windows and thus lose synchronism. For example, Fig. 2.2(a) illus-

3

Beacon Window ATIM Window

Beacon Interval k Beacon Interval k+1

Beacon Interval k

Beacon BeaconBeaconBeacon

A

B

Beacon Interval m Beacon Interval m+1

Beacon Interval m

A

B

Beacon

(a)

(b)

100000-1240-

16000+1240 =84000 us

Beacon

Figure 2.1: (a) An example of the clock asynchronism problem, and (b) resynchronization
afterB catches up withA’s beacons.

4

trates a situation where two groups of mobile nodes are each perfectly clock synchro-

nized but are disconnected initially. When these two groups merge into one, as shown in

Fig. 2.2(b), nodes in these two groups may not be able to discover each other, and thus

the network disconnectivity problem may remain unsolved for a while. This is clearly

harmful, especially when the MANET is highly mobile.

Even if a MANET remains connected, the clock asynchronism problem may cause the

network to lose some communication links. For example, in a large-scale MANET, where

a good clock synchronization protocol is running behind, a small clock drift in each hop

may accumulate into a large amount of drift after multiple hops. As shown in Fig. 2.3, if

neighboring nodes’ clock drift is bounded by1
5

of one beacon window, nodesA andH,

which are separated by5 hops, may still remain out-of-synchronization. Therefore, when

nodeF moves to nodeA’s communication range, the communication link betweenA and

F may not be discovered for some while, making the network layer mistakenly interpret

thatA andF are quite far away.

To summarize, most clock synchronization protocols aim at reducing the clock drift

among hosts. Even with such protocols, the clock asynchronism problem can not be

completely avoided, especially in a highly dynamic MANET. Our goal in this work is to

design an exception handling mechanism as an enhancement to existing clock synchro-

nization protocols to quickly discover asynchronous neighbors that cannot be found by

typical clock synchronization protocols.

2.2 Reviews

In this section, we review the power saving mechanism specified in the IEEE 802.11

standard first. Then we present the IEEE 802.11Timing Synchronization Function (TSF)

and theAdaptive Timing Synchronization Procedure (ATSP)proposed in [1]. In addition,

we also present a multi-hop clock synchronization protocol calledAutomatic self-time-

collecting Procedure (ASP)proposed in [4].

2.2.1 The Power Saving Mechanism of IEEE 802.11 Ad Hoc Net-
works

In the IEEE 802.11 ad hoc mode, stations cooperate to support the power saving mecha-

nism since there is no infrastructure. Active stations will buffer packets for those stations

in the sleep mode and try to notify them for data transmission. Sleeping stations will

also wake up periodically to listen to the possible notification messages. The notification

5

F F

F F

(a)

(b)

Figure 2.2: An example where clock asynchronism occurs when two disconnected com-
ponents of a MANET meet each other.

B

C

D

A

E

F

A

Beacon Interval k Beacon Interval k+1

B

C

D

E

F

(a) (b)

Beacon Window ATIM Window

Figure 2.3: An example where clock asynchronism causes the network to lose the com-
munication between nodesA andF .

6

Beacon Interval 1 Beacon Interval 2

Beacon Window ATIM Window

Station A

Station B

ATIM ACK

DATA

ACK

Figure 2.4: Power Management in IEEE 802.11 Ad Hoc Networks.

messages are calledAd hoc Traffic Indication Messages (ATIM). Stations can exchange

ATIMs only during the ATIM window, a time window with a fixed length. During ATIM

windows, all stations should stay active to receive possible ATIMs. Stations which have

buffered packets for other stations compete to send ATIMs. Those stations that receive the

ATIMs will reply an ACK packet to the sender and keep active in the rest of the beacon

interval. An example is shown in Fig. 2.4. In the first beacon interval, both stationsA and

B can go the the sleep mode since they do not receive any ATIM frame. In the second

beacon interval, however, stationA has to stay active after the ATIM window since it

received an ATIM frame from stationB. ThenA andB can exchange DATA and ACK

frames after the ATIM window.

In the IEEE 802.11 standards, a distributed timing synchronization function (TSF) is

proposed for power saving mechanism. In TSF, each node shall maintain a local TSF

timer with modulus264 counting in increments of microseconds (µs). The value of the

TSF timer is the summation of a variableoffsetand the node’s clock. Clock synchroniza-

tion is achieved by periodically exchanging timing information through beacon frames.

A beacon frame contains a timestamp declaring when the beacon was sent. After a node

receives a beacon frame and finds that its own TSF timer is slower than the timestamp

specified in that beacon, it will add the timing difference to its offset.

In order to periodically exchange timing information for clock synchronization, all

nodes adopt a common valueaBeaconPeriod which defines the length of a beacon in-

terval. Based on the value ofaBeaconPeriod, each node divides their time into a series

of beacon intervals which are exactlyaBeaconPeriod time units apart. At the beginning

of each beacon interval, each node participates in beacon generation process as follows.

1. Calculate a random delay uniformly distributed in the range between zero and

2·aCWmin· aSlotT ime. (The values ofaCWmin andaSlotT ime are 15 and

7

Beacon Interval

Beacon Generation Window

(2 * aCWmin +1 slots)

Figure 2.5: Beacon generation window.

50 µs for Frequency Hopping Spread Specturm (FHSS)and are 31 and 20µs for

Directed Sequence Spread Spectrum (DSSS)).

2. Wait until the random delay timer expires.

3. If a beacon is received before the random delay timer has expired, the node cancels

the random delay timer. Otherwise, when the random delay timer expires and no

beacon has arrived during the delay period, the node shall transmit a beacon with

its TSF timing information.

4. Upon receiving a beacon, the node sets its TSF timer to the timestamp of the beacon

if the timestamp is later than the node’s TSF timer.

As illustrated in Fig. 2.5, at the beginning of each beacon interval, the period when

nodes compete to send their beacons is defined asbeacon generation windowconsisting

of 2 × aCWmin + 1 time slots (each of lengthaSlotT ime). Each node is randomly

scheduled to transmit a beacon at the beginning of one of these slots.

2.2.2 Adaptive Timing Synchronization Procedure

In the IEEE 802.11 ad hoc networks, because nodes can only set their timers forward,

the node with the fastest clock may suffer from asynchronism with a high probability if it

fails to transmit beacons for too many beacon intervals. To alleviate these asynchronism

problems, anAdaptive Timing Synchronization Procedure (ATSP)is proposed in [1]. The

main idea of ATSP is to give faster stations a higher priority to send beacons. Based

on this idea, each nodei is assigned a parameterI(i) to determine how often it should

participate in beacon contention. Nodei contends for beacon transmission everyI(i)

beacon intervals. LetImax be the maximum value ofI(i) andC(i) be the counter in

nodei that counts the number of beacon intervals. Initially,I(i) is randomly generated

between 1 andImax andC(i) = 1. In each beacon interval, nodei participates in beacon

8

D D
A

DD
A

B

C

A
B

C

D
A

B

C

D
A

B

C

A
B

C

B

C

1 2 3 4 50
Beacon Interval

I(A)=2 C(A)=1

I(B)=3 C(B)=1

I(C)=1 C(C)=1

I(D)=2 C(D)=1

I(A)=2 C(A)=2

I(B)=3 C(B)=2

I(C)=1 C(C)=2

I(D)=3 C(D)=1

I(A)=2 C(A)=3

I(B)=3 C(B)=1

I(C)=2 C(C)=1

I(D)=3 C(D)=1

I(A)=2 C(A)=4

I(B)=3 C(B)=2

I(C)=2 C(C)=2

I(D)=3 C(D)=2

I(A)=1 C(A)=1

I(B)=3 C(B)=1

I(C)=3 C(C)=1

I(D)=3 C(D)=1

I(A)=1 C(A)=2

I(B)=3 C(B)=1

I(C)=3 C(C)=1

I(D)=3 C(D)=1

Figure 2.6: An example of the ATSP algorithm. The black node (if any) in each beacon
interval is the node which wins the beacon transmission in that interval.

contention iffC(i) mod I(i) = 0. When nodei receives a beacon with a faster timestamp

than its own one, its timer will be set to the received timestamp. Then, its priority will be

decreased through increasingI(i) by 1 if I(i) is less thanImax, and its counterC(i) will

be reset to0. On the other hand, if nodei does not receive any faster timestamp than its

own for Imax consecutive beacon intervals, it decreasesI(i) by 1 if I(i) is larger than1

and setsC(i) to 0. At the end of each beacon interval, each node increases itsC(i) by 1.

Consider the example in Fig. 2.6, whereImax = 3. The order of clock speed isA >

B > C > D. Initially, the value of timer isA > B > C > D, andI(A) = 2, I(B) = 3,

I(C) = 1, andI(D) = 2. At the beacon interval1, sinceC(C) mod I(C) = 0, only

C participates in beacon contention, and thereby sends its beacon. This causesD to

increase itsI(D) by 1 and setC(D) to 0. At the end of this beacon interval, every node

increases its own counterC(i) by 1. At the beacon interval2, bothA andC participate

in beacon contention. In this example,A sends its beacon first, resulting inI(C) + 1,

andC(B) = C(C) = C(D) = 0. Note thatI(B) andI(D) can not be increased since

they are equal toImax. At the beacon interval 3, according to the rules of ATSP, no

node contends to send their beacons. At the beacon interval 4, note that sinceI(A) has

remained unchanged value for3(= Imax) continuous beacon intervals,A will decrease

I(A) by 1, and setsC(A) to 0. Finally, the fastest nodeA will participate in the beacon

contention in every beacon interval.

With ATSP, the node with the fastest TSF timer will have a very high probability of

successfully sending its beacons, thereby synchronizing all other stations. Compared to

the IEEE 802.11 TSF, ATSP provides a simple but effective solution to improve the clock

synchronization mechanism in single-hop MANETs.

9

2.2.3 Automatic Self-time-collecting Procedure for MANETs

The main ideas of ASP are to increase the successful beacon transmission probability

for faster nodes and to spread the faster timing information throughout the whole net-

work. In ASP, each node maintains a table calledNeighbor Table to keep track of

its neighbors and their TSF timers through periodical beacon transmissions. Based on

Neighbor Table, nodei first calculates an integer variablespi, which is defined as the

period of how many beacon intervals for nodei to compete to transmit a beacon. For

example, ifpi = 5, nodei will try to transmit a beacon every 5 beacon intervals.pi is

calculated as follows.

pi =

⌊(
max(1, NAi)

max(1, NLi)

)α⌋
, α ∈ N

whereNAi is the number of nodei’s neighbors andNLi is the number of nodei’s

neighbors whose TSF timer is equal to or slower than that of nodei. The parameterα is

used to adjust the number of nodes to contend for the beacon transmission. For example,

for nodei, whenNAi = 6 andα = 1, pi will be one only whenNLi is more than three,

while in the same case, but ifα = 2, pi will be one only whenNLi is more than four.

This means that a largeα reduces the number of nodes that can transmit their beacons in

every beacon interval.

Unlike 802.11, each node changes itsoffsetonly when it has received a beacon con-

taining a timestamp later than its local timer. In ASP, a slower node not only follows this

standard rule, but also tries to obtain the clock oscillation difference between itself and a

faster node. With this information, a slower node can update itsoffsetperiodically in or-

der to synchronize to the faster nodes automatically. A slower node obtains the oscillation

difference by comparing the difference of its TSF timers with the successively received

beacons containing a faster timestamp from the same node. We definePass T ime1 as

the elapsed time that a node receives two successive beacons from the same faster node

andPass T ime2 as the time difference between these two beacons’ timestamps. Based

on Pass T ime1 andPass T ime2, a slower nodei calculates an integer variableai as

follows.

ai =

⌊
Pass T ime1

Pass T ime2− Pass T ime1

⌋

Then, based on the value ofai, nodei can automatically increase itsoffsetby one

in everyai microseconds. Note that it is important that the beacon sender (i.e., the faster

node) did not change itsoffsetduring the two successive beacon transmissions. Otherwise,

10

the beacon receiver (i.e., the slower node) will estimate its clock oscillation to the beacon

sender improperly. In order to solve the problem, each node maintains an integer variable

Seq No and appends the value ofSeq No at the beacon frames (here, ASP adds a 4-

bit field for Seq No in the beacon frames. So,Seq No will be reset to zero when its

value is increased to sixteen). When a node’soffsetis updated because of a faster beacon,

the node’sSeq No will be increased by one. With the design ofSeq No, the correct

calculation ofPass T ime2 shall be taken from two beacons sent from the same node

with the sameSeq No. Note that due to a node may update itsSeq No more than once in

a beacon interval, the received timing information stored in each node will be abandoned

after k beacon intervals (here, ASP setsk to eight) in order to prevent the wraparound

problem ofSeq No.

To sum up, ASP makes nodes with faster TSF timers transmit their beacon frames

frequently. In addition, a slower node can automatically synchronize to a faster node if it

has received the beacon with the faster timing information twice from the same node with

the sameSeq No.

11

Chapter 3

The Proposed Quorum-Based
Mechanism

3.1 Concept of Quorum

We apply the concept of quorum to help asynchronous nodes discover each other. Quo-

rums have been widely used in distributed systems (e.g., to guarantee mutual exclusion

or fault tolerance [7, 8]). A quorum is a set of entities from which one has to obtain

permission to perform some critical action. Any two quorum sets must have non-empty

intersections. This property helps us to design synchronization schemes such that any two

asynchronous nodes have chances to receive each other’s beacons.

In [9], it has been shown that a group of quorums, such as thegrid quorum[10], the

torus quorum[11], thecyclic quorum[12], and thefinite projective quorum[10], can be

applied to efficient synchronization protocols.

3.2 Structure of Beacon Intervals

Below, we will use thegrid quorumto explain ourQuorum-based Clock Synchronization

(QCS)protocol. A grid quorum is formed by a 2D matrix such that each quorum contains

a random column and a random row of entries. Clearly, any two quorums must have

a non-empty intersection. Here, anN × N grid quorum will be used. Each node will

partition its beacon intervals into groups such thatN2 beacon intervals constitute one

group. In each group, itsN2 beacon intervals are arranged in a row-major manner into

anN ×N grid. Each node then arbitrarily picks one row and one column and designates

these2N − 1 beacon intervals in the selected column and row asquorum intervals, and

the remainingN2 − 2N + 1 beacon intervals asnon-quorum intervals.

Nodes’ actions in quorum and non-quorum intervals are defined as follows.

12

• Each quorum interval includes three parts:quorum beacon window, ATIM window,

anddata window. During a quorum beacon window, a node will try to send out

its beacons. A beacon should be sent even if the node has received other nodes’

beacons. During an ATIM window, a node may send/receive traffic announcement

to/from other nodes. After the ATIM window, a node has to stay awake throughout

the whole data window.

• Each non-quorum interval also consists of three parts:non-quorum beacon window,

ATIM window, anddata window. In a non-quorum beacon window, beacon trans-

mission is optional and will depend on an existing clock synchronization protocol.

The clock synchronization protocol can be anyone mentioned in the Chapter 2.2.

Here, we will use a binary functionfn(i) to denote whether noden will compete

for the beacon transmission in thei-th beacon interval or not. The value offn(i)

depends on the adopted clock synchronization protocol. We will leave the detail

discussion in the next section. A node’s behavior in an ATIM window is the same

as that in a quorum interval. However, a node’s behavior in a data window will

depend on whether there is any traffic announcement in the former ATIM window

related to itself. If so, it has to remain awake throughout the data window; other-

wise, it may go to sleep.

Fig. 3.1 illustrates an example of grid quorum and the structures of quorum and non-

quorum intervals. With such a structure, it has been proven in [9] that two neighboring

nodes can always hear each other’s beacons at least once everyN2 beacon intervals, no

matter how much their clock values drift away. The value ofN also plays an important

role in the QCS protocol to balance the performance of time synchronization and power

consumption. A smallerN can reduce the time required to synchronize two asynchronous

nodes when they become neighbors but at the cost that it has to stay awake in more data

windows when quorum intervals appear. In the Chapter 4, we will investigate this issue

under different values ofN .

3.3 Beacon Transmission Rules

In the QCS protocol, beacon trasmission is mandatory in a quorum interval. However, in

a non-quorum interval, beacon transmission is controlled by two processes: thebeacon-

receptionprocess and thebeacon-windowprocess. These two processes are illustrated in

Fig. 3.2.

13

N
2
beacon Intervals N

2
beacon Intervals N

2
beacon Intervals N

2
beacon Intervals N

2
beacon Intervals

0 1 2 N-1

N N+1 N+2 2N-1

2N 2N+1 2N+2 3N-1

N
2-N N

2-1

N

N

quorum interval

Beacon

Beacon

non-quorum interval non-quorum interval

Beacon

Beacon

Beacon Window

ATIM Window

Data Window

Figure 3.1: The structures of grid quorum, quorum interval, and non-quorum interval.

The beacon-reception process is triggered when a nodei receives a beacon from a

nodej. Let Ti be the current time ofi, Tj be the timestamp inj’s beacon,BW be the

length of a beacon window, andNi be the current number of nodei’s neighbors. Two

types of events are considered to be monitored:

• EventA: If node i’s clock is faster than nodej’s clock by the length of a beacon

window (i.e.,Ti > Tj + BW), eventA will be triggered.

• EventB: If node i’s clock is slower than nodej’s clock by the length of a beacon

window (i.e.,Ti < Tj − BW) and nodei has at least one neighboring node (i.e.,

Ni > 0), eventB will be triggered.

These events are apparent to show that the node who receives the beacon has some

out-of-synchronization neighboring nodes and it is capable of synchronizing their timer.

Hence, after being aware that one of these events has taken place, the node should compete

to send its beacons in the following beacon intervals for a short period of time so as to

synchronize these neighbors. Fig. 3.2(a) shows the flow of the beacon-reception process.

The parameterNA is defined as the number of beacon intervals where a node should

continuously compete to send its beacons when eventA is triggered, andNB is for event

B. A counterCnt is used to denote the remaining beacon intervals during which a node

should compete to send its beacons. In order to meet the quorum intervals of those out-

of-synchronization neighbors, the system parametersNA andNB should be larger than

14

End

Receive

Beacon

Check

Timestamp

Event?

Cnt = NA Cnt = NB

(b)(a)

Y N

T F
A B

Compete to

Send Beacon

Cnt 1?

Is Bi a Quorum Interval?

Y N

Cnt--

Send

Beacon

Cnt 1?

Y N

Cnt-- fn(i) = true?

Figure 3.2: The flowchart of (a) the beacon-reception process and (b) beacon-window
process.

the quorum sizeN because a quorum interval at least appears once for everyN beacon

intervals.

The beacon-window process is triggered by the current type of beacon interval (refer

to Fig. 3.2(b)). For each coming beacon intervalBi, we need to identify its type first. If

Bi is a quorum interval, the node has to send a beacon during its beacon window even

if it has already received others’ beacons. This is because QCS protocol relies on the

beacon exchange during the overlapping quorum intervals of two asynchronous nodes to

adjust the slower’s timer. If we only follow the beacon transmission rule of the cooperated

synchronization protocol, we may loss the benefit of the quorum system. IfBi is a non-

quorum interval, the node should check its counterCnt first. If Cnt is set because the

eventA or B has been triggered, the node has to compete to send its beacon and decrease

Cnt by one untilCnt counts down to zero. WhenBi is a non-quorum interval and

Cnt = 0, we follow the rules of the cooperated synchronization protocol. In this case,

the functionfn(i) dominates the beacon contention procedure to determine if the noden

should compete to send a beacon during this beacon interval.

15

Fig. 3.3 illustrates the advantage of reducing a node’s beacon competition frequency

for a period of time when the eventA is triggered. In this example, nodeP with a faster

timer can be aware of the existence of an out-of-synchronization neighboring nodeQ

by receiving fromQ’s beacon duringP ’s ATIM window. Hence, nodeQ will have a

chance to be synchronized toP ’s timer by the continuous beacon transmissions of node

P . Fig. 3.4 shows the situation of eventB. At first, nodeB has a synchronized neighboring

nodeC and receives a beacon with a faster timestamp from nodeA. Then, nodeB gets

synchronized to nodeA and thereby loses the connection with nodeC because of the

asynchronism problem. In this case, nodeB should try to compete to send its beacons in

the following beacon intervals in order to synchronize nodeC.

As shown in Fig. 3.5, it demonstrates how our QCS protocol cooperates with ATSP.

In this figure, nodeA’s timer is faster than nodeB’s by at least a beacon window. The

variablesC andI are the basic parameters of ATSP (refer to Chapter 2). Sofn(i) of node

n in QCS protocol is set totrue whenC(n) mod I(n) = 0 during the beacon interval

i. AssumeImax = 10. Initially, C(A) = 4, I(A) = 2, C(B) = 1, I(B) = 5, and

the countersCnt of A and B are both zero in the beacon intervalk. Although nodeA

competes to send beacons in every two beacon intervals, nodeB misses these beacon

transmissions because they are encountering the clock asynchronism problem. During

the beacon intervalk + 3, nodeA meets a quorum interval resulting thatC(A) is reset to

zero because nodeA has sent its beacon during that beacon interval. During the beacon

intervalk + 4, since nodeA receives nodeB’s beacon, eventA is triggered. So nodeA

setsCnt = NA and competes to send its beacon every beacon interval until itsCnt is

decreased to zero. During the beacon intervalk + 5, nodeB meets a quorum interval

and thereby receives nodeA’s beacon through its data window. As a result, nodeB gets

synchronized to nodeA, increasesI(B) by one, and setsC(B) to zero.

16

A node with a faster timer

P

A node with a slower timer

Q

Beacon Interval k Beacon Interval k+1

Beacon Interval k

Beacon(a)

A node with a faster timer

P

A node with a slower timer

Q

Beacon Interval k Beacon Interval k+1

Beacon Interval k+1

(quorum interval)

Beacon(b) Beacon Beacon

Beacon Interval k+2

Beacon Interval k+2

Beacon Window ATIM Window Active Period

Beacon Interval k

Figure 3.3: An example shows eventA that a node should temporarily reduce its beacon
competition frequency to one.

A B

C

A node with a faster timer

A

A node with a slower timer

B

Beacon Interval k Beacon Interval k+1

Beacon Interval k

(quorum interval)

(b)

C

Beacon Interval k

A node with a slower timer

C

Beacon Interval k+2

A node with a faster timer

A

A node with a slower timer

B

Beacon Interval k Beacon Interval k+1

(c)

Beacon Interval k

Beacon Interval k+1
Beacon

C

A node with a slower timer

C

Beacon

Beacon

Beacon Interval k+2

A

Beacon Window ATIM Window Active Period

(a)

Beacon

Beacon Interval k+2

(quorum interval)

Figure 3.4: An example illustrates eventB that a node should temporarily reduce its
beacon competition frequency to one.

17

//
A

Beacon Interval

k

Beacon Interval

k+1

Beacon Interval

k+2

Beacon Interval

k+3

Beacon Interval

k+4

Beacon Interval

k+5

//B

Beacon Interval

k

Beacon Interval

k+1

Beacon Interval

k+2

Beacon Interval

k+3

Beacon Interval

k+4

Beacon Interval

k+5

Beacon Interval

k+6

Beacon Window ATIM Window Data Window

A

C(A)

I(A)

Cnt

fA(i)

Beacon

Interval
k

4

2

0

T

k+1

5

2

0

F

k+2

6

2

0

T

k+3

7 0

2

0

F

k+4

1

2

NA

F

k+5

2

2

NA-1

T

k+6

3

2

NA-2

F

B

C(B)

I(B)

Cnt

fB(i)

1

5

0

F

2

5

0

F

3

5

0

F

4

5

0

F

5

5

0

T

5 6

0

F

1

6

0

F

6 0

Figure 3.5: An example where ATSP is adopted in our QCS protocol.

18

Chapter 4

Simulations

To evaluate the performance of our QCS protocol, we developed the programs in JAVA.

We simulated QCS adopted by IEEE 802.11 TSF and ASP. In our simulations, we use

two metrics to evaluate the proposed protocol.

• Average remaining time of asynchronous pairs of nodes

The metric measures the average remaining time of asynchronous pairs of nodes

throughout the entire simulation period. We use this metric as a measurement of

the gravity of the clock asynchronism problem - the greater the value of the metric,

the graver the clock asynchronism problem.

• Beacon sending times

Since nodes have to compete to send their beacon frames in the quorum intervals

and beacon transmissions will consume nodes’ power resources, this metric could

be used to measure if too much additional beacon transmissions occur when the ex-

isting clock synchronization protocols adopt the QCS protocol as an enhancement.

4.1 Simulation Setup

Our simulator closely follows the protocol details of beacon generation and contention

specified in IEEE 802.11 standards. The value ofaBeaconPeriod (the length of a bea-

con interval) is set to0.1s and the value ofaATIMWindow (the length of an ATIM

window) is set to16ms. Each node’s clock accuracy is uniformly distributed in the range

of [-0.01%,+0.01%] as recommended in IEEE 802.11 standards. So starting from the syn-

chronized clocks, the maximum clock drift between two nodes after 1 second is 200µs.

In these simulations, we use the definition of the clock asynchronism problem speci-

fied in Chapter 2. That is, the asynchronism problem happens when a node’s TSF timer

19

is slower than another neighboring node’s TSF timer over 1240µs, i.e., the length of the

beacon window when DSSS is adopted. Each simulation is performed for a duration of

500 seconds in a MANET where the number of nodes is 500. Each node is randomly

located in an area of 3000×3000 square meters with a transmission range of 250 meters.

All nodes’ initial TSF timers are synchronized to zero and they move according to the ran-

dom way-point model as in [4] with maximum speed 5m/s and pause time 20 seconds.

We run ASP withα = 3 as it is the preferred value by [4].

4.2 Simulation Results

Now we present and discuss our simulation results. As mentioned before, we evaluate our

QCS protocol when it is adopted by IEEE 802.11 TSF and ASP as an enhancement.

First of all, we plot the maximum clock drift between any two neighboring nodes

during the whole simulation time when IEEE 802.11 TSF is adopted to fulfill clock syn-

chronization in Fig. 4.1. Besides, IEEE 802.11 TSF adopting QCS, whereN is set to

32, denoted by QCS(32), is also shown in this figure. As the figure shows, the maximum

clock drift suddenly increases over 1240µs around 80 seconds after the simulation be-

gins. In this case, the first asynchronous pair appears because a node with a slower TSF

timer suddenly moves inside another node’s transmission range. Since the original IEEE

802.11 TSF does not address the issue of clock asynchronism caused by mobility, the

maximum clock drift continuously increases. At last the maximum clock drift increases

over 70000µs.

After IEEE 802.11 TSF adopts QCS, the maximum clock drift decreases under 20000µs.

Note thatN = 32 in QCS implies that nodes only have63 quorum intervals in every1024

beacon intervals. In other words, the average of quorum intervals among all nodes is only

about30.76s throughout the entire simulation period (500s). This implies that the clock

asynchronism problem can be easily relieved even thoughN of QCS is large.

Fig. 4.2 shows the beacon sending times throughout the entire simulation period.

From this figure, we can see that when the IEEE 802.11 TSF adopts QCS with a smaller

N , the maximum or average beacon sending times increases only by a small amount.

This means that QCS does not cause too much additional beacon transmissions. Note that

N = 0 in this figure means that QCS is not adopted by IEEE 802.11 TSF.

Now we discuss how the value ofN in QCS can affect the average remaining time of

asynchronous pairs of nodes, as shown in Fig. 4.3. Note that when IEEE 802.11 TSF does

not adopts QCS as an enhancement, the average remaining time of asynchronous pairs is

quite large since IEEE 802.11 TSF does not know how to handle the clock asynchronism

20

20000

15000

10000

5000

1240

 0 1000 2000 3000 4000 5000

M
ax

im
um

 C
lo

ck
 D

rif
t (

us
)

Time (BIs)

IEEE 802.11 TSF
IEEE 802.11 TSF with QCS(32)

Figure 4.1: Maximum clock drift between any two neighboring nodes for IEEE 802.11
TSF and IEEE 802.11 TSF with QCS whereN is set to 32.

problem. In addition, it is not hard to see that when the value ofN in QCS is larger, the

average remaining time of asynchronous pairs becomes longer because a quorum interval

appears less frequently. However, it consumes more power resources whenN is smaller.

For example,N = 2 implies that there are 3 quorum intervals in every 4 beacon intervals,

i.e., nodes stay awake in about75% of the entire simulation period.

Although ASP has automatic self-time-correcting functions, it is not guaranteed that

ASP can completely prevent the clock asynchronism problem. Fig. 4.4 shows the max-

imum clock drift between any two neighboring nodes during the whole simulation time

when ASP is adopted for clock synchronization. As shown in Fig. 4.4, the maximum

clock drift suddenly increases over1240µs around150s. The reason of the occurrence of

the first asynchronous pair is similar to the one in IEEE 802.11 TSF - mobility. At last,

the maximum clock drift increases to34000µs around. Similarly, after ASP adopts QCS

with N = 32, the maximum clock drift decreases under15000µs.

Fig. 4.5 shows the beacon sending times throughout the entire simulation period.

Compared with IEEE 802.11 TSF in Fig. 4.2, the maximum/average beacon sending times

in ASP is fewer than that in TSF. Besides, from this figure, we can see that QCS causes

some but not too many additional beacon transmissions. At last, Fig. 4.6 illustrates how

21

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

32201054320

B
ea

co
n

S
en

di
ng

 T
im

es

N of QCS

Maximum
Average

Figure 4.2: Beacon sending times for IEEE 802.11 TSF.

580.8

40

35

30

25

20

15

10

5

32201054320

A
ve

ra
ge

 R
em

ai
ni

ng
 T

im
e

(B
Is

)

N of QCS

Figure 4.3: Average remaining time of asynchronous pairs for IEEE 802.11 TSF.

22

35000

20000

15000

10000

5000

1240

 0 1000 2000 3000 4000 5000

M
ax

im
um

 C
lo

ck
 D

rif
t (

us
)

Time (BIs)

ASP
ASP with QCS(32)

Figure 4.4: Maximum clock drift between any two neighboring nodes for ASP and ASP
with QCS whereN is set to 32.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

32201054320

B
ea

co
n

S
en

di
ng

 T
im

es

N of QCS

Maximum
Average

Figure 4.5: Beacon sending times for ASP.

23

587.9

40

35

30

25

20

15

10

5

32201054320

A
ve

ra
ge

 R
em

ai
ni

ng
 T

im
e

(B
Is

)

N of QCS

Figure 4.6: Average remaining time of asynchronous pairs for ASP.

the value ofN in QCS can affect the average remaining time of asynchronous pairs of

nodes. As only ASP is adopted, the average remaining time of asynchronous pairs is up

to 59s. However, the situation becomes totally different when ASP adopts QCS. From

this figure, we can see that the average remaining time of asynchronous pairs is smaller

than4s whenN ≤ 32 in QCS.

24

Chapter 5

Conclusions

In this paper, we point out that the current clock synchronization protocols lack an ex-

ceptional handling mechanism to solve the clock asynchronism problem in IEEE 802.11

MANETs. Therefore, we propose a compatible protocol called QCS to address the clock

asynchronism problem in IEEE 802.11 multi-hop MANETs. Through our simulations,

we show that our proposed scheme can assist the existing clock synchronization proto-

cols in solving the clock asynchronism problem successfully.

25

Bibliography

[1] Lifei Huang and Ten-Hwang Lai. On the Scalability of IEEE 802.11 Ad Hoc Net-

works. InACM Int’l Symp. on Mobile Ad Hoc Networking and Computing (Mobi-

HOC), pages 173–182, 2002.

[2] Dong Zhou and Ten-Hwang Lai. Analysis and Implementation of Salable Clock

Synchronization Protocols in IEEE 802.11 Ad Hoc Networks. In2004 IEEE In-

ternational Conference on Mobile Ad-hoc and Sensor Systems (MASS’05), pages

255–263, 2004.

[3] Dong Zhou and Ten-Hwang Lai. A Compatible and Scalable Clock Synchronization

Protocol in IEEE 802.11 AD Hoc Networks. InProceedings of the 2005 Interna-

tional Conference on Parallel Processing (ICPP’05), pages 295–302, 2005.

[4] Jang-Ping Sheu, Chih-Min Chao, and Ching-Wen Sun. A Clock Synchronization

Algorithm for Multi-hop Wireless Ad Hoc Networks. InProceedings of the 24th

International Conference on Distributed Computing Systems, pages 574–581, 2004.

[5] Dong Zhou and Ten-Hwang Lai. A Scalable and Adaptive Clock Synchronization

Protocol for IEEE 802.11-Based Multihop Ad Hoc Networks. In2005 IEEE mobile

ad hoc and sensor system conference, 2005.

[6] Jungmin So and Nitin Vaidya. MTSF: A Timing Synchronization Protocol to Sup-

port Synchronous Operations in Multihop Wireless Networks. InTechnical Report,

2004.

[7] Divyakant Agrawal and Amr El Abbadi. An Efficient and Fault-Tolerant Solution

for Distributed Mutual Edxclusion. InACM Transactions on Computer Systems,

pages 1–20, 1991.

[8] Hector Garcia-Molina and Daneil Barbara. How to Assign Votes in a Distributed

System. InJournal of ACM, pages 1029–1040, 1985.

26

[9] Jehn-Ruey Jiang, Yu-Chee Tseng, Chih-Shun Hsu, and Ten-Hwang Lai. Quorum-

Based Asynchronous Power-Saving Protocols for IEEE 802.11 Ad Hoc Networks.

In ACM Mobile Networking and Applications (MONET), pages 169–181, 2005.

[10] Mamoru Maekawa. A
√

N Algorithm for Mutual Exclusion in Decentralized Sys-

tems. InACM Trans. Comput. Syst., pages 145–159, 1985.

[11] S. D. Lang and L. J. Mao. A Torus Quorum Protocol for Distributed Mutual Exclu-

sion. InProc. of the 10th Conf. on Parallel and Distributed Computing and Systems,

pages 635–638, 1998.

[12] Wai-Shing Luk and Tien-Tsin Wong. Two new quorum based algorithms for distrib-

uted mutual exclusion. InProc. of International Conference on Distributed Com-

puting Systems, pages 100–106, 1997.

27

Curriculum Vita

Shu-Min Chen (smchen@csie.nctu.edu.tw) received her B.S. degree in Computer Science

from National Chiao-Tung University, Taiwan, in 2004. Her research interests include

location system and wireless networks.

28

